
ECMA/TC39/96/2

JavaScript Language Specification

Preliminary Draft

Brendan Eich
C. Rand McKinney

Netscape Communications Corp.

JavaScript 1.1

11/18/96

2 JavaScript Language Specification

Contents
Note: Page numbers are incorrect in this version.

Chapter 1 Introduction..10

1.1 Implementation Versions...11

1.2 Grammar Notation..11

1.3 Example Programs..13

1.4 References..13

Chapter 2 Lexical Structure..16

2.1 Character Set...16

2.2 Lexical Translations...16

2.3 Line Terminators..17

2.4 Input Elements and Tokens..17

2.4.1 White Space..18

2.4.2 Comments...18

2.5 Keywords..19

2.6 Identifiers..20

2.7 Literals..21

2.7.1 Integer Literals..21

2.7.2 Floating-Point Literals..23

2.7.3 Boolean Literals..24

2.7.4 String Literals...24

2.7.5 Escape Sequences for String Literals..25

2.7.6 The Null Literal..26

2.8 Separators...26

2.9 Operators..26

Chapter 3 Types, Values, and Variables...28

3.1 Types..28

3.1.1 Type Names..29

3.1.2 Type Conversion...29

3.1.3 The toString method...31

3 JavaScript Language Specification

3.1.4 The valueOf Method...32

3.2 Primitive Types and Values..32

3.2.1 Boolean Types and Values...33

3.2.2 Boolean Operations..33

3.2.3 Numeric Types and Values...33

3.2.4 Numeric Operations..34

3.2.4.1 Bitwise integer operations..36

3.2.5 The Undefined Type...36

3.3 Reference Types and Values..36

3.3.1 String Types and Operations..37

3.3.2 Object Types and Operations..37

3.3.2.1 The Null Object..38

3.3.3 Function Types...38

3.4 Variables...39

3.4.1 Variable Lifetime..39

3.4.2 Initial Values of Variables..39

3.5 Names...40

3.5.1 Scope Resolution..40

3.5.2 Declaration and Visibility...40

3.5.3 Hiding Names...41

Chapter 4 Expressions...42

4.1 Evaluation, Denotation and Result...42

4.2 Evaluation Order...43

4.3 Primary Expressions...44

4.3.1 Literals..44

4.3.2 this...44

4.4 Member Expressions..45

4.4.1 Property Expression Evaluation...45

4.4.2 Function Call Evaluation..46

4.4.2.1 Compute Target Reference..46

4.4.2.2 Evaluate Arguments...46

4.4.2.3 Locate Function to Call..46

4.5 Unary Expressions..46

4.5.1 Logical Complement Operator !...47

4.5.2 Bitwise Complement Operator ~..47

4.5.3 Unary Minus Operator –...47

4.5.4 Prefix Increment Operator ++...48

4.5.5 Prefix Decrement Operator --...48

4.5.6 Postfix Increment Operator ++...48

4.5.7 Postfix Decrement Operator --..49

4.5.8 The new operator..49

4.5.9 The delete operator...49

4 JavaScript Language Specification

4.5.10 The typeof operator...50

4.5.11 The void operator..50

4.6 Multiplicative Operators...50

4.6.1 Multiplication Operator *...51

4.6.2 Division Operator /...51

4.6.3 Remainder Operator %...52

4.7 Additive Operators...54

4.7.1 String Concatenation Operator +..54

4.7.1.1 String Conversion..54

4.7.1.2 Examples of String Concatenation...54

4.7.2 Additive Operators (+ and -) for Numeric Types...55

4.8 Shift Operators..56

4.9 Relational Operators...57

4.9.1 String Comparison Operators...57

4.9.2 Numerical Comparison Operators..57

4.10 Equality Operators..58

4.10.1 Reference Equality Operators == and !=..59

4.10.2 String Equality Operators == and !=..59

4.10.3 Numerical Equality Operators == and !=...59

4.11 Bitwise Logical Operators..60

4.12 Conditional-And Operator..61

4.13 Conditional-Or Operator...61

4.14 Conditional Operator ? :...62

4.15 Assignment Operators..63

4.15.1 Simple Assignment Operator =..63

4.15.2 Compound Assignment Operators..63

4.16 Comma Operator..64

Chapter 5 Object Model..66

5.1 Functions..66

5.1.1 Definition..66

5.1.2 Call..67

5.1.3 The caller property..67

5.1.4 The arguments array...68

5.2 This...68

5.3 Constructor Functions..69

5.3.1 Object prototypes..69

5.3.2 Defining methods..70

5 JavaScript Language Specification

5.4 Object Creation...71

Chapter 6 Statements...74

6.1 Normal and Abrupt Completion of Statements..74

6.2 Blocks...75

6.3 Variable Declaration Statements..75

6.4 Statements...76

6.4.1 The Empty Statement...76

6.4.2 The if Statement..77

6.4.3 The while Statement...77

6.4.3.1 Abrupt Completion..78

6.4.4 The for Statement...78

6.4.4.1 Initialization...79

6.4.4.2 Iteration..79

6.4.4.3 Abrupt Completion..80

6.4.5 The break Statement...80

6.4.6 The continue Statement..80

6.4.7 The return Statement...81

6.4.8 The with Statement...81

6.4.9 The for/in Statement...82

6.4.10 Function Definition Statement..83

Chapter 7 Built-in Functions and Objects...84

7.1 Built-in functions..84

7.1.1 eval..84

7.1.2 parseInt...85

7.1.3 parseFloat..86

7.1.4 escape..87

7.1.5 unescape..88

7.2 Array Object...88

7.2.1 Constructors..89

7.2.2 Properties..90

7.2.2.1 length..90

7.2.3 Methods..90

7.2.3.1 join...90

7.2.3.2 reverse..91

7.2.3.3 sort..91

7.3 Boolean Object...91

7.3.1 Constructors..91

7.3.2 Properties..92

7.3.3 Methods..92

7.4 Date Object...92

7.4.1 Constructors..92

7.4.2 Properties..93

6 JavaScript Language Specification

7.4.3 Methods..93

7.4.3.1 parse...94

7.4.3.2 setDate..94

7.4.3.3 setHours...95

7.4.3.4 setMinutes..95

7.4.3.5 setMonth..95

7.4.3.6 setSeconds..95

7.4.3.7 setTime...96

7.4.3.8 setYear...96

7.4.3.9 toGMTString..96

7.4.3.10 toLocaleString..97

7.4.3.11 UTC..97

7.5 Math Object..98

7.5.1 Constructors..98

7.5.2 Properties..98

7.5.2.1 E...98

7.5.2.2 LN2..99

7.5.2.3 LN10..99

7.5.2.4 LOG2E...99

7.5.2.5 LOG10E...99

7.5.2.6 PI..99

7.5.2.7 SQRT1_2...99

7.5.2.8 SQRT2...99

7.5.3 Methods..100

7.5.3.1 abs..100

7.5.3.2 acos..100

7.5.3.3 asin...100

7.5.3.4 atan...100

7.5.3.5 atan2...101

7.5.3.6 ceil..101

7.5.3.7 cos..101

7.5.3.8 exp..101

7.5.3.9 log..101

7.5.3.10 max...102

7.5.3.11 min...102

7.5.3.12 pow...102

7.5.3.13 random...102

7.5.3.14 round..102

7.5.3.15 sin...103

7.5.3.16 sqrt..103

7.5.3.17 tan...103

7.6 Number Object...103

7.6.1 Constructors..103

7 JavaScript Language Specification

7.6.2 Properties..104

7.6.2.1 MAX_VALUE...104

7.6.2.2 MIN_VALUE..104

7.6.2.3 NaN..104

7.6.3 Methods..104

7.7 String Object...104

7.7.1 Constructors..104

7.7.2 Properties..105

7.7.2.1 length..105

7.7.3 Methods..105

7.7.3.1 indexOf..105

7.7.3.2 lastIndexOf...106

7.7.3.3 substring...106

7.7.3.4 charAt...107

7.7.3.5 toLowerCase..108

7.7.3.6 toUpperCase...108

7.7.3.7 split...109

 Appendix A JavaScript LL(1) Grammar...110

8 JavaScript Language Specification

Chapter

1
Introduction

JavaScript is a general-purpose, prototype-based, object-oriented scripting language. It is
designed to be embedded in diverse applications and systems, without consuming much memory.
JavaScript borrows most of its syntax from Java, but also inherits from Awk and Perl, with some
indirect influence from Self in its object prototype system.

JavaScript is dynamically typed, that is, programs do not declare variable types, and the type of a
variable is unrestricted and can change at runtime. Source code can be generated at runtime and
evaluated against an arbitrary scope. Typical implementations compile by translating source into
an unspecified bytecode format, to check syntax and source consistency. Note that the ability to
generate and interpret programs at runtime implies the presence of a compiler at runtime.

JavaScript is a high-level scripting language that does not depend on or expose particular
machine representations or operating system services. It provides automatic storage management,
typically using a garbage collector. The language and the standard objects and functions
documented in this specification provide no unsafe access to memory or other hardware
resources.

1.1 Implementation versions

JavaScript version 1.0 was implemented in Netscape Navigator 2.0 and Netscape LiveWire 1.0.
This specification describes JavaScript version 1.1, which was implemented in Netscape
Navigator 3.0. This specification describes the language and its standard objects and functions,
but not the objects and functions peculiar to a particular implementation. Where possible, bugs in
the implementation of version 1.1 are identified as deviations from the specification.

Although JavaScript was originally implemented as a scripting language for HTML in Netscape
Navigator and LiveWire, this specification does not prescribe any particular application.

9 JavaScript Language Specification

1.2 Grammar notation

Terminal symbols are shown in fixed width font in the productions of the lexical and syntactic
grammars, and throughout this specification whenever the text is directly referring to such a
terminal symbol. These are to appear in a program exactly as written.

Nonterminal symbols are shown in italic fixed width font. The definition of a
nonterminal is introduced by the name of the nonterminal followed by a colon. One or more
alternative right-hand sides for the nonterminal then follow on succeeding lines. For example, the
syntactic definition:
IfThenStatement:

if (Expression) Statement

states that the nonterminal IfThenStatement represents the token if, followed by a left parenthesis
token, followed by an Expression, followed by a right parenthesis token, followed by a
Statement. As another example, the syntactic definition:
ArgumentList:

Argument
ArgumentList , Argument

states that an ArgumentList may represent either a single Argument or an ArgumentList, followed
by a comma, followed by an Argument. This definition of ArgumentList is recursive, that is to
say, it is defined in terms of itself. The result is that an ArgumentList may contain any positive
number of arguments. Such recursive definitions of nonterminals are common.

The informal grammar in this specification is bottom-up and left-recursive. A complete top-
down, right-recursive grammar with disambiguation rules is included in an appendix.

The subscripted suffix opt, which may appear after a terminal or nonterminal, indicates an optional
symbol. The alternative containing the optional symbol actually specifies two right-hand sides,
one that omits the optional element and one that includes it. So, for example:
ReturnStatement:

return Expressionopt

is an abbreviation for:
ReturnStatement:

return
return Expression

When the words "one of" follow the colon in a grammar definition, they signify that each of the
terminal symbols or tokens on the following line or lines is an alternative definition. For
example:
OctalDigit: one of

0 1 2 3 4 5 6 7

which is a convenient abbreviation for:
OctalDigit:

0
1
2
3
4
5
6
7

10 JavaScript Language Specification

The right-hand side of a lexical production may indicate that certain expansions are not permitted
by using the phrase "but not" and then naming the excluded expansions, as in the productions for
Identifier:
Identifier:

IdentifierName, but not a Keyword or BooleanLiteral or NullLiteral

Finally, a few nonterminal symbols are described by a descriptive phrase where it would be
impractical to list all the alternatives, for example:
RawInputCharacter:

any ASCII character

1.3 Example programs

The example programs given in the text are ready to be executed by a JavaScript system. Since
this specification does not describe any specific mechanism for JavaScript to display output,
examples suppose a simple println function that displays values to the user. In Netscape
Navigator, this function would be defined as follows:
function println(x) {

document.write(x, "
")
}

This function is intended for illustrative and pedagogical purposes only, and is not part of the
language specification.

1.4 References

Bobrow, Daniel G., Linda G. Demichiel, Richard P. Gabriel, Sonya E. Keene, Gregor Kiczales,
and David A. Moon. Common Lisp Object System Specification, X3J13 Document 88-002R,
June 1988; appears as Chapter 28 of Steele, Guy. Common Lisp: The Language, 2nd ed. Digital
Press, 1990, ISBN 1-55558-041-6, 770-864.

IEEE Standard for Binary Floating-Point Arithmetic. ANSI/IEEE Std. 754-1985. Available from
Global Engineering Documents, 15 Inverness Way East, Englewood, Colorado 80112-5704
USA; 800-854-7179.

Kernighan, Brian W., and Dennis M. Ritchie. The C Programming Language, 2nd ed. Prentice
Hall, Englewood Cliffs, New Jersey, 1988, ISBN 0-13-110362-8.

Gosling, James, Bill Joy, and Guy Steele. The Java Language Specification. Addison Wesley
Publishing Company, 1996

Agesen, et. al. The Self 3.0 Programmer’s Reference Manual. Sun Microsystems, 1993,
Mountain View, California.

Stroustrup, Bjarne. The C++ Progamming Language, 2nd ed. Addison-Wesley, Reading,
Massachusetts, 1991, reprinted with corrections January 1994, ISBN 0-201-53992-6.

11 JavaScript Language Specification

Chapter

2
Lexical structure

This chapter defines JavaScript's lexical grammar by specifying how input characters may be
composed into white space, comments, and tokens.

2.1 Character set

JavaScript programs are written using ASCII, the American Standard Code for Information
Interchange (defined by ANSI standard X3.4).

2.2 Lexical translations

The translation of an ASCII character stream into a sequence of JavaScript tokens uses the
following two lexical translations, which are applied in turn:

1. A translation of the ASCII character stream into a stream of input characters and line
terminators.

2. A translation of the stream of input characters and line terminators into a sequence of
JavaScript input elements which, after white space and comments are discarded, comprise the
tokens that are the terminal symbols of the syntactic grammar for JavaScript.

