ECMA/TC39/97/23

ECMASCRIPT LANGUAGE SPECIFICATION

ECMA COMMITTEE #39
VERSION 0.17

APRIL 14, 1997

Please send feedback regarding this document to Guy Steele (Guy.Steele@east.sun.com).

1 SCOPE

2 CONFORMANCE

3 NORMATIVE REFERENCES

4 OVERVIEW

4.1 WEB SCRIPTING......cuuiiiiutieeeteeeeitteeeetteeeeteeeeeteeeeeteeeeasseeaeesseeaessseaasseseesseeeesssseasseseesseeeasssessaesssssessaeaeeanaes
4.2 LANGUAGE OVERVIEW.......0eiiitiiieitiieiitieeesireeaetteesotseeestsesasssssesssssasssesasssesesssssssssssasssesessssessssssssssssassasanns

G200 OBJECES....c.eeeeee ettt a e a e a et Rttt ettt e et e enteeneeeanaeeen
4.3 DEFINITIONS. ... cuttiiittteeetteeeetteeeeteeeeteeeeeaseseetseeesateseasseseeaseeaassesaassseeassaeesssesaassseeanssaeessaseassseeasseeensseeasaans

B.3.3 ODJECH..c..ceeeet ettt
B304 COMSIUCKOT ...ttt et ettt et ettt ettt ettt et eae e e nnaeeans
3.5 PFOFOTYPC. ...ttt ettt ettt ettt h et a e ettt e ettt e et e e e
4.3.0 NALTVE ODBJECL. ..ottt et ettt e et et e e bt e sateeateeesaeenbeessbeansseeeennsseeennes

A 3.8 UNACIINEA. ...ttt ettt a ettt et b et b et ebeenseeae s
4.3.9 URAEIINEA TYPE......c.ooeeiiieieiiiiiiee ettt ettt
G300 NULL ..ottt ettt et h ettt ettt et nean
B30T INULL TYPC. ..o ettt ettt ettt h ettt b et eae et e st e e eseebeeneebeenee s
4.3.12 BOOICAN VAIUC..............ceeoeeiiieeiee ettt ettt
4.3.13 BOOIEAN TYDE.....c..oeeeieeeee e ettt ettt ettt b ettt et se et nt et e enaeen
4.3.14 BOOIEAT OBJECL...........cceeeiieieeee ettt ettt et et e et et e e baessteesttessseenseesnsbaeeeensseeeenens
43015 SHFING VAIUC. ...ttt et
G316 SHFIIG TYDCu.ceeeeeeeeee ettt ettt ettt et e et e et e et et e e n bt e aaeenb e e ekt e e bt e tbeebaennaeenteeenaeeeans
4307 SHFIRG ODJECL........c.ieeiieeet ettt ettt
.38 NUMBEE VAIUC. ...ttt ettt et e e
G319 INUIDEE TYDEC......eeeeeeeeeee e ettt ettt e ettt ettt ee et e e st e et et neeene s
4.3.20 NUMBDEE OBJECL...........coooeeeeeeeiieeieeeeeieeeet ettt ettt ettt b e st be st e eseesaesaeessesaeeaeeen
O B (1 17775 PSSR USRS
322 INAN ...ttt a e a ettt h bttt e ettt enees
4.4 DEFINITIONS.cuvitiiitiiiuiitite ittt ettt ettt ettt sttt s e e st et ss et a s a b a s n et se et en s s ess s ssene e ens

5 NOTATIONAL CONVENTIONS

5.1 SYNTACTIC AND LEXICAL GRAMMARS.ooiiiuiieeetieeeeeeeeeeeeeeeteeeeeaeeeeeaaeeeeaeseeeseeeaeseeeeessaeeesaaeeeeeeeinnnnes
5.1.1 CONLEXI-FTEE GFAMIIATS.ccceveee ettt et
5.1.2 The LexiCal GUAMIMAT..............cccc..cooeeeieeeeeeeeee ettt et e ettt e e e e eeaaaaaaes
5.1.3 The NUmeric String GFAMIATYc.cccvevueriaieeeeeeeeee e eieeseettesse et ete et esseensesssessesseesessseessseeans
5.1.4 The SYRACHIC GEAMMUATcceieeeeieeieee ettt ettt ettt et ettt ettt e naeeenaeeens
5.1.5 Grammar NOTQLION.cccccueeeieeiieee ettt e e,

5.2 ALGORITHM CONVENTIONS.......ccitittiteeieeiittteeeeeiitreeeeeiitseeeeeeaisseeeeeaaassseeeseaissssseseesissseeeessassssreaessesesseseees

6 SOURCE TEXT

7 LEXICAL CONVENTIONS

7.1 WHITE SPACE.......utiittieteeitteiteestteeteesttesseesseeasseesseessseesseessssesssessseesseeassessseessseenseessseessssssseesssesssessseessseesns
7.2 LINE TERMINATORS.ccetttrtieeieiittreeeeeeiisreeeeeesissseeeeeeeitseesesaesssesseeeesissseseseessssesseesassseseessesreseeeasseeseeeeeeeeees
7.3 COMMENTS.....eeiittteetteeetteeesteeesttaestaeeassseeesssaeeassseeasssasaassaeesnsseeassseesssasessssesansseesnssesasssessnnsseesnssessssseennnes
T4 TOKENS. ...eiutteetteettestteeteesteeeteeteesteesstessseesaaasseansseasseenseesssaenseeasseansaessseenseeanseenseesssaenseessseenssensssesesnssseeennn
T4 d RESCIVEA WOTUS. ... e et eee e
7oA. 2 K@YWOTS.c..cceeeeee ettt ettt ettt et e ettt e et e e tt e e ab e e taeeab e e tbeeabe e bt e s abeenbeeeabaeeeentbaeeeeneres
7.4.3 FUIUTE RESCIVEA WOFAS.oooeiiieeeeeee e et
7.5 IDENTIFIERS. ...eeuttteiuteeasttteeatteeaauteeasseesssseeessseasansseeaasseesasseeasnseesasssessasseesssseesanssessasseeesssessenseessssseeenssessnnnes
7.6 PUNCTUATORS......eeitteeteesiteeteeniteeteesttessteesssessseessseesseesssesnsessssesssessssesssesssseesseessseensessssesnsessssessseesssesssesnsees
7T LITERALS. .. eutteeuttette et ette st ertte st e bt e sute e bt e sabeeabeesateenatesateeabeesabeeabeesabeenbeesabeenbeesateenbaesabeanbaesabeenbeesabeeseeens
T 7 NUILLTECFALS. ... et
7. 7.2 BOOLEAN LIt@EALS. ... e

T 7.3 INUMECHIC LIEUALS.ooooieeeeeeeeeeeeeeeeee e
7. 74 SUPING LIETALS........c..cooiiiiiiiiiiiiie ettt ettt
7.8 AUTOMATIC SEMICOLON INSERTION.......uuuiiieiiiiuiieeeieiiteeeeeeeesiareeeeeesesteeeeessassasesessesssesessssssseeesessseeeseeesees

8 TYPES

8.1 THE UNDEFINED TYPE......ccciitiiiiiiiieiiieeeitieectteeesiteeesetteeetteeetseeesasesesssaeesasseeasssesesssseesssssassssessasanssssssaeenns
8.2 THE INULL TYPE.....oiiiiiitiieieeieiieie ettt e e ee ettt e e e e e eteeeeeeeetaaeeeeeeetaaeeeeeeessaaeeeseeasssseeeeeasssaeeseeaasssseeeseeeeeees
8.3 THE BOOLEAN TYPE.....utiiiiitiieieiie ettt ettt ete e et e et e e e e taeeeeaae e e eaaaee e aaeeeeaseeeeataeeeteeeeesseeeseennssssneeeaens
8.4 THE STRING TYPE.....citiiiiiiiieitie ettt ette e ettt e et e e sttt e e ettt e e etaeeetbaeesabeseaasseesssseaassseseassseesasseeasssesennssssssaeenns
8.5 THE INUMBER TYPE.......ccitttitiiiiiitiiie e ettt e e eeectt e e e e ettt e e e e et ttaeeeeeeettaeeeeeeaeabaeeeeesetsaaeeeeeatssseeeseaassesseennees
8.6 THE OBJIECT TYPE......oiiiotiiiiiiieeetee ettt e e et e et e e et e e e eaae e e e teeeetaeeeetaaeeettaeeenseseeseeeensseseesseseensenseens
8.6.1 PrOPEILY AUFIDULES. ...ttt bttt
8.6.2 Internal Properties and MEINOUS.ccc.ocueviuiiieeiieeiiie st st ste ettt sveaaae e saaeeens
BL0. 2.1 [[GL]T(P)uveeureeereeiieieeiietesttett et et e st et e et e st e te e b e e st e s taeseenseessesseenseesseessenseenseansesssenseensesssesssenseenseassensaeens
8.6.2.2 [[PULTI(P, V)t e e s e e et s e een e e et en ettt nenenen e

8.0.2.3 [[CANPULI (P vttt ettt ettt ettt ettt st
8.0.2.4 [[HaSPIOPEIEY J(P): - teteemtteiieettettete ettt ettt ettt et ettt e bt e s bt e bt et e sate s bt e b e esbesaeesbeebeenbaeeens

8.7 THE REFERENCE TYPE......cciiiiiiitiiiiiiieiieeee e eeeeieee e e e eeetee e e eeetaeeeeeeeeaaeeeeeesestaseeeeeesassreeseenesareseeeaaaaaaaeeeaeeeees
870 GOIBASE(V).ttt ettt et e et e et e e ta e et e e b e etb e e abe e e tbeebe e tbeenbeeetteebeennens
8.7.2 GEtPIOPETYNAME(V)....cceeeeeeeeie ettt ettt ettt ettt et ettt e sttt et e eateeabeeenbeennbaeeeenes
8.7.3 GEVAIUE(V).ttt et ettt ettt e et e st e et e e tbeebeestbeesbeeasaeenbeeeeentraaeennes
8.7 4 PULVAIUC(V, W)ttt ettt b ettt st e aeesseeaeessesseebestaessseennseeen

B8 THE LIST TYPE. .. uitiicuiteeiiieeiiteeetteeettteetreeeseteeesssseessseeassseeesssaeessseeeassseeaassaeessseeeassseessseeasseesnssseessssseeees

8.9 THE COMPLETION TYPE....ccuuiiitieeuieeiiieiieesieestteesteesteesseesssessseessseaseessseasseesseesssassseessseessessssesssessssessssseesanns

9 TYPE CONVERSION

0.1 TOPRIMITIVE....c.tioititiiititiiitente ettt et ettt ettt ettt et b et sbe et sbe e et s bt et e s bt e bt sbt e bt ees et e eenenbeensenbeeneneenan
0.2 TOBOOLEAN. ...ttt ettt ettt ettt e sbt e sat e bt eeat e e bt e sab e et e e s ab e e bt e sate e bt esaeeeabeesabeeabeesabeenbeesateenbaenaseens
0.3 TONUMBER.....ccuttittitteite ittt ettt e e et e e e bt e bt e bt e bt eat e bt ea e e st e ea e e e bt eaeesbeemte e bt emteebeenteebeenteebeenteenbeeennteesaneeenne

9.3.1 ToNumber Applied t0 the StFiNG TYPE.........ccccvoiiciiiiiiiiiiiiiieeeeeeeee ettt
0.4 TOINTEGER......ceutttteteeitet ettt ettt et ettt ea e teea e et e e st e bt es e e b e em e e bt emee st emeeeseemteeaeensesmeesesmeenseemeeseeneanseensens
9.5 TOINT32: (SIGNED 32 BIT INTEGER).....ccttertteetiesureerieenereeseesseesseesssessseesssessseesssessessssesnsesssessseesssesssesssnes
9.6 TOUINT32: (UNSIGNED 32 BIT INTEGER).......ccutesteetieteerieseaseanseeeesseasesseessessesssesseessessessesseensesesssessnseeanns
9.7 TOUINT16: (UNSIGNED 16 BIT INTEGER)......cccuteitieiieenteesreesseeeseesseesseesseesssaessesssseessssssseessessssssesesssssesenns
0.8 TOSTRING. ..ottt sttt sttt ettt et ettt e bttt e bt e s bt et e sb e et s ue et e s bt et e sbten b e ebeen bt ebtembbeesabeesabaeenbbeennne

9.8.1 ToString Applied t0 the NUMBEr TYPE...........cccociriiiiirimiininiiiieieieeee ettt e
0.9 TOOBIECT ...ttt ettt ettt et s bt et s bt et e bt et e bt et e b et eb e e et e et e bt eeeesb e e st e e bt e s eeabeembeabeenteebeenbeeennbeesateeenne

10 EXECUTION CONTEXTS

1O.1 DEFINITIONS.....ctitiitiititeteitetet ettt ettt st sttt ettt e eb b s st b b e n e e
L0.1.1 FURCEION OBJECLS.......c.eeeeeeeeeeee ettt ettt ettt eae et e et esae et eneeeenee
10.1.2 Types of EXeCULADIE COMe...............coccoeeiiiiiiiiiiiieeeieie ettt
10.1.3 Variable INSTANTIATION.c.oocveiieieeiieeiieeiieeee et ettt ae et et e e te e s veebeessaeebeestbeebeeseseesseee s
10.1.4 Scope Chain and Identifier ReSOIULION.ccoccvecuieiieiieieie et
L0.1.5 GIODAI OBJEC..........c.oieeeeee ettt ettt ettt e e et e e ene e e s
L0.1.6 ACHVALION OBJECE...........ccooecveeieeieeiieeieeieete et ettt ettt et et be et esbe st e eseestbeeenbeeennseas
JO. 1.7 TRES. oottt ettt ettt h e h e b e e b b e s et e b et e n s ent st e st sttt e st e eneeenbeenneen
10.1.8 ArGUIMENLS ODBJECL.............coeeieiieiee ettt ettt st b et e b et be e et eeenbeeennee s

10.2 ENTERING AN EXECUTION CONTEXT......coiuteitiitirreniietenteetesiteteeseeseeseesneeseesseemnesaeenesseennessneessneesneeenns
LO.2.1 GLODAL COAE............coooeeeeieeeeeee ettt ettt sttt e st e e bt e este et e e s sbeenseesabeanseee s
L0.2.2 EVAICOME............c..ooceoeeiieeeee ettt ettt ettt e et e e te e s abe e tta e e e e ntae e e enaaseae s
10.2.3 Function and ARORYMOUS COAE...................ccoocvecveciieciieiieieeieeee ettt se et sae s eeneas
LO.2.4 HOSE COUE............ooooeeieeeeeee ettt ettt ettt e et e e e te e e tb e e bee e entb e e e e eavaeae s

11 EXPRESSIONS

11.1 PRIMARY EXPRESSIONS.......ctitiiiuiiiiuiiiiniiteiiitiiitet et
L1 1.1 THE thiS KEYWOF ...ttt ettt et
11.1.2 IANIIfIEF REFOFEICE. ..ottt e e s
L1.1.3 Lit@FQL REfOTEHICE. ...ttt ettt
11.1.4 The GroUPIinG OPEFALOF............ccueeeeeaeeee ettt ettt ettt ettt e et neeeneeennnees

11.2 LEFT-HAND-SIDE EXPRESSIONS......cectiutiiiiiiiteiieiieiieitetiete sttt st ssesse s eseesseneeseeneenessesnneseneennsenneenneennes
L1.2.1 PPOPEITEY ACCESSOFS. ...ttt ettt ettt ettt ettt et ettt et ettt e et e e e ntreee s
L1.2.2 THE NEW OPEFALOT ...ttt et ettt ettt e et e s et e et e s tb e e nsaesabeansaesnseenbaessseesansseee s
L1.2.3 FURCEION CAIS ..ottt ettt ettt e et e e ene e e e s
L1.2.4 AVGUINEIE LISTS......ccuoeeiieeiieeiee ettt ettt ettt ettt e et e st e e b e e sttt e tteeaaeenteessbeenseessbeenseesensseeens

11.3 POSTFIX EXPRESSIONS.......cuiiiitiiitiiiitiitisiitisiet ettt ettt ese et se s es et s s s a et a et s nseas e eneensenrs
11.3.1 POSHIX INCFEMENE OPCFALOT ..ottt ettt sttt e et e
11.3.2 POSIfiXx DeCrement OPEFALOF...............cccccrieuiiiriieieieieeeieee ettt ettt sttt

11.4 UNARY OPERATORS......oviuitimiitiiietiietieeete ettt see st se et es s es e sa e sa e s s e e s
11.4.1 The delete OPeraror...............coccueeieceeeiieieeieie ettt ettt ettt et sse et ereessesseenaessaenseesaeennseas
11.4.2 The VOIA OP@FALON.............cceee ettt ettt et et e et e et e e eneeeannee s
11.4.3 THE tYPEOSF OPCFALOF ...ttt ettt et be st ebe e eae st sbesseensenens
11.4.4 Prefix INCrement OPEFATOT.............c.cceieeii ettt ettt ettt see st nte e aae et e e nneeeaneee s
11.4.5 Prefix Decrement OPEFALOT................c.ccoccueeueeeesiaieesieteete e eaeesesitesessaesestsessesssesseessessseesnseeansseas
L1.4.6 UNAEY + OP@FALOT ..ottt ettt ettt e et et eeeneeennaee s
L1.4.7 UNQTY = OP@FALOF ..ottt et ettt ettt et et e et e s et e et e s eb e e st e ssteenteeenaeeannseee s
11.4.8 The Bitwise NOT OPEFAIOT (~).cueeeueeeieiiei ettt ettt ettt neeeenneees
11.4.9 Logical NOT OPErator (]).....c.ccoouieceiieiieieeeeeie ettt sae e ennee s

11.5 MULTIPLICATIVE OPERATORS......cccutiuieiiiieiiniieteeteeteeteeteeeesseeeesaeesaesaeesnesaeesnesseesesasesseesnenseennenseenneeas

11.5.3 APPIVING the %6 OPEFAIOToccueeeieieeee ettt ettt e esaae et e saaeebeeenseee s
11.6 ADDITIVE OPERATORS.ccutiiiiiiiiiiiiiiiitiiti ittt sttt s st s s e
11.6.1 The Addition OPerAtOF (&)....ccecceeiieeieeeie ettt ettt ettt e sibe e ebeestaeebaeaentsaeeesaraeeens
11.6.2 The Subtraction OPEratOr (=)........ccccueiioieiiioiiiaiie ettt ettt ettt
11.6.3 Applying the Additive Operators (+, =) 10 NUMDBETS............ccccccoeiircieiiaiiiieeeiee et
11.7 BITWISE SHIFT OPERATORS.......ceuiiiiiiiiiiiiiitiitiite sttt ettt ettt s st s s
11.7.1 The Left Shift OPerator (<<)ittt ettt ettt ettt eeee e e
11.7.2 The Signed Right Shift OPerator (>)....c.cccovuivueiieieeiieeieeieeie ettt eerae e sareesnee s
11.7.3 The Unsigned Right Shift Operator (>).....cccccioiiiiiioieie ittt
11.8 RELATIONAL OPERATORS.uvtiiiutieiitteeeiteeeeiteeeeetseeeasseseassseeeessseesssesasssseassssessssesasssssessssssessssssssssaseeasans
11.9 EQUALITY OPERATORS....c.cititiiiiiiiiiiiiieieiieiteic et st eb e s e
11.10 BINARY BITWISE OPERATORS.ccueruirtintetetetentententeateetestetteueesesreetessesaessesessessensenseneensenseneeneesessesseenne
11.11 BINARY LOGICAL OPERATORS.......uutieiutiieirieeeteeeeetreeesseeeatseeeessesesseeesssseaassesesssesesssessnssesensesessseeeeans
11.12 CONDITIONAL OPERATOR ([7).vveuvieuieruieierteeiesieetesseessesseessesssenseeseasseassesseessesseensesseensesssensesssensesssensens
11.13 ASSIGNMENT OPERATORS.....cceeuteuteuteutetteiteitetteteniestessestessessensenseseensessentesteseesesueesessesaestessensensensensesanenane
11.13.1 Simple ASSTGRIMERE (=)..c.ocovveeeiieiieeie ettt ettt ettt ettt et be et eeseesaesseensesseesbeeseenseeenas
11.13.2 Compound ASSIGRIMENE ((OP=)....ceoueiuieeieiiee ettt ettt ettt ettt eee et eenneeas
11.14 COMMA OPERATOR ())eveeeureettenreenreeneeenteessseeseesssesseessseeseesssesssessssesssessssesnsessssesssessssesnssessnssseessnseees

12 STATEMENTS

12.1 VARIABLE STATEMENT.......0iiittiitieiitieiteeiteeiteeeiseessseesseessseeseessseessesssssasssessssassesssssessesssesssesssessssssessnssens
12.2 EMPTY STATEMENToiiiouiiieetie e et e et e eetee e et e e e eaee e eeteeeeaeeeeeaeeeeeaaeeeeaeeeeeaeeeeenseseeseeeeeeensssseenaeaeeeeaanns
12.3 EXPRESSION STATEMENT......uotiiittiiiitieeeitteeeeteeeeiteeeetseeeeasesessseeesseeesssesessssseassseeassesassseessssseessresaaeeeaans
12.4 THE 1 STATEMENTceiitiiitiieteeetteeoteeeteeeveesteeeseesteeeseeeseeesseaessessseassseasseasssesseaseessseesseessseenssessseesseasssens
12.5 ITERATION STATEMENTS.utiiiitiieeeteeeeeteeeeeeeeeeteeeeeteeeeeteeeeeteeeeeseeeeeaeeeeeseeeaseeseeseeeeeseeeesesseesseeeanseeeeas

12.5.1 The WHIle STAEEIENL.................cccooi oot

12.5.2 TRE fOF STAIEMENL...........cee ettt et ettt ettt ettt e et et e et eneeaneeennneas

12.5.3 TRE fOF..I1 SEAIEIMENL..............oceoeeeeeieeieee ettt eae ettt eeseebeeesebe s ebeenseeneeneees
12.6 THE CONtINUE STATEMENTcuuiiiiitieeeetteeeeiteeeeeteeeeeteeeeeeeeeeeaeeeeeseeeeeseeesseeeeeseeseesseesseeeenseseeeeeeeeennnnnnnes
12.7 THE DIeaK STATEMENT......cciitiiiiitiieeeteieeeteeeeteeeeetteeeeteeeeeaeeeeetaeeeetaeeeeseeeeeaseeeesseseaseeeeessseeasssssnsaaaeeeaans
12.8 THE TCTUIN STATEMENT......ccittiiitiieiitteeeitreeeeteeeeotteeetseeastseeessseasssseeasssesassssaassseseasssesssssseasssesesssseesssseenns
12.9 THE With STATEMENTcctiiiiiieeeeteeeeeeeeeeetee e eeeee e e et e e et e e eeaeeeeeateeeeseeeeeseeseesseeeenseeeeseeeeeseeeessreeeeeennnnnes

13 FUNCTION DEFINITION

14 PROGRAM

15 NATIVE ECMASCRIPT OBJECTS
15.1 THE GLOBAL OBJIECT . ..uuutiiiiietieeeeeeeeiteeeeeeeeiaeeeseeeessaeetessesuasesessesassesesssssssssessesasssessenssseesssssssseessssnnnnns

15.1.1 Value Properties of the GIODAL ODJECL..................c..ccevvecveiiieciieieiieeecieeeeeie e
IS T L T INAN etttk ettt
15.1.1.2 Infinity

15.1.2 Function Properties of the GIobal ODJECt.................cccccocviiciiiiiiniiniininininieeeseeiet et
I5.1.2.1 @VAL(K)-vevenerereteneieietetets et ettt ettt ettt btttk ettt a bbb bttt b bbbttt bbb bttt entene
15.1.2.2 parselnt(string, radix)
15.1.2.3 parSEFLOAL(SIIINE)..ccuveeuteriietieieeteet ettt ettt b e et eb e bt ettt e sbe e bt et st e sbeenbeens
15.1.2.4 ©SCAPE(SLIINE)..ecuveeureteeieeieeitesteeteeteettesteeteestesseesseessesseenseesseansasseenseensesssesseansesssesseenseenseansseasansseesanseeanns
15.1.2.5 unescape(string).....
15.1.2.6 isNaN(number)......
15.1.2.7 isFinite(number)...........