In these lexical translations JavaScript chooses the longest possible translation at each step, even
if the result does not ultimately make a correct JavaScript program, while another lexical
translation would.

12 JavaScript Language Specification

2.3 Line terminators

JavaScript divides the sequence of input characters into lines by recognizing line terminators.
This definition of lines determines the line numbers produced by a JavaScript compiler or other
system component. It also specifies the termination of a single-line comment.

Lines are terminated by the ASCII characters CR, or LF, or CR LF. A CR immediately followed
by LF is counted as one line terminator, not two.
RawInputCharacter:

LineTerminator
InputCharacter

LineTerminator:
the ASCII LF character, also known as "newline"
the ASCII CR character, also known as "return"
the ASCII CR character followed by the ASCII LF character

InputCharacter:
Any ASCII character, but not CR and not LF

The result of this step is a sequence of line terminators and characters, which are the input for the
second step in the tokenization process.

2.4 Input elements and tokens

The input characters and line terminators that result from input line recognition are reduced to a
sequence of input elements. The input elements that are not white space or comments are
JavaScript tokens.

This process is specified by the following grammar:
InputElements:

InputElementopt

InputElements InputElement

InputElement:
WhiteSpace
Comment
Token

WhiteSpace:
the ASCII SP character, also known as "space"
the ASCII HT character, also known as "horizontal tab"
the ASCII FF character, also known as "form feed"
LineTerminator

Token:
Keyword
Identifier
Literal
Separator
Operator

White space and comments can serve to separate tokens that, if adjacent, might be tokenized in
another manner. For example, the characters - and = in the input can form the operator token -=
only if there is no intervening white space or comment.

13 JavaScript Language Specification

2.4.1 White space

White space is defined as the ASCII space, horizontal tab, and form feed characters, as well as
line terminators.

2.4.2 Comments

JavaScript has two kinds of comments:

A traditional C-style comment: all the text from /* to */ is ignored:
/* text */

A single-line C++-style comment: all the text from // to the end of the line is ignored:
// text

These comments are formally specified by the following lexical grammar:
Comment:

TraditionalComment
SingleLineComment

TraditionalComment:
/* CommentTextopt */

CommentText:
CommentCharacter
CommentText CommentCharacter

CommentCharacter:
NotStarSlash
/ NotStar
* NotSlash
LineTerminator

NotStar
InputCharacter, but not *

NotSlash
InputCharacter, but not /

NotStarSlash
InputCharacter, but not * and not /

SingleLineComment:
// CharactersInLineopt LineTerminator

CharactersInLine:
InputCharacter
CharactersInLine InputCharacter

The grammar implies all of the following properties:

• Multi-line comments cannot be nested

• /* and */ have no special meaning in // comments.

• // has no special meaning in either single-line or multi-line comments

As a result, these are legal comments:

14 JavaScript Language Specification

/* this comment // ends here: */
// This // just /* fine */ as far as JavaScript // is concerned

But this causes a compile-time warning:
/* this comment /* causes a compile-time warning */

2.5 Keywords

The following sequences of ASCII letters are reserved for use as keywords, and are not legal
identifiers:
Keyword: one of

abstract
boolean
break
byte
case
catch
char
class
const
continue
default
delete
do
double

else
extends
final
finally
float
for
function
goto
if
implements
import
in
instanceof
int

interface
long
native
new
package
private
protected
public
return
short
static
super
switch
synchronized

this
throw
throws
transient
try
typeof
var
void
volatile
while
with

The above list includes all keywords used currently and reserved for future use. The following
table lists keywords used in JavaScript version 1.1:

break
continue
delete
else
for
function
if
in

new
return
this
typeof
var
void
while
with

While true and false might appear to be keywords, they are technically Boolean literals; while
null might appear to be a keyword, it is technically an object literal.

2.6 Identifiers

An identifier is an unlimited-length sequence of ASCII letters and digits, the first of which must
be a letter. The letters include uppercase and lowercase ASCII letters (a-z and A-Z) and the
ASCII underscore (_) and dollar sign ($). The digits include the ASCII digits 0-9.
Identifier:

IdentifierChars, but not a Keyword or BooleanLiteral or NullLiteral

15 JavaScript Language Specification

IdentifierChars:
JavaScriptLetter
IdentifierChars JavaScriptLetterOrDigit

JavaScriptLetter:
any uppercase or lowercase ASCII letter (a-z, A-Z)
_
$

JavaScriptLetterOrDigit:
JavaScriptLetter
any digit (0-9)

Examples of legal identifiers are
Number_hits
temp99
_name
$6million

2.7 Literals

A literal is the source code representation of a value of a primitive type:
Literal:

IntegerLiteral
FloatingPointLiteral
BooleanLiteral
StringLiteral
NullLiteral

2.7.1 Integer literals

Integer literals may be expressed in decimal (base 10), hexadecimal (base 16), or octal (base 8):
IntegerLiteral:

DecimalLiteral
HexLiteral
OctalLiteral

A decimal literal consists of a lone 0, or a digit from 1 to 9 followed by zero or more digits from
0 to 9, and represents a nonnegative integer:
DecimalLiteral:

0
NonZeroDigit Digitsopt

Digits:
Digit
Digits Digit

Digit:
0
NonZeroDigit

NonZeroDigit: one of
1 2 3 4 5 6 7 8 9

16 JavaScript Language Specification

A hexadecimal literal consists of a leading 0x or 0X followed by one or more hexadecimal digits
and can represent a nonnegative integer. Hexadecimal digits with values 10 through 15 are
represented by the letters a through f or A through F, respectively; each letter used as a
hexadecimal digit may be uppercase or lowercase.
HexLiteral:

0x HexDigit
0X HexDigit
HexLiteral HexDigit

HexDigit: one of
0 1 2 3 4 5 6 7 8 9 a b c d e f A B C D E F

An octal literal consists of a digit 0 followed by one or more of the digits 0 through 7 and can
represent a nonnegative integer.
OctalLiteral:

0 OctalDigit
OctalLiteral OctalDigit

OctalDigit: one of
0 1 2 3 4 5 6 7

The largest hexadecimal and octal literals are 0xffffffff and 037777777777, respectively, which
equal 4294967295. A compile-time error occurs for any integer literal of greater value.

Examples of integer literals:
0
1996
0372
0xDeadBeef
0x00FF88FF

2.7.2 Floating-point literals

A floating-point literal has the following parts: a whole-number part, a decimal point, a fractional
part, an exponent, and a type suffix. The exponent, if present, is indicated by a letter e or E
followed by an optionally signed integer.

At least one digit, in either the whole number or the fraction part, and either a decimal point or an
exponent, are required. All other parts are optional.
FloatingPointLiteral:

Digits . Digitsopt ExponentPartopt

. Digits ExponentPartopt
Digits ExponentPart

ExponentPart:
ExponentIndicator SignedInteger

ExponentIndicator: one of
e E

SignedInteger:
Signopt Digits

Sign: one of
+ -

The largest positive finite floating point literal is 1.79769313486231570e+308. The smallest
positive finite floating point literal is 4.94065645841246544e-324.

17 JavaScript Language Specification

A compile-time error occurs if a non-zero floating point literal is too large, so that on rounded
conversion to its internal representation, it becomes an IEEE 754 infinity.1 A JavaScript program
can represent infinities without producing a compile-time error by using the predefined constants
Number.POSITIVE_INFINITY and Number.NEGATIVE_INFINITY.

A compile-time error occurs if a nonzero floating-point literal is too small, so that, on rounded
conversion to its internal representation, it becomes a zero. A compile-time error does not occur
if a nonzero floating-point literal has a small value that, on rounded conversion to its internal
representation, becomes a nonzero denormalized number.2

Examples of floating-point literals are:
2.
.3
0.0
3.14
1e-9

2.7.3 Boolean literals

The boolean type has two values, represented by the literals true and false.
BooleanLiteral:

true
false

2.7.4 String literals

A string literal is zero or more characters, enclosed in single (') or double (")quotes.
StringLiteral:

" StringCharactersDQopt "

' StringCharactersSQopt '

StringCharactersDQ:
StringCharacterDQ
StringCharactersDQ StringCharacterDQ

StringCharactersSQ:
StringCharacterSQ
StringCharactersSQ StringCharacterSQ

StringCharacterDQ:
InputCharacter, but not " or \
EscapeSequence

StringCharacterSQ
InputCharacter, but not ' or \
EscapeSequence

The escape sequences are described in section 2.7.5 Escape Sequences for String Literals.

1 . JavaScript 1.1 as implemented in Navigator 3.0 fails to report this error.

2 . JavaScript 1.1 as implemented in Navigator 3.0 fails to report this error.

18 JavaScript Language Specification

It is a compile-time error for a line terminator to appear after the opening " and before the closing
". A long string literal can be broken up into shorter pieces and written as a expression using the
string concatenation operator +.

Examples of string literals:
"" // The empty string
"\"" // A string containing " alone
‘This is a string’ // A string containing 16 characters

"This is a " + // Actually a string-valued expression
"two-line string" // containing two string literals

2.7.5 Escape sequences for string literals

The string escape sequences allow for the representation of some nongraphic characters as well
as the single quote, double quote, and backslash characters in string literals.
EscapeSequence:

\ b (backspace BS)
\ t (horizontal tab HT)
\ n (linefeed LF)
\ f (form feed FF)
\ r (carriage return CR)
\ " (double quote ")
\ ' (single quote ')
\ \ (backslash \)
OctalEscape
HexEscape

OctalEscape:
\ OctalDigit
\ OctalDigit OctalDigit
\ ZeroToThree OctalDigit OctalDigit

OctalDigit: one of
0 1 2 3 4 5 6 7

ZeroToThree: one of
0 1 2 3

HexEscape:

\ x HexDigit HexDigit

HexDigit: one of
0 1 2 3 4 5 6 7 8 9 a b c d e f A B C D E F

2.7.6 The null literal

The null object reference is denoted by the literal null.

NullLiteral:
null

19 JavaScript Language Specification

2.8 Separators

The following characters are used in JavaScript as separators (punctuators):
Separator: one of

() { } [] ; ,

2.9 Operators

The following tokens are used in JavaScript as operators. Note that dot (.) is an operator in
JavaScript, wheras it is a separtor in Java.
Operator: one of:

= > < ! ~ ? : .

== <= >= != && || ++ --

+ - * / & | ^ % << >> >>>

+= -= *= /= &= |= ^= %= <<= >>= >>>=

20 JavaScript Language Specification

Chapter

3
Types, values, and variables

3.1 Types

There are two kinds of types in JavaScript: primitive types and reference types. There are,
correspondingly, two kinds of data values that can be stored in variables, passed as arguments,
returned by methods, and operated on: primitive values and reference values.
Type:

PrimitiveType
ReferenceType

JavaScript’s primitive data types are boolean, number, and undefined; its reference types are
string, object (including the null object), and function. Strings compare by value (ASCII
lexicographical order), not reference, when used as operands of the equality and relational
operators.

The boolean type has the truth values true and false. A number can be either an integer or
floating-point; JavaScript does not explicitly distinguish between them. The integer bitwise-
logical and shift operators work with 32-bit signed two's-complement integers. Floating-point
numbers are in 64-bit IEEE 754 format.

An object in JavaScript is a container that associates names and indexes with data of arbitrary
type. These associations are called properties. Properties with function values are called the
object’s methods.

Each type has a corresponding object class: Boolean, Number, String, Object, and Function.
JavaScript converts values to objects by constructing an object of the corresponding class for the
value’s type.

21 JavaScript Language Specification

3.1.1 Type names

The typeof operator returns a string naming the type of its operand, as described in 4.5.10 The
typeof operator.

3.1.2 Type conversion

As summarized in the following table, JavaScript performs automatic type conversion at runtime.
The From type of an operand is its type after evaluation. The To type is the type required by its
combination with another operand and a binary operator, or by a unary operator.

22 JavaScript Language Specification

To type

function object number boolean string

undefined error null error false “undefined”
function N/C Function

object
valueOf/error valueOf/true decompile

object
(not null)
(null)

Function object
error

N/C valueOf/error
0

valueOf/true
false

toString/valueO
f3

“null”
From
type

number
(zero)
(nonzero)
(NaN)
(+Infinity)
(-Infinity)

error
error
error
error
error

Number
Number
Number
Number
Number

N/C false
true
false4

true
true

“0”
default*
“NaN”
“+Infinity”
“-Infinity”

Boolean
(false)
(true)

error
error

Boolean
Boolean

0
1

N/C “false”
“true”

string
(empty)
(non-empty)

error
error

String
String

error
number/error

false
true

N/C

Key

When two results separated by a slash are given, JavaScript tries the first, and if unsuccessful,
uses the second.

N/C: No conversion necessary.
decompile: A string containing the function’s canonical source.
toString: The result of calling the toString method.
valueOf: The result of calling the valueOf method, if it returns a value of the To type.
number: Numeric value if string is a valid integer or floating-point literal.

3.1.3 The toString method

Every object has a toString method used to convert the object to a string value, as follows:

• Boolean objects are converted to the string literal expression of their value: “true” or “false.”

• Number objects are converted to the string literal expression of their value: decimal if integer
and floating-point otherwise.

• Functions are decompiled, that is, a string containing the function’s source definition is
pretty-printed.

3 . If valueOf does not return a string, the default object-to-string conversion is used.

4. JavaScript 1.1 as implemented in Navigator 3.0 converts NaN to true.

23 JavaScript Language Specification

• Objects are converted by trying the object’s toString method. If that is not defined, then the
object’s valeuOf method is tried. If that does not exist or does not return a string, then the
result is a string of the form “[object class]”, where class is the capitalized type name.

Examples

For example,
function f() {

return 42
}

function Car(make, model, year) {
this.make = make
this.model = model
this.year = year

}

objnull = null

o = new Car("Ford", "Mustang", 1969)
posInfinity = 10*1e308
n0 = 0
n1 = 123

println(true.toString())
println(false.toString())
println(f.toString())
println(objnull)
println(Math.toString)
println(o.toString())
println(n0.toString())
println(n1.toString())
println(posInfinity.toString())

This script returns the following:
true
false
function f() {
 return 42;
}
null
function toString() {
 [native code]
}
[object Object]
0
123
Infinity

3.1.4 The valueOf method

Every object has a valueOf method that returns the value associated with the object, if any. For
Boolean and Number objects, valueOf returns the primitive boolean or number value passed to
the object’s constructor. For String and Function objects, valueOf returns the string or function
reference that was passed to the constructor. If an object has no associated value, valueOf returns
the object reference itself.

24 JavaScript Language Specification

3.2 Primitive types and values

A primitive type is predefined by the JavaScript language:
PrimitiveType:

boolean
number
undefined

3.2.1 Boolean types and values

The boolean type represents a logical quantity with two possible values, true and false.

3.2.2 Boolean operations

JavaScript's Boolean operators treat their operands as boolean values. The logical-not operator
returns a boolean result; the remaining operators return one of their operands as their result, with
no conversion of the result to boolean.

JavaScript’s Boolean operations are:

• The logical-not operator !

• The logical-and operator &&. If the first operand of && converts to false, the result is the
first operand’s value and the second operand is not evaluated; otherwise the result is the
second operand’s value.

• The logical-or operator ||. If the first operand of || converts to true, the result is the first
operand’s value and the second operand is not evaluated; otherwise the result is the second
operand’s value.

• The conditional operator ?:. If the first operand (which precedes the ?) converts to true, the
result is the value of the second operand (between the ? and :). Otherwise the result is the
value of the third operand (which follows the :).

3.2.3 Numeric types and values

JavaScript numbers are signed 64-bit IEEE 754 floating-point values, as specified in IEEE
Standard for Binary Floating-Point Arithmetic, ANSI/IEEE Standard 754-1985 (IEEE, New
York).

The IEEE 754 standard includes not only positive and negative sign-magnitude numbers, but also
positive and negative infinities, and a special Not-a-Number (hereafter abbreviated NaN) value.
The NaN value is used to represent the result of certain operations such as dividing zero by zero.

25 JavaScript Language Specification

The largest positive finite number is 1.79769313486231570e+308. The smallest positive finite
nonzero number is 4.94065645841246544e-324.

Except for NaN, numeric values are ordered; arranged from smallest to largest, they are negative
infinity, negative finite values, negative zero, positive zero, positive finite values, and positive
infinity.

NaN is unordered, so the numerical comparison operators <, <=, >, and >= return false if either
or both of their operands are NaN . The numerical equality operator == returns false if either
operand is NaN, and the inequality operator != returns true if either operand is NaN . In
particular, x==x is false if and only if x is NaN, and (x<y)==!(x>=y) will be false if x or y is
NaN.

3.2.4 Numeric operations

JavaScript provides a number of operators that act on numeric values:

• The comparison operators, which result in a value of type boolean:

• The relational operators <, <=, >, and >=

• The equality operators == and !=

• The unary minus operator -

• The multiplicative operators *, /, and %

• The additive operators + and -

• The modulus operator %

• The increment operator ++, both prefix and postfix

• The decrement operator --, both prefix and postfix

• The conditional operator ?:

Numeric operators behave as specified by IEEE 754. In particular, JavaScript requires support of
IEEE 754 denormalized floating-point numbers and gradual underflow, which make it easier to
prove desirable properties of particular numerical algorithms.

JavaScript requires that floating-point arithmetic behave as if every floating-point operator
rounded its floating-point result to the result precision. Inexact results must be rounded to the
representable value nearest to the infinitely precise result; if the two nearest representable values
are equally near, the one with its least significant bit zero is chosen. This is the IEEE 754
standard's default rounding mode known as round to nearest.

An operation that overflows produces a signed infinity, an operation that underflows produces
zero, and an operation that has no mathematically definite result produces NaN. All numeric
operations with NaN as an operand produce NaN as a result. Since NaN is unordered, a numeric
comparison operation involving one or two NaNs returns false and any != comparison involving
NaN returns true, including x!=x when x is NaN.

The following example illustrates:

26 JavaScript Language Specification

// an example of overflow:
d = 1e308
println("overflow produces infinity: ")
println(d + "*10==" + d*10)
println("")

// an example of gradual underflow:
d = 1e-305 * Math.PI
println("gradual underflow: ")
println(d)
for (i = 0; i < 4; i++)

println(d /= 100000)
println("")

// an example of NaN:
d = 0.0/0.0
println("0.0/0.0 is Not-a-Number: ", d)
println("")

// an example of inexact results and rounding:
println("inexact results with floating point arithmetic:")
for (i = 0; i < 100; i++) {

z = 1.0/i
if (z*i != 1.0)

println(i)
}

This example produces the following output:
overflow produces infinity:
1e308*10==Infinity

gradual underflow:
3.141592653589793e-305
3.1415926535898e-310
3.141592653e-315
3.142e-320
0

0.0/0.0 is Not-a-Number: NaN

inexact results with floating point arithmetic:
49
98

This example demonstrates, among other things, that gradual underflow can result in a gradual
loss of precision. Note that when i is zero, z is NaN, and z*i is NaN.

3.2.4.1 Bitwise integer operations

The bitwise operators treat their operands as signed 32-bit integer values:

• The signed and unsigned shift operators <<, >>, and >>>

• The bitwise complement operator ~

• The integer bitwise operators &, |, and ^

JavaScript uses round toward zero when converting a floating-point value to an integer, which
acts, in this case, as though the number were truncated, discarding the mantissa bits. Round
toward zero chooses the value closest to and no greater in magnitude than the infinitely precise
result.

27 JavaScript Language Specification

3.2.5 The undefined type

Any variable that has not been assigned a value is of type undefined. The undefined type has one
value, undefined. The void operator evaluates its operand, discards the value, and results in
undefined.

3.3 Reference types and values

JavaScript’s reference types are objects, strings, and functions.
ReferenceType:

String
Object
Function

3.3.1 String types and operations

A string is a sequence of ASCII characters created by use of a string literal or a string
expression.5 Every string has a length property that is an integer equal to the number of
characters in the string. A string converts to a String object that has a number of built-in methods,
described in 7.7 String Object.

The following operators are defined for strings:

• The concatentation (+) operator that concatentates two strings together. If given a string
operand and an operand of another type, it will convert the second operand to string, as
described in 3.1.2 Type Conversion.

• Relational and equality operators (==, !=, >, <, >=, <=) that compare the lexicographical
precedence of their operands and return a logical value.

Note the reference-type behavior for assignment operations, but not for equality and relational
operations.

3.3.2 Object types and operations

An object is a container for properties. A value of type object is a pointer to such a container, or a
special null reference, which refers to no object. Each property of an object can be of any type
and can be named by any string. A property name that is a nonnegative integer literal is called an
index. A property name that is an identifier (as defined in) can be used after the dot operator (.).

The object operators are:

• The dot operator .

5 . JavaScript 1.1 as implemented in Navigator 3.0 disallows the ASCII NUL character in strings.

28 JavaScript Language Specification

• The index operator []

• The new operator

• The delete operator.

3.3.2.1 The null object

The null object is a special object that references no object. It is named by the null literal.

3.3.3 Function types

A function is created by a function definition. The syntax for a function definition is given in
6.4.10 Function Definition Statement.

It is also possible to create a function object with the new operator as follows:
functionObject:

identifier = new Function("Block")
identifier = new Function(parameterList, "Block")

parameterList:
"identifier"
"identifier", parameterList

where Block is the set of statements that defines the body of the function.

A function object is of type object not function. The only way to create a value of type function
is with a function definition.

Examples

Here is a standard definition of a simple factorial function:
function fact(n) {

if (n <= 1)
return 1

return n * fact(n-1)
}

Here is the same function defined as a function object:
fact = new Function("n", "if (n <= 1) return 1; return n * fact(n-1);")

3.4 Variables

A variable is a storage location for a value and has an associated type, determined at run-time. A
variable's value is changed by assignment or by the ++ (increment) or -- (decrement) operators.

29 JavaScript Language Specification

3.4.1 Variable lifetime

JavaScript has four kinds of variables, distinguished by lifetime:

• Global variables name properties of the global object. They have lifetimes as long as any
program execution or function definition and possibly longer, depending on the system in
which JavaScript is embedded.

• Object properties name values contained by an object. They have the same lifetime as the
containing object.

• Function parameters name argument values passed to a function. They have the same lifetime
as the execution of a specific function call.

• Local variables name values associated with a particular function call. They have the same
lifetime as the execution of a specific function call.

3.4.2 Initial values of variables

Every variable in a JavaScript program has a value:

• If a global or local variable is used before it is set by assignment, its value is undefined.

• If an object property is used before it is set by assignment, its value is undefined.6

• A function parameter is initialized to the corresponding argument value provided in the
function call. If there is no corresponding argument, the parameter’s value is undefined.

3.5 Names

A name is an identifier used to refer to an variable or a function in a JavaScript program. There
are two forms of names: simple names and qualified names. A simple name is a single identifier.
A qualified name consists of a name, a "." token, and an identifier; it is used when a name is
associated with an object.

3.5.1 Scope resolution

All names have scope. The name space in which functions are defined is called the global scope.
Qualified names identify the scope explicitly as an object reference to the left of the dot operator.
Simple names have implicit scope determined at run-time as follows:

6 . In JavaScript 1.1 as implemented in Navigator 3.0, indexed properties default to null.

30 JavaScript Language Specification

• Each enclosing with statement’s object is searched, starting from the innermost with
statement. If the simple name identifies a property of the object, the name is qualified by that
object, and its scope is determined.

• The function currently executing (if any) is searched for local variables and function
parameters identified by the simple name. If found, the simple name’s scope is the function.

• Depending on the system in which JavaScript is embedded, other objects whose scopes
enclose the function currently executing (if any) are searched, starting from the innermost
object, for a property identified by the simple name. If found, the simple name’s scope is the
object containing the property.

• The global scope is searched for a property identified by the simple name. If found, the
simple name’s scope is the global scope.

3.5.2 Declaration and visibility

JavaScript variables may be implicitly declared by assignment, or explicitly declared by a var
statement. For example, both of the following statements declare the variable x if it has not been
declared yet:
x = 42
var x

The second statement declares x but does not initialize it. Uninitialized variables have the value
undefined. A var statement can initialize the variable it declares with an expression, called an
initializer:
var x = 42

Implicit declarations take effect at runtime, in the normal order of execution. Explicit
declarations have at most two effects, one at compile-time that defines a property of the
variable’s enclosing scope, and (if there is an initializer) a runtime effect that initializes the
variable to the value of its initializer. A variable is visible once its implicit declaration has been
executed, or its explicit declaration has been compiled.

A variable declared outside a function is a global variable, and once visible, is accessible
everywhere in the global scope. A variable implicitly declared within a function is also a global
variable. A variable declared with var within a function is a local variable, and is accessible only
within that function.

3.5.3 Hiding names

When there is a global variable with the same name as a local variable, the local variable is said
to hide the global variable within the function. In this case, there are two variables, a global
variable and a local variable, with the same names. Within the function, the local variable is
used; everywhere else, the global variable takes precedence.

For example, in the function foo, x has a value of 17, but outside the function, it has a value of
42.

31 JavaScript Language Specification

x = 42

function foo() {
var x = 17
println(x)

}

foo()
println(x)

The result of these statements is:
17
42

32 JavaScript Language Specification

Chapter

4
Expressions

This chapter specifies the meaning of JavaScript expressions and the rules for their evaluation.

4.1 Evaluation, Denotation and Result

When a JavaScript expression is evaluated (executed), the result denotes one of three things:

• a variable (in C, this is called an lvalue)

• a value

• undefined (the expression is said to be void)

Evaluation of an expression can also produce side effects, because expressions may contain
embedded assignments, increment or decrement operators, and function calls.

An expression is void if it gets its value from a function call that does not return a value, or from
use of the void operator.

If an expression denotes a variable, and a value is required for use in further evaluation, then the
value of that variable is used. In this context, when the expression denotes a variable or a value,
we may speak simply of the value of the expression.

4.2 Evaluation Order

In JavaScript, the operands to operators are evaluated from left to right.

The left operand of a binary operator is fully evaluated before any part of the right operand is
evaluated. For example, if the left operand contains an assignment to a variable and the right
operand contains a reference to that same variable, then the value produced by the reference will
reflect the fact that the assignment occurred first.

33 JavaScript Language Specification

Thus:
i = 2
j = (i=3) * i
println(j)

prints

9

And:
a = 9
a += (a =3) // first example
println(a)
b = 9
b = b + (b = 3) // second example
println(b)

prints

12
12

Every operand of an operator (except for &&, ||, and ? :) is fully evaluated before any part of the
operation itself is performed.

In a function or constructor call, one or more argument expressions may appear within the
parentheses, separated by commas. Each argument expression is fully evaluated before any part
of any argument expression to its right is evaluated.

4.3 Primary Expressions

Primary expressions include most of the simplest kinds of expressions, from which all others are
constructed: literals, function calls, and array accesses.
PrimaryExpr:

Literal
this

4.3.1 Literals

A literal denotes a fixed, unchanging value.

The following production from Chapter 2 is repeated here for convenience:
Literal:

IntegerLiteral
FloatingPointLiteral
BooleanLiteral
StringLiteral
NullLiteral

34 JavaScript Language Specification

4.3.2 this

The keyword this denotes a reference to the invoking object, or to the object being constructed in
a constructor function. The invoking object is defined as the object name to the left of the period
“.” or left bracket “[“ in a method call, otherwise it is the parent object of the function.

4.4 Member Expressions

A member expression is either a primary expression, a function call, or a named or indexed
property expression.
MemberExpr:

PrimaryExpr
MemberExpr . Identifier
MemberExpr [Expression]
MemberExpr (ArgumentListopt)

The definition of ArgumentList is repeated here for convenience:
ArgumentList:

AssignmentExpression
ArgumentList , AssignmentExpression

4.4.1 Property Expression Evaluation

A property expression combines a member expression and a property name. A property name is
either an identifier to the right of the dot operator, or the string conversion of an expression
enclosed by brackets.

The dot operator (.) joins an object reference to its left with an identifier to its right that names a
property. If the left operand is not of object type, it is converted to object. The right operand must
be an identifier or a compile-time error results. A property expression using the dot operator is
called a dot expression.