15.2 OBJECT OBIECTS.....cuiitiuiiiiiiitinietiietctet ettt a sttt et n e s a s s s st a e n e eneens e e s

15.2.1 The OBJECt FUNCHION.cceeeieaieiieieeee ettt ettt ettt ettt e et e s
15.2.1.1 ODJECHVAIUR). .. veeuveeeieiieieeieeitesieeteete st e it etesteestaesseesseesaesseesseessesseesseensesssensaessaasseassesssensesssesseensennnsanenns
15.2.1.2 Object()

15.2.2 The OBbJect COMSIIUCIOT...........c.oceeiiiiieiiiiiet ettt ettt ettt sttt sttt sttt et et
15.2.2.1 1EW ODBJECH(VALUEL). ...ttt ettt ettt et b e bt et e s bt e sbe et e eseesbee bt e s abeeesnbeeesnbneas
15.2.2.2 1€W OBJECH().nvrerverrrerrrererierienieeieeieseeseeeveseneneeas

15.2.3 Properties of the Object Constructor.......................
15.2.3.1 ODbject. PrOtOLYPe....ccveeveereerierirerieereseesteeseereaseenseens

15.2.4 Properties of the Object Prototype Object...............
15.2.4.1 CONSIIUCLOTeevieniiniieniieiiercnieeieere e
15.2.4.2 tOSHING()-venveenveeverreniienieeeeeieseeree e
15.2.4.3 valueOf()...veevereieiieieeieeeesieee et

15.2.5 Properties of Object Instances...........

15.3 FUNCTION OBJECTS.....c.cccueieieiniirieneenenenns

15.3.1 The Function Function
15.3.1.1 Function(p1, p2, . . ., pn, body)

15.3.2 The Function Constructor..............
15.3.2.1 Function(p1, p2, . . ., pn, body)

15.3.3 Properties of the Function Constructor.........
15.3.3.1 Function.prototype
15.3.3.2 Function.length..........cccocerienieninnienieneeiceee

15.3.4 Properties of the Function Prototype Object....
15.304.1 COMSEIUCTOTeeiteeiie ettt ettt ettt e b e bt e bt et e e bt e et et e bee s abeesabe e e bt e eabeesabeesabeesabeesabeeeennes
15,3042 TOSIINZ(). e+ evereeterteete ettt ettt ettt ettt ettt ettt eb e b e st eb e bt e st e st es e es e ea e es e e st emees e n e e st e st e st e st et en e et enteeateenbeeenneens
15.3.4.3 valueOf()..c.covveuveeeiiicieiciccccecee

15.3.5 Properties of Function Instances
DT T B 1 o1 T OO O OO PS USRS UPRUPRR
15.3.5.2 prototype............
15.3.5.3 arguments

15.4 ARRAY OBIECTS...ccuiitiiuiiitiientetetetet ettt ettt eae et be et sa et ae e s et ess e st e st eseeseesesasesaneenneenneenneenne

15.4.1 The Array Constructor.......................
15.4.1.1 new Array(item0, iteml, . . .).....
15.4.1.2 new Array(len)........ccccoeeveeuennne
15.4.1.3 NeW AITAY().cveeverrinieiieieeiieneeneeeeeeenieeee e

15.4.2 Properties 0f the ArFay CORSIIUCIOT.............cc.ccccuvciiciiiiniiiiiiiienienie ettt ettt
I5.4.2.1 ATTAY . PIOTOLYPC. c..eeetenteeiteeiie sttt ettt ettt h ettt et e s bt et eat e s bt e bt e st e eatesbe e bt eabesbeenbe e b e sabesbeeesabeeeeanbaeenas
15.4.2.2 Array.length........cccooviviiniinienieieieeeeene

15.4.3 Properties of the Array Prototype Object.........
15.4.3.1 CONSIIUCLOL......covieiiiiiiieiieie et
15.4.3.2 toString()
15.4.3.3 valueOf()
15.4.3.4 JOIN(SEPATALOT)..c..eevteuteeuieetteett et ettt et st et eat e s bt e bt et e st e e bt e bt et e s beesbeeabeeabe s bt e bt esteebeeebe et e eateebbeeeaabbeesnnbaeenas
15.4.3.5 reverse()
15.4.3.60 SOTT().uvuvveneieteteiireetet ettt ettt b ettt bbbkttt bbbt bbbt b et b bbbttt enes

15.4.4 Properties Of Array INSTAICES...............c..cccoouieiiieeaiiee ettt ettt e
15.4.4.1 [[Put]](P, V)
LT 1< 1 Y11 ST URPSTPRRSUSN

15.5 STRING OBJIECTS....c.ccuiiiiiiiiiiiiiiitiieieieie ettt s

15.5.1 The String Function
15.5.1.1 String(value).................
15.5.1.2 String()..veeveeevereeeneeeiennnns

15.5.2.2 NIEW SHTIIZ()-+euveeuteemterteeteeit ettt ettt ettt ettt et b bt e e s bt e bt et e e st e sat e s bt et e sh b e ebte bt e st e ebtenbe e bt eabesbeeeeas
15.5.3 Properties of the String CONSIFUCION...............ccccciuiiriiriiniiiinineeeeeseeeeetet ettt ettt
15.5.3.1 String.prototype
15.5.3.2 String.fromCharCode(charQ, Charl, . . .)....cccioiierieiieie ettt e e eesneeees
15.5.4 Properties of the String Prototype Object
15.5.4.1 CONSIIUCTOL......eoutiriiiiieiieiiieiieieee e
I5.5.4.2 TOSTIINZ()c-veeuveemtetteteete ettt ettt ettt b ettt s ae e st e bt e bt s bt e bt e st e bt e bt et e e bt e e bt e bt et s h b e e bt e b e e et e e sbbeee e
15.5.4.3 VAIUEOT(). et eute ettt ettt ettt ettt et e e et e st ebe e st e s st et e e s teesee st enbeenbeeseebeenbeenaeentebeeanneeeenbeeeens
15.5.4.4 charAt(pos)............
15.5.4.5 charCode At(Pos).......cceeververvenueens
15.5.4.6 indexOf(searchString, position).....
15.5.4.7 lastIndexOf{(searchString, position)
15.5.4.8 split(separator)...........cceceeveeeeeeeieeeieeenes
15.5.4.9 SUDSIIING(STATL). .. .eeuveitietieieiteetieteeteette st eteetesete bt eteeetesseesseessessaesseenseansesseenseensesssenseenseensesseenseensessneenns
15.5.4.10 SUDSLIING(SATT, €11)...c..eiutieiiiiieieeiterttet ettt ettt b e et b et a e she e bt et sb b sbe e te e e e beeeens
15.5.4.11 toLowerCase
15.5.4.12 toUpperCase
15.5.5 Properties Of StFiNgG INSIATCES...............c.cociriiriiiiiininiieieiee ettt ettt
15.5.5.1 length
15.6 BOOLEAN OBJECTS....
15.6.1 The BOOIEAN FUNCIION.cc.coeeiiiiee ettt et e e s
15.6.1.1 Boolean(value)..........ccceeueeveennnnenn
15.6.1.2 B0OI€AN()..ccuveemeeiieiieieeieeieerieeieeee e
15.6.2 The Boolean Constructor..................c.coceau...
15.6.2.1 new Boolean(value).........ccccceceeveevuinienennnene
15.6.2.2 new Boolean()........ccceevveeverveneenieecieniesieiens
15.6.3 Properties of the Boolean Constructor
15.6.3.1 BOOICAN. PIOIOLYPE. c.eevreurieeieeiieriietietesttesteetessteeteesseesseesaesseesseassesseesseessesssessaessesssesssesssensensssessnsseessnseeenns
15.6.4 Properties of the Boolean Prototype OBJEC................ccccuiueiiaieiiiiieee st
15.6.4.1 constructor.
15.6.4.2 toString().....
15.6.4.3 valueOf()....eovverreeieieeiieie e
15.6.5 Properties of Boolean Instances.....................
15.7 NUMBER OBIECTS......cceouiniiiiiinieieieieieeeeenenes
15.7.1 The Number FUnction...................cc.ccoe.....
15.7.1.1 Number(value).........ccoevvereerieeciereereanenns
15.7.1.2 Number()....ceoveeuveneeeieeieeieseeceie e
15.7.2 The Number Constructor.........................
15.7.2.1 NeW NUMDEI(VAITUE)......eertiiiieiieieeieteete ettt ettt et ettt ettt e st e bt et eestesaeenbeenbeenbeeesnnneas
15.7.2.2 NIEW NUIMDET()....veevieetieiieieetesitete e et esteeteeetesteesbeessesseesaessesssesssesseessasssesseasseessasssesseesseensseesansseessssenenns
15.7.3 Properties of the Number Constructor....
15.7.3.1 NUMDET. PIOTOLYPE. ... evetitietietieteeteettett ettt ettt ettt ettt ea e es e st et eseeseenses e eseeneenten s et ensente s etenseseseneensensenee s
15.7.3. 2 NUmMDBET.MAX VALUE.. ...ttt ettt ettt et et e et e bt enbeeatesebeeeentaeesnnneas
15.7.3.3 Number.MIN_VALUE....
15.7.3.4 Number.NaN.........ccccevieniniinienieeeeeen
15.7.3.5 Number. NEGATIVE_INFINITY
15.7.3.6 Number.POSITIVE _INFINITYcccceovvevieieieenne.
15.7.4 Properties of the Number Prototype Object............
15.7.4.1 CONSLIUCLOT.....coruiiiiiiiiiieiie ettt
15.7.4.2 t0StrING().evevevenrereeeenereeieeeeeeeeeeieeene
15.7.4.3 valu@Of()..c.veuvereiiieiericicercceeeeee e
15.7.5 Properties of Number Instances..............................

I5.8 THE MATH OBJIECT . c.cciiiiiiiiiiiie e eeeeeeeeeet ettt ettt et eeeeeeeeeeeeesesssss s sssassaasseseeseeeeeeaeaaeseesesesasassaesesesesrnnnns

15.8.1.2 LN10....
IS8 1.3 LINZ .. e
IS8 1.4 LOG2E......oiiiiiiiee ettt s h e st
15.8.1.5 LOGI10E......
15.8.1.6 PL................
15.8.1.7 SQRT1 _2....
15.8. 1.8 SQRT2....omiiiceeeeeeeeeee
15.8.2 Function Properties of the Math Object.....
15.8.2.1 @DS(X)-rrvveereeeeereeeeenseeseeeeeseeeee s
15.8.2.2 acos(X)....cvenne
15.8.2.3 @SIN(X) . uveeeureeeurieaiiesteesteesteesseessteeasseessaeessaeesssaessseessseansseansseansseansaeensaeansseanseeasseeensaeensaeenseeanseeanseeanseenrnen

I5.8.2.4 QLAN(X).1eeeuveeeurieeteeeteeeiteesteestee sttt esateessteessaeesssaesseessseansseansaeessseensaeenseeanseeenseeenseeensaeensaennseeensnanaeeeeennnrraen
15.8.2.5 @LAN2(Y, X).euverrreruieuerteniterieeteetestteteesaesseesseessesssasseenseenseasaesseesseassesseenseenseensanseenseensessaenseensseeeansaeeeanseeenns
15.8.2.6 ceil(x)
15.8.2.7 cos(x)
15.8.2.8 exp(x)
15.8.2.9 f100T(X) .t euveureneeenteeuiesttesteetesetestteste et e sttesteesseeseesseenseessesatenseenseessenseenseenseeseeseenseensesseenseensesnsesanseeesnnseeenns
15.8.2.10 log(x)
15.8.2.11 max(x, y)
I5.8.2. 12 IMUII(X, J)--teuveuueneeueeeteatenteseeeteaseeeeeteatesee et eebeeee et e ebeeeeeeeebeesees e esees e eseeseeseeseeseemeeseeseeneeseeneeneeneenseneeneanneenbeens
15.8.2.13 pow(x, y)
15.8.2.14 random()........ccveennee.
15.8.2.15 round(x).....
15.8.2.16 sin(x).........
15.8.2.17 sqrt(x)........
I5.8.2. 18 BAN(X)- - euteuteuteneenteut et et et e e et et et et et e st e te b et et e b e e b e ke eb e eb e ek e e b e ebeeb e e R e e Rt eh e e R e bt eheeR e eheeReeseeneereeneenteebeeenbeens
15.9 DATE OBIECTS. c..cuiititiiiiiiiiiete ettt st sttt eh e s sa b s s s s
15.9.1 OVerview Of DAte OBJECLES..........ccceveieiiieesieee ettt ettt e e
15.9.1.1 TAME RANEE. .. .cuieieiieeiieieeie ettt te et et et e st e ste e teesteesae st eesbesssesseenseessesssensaenseassesssesseensenssesnsseesanseeenns
15.9.1.2 Day Number and Time within Day...
15.9.1.3 Year Number.........ccccocevevivenennencnne
15.9.1.4 Month Number
15.9.1.5 Date Number.............
15.9.1.6 Week Day......ccccoeeveeiienienenncne
15.9.1.7 Local Time Zone AQJUSTMENT...........ccuerierieiieeieeierieeteetesteesteeseeseeestaesseessessaesseessesssesssessesssesssessessnssseens
15.9.1.8 Daylight Saving Time AdJUSTMENL...........cotiiiiiiirieriete ettt ettt ettt et st b e s eeeebeeeeneeee
15.9.1.9 Local Time.......cccoeeieieieieiiieieieeieeeenes
15.9.1.10 Hours, Minutes, Second, and Milliseconds
15.9.1.11 MakeTime(hour, min, sec, ms)
15.9.1.12 MakeDay(year, month, date).......
15.9.1.13 MakeDate(day, time)................
15.9.1.14 TIMECP(LIME). c..veeutereietieieeteett et ettt sttt ettt et e bt et esat e bt e bt eabesb e e bt eabesseeabeenteembesbaesbeenbesnnesbeeesnbneas
15.9.2 The DAte COMSIFUCEOT..........c.oeeeeeeieeeieeeiee et e ettt et e ettt e e ase e eae e eseeatae e e e eaaseae s
15.9.2.1 new Date(year, month, date, hours, minutes, seconds)
15.9.2.2 new Date(year, month, date, hours, MINULES).........cuereerierrierieriieiieiieseeieeeeseesreeteeeesseeaeeseseeesseensesnnes
15.9.2.3 new Date(year, month, date, NOULS)..........coouiiiiriiiiiiienieteie ettt e e
15.9.2.4 new Date(year, month, day)........cccecvervverreecrernennenn
15.9.2.5 new Date(value)........ccceevuerieneeniiniinienieienieseeene
15.9.2.6 NEW DAte()..eveenvieieieieiieieeieeeie et ee e e es
15.9.3 Properties of the Date Constructor...
15.9.3.1 Date.prototype.......ccceevveeereeeereeereeennnnns
15.9.3.2 Date.parse()........
15.9.3.3 Date.UTC()...cvevereieieienieiereieieeeseeneenee
15.9.4 Properties of the Date Prototype Object
15.9.4.1 constructor.
15.9.4.2 toString().....
15.9.4.3 valueOf().....
15.9.4.4 GEETIIME(). e euveeueeeteteente ettt ettt ettt ettt ettt et et e bt e bt e et e s bt e sb e en b e es b e e bt e bt eabeeabesbeenbeentesateebeenbeenbeeneennbaeas
LR (o (. 1 (TSRS
15.9.4.6 getFullYear().............
15.9.4.7 getUTCFullYear()
15.9.4.8 getMonth().............
15.9.4.9 getUTCMonth().....
15.9.4.10 getDate()......ccceerveennenne
15.9.4. 11 GELUTICDALE()...cuveuveeetetertieteetesteeteet sttt ettt ettt ettt et b bbbt ea st s e es e st e st s e e st e st e st et e e et enteneeneeenee s
15.9.4. 12 GEEDIAY().cuvtenteentieiie ettt ettt ettt ettt et h e bttt et a e bt bt e et bt e bt e n bt eh b e e bt e bt et e ehte bt e b e eanenaeas
15.9.4.13 getUTCDay()...
15.9.4. 14 GETHOUIS(). e vvenveenteenieeite sttt et sttt ettt ettt ettt s bt e bt et e s bt e sb e et e eateeute s bt embeeabesbe e bt embeebeeesanbeeesabaeesanbeeas
15.9.4.15 GELUTCHOUIS(). veveenveereriretieiesitenteeteeteestesseesseesaesseessesssesssessaessesssessaesseansesssesssensenssesssensessesssensesssesnns
15.9.4.16 getMinutes()............
15.9.4.17 getUTCMinutes()....
15.9.4. 18 GEESECOMAS().-veuvveveentienieriteett ettt ettt et ettt st e bt e e e ht e s bt e bt eab e she e s bt e bt eabesbte bt e s teestesbeenbeemteeasenbeensbeeesnbaeas
15.9.4.19 GEtUTCSECONAS()..vveuvieurereresiieieeieetesiteteetesetesteesesssessaesseessesssesseesseassesssessesssesssessassesssesseesnssesssnsseenns
15.9.4.20 getMilliseconds()
15.9.4.21 EtUTCMILLISECONAS().-vrevverererrieierieerierieeieeeestesttetesstessaesseessessaesseesseessesseessesssesssessesssesssesseessssssnsseeens
15.9.4.22 getTImMEZONEOTTSEL(). .. eveeveeutieiietiettet ettt ettt ettt ettt h e bt et st e s bt e bt e besebesbeebeenbeseeenbeeneeas
15.9.4.23 setTime(time).............
15.9.4.24 setMilliseconds(ms)