The index operator ([]) joins an object reference to the left of the [separator to an expression
after the [and before the] separator. If the left operand is not of object type, it is converted to
object. The right operand is converted to string, according to the conversion rules described in
3.1.2 Type Conversion.7 A property expression using the index operator is called an index
expression.

7 . Implementations can optimize index expressions where the index is a nonnegative integer to associate the integer,
not its string conversion, with the property value. Such implementations must treat a string index containing a
nonnegative integer literal as equivalent to the integer index. JavaScript 1.1 as implemented in Navigator 3.0 fails to
equate integer strings with integer indexes.

35 JavaScript Language Specification

4.4.2 Function Call Evaluation

This section describe the processing of a function call.

At run time, a function call requires the following steps:

• A target reference may be computed.

• The argument expressions are evaluated.

• The actual code for the function is executed.

4.4.2.1 Compute Target Reference

The member expression to the left of the argument list is evaluated and its result is converted to a
function. If the conversion fails, then the program terminates. Otherwise, the function reference
is the target to call.

4.4.2.2 Evaluate Arguments

The argument expressions are evaluated in order, from left to right.

4.4.2.3 Locate Function to Call

The body of the target function identified in the first step is executed, with the values of the
arguments determined in the second step.

The arguments in the function call expression are paired with the corresponding formal
arguments in the function definition. If there are fewer arguments than in the function definition,
then the remaining formal arguments are undefined during the current call. If there are more
arguments in the call expression than in the definition, these arguments are assigned to elements
of the function’s arguments array.

4.5 Unary Expressions

The unary operators include +, -, ++, --, ~, !, new, typeof, and void. Expressions with unary
operators group right-to-left, so that -~x means the same as -(~x).
UnaryExpression:

MemberExpression
! UnaryExpression
~ UnaryExpression
- UnaryExpression
++ MemberExpression
-- MemberExpression
MemberExpression ++
MemberExpression --
new Constructor
delete MemberExpression

36 JavaScript Language Specification

typeof UnaryExpression
void UnaryExpression

4.5.1 Logical Complement Operator !

The operand of the ! operator must be convertible to a boolean value or a run-time error occurs.
The type of the result is boolean and its value is true if the operand converts to false and false if
the operand converts to true.

4.5.2 Bitwise Complement Operator ~

The operand of the unary ~ operator must be a convertible to a number or a run-time error
occurs. The type of the result is number, and its value is the bitwise complement of the 32-bit
integer converted value of the operand.

4.5.3 Unary Minus Operator –

The operand of the unary - operator must be convertible to a number or a run-time error occurs.
The type of the result is number, and its value is the arithmetic negation of the converted value of
the operand.

Special cases are:

• If the operand is NaN, the result is NaN (recall that NaN has no sign).

• If the operand is an infinity, the result is the infinity of opposite sign.

4.5.4 Prefix Increment Operator ++

A member expression preceded by a ++ operator is a prefix increment expression. The result of
the member expression must be a variable, or a run-time error occurs. The result of the prefix
increment expression is not a variable, but a value.

At run time, the variable’s value must be convertible to a number or an error occurs. The value 1
is added to the converted value of the variable and the sum is stored back into the variable. The
value of the prefix increment expression is the value of the variable after the sum is stored.

4.5.5 Prefix Decrement Operator --

A member expression preceded by a -- operator is a prefix decrement expression. The result of
the member expression must be a variable, or a run-time error occurs. The result of the prefix
decrement expression is not a variable, but a value.

37 JavaScript Language Specification

At run time, the variable’s value must be convertible to a number or an error occurs. The value 1
is subtracted from the converted value of the variable and the difference is stored back into the
variable. The value of the prefix decrement expression is the value of the variable after the
difference is stored.

4.5.6 Postfix Increment Operator ++

A member expression followed by a ++ operator is a postfix increment expression. The result of
the member expression must be a variable, or a run-time error occurs. The result of the postfix
increment expression is not a variable, but a value.

At run time, the variable’s value must be convertible to a number or an error occurs. The value 1
is added to the converted value of the variable and the sum is stored back into the variable. The
value of the postfix increment expression is the value of the variable before the sum is stored.

4.5.7 Postfix Decrement Operator --

A member expression followed by a -- operator is a postfix decrement expression. The result of
the member expression must be a variable, or a run-time error occurs. The result of the postfix
decrement expression is not a variable, but a value.

At run time, the variable’s value must be convertible to a number or an error occurs. The value 1
is subtracted from the converted value of the variable and the difference is stored back into the
variable. The value of the postfix decrement expression is the value of the variable before the
difference is stored.

4.5.8 The new operator

The new operator returns an object created with a constructor. The constructor is a function
reference or function call expression where the function is named as in 3.5 Names. In addition to
qualified names, this followed by a dot followed by a name can be used. The type of the result is
object, and its value is a reference to the constructed object.
Constructor:

this . ConstructorCall
ConstructorCall

ConstructorCall:
Identifier
Identifier (ArgumentListopt)
Identifier . ConstructorCall

For more information on constructor functions, see 5.3 Constructor Functions.

38 JavaScript Language Specification

4.5.9 The delete operator

The delete operator removes a property definition, frees the memory associated with it, and
results in undefined.8

4.5.10 The typeof operator

The typeof operator returns a string specifying the type of its unevaluated operand. The operand
is any expression. Syntax:

The string returned is one of

• “undefined”

• “object”

• “function”

• “number”

• “boolean”

• “string”

For example,
typeof foo returns "undefined" // where foo is undefined
typeof eval returns "function"
typeof null returns "object"
typeof 3.14 returns "number"
typeof true returns "boolean"
typeof "abcdef" returns "string"

4.5.11 The void operator

The void operator takes a unary expression of any type as its operand, evaluates it, and results in
undefined.

4.6 Multiplicative Operators

The operators *, /, and % are called the multiplicative operators. They have the same precedence
and are syntactically left-associative (they group left-to-right).
MultiplicativeExpression:

UnaryExpression

8 . In JavaScript 1.1, as implemented in Navigator 3.0, delete does not remove the property definition, instead it sets
the property to null.

39 JavaScript Language Specification

MultiplicativeExpression * UnaryExpression
MultiplicativeExpression / UnaryExpression
MultiplicativeExpression % UnaryExpression

The type of each of the operands of a multiplicative operator must be number or a run-time error
occurs.

4.6.1 Multiplication Operator *

The binary * operator performs multiplication, producing the product of its operands.
Multiplication is commutative. Multiplication is not always associative in JavaScript, because of
finite precision.

The result of a floating-point multiplication is governed by the rules of IEEE 754 double-
precision arithmetic:

• If either operand is NaN, the result is NaN.

• If neither operand is NaN, the sign of the result is positive if both operands have the same
sign, negative if the operands have different signs.

• Multiplication of an infinity by a zero results in NaN.

• Multiplication of an infinity by a finite value results in a signed infinity. The sign is
determined by the rule already stated above.

• In the remaining cases, where neither an infinity or NaN is involved, the product is computed
and rounded to the nearest representable value using IEEE 754 round-to-nearest mode. If the
magnitude is too large to represent, the result is then an infinity of appropriate sign. If the
magnitude is too small to represent, the result is then a zero of appropriate sign. The
JavaScript language requires support of gradual underflow as defined by IEEE 754.

4.6.2 Division Operator /

The binary / operator performs division, producing the quotient of its operands. The left operand
is the dividend and the right operand is the divisor.

JavaScript does not perform integer division. The operands and result of all division operations
are double-precision floating-point numbers. The result of division is determined by the
specification of IEEE 754 arithmetic:

• If either operand is NaN, the result is NaN.

• If neither operand is NaN, the sign of the result is positive if both operands have the same
sign, negative if the operands have different signs.

• Division of an infinity by an infinity results in NaN.

• Division of an infinity by a finite value results in a signed infinity. The sign is determined by
the rule already stated above.

40 JavaScript Language Specification

• Division of a finite value by an infinity results in zero.

• Division of a zero by a zero results in NaN; division of zero by any other finite value results
in zero.

• Division of a non-zero finite value by a zero results in a signed infinity. The sign is
determined by the rule already stated above.9

• In the remaining cases, where neither an infinity, nor a zero, nor NaN is involved, the quotient
is computed and rounded to the nearest representable value using IEEE 754 round-to-nearest
mode. If the magnitude is too large to represent, we say the operation overflows; the result is
then an infinity of appropriate sign. If the magnitude is too small to represent, we say the
operation underflows and the result is zero. The JavaScript language requires support of
gradual underflow as defined by IEEE 754.

4.6.3 Remainder Operator %

The binary % operator is said to yield the remainder of its operands from an implied division; the
left operand is the dividend and the right operand is the divisor. In C and C++, the remainder
operator accepts only integral operands, but in JavaScript, it also accepts floating-point operands.

The result of a floating-point remainder operation as computed by the % operator is not the same
as the so-called "remainder" operation defined by IEEE 754. The IEEE 754 "remainder"
operation computes the remainder from a rounding division, not a truncating division, and so its
behavior is not analogous to that of the usual integer remainder operator. Instead the JavaScript
language defines % on floating-point operations to behave in a manner analogous to that of the
Java integer remainder operator; this may be compared with the C library function fmod.

The result of a JavaScript floating-point remainder operation is determined by the rules of IEEE
arithmetic:

• If either operand is NaN, the result is NaN.

• If neither operand is NaN, the sign of the result equals the sign of the dividend.

• If the dividend is an infinity, or the divisor is a zero, or both, the result is NaN.

• If the dividend is finite and the divisor is an infinity, the result equals the dividend.

• If the dividend is a zero and the divisor is finite, the result is zero.

• In the remaining cases, where neither an infinity, nor a zero, nor NaN is involved, the
floating-point remainder r from a dividend n and a divisor d is defined by the mathematical
relation r = n - (d * q) where q is an integer that is negative only if n/d is negative and positive
only if n/d is positive, and whose magnitude is as large as possible without exceeding the
magnitude of the true mathematical quotient of n and d.

9 . In JavaScript 1.1, as implemented in Navigator 3.0, division of a non-zero finite value by zero results in NaN.

41 JavaScript Language Specification

Examples

5%3 produces 2

5%(-3) produces 2

(-5)%3 produces -2

(-5)%(-3) produces -2

5.2345%3.0 produces 2.2345

5.0%(-3.0) produces 2.0

(-5.0)%3.0 produces -2.0

(-5.0)%(-3.0) produces -2.0

4.7 Additive Operators

The operators + and - are called the additive operators. They have the same precedence and are
syntactically left-associative (they group left-to-right).
AdditiveExpression:

MultiplicativeExpression
AdditiveExpression + MultiplicativeExpression
AdditiveExpression - MultiplicativeExpression

In an AdditiveExpression using the + operator, if either of the operands is of type string, object,
or function, then the other operand is converted to a string and the operation is a string
concatenation operation (see 4.7.1 String Concatenation Operator +). In the case of an object
operand, this conversion occurs only if the object has no valueOf method or its valueOf method
returns a string.10 Such an operand is called string-convertible.

If neither operand is string-convertible, the additive operators convert their operands to number,
and result in a number.

4.7.1 String Concatenation Operator +

If only one operand expression is string-convertible, then string conversion is performed on the
other operand to produce a string at run time. The result is a reference to a newly created string
that is the concatenation of the two strings. The characters taken from the left operand precede
the characters taken from the right operand in the newly created string.

10 . In JavaScript 1.1, as implemented in Navigator 3.0, the conversion from object to string occurs regardless of the
existence or result type of the valueOf method.

42 JavaScript Language Specification

4.7.1.1 String Conversion

Any object may be converted to type string by a call to the valueOf method, provided it returns a
string. If it does not, and the object has a toString method, the toString method is called. For
more information, see 3.1.2 Type Conversion.

4.7.1.2 Examples of String Concatenation

The example expression:
"The square root of 2 is " + Math.sqrt(2)

produces the result:
"The square root of 2 is 1.4142135623730952"

The + operator is syntactically left-associative, no matter whether it is later determined by type
analysis to represent string concatenation or addition. In some cases care is required to get the
desired result. For example, the expression: a + b + c is always regarded as meaning (a + b) + c.
Therefore the result of the expression: 1 + 2 + " fiddlers" is
"3 fiddlers" but the result of "fiddlers " + 1 + 2 is "fiddlers 12".

4.7.2 Additive Operators (+ and -) for Numeric Types

The binary + operator performs addition when applied to two operands of numeric type,
producing the sum of the operands. The binary - operator performs subtraction, producing the
difference of two numeric operands.

Addition is a commutative operation, but not always associative.

The result of an addition is determined using the rules of IEEE 754 double-precision arithmetic:

• If either operand is NaN, the result is NaN.

• The sum of two infinities of opposite sign is NaN.

• The sum of two infinities of the same sign is the infinity of that sign.

• The sum of an infinity and a finite value is equal to the infinite operand.

• The sum of two zeros is zero.

• The sum of a zero and a nonzero finite value is equal to the nonzero operand.

• The sum of two nonzero finite values of the same magnitude and opposite sign is zero.

• In the remaining cases, where neither an infinity, nor a zero, nor NaN is involved, and the
operands have the same sign or have different magnitudes, the sum is computed and rounded
to the nearest representable value using IEEE 754 round-to-nearest mode. If the magnitude is
too large to represent, the operation overflows and the result is then an infinity of appropriate
sign. If the magnitude is too small to represent, the operation underflows and the result is
zero. The JavaScript language requires support of gradual underflow as defined by IEEE 754.

43 JavaScript Language Specification

The binary - operator performs subtraction when applied to two operands of numeric type
producing the difference of its operands; the left operand is the minuend and the right operand is
the subtrahend. It is always the case that a-b produces the same result as a+(-b).