15.9.4.25 SEtUTCMIIISECONAS(IMS). . eevvievririerieetieeiesieesteeteettesteeseessesseesseesseessesseesseessesssasssessesssesssesseessesssessssseens
15.9.4.26 SEtSECONAS(SEC [, TS])avreuveruierrieieeiietesttettetesitesteeteetesteeseesseesaesseenseeseesseenseensesnsessaenseenseesanseeesnsseeenn
15.9.4.27 SetUTCSECONAS(SEC [, TS |)ereuvrerrrreeireririesirienreenseesseesseessseessseessseessseessssessssessssassssessssesssssssssssesssssssns
15.9.4.28 setMinutes(Min [, SEC [, TS])eeverrrerrierieriieeierieesieeiesieeteetesttesteeteestesseesseensesssesseessesssesseessesnsesnsesssseens
15.9.4.29 setUTCMInutes(mMin [, SEC [, TS]|)eeeerreerrrreerrieeiriesitiesitiesiteesteesiseesseesseessseessseessseessseessseessssesssseeeensnses
15.9.4.30 setHours(hour [, min [, SEC [, TS J]])eeveerveeruereeriieiierieniieieeiestesieeeeeeesttesteenteseeesseessesssessseessnsneesnsseens
15.9.4.31 setUTCHours(hour [, min [, SEC [, S]]])eerveerrrrerieerreerieerieesieeseeesteeeseeeesseeesseessseesseeesesssssssneeessennes
15.9.4.32 SEDALE(AALE). .. c.veevierereietieieeteetteteeteette st e e bt etteseee bt esteestesseesseeaseeseesseenseenaesseenseenbeentenseenseenseenneseenbeens
15.9.4.33 SEtUTCDALE(AALE). ... eeeeveeiieeiieeiieeetieetieeteeeteeeteeeteessseessseessseessseesssaessseessseessseessseesssaesssesnsseensseennssnns
15.9.4.34 setMONth(IMON [, AALE |).evveerieieiieriieieeie ettt ettt sttt e te st et e te et e steesteenbeesaesseensesssesseeseensesnseessseeenn
15.9.4.35 setUTCMONth(MON [, AALE])uvveeruireiiieiiieeiiieeitieeciieectteeteesteesteesteesbeessaeessaeessseessseessseensseennsssaeeeennsnns
15.9.4.36 setFullYear(year [, Mmon [, date]]).veecveeiereeriieienieieeiie sttt sttt et ete et e st eaesseesteenteenaeeensaeesnnneeas
15.9.4.37 setUTCFullYear(year [, mon [, date]])e..eeeeerieieieieieieieieeeeeeeei e e e
15.9.4.38 SCLY CAT(YCAT)....eeuveeueeeureieeieetiestteteeteeetesteesteentesseesseenseesaesseenseesseestanseenseensesseenseensesssenseenseensesnseeesansaeanns
15.9.5 Properties Of DAte INSLANCES...............c..c..ccccieveeeueiieesieeeesieeieete ettt easeesibeeenee s

16 ERRORS

17 REFERENCES

APPENDIX A: OPEN ISSUES

A.1 STRING NUMERIC LITERALS.....ccuttiiititeerrieeeititeeiteeesteeesseeesssseeessseeesssesesssseesssssessssesesssssesessssssssssssseseens
A2 ARGUMENT ...ttt ettt e et e e et e e e et e e e eatee e eeaeeeeeaeeeeeseeeeeaaeeeeteeeeesseseesseeeeaeeeeesaeseenseeeeaeaeeean
A.3 VAR STATEMENTS AND EVAL....cciiiiiiiiiiiiii ettt e e et e et e e eatae e e eataaareaaaaeeaaanns
A.4 USING ARRAY METHODS ON NON=ARRAYS......cceiitiieirieeeiurieesrreesreeeasreeesseeessseessssssessssessssssssssssssssssesaens
A.5 REVERSE OF NONEXISTENT PROPERTIES........cceiiiiettieeeeieitueeeeeeeiitteeeeeeassssesseeeaassesseeesassssssssssessssssssssssssnnes

APPENDIX B: PROPOSED EXTENSIONS

B.1 THE CLASS STATEMENTouititiititiiietetet oottt ettt et ettt es e es st et st et et es et ees et ess et essesesseneseaneens
B.2 THE TRY AND THROW STATEMENTSoiuiitiiitieiiiiicteeee ettt enseneensenaeeneensennas

B.2.1 TRE 1Y SIALEIMEAL ...t

B.2.2 THe TRIOW SEAIMERL ..o ettt ettt ettt et ettt eee e
B.3 THE DATE TYPE ..ottt ettt ettt ettt et et ete e e e et e et eea et e s et et e st es s enteaseneeneseeeteetesaeesenesenesens

B3l TODGLE ... e ettt ettt ettt

B.3.2 ToDate Applied 10 the String TYPe.........c.cccueoeiiiiieee ettt
B4 IMPLICIT THIS ...ttt ettt ettt ettt e et s et et e s st et e st esestes et ens s et st es s s esseneasaneens
B.5 THE SWItCh STATEMENT ! 2.... ..ottt ettt ettt ettt ettt ens s ene s ene s e eneensenseeneensennas
B.6 CONVERSION FUNCTIONS. ... cueiiitieieeiee ettt et e et et e ettt e e e e et e e eeae e e eeaaeeeeaaeeeenteeeeeaaeeeeneeeeereesaaeaeann
B.7 ASSIGNMENT-ONLY OPERATOR (:=) L.iiiieiiiiiieiiieriie it eieesteeiteeaeeiee e eteesnteesaeesnaeentaesnsessnsnnaessnnsnens
B.8 SEALING OF AN OBJECT2......0eeeeettieitteeeiteeestteesetteesstseaessseeessseassssassssesssssssesssssessssessssssessssssssssssesssssssnns
B.9 THE ARGUMENTS KEYWORD........cotuiuiieieeeeee ettt ettt n e et e e e
B.10 PREPROCESSOR.......utiiiittiieitieeetteeeetteeeeteeeateseetsesaeasaeeaasesaasseeeessseesssesaasssesassseesssesasssseeasseeensssessaaeaaaans
B.11 THE DO..WHILE STATEMENT0ccoitiittiitieiteeeteesreesseeaseesteseseessessseassesssseesssssssesssssssessssssesssssssessssens
B.12 BINARY OBJIECT.....cciiuiieetieeeeteee e eetee e et e e et e e ettt e e eeaeeeeeaaeeeeateeeeeseeeeesaeeeeaaeseeeseeeeesseeeeeeessaeeeeaaeaeeaaanns
B.13 LABELS WITH BREAK AND CONTINUE.......cc00tiiiutiiiiurieeeteeeeitreeeitreeesseeeesseeessseeesssesessssessssnnsssssssaeseesnans

APPENDIX C: PEOPLE CONTACTS

APPENDIX D: RESOLUTION HISTORY

DT JANUARY 15, 1907 ..ottt ettt e e e ettt e e e e e b e e e e eeetaabeeeeeeetaseeeeeeeessassssnsstsnnnnn
D L1 WRIEE SPACE.......c.eooeeieeeeie ettt ettt ettt e et e st e et e e s tbeesb e e seeesbeessaeesbeestaeesseestseanseenseas
D 1.2 K@YWOFAS.....cuceiiiiiiisiieeieeeee ettt ettt ettt b bbbttt
D. 1.3 Future ReSErved WOFCS...............ccccoevieiuiiiiiiiiiiiiiitiieet ettt
D.1.4 Octal And Hex ESCAPe SeGUENCE ISSUC...............cooereivieiiiiieiiiiiteieiet ettt
D. 1.5 TOPFIMILIVE. ...ttt et ettt sttt
D.1.6 Hex i1 TONUIMDEEccooeieiiiiieiieeeeee ettt ettt ettt ettt et e s eneeseeneeennees
D.1.7 Attributes of Declared Functions and Built-in OBJects................ccccvoeiieoeiiiaiiiieeiieeee e
D.1.8 The GrOUPING OPEFALOF...........cccoiiiiaieiiiriieieeeee ettt ettt ettt ettt nae i
D.1.9 Prefix Increment and Decrement OPEFALOFS..............ccccouereereereareniieeaieee sttt
DL 1O URGEY PIUS..c..c.cocoeiiitee ettt ettt ettt ettt et et
D. 1. 11 MUItIDIICAEIVE OPEFALOFS.........cccuveeieeeieeeiieeieeeie st eeite et e tteeaeestee s beesaeestseassaessseessseeeannsseeeenssseaeeas
D112 AQATEIVE OPEFALOFS..........c.eceeeieiiii ettt ettt ettt ettt eae e

D113 Left SRIft OPEIALOT..........ccoocvieiieiieieeieeieeee ettt ettt ete e e et sbeetsetseennvees
D.1.14 Binary BitwiS@ OPEFALOYS...............ccccciiiiiiuiiiiiiiiiiiiii ettt e
D.1.15 Conditional OPeratOr (2 :).c.eecueeeeeeie ettt ettt ettt ettt et e seseetaessseeeeensbaeaeennreaeens
D.1.16 Simple ASSIGRIENL.............ccccciiimirinieiieieeteee ettt ettt ettt ettt e nre i
D.1.17 TRE fOF..iT SIQLEMENL.............coocveeeveeiieniiciieee ettt ettt ettt b et e et eae e ereenseeaaenseeennees
D.1.18 The FEUFN SIAIEMENL..............ccueeeieiei ettt ettt ettt ettt e e te e eaeenae e
D.1.19 New PropoSed EXIERSIONS................cccovecueieiieeiieeieeieeie ettt et eese et sse s sre et sreese e sestsesse e
DL2 JANUARY 24, 1907 ... oottt ettt e e e e et e e e e e e taa e e e e eeeataseeeeeesssseeeeeeeessassssnsssnnnnnn
D. 2.1 ENA Of SOUFC........ooieieieeee ettt et ettt ettt e e e
D.2.2 FUtUPe RESEIVEA WOTS.cc.oooviieeeeiee ettt ettt eiveae s
D.2.3 WRIEE SPACE..........ooceeeeeeeeie ettt ettt ettt e bt esta e et e e s tbeess e et e eabeessaeesbeessaeanseestseenseensees
D.2.4 COMMENLS.........c..ooeoeveeeeiei ettt ettt e et e e et e ettt e et e e e aaa e e et e e ets b e e e e e e e e e esnassseeaeens
D). 2.5 TACHEIIfIOFS. ..ot ettt ettt ettt ettt ettt n et et e e enneas
D.2.6 NUMEFIC LILETALS..............occooeceeeeeee ettt ettt et e e e eaaae s
D.2.7 SIFING LIEFAIS. ..ottt ettt
D.2.8 Automatic SemiCOlON INSEFLION.cccoeevuiieeeeeeeiiieeeee ettt
D.2.9 PrOPEFLY ATFIDULES. ..ottt ettt e e s
D.2. 10 TOPFIMIILIVE. ..ottt ettt e et e e st e e et e e e ab e e et eeeeibe e e e e e e enssssseeeens
D211 TONUIMDET ..ottt ettt et ettt et ettt e e teenntee e

D.2.17 Prefix Increment and Decrement OPEFrALOFS................cccocuuvereirereeiaiiee sttt
D.2.18 MUltiDliCAtIVe OPEFALOFS..........c..c.oceveiiieiiiiiii ettt ettt ettt

D.2.20 The SubIraCtion OPEFALOT............cc.coueiuiiisiiieiieiieieiet sttt ettt ettt et
D.2.21 Applying the Additive Operators (F, =)........ccooiieiiiieieeet et
D.2.22 EGQUALIEY OPEFALOTS. ..ottt ettt ettt ettt b ettt
D.2.23 TOPFIMIEIVE USAGE.........ocueeeeieeee ettt ettt ettt ettt e e et e e e
D.2.24 Binary LOZICAl OPEFATOTS..........c.cooueiuiriiiiiieiiiiieiet ettt ettt
DL3 JANUARY 31, 1907 ettt e ettt e e e e ae e e e e st aa e e e s semaaeeeeeessaeeeeesesnntesssenenssnnnnn
D.3. 1 MUltILINE@COMMIEIL ..ottt ettt ettt ettt et e et nee e
D.3.2 SHPING LIE QLS. ..ottt ettt ettt
D.3.3 Automatic SemiCOlON INSEFTION.ccccuiciiiiiiiiiiee sttt
D.3.4 The NUIMBEE TYPC......c.ooeeiiaeeieee ettt ettt ettt ettt et ettt eneeaeeneeennees
D.3.5 Put With EXpLiCit ACCESS MOGE................c..ccoocuiiciiiiiaiieiieieeieee ettt
D.3.6 Put with Implicit ACCESS MOGE...................coociiieiiiieii et
D.3.7 THE SEFITG LYDC..oov ettt ettt et se ettt e sttt sbeets e b e ets e b e etseseensbeeenneas
D.3.8 TONUMDEF ...ttt ettt a e et ee et ee ettt e et e e nnteeanneenn
D.3.9 ToNumber Applied t0 the String TYPe............cccoovevueiieieeiieieeeeieee ettt
Y T L oY (S SRS
D .3 TT TOUIMESZ ..ottt ettt ettt
D.3.12 Execution CONtEXts (VAVIADIES)..............c..cccuevueecueiiiiiiieeieeieeeee ettt evrea e ivsae s
D.3.13 FURCHON CALLS.......c.ooiiiiiiiiiiieeeeeee ettt ettt ettt an
D.3.14 THE 1YDEOS OPEFALOT......c..oeueeieeeieeeeee ettt ettt ettt ettt ene e e s e e
D.3.15 APPIVING tRE %6 OPEFALOF ...ttt etse e e
D.3.16 The Addition OPeraror (F)......cceue ettt ettt e e e
D.3.17 RelQtioNal OPEFALOFS.c.cccoevueeeeieiaiesiieieeeie ettt ettt eae et sse et et aesseesbeetaeesveesaseeeneeas
D.3.18 Conditional OPeratOr ((2:).......ccouueeiiee ettt ettt
D.3.19 Compound ASSIGRIMERE (OD=).....cc.eoovivuiiieieiieeie ettt ettt ettt be s beeeabeeeenneas
D4 FEBRUARY 21, 1907 .ottt e et e e e e e e e et e et e e e e e eeeeeeeeeeeesessssssnanaeeeens
D.4.1 Unicode ESCAPE SEQUENCES............cccoeeeeaieeeiiieieeeiie ettt et esteeeteestte e veeaee e eseessseasaeenseeteesnsaeens
D.4.2 Future ReSEIVEd WOFAS.c.cccoioueiiieeie ettt ettt et aee e enee e s
D.4.3 Automatic SemicolONn INSEFTION.cccociiviiiiiiiiieeee ettt
D 4.4 The NUIMBEE TYPE.........ccceeieaeieee ettt ettt et ae ettt ettt et e st et eeneeteeneeenneas
D.4.5 NotImplicit and NotExplicit Property Attributes Deleted.......................cccccovevviviiiniiiiiiineniiiennnnnn
D.4.6 ToInt32 and TOUIRE32..........cocooueiiieieeie ettt ettt ettt e e neeeeneeeennee s

D 4.8 SHIft EXDFESSIONS.c.oooveeeveeieeieeeieeee ettt ettt ettt et s et ae e eae s e ebeesseebeesseeseesseesaesseenneas
D.4.9 Conversion Rules for Relational OPErators..................cccoeeueciioiciioiiiiiiiiiiiitiieesie st
D410 && AR || SEIUARLICS..........ccovoviiiieiieieieeeie ettt ettt b e eae e ere e envees
D.4. 11 CONAItIONAL OPEFAIOT ..ottt sttt
D.4. 12 ASSTGNINEIE OPEFALOFS.........ccueeeeeesieeeieeeiieeeieesiee st e teeeateestaeasseeteessbeeseessbeaseesaseessaeeeennsseeeennnseeenns
D.4.13 Syntax of Class SIAIEMENL................ccccoeueruiiiiriiiiiiiitet ettt ettt
D.4.14 Syntax of Try SEALEMENL...............c.cccoeeueeieeeiieeieeieeieeie ettt sse et sbe e e tveesnseeeaee s
D.S FEBRUARY 27, 1997 ..ottt ettt e e ettt e e e ettt e e e e e taa e e e e eetaaeaeeeenaaseeeeeennnsnnnnen
D.5.1 GPAMMAT NOFQLION. ...ttt ettt ettt ettt nae et
D.5.2 End of Medium Character Is No Longer WRIteSpacCe................cccccoeveoirincciiiiiiiiisiee e
D.5.3 Meaning of NUll Literal................ccccoooiiiiiiiiii ittt
D.5.4 Meaning of BOOIEAN LItEFaIs..................ccccociiiiiiininiiiniieiiieeeeet ettt
D.5.5 Meaning of NUMETIC LItEFALS.............cc.cccovoiioiiiiiieee ettt
D.5.6 Automatic SemiCOlON INSEFTION.cccccueviiiiiieiieie ettt ettt e
D.5.7 The NUMDBEE TYPC........ccceeiiieeieeeeieeeee ettt ettt ettt ettt ettt ene e eneeennees
D.5.8 TOSIFING ON INUMBETS. ...ttt ettt et
D.5.9 NEW OPCFALOToeeueeeiieeeeei ettt este ettt e et e e teeesae e taesabeeseessbeassaesabeesaessseeeennssseeeensssaeens
D.5.10 Delete OPEFALOT..........cccoueiuiiiiiieieieeee ettt ettt ettt ettt sttt ettt
YT B Y = 2 1 X U PS
D.5.12 && ANA || SEMANLICS. ...ttt
D.5.13 Separate Productions for Continue, Break, REtUFN.................ccccueveiciiviniiiiiiee e
D.5.14 Dead Code Is Not Protected from Compile-Time ANQIYSIS............ccccccoecieciioioiiiiiiiiiiienieneenieens
DO MARCH 6, 1907 ... ettt ettt e et e e ettt e e e setaae e e e s s eaaaeeeeseanaaaeeesessatseeeessenssssnssnnnnn
D.6.1 Reformatted the ENtire DOCUIMENL..................c.occvecueeieiieaieieieeeie e eee st ste e eseenbeeesveesaseesneees
D.6.2 Designed a Section Outline for CRAPIEr 11..............ccccoooiioiioiiiiiieiiee et
D.6.3 Defined Math FUNCLIONS.cccooeieeiiieiesieeeeeieeieeie ettt se st esessaesbeesseebaeesaeesnseeeneeas
D7 MARCH 10, 1997 .ttt h ettt ettt b et b ettt se e st e e e
D.7.1 Added Definition of OThe Number Value for XO................cocowowovoeoeeeeeeeeoeeeeeeeeeeeeeeeeeeeeeeeenn
D.7.2 atan and atan2 May Use Implementation-Dependent Values for Jt, €1C............c.ccocevevircncccecnnnn.
D.7.3 Improved Discussion of Input Stream for Syntactic GFammar..................c.ccoccoceveeerereeceieeanennns
D.7.4 Improved Treatment of LineTerminator in Lexical Grammar.................ccccocceeceaoenciaoeneeneneeeee.
D.7.5 Clarify Behavior of Unicode ESCAPE SEQUENCES...............ccccccivciriiriiiiiniiniiniiieiiieeieeet e
D.7.6 Add Careful Description of the String Value of a String Literal...................cccoccoovivvvviiinnininannnn.
D.7.7 Description of Identifiers REWOFAEd....................cccccroiriiiririiiiiiieeeetetetst ettt
D.7.8 Table of PUNCIUGLIOFS COFFECLEA................ccoiieeiiiieii ittt
D.7.9 Improved Descriptions of ToInt32 and TOUIRI32............ccccooeeiriioiciiiiiiiieiitite e
D.7.10 Changes to ToString Applied to the NUMDEF TYPe...........ccccoooeeviiiiiiiiieiieeeeeeeeee e
D.7.11 Revised Syntax for NewExpression and MemberEXPreSSiOn.ccccccucvcvciioiniiniinienienienennns
D.7.12 Clarify Multiplicative and Additive Operators.................ccceveiieeiaieiiiaieiieeet e
D.7.13 Addition Operator No Longer Gives Hint NUMDEFcccccccoeoiioiiiiioiiiiaiiiiinineesiesie e
D.7.14 Correct Description of Relational OPeFatOFS...............cccccvcueieiieiiaienieeei et
D.7.15 Assignment Operator LHS Must Be POSUfIXEXPFESSION...........ccccccoveriioiiieiiiiieintneecee e
D.7.16 Changes t0 FOr-i LOOPS.c.ccccooeiiiiiiie ettt ettt enee s
D.7.17 Break and Continue Must Occur within While or FOr LOOP............cc.ccocoeinineiiiiiiieciiienieen
DB IMARCH 12, 1997 ...ttt e e et e e e s ettt et e e s e eaaaeeeessesaaeeessesstaeeeessenssssssnnnnnn
D.8.1 Added OVverview CRAPIET..............c..ccoccueeieieeieieeii ettt ettt se et sse s e eseenseeseeennees
D.8.2 More Exposition about INternal PYOPEFLIES..............cccowiioeiiieeieeeseee st
D.8.3 DAL OBJECL..........cooooeeeieiieieeie ettt ettt b ettt et bt naneas
D.8.4 Array, String, Boolean, NUMBEr OBJECLS.............c..ccoocueiiiieeiiieee ettt
D.8.5 MAER ODBJECL............ocueeeeeiieeeeeee ettt ettt et et b e s be et b et b e et enae s
DO MARCH 24, 1997 ...ttt ettt b bbbttt et b et bbbt st et ennes
D.9.1 NUMEFIC LIt@FQAIS..........oeoiiiiiiiiiee ettt ettt
D.9.2 String NUMEFIC LIt@ralS...........cccoovuiiiiiiiiiiiiiiiiit ittt
D.9.3 Prefix and Postfix Increment and Decrement OPerators.........ccveerueeecveerieerieenienieereeenreeeesvreeesennveens
D.9.4 Left-Hand-Side EXPIrESSIONS.ccueeuieriirierieiierieitesiestesteeetestesssesseessesseessesseessesssessesssessesssessessssessssees
LD R B 2] 153 (e300 PSSP
D.9.6 INFINILIES AN ZETOS.......eiviiiiiieiiieieieeetet ettt ettt ettt et sttt st sae e saee e nae
D.9.7 Miscellaneous Small COITECTIONS..........c.evueerriiruiierieetirteterteterteeeneeeesree st euee et sesessese s s esnennesaeennes
D10 MARCH 27, 1997 .ttt sttt b bbbttt b et b et bt beeseentenees
D.10.1 Corrections to [[CanPut]] and [[HASPYOPETtY]]........cccoeveeioiaiieiiieiieeeesiee et

D.10.5 Last fraction digit from ToString applied t0 @ RUMBET...................ccccccceeviniiiiiiiniiniiniiniicn,
D.10.6 Multi-line comment containing line terminator treated as line terminator....................c..ccoco.u...
D.10.7 Automatic semicolon insertion at end Of SOUTCE..............c.cccuecueiiaciesiaieiiee e
D.10.8 Added proposed extension for labelled break and cOntinue.....................ccccoccvvvievreieinseieeneennne..
D.10.9 Lowercase OeO for scientific notation in ToString of a number.......................cccccoeveeeeeeeeeeeeeennn..
D.10.10 Evaluation Of Qr@UmeENnt LISLS................cc.couevueiieieesiieieeeiieeeeie e eie s ste s etseseessesseesenens
D.10.11 For ToPrimitive of native objects, no hint is same as hint Number.................cccccccccvevveeaeeeannnn..
D.10.12 Major overhaul of equality and relational OPErators...............c.ccccevveceeeeeceeeiiaceeieiieeeeveeeenns
D013 STFIIG PPt e e
IO N 2 TR L PSR
D.11.1 Added mathematical operators to NOIALION SECHION.cccoceririririirireneeieeeeeeee e
D.11.2 AdAed OVErVIEW 1EXL...........cceeiieeii ettt ettt ettt

DLI2 APRIL 14, 1907 ... ettt e e e ettt e e e e et et e e e eeataa e e e e eentareeeeeeeaareeeeeeetrereeeenns
D 12,1 LOLS Of COFFOCLIOMNS........coneieee ettt ettt ettt ettt ettt ettt e bt ene e e e e anteeeneean
D.12.2 REWOFKCA DALE LYPE........c..oceeeeieeeeiieeee ettt ese et ebe et sae e eentaeenanees

APPENDIX E: LALR(1) SYNTACTIC GRAMMAR

1SCOPE

2CONFORMANCE

3NORMATIVE REFERENCES

40OVERVIEW

EMCAScript is an object-oriented programming language for performing computations and
manipulating computational objects within a host environment. ECMAScript as defined here is not
intended to be computationally self-sufficient; indeed, there are no provisions in this specification for
input of external data or output of computed results. Instead, it is expected that the computational
environment of an ECMAScript program will provide not only the objects and other facilities described
in this specification but also certain environment-specific sost objects, whose description and behavior
are beyond the scope of this specification except to indicate that they may provide certain properties
that can be accessed and certain functions that can be called from an ECMAScript program.

A scripting language is a programming language that is used to manipulate, customize, and automate
the facilities of an existing system. In such systems, useful functionality is already available through a
user interface, and the scripting language is a mechanism for exposing that functionality to program
control. In this way, the existing system is said to provide a host environment of objects and facilities
which completes the capabilities of the scripting language. A scripting language is intended for use by
both professional and non-professional programmers, and therefore there may be a number of
informalities and built into the language.

ECMAScript was originally designed to be a Web scripting language, providing a mechanism to
enliven Web pages in browsers and to perform server computation as part of a Web-based client-server
architecture. ECMAScript can provide core scripting capabilities for a variety of host environments,
and therefore the core scripting language is specified in this document apart from any particular host
environment.

4.1WEB SCRIPTING

A web browser provides an ECMAScript host environment for client-side computation including, for
instance, objects that represent windows, menus, pop-ups, dialog boxes, text areas, anchors, frames,
history, cookies, and input/output. Further, the host environment provides a means to attach scripting
code to events such as change of focus, page and image loading, unloading, error, and abort, selection,
form submission, and mouse actions. Scripting code appears within the HTML and the displayed page
is a combination of user interface elements and fixed and computed text and images. The scripting code
is reactive to user interaction and there is no need for a main program.

A web server provides a different host environment for server-side computation including objects
representing requests, clients, and files, and mechanisms to lock and share data. By using browser-side
and server side scripting together it is possible to distribute computation between the client and server
while providing a customized user interface for a Web-based application.

Each Web browser and server that supports ECMAScript supplies its own host environment,
completing the ECMAScript execution environment.

4.2 ANGUAGE OVERVIEW

The following is an informal overview of ECMAScriptNnot all parts of the language are described.
This overview is not part of the standard proper.

ECMAScript is object-based: basic language and host facilities are provided by objects, and an
ECMAScript program is a cluster of communicating objects. An ECMAScript object is an unordered
collection of properties each with 0 or more attributes which determine how each property can be
usedNfor example, when the ReadOnly attribute for a property is set to true, the property may be only
read. Properties are containers that hold other objects, primitive values, or methods. A primitive value
is a member of one of the following built-in types: Undefined, Null, Boolean, Number, and String; an
object is a member of the remaining built-in type Object; and a method is a function associated with an
object via a property.

ECMAScript defines a collection of native objects which round out the definition of ECMAScript
entities. These native objects are the Global object, the Object object, the Function object, the Array
object, the String object, the Boolean object, the Number object, the Math object, and the Date
object.

ECMAScript also defines a set of built-in operators which may not be, strictly speaking, functions or
methods. ECMAScript operators include various unary operations, multiplicative operators, additive
operators, bitwise shift operators, relational operators, equality operators, binary bitwise operators,
binary logical operators, assignment operators, and the comma operator.

ECMAScript syntax intentionally resembles Java syntax. ECMAScript syntax is relaxed to enable it to
serve as an easy-to-use scripting language. For example, a variable is not required to have its type
declared nor are types associated with properties, and if the host environment permits, functions are not
required to be defined before they are used

4.2.10bjects

ECMAScript does not contain proper classes such as those in C++, Smalltalk, or Java, but rather,
supports constructors which create objects by executing code that allocates storage for the objects and
initializes all or part of them by assigning initial values to their properties. All functions including
constructors are objects, but not all objects are constructors. Each constructor has a Prototype property
which is used to implement prototype-based inheritance and shared properties. Objects are created by
using constructors in new expressions, for example, new String(OA String0) creates a new
string object. Invoking a constructor without using new has consequences that depend on the
constructor. For example, String(OA String0) produces a primitive string, not an object.

ECMAScript supports prototype-based inheritance. Every constructor has an associated prototype, and
every object created by that constructor has an implicit reference to the prototype (called the objectOs
prototype) associated with its constructor. Furthermore, aprototype may have a non-null implicit
reference to its prototype, and so on; this is called the profotype chain. When a reference is made to a
property in an object, that reference is to the property of that name in the first object in the prototype
chain that contains a property of that name. In other words, first the object mentioned directly is
examined for such a property; if that object contains the named property, that is the property to which
the reference refers; if that object does not contain the named property, the prototype for that object is
examined next; and so on.

In a class-based object-oriented language, in general, state is carried by instances, methods are carried
by classes, and inheritance is only of structure and behavior. In ECMAScript, the state and methods are
carried by objects, and structure, behavior, and state are all inherited.

All objects that do not directly contain a particular property that their prototype contains share that
property and its value. The following diagram may illustrate this discussion:

CF A implicit prototype link
prototype . Ltp o
Pl CFP1
P2

..

1 2 3
ql ql ql ql ql
q2 q2 q2 q2 a2

CF is a constructor (and also an object). Five objects have been created by using new expressions: cfy,
cf, cfs, cfy, and cfs.Each of these objects contains properties named g1 and gq2. The dashed lines

represent the implicit prototype relationship; so, for example, ¢f;Os prototype is CF,. The constructor,
CF, has two properties itself, named P1 and P2, which are not visible to CF,, ¢fy, cfy, cfs, cfs, or cfs.
The property named CFP1 in CF, is shared by: cfj, cf,, cfs, cfy, and cfs, as are any properties found in
CF,Os implicit prototype chain which are not named g1, g2, or CFP1. Notice that there is no implicit
prototype link between CF, and CF.

Unlike class-based object languages, properties can be added to objects on the fly simply by assigning
values to them. That is, constructors are not required to name or assign values to all or any of its
properties. In the above diagram, one could add a new shared property for cf;, cf;, cfs, cfy, and cfsby
assigning a new value to the property in CF,,

4 .3DEFINITIONS

The following are informal definitions of key terms associated with ECMAScript.

4.3.1Type

A type is a set of data values. In general, the correct functioning of a program is not affected if
different data values of the same type are substituted for others.

4.3.2Primitive Value

A primitive value is a member of one of the types Undefined, Null, Boolean, Number, or String. A
primitive value is a data object which is represented directly at the lowest level of the language
implementation.

4.3.30bject

An object is a member of the type Object. It is an unordered collection of properties which contain
primitive values, objects, or functions. A function stored in the property of an object is called a method.
4.3.4Constructor

A constructor is a function object which creates and initializes objects. Each constructor has an
associated prototype object which is used to implement inheritance and shared properties.
4.3.5Prototype

A prototype is an object used to implement structure, state, and behavior inheritance in ECMAScript.
When a constructor creates an object, that object implicitly references the constructorOs associated
prototype for the purpose of resolving property references. The constructorOs associated prototype can
be referenced by the program expression constructor.prototype, and properties added to an
objectOs prototype are shared, through inheritance, by all objects sharing the prototype.

4.3.6Native Object

A native object is any object supplied by an ECMAScript implementation independent of the host
environment. Standard native objects are defined in this specification, and the ECMAScript
implementation may specify and define others.

4.3.7Host Object

A host object is any object supplied by the host environment to complete the execution environment of
ECMAScript.

4.3.8Undefined

Undefined is a primitive value used when a variable has not been assigned a value.

4.3.9Undefined Type
The type Undefined has exactly one value, called Undefined.

4.3.10Null

Null is a primitive value that represents the null, empty, or nonexistent reference.

4.3.11Null Type
The type Null has exactly one value, called Null.

4.3.12Boolean Value

A boolean value is a member of the type Boolean and is one of either two unique values, true and
false.

4.3.13Boolean Type

The type Boolean represents a logical entity and consists of exactly two unique values. One is called
true and the other is called false.

4.3.14Boolean Object

A Boolean object is a member of the type Object and is an instance of the Boolean object which is a
constructor. That is, a boolean object is created by using the Boolean constructor in a new expression,
supplying a boolean as an argument. The resulting object has an implicit (unnamed) property which is
the boolean. A boolean object can be coerced to a boolean value. A boolean object can be used
anywhere a boolean value is expected.

This is an example of one of the conveniences built into ECMAScriptNin this case it is to
accommodate programmers of varying backgrounds. Those familiar with imperative or procedural
programming languages may find number values more natural, while those familiar with object-
oriented languages may find number objects more intuitive.

4.3.15String Value

A string value is a member of the type String and is the set of all finite ordered sequences of zero or
more unicode characters.

4.3.16String Type

The type String is the set of all finite ordered sequences of zero or more unicode characters.

4.3.17String Object

A string object is a member of the type Object and is an instance of the String object which is a
constructor. That is, a string object is created by using the String constructor in a new expression,
supplying a string as an argument. The resulting object has an implicit (unnamed) property which is the
string. A string object can be coerced to a string value. A string object can be used anywhere a string
value is expected.

4.3.18Number Value

A number value a member of the type Number and is a direct representation of a number.

4.3.19Number Type

The type Number is a set of values representing numbers. In ECMAScript the set of values represent
the double-precision 64-bit format IEEE 754 value along with a special ONot-a-NumberO (NaN) value,
positive infinity, and negative infinity.

4.3.20Number Object

A number object is a member of the type Object and is an instance of the Number object which is a
constructor. That is, a number object is created by using the Number constructor in a new expression,
supplying a number as an argument. The resulting object has an implicit (unnamed) property which is
the number. A number object can be coerced to a number value. A number object can be used anywhere

a number value is expected. Note that a number object can have shared properties by adding them to the
Number prototype.

4.3.21Infinity

The primitive value Infinity represents the positive infinite number value.

4.3.22NaN
The primitive value NaN represents the set of IEEE Standard ONot-a-NumberO values.

4 4DEFINITIONS

object

primitive value

number value

Number object (and a Number object versus the Number object)
Number type

string value

String object (and a String object versus the String object)
String type

boolean value

Boolean object (and a Boolean object versus the Boolean object)
Boolean type

null

Null type

type

undefined

undefined type

infinity

NaN

prototype

constructor

host object

native object

built-in object

SNOTATIONAL CONVENTIONS

5.1SYNTACTIC AND LEXICAL GRAMMARS

This section describes the context-free grammars used in this specification to define the lexical and
syntactic structure of an ECMAScript program.

5.1.1Context-Free Grammars

A context-free grammar consists of a number of productions. Each production has an abstract symbol
called a nonterminal as its left-hand side, and a sequence of one or more nonterminal and terminal
symbols as its right-hand side. For each grammar, the terminal symbols are drawn from a specified
alphabet.

Starting from a sentence consisting of a single distinguished nonterminal, called the goal symbol, a
given context-free grammar specifies a language, namely, the (perhaps infinite) set of possible
sequences of terminal symbols that can result from repeatedly replacing any nonterminal in the
sequence with a right-hand side of a production for which the nonterminal is the left-hand side.

5.1.2The Lexical Grammar

A lexical grammar for ECMAScript is given in Chapter 3. This grammar has as its terminal symbols
the characters of the Unicode character set. It defines a set of productions, starting from the goal
symbol /nput, that describe how sequences of Unicode characters are translated into a sequence of input
elements.

Input elements other than white space and comments form the terminal symbols for the syntactic
grammar for ECMAScript and are called ECMAScript tokens. These tokens are the reserved words,
identifiers, literals, and punctuators of the ECMAScript language. Moreover, line terminators, although
not considered to be tokens, also become part of the stream of input elements and guide the process of
automatic semicolon insertion. Simple white space and single-line comments are simply discarded and
do not appear in the stream of input elements for the syntactic grammar. A multi-line comment is
likewise simply discarded if it contains no line terminator; but if a multi-line comment contains one or
more line terminators, then it is replaced by a single line terminator, which becomes part of the stream
of input elements for the syntactic grammar.

Productions of the lexical grammar are distinguished by having two colons Oz : O as separating
punctuation.

5.1.3The Numeric String Grammar

A second grammar is used for translating strings into numeric values. This grammar is similar to the
part of the lexical grammar having to do with numeric literals and has as its terminal symbols the
characters of the Unicode character set. This grammar appears in Chapter 5.

Productions of the numeric string grammar are distinguished by having three colons O : : O as
punctuation.

5.1.4The Syntactic Grammar

The syntactic grammar for ECMAScript is given in Chapters 7, 8, 9, and 10. This grammar has
ECMAScript tokens defined by the lexical grammar as its terminal symbols (see section 5.1.2). It
defines a set of productions, starting from the goal symbol Program, that describe how sequences of
tokens can form syntactically correct ECMAScript programs.

When a stream of Unicode characters is to be parsed as an ECMAScript program, it is first converted to
a stream of input elements by repeated application of the lexical grammar; this stream of input elements

is then parsed by a single application of the syntax grammarThe program is syntactically in error if the
tokens in the stream of input elements cannot be parsed as a single instance of the goal nonterminal
program, with no tokens left over.

Productions of the syntactic grammar are distinguished by having just one colon O : O as punctuation.

The syntactic grammar as presented in Chapters 7, 8, 9, and 10 is actually not a complete account of
which token sequences are accepted as correct ECMAScript programs. Certain additional token
sequences are also accepted, namely, those that would be described by the grammar if only semicolons
were added to the sequence in certain places (such as before end-of-line characters). Furthermore,
certain token sequences that are described by the grammar are not considered acceptable if an end-of-
line character appears in certain OawkwardO places.

A LALR(1) version of the syntactic grammar is presented in Appendix E. This version provides an
exact account of which token sequences are acceptable ECMAScript programs without needing special
rules about automatically adding semicolons or forbidding end-of-line characters. However, it is much
more complex than the grammar presented in Chapters 7, 8, 9, and 10.

5.1.5Grammar Notation

Terminal symbols of the lexical and string grammars, and some of the terminal symbols of the syntactic
grammar, are shown in £ixed width font, both in the productions of the grammars and throughout
this specification whenever the text directly refers to such a terminal symbol. These are to appear in a
program exactly as written.

Nonterminal symbols are shown in italic type. The definition of a nonterminal is introduced by the
name of the nonterminal being defined followed by one or more colons. (The number of colons
indicates to which grammar the production belongs.) One or more alternative right-hand sides for the
nonterminal then follow on succeeding lines. For example, the syntactic definition:

WithStatement :
with (Expression) Statement

states that the nonterminal WithStatement represents the token with, followed by a left parenthesis
token, followed by an Expression, followed by a right parenthesis token, followed by a Statement. The
occurrences of Expression and Statement are themselves nonterminals. As another example, the
syntactic definition:

ArgumentList :
AssignmentExpression
ArgumentList , AssignmentExpression

states that an ArgumentList may represent either a single AssignmentExpression or an ArgumentList,
followed by a comma, followed by an AssignmentExpression. This definition of ArgumentList is
recursive, that is to say, it is defined in terms of itself. The result is that an ArgumentList may contain
any positive number of arguments. Such recursive definitions of nonterminals are common.

The subscripted suffix OoprO, which may appear after a terminal or nonterminal, indicates an optional
symbol. The alternative containing the optional symbol actually specifies two right-hand sides, one that
omits the optional element and one that includes it. This means that:

VariableDeclaration :
Identifier Initializer

is a convenient abbreviation for:

VariableDeclaration :
Identifier
Identifier Initializer

and that:

IterationStatement :
for (Expression,, ; Expression,, ; Expression,,) Statement

is a convenient abbreviation for:

IterationStatement :
for (; Expression,, ; Expression,,) Statement
for (Expression ; Expression,, ; Expression,,) Statement

which in turn is an abbreviation for:

IterationStatement :
for (; ; Expression,,) Statement
for (; Expression ; Expression,,) Statement
for (Expression ; ; Expression,,) Statement
for (Expression ; Expression ; Expression,,) Statement

which in turn is an abbreviation for:

IterationStatement :

for (; ;) Statement

for (; ; Expression) Statement

for (; Expression ;) Statement

for (; Expression ; Expression) Statement

for (Expression ; ;) Statement

for (Expression ; ; Expression) Statement

for (Expression ; Expression ;) Statement

for (Expression ; Expression ; Expression) Statement

so the nonterminal IterationStatement actually has eight alternative right-hand sides.

If the phrase O[no LineTerminator here]O appears in the right-hand side of a production of the syntactic
grammar, it indicates that the production is a restricted production: it may not be used if a
LineTerminator occurs in the input stream at the indicated position. For example, the production:

ReturnStatement :
return [no LineTerminator here] Expressiongp, ;

indicates that the production may not be used if a LineTerminator occurs in the program between the
return token and the Expression .

Unless the presence of a LineTerminator is forbidden by a restricted production, any number of
occurrences of LineTerminator may appear between any two consecutive tokens in the stream of input
elements without affecting the syntactic acceptability of the program.

When the words Oone ofO follow the colon(s) in a grammar definition, they signify that each of the
terminal symbols on the following line or lines is an alternative definition. For example, the lexical
grammar for ECMAScript contains the production:

ZeroToThree :: one of
0 1 2 3

which is merely a convenient abbreviation for:

ZeroToThree ::
0
1
2
3

When an alternative in a production of the lexical grammar or the numeric string grammar appears to
be a multicharacter token, it represents the sequence of characters that would make up such a token.

The right-hand side of a production may specify that certain expansions are not permitted by using the
phrase Obut notO and then indicating the expansions to be excluded. For example, the production:

Identifier ::
IdentifierName but not ReservedWord

means that the nonterminal /dentifier may be replaced by any sequence of characters that could replace
IdentifierName provided that the same sequence of characters could not replace ReservedWord.

Finally, a few nonterminal symbols are described by a descriptive phrase in roman type in cases where
it would be impractical to list all the alternatives:

SourceCharacter:
any Unicode character

5.2ALGORITHM CONVENTIONS

We often use a numbered list to specify steps in an algorithm. When the algorithm is to produce a value
as a result, we use the directive “return x” to indicate that the result of the algorithm is the value of x
and that the algorithm should terminate. We use the notation Result(n) as shorthand for “the result of
step n”. We also use Type(x) as shorthand for “the type of x”.

Mathematical operations such as addition, subtraction, multiplication, and division should always be
understood as computing exact mathematical results. Algorithms that model floating-point arithmetic
include explicit steps to perform rounding, where necessary.

The mathematical function abs(x) yields the absolute value of x, which is —x if x is negative (less than
zero) and otherwise is x itself.

The mathematical function sign(x) yields 1 if x is positive, 0 if x is zero, and —1 if x is negative.

The notation Ox modulo yO (y must be a finite and nonzero) computes a value k of the same sign as y
such that abs(k) < abs(y) and x—k = ¢y for some integer q.

The mathematical function floor(x) yields the largest integer (closest to positive infinity) that is not
larger than x. Note that floor(x) = x—(x modulo 1).

If an algorithm is defined to “generate a runtime error”, execution of the algorithm (and any calling
algorithms) is terminated and no result is returned.

These algorithms are used to clarify semantics. In practice, there may be more efficient algorithms
available to implement a given feature.

6SOURCE TEXT

ECMAScript source text is represented as a sequence of characters representable using the Unicode
version 2.0 character encoding.

SourceCharacter ::
any Unicode character

However, it is possible to represent every ECMAScript program using only ASCII characters (which
are equivalent to the first 128 Unicode characters). Non-ASCII Unicode characters may appear only
within comments and string literals; in both of those contexts, any Unicode character may be expressed
as a Unicode escape sequence consisting of six ASCII characters, namely \u plus four hexadecimal
digits. Within a comment, such an escape sequence is effectively ignored as part of the comment;
within a string literal, the Unicode escape sequence contributes one character to the string value of the
literal.