4.8 Shift Operators

The shift operators include the left shift <<, the signed right shift >>, and the unsigned right shift
>>>; they are syntactically left-associative (they group left-to- right). The left operand of a shift
operator is the value to be shifted; the right operand specifies the number of bits to shift.
ShiftExpression:

AdditiveExpression
ShiftExpression << AdditiveExpression
ShiftExpression >> AdditiveExpression
ShiftExpression >>> AdditiveExpression

The type of each of the operands of a shift operator must be convertible to number or a run-time
error occurs. At run time, shift operations are performed on the 32-bit two's complement integer
representation of the value of the left operand. The right operand is converted to an integer, and
only the least five bits are used (this is known as implicit masking).

The value of n<<s is n left-shifted s bit positions; this is equivalent (only if overflow does not
occur) to multiplication by two to the power s.

The value of n>>s is n right-shifted s bit positions with sign-extension. For non-negative values
of n, this is equivalent to truncating integer division by two to the power s.

The value of n>>>s is n right-shifted s bit positions with zero-extension. If n is positive, the
result is the same as that of n>>s; if n is negative, the result is equal to that of the expression
(n>>s)+(2<<~s). The added term (2<<~s) cancels out the propagated sign bit. Note that, because
of the implicit masking of the right operand of a shift operator, ~s as a shift distance is equivalent
to 31-s when shifting an int value and to 63-s when shifting a long value.

4.9 Relational Operators

The relational operators are syntactically left-associative (they group left-to- right), for example,
a<b<c parses as (a<b)<c. If both operands are string-convertible (see 4.7 Additive Operators),
both are converted to string, and the results are compared as strings. Otherwise, both operands
must convert to number, or a run-time error occurs.
RelationalExpression:

ShiftExpression
RelationalExpression < ShiftExpression
RelationalExpression > ShiftExpression
RelationalExpression <= ShiftExpression
RelationalExpression >= ShiftExpression

The type of a relational expression is always boolean.

44 JavaScript Language Specification

4.9.1 String Comparison Operators

If both operands of a relational operator are string-convertible, they are converted to string and
compared lexicographically.

4.9.2 Numerical Comparison Operators

If either operand of a relational operator is not string-convertible, then both must be convertible
to number, or a run-time error occurs.

The result of a numerical comparison, as determined by the specification of the IEEE 754
standard, is:

• If either operand is NaN, the result is false.

• All values other than NaN are ordered, with negative infinity less than all finite values, and
positive infinity greater than all finite values.

Subject to these considerations, the following rules then hold for operands other than NaN:

• The value produced by the < operator is true if the value of the left operand is less than the
value of the right operand, and otherwise is false.

• The value produced by the <= operator is true if the value of the left operand is less than or
equal to the value of the right operand, and otherwise is false.

• The value produced by the > operator is true if the value of the left operand is greater than the
value of the right operand, and otherwise is false.

• The value produced by the >= operator is true if the value of the left operand is greater than or
equal to the value of the right operand, and otherwise is false.

4.10 Equality Operators

The equality operators are syntactically left-associative (they group left-to-right), for example,
a==b==c parses as (a==b)==c. The result type of a==b is always boolean, and the value of c is
therefore converted to boolean before it is compared. For example, if c is a number, then if it is
zero, it has a boolean value of false; otherwise it is true. Thus a==b==c does not test to see
whether a, b, and c are all equal.
EqualityExpression:

RelationalExpression
EqualityExpression == RelationalExpression
EqualityExpression != RelationalExpression

The == (equal to) and the != (not equal to) operators are analogous to the relational operators
except for their lower precedence. Thus, a<b==c<d is true whenever a<b and c<d have the same
truth-value.The type of an equality expression is always boolean.

45 JavaScript Language Specification

In all cases, a!=b produces the same result as !(a==b). The equality operators are commutative.

4.10.1 Reference Equality Operators == and !=

If both operands are of type object or function, they are compared as pointers. Otherwise, if
either operand is null, the other is converted to object and compared with null.

4.10.2 String Equality Operators == and !=

If both operands are string-convertible, but both are not object or function, and neither is null,
then they are compared byte-by-byte for equality or inequality.

4.10.3 Numerical Equality Operators == and !=

If neither operand is object, function, or string-convertible, then both are converted to number,
and equality testing is performed in accordance with the rules of the IEEE 754 standard:

• If either operand is NaN, the result of == is false but the result of != is true. Indeed, the test x!
=x is true if and only if the value of x is NaN.

• Otherwise, two distinct numeric values are considered unequal by the equality operators.

Subject to these considerations, the following rules then hold for operands other than NaN:

• The value produced by the == operator is true if the value of the left operand is equal to the
value of the right operand, and otherwise is false.

• The value produced by the != operator is true if the value of the left operand is not equal to
the value of the right operand, and otherwise is false.

For example,
x = 345
y = 345
z = 1
b1 = 2 == 2 == 1
b2 = 2 == 3 == 1
b3 = 2 == 3 == 0
b4 = 2 == 3 == false
println("b1 = " + b1)
println("b2 = " + b2)
println("b3 = " + b3)
println("b4 = " + b4)

The output of this script is
b1 = true
b2 = false
b3 = true
b4 = true

46 JavaScript Language Specification

4.11 Bitwise Logical Operators

The bitwise logical operators include the AND operator &, exclusive OR operator ^, and
inclusive OR operator |. These operators have different precedence, with & having the highest
precedence and | the lowest precedence. Each operator is syntactically left-associative (each
groups left-to-right). Each operator is both commutative and associative.
AndExpression:

EqualityExpression
AndExpression & EqualityExpression

ExclusiveOrExpression:
AndExpression
ExclusiveOrExpression ^ AndExpression

InclusiveOrExpression:
ExclusiveOrExpression
InclusiveOrExpression | ExclusiveOrExpression

The bitwise logical operators convert their operands to number, which may result in a run-time
error. If both operands convert to number, the results are converted to 32-bit integers, and the
result is also an integral number.

For &, the result value is the bitwise AND of the operand values. For ^, the result value is the
bitwise exclusive OR of the operand values. For |, the result value is the bitwise inclusive OR of
the operand values.

For example, the result of the expression 0xff00 & 0xf0f0 is 0xf000. The result of 0xff00 ^
0xf0f0 is 0x0ff0.The result of 0xff00 | 0xf0f0 is 0xfff0.

4.12 Conditional-And Operator

The && operator is like & but evaluates its right operand only if the value of its left operand
converts to true. It is syntactically left-associative (it groups left-to-right). It is fully associative
with respect to both side effects and result value; that is, for any expressions a, b, and c,
evaluation of the expression
(a && b) && c produces the same result, with the same side effects occurring in the same
order, as evaluation of the expression a && (b && c).
ConditionalAndExpression:

InclusiveOrExpression
ConditionalAndExpression && InclusiveOrExpression

Each operand of && must be convertible to type boolean or a run-time error occurs. The result
type and value are the type and value of the left operand if it converts to false, otherwise the
result type and value are those of the right operand.

At run time, the left operand is evaluated first; if its value converts to false, the right operand
expression is not evaluated. If the value of the left operand converts to true, then the right
expression is evaluated.

47 JavaScript Language Specification

4.13 Conditional-Or Operator

The || operator is like | but evaluates its right operand only if the value of its left operand is false.
It is syntactically left-associative (it groups left-to-right). It is fully associative with respect to
both side effects and result value; that is, for any expressions a, b, and c, evaluation of the
expression
(a || b) || c produces the same result, with the same side effects occurring in the same order, as
evaluation of the expression a || (b || c).
ConditionalOrExpression:

ConditionalAndExpression
ConditionalOrExpression || ConditionalAndExpression

Each operand of || must be convertible to type boolean or a run-time error occurs. The result type
and value are the type and value of the left operand if it converts to true, otherwise the result type
and value are those of the right operand.

At run time, the left operand is evaluated first; if its value converts to true, the right operand
expression is not evaluated. If the value of the left operand converts to false, then the right
expression is evaluated.

4.14 Conditional Operator ? :

The conditional operator ? : uses the boolean value of one expression to decide which of two
other expressions should be evaluated.

The conditional operator is syntactically right-associative (it groups right-to-left), so that a?b:c?
d:e?f:g means the same as a?b:(c?d:(e?f:g)).
ConditionalExpression:

ConditionalOrExpression
ConditionalOrExpression ? AssignmentExpression : AssignmentExpression

The conditional operator has three operand expressions; ? appears between the first and second
expressions, and : appears between the second and third expressions.

The first expression must convert to boolean or a run-time error occurs.

At run time, the first operand of the conditional expression is evaluated first and converted to
boolean; the result is then used to choose either the second or the third operand expression:

• If first operand converts to true, then the second operand expression is chosen.

• If the first operand converts to false, then the third operand expression is chosen.

The chosen operand is then evaluated and the resulting value is the result of the conditional
expression. The operand not chosen is not evaluated for that particular evaluation of the
conditional expression.

48 JavaScript Language Specification

4.15 Assignment Operators

There are twelve assignment operators; all are syntactically right-associative (they group right-to-
left). Thus a=b=c means a=(b=c), which assigns the value of c to b and then assigns the value of
b to a.
AssignmentExpression:

ConditionalExpression
Assignment

Assignment:
LeftHandSide AssignmentOperator AssignmentExpression

LeftHandSide:
Identifier
PropertyExpression

AssignmentOperator: one of
= *= /= %= += -= <<= >>= >>>= &= ^= |=

The result of the first operand of an assignment operator must be a variable or a compile-time
error occurs.11

At run time, the type and value of the result are those of the variable after the assignment has
occurred. The result of an assignment expression is not itself a variable.

4.15.1 Simple Assignment Operator =

At run time, the left operand is evaluated first, resulting in a variable. Next the right operand is
evaluated and the result is stored into the variable.

4.15.2 Compound Assignment Operators

A compound assignment expression of the form E1 op= E2 is equivalent to
E1 = (E1) op (E2), except that E1 is evaluated only once.

4.16 Comma Operator

The comma operator has the lowest precedence of all JavaScript operators. Comma expressions
may not occur in function argument lists, but may occur anywhere else an expression may occur,
including between brackets in an index expression.
Expression:

AssigmentExpression
Expression , AssignmentExpression

11 . In JavaScript 1.1, as implemented in Navigator 3.0, the check for a variable on the left side of an assignment
operator is done at run time.

49 JavaScript Language Specification

The comma operator evaluates its left operand and then its right operand. Its result is the result of
evaluating its right operand.

50 JavaScript Language Specification

Chapter

5
Object model

The framework for the JavaScript object model is built around

• Constructor functions

• Prototype objects

• The new operator, by which a constructor function derives an object from a prototype and
initializes it

• Built-in objects with pre-defined constructors and properties.

5.1 Functions

A function is a set of statements that performs a specific task. A function is defined by a function
definition that specifies the function’s name and the statements that it contains. A function is
executed by a function call.

5.1.1 Definition

A function definition provides:

• The name of the function

• The parameters of the function

• The statements performed by the function

The syntax for defining a function is described in 6.4.10 Function Definition Statement. A
function must be declared before it is invoked.

51 JavaScript Language Specification

5.1.2 Call

A function call executes the statements in the function and optionally returns a value. It consists
of a defined function’s name, followed by a parameter list in parentheses.

The number of arguments in an call does not have to match the number of arguments in the
function definition. Each argument in the call will be matched from left to right with the
arguments in the definition. Any argument in the definition for which there is no argument in the
call will be undefined. If there are more arguments in the call than in the definition, then the extra
arguments are accessible within the function using the arguments array; see 5.1.4 The arguments
array.

The value of a function call expression is the value of the expression following the return
statement that returned control to the call, or undefined if there was no return statement or a
return statement without an expression.

Note that JavaScript does not require function arguments to be of any particular type.

5.1.3 The caller property

Every function has a caller property that is a reference to the function that called it, if any. The
caller proper non-null only within a function. The syntax is:
functionName.caller

If the function was not called from another function then caller is null. The function referred to
by the caller property has a null caller property, even if the caller was itself called by another
function.

5.1.4 The arguments array

The arguments of a function are maintained in an array. Within a function, you can address the
parameters passed to it as follows:
functionName.arguments[i]

where functionName is the name of the function and i is the ordinal number of the argument,
starting at zero. So, the first argument passed to a function named myfunc would be
myfunc.arguments[0]. As for other arrays in JavaScript, the arguments array has a length
property that indicates the number of elements in the array. Thus, within the body of the function,
the actual number of arguments passed to a function is accessible as arguments.length .

Since a a function can be invoked with more arguments than the number of parameters in its
definition, the arguments array provides a way to access the excess arguments in the call.

52 JavaScript Language Specification

5.2 This

The special keyword this is used to refer to the current object. The current object is defined as
follows:

• For a function called by name (see 3.5 Names), this refers to the object whose scope is
resolved as described in 3.5.1 Scope Resolution.

• For a function called by an index expression (see 4.4.1 Property Expression Evaluation), this
refers to the object whose function-valued property is being indexed.

• Because eval is a method of every object, it follows that:

• If eval is called as a method, this refers to the object to the left of the dot or bracket. For
example:

car.eval(“this.” + propertyName)

• If eval is called as a function, then this refers to the enclosing scope’s object. For example,
the following function returns a reference to itself (as a function object):

function f() {
return eval(“this”)

}

• In a call to a constructor function, this refers to the object created by the new operator.

• Outside of a function, this refers to the global object defined by the particular JavaScript
implementation. For example, in Netscape Navigator, the global object is the window object.

5.3 Constructor functions

A constructor is a function used to define new objects. In addition to the constructors for built-in
objects, described in Chapter 7, “Built-in Functions and Objects”, user-defined constructor
functions create objects of the user’s own definition.

A constructor function sets properties of this to create the new object’s properties.

5.3.1 Object prototypes

Every object constructor (including built-in object constructors) has a prototype property. Setting
a property of a constructor’s prototype property creates a property shared by all objects created
by the constructor.
prototypeProperty

constructor.prototype.propertyName

Set the value of constructor.prototype.propertyName to define a property that is shared by all
objects of the specified type, where constructor is the name of the constructor function and
propertyName is the name of the property.

53 JavaScript Language Specification

Examples

function str_rep(n) {
var s = "", t = this.toString()
while (--n >= 0) s += t
return s

}

function new_rep(n) {
return "repeat " + this + " " + n + " times."

}

String.prototype.rep = str_rep //add a rep() method to String
s1 = new String("a")
s2 = new String("b")
s2.rep = new_rep
println(s1.rep(3))
println(s2.rep(3))

The output of this example is:
aaa
repeat b 3 times.

5.3.2 Defining methods

A method is a function associated with an object. A function can be so associated in two ways:

• by the object constructor function, in which case the method belongs to all objects created
with the constructor.

• by an assignment statement to assign the method to an individual object instance.

You can define methods for an object type by including a method definition in the object
constructor function.

The following syntax associates a function with an existing object:
object.methodName = functionName

where object is an existing object, methodname is the name being assigned to the method, and
function_name is the name of the function.

The method can then be called in the context of the object as follows:
object.methodName(ArgumentList)

Example

To format and display the properties of the previously-defined Car objects, the user would define
a method called displayCar based on a function called display by modifying the constructor
function as follows:
function car(make, model, year, owner) {

this.make = make
this.model = model
this.year = year
this.owner = owner

54 JavaScript Language Specification

this.display = displayCar
}

For example, this function might look like this:
function displayCar() {

println("A Beautiful " + this.year + " " + this.make
+ " " + this.model)

}

Then the displayCar method can be called for each of the objects as follows:
car1.displayCar()
car2.displayCar()

5.4 Object creation

A new object instance is created by using the new operator with a constructor, either one of the
built-in object constructors described in Chapter 7, “Built-in Functions and Objects”, or a user-
defined constructor function, described in 5.3 Constructor Functions.
constructor:

DateConstructor
ArrayConstructor
StringConstructor
BooleanConstructor
NumberConstructor
UserDefinedConstructor

Example

The following user-defined constructor functions create a Person object with member properties
name, age, and sex and a Car object with member properties make, model, year, and owner.
Then, two Person objects are created with the new operator, and two Car objects are created.
Notice the use of the objects john and fred as arguments to the Car constructor functions. This is
an example of members of object type.
function Person(name, age, sex) {

this.name = name
this.age = age
this.sex = sex

}

function Car(make, model, year, owner) {
this.make = make
this.model = model
this.year = year
this.owner = owner

}

john = new Person("John", 33, "M")
fred = new Person("Fred", 39, "M")

car1 = new Car("Eagle", "Talon TSi", 1993, john)
car2 = new Car("Nissan", "300ZX", 1992, fred)

55 JavaScript Language Specification

Chapter

6
Statements

The sequence of execution of a JavaScript program is controlled by statements, which are
executed for their effect and do not have values.

Some statements contain other statements as part of their structure; such other statements are
substatements of the statement. We say that statement S immediately contains statement U if
there is no statement T different from S and U such that S contains T and T contains U. In the
same manner, some statements contain expressions as part of their structure.

6.1 Normal and abrupt completion of statements

Every statement has a normal mode of execution in which certain computational steps are carried
out. The following sections describe the normal mode of execution for each kind of statement. If
all the steps are carried out as described, the statement is said to complete normally. However,
the break, continue, and return statements cause a transfer of control that may prevent normal
completion of statements that contain them.

If such an event occurs, then execution of one or more statements may be terminated before it
completes normally; such statements are said to complete abruptly.

Unless otherwise specified, abrupt completion of a substatement causes the immediate abrupt
completion of the statement itself, and all succeeding steps in the normal mode of execution are
not performed. Unless otherwise specified, a statement completes normally if all substatements it
executes complete normally.

6.2 Blocks

A block is a sequence of statements and variable declarations statements within braces.
Block:

Statement
{ BlockStatementsopt }

56 JavaScript Language Specification

BlockStatements:
BlockStatement
BlockStatements BlockStatement

BlockStatement:
VariableDeclarationStatement
Statement

A block is executed by executing each of the variable declarations and statements in order from
first to last (left to right). If all of these block statements complete normally, then the block
completes normally. If any of these block statements complete abruptly for any reason, then the
block completes abruptly.

6.3 Variable declaration statements

Variables can be declared two ways in JavaScript:

• By assignment: JavaScript recognizes a new variable when it is set for the first time and
declares it automatically.

• By a declaration statement using the var keyword.

A variable declaration statement declares one or more variable names.
VariableDeclarationStatement:

VariableDeclaration ;

VariableDeclaration:
var VariableDeclarators

The following productions are repeated here for clarity:
VariableDeclarators:

VariableDeclarator
VariableDeclarators , VariableDeclarator

VariableDeclarator:
Identifier
Identifier = AssignmentExpression

A variable declaration can also appear in the header of a for statement. In this case it is executed
in the same manner as if it were part of a variable declaration statement.

Each declarator in a variable declaration declares one variable, whose name is the Identifier that
appears in the declarator. If the variable has no initializer, it is undefined.

The scope of variable declarations is described in 3.5.2 Declaration and Visibility.

6.4 Statements

Some of the statements in the JavaScript language correspond to statements in Java, but some are
unique to JavaScript.
Statement:

EmptyStatement
IfThenStatement

57 JavaScript Language Specification

WhileStatement
ForStatement
BreakStatement
ContinueStatement
ReturnStatement
WithStatement
ForInStatement

6.4.1 The empty statement

An empty statement does nothing.
EmptyStatement:

;

Execution of an empty statement always completes normally.

6.4.2 The if statement

The if statement allows conditional execution of a statement or a conditional choice of two
statements, executing one or the other but not both.
IfThenStatement:

if (Expression) Block
if (Expression) Block else Block

The Expression must be convertible to boolean, or a run-time error occurs. The Expression is
evaluated and converted to boolean:

• If the result is true, then the first Block is executed.

• If the result is false, and there is no else clause, then no further action is taken. If there is an
else clause, then the Block after the else keyword is executed.

Because JavaScript parses top-down, it does not encounter any ambiguity. in this statement:
if (Condition1)

if (Ccndition2)
Statement1

else
Statement2

The JavaScript top-down parser associates the else with the second if statement to form an if-
else.

6.4.3 The while statement

The while statement executes an Expression and a Statement repeatedly until the value of the
Expression is false.
WhileStatement:

while (Expression) Block

58 JavaScript Language Specification

The Expression must be convertible to boolean, or a run-time error occurs.

A while statement is executed by first evaluating the Expression and converting it to boolean:

• If the result is true, then the Block is executed. Then there is a choice:

• If execution of the Block completed normally, then the entire while statement is executed
again, beginning by re-evaluating the Expression.

• If execution of the Block completed abruptly, see below.

• If the result is false, no further action is taken and the while statement completes normally.

If the boolean conversion of the Expression is false the first time it is evaluated, then the Block is
not executed.

6.4.3.1 abrupt completion

Abrupt completion of the contained Block is handled in the following manner:

• If execution of the Block completed abruptly because of a break statement, no further action
is taken and the while statement completes normally.

• If execution of the Block completed abruptly because of a continue statement, then the entire
while statement is executed again.

• If execution of the Block completed abruptly because of a return, the while statement
completes abruptly for the same reason.

6.4.4 The for statement

The for statement executes some initialization code, then executes an Expression, a Block, and
some update code repeatedly until the value of the Expression is false.
ForStatement:

for (ForInitopt ; Expressionopt ; ForUpdateopt) Block

ForInit:
Expression
VariableDeclaration

ForUpdate:
Expression

The Expression, if present, must be convertible to boolean, or a run-time error occurs.

6.4.4.1 Initialization

A for statement is executed by first executing the ForInit code:

• If the ForInit code is an expression, it is evaluated, and its value, if any, is discarded.

59 JavaScript Language Specification

• If the ForInit code is a variable declaration, it is executed as if it were a variable declaration
statement appearing in a block.

• If the ForInit part is not present, no action is taken.

6.4.4.2 Iteration

Next, a for iteration step is performed, as follows: If the Expression is present, it is evaluated and
converted to boolean, and there is then a choice:

• If the Expression is not present, or it is present and the boolean conversion of its result is true,
then the contained Block is executed. Then there is a choice:

• If execution of the Block completed normally, then the following two steps are performed
in sequence:

— First, if the ForUpdate is present, it is evaluated; its value, if any, is discarded. If the
ForUpdate part is not present, no action is taken.

— Second, another for iteration step is performed.

• If execution of the Block completed abruptly, see below.

• If the Expression is present and the boolean conversion of its result is false, no further action
is taken and the for statement completes normally.

If the value of the Expression is false the first time it is evaluated, then the Block is not executed.

If the Expression is not present, then the for statement cannot complete normally; only abrupt
completion (such as use of a break statement) can terminate its execution.

6.4.4.3 Abrupt completion

Abrupt completion of the contained Block is handled in the following manner:

• If execution of the Block completed abruptly because of a break statement, no further action
is taken and the for statement completes normally.

• If execution of the Block completed abruptly because of a continue statement, then the
following two steps are performed in sequence:

— First, if the ForUpdate part is present, it is evaluated; its value, if any, is discarded. If the
ForUpdate part is not present, no action is taken.

— Second, another for iteration step is performed.

• If execution of the Block completed abruptly for any other reason, the for statement
completes abruptly for the same reason.

60 JavaScript Language Specification

6.4.5 The break statement

The break statement transfers control out of an enclosing statement.
BreakStatement:

break ;

A break statement transfers control to the innermost enclosing while, for, or for/in statement. this
statement, called the break target, then immediately completes normally. If no while or for
statement encloses the break statement, a compile-time error occurs. A break statement always
completes abruptly.

6.4.6 The continue statement

The continue statement may occur only in an while, for, or for/in statement, known as an
iteration statement. Control passes to the loop-continuation point of an iteration statement.
ContinueStatement:

continue ;

A continue statement transfers control to the innermost enclosing iteration statement; this
statement, called the continue target, then immediately ends the current iteration and begins a
new one. If no iteration statement encloses the continue statement, a compile-time error occurs.
A continue statement always completes abruptly.

6.4.7 The return statement

The return statement returns control to the caller of a function.
ReturnStatement:

return Expressionopt ;

A return statement with an Expression must be contained in a function definition or a compile-
time error occurs.

A return statement with an Expression transfers control to the caller of the function; the value of
the Expression becomes the value of the function call.

6.4.8 The with statement

The with statement establishes the default object for a set of statements. See 3.5.1 Scope
Resolution. Within the set of statements, any simple name (including the first part of a qualifed
name) is resolved against the default object.
withStatement:

with (Expression) Block

61 JavaScript Language Specification

Expression is evaluated and converted to object. Block is then executed with the object pushed on
a stack of default objects. The stack is popped after Block completes normally or abruptly. The
with statement completes for the same reason that Block completes.

Example

The following with statement specifies that the Math object is the default object. The statements
following the with statement refer to the PI property and the cos and sin methods, without
specifying an object. JavaScript assumes the Math object for these references.
var a, x, y
var r=10
with (Math) {
 a = PI * r * r
 x = r * cos(PI)
 y = r * sin(PI/2)
}

6.4.9 The for/in statement

The for/in statement iterates a specified variable over all the properties of an object. For each
distinct property, JavaScript executes the specified statements in the Block.
ForInStatement:

for (LeftHandSide in Expression) Block

For each iteration of the loop, Expression is evaluated and converted to an object. For the first
iteration of the loop, LeftHandSide is evaluated as in an AssignmentExpression, as described in
4.15.1 Simple Assignment Operator =, and is assigned the string identifier of the first property.
Then, Block is executed. The second iteration occurs unless Block completed abruptly for the
following reasons: break or return. The second iteration assigns the string identifier of the second
property to LeftHandSide.

The loop continues until abrupt completion of Block due to break or return or until Block has
completed with LeftHandSide set to the string identifier of the last property. Properties are
ordered by the order in which they are set.

Example

The following function takes as its argument an object and the object’s name. It then iterates over
all the object’s properties and returns a string that lists the property names and their values.
function dump_props(obj, obj_name) {
 var result = ""
 for (var i in obj) {
 result += obj_name + "." + i + " = " + obj[i] + "
"
 }
 return result
}

6.4.10 Function definition statement

A function definition declares a JavaScript function name with the specified parameters.

62 JavaScript Language Specification

FunctionDefinition:
function Identifer (ParameterListopt) { BlockStatementsopt }

ParameterList:
Identifier
ParameterList , Identifier

A function definition statement cannot be nested inside another a function definition statement or
any other statement.

Example

function fact(n) {
if (n <= 1)

return 1
return n * fact(n-1)

}

63 JavaScript Language Specification

Chapter

7
Built-in functions and objects

JavaScript has several “top-level” built-in functions. JavaScript also has four built-in objects:
Array, Date, Math, and String. Each object has special-purpose properties and methods.
JavaScript also has constructors for Boolean and Number types.

7.1 Built-in functions

JavaScript has five functions built in to the language. They are eval, parseInt, parseFloat, escape,
and unescape.

7.1.1 eval

Evaluates a string and returns a value.
eval(Expression)

Expression is evaluated, and if the result is not a string, the result is returned.

If the result is a string, it is taken to be a JavaScript program, and it is evaluated. If the program
completes normally, eval returns the value of the last expression in it.

The scope of execution is determined as described in 5.2 This.

Examples

Both of the println statements below display 42. The first evaluates the string “x + y + 1,” and the
second evaluates the string “42.”
var x = 2
var y = 39
var z = "42"

64 JavaScript Language Specification

println(eval("x + y + 1"))
println(eval(z))

In the following example, the getFieldName function returns a string value that may represent a
number or string. The second statement below uses eval to display the value of the form element.
var field = getFieldName(3)
println("Field named ", field, " has value of ", eval(field + ".value"))

The following example uses eval to evaluate the string str. This string consists of JavaScript
statements that do different things, depending on the value of x. When the second statement is
executed, eval will cause these statements to be performed, and it will also evaluate the set of
statements and return the value that is assigned to z.
var str = "if (x == 5) {z = 42; println("z is" + z);} else z = 0; "
println("z is " + eval(str))

7.1.2 parseInt

Parses a string argument and returns an integer of the specified radix or base. Syntax:
parseInt(string)
parseInt(string, radix)

string is a string that represents the value you want to parse.
radix is an integer that represents the radix of the return value.