Note that ECMAScript differs from the Java programming language in the behavior of Unicode escape
sequences. In a Java program, if the Unicode escape sequence \uOOOA, for example, occurs within a
single-line comment, it is interpreted as a line terminator (Unicode character 000A is line feed) and
therefore the next character is not part of the comment. Similarly, if the Unicode escape sequence
\u000A occurs within a string literal in a Java program, it is likewise interpreted as a line terminator,
which is not allowed within a string literalNone must write \n instead of \uOOOA to cause a line feed
to be part of the string value of a string literal. In an ECMAScript program, a Unicode escape sequence
occurring within a comment is never interpreted and therefore cannot contribute to termination of the
comment. Similarly, a Unicode escape sequence occurring within a string literal in an ECMAScript
program always contributes a character to the string value of the literal and is never interpreted as a line
terminator or as a quote mark that might terminate the string literal.

7LEXICAL CONVENTIONS

The source text of a ECMAScript program is first converted into a sequence of tokens and white space.
A token is a sequence of characters that comprise a lexical unit. The source text is scanned from left to
right, repeatedly taking the longest possible sequence of characters as the next token.

7.AWHITE SPACE

White space characters are used to improve source text readability and to separate tokens (indivisible
lexical units) from each other but are otherwise insignificant. White space may occur between any two
tokens, and may occur within strings (where they are considered significant characters forming part of
the literal string value), but cannot appear within any other kind of token.

The following characters are considered to be white space:

Unicode Value Name Formal Name
\u0009 Tab <TAB>
\u000B Vertical Tab <VT>
\u000C Form Feed <FF>
\u0020 Space <SpP>
Syntax
WhiteSpace ::

<TAB>

<Vr>

<FF>

<SP>

7.2LINE TERMINATORS

Line terminator characters, like whitespace characters, are used to improve source text readability and
to separate tokens (indivisible lexical units) from each other. Unlike whitespace characters, line
terminators have some influence over the behavior of the syntactic grammar. In general, line
terminators may occur between any two tokens, but there are a few places where they are forbidden by
the syntactic grammar. A line terminator cannot occur within any token (not even a string. Line
terminators also affect the process of automatic semicolon insertion (see section).

The following characters are considered to be line terminators:

Unicode Value Name Formal Name
\u000A Line Feed <LF>
\u000D Carriage Return <CR>

Syntax

LineTerminator ::
<LF>
<CR>

7.3COMMENTS

Description

Comments can be either single or multi-line. Multi-line comments cannot nest.

Because a single-line comment can contain any character except a LineTerminator character, and
because of the general rule that a token is always as long as possible, a single-line comment always
consists of all characters from the // marker to the end of the line. However, the LineTerminator at the
end of the line is not considered to be part of the single-line comment; it is recognized separately by the
lexical grammar and becomes part of the stream of input elements for the syntactic grammar. This point
is very important, because it implies that the presence or absence of single-line comments does not
affect the process of automatic semicolon insertion (see section).

Syntax
Comment ::

MultiLineComment
SingleLineComment

MultiLineComment ::
/* MultiLineCommentChars.,, * /

MultiLineCommentChars ::
MultiLineNotAsteriskChar MultiLineCommentChars .
* PostAsteriskCommentChars

PostAsteriskCommentChars ::
MultiLineNotForwardSlashChar MultiLineCommentChars

MultiLineNotAsteriskChar::
SourceCharacter but not asterisk *

MultiLineNotFowardSlashChar::
SourceCharacter but not forward-slash /

SingleLineComment ::
// SingleLineCommentChars.,,

SingleLineCommentChars ::
SingleLineCommentChar SingleLineCommentChars.,,

SingleLineCommentChar ::
SourceCharacter but not LineTerminator

7.4TOKENS
Syntax

Token ::
ReservedWord
Identifier
Punctuator
Literal

7.4.1Reserved Words

Description
Reserved words cannot be used as identifiers.

ReservedWord ::
Keyword
FutureReservedWord
NullLiteral
BooleanLiteral

7.4.2Keywords

The following tokens are ECMAScript keywords and may not be used as identifiers in ECMAScript
programs.

Syntax
Keyword: one of
break for new var
continue function return void
delete if this while
else in typeof with

7.4.3Future Reserved Words

The following words are used as keywords in proposed extensions and are therefore reserved to allow
for the possibility of future adoption of those extensions.

Syntax
FutureReservedWord : one of
case do method try
catch extends super
class finally switch
default import throw

7.5IDENTIFIERS

Description

An identifier is a character sequence of unlimited length, where each character in the sequence must be
a letter, a decimal digit, an underscore (_) character, or a dollar sign ($) character, and the first
character may not be a decimal digit. ECMAScript identifiers are case sensitive: identifiers whose
characters differ in any way, even if only in case, are considered to be distinct.

Syntax

Identifier ::
IdentifierName but not ReservedWord

IdentifierName ::
IdentifierLetter
IdentifierName IdentifierLetter
IdentifierName DecimalDigit

IdentifierLetter :: one of

abcde f gh
G H

DecimalDigit :: one of
01 2 3 456 7 8 9

7.6PUNCTUATORS
Syntax

Punctuator :: one of

= > < == <=
1= , [} ~ 2
&& Il ++ -
- * / & |
% << >> >>> +=
*= /= &= | = A
<<= >>= >>>= ()
} [] ;
7.7LITERALS
Syntax
Literal ::
NullLiteral
BooleanLiteral
NumericLiteral
StringLiteral

7.7.1Null Literals

Syntax
NullLiteral ::
null
Semantics

The value of the null literal null is the sole value of the Null type, namely null.

7.7.2Boolean Literals

Syntax
BooleanLiteral ::
true
false

Semantics
The value of the Boolean literal true is a value of the Boolean type, namely true.
The value of the Boolean literal f£alse is a value of the Boolean type, namely false.

7.7.3Numeric Literals

Syntax
NumericLiteral ::
DecimalLiteral
HexlIntegerLiteral
OctallntegerLiteral

DecimalLiteral ::
DecimallntegerLiteral
DecimallntegerLiteral . DecimalDigits,, ExponentPart,,
. DecimalDigits ExponentPart,,
DecimallntegerLiteral ExponentPart

DecimallntegerLiteral ::
(0]

NonZeroDigit DecimalDigits.,

DecimalDigits ::
DecimalDigit
DecimalDigits DecimalDigit

NonZeroDigit :: one of
1 2 3 4 5 6 7 8 9

ExponentPart ::
ExponentIndicator SignedInteger

ExponentiIndicator :: one of
e E

SignedInteger ::
DecimalDigits
+ DecimalDigits
- DecimalDigits

HexIntegerLiteral ::
0x HexDigit
0X HexDigit
HexIntegerLiteral HexDigit

HexDigit :: one of
01 2 3 45 6 78 9 ab cde f ABTCUDEF

OctallntegerLiteral ::
0 OctalDigit
OctalLiteral OctalDigit

OctalDigit :: one of
0 1 2 3 4 5 6 7

Semantics

A numeric literal stands for a value of the Number type. This value is determined in two steps: first, a

mathematical value (MV) is derived from the literal; second, this mathematical value is rounded,

ideally using IEEE 754 round-to-nearest mode, to a representable value of the number type.

* The MV of NumericLiteral :: DecimalLiteral is the MV of DecimalLiteral.

* The MV of NumericLiteral :: HexIntegerLiteral is the MV of HexIntegerLiteral.

* The MV of NumericLiteral :: OctallntegerLiteral is the MV of OctallntegerLiteral.

* The MV of DecimalLiteral :: DecimallntegerLiteral is the MV of DecimallntegerLiteral.

* The MV of DecimalLiteral :: DecimallntegerLiteral . is the MV of DecimallntegerLiteral.

* The MV of DecimalLiteral :: DecimallntegerLiteral . DecimalDigits is the MV of
DecimallntegerLiteral plus (the MV of DecimalDigits times 107"), where #n is the number of
characters in DecimalDigits.

* The MV of DecimalLiteral :: DecimallntegerLiteral . ExponentPart is the MV of
DecimallntegerLiteral times 10°, where e is the MV of ExponentPart.

* The MV of DecimalLiteral :: DecimallntegerLiteral . DecimalDigits ExponentPart is (the MV of
DecimallntegerLiteral plus (the MV of DecimalDigits times 107")) times 10°, where # is the
number of characters in DecimalDigits and e is the MV of ExponentPart.

* The MV of DecimalLiteral ::. DecimalDigits is the MV of DecimalDigits times 10~", where n is
the number of characters in DecimalDigits.

* The MV of DecimalLiteral ::. DecimalDigits ExponentPart is the MV of DecimalDigits times 10
" where n is the number of characters in DecimalDigits and e is the MV of ExponentPart.

* The MV of DecimalLiteral :: DecimallntegerLiteral ExponentPart is the MV of
DecimallntegerLiteral times 10°, where e is the MV of ExponentPart.

* The MV of DecimallntegerLiteral :: 0 is 0.

* The MV of DecimallntegerLiteral :: NonZeroDigit DecimalDigits is (the MV of NonZeroDigit
times 10") plus the MV of DecimalDigits, where n is the number of characters in DecimalDigits.

* The MV of DecimalDigits :: DecimalDigit is the MV of DecimalDigit.

The MV of DecimalDigits :: DecimalDigits DecimalDigit is (the MV of DecimalDigits times 10)
plus the MV of DecimalDigit.
Exponentindicator Signedinteger is the MV of SignedInteger.

The MV of ExponentPart ::
The MV of Signedinteger ::
The MV of SignedInteger ::
The MV of Signedinteger ::
The MV of DecimalDigit ::
The MV of DecimalDigit ::
The MV of DecimalDigit ::
The MV of DecimalDigit ::
The MV of DecimalDigit ::
The MV of DecimalDigit ::
The MV of DecimalDigit ::
The MV of DecimalDigit ::
The MV of DecimalDigit ::
The MV of DecimalDigit ::

DecimalDigits is the MV of DecimalDigits.

+ DecimalDigits is the MV of DecimalDigits.
- DecimalDigits is the negative of the MV of DecimalDigits.
0 or of HexDigit :: 0 or of OctalDigit :: 0 is 0.

1 or of NonZeroDigit
2 or of NonZeroDigit

3 or of NonZeroDigit ::
4 or of NonZeroDigit ::
5 or of NonZeroDigit ::
6 or of NonZeroDigit ::
7 or of NonZeroDigit ::
8 or of NonZeroDigit ::
9 or of NonZeroDigit ::

:: 1 or of HexDigit ::
:: 2 or of HexDigit ::
3 or of HexDigit ::
4 or of HexDigit ::
5 or of HexDigit ::
6 or of HexDigit ::
7 or of HexDigit ::
8 or of HexDigit ::
9 or of HexDigit ::

1 or of OctalDigit ::
2 or of OctalDigit ::
3 or of OctalDigit ::
4 or of OctalDigit ::
5 or of OctalDigit ::
6 or of OctalDigit ::
7 or of OctalDigit ::

8 is 8.
9is 9.

lisl.
2is 2.
3is 3.
4is4.
5is 5.
6 is 6.
7is7.

* The MV of HexDigit :: a or of HexDigit :: Ais 10.
* The MV of HexDigit :: b or of HexDigit :: Bis 11.
* The MV of HexDigit :: c or of HexDigit :: Cis 12.
* The MV of HexDigit :: d or of HexDigit :: D is 13.
* The MV of HexDigit :: e or of HexDigit :: E is 14.
* The MV of HexDigit :: £ or of HexDigit :: Fis 15.

* The MV of HexIntegerLiteral :: 0x HexDigit is the MV of HexDigit.

* The MV of HexIntegerLiteral :: 0X HexDigit is the MV of HexDigit.

* The MV of HexIntegerLiteral :: HexIntegerLiteral HexDigit is (the MV of HexIntegerLiteral times
16) plus the MV of HexDigit.

* The MV of OctallntegerLiteral :: 0 OctalDigit is the MV of OctalDigit.

* The MV of OctallntegerLiteral :: OctallntegerLiteral OctalDigit is (the MV of OctallntegerLiteral
times 8) plus the MV of OctalDigit.

Once the exact MV for a numeric literal has been determined, it is then rounded to a value of the
Number type. If the MV is 0, then the rounded value is +0; otherwise, the rounded value must be the
number value for the MV (in the sense defined in section 8.4), unless the literal is a DecimalLiteral and
the literal has more than 20 significant digits, in which case the number value may be any
implementation-dependent approximation to the MV. A digit is significant if it is not part of an
ExponentPart and (either it is not 0 or it is an important zero or there is no decimal point 0.0 in the
literal). A digit O is an important zero if there is at least one important item to its left and at least one
important item to its right within the literal. Any digit that is not 0 and is not part of an ExponentPart is
an important item; a decimal point O . O is also an important item.

7.7.4String Literals
A string literal is zero or more characters enclosed in single or double quotes. Each character may be
represented by an escape sequence.
Syntax
StringLiteral ::

" DoubleStringCharacters o "
' SingleStringCharacters,, '

DoubleStringCharacters ::
DoubleStringCharacter DoubleStringCharacters.,

SingleStringCharacters ::
SingleStringCharacter SingleStringCharacters

DoubleStringCharacter ::
SourceCharacter but not double-quote " or backslash \ or LineTerminator
EscapeSequence

SingleStringCharacter ::
SourceCharacter but not single-quote ' or backslash \ orLineTerminator
EscapeSequence

EscapeSequence ::
CharacterEscapeSequence
OctalEscapeSequence
HexEscapeSequence
UnicodeEscapeSequence

CharacterEscapeSequence ::
\ SingleEscapeCharacter
\ NonEscapeCharacter

SingleEscapeCharacter :: one of
' " \ b £ n r t

NonEscapeCharacter::
SourceCharacter but not EscapeCharacter or LineTerminator

EscapeCharacter ::
SingleEscapeCharacter
OctalDigit
x
u

HexEscapeSequence ::
\x HexDigit HexDigit

OctalEscapeSequence ::
\ OctalDigit
\ OctalDigit OctalDigit
\ ZeroToThree OctalDigit OctalDigit

ZeroToThree :: one of
0 1 2 3

UnicodeEscapeSequence ::
\u HexDigit HexDigit HexDigit HexDigit

The definitions of the nonterminals HexDigit and OctalDigit are given in section 7.7.3.

A string literal stands for a value of the String type. The string value (SV) of the literal is described in

terms of character values (CV) contributed by the various parts of the string literal. As part of this

process, some characters within the string literal are interpeted as having a mathematical value (MV),

as described below or in section 7.7.3

* The SV of StringLiteral :: " " is the empty character sequence .

* The SV of StringLiteral :: ' ' is the empty character sequence.

e The SV of StringLiteral :: " DoubleStringCharacters " is the SV of DoubleStringCharacters.

* The SV of StringLiteral :: ' SingleStringCharacters ' is the SV of SingleStringCharacters.

* The SV of DoubleStringCharacters :: DoubleStringCharacter is a sequence of one character, the
CV of DoubleStringCharacter .

* The SV of DoubleStringCharacters :: DoubleStringCharacter DoubleStringCharacters is a
sequence of the CV of DoubleStringCharacter followed by all the characters in the SV of
DoubleStringCharacters in order.

The SV of SingleStringCharacters :: SingleStringCharacter is a sequence of one character, the CV
of SingleStringCharacter.

The SV of SingleStringCharacters :: SingleStringCharacter SingleStringCharacters is a sequence
of the CV of SingleStringCharacter followed by all the characters in the SV of
SingleStringCharacters in order.

The CV of DoubleStringCharacter :: SourceCharacter but not double-quote " or backslash \ or
LineTerminator is the SourceCharacter character itself.

The CV of DoubleStringCharacter :: EscapeSequence is the CV of the EscapeSequence.

The CV of SingleStringCharacter :: SourceCharacter but not single-quote ' or backslash \ or
LineTerminator is the SourceCharacter character itself.

The CV of SingleStringCharacter :: EscapeSequence is the CV of the EscapeSequence.

The CV of EscapeSequence:: CharacterEscapeSequence is the CV of the
CharacterEscapeSequence.

The CV of EscapeSequence:: OctalEscapeSequence is the CV of the OctalEscapeSequence.

The CV of EscapeSequence:: HexEscapeSequence is the CV of the HexEscapeSequence.

The CV of EscapeSequence:: UnicodeEscapeSequence is the CV of the UnicodeEscapeSequence.

The CV of CharacterEscapeSequence :: \ SingleEscapeCharacter is the Unicode character whose
Unicode value is determined by the SingleEscapeCharacter according to the following table:

Escape Sequence Unicode Value Name Symbol
\b \u0008 backspace <BS>
\t \u0009 horizontal tab <HT>
\n \u000A line feed (new line) <LF>
\f \u000C form feed <FF>
\r \u000D carriage return <CR>
\" \u0022 double quote "

\! \u0027 single quote !

\\ \u005C backslash \

The CV of CharacterEscapeSequence :: \ NonEscapeCharacter is the CV of the
NonEscapeCharacter.

The CV of NonEscapeCharacter :: SourceCharacter but not EscapeCharacter or LineTerminator
is the SourceCharacter character itself.

The CV of HexEscapeSequence :: \x HexDigit HexDigit is the Unicode character whose code is
(16 times the MV of the first HexDigit) plus the MV of the second HexDigit.

The CV of OctalEscapeSequence :: \ OctalDigit is the Unicode character whose code is the MV of
the OctalDigit.

The CV of OctalEscapeSequence :: \ OctalDigit OctalDigit is the Unicode character whose code is
(8 times the MV of the first OctalDigit) plus the MV of the second OctalDigit.

The CV of OctalEscapeSequence :: \ ZeroToThree OctalDigit OctalDigit is the Unicode character
whose code is (64 (that is, 82) times the MV of the ZeroToThree) plus (8 times the MV of the
first OctalDigit) plus the MV of the second OctalDigit.

The MV of ZeroToThree :: 0 is 0.
The MV of ZeroToThree :: 1 is 1.
The MV of ZeroToThree :: 2 is 2.
The MV of ZeroToThree :: 3 is 3.

The CV of UnicodeEscapeSequence :: \u HexDigit HexDigit HexDigit HexDigit is the Unicode
character whose code is (4096 (that is, 16%) times the MV of the first HexDigit) plus (256 (that
is, 16%) times the MV of the second HexDigit) plus (16 times the MV of the third HexDigir) plus
the MV of the fourth HexDigit.

Note that a LineTerminator character cannot appear in a string literal, even if preceded by a backslash
\. The correct way to cause a line terminator character to be part of the string value of a string literal is
to use an escape sequence such as \n or \uOOOA.

7.8AUTOMATIC SEMICOLON INSERTION

Description

Certain ECMAScript statements (empty statement, variable statement, expression statement,
continue statement, break statement, and return statement) must each be terminated with a
semicolon. Such a semicolon may always appear explicitly in the source text. For convenience,
however, such semicolons may be omitted from the source text in certain situations. We describe such
situations by saying that semicolons are automatically inserted into the source code token stream in
those situations:

* When, as the program is parsed from left to right, a token (called the offending token) is
encountered that is not allowed by any production of the grammar and the parser is not currently
parsing the header of a for statement, then a semicolon is automatically inserted before the
offending token if one or more of the following conditions is true:

1. The offending token is separated from the previous token by at least one LineTerminator.
2. The offending token is }.

* When, as the program is parsed from left to right, the end of the input stream of tokens is
encountered and the parser is unable to parse the input token stream as a single complete
ECMAScript Program, then a semicolon is automatically inserted at the end of the input stream.

However, there is an additional overriding condition on the preceding rules: a semicolon is never
inserted automatically if the semicolon would then be parsed as an empty statement.

* When, as the program is parsed from left to right, a token is encountered that is allowed by some
production of the grammar, but the production is a restricted production and the token would be
the first token for a terminal or nonterminal immediately following the annotation O[no
LineTerminator here]O within the restricted production (and therefore such a token is called a restricted
token), and the restricted token is separated from the previous token by at least one
LineTerminator,then there are two cases:

1. If the parser is not currently parsing the header of a for statement, a semicolon is
automatically inserted before the restricted token.
2. If the parser is currently parsing the header of a for statement, it is a syntax error.

These are all the restricted productions in the grammar:

MemberExpression :
new MemberExpression [no LineTerminator here] Arguments

CallExpression :
MemberExpression [no LineTerminator here] Arguments
CallExpression [no LineTerminator here] Arguments

PostfixExpression :
LeftHandSideExpression [no LineTerminator here] ++
LeftHandSideExpression [no LineTerminator here] ——

ReturnStatement :
return [no LineTerminator here] Expressionop, ;

The practical effect of these restricted productions is as follows:

1. When the token (is encountered where the parser would treat it as the first token of a
parenthesized Arguments list, and at least one LineTerminator occurred between the
preceding token and the (token, then a semicolon is automatically inserted before the
(token.

2. When the token ++ or —- is encountered where the parser would treat it as a postfix operator,
and at least one LineTerminator occurred between the preceding token and the ++ or ——
token, then a semicolon is automatically inserted before the ++ or —- token.

3. When the token return is encountered and a LineTerminator is encountered before the next

token is encountered, a semicolon is automatically inserted after the token return.

The resulting practical advice to ECMAScript programmers is:

1. The (that starts an argument list should be on the same line as the expression that indicates
the function to be called.