The parseInt function parses its first argument, a string, and attempts to return an integer of the
specified radix (base). For example, a radix of ten indicates to convert to a decimal number, eight
octal, sixteen hexadecimal, and so on. For radixes above ten, the letters of the alphabet indicate
numerals greater than ninr. For example, for hexadecimal numbers (base sixteen), A through F
are used. If a radixes above 36 is specified, parseInt returns “NaN.”

If parseInt encounters a character that is not a numeral in the specified radix, it ignores it and all
succeeding characters and returns the integer value parsed up to that point. parseInt truncates
numbers to integer values.

If the radix is not specified or is specified as zero, JavaScript assumes the following:

• If the input string begins with “0x,” the radix is sixteen (hexadecimal).

• If the input string begins with “0,” the radix is eight (octal).

• If the input string begins with any other value, the radix is ten (decimal).

If the first character cannot be converted to a number, parseFloat returns “NaN”.

For example, the following examples all return fifteen:
parseInt("F", 16)
parseInt("17", 8)
parseInt("15", 10)
parseInt(15.99, 10)
parseInt("FXX123", 16)
parseInt("1111", 2)
parseInt("15*3", 10)

The following examples all return “NaN” or zero:

65 JavaScript Language Specification

parseInt("Hello", 8)
parseInt("0x7", 10)
parseInt("FFF", 10)

Even though the radix is specified differently, the following examples all return seventeen
because the input string begins with “0x.”
parseInt("0x11", 16)
parseInt("0x11", 0)
parseInt("0x11")

7.1.3 parseFloat

Parses a string argument and returns a floating point number. Syntax:
parseFloat(string)

string is a String object or literal.

parseFloat parses its argument, a string, and returns a floating point number. If it encounters a
character other than a sign (+ or -), numeral (0-9), a decimal point, or an exponent, then it
returns the value up to that point and ignores that character and all succeeding characters.

If the first character cannot be converted to a number, parseFloat returns “NaN”.

You can call the isNaN function to determine if the result of parseFloat is “NaN.” If “NaN” is
passed on to arithmetic operations, the operation results will also be “NaN.”

For example, the following examples all return 3.14:
parseFloat("3.14")
parseFloat("314e-2")
parseFloat("0.0314E+2")
var x = "3.14"
parseFloat(x)

The following example returns “NaN”:
parseFloat("FF2")

7.1.4 escape

Returns the hexadecimal encoding of an argument in the ISO Latin-1 character set. Syntax:
escape(string)

string is a string in the ISO Latin-1 character set.

The value returned by the escape function is one of the following:

• For alphanumeric characters, the same character (i.e. the function has no effect).

66 JavaScript Language Specification

• For the space character, a + sign.

• For non-alphanumeric characters other than space, a string of the form “%xx,” where xx is
the hexadecimal encoding of the ASCII character in the ISO Latin-1 character set.

For example, the following returns “abc%26%25”:
escape("abc&%")

7.1.5 unescape

Returns the ASCII string for the specified value. Syntax:
unescape(string)

string is a String object or literal.

For each distinct set of characters in the argument string of the following form

• “%integer”, where integer is a number between 0 and 255 (decimal)

• “hex”, where hex is a number between 0x0 and 0xFF (hexadecimal)

unescape returns the corresponding ASCII character in the ISO Latin-1 character set. For
characters not in the above form, unescape returns the characters unmodified; except for the +
character, for which a space is returned.

For example, the following returns “&”:
unescape("%26")

The following example returns “ab!#”:
unescape("ab%21%23")

7.2 Array object

JavaScript arrays are a special kind of object, and are created dynamically. An array object
contains a number of variables. The number of variables may be zero, in which case the array is
said to be empty. The variables contained in an array have no names; instead they are referenced
by array access expressions that use nonnegative integer index values. These variables are called
the components of the array. If an array has n components, we say n is the length of the array; the
components of the array are referenced using integer indices from 0 to n-1, inclusive.

Unlike Java, the components of an array do not neccessarily have the same type. An array
component can itself be an array, to create essentially multi-dimensional arrays. If, starting from
any array type, one considers its component type, and then (if that is also an array type) the
component type of that type, and so on, eventually one must reach a component type that is not
an array type; the components at this level of the data structure are called the elements of the
original array.

67 JavaScript Language Specification

7.2.1 Constructors

To create an Array object:
ArrayConstructor:

new Array()
new Array(arrayLength)
new Array(componentList)

componentList:
componentValue, componentList
componentValue

componentValue:
Identifier
Literal

Identifier is an identifier that is the name of the new Array object.

arrayLength is a positive integer-valued numeric expression that specifies the initial length of the
Array and becomes the value of the Array object’s length property. An arrayLength specified to
be zero or less results in a run-time error. An arrayLength that is not an integer is truncated to an
integer.

For example,
a = new Array("alpha", "beta", "gamma", "delta")
b = new Array("a", "b", "c", "d")
matrix = new Array(a, b)
for (i = 0; i < a1.length; i++) {

for (j = 0; j < a1[i].length; j++) {
println(a1[i][j])
}

}

The ouput of this script is:
alpha
beta
gamma
delta
a
b
c
d

7.2.2 Properties

An Array object has one property, length.

7.2.2.1 length

The length property indicates the number of components in an Array object. See the definition of
components versus elements in section 1.1. The syntax is:
arrayObject.length

arrayObject is an Array object.

68 JavaScript Language Specification

7.2.3 Methods

The Array object has three methods:

• join: Joins all elements of an array into a string.

• reverse: Reverses elements of an array

• sort: Sorts elements of an array based on a specified comparison function.

7.2.3.1 join

Returns a string containing all the elements of the array. Syntax:
arrayName.join(separator)

arrayName is the name of an Array object.
separator specifies a string to separate each element of the array. The separator is converted to a
string if necessary. If omitted, a comma (,) is used by default.

7.2.3.2 reverse

Reverses the elements of an array: the first array element becomes the last and the last becomes
the first. Returns ? The effect of this method is to change the calling object.

Syntax:
arrayName.reverse()

arrayName is the name of an Array object.

7.2.3.3 sort

Sorts the elements of an array. Syntax:
arrayName.sort(compareFunction)
arrayName.sort()

arrayName is the name of an Array object.
compareFunction is the name of a function that defines the sort order. It must be a function
defined in the current program, a method of a built-in object, or a built-in function.

If omitted, the array is sorted lexicographically (in dictionary order) according to the string
conversion of each element.

7.3 Boolean Object

The Boolean object represents a primitive boolean value.

69 JavaScript Language Specification

7.3.1 Constructors

The Boolean constructor creates an object with a Boolean value.
BooleanConstructor:

new Boolean(BooleanLiteral)
new Boolean()

If no argument is provided, then the constructor creates a object with Boolean value false.

7.3.2 Properties

The Boolean object has no properties.

7.3.3 Methods

The Boolean object has toString and valueOf methods.

7.4 Date Object

The Date object provides a system-independent abstraction of dates and times. Dates may be
constructed from a year, month, day of the month, hour, minute, and second, and those six
components, as well as the day of the week, may be extracted from a date. Dates may also be
compared and converted to a readable string form. A Date is represented to a precision of one
millisecond.

The way JavaScript handles dates is very similar to the way Java handles dates: both languages
have many of the same date methods, and both store dates internally as the number of
milliseconds since January 1, 1970 00:00:00. Dates prior to 1970 are not allowed.

7.4.1 Constructors

There are five forms of a Date constructor:
DateConstructor:

new Date()
new Date(StringDate)
new Date(year, month, day)
new Date(year, month, day, hours, minutes, seconds)
new Date(year, month, day, hours, minutes)
new Date(year, month, day, hours)
new Date(IntegerLiteral)

year, month, day, hours, minutes, and seconds are integers of the format described below.

StringDate is a string representing a date in one of the following forms:

70 JavaScript Language Specification

month day, year
month day, year, hours:minutes:seconds
month day, year, hours:minutes
month day, year, hours
day month, year
day month, year hours:minutes:seconds
day month, year hours:minutes
day month, year hours
month/day/year

year is the year, A.D., or the last two digits of the year; month is the full name of the month or a
three-letter abbreviation, day is an integer value for the day of the month; hours is an integer
between zero and 23; minutes and seconds are integers between zero and 59. If hours, minutes,
or seconds are not specified, then the corresponding value is set to zero.

msSinceEpoch is an integer representing the number of milliseconds since the epoch (00:00:00
GMT on January 1, 1970).

The constructor with no parameters initializes a newly created Date object representing the
instant of time that it was created, measured to the nearest millisecond.

Examples

The following examples show several ways to assign dates:
today = new Date()
birthday = new Date("December 17, 1995 03:24:00")
birthday = new Date(95,12,17)
birthday = new Date(95,12,17,3,24,0)

7.4.2 Properties

The Date object has no pre-defined properties.

7.4.3 Methods

The Date object has two kinds of methods: static methods used as member functions of the Date
constructor itself, and dynamic methods used as member functions of instances of the Date
object.

The static methods are parse and UTC, with syntax:
Date.UTC(parameters)
Date.parse(parameters)

The syntax for dynamic Date methods is:
dateObjectName.methodName(parameters)

where dateObjectName is a Date object created with one of the constructors from 1.2.1.

71 JavaScript Language Specification

7.4.3.1 parse

Returns the number of milliseconds in a date string since January 1, 1970, 00:00:00, local time.
The syntax is:
Date.parse(dateString)

dateString is a string value representing a date.

Given a string representing a time, parse returns the time value. It accepts the IETF standard date
syntax: “Mon, 25 Dec 1995 13:30:00 GMT.” It understands the continental US time-zone
abbreviations, but for general use, use a time-zone offset, for example, “Mon, 25 Dec 1995
13:30:00 GMT+0430” (4 hours, 30 minutes west of the Greenwich meridian). If you do not
specify a time zone, the local time zone is assumed. GMT and UTC are considered equivalent.

Because the parse function is a static method of Date, you always use it as Date.parse(), rather
than as a method of a Date object you created.

For example, If Xdate is an existing Date object, then
Xdate.setTime(Date.parse("Aug 9, 1995"))

7.4.3.2 setDate

Sets the day of the month for a specified date.
dateObjectName.setDate(dayValue)

dateObjectName is the name of a Date object.
dayValue is an integer from one to thirty-one, representing the day of the month.

For example, the second statement below changes the day for theBigDay to the 24th of July from
its original value.
theBigDay = new Date("July 27, 1962 23:30:00")
theBigDay.setDate(24)

7.4.3.3 setHours

Sets the hours for a specified date.
dateObjectName.setHours(hoursValue)

dateObjectName is the name of a Date object.
hoursValue is an integer between zero and twenty-three, representing the hour.

For example, the following sets the hour of the Date object theBigDay to 7:
theBigDay.setHours(7)

7.4.3.4 setMinutes

Sets the minutes for a specified date.
dateObjectName.setMinutes(minutesValue)

dateObjectName is the name of a Date object.
minutesValue is an integer between zero and fifty-nine, representing the minutes.

72 JavaScript Language Specification

theBigDay.setMinutes(45)

7.4.3.5 setMonth

Sets the month for a specified date.
dateObjectName.setMonth(monthValue)

dateObjectName is the name of a Date object.
monthValue is an integer between zero and eleven (representing the months January through
December).

For example, the following sets the month of the Date object theBigDay to 6:
theBigDay.setMonth(6)

7.4.3.6 setSeconds

Sets the seconds for a specified date.
dateObjectName.setSeconds(secondsValue)

dateObjectName is the name of a Date object.
secondsValue is an integer between zero and fifty-nine.

For example, the following sets the seconds of the Date object theBigDay to 30:
theBigDay.setSeconds(30)

7.4.3.7 setTime

Sets the value of a Date object.
dateObjectName.setTime(timevalue)

dateObjectName is the name of a Date object.
timevalue is an integer representing the number of milliseconds since the epoch (1 January 1970
00:00:00).

Use the setTime method to help assign a date and time to another Date object.

For example, the following statements set the value of the Date object sameAsBigDay to have
the value of the Date object theBigDay:
theBigDay = new Date("July 1, 1999")
sameAsBigDay = new Date()
sameAsBigDay.setTime(theBigDay.getTime())

7.4.3.8 setYear

Sets the year for a specified date.
dateObjectName.setYear(yearValue)

dateObjectName is the name of a Date object.
yearValue is an integer greater than 1900.

For example, the following sets the year of the Date object theBigDay to 1996:

73 JavaScript Language Specification

theBigDay.setYear(96)

7.4.3.9 toGMTString

Converts a date to a string, using the Internet GMT conventions.
dateObjectName.toGMTString()

dateObjectName is the name of a Date object .

The exact format of the value returned by toGMTString varies according to the platform.

Need xp definition.

In the following example, today is a Date object:
today.toGMTString()

In this example, the toGMTString method converts the date to GMT (UTC) using the operating
system’s time-zone offset and returns a string value that is similar to the following form. The
exact format depends on the platform.
Mon, 18 Dec 1995 17:28:35 GMT

7.4.3.10 toLocaleString

Converts a date to a string, using the current locale’s conventions.
dateObjectName.toLocaleString()

dateObjectName is either the name of a Date object.

In the following example, today is a Date object:
today.toLocaleString()

In this example, toLocaleString returns a string value that is similar to the following form. The
exact format depends on the platform.
12/18/95 17:28:35

7.4.3.11 UTC

Returns the number of milliseconds in a Date object since January 1, 1970, 00:00:00, Universal
Coordinated Time (GMT).
Date.UTC(year, month, day, hrsopt, minopt, secopt)

year is a year after 1900.
month is a month between zero and eleven.
date is a day of the month between one and thirty-one.
hrs is hours between zero and twenty-three.
min is minutes between zero and fifty-nine.
sec is seconds between zero and fifty-nine.

UTC takes comma-delimited date parameters and returns the number of milliseconds since
January 1, 1970, 00:00:00, Universal Coordinated Time (GMT).

74 JavaScript Language Specification

Because UTC is a static method of Date, you always use it as Date.UTC(), rather than as a
method of a Date object you created.

For example, the following statement creates a Date object using GMT instead of local time:
gmtDate = new Date(Date.UTC(96, 11, 1, 0, 0, 0))

7.5 Math Object

The built-in Math object has properties and methods for mathematical constants and functions,
respectively.