2. A postfix ++ or —- operator should appear on the same line as its operand.
3. An Expression in a return statement should start on the same line as the return token.
For example, the source
{121}3
is not a valid sentence in the ECMAScript grammar, even with the automatic semicolon insertion rules.
In contrast, the source
{1
2} 3
is also not a valid ECMAScript sentence, but is transformed by automatic semicolon insertion into the
following:
1
i2 7} 3;
which is a valid ECMAScript sentence.
The source
for (a; b
)

is not a valid ECMAScript sentence and is not altered by automatic semicolon insertion because the
place where a semicolon is needed is within the header of a for statement. Automatic semicolon
insertion never occurs within the header of a for statement.
The source

return

a+b
is transformed by automatic semicolon insertion into the following:

return;

a + b;
Note that the expression a + b is not treated as a value to be returned by the return statement,
because a LineTerminator separates it from the token return.
The source

a=>b>

++c
is transformed by automatic semicolon insertion into the following:

a = b;

++c;
Note that the token ++ is not treated as a postfix operator applying to the variable b, because a
LineTerminator occurs between b and ++.
The source

if (a > b)

else ¢ = d

is not a valid ECMAScript sentence and is not altered by automatic semicolon insertion before the
else token, even though no production of the grammar applies at that point, because an automatically
inserted semicolon would then be parsed as an empty statement.

8TYPES

A value is an entity that takes on one of seven types. There are six standard types and one internal type
called Reference. Values of type Reference are only used as intermediate results of expression
evaluation and cannot be stored to properties of objects.

8.1THE UNDEFINED TYPE

The Undefined type has exactly one value, called undefined. Any variable that has not been assigned a
value is of type Undefined.

8.2THE NuLL TYPE

The Null type has exactly one value, called null.

8.3THE BOOLEAN TYPE

The Boolean type represents a logical entity and consists of exactly two unique values. One is called
true and the other is called false.

8.4THE STRING TYPE

The String type consists of the set of all finite ordered sequences of zero or more Unicode characters.
Each character is regarded as occupying a position within the sequence. These positions are identified
by nonnegative integers. The leftmost character (if any) is at position 0, the next character (if any) at
position 1, and so on. The length of a string is the number of distinct positions within it. The empty
string has length zero and therefore contains no characters.

8.5THE NUMBER TYPE

The Number type has exactly 18437736874454810627 (that is, 2%-2%3+3) values, representing the
double-precision 64-bit format IEEE 754 values as specified in the IEEE Standard for Binary Floating-
Point Arithmetic, except that the 9007199254740990 (that is, 2%*-2) distinct ONot-a-NumberO values
of the IEEE Standard are represented in ECMAScript as a single special NaN value. (Note that the NaN
value is produced by the program expression NaN, assuming that the globally defined variable NaN has
not been altered by program execution.)

There are two other special values, called positive Infinity and negative Infinity. For brevity, these
values are also referred to for expository purposes by the symbols +o and —, respectively. (Note that
these two infinite number values are produced by the program expressions +Infinity (or simply
Infinity)and -Infinity, assuming that the globally defined variable Infinity has not been
altered by program execution.)

The other 18437736874454810624 (that is, 2%~2) values are called the finite numbers. Half of these
are positive numbers and half are negative numbers; for every finite positive number there is a
corresponding negative number having the same magnitude.

Note that there is both a positive zero and a negative zero. For brevity, these values are also referred to
for expository purposes by the symbols +0 and -0, respectively. (Note that these two zero number
values are produced by the program expressions +0 (or simply 0) and -0.)

The 18437736874454810622 (that is, 2%~2%-2) finite nonzero values are of two kinds:
18428729675200069632 (that is, 2%~2%*) of them are normalized, having the form

s m-2°

where s is +1 or —1, m is a positive integer less than 2% but not less than 2%, and e is an integer ranging
from —1074 to 971, inclusive.

The remaining 9007199254740990 (that is, 2°°-2) values are denormalized, having the form
s m-2°
where s is +1 or —1, m is a positive integer less than 2%, and e is —1074.

Note that all the positive and negative integers whose magnitude is no greater than 2 are representable
in the Number type (indeed, the integer 0 has two representations, +0 and -0).

We say that a finite number has an odd significand if it is nonzero and the integer m used to express it
(in one of the two forms shown above) is odd. Otherwise we say that it has an even significand.

In this specification, the phrase Othe number value for xO where x represents an exact nonzero real
mathematical quantity (which might even be an irrational number such as) means a number value
chosen in the following manner. Consider the set of all finite values of the Number type, with two
additional values added to it that are not representable in the Number type, namely 2'* (which is +1 -
2% - 29y and -2'** (which is =1 - 2% - 2°""). Choose the member of this set that is closest in value to x.
If two values of the set are equally close, then the one with an even significand is chosen; for this
purpose, the two extra values 2'°** and —2'* are considered to have even significands. Finally, if
was chosen, replace it with +oo; if =2'* was chosen, replace it with —; any other chosen value is used
unchanged. The result is the number value for x. (This procedure corresponds exactly to the behavior
of the IEEE 754 Oround to nearestO mode.)

Some ECMAScript operators deal only with integers in the range —2°' through 2*'~1, inclusive, or in
the range 0 through 2*-1, inclusive. These operators accept any value of the Number type but first
convert each such value to one of 2*? integer values. See the descriptions of the ToInt32 and ToUint32
operators in sections 9.5 and 9.6, respectively.

2]024

8.6THE OBJECT TYPE

An Object is an unordered collection of properties. Each property consists of a name, a value and a set
of attributes.

8.6.1Property Attributes

A property can have zero or more attributes from the following set:

Attribute Description

ReadOnly The property is a read-only property. Attempts to write to the property will be
ignored.

ErrorOnWrite This attribute has precedence over the ReadOnly attribute. Attempts to write to
the property will result in a runtime error and the property will not be changed.

DontEnum The property is not enumerated by a for-in enumeration (section 12.5.3

DontDelete Attempts to delete the property will be ignored. See the description of the

delete operator in sectionl1.4.1.

Internal Internal properties have no name and are not directly accessible via the property
accessor operators. How these properties are accessed is implementation specific.
How and when some of these properties are used is specified by the language
specification.

8.6.2Internal Properties and Methods

Internal properties and methods are not exposed in the language. For the purposes of this document,
we give them names enclosed in double square brackets [[]]. When an algorithm uses an internal
property of an object and the object does not implement the indicated internal property, a runtime error
is generated.

There are two types of access for exposed properties: get and put, corresponding to retrieval and
assignment.

Native ECMAScript objects have an internal property called [[Prototype]]. The value of this property is
either null or an object and is used for implementing inheritance. Properties of the [[Prototype]]
object are exposed as properties of the child object for the purposes of get access, but not for put access.

The following table summarizes the internal properties used by this specification. The description
indicates their behavior for native ECMAScript objects. Host objects may implement these internal
methods with any implement-dependent behavior, or it may be that a host object implements only some
internal methods and not others.

Property Parameters Description
[[Prototype]] none The prototype of this object.
[[Class]] none The kind of this object.
[[Value]] none Internal state information associated with this object.
[[Get]] (PropertyName) Returns the value of the property.
[[Put]] (PropertyName, Value) Sets the specified property to Value.
[[CanPut]] (PropertyName, Value) Returns a boolean value indicating whether a [[Put]]
operation with the same arguments will succeed.
[[HasProperty]] (PropertyName) Returns a boolean value indicating whether the object
already has a member with the given name.
[[DefaultValue]] | (Hint) Returns the default value of the object, which should be
a primitive value (not an object or reference).
[[Construct]] optional user-provided (Constructor) Constructs an object. Invoked via the
parameters new operator.
[[Call]] optional user-provided (Function) Executes code associated with the object.
parameters Invoked via a function call expression.

Every ECMAScript object must implement the [[Class]] property and the [[Get]], [[Put]],
[[HasProperty]], and [[DefaultValue]] methods, even host objects.

The value of the [[Prototype]] property must be either an object or null, and every [[Prototype]] chain
must have finite length (that is, starting from any object, recursively accessing the [[Prototype]]

property must eventually lead to a null value).

The value of the [[Class]] property is defined by this specification for every kind of built-in object. The
value of the [[Class]] property of a host object may be any value, even a value used by a built-in object
for its [[Class]] property. Note that this specification does not provide any means for a program to
access the value of a [[Class]] property; it is used internally to distinguish different kinds of built-in

objects.

Every built-in object implements the [[Get]], [[Put]], [[CanPut]], and [[HasProperty]] methods in the
manner described in sections 8.6.2.1, 8.6.2.2, and 8.6.2.3, respectively, except that Array objects have a
slightly different implementation of the [[Put]] method (section). Host objects may implement these
methods in any manner; for example, one possibility is that [[Get]] and [[Put]] for a particular host
object indeed fetch and store property values but [[HasProperty]] always generates false.

In the following algorithm descriptions, assume O is a native ECMAScript object and P is a string.

8.6.2.1[[Get]](P)

When the [[Get]] method of O is called with property name P, the following steps are taken:

SANNANE I

8.6.2.2[[Put]](P, V)
When the [[Put]] method of O is called with property P and value V, the following steps are taken:

If O doesn’t have a property with name P, go to step 4.
Get the value of the property.
Return Result(2).

If the [[Prototype]] of O is null, return undefined.

Call the [[Get]] method of [[Prototype]] with property name P.
Return Result(5).

7. Call the [[CanPut]] method of O with name P.

8. If Result(1) is false, return.

9. If O doesn’t have a property with name P, go to step 6.

10. Set the value of the property to V.

11. Return.

12. Create a property with name P, set its value to V" and give it empty attributes.
13. Return.

Note, however, that if O is an Array object, it has a more elaborate [[Put]] method (section 15.4.4.1).

8.6.2.3[[CanPut]](P)

The [[CanPut]] method is used only by the [[Put] method.

When the [[CanPut]] method of O is called with property P, the following steps are taken:
14. If O doesnOt have a property with name P, go to step 4.

15. If the property has the ErrorOnWrite attribute, generate a runtime error.

16. If the property has the ReadOnly attribute, return false.

17. If the [[Prototype]] of O is not implemented or its value is not an object, return true.
18. Call the [[CanPut]] method of [[Prototype]] of O with property Name P.

19. Return Result(5).

8.6.2.4 [[HasProperty]](P)

When the [[HasProperty]] method of O is called with property name P, the following steps are taken:
20. If O has a property with name P, return true.

21. If the [[Prototype]] of O is not implemented or its value is not an object, return false.

22. Call the [[HasProperty]] method of [[Prototype]] with property name P.

23. Return Result(3).

8.7THE REFERENCE TYPE

The internal Reference type is not a language data type. 1t is defined by this specification purely for
expository purposes. An implementation of ECMAScript must behave as if it produced and operated
upon references in the manner described here. However, a value of type Reference is used only as an
intermediate result of expression evaluation and cannot be stored as the value of a variable or property.

The Reference type is used to explain the behavior of assignment operators: the left-hand operand of an
assignment is expected to produce a reference. This behavior could, instead, be explained entirely in
terms of a case analysis on the syntactic form of the left-hand operand of an assignment operator, but
for one difficulty: function calls are permitted to return references. This possibility is admitted purely
for the sake of host objects. No built-in ECMAScript function defined by this specification returns a
reference and there is no provision for a user-defined function to return a reference.

A Reference is a reference to a property of an object. A Reference consists of two parts, the base
object and the property name.

The following abstract operations are used in this specification to describe the behavior of references:
* GetBase(V). Returns the base object component of the reference V.

* GetPropertyName(V). Returns the property-name component of the reference V.

* GetValue(V). Returns the value of the property indicated by the reference V.

* PutValue(V, W). Changes the value of the property indicated by the reference V to be W.

8.7.1GetBase(V)

24. If Type(V) is Reference, return the base object component of V.
25. Generate a runtime error.

8.7.2GetPropertyName(V)

26. If Type(V) is Reference, return the property-name component of V.
27. Generate a runtime error.

8.7.3GetValue(V)

28. If Type(V) is not Reference, return V.

29. Call GetBase(V).

30. If Result(2) is null, generate a runtime error.

31. Call the [[Get]] method of Result(2), passing GetPropertyName(V) for the property-name.
32. Return Result(4).

8.7.4PutValue(V, W)

33. If Type(V) is not Reference, generate a runtime error.

34. Call GetBase(V).

35. If Result(2) is null, go to step 6.

36. Call the [[Put]] method of Result(2), passing GetPropertyName(V) for the property name and W
for the value.

37. Return.

38. Call the [[Put]] method for the global object, passing GetPropertyName(V) for the property name
and W for the value.

39. Return.

8.8THE LIST TYPE

The internal List type is not a language data type. 1t is defined by this specification purely for
expository purposes. An implementation of ECMAScript must behave as if it produced and operated
upon List values in the manner described here. However, a value of the List type is used only as an
intermediate result of expression evaluation and cannot be stored as the value of a variable or property.

The List type is used to explain the evaluation of argument lists (section 11.2.4) in new expressions
and in function calls. Values of the List type are simply ordered sequences of values. These sequences
may be of any length.

8.9THE COMPLETION TYPE

The internal Completion type is not a language data type. 1t is defined by this specification purely for
expository purposes. An implementation of ECMAScript must behave as if it produced and operated
upon Completion values in the manner described here. However, a value of the Completion type is used
only as an intermediate result of statement evaluation and cannot be stored as the value of a variable or
property.

The Completion type is used to explain the behavior of statements (break, continue, and return)
that perform nonlocal transfers of control. Values of the Completion type have one of the following
forms:

¢ Onormal completionO

 Onormal completion after value VO

Oabrupt completion because of breakO

e QOabrupt completion after value ¥ because of breakO

Oabrupt completion because of continueO

¢ Oabrupt completion after value ¥ because of continueO

¢ Oabrupt completion because of return VO where V is a value

Any completion of one of the four forms that carries a value V'is called a value completion. Any
completion of one of the first two forms is called a normal completion; any other completion is called
an abrupt completion. Any completion of a form that mentions break is called a break completion.
Any completion of a form that mentions continue is called a continue completion. Any
completion of a form that mentions return is called a return completion.

9TYPE CONVERSION

The ECMAScript runtime system performs automatic type conversion as needed. To clarify the
semantics of certain constructs it is useful to define a set of conversion operators. These operators are
not a part of the language; they are defined here to aid the specification of the semantics of the
language. The conversion operators are polymorphic; that is, they can accept a value of any standard
type, but not of type Reference.

9.1 TOPRIMITIVE

The operator ToPrimitive takes a Value argument and an optional PreferredType argument. The
operator ToPrimitive attempts to convert its value argument to a non-Object type. If an object is
capable of converting to more than one primitive type, it may use the optional hint PreferredType to
favor that type. Conversion occurs according to the following table:

Input Type Result

Undefined The result equals the input argument (no conversion).

Null The result equals the input argument (no conversion).

Boolean The result equals the input argument (no conversion).

Number The result equals the input argument (no conversion).

String The result equals the input argument (no conversion).

Object Return the default value of the Object. The default value of an object is retrieved
by calling the internal [[DefaultValue]] method of the object, passing the optional
hint PreferredType. The behavior of the [[DefaultValue]] method is defined by this
specification for all native ECMAScript objects. If the return value is of type
Object or Reference, a runtime error is generated.

9.2ToBOOLEAN

The operator ToBoolean attempts to convert its argument to a value of type Boolean according to the
following table:

Input Type Result

Undefined false

Null false

Boolean The result equals the input argument (no conversion).

Number The result is false if the argument is +0, —0, or NaN; otherwise the result is
true.

String The result is false if the argument is the empty string (its length is zero);

otherwise the result is true.

Object

true

9.3TONUMBER

The operator ToNumber attempts to convert its argument to a value of type Number according to the
following table:

Input Type Result
Undefined NaN
Null NaN
Boolean The result is 1 if the argument is true. The result is +0 if the argument is false.
Number The result equals the input argument (no conversion).
String See grammar and discussion below.
Object Apply the following steps:
40. Call ToPrimitive(input argument, hint Number).
41. Call ToNumber(Result(1)).
42. Return Result(2).

9.3.1ToNumber Applied to the String Type

ToNumber applied to strings applies the following grammar to the input string. If the grammar cannot
interpret the string as an expansion of StringNumericLiteral, then the result of ToNumber is NaN.

StringNumericLiteral :::
StrWhiteSpace,,, StrNumericLiteral StrWhiteSpace,,

StrWhiteSpace :::
StrWhiteSpaceChar StrWhiteSpace,,

StrWhiteSpaceChar :::
<TAB>
<SP>
<FF>
<VTr>
<CR>
<LF>

StrNumericLiteral :::
StrDecimalLiteral
+ StrDecimalLiteral
- StrDecimalLiteral
HexIntegerLiteral

StrDecimalLiteral :::
Infinity
DecimalDigits .
DecimalDigits . DecimalDigits,,, ExponentPart,,
. DecimalDigits ExponentPart,,
DecimalDigits ExponentPart

DecimalDigits :::
DecimalDigit
DecimalDigits DecimalDigit

DecimalDigit ::: one of
0123456 789

ExponentPart :::
Exponentindicator Signednteger

Exponentindicator ::: one of
e E

Signedinteger :::
DecimalDigits
+ DecimalDigits
- DecimalDigits

HexIntegerLiteral :::
0x HexDigit
0X HexDigit
HexIntegerLiteral HexDigit

HexDigit ::: one of
01 2 3 45 6 78 9 ab cde f ABTU CUDTEF

Some differences should be noted between the syntax of a StringNumericLiteral and a NumericLiteral

(section 7.7.3):

* A StringNumericLiteral may be preceded and/or followed by whitespace and/or line terminators.

* A StringNumericLiteral may not use octal notation.

* A StringNumericLiteral that is decimal may have any number of leading 0 digits.

* A StringNumericLiteral that is decimal may be preceded by + or - to indicate its sign.

* A StringNumericLiteral that is empty or contains only whitespace and/or one occurrence of + is
converted to +0.

* A StringNumericLiteral that contains only whitespace and/or one occurrence of - is converted to
-0.

The conversion of a string to a number value is similar overall to the determination of the number value

for a numeric literal (section 7.7.3), but some of the details are different, so the process for converting a

string numeric literal to a value of Number type is given here in full. This value is determined in two

steps: first, a mathematical value (MV) is derived from the string numeric literal; second, this
mathematical value is rounded, ideally using IEEE 754 round-to-nearest mode, to a representable value
of the number type.

* The MV of StringNumericLiteral ::: StrWhiteSpace.,,, StrNumericLiteral StrWhiteSpace, is the
MYV of StrNumericLiteral, no matter whether whitespace is present or not.

* The MV of StrNumericLiteral ::: StrDecimalLiteral is the MV of StrDecimalLiteral.

* The MV of StrNumericLiteral ::: + StrDecimalLiteral is the MV of StrDecimalLiteral.

* The MV of StrNumericLiteral ::: — StrDecimalLiteral is the negative of the MV of
StrDecimalLiteral.

* The MV of StrNumericLiteral ::: HexIntegerLiteral is the MV of HexIntegerLiteral.

* The MV of StrDecimalLiteral ::: Infinity is 10'” (a value so large that it will round to +).

* The MV of StrDecimalLiteral ::: (an empty character sequence) is 0.

* The MV of StrDecimalLiteral ::: DecimalDigits is the MV of DecimalDigits.

* The MV of StrDecimalLiteral ::: DecimalDigits . is the MV of DecimalDigits.

* The MV of StrDecimalLiteral ::: DecimalDigits . DecimalDigits is the MV of the first
DecimalDigits plus (the MV of the second DecimalDigits times 10~"), where 7 is the number of
characters in the second DecimalDigits.

* The MV of StrDecimalLiteral ::: DecimalDigits . ExponentPart is the MV of DecimalDigits times
10¢, where e is the MV of ExponentPart.

* The MV of StrDecimalLiteral ::: DecimalDigits . DecimalDigits ExponentPart is (the MV of the
first DecimalDigits plus (the MV of the second DecimalDigits times 10™")) times 10°, where 7 is
the number of characters in the second DecimalDigits and e is the MV of ExponentPart.

* The MV of StrDecimalLiteral ::: . DecimalDigits is the MV of DecimalDigits times 10", where n
is the number of characters in DecimalDigits.

* The MV of StrDecimalLiteral :::. DecimalDigits ExponentPart is the MV of DecimalDigits times
10°", where n is the number of characters in DecimalDigits and e is the MV of ExponentPart.

* The MV of StrDecimalLiteral ::: DecimalDigits ExponentPart is the MV of DecimalDigits times
10¢, where e is the MV of ExponentPart.

* The MV of DecimalDigits ::: DecimalDigit is the MV of DecimalDigit.

* The MV of DecimalDigits ::: DecimalDigits DecimalDigit is (the MV of DecimalDigits times 10)
plus the MV of DecimalDigit.

* The MV of ExponentPart ::: Exponentlndicator SignedInteger is the MV of Signedinteger.

* The MV of SignedInteger ::: DecimalDigits is the MV of DecimalDigits.

* The MV of SignedInteger ::: + DecimalDigits is the MV of DecimalDigits.

* The MV of Signedinteger ::: = DecimalDigits is the negative of the MV of DecimalDigits.

The MV of DecimalDigit ::
The MV of DecimalDigit ::
The MV of DecimalDigit ::
The MV of DecimalDigit ::
The MV of DecimalDigit ::
The MV of DecimalDigit ::
The MV of DecimalDigit ::
The MV of DecimalDigit ::
The MV of DecimalDigit ::
The MV of DecimalDigit ::

0 or of HexDigit ::

1 or of HexDigit :::
2 or of HexDigit :::
3 or of HexDigit :::
4 or of HexDigit :::
5 or of HexDigit :::
6 or of HexDigit :::
7 or of HexDigit :::
8 or of HexDigit :::
9 or of HexDigit :::

0is 0.
lisl.
2is 2.
3is 3.
4is4.
5is 5.
6is 6.
7is7.
8 is 8.
9is 9.

* The MV of HexDigit ::: a or of HexDigit ::: Ais 10.
* The MV of HexDigit ::: b or of HexDigit ::: Bis 11.
* The MV of HexDigit ::: c or of HexDigit ::: Cis 12.
* The MV of HexDigit ::: d or of HexDigit ::: D is 13.
* The MV of HexDigit ::: e or of HexDigit ::: E is 14.
e The MV of HexDigit ::: £ or of HexDigit ::: Fis 15.

* The MV of HexIntegerLiteral::: 0x HexDigit is the MV of HexDigit.
* The MV of HexIntegerLiteral::: 0X HexDigit is the MV of HexDigit.
* The MV of HexIntegerLiteral::: HexIntegerLiteral HexDigit is (the MV of HexIntegerLiteral times

16) plus the MV of HexDigit.

Once the exact MV for a string numeric literal has been determined, it is then rounded to a value of the
Number type. If the MV is 0, then the rounded value is +0 unless the first non-whitespace character in
the string numeric literal is O-0, in which case the rounded value is —0. Otherwise, the rounded value
must be the number value for the MV (in the sense defined in section 8.4), unless the literal includes a
StrDecimalLiteral and the literal has more than 20 significant digits, in which case the number value
may be any implementation-dependent approximation to the MV. A digit is significant if it is not part
of an ExponentPart and (either it is not 0 or it is an important zero or there is no decimal point 0.0 in
the literal). A digit O is an important zero if there is at least one important item to its left and at least
one important item to its right within the literal. Any digit that is not 0 and is not part of an
ExponentPart is an important item; a decimal point O. O is also an important item.

9.4TOINTEGER

The operator Tolnteger attempts to convert its argument to an integral numeric value. This operator
functions as follows:

43. Call ToNumber on the input argument.

44. If Result(1) is NaN, return +0.

45. If Result(1) is 400 or —oo, return Result(1).

46. Compute sign(Result(1)) * floor(abs(Result(1))).

47. Return Result(4).

9.5TOINT32: (SIGNED 32 BIT INTEGER)

The operator Tolnt32 converts its argument to one of 2*? integer values in the range —2°' through 23'-1,

inclusive. This operator functions as follows:

48. Call ToNumber on the input argument.

49. If Result(1) is NaN, +oo, or =0, return +0.

50. Compute sign(Result(1)) * floor(abs(Result(1))).

51. Compute Result(3) modulo 2%; that is, a finite integer value k of Number type with positive sign
and less than 2* in magnitude such the mathematical difference of Result(3) and & is
mathematically an integer multiple of 2°2.

52. If Result(4) is greater than or equal to 2*', return Result(5)-2%; otherwise return Result(5).

Discussion:

Note that the ToInt32 operation is idempotent: if applied to a result that it produced, the second
application leaves that value unchanged.

Note also that ToInt32(ToUint32(x)) is equal to ToInt32(x) for all values of x.

(It is to preserve this latter property that +o and —e are mapped to +0.)

Note that ToInt32 maps -0 to +0.

9.6TOUINT32: (UNSIGNED 32 BIT INTEGER)

The operator ToUint32 converts its argument to one of 2% integer values in the range 0 through 2%2-1,

inclusive. This operator functions as follows:

53. Call ToNumber on the input argument.

54. If Result(1) is NaN, +o0, or —oo, return +0.

55. Compute sign(Result(1)) * floor(abs(Result(1))).

56. Compute Result(3) modulo 2%; that is, a finite integer value k of Number type with positive sign
and less than 2* in magnitude such the mathematical difference of Result(3) and & is
mathematically an integer multiple of 2*2,

57. Return Result(4).

Discussion:

Note that step 6 is the only difference between ToUint32 and Tolnt32.

Note that the ToUint32 operation is idempotent: if applied to a result that it produced, the second
application leaves that value unchanged.

Note also that ToUint32(ToInt32(x)) is equal to ToUint32(x) for all values of x.

(It is to preserve this latter property that +o0 and —eo are mapped to +0.)

Note that ToUint32 maps —0 to +0.

9.7TOUINT16: (UNSIGNED 16 BIT INTEGER)

The operator ToUint16 converts its argument to one of 2'¢ integer values in the range 0 through 2'5-1,

inclusive. This operator functions as follows:

58. Call ToNumber on the input argument.

59. If Result(1) is NaN, +o0, or —oo, return +0.

60. Compute sign(Result(1)) * floor(abs(Result(1))).

61. Compute Result(3) modulo 2'S; that is, a finite integer value k of Number type with positive sign
and less than 2'° in magnitude such the mathematical difference of Result(3) and & is
mathematically an integer multiple of 2'°.

62. Return Result(4).

Discussion:
Note that the substitution of 2'® for 2*? in step 4 is the only difference between ToUint32 and ToUnit16.
Note that ToUint16 maps —0 to +0.

9.8TOSTRING

The operator ToString attempts to convert its argument to a value of type String according to the
following table:

Input Type Result

Undefined "undefined"
Null "null"

Boolean true - "true"

false - "false"

Number See discussion below.

String Return the input argument (no conversion)

Object Apply the following steps:

63. Call ToPrimitive(input argument, hint String).
64. Call ToString(Result(1)).

65. Return Result(2).

9.8.1ToString Applied to the Number Type

The operator ToString converts a number to string format as follows:
e Ifthe argument is NaN, the result is the string "NaN".

e If the argument is +0 or -0, the result is "0".

e If the argument is +oo, the result is "Infinity".

* If the argument is —oo, the result is "—Infinity".

e Otherwise, the result is a string that represents the sign and finite nonzero magnitude (absolute
value) of the argument. If the sign is negative, the first character of the result is O-0; if the
sign is positive, no sign character appears in the result. As for the magnitude m:

* Ifm is an integer less than 10?', then it is represented as that integer value in decimal form
with no leading zeroes and no decimal point.

* Ifm is greater than or equal to 10-° but less than 10*', and is not an exact integer value, then it
is represented as the integer part (floor) of m, in decimal form with no leading zeroes,
followed by a decimal point O . O, followed by one or more decimal digits (see below)
representing the fractional part of m.

* Ifmis less than 10-° or not less than 10*!, then it is represented in so-called "computerized
scientific notation." Let n be the unique integer such that 10" < m < 10™'; then let a be the
mathematically exact quotient of m and 10" so that 1 =a < 10. The magnitude is then
represented as the integer part (floor) of a, as a single decimal digit, followed by a decimal
point 0. 0, followed by one or more decimal digits (see below) representing the fractional
part of a, followed by the lowercase letter OeO, followed by a representation of » as a decimal
integer (first a minus sign O-O if n is negative or a plus sign O+0 if n is not negative,
followed by the decimal representation of the magnitude of » with no leading zeros).

How many digits must be printed for the fractional part of m or a? There must be at least one digit;
beyond that, there must be as many, but only as many, more digits as are needed to uniquely distinguish
the argument value from all other representable numeric values. That is, suppose that x is the exact
mathematical value represented by the decimal representation produced by this method for a finite
nonzero argument; then d must be the value of Number type nearest to x; or if two values of the
Number type are equally close to x, then d must be one of them and the least significant bit of 4 must be
0. A consequence of this specification is that ToString never produces trailing zero digits for a
fractional part.

There remains some choice as to the last digit generated for a fractional part. The following
specification was considered but not adopted:

(This paragraph is not part of the ECMAScript specification.) The decimal string produced must
be as close in its mathematical value to the mathematical value of the original number as any
other decimal string with the same number of digits; and if two decimal strings of the same
minimal length would be equally close in value to the original number, then the decimal string
whose last digit is even should be chosen.

While such a strategy is recommended to implementors, the actual rule is somewhat more permissive:
* Ifxis any number value, then ToNumber(ToString(x)) must be exactly the same as x.

Implementors of ECMAScript may find useful the paper and code written by David M. Gay for binary-
to-decimal conversion of floating-point numbers [Gay 1990].

9.9TOoOBJECT

The operator ToObject attempts to convert its argument to a value of type Object according to the
following table:

Input Type

Result

Undefined Generate a runtime error.

Null Generate a runtime error.

Boolean Create a new Boolean object whose default value is the value of the boolean. See
section 15.6 for a description of Boolean objects.

Number Create a new Number object whose default value is the value of the number. See
section 15.7 for a description of Number objects.

String Create a new String object whose default value is the value of the string. See
section 15.5for a description of String objects.

Object The result is the input argument (no conversion).

10EXECUTION CONTEXTS

When control is transferred to ECMAScript executable code, we say that control is entering an
execution context. Active execution contexts logically form a stack. The top execution context on this
logical stack is the running execution context.

10.1DEFINITIONS

10.1.1Function Objects

There are four types of function objects:

Declared functions are defined in source text by a FunctionDeclaration.

Anonymous functions are created dynamically by using the built-in Function object as a
constructor, which we refer to as instantiating Function.

Host functions are created at the request of the host with source text supplied by the host. The
mechanism for their creation is implementation dependent. Host functions may have any subset
of the following attributes { ImplicitThis, ImplicitParents }. These attributes are described
below.

Internal functions are built-in objects of the language, such as parseInt and Math.exp. These
functions do not contain executable code defined by the ECMAScript grammar, so are excluded
from this discussion of execution contexts.

10.1.2Types of Executable Code

There are five types of executable ECMAScript source text:

10

Global code is source text that is outside all function declarations. More precisely, the global code
of a particular ECMAScript Program consists of all SourceElements in the Program production
which come from the Statement definition.

Eval code is the source text supplied to the built-in eval function. More precisely, if the parameter
to the built-in eval function is a string, it is treated as an ECMAScript Program. The eval code
for a particular invocation of eval is the global code portion of the string parameter.

Function code is source text that is inside a function declaration. More precisely, the function code
of a particular ECMAScript FunctionDeclaration consists of the Block in the definition of
FunctionDeclaration.

Anonymous code is the source text supplied when instantiating Function. More precisely, the last
parameter provided in an instantiation of Function is converted to a string and treated as the
StatementList of the Block of a FunctionDeclaration. If more than one parameter is provided in
an instantiation of Function, all parameters except the last one are converted to strings and
concatenated together, separated by commas. The resulting string is interpreted as the
FormalParameterList of a FunctionDeclaration for the StatementList defined by the last
parameter.

Host code is the source text supplied by the host when creating a host function. The source text is
treated as the StatementList of the Block of a FunctionDeclaration. Depending on the
implementation, the host may also supply a FormalParameterList.

.1.3Variable Instantiation

Every execution context has associated with it a variable object. Variables declared in the source text

arec

added as properties of the variable object. For global and eval code, functions defined in the source text
are added as properties of the variable object. Function declarations in other types of code are not
allowed by the grammar. For function, anonymous and host code, parameters are added as properties of
the variable object.

Which object is used as the variable object and what attributes are used for the properties depends on
the

type of code, but the remainder of the behavior is generic:

* For each FunctionDeclaration in the code, in source text order, instantiate a declared function from
the FunctionDeclaration and create a property of the variable object whose name is the
Identifier in the FunctionDeclaration, whose value is the declared function and whose attributes
are determined by the type of code. If the variable object already has a property with this name,
replace its value and attributes.

* For each formal parameter, as defined in the FormalParameterList, create a property of the variable
object whose name is the Identifier and whose attributes are determined by the type of code. The
values of the parameters are supplied by the caller. If the caller supplies fewer parameter values
than there are formal parameters, the extra formal parameters have value undefined. If two or
more formal parameters share the same name, hence the same property, the corresponding
property is given the value that was supplied for the last parameter with this name. If the value
of this last parameter was not supplied by the caller, the value of the corresponding property is
undefined.

* For each VariableDeclaration in the code, create a property of the variable object whose name is
the Identifier in VariableDeclaration, whose value is undefined and whose attributes are
determined by the type of code. If there is already a property of the variable object with the
name of a declared variable, the value of the property and its attributes are not changed.
Semantically, this step must follow the creation of the FunctionDeclaration and
FormalParameterList properties. In particular, if a declared variable has the same name as a
declared function or formal parameter, the variable declaration does not disturb the existing

property.

10.1.4Scope Chain and Identifier Resolution

Every execution context has associated with it a scope chain. This is logically a list of objects that are

searched when binding an Identifier. When control enters an execution context, the scope chain is

created and is populated with an initial set of objects, depending on the type of code. When control

leaves the execution context, the scope chain is destroyed.

During execution, the scope chain of the execution context is affected only by WithStatement. When

execution enters a with block, the object specified in the with statement is added to the front of the

scope chain. When execution leaves a with block, whether normally or via a break or continue

statement, the object is removed from the scope chain. The object being removed will always be the

first object in the scope chain.

During execution, the syntactic production PrimaryExpression : Identifier is evaluated using the

following algorithm:

66. Get the next object in the scope chain. If there isn't one, go to step 5.

67. Call the [[HasProperty]] method of Result(l), passing the Identifier as the property.

68. If Result(2) is true, return a value of type Reference whose base object is Result(l) and whose
property name is the Identifier.

69. Gotostep I.

70. Return a value of type Reference whose base object is null and whose property name is the
Identifier.

The result of binding an identifier is always a value of type Reference with its member name
component equal to the identifier string.

10.1.5Global Object

There is a unique global object which is created before control enters any execution context. Initially
the global object has the following properties:

* Built-in objects such as Math, String, Date, parselnt, etc. These have attributes { DontEnum }.

* Additional host defined properties. This may include a property whose value is the global object
itself, for example window in HTML.

As control enters execution contexts, and as ECMAScript code is executed, additional properties may
be added to the global object and the initial properties may be changed.

10.1.6Activation Object

When control enters an execution context for function code, anonymous code or host code, an object
called the activation object is created and associated with the execution context. The activation object
is initialized with a single property with name arguments and property attributes { DontDelete }.
The initial value of this property is the arguments object described below. The activation object is then
used as the variable object for the purposes of variable instantiation.

The activation object is purely a specification mechanism. It is impossible for an ECMAScript program
to access the activation object. It can access members of the activation object, but not the activation
object itself. When the call operation is applied to a Reference value whose base object is an activation
object, null is used as the this value of the call.

10.1.7This

There is a this value associated with every active execution context. The this value depends on the
caller and the type of code being executed and is determined when control enters the execution context.
The this value associated with an execution context is immutable.

10.1.8Arguments Object

When control enters an execution context for function, anonymous or host code, an arguments object is
created and initialized as follows:

* A property is created with name callee and property attributes { DontEnum }. The initial value
of this property is the function object being executed. This allows anonymous functions to be
recursive.

* A property is created with name 1ength and property attributes { DontEnum }. The initial value
of this property is the number of actual parameter values supplied by the caller.

* For each non-negative integer, iarg, less than the value of the 1ength property, a property is
created with name ToString(iarg) and property attributes { DontEnum }. The initial value of this
property is the value of the corresponding actual parameter supplied by the caller. The first
actual parameter value corresponds to iarg = 0, the second to iarg = 1 and so on. In the case
when iarg is less than the number of formal parameters for the function object, this property
shares its value with the corresponding property of the activation object. This means that
changing this property changes the corresponding property of the activation object and vice
versa. The value sharing mechanism depends on the implementation.

3.1 Issue: Should the arguments object have a caller property?

10.2 ENTERING AN EXECUTION CONTEXT

When control enters an execution context, the scope chain is created and initialized, variable
instantiation is performed, the break label and continue label stacks are created and initialized to empty,
and the this value is determined.

The initialization of the scope chain, variable instantiation, and the determination of the this value
depend on the type of code being entered.

10.2.1Global Code

* The scope chain is created and initialized to contain the global object and no others.

* Variable instantiation is performed using the global object as the variable object and using empty
property attributes.

* The this value is the global object.

10.2.2 EvalCode

When control enters an execution context for eval code, the previous active execution context, referred
to as the calling context, is used to determine the scope chain, the variable object, and the this value.
If there is no calling context, then initializing the scope chain, variable instantiation, and determination
of the this value are performed just as for global code.

* The scope chain is initialized to contain the same objects, in the same order, as the calling context's
scope chain. This includes objects added to the calling context's scope chain by WithStatement.

* Variable instantiation is performed using the calling context's variable object and using empty
property attributes.

* The this value is the same as the this value of the calling context.

10.2.3Function and Anonymous Code

* The scope chain is initialized to contain the activation object followed by the global object.

* Variable instantiation is performed using the activation object as the variable object and using
property attributes { DontDelete }.

* The caller provides the this value. If the this value provided by the caller is not an object
(including the case where it is null), then the this value is the global object.

10.2.4 Host Code

* The scope chain is initialized to contain the activation object as its first element.

e If the host function has the ImplicitThis attribute, the this value is placed in the scope chain after
the activation object.

* If the host function has the ImplicitParents attribute, a list of objects, determined solely by the
this value, is inserted in the scope chain after the activation object and this object. Note
that this list is determined at run time by the this value. It is not determined by any form of
lexical scoping.

* The global object is placed in the scope chain after all other objects.

* Variable instantiation is performed using the activation object as the variable object and using
attributes { DontDelete }.

* The this value is determined just as for function and anonymous code.

11EXPRESSIONS

11.1PRIMARY EXPRESSIONS

Syntax
PrimaryExpression :
this
Identifier
Literal

(Expression)

11.1.1The this Keyword

The this keyword evaluates to the this value of the execution context.

11.1.2ldentifier Reference

An Identifier is evaluated using the scoping rules stated in section Scope Chain and Identifier
Resolution.The result of an Identifier is always a value of type Reference.

11.1.3Literal Reference

A Literal is evaluated as described in section Literals.

11.1.4The Grouping Operator

The production PrimaryExpression : (Expression) is evaluated as follows:
71. Evaluate Expression. This may be of type Reference.
72. Return Result(1).

11.2LEFT-HAND-SIDE EXPRESSIONS
Syntax

MemberExpression :
PrimaryExpression
MemberExpression [Expression]
MemberExpression . Identifier
new MemberExpression [no LineTerminator here] Arguments

NewExpression :
MemberExpression
new NewExpression

CallExpression :
MemberExpression [no LineTerminator here] Arguments
CallExpression [no LineTerminator here] Arguments
CallExpression [Expression]
CallExpression . Identifier

Arguments :

()
(ArgumentList)

ArgumentList :
AssignmentExpression
ArgumentList , AssignmentExpression

LeftHandSideExpression :
NewExpression
CallExpression

11.2.1Property Accessors

Properties are accessed by name, using either the dot notation:
MemberExpression . Identifier
CallExpression . Identifier
or the bracket notation:
MemberExpression [Expression]
CallExpression [Expression]
The dot notation is explained by the following syntactic conversion:
MemberExpression . Identifier
is identical in its behavior to
MemberExpression [<identifier-string>]
and similarly
CallExpression . Identifier
is identical in its behavior to
CallExpression [<identifier-string>]
where <identifier-string> is a string literal containing the same sequence of characters as the Identifier.

The production MemberExpression : MemberExpression [Expression] is evaluated as follows:
73. Evaluate MemberExpression.

74. Call GetValue(Result(1)).

75. Evaluate Expression.

76. Call GetValue(Result(3)).

77. Call ToObject(Result(2)).

78. Call ToString(Result(4)).

79. Return a value of type Reference whose base object is Result(5) and whoseproperty name is
Result(6).

The production CallExpression : MemberExpression [Expression] is evaluated in exactly the same
manner, except that the contained CallExpression is evaluated in step 1.

11.2.2The new Operator

The production NewExpression : new NewExpression is evaluated as follows:

80. Evaluate NewExpression.

81. Call GetValue(Result(1)).

82. If Type(Result(2)) is not Object, generate a runtime error.

83. If Result(2) does not implement the internal [[Construct]] method, generate a runtime error.

84. Call the [[Construct]] method on Result(2), providing no arguments (that is, an empty list of
arguments).

85. If Type(Result(5)) is not Object, generate a runtime error.

86. Return Result(5).

The production NewCallExpression : new NewExpression Arguments is evaluated as follows:

87. Evaluate NewExpression.

88. Call GetValue(Result(1)).

89. Evaluate Arguments, producing an internal list of argument values (section 11.2.4).

90. If Type(Result(2)) is not Object, generate a runtime error.

91. If Result(2) does not implement the internal [[Construct]] method, generate a runtime error.
92. Call the [[Construct]] method on Result(2), providing the list Result(3) as the argument values.
93. If Type(Result(6)) is not Object, generate a runtime error.

94. Return Result(6).

11.2.3Function Calls

The production CallExpression : MemberExpression Arguments is evaluated as follows:

95. Evaluate MemberExpression.

96. Evaluate Arguments, producing an internal list of argument values (section 11.2.4).

97. Call GetValue(Result(1)).

98. If Type(Result(3)) is not Object, generate a runtime error.

99. If Result(3) does not implement the internal [[Call]] method, generate a runtime error.

100.If Type(Result(1)) is Reference, Result(6) is GetBase(Result(1)). Otherwise, Result(6) is null.

101.1f Result(6) is an activation object, Result(7) is null. Otherwise, Result(7) is the same as Result(6).

102.Call the [[Call]] method on Result(3), providing Result(7) as the this value and providing the list
Result(2) as the argument values.

103.Return Result(8).

The production CallExpression : CallExpression Arguments is evaluated in exactly the same manner,
except that the contained CallExpression is evaluated in step 1.

Note: Result(8) will never be of type Reference if Result(3) is a native ECMAScript object. Whether
calling a host object can return a value of type Reference is implementation-dependent.

11.2.4Argument Lists

The evaluation of an argument list produces an internal list of values (section 8.8).

The production Arguments : () is evaluated as follows:
104.Return an empty internal list of values.

The production Arguments : (ArgumentList) is evaluated as follows:
105.Evaluate ArgumentList.
106.Return Result(1).

The production ArgumentList : AssignmentExpression is evaluated as follows:
107.Evaluate AssignmentExpression.