7.5.1 Constructors

The Math object does not have any constructors. All of its methods and properties are static; that
is, they are member functions of the Math object itself. There is no way to create an instance of
the Math object.

7.5.2 Properties

The Math object’s properties represent mathematical constants. For example, the Math object’s
PI property has the value of pi (3.141...), expressed as
Math.PI

All properties of Math are read-only values; they cannot be set.

7.5.2.1 E

Euler’s constant and the base of natural logarithms, 2.718281828459045. Syntax:
Math.E

7.5.2.2 LN2

The natural logarithm of two, 0.6931471805599453. Syntax:
Math.LN2

7.5.2.3 LN10

The natural logarithm of ten, 2.302585092994046. Syntax:
Math.LN10

75 JavaScript Language Specification

7.5.2.4 LOG2E

The base 2 logarithm of e, 1.4426950408889634. Syntax:
Math.LOG2E

7.5.2.5 LOG10E

The base 10 logarithm of e, 0.4342944819032518. Syntax:
Math.LOG10E

7.5.2.6 PI

The ratio of the circumference of a circle to its diameter, 3.141592653589793. Syntax:
Math.PI

7.5.2.7 SQRT1_2

The square root of one-half; equivalently, one over the square root of two, 0.7071067811865476.
Syntax:
Math.SQRT1_2

7.5.2.8 SQRT2

The square root of two, 1.4142135623730951. Syntax:
Math.SQRT2

7.5.3 Methods

Standard mathematical functions are methods of Math. These include trigonometric, logarithmic,
exponential, and other functions. For example, if you want to use the trigonometric function sine,
you would write
Math.sin(1.56)

7.5.3.1 abs

Returns the absolute value of a number. Syntax:
Math.abs(expr)

expr is any numeric expression.

7.5.3.2 acos

Returns the arc cosine (in radians) of a number. Syntax:

76 JavaScript Language Specification

Math.acos(expr)

expr is a numeric expression between -1 and 1, inclusive.

The acos method returns a numeric value between zero and pi radians. If the value of number is
outside this range, it returns zero.

7.5.3.3 asin

Returns the arc sine (in radians) of a number. Syntax:
Math.asin(expr)

expr is a numeric expression with a value between -1 and 1, inclusive

The asin method returns a numeric value between -pi/2 and pi/2 radians. If the value of number is
outside this range, it returns zero.

7.5.3.4 atan

Returns the arc tangent (in radians) of a number.
Math.atan(expr)

expr is a numeric expression representing the tangent of an angle.

The atan method returns a numeric value between -pi/2 and pi/2 radians.

7.5.3.5 atan2

Returns the angle (theta component) of the polar coordinate (r,theta) that corresponds to the
cartesian coordinate specified by the arguments. Syntax:
Math.atan2(xCoord,yCoord)

xCoord is a numeric expression representing a cartesian x-coordinate.
yCoord is a numeric expression representing a cartesian y-coordinate.

7.5.3.6 ceil

Returns the least integer greater than or equal to its argument.
Math.ceil(expr)

expr is any numeric expression.

7.5.3.7 cos

Returns the cosine of a number.
Math.cos(expr)

expr is a numeric expression representing the size of an angle in radians.

77 JavaScript Language Specification

The cos method returns a numeric value between -1 and one, which represents the cosine of the
argument.

7.5.3.8 exp

Returns enumber, where number is the argument, and e is Euler’s constant, the base of the natural
logarithms.
Math.exp(expr)

expr is any numeric expression.

7.5.3.9 log

Returns the natural logarithm (base e) of a number.
Math.log(expr)

expr is any positive numeric expression.

If the value of number is outside the suggested range, log returns
-1.797693134862316e+308.

7.5.3.10 max

Returns the greater of two numbers. Syntax:
Math.max(expr1, expr2)

expr1 and expr2 are any numeric arguments or the properties of existing objects.

7.5.3.11 min

Returns the lesser of two numbers. Syntax:
Math.min(expr1, expr2)

expr1 and expr2 are any numeric arguments or the properties of existing objects.

7.5.3.12 pow

Returns base to the exponent power, that is, baseexponent. Syntax:

Math.pow(base, exponent)

base is any numeric expression.
exponent is any numeric expression.

7.5.3.13 random

Returns a pseudo-random number between zero and one. This method does not have any
parameters. Syntax:
Math.random()

78 JavaScript Language Specification

7.5.3.14 round

Returns the value of a number rounded to the nearest integer. Syntax:
Math.round(expr)

expr is any numeric expression.

If the fractional portion of number is .5 or greater, the argument is rounded to the next highest
integer. If the fractional portion of number is less than .5, the argument is rounded to the next
lowest integer.

7.5.3.15 sin

Returns the sine of a number. Syntax:
Math.sin(expr)

expr is a numeric expression, representing the size of an angle in radians.

The sin method returns a numeric value between -1 and one, which represents the sine of the
argument.

7.5.3.16 sqrt

Returns the square root of a number. Syntax:
Math.sqrt(expr)

expr is any non-negative numeric expression. If the value of number is outside the required
range, sqrt returns zero.

7.5.3.17 tan

Returns the tangent of a number. Syntax:
Math.tan(expr)

expr is a numeric expression representing an angle in radians.

7.6 Number Object

The Boolean object corresponds to the number primitive type.

7.6.1 Constructors

The Number constructor creates an object with a numeric value.
NumberConstructor:

new Number(IntegerLiteral

79 JavaScript Language Specification

new Number(FloatingPointLiteral)
new Number()

If no argument is provided, the constructor creates an object with numeric value 0.

7.6.2 Properties

The properties of the Number object are constants.

7.6.2.1 MAX_VALUE

The largest number representable in JavaScript, 1.7976931348623157e308.

7.6.2.2 MIN_VALUE

The smallest number representable in JavaScript, 2.2250738585072014e-308.

7.6.2.3 NaN

The literal NaN, representing a value that is “not a number.”

7.6.3 Methods

The Number object has toString and valueOf methods.

7.7 String Object

A String is an object representing a series of characters.

7.7.1 Constructors

A string object is created whenever a string literal is used or assigned to a variable or with the
explicit constructor:
identifier = new String(stringValue)

stringValue can be a string literal or string-valued variable.

80 JavaScript Language Specification

7.7.2 Properties

A String object has one property, length.

7.7.2.1 length

The length property indicates the total number of characters in a String object. The syntax is:
stringObject.length

stringObject is a String object.

For example, the expression
mystring = “Hello, World!”
x = mystring.length

assigns a value of thirteen to x, because “Hello, World!” has thirteen characters.

7.7.3 Methods

To use String methods:
stringName.methodName(parameters)

stringName is a String object..
methodName is a method of String.
parameters are the parameters required by the method, if any.

7.7.3.1 indexOf

Returns the index within the calling string object of the first occurrence of the specified value,
starting the search at fromIndex.
stringName.indexOf(searchValue)
stringName.indexOf(searchValue, fromIndex)

stringName is any string.
searchValue is a string, representing the value to search for.
fromIndex is the location within the calling string to start the search from. It can be any integer
from zero to stringName.length - 1.

Characters in a string are indexed from left to right. The index of the first character is zero, and
the index of the last character is stringName.length - 1.

If you do not specify a value for fromIndex, JavaScript assumes zero by default. If searchValue
is not found, JavaScript returns -1.

7.7.3.2 lastIndexOf

Returns the index within the calling string object of the last occurrence of the specified value.
The calling string is searched backward, starting at fromIndex.

81 JavaScript Language Specification

stringName.lastIndexOf(searchValue,)
stringName.lastIndexOf(searchValue, fromIndex)

stringName is any string.
searchValue is a string, representing the value to search for.
fromIndex is the location within the calling string to start the search from. It can be any integer
from zero to stringName.length - 1.

Characters in a string are indexed from left to right. The index of the first character is zero, and
the index of the last character is stringName.length - 1.

If you do not specify a value for fromIndex, lastIndexOf assumes stringName.length - 1 (the end
of the string) by default. If searchValue is not found, lastIndexOf returns -1.

Example

The following example uses indexOf and lastIndexOf to locate values in the string “Brave new
world.”
var anyString="Brave new world"

//returns 8
anyString.indexOf("w")
//returns 10
anyString.lastIndexOf("w")
//returns 6
anyString.indexOf("new")
//returns 6
anyString.lastIndexOf("new"))

7.7.3.3 substring

Returns a subset of a string object.
stringName.substring(indexA, indexB)

stringName is any string.
indexA is any integer from zero to stringName.length - 1,.
indexB is any integer from zero to stringName.length - 1,.

Characters in a string are indexed from left to right. The index of the first character is zero, and
the index of the last character is stringName.length - 1.

If indexA is less than indexB, the substring method returns the subset starting with the character
at indexA and ending with the character before indexB. If indexA is greater than indexB, the
substring method returns the subset starting with the character at indexB and ending with the
character before indexA. If indexA is equal to indexB, the substring method returns the empty
string.

Example

The following example uses substring to display characters from the string “Netscape”:
var anyString="Netscape"

//returns "Net"
anyString.substring(0,3)
anyString.substring(3,0)

82 JavaScript Language Specification

//returns "cap"
anyString.substring(4,7)
anyString.substring(7,4)

7.7.3.4 charAt

Returns the character at the specified index.
stringName.charAt(index)

stringName is any string.
index is any integer from zero to stringName.length - 1,.

Characters in a string are indexed from left to right. The index of the first character is zero, and
the index of the last character is stringName.length - 1. If the index you supply is out of range,
JavaScript returns an empty string.

Example

The following example displays characters at different locations in the string “Brave new world”:
var anyString="Brave new world"

// The character at index 0 is B
anyString.charAt(0))
// The character at index 3 is v
anyString.charAt(3)

7.7.3.5 toLowerCase

Returns the calling string value converted to lowercase.
stringName.toLowerCase()

stringName is any string.

The toLowerCase method returns the value of stringName converted to lowercase. toLowerCase
does not affect the value of stringName itself.

Example

The following example returns the lowercase string “alphabet”:
var upperText="ALPHABET"
upperText.toLowerCase()

7.7.3.6 toUpperCase

Returns the calling string value converted to uppercase.
stringName.toUpperCase()

stringName is any string.

The toUpperCase method returns the value of stringName converted to uppercase. toUpperCase
does not affect the value of stringName itself.

83 JavaScript Language Specification

Example

The following example returns the string “ALPHABET”:
var lowerText="alphabet"
lowerText.toUpperCase()

7.7.3.7 split

Splits a String object into an array of strings by separating the string into substrings. Returns an
Array object. Syntax:
stringName.split(separator)

stringName is a String object.
separator is string literal or expression that separates the string into substrings. If separator is the
empty string, split separates each character into a substring element in the array.

84 JavaScript Language Specification

Appendix

A
JavaScript LL(1) Grammar

This appendix contains the NQLL(1) grammar (Not Quite LL(1)) for JavaScript.

NOTE: This appendix is missing the algorithm for recovering from missing semicolon errors.

Program:
empty
Element Program

Element:
function Identifier (ParameterListOpt) CompoundStatement
Statement

ParameterListOpt:
empty
ParameterList

ParameterList:
Identifier
Identifier , ParameterList

CompoundStatement:
{ Statements }

Statements:
empty
Statement Statements

Statement:
;
if Condition Statement
if Condition Statement else Statement
while Condition Statement
ForParen ; ExpressionOpt ; ExpressionOpt) Statement
ForBegin ; ExpressionOpt ; ExpressionOpt) Statement
ForBegin in Expression) Statement
break ;
continue ;
with (Expression) Statement
return ExpressionOpt ;
CompoundStatement
VariablesOrExpression ;

85 JavaScript Language Specification

Condition:
(Expression)

ForParen:
for (

ForBegin:
ForParen VariablesOrExpression

VariablesOrExpression:
var Variables
Expression

Variables:
Variable
Variable , Variables

Variable:
Identifier
Identifier = AssignmentExpression

ExpressionOpt:
empty
Expression

Expression:
AssignmentExpression
AssignmentExpression , Expression

AssignmentExpression:
ConditionalExpression
ConditionalExpression AssignmentOperator AssignmentExpression

ConditionalExpression:
OrExpression
OrExpression ? AssignmentExpression : AssignmentExpression

OrExpression:
AndExpression
AndExpression || OrExpression

AndExpression:
BitwiseOrExpression
BitwiseOrExpression && AndExpression

BitwiseOrExpression:
BitwiseXorExpression
BitwiseXorExpression | BitwiseOrExpression

BitwiseXorExpression:
BitwiseAndExpression
BitwiseAndExpression ^ BitwiseXorExpression

BitwiseAndExpression:
EqualityExpression
EqualityExpression & BitwiseAndExpression

EqualityExpression:
RelationalExpression
RelationalExpression EqualityualityOperator EqualityExpression

RelationalExpression:
ShiftExpression
RelationalExpression RelationalationalOperator ShiftExpression

ShiftExpression:
AdditiveExpression
AdditiveExpression ShiftOperator ShiftExpression

AdditiveExpression:
MultiplicativeExpression

86 JavaScript Language Specification

MultiplicativeExpression + AdditiveExpression
MultiplicativeExpression - AdditiveExpression

MultiplicativeExpression:
UnaryExpression
UnaryExpression MultiplicativeOperator MultiplicativeExpression

UnaryExpression:
MemberExpression
UnaryOperator UnaryExpression
- UnaryExpression
IncrementOperator MemberExpression
MemberExpression IncrementOperator
new Constructor
delete MemberExpression

Constructor:
this . ConstructorCall
ConstructorCall

ConstructorCall:
Identifier
Identifier (ArgumentListOpt)
Identifier . ConstructorCall

MemberExpression:
PrimaryExpression
PrimaryExpression . MemberExpression
PrimaryExpression [Expression]
PrimaryExpression (ArgumentListOpt)

ArgumentListOpt:
empty
ArgumentList

ArgumentList:
AssignmentExpression
AssignmentExpression , ArgumentList

PrimaryExpression:
(Expression)
Identifier
IntegerLiteral
FloatingPointLiteral
StringLiteral
false
true
null
this

87 JavaScript Language Specification