108.Call GetValue(Result(1)).

109.Return an internal list whose sole item is Result(2).

The production ArgumentList : ArgumentList , AssignmentExpression is evaluated as follows:

110.Evaluate ArgumentList.

111.Evaluate AssignmentExpression.

112.Call GetValue(Result(2)).

113.Return an internal list whose length is one greater than the length of Result(1) and whose items are
the items of Result(1), in order, followed at the end by Result(3), which is the last item of the
new list.

11.3POSTFIX EXPRESSIONS

Syntax

PostfixExpression :
LeftHandSideExpression
LeftHandSideExpression [no LineTerminator here] ++
LeftHandSideExpression [no LineTerminator here] ——

11.3.1Postfix Increment Operator

The production MemberExpression : MemberExpression ++ is evaluated as follows:
114.Evaluate MemberExpression.

115.Call GetValue(Result(1)).

116.Call ToNumber(Result(2)).

117.Add the value 1 to Result(3), using the same rules as for the + operator (section 11.6.3).
118.Call PutValue(Result(1), Result(4)).

119.Return Result(3).

11.3.2Postfix Decrement Operator

The production MemberExpression : MemberExpression —- is evaluated as follows:

120.Evaluate MemberExpression.

121.Call GetValue(Result(1)).

122.Call ToNumber(Result(2)).

123.Subtract the value 1 from Result(3), using the same rules as for the - operator (section 11.6.3).
124.Call PutValue(Result(1), Result(4)).

125.Return Result(3).

11.4UNARY OPERATORS
Syntax

UnaryExpression :
PostfixExpression
delete UnaryExpression
void UnaryExpression
typeof UnaryExpression
++ UnaryExpression
-= UnaryExpression
+ UnaryExpression
- UnaryExpression
~ UnaryExpression
v UnaryExpression

11.4.1The delete Operator

The production UnaryExpression : delete UnaryExpression is evaluated as follows:
126.Evaluate UnaryExpression.

127.Call GetBase(Result(1)).

128.Call GetPropertyName(Result(1)).

129.1f Type(Result(2)) is not Object, return true.

130.1f Result(2) does not implement the internal [[Delete]] method, go to step 8.

131.Call the [[Delete]] method on Result(2), providing Result(3) as the property name to delete.
132.Return Result(6).

133.Call the [[HasProperty]] method on Result(2)), providing Result(3) as the property name to check
for.

134.1f Result(8) is true, return false.
135.Return true.

11.4.2The void Operator

The production UnaryExpression : void UnaryExpression is evaluated as follows:
136.Evaluate UnaryExpression.

137.Call GetValue(Result(1)).

138.Return undefined.

11.4.3The typeof Operator

The production UnaryExpression : typeof UnaryExpression is evaluated as follows:
139.Evaluate UnaryExpression.

140.1f Type(Result(1)) is Reference and GetBase(Result(1)) is null, return "undefined”.
141.Call GetValue(Result(1)).

142.Return a string determined by Type(Result(3)) according to the following table:

Type Result
Undefined "undefined"
Null "object"
Boolean "boolean”
Number "number"
String "string"
Object (native and "object"

doesn’t implement
[[Call]])

Object (native and "function"”
implements [[Call]])

Object (host) Implementation-dependent

11.4.4Prefix Increment Operator

The production UnaryExpression : ++ UnaryExpression is evaluated as follows:
143.Evaluate UnaryExpression.

144.Call GetValue(Result(1)).

145.Call ToNumber(Result(2)).

146.Add the value 1 to Result(3), using the same rules as for the + operator (section 11.6.3).
147.Call PutValue(Result(1), Result(4)).

148.Return Result(4).

11.4.5Prefix Decrement Operator

The production UnaryExpression : == UnaryExpression is evaluated as follows:

149.Evaluate UnaryExpression.

150.Call GetValue(Result(1)).

151.Call ToNumber(Result(2)).

152.Subtract the value 1 from Result(3), using the same rules as for the - operator (section 11.6.3).
153.Call PutValue(Result(1), Result(4)).

154.Return Result(4).

11.4.6Unary + Operator

The unary + operator converts its operand to Number type.

The production UnaryExpression : + UnaryExpression is evaluated as follows:
155.Evaluate UnaryExpression.

156.Call GetValue(Result(1)).

157.Call ToNumber(Result(2)).

158.Return Result(3).

11.4.7Unary - Operator

The unary - operator converts its operand to Number type and then negates it. Note that negating +0
produces -0, and negating —0 produces +0.

The production UnaryExpression : = UnaryExpression is evaluated as follows:

159.Evaluate UnaryExpression.

160.Call GetValue(Result(1)).

161.Call ToNumber(Result(2)).

162.1f Result(3) is NaN, return NaN.

163.Negate Result(3); that is, compute a number with the same magnitude but opposite sign.
164.Return Result(5).

11.4.8The Bitwise NOT Operator (~)

The production UnaryExpression : ~ UnaryExpression is evaluated as follows:
165.Evaluate UnaryExpression.

166.Call GetValue(Result(1)).

167.Call Tolnt32(Result(2)).

168.Apply bitwise complement to Result(3). The result is a signed 32-bit integer.
169.Return Result(4).

11.4.9Logical NOT Operator (!)

The production UnaryExpression : | UnaryExpression is evaluated as follows:
170.Evaluate UnaryExpression.

171.Call GetValue(Result(1)).

172.Call ToBoolean(Result(2)).

173.1f Result(3) is true, return false.

174.Return true.

11.5MULTIPLICATIVE OPERATORS
Syntax

MultiplicativeExpression :
UnaryExpression
MultiplicativeExpression * UnaryExpression
MultiplicativeExpression / UnaryExpression
MultiplicativeExpression % UnaryExpression

Semantics

The production MultiplicativeExpression : MultiplicativeExpression @ UnaryExpression, where @

stands for one of the operators in the above definitions, is evaluated as follows:

175.Evaluate MultiplicativeExpression.

176.Call GetValue(Result(1)).

177.Evaluate UnaryExpression.

178.Call GetValue(Result(3)).

179.Call ToNumber(Result(2)).

180.Call ToNumber(Result(4)).

181. Apply the specified operation (*, /, or %) to Result(5) and Result(6). See the discussions below
(7.4.1,7.42,7.4.3).

182.Return Result(7).

11.5.1Applying the * Operator
The * operator performs multiplication, producing the product of its operands. Multiplication is
commutative. Multiplication is not always associative in ECMAScript, because of finite precision.

The result of a floating-point multiplication is governed by the rules of IEEE 754 double-precision
arithmetic:

* Ifeither operand is NaN, the result is NaN.

* The sign of the result is positive if both operands have the same sign, negative if the operands have
different signs.

* Multiplication of an infinity by a zero results in NaN.

* Multiplication of an infinity by an infinity results in an infinity. The sign is determined by the rule
already stated above.

* Multiplication of an infinity by a finite non-zero value results in a signed infinity. The sign is
determined by the rule already stated above.

* In the remaining cases, where neither an infinity or NaN is involved, the product is computed and
rounded to the nearest representable value using IEEE 754 round-to-nearest mode. If the
magnitude is too large to represent, the result is then an infinity of appropriate sign. If the
magnitude is too small to represent, the result is then a zero of appropriate sign. The
ECMAScript language requires support of gradual underflow as defined by IEEE 754.

11.5.2Applying the / Operator

The / operator performs division, producing the quotient of its operands. The left operand is the
dividend and the right operand is the divisor. ECMAScript does not perform integer division. The
operands and result of all division operations are double-precision floating-point numbers. The result of
division is determined by the specification of IEEE 754 arithmetic:

» Ifeither operand is NaN, the result is NaN.

* The sign of the result is positive if both operands have the same sign, negative if the operands have
different signs.

* Division of an infinity by an infinity results in NaN.

* Division of an infinity by a zero results in an infinity. The sign is determined by the rule already
stated above.

* Division of an infinity by a non-zero finite value results in a signed infinity. The sign is determined
by the rule already stated above.

* Division of a finite value by an infinity results in zero.
* Division of a zero by a zero results in NaN; division of zero by any other finite value results in zero.

* Division of a non-zero finite value by a zero results in a signed infinity. The sign is determined by
the rule already stated above.

* In the remaining cases, where neither an infinity, nor a zero, nor NaN is involved, the quotient is
computed and rounded to the nearest representable value using IEEE 754 round-to-nearest
mode. If the magnitude is too large to represent, we say the operation overflows; the result is
then an infinity of appropriate sign. If the magnitude is too small to represent, we say the
operation underflows and the result is zero. The ECMAScript language requires support of
gradual underflow as defined by IEEE 754.

11.5.3Applying the % Operator

The binary % operator is said to yield the remainder of its operands from an implied division; the left
operand is the dividend and the right operand is the divisor. In C and C++, the remainder operator
accepts only integral operands, but in ECMAScript, it also accepts floating-point operands.

The result of a floating-point remainder operation as computed by the % operator is not the same as the
"remainder" operation defined by IEEE 754. The IEEE 754 "remainder" operation computes the
remainder from a rounding division, not a truncating division, and so its behavior is not analogous to
that of the usual integer remainder operator. Instead the ECMAScript language defines % on floating-
point operations to behave in a manner analogous to that of the Java integer remainder operator; this
may be compared with the C library function fmod.

The result of a ECMAScript floating-point remainder operation is determined by the rules of IEEE
arithmetic:

¢ If either operand is NaN, the result is NaN.

* The sign of the result equals the sign of the dividend.

* If'the dividend is an infinity, or the divisor is a zero, or both, the result is NaN.

* If'the dividend is finite and the divisor is an infinity, the result equals the dividend.

* Ifthe dividend is a zero and the divisor is finite, the result is the same as the dividend.

* In the remaining cases, where neither an infinity, nor a zero, nor NaN is involved, the floating-point
remainder r from a dividend n and a divisor d is defined by the mathematical relationr=n - (d *
q) where q is an integer that is negative only if n/d is negative and positive only if n/d is
positive, and whose magnitude is as large as possible without exceeding the magnitude of the
true mathematical quotient of n and d.

11.6 ADDITIVE OPERATORS
Syntax

AdditiveExpression :
MultiplicativeExpression
AdditiveExpression + MultiplicativeExpression
AdditiveExpression — MultiplicativeExpression

11.6.1The Addition Operator (+)

The addition operator either performs string concatenation or numeric addition.

The production AdditiveExpression : AdditiveExpression + MultiplicativeExpression is evaluated as

follows:

183.Evaluate AdditiveExpression.

184.Call GetValue(Result(1)).

185.Evaluate MultiplicativeExpression.

186.Call GetValue(Result(3)).

187.Call ToPrimitive(Result(2)).

188.Call ToPrimitive(Result(4)).

189.1f Type(Result(5)) is String or Type(Result(6)) is String, go to step 13. (Note that this step differs
from step 3 in the algorithm for comparison for the relational operators in using or instead of
and.)

190.Call ToNumber(Result(5)).

191.Call ToNumber(Result(6)).

192. Apply the addition operation to Result(8) and Result(9). See the discussion below.

193.Return Result(10).

194.Call ToString(Result(5)).

195.Call ToString(Result(6)).

196.Concatenate Result(12) followed by Result(13).

197.Return Result(14).

Note that no hint is provided in the calls to ToPrimitive in steps 5 and 6. All native ECMAScript
objects handle the absence of a hint as if the hint Number were given, but host objects may handle the
absence of a hint in some other manner.

11.6.2The Subtraction Operator (-)

The production AdditiveExpression : AdditiveExpression — MultiplicativeExpression is evaluated as
follows:

198.Evaluate AdditiveExpression.

199.Call GetValue(Result(1)).

200.Evaluate MultiplicativeExpression.

201.Call GetValue(Result(3)).

202.Call ToNumber(Result(2)).

203.Call ToNumber(Result(4)).

204. Apply the subtraction operation to Result(5) and Result(6). See the discussion below (7.5.3).
205.Return Result(7).

11.6.3Applying the Additive Operators (+, -)to Numbers

The + operator performs addition when applied to two operands of numeric type, producing the sum of
the operands. The - operator performs subtraction, producing the difference of two numeric operands.
Addition is a commutative operation, but not always associative.

The result of an addition is determined using the rules of IEEE 754 double-precision arithmetic:

* Ifeither operand is NaN, the result is NaN.

* The sum of two infinities of opposite sign is NaN.

* The sum of two infinities of the same sign is the infinity of that sign.

* The sum of an infinity and a finite value is equal to the infinite operand.

* The sum of two negative zeros is —0. The sum of two positive zeros, or of two zeros of opposite
sign, is +0.

* The sum of a zero and a nonzero finite value is equal to the nonzero operand.

* The sum of two nonzero finite values of the same magnitude and opposite sign is +0.

* In the remaining cases, where neither an infinity, nor a zero, nor NaN is involved, and the operands
have the same sign or have different magnitudes, the sum is computed and rounded to the
nearest representable value using IEEE 754 round-to-nearest mode. If the magnitude is too large
to represent, the operation overflows and the result is then an infinity of appropriate sign. If the
magnitude is too small to represent, the operation underflows and the result is zero. The
ECMAScript language requires support of gradual underflow as defined by IEEE 754.

The - operator performs subtraction when applied to two operands of numeric type, producing the
difference of its operands; the left operand is the minuend and the right operand is the subtrahend.
Given numeric operands a and b, it is always the case that a-b produces the same result as a+ (-b).

11.7BITWISE SHIFT OPERATORS

Syntax
ShiftExpression :
AdditiveExpression
ShiftExpression << AdditiveExpression
ShiftExpression >> AdditiveExpression
ShiftExpression >>> AdditiveExpression
Semantics

The result of evaluating ShiftExpression is always truncated to 32 bits. If the result of evaluating
ShiftExpression produces a fractional component, the fractional component is discarded. The result of
evaluating an AdditiveExpresion that is the right-hand operand of a shift operator is always truncated to
five bits.

11.7.1The Left Shift Operator (<<)

Performs a bitwise left shift operation on the left argument by the amount specified by the right
argument.

The production ShiftExpression : ShiftExpression << AdditiveExpression is evaluated as follows:
206.Evaluate ShiftExpression.

207.Call GetValue(Result(1)).

208.Evaluate AdditiveExpression.

209.Call GetValue(Result(3)).

210.Call ToInt32(Result(2)).

211.Call ToInt32(Result(4)).

212.Mask out all but the least significant 5 bits of Result(6), that is, compute Result(6) & Ox1F.
213.Left shift Result(5) by Result(7) bits. The result is a signed 32 bit integer.

214.Return Result(8).

11.7.2The Signed Right Shift Operator (>>)

Performs a sign-filling bitwise right shift operation on the left argument by the amount specified by the
right argument.

The production ShiftExpression : ShiftExpression >> AdditiveExpression is evaluated as follows:
215.Evaluate ShiftExpression.

216.Call GetValue(Result(1)).

217.Evaluate AdditiveExpression.

218.Call GetValue(Result(3)).

219.Call ToInt32(Result(2)).

220.Call Tolnt32(Result(4)).

221.Mask out all but the least significant 5 bits of Result(6), that is, compute Result(6) & 0x1F.

222.Perform sign-extending right shift of Result(5) by Result(7) bits. The most significant bit is
propagated. The result is a signed 32 bit integer.
223.Return Result(8).

11.7.3The Unsigned Right Shift Operator (>>>)

Performs a zero-filling bitwise right shift operation on the left argument by the amount specified by the

right argument.

The production ShiftExpression : ShiftExpression >>> AdditiveExpression is evaluated as follows:

224.Evaluate ShiftExpression.

225.Call GetValue(Result(1)).

226.Evaluate AdditiveExpression.

227.Call GetValue(Result(3)).

228.Call ToUint32(Result(2)).

229.Call ToInt32(Result(4)).

230.Mask out all but the least significant 5 bits of Result(6), that is, compute Result(6) & 0x1F.

231.Perform zero-filling right shift of Result(5) by Result(7) bits. Vacated bits are filled with zero. The
result is an unsigned 32 bit integer.

232.Return Result(8).

11.8 RELATIONAL OPERATORS
Syntax

RelationalExpression :
ShiftExpression
RelationalExpression < ShiftExpression
RelationalExpression > ShiftExpression
RelationalExpression <= ShiftExpression
Relational Expression >= ShiftExpression

Semantics

The production RelationalExpression: RelationalExpression < ShiftExpression is evaluated as follows:
233.Evaluate RelationalExpression.

234.Call GetValue(Result(1)).

235.Evaluate ShiftExpression.

236.Call GetValue(Result(3)).

237.Perform the comparison Result(2) < Result(4). (See below.)

238.1f Result(5) is undefined, return false. Otherwise, return Result(5).

The production RelationalExpression: RelationalExpression > ShiftExpression is evaluated as follows:
239.Evaluate RelationalExpression.

240.Call GetValue(Result(1)).

241.Evaluate ShiftExpression.

242.Call GetValue(Result(3)).

243 Perform the comparison Result(4) < Result(2). (See below.)

244 1f Result(5) is undefined, return false. Otherwise, return Result(5).

The production RelationalExpression: RelationalExpression <= ShiftExpression is evaluated as
follows:

245.Evaluate RelationalExpression.

246.Call GetValue(Result(1)).

247.Evaluate ShiftExpression.

248.Call GetValue(Result(3)).

249.Perform the comparison Result(4) < Result(2). (See below.)

250.If Result(5) is true or undefined, return false. Otherwise, return true.

The production RelationalExpression: RelationalExpression >= ShiftExpression is evaluated as
follows:

251.Evaluate RelationalExpression.

252.Call GetValue(Result(1)).

253.Evaluate ShiftExpression.

254.Call GetValue(Result(3)).

255.Perform the comparison Result(2) < Result(4). (See below.)

256.1f Result(5) is true or undefined, return false. Otherwise, return true.

257.The comparison x < y, where x and y are values, produces true, false, or undefined (which
indicates that at least one operand is NaN). Such a comparison is performed as follows:Call
ToPrimitive(x, hint Number).

258.Call ToPrimitive(y, hint Number).

259.1f Type(Result(1)) is String and Type(Result(2)) is String, go to step 16. (Note that this step differs
from step 7 in the algorithm for the addition operator + in using and instead of or.)

260.Call ToNumber(Result(1)).

261.Call ToNumber(Result(2)).

262.1f Result(4) is NaN, return undefined.

263.1f Result(5) is NaN, return undefined.

264.1f Result(4) and Result(5) are the same number value, return false.

265.1f Result(4) is +0 and Result(5) is -0, return false.

266.1f Result(4) is —0 and Result(5) is +0, return false.

267.1f Result(4) is +oo, return false.

268.1f Result(4) is —oo, return true.

269.1f Result(5) is +oo, return true.

270.1f Result(5) is —oo, return false.

271.1f the (finite, nonzero) mathematical value of Result(4) is less than the (finite, nonzero)
mathematical value of Result(5), return true. Otherwise, return false.

272.1f Result(2) is a prefix of Result (1), return false. (A string value p is a prefix of string value g if ¢
can be the result of concatenating p and some other string . Note that any string is a prefix of
itself, because » may be the empty string.)

273.1f Result(1) is a prefix of Result (2), return true.

274.Let k be the smallest nonnegative integer such that the character at position £ within Result(1) is
different from the character at position £ within Result(2). (There must be such a £, for neither
string is a prefix of the other.)
Let m be the integer that is the Unicode encoding for the character at position k& within
Result(1).
Let n be the integer that is the Unicode encoding for the character at position k& within
Result(2).
If m < n, return true. Otherwise, return false.

11.9EQUALITY OPERATORS
Syntax

EqualityExpression :
RelationalExpression
EqualityExpression == Relational Expression
EqualityExpression '= Relational Expression

The production EqualityExpression: EqualityExpression == RelationalExpression is evaluated as
follows:

275.Evaluate EqualityExpression.

276.Call GetValue(Result(1)).

277.Evaluate RelationalExpression.

278.Call GetValue(Result(3)).

279.Perform the comparison Result(4) == Result(2). (See below.)

280.1If Result(5) is undefined, return false. Otherwise, return Result(5).

The production EqualityExpression: EqualityExpression'= RelationalExpression is evaluated as
follows:

281.Evaluate EqualityExpression.

282.Call GetValue(Result(1)).

283.Evaluate RelationalExpression.

284.Call GetValue(Result(3)).

285.Perform the comparison Result(4) == Result(2). (See below.)

286.1f Result(5) is true or undefined, return false. Otherwise, return true.

The comparison x == y, where x and y are values, produces true, false, or undefined (which indicates
that at least one operand is NaN). Such a comparison is performed as follows:
287.1f Type(x) is different from Type(y), go to step 14.
288.1If Type(x) is Undefined, return true.
289.1f Type(x) is Null, return true.
290.If Type(x) is not Number, go to step 11.
291.If x is NaN, return undefined.
292.1f y is NaN, return undefined.
293.1f x is the same number value as y, return true.
294.1f x is +0 and y is =0, return true.
295.1f x is =0 and y is +0, return true.
296.Return false.
297.1f Type(x) is String, then return true if x and y are exactly the same sequence of characters (same
length and same characters in corresponding positions). Otherwise, return false..
298.1f Type(x) is Boolean, return true if x and y are both true or both false. Otherwise, return false.
299.Return true if x and y refer to the same object. Otherwise, return false.
300.If x is null and y is undefined, return true.
301.If x is undefined and y is null, return true.
302.If Type(x) is Number and Type(y) is String,
return the result of the comparison ToString(x) == y.
303.If Type(x) is String and Type(y) is Number,
return the result of the comparison x == ToString(y).
304.Return false.

Discussion

String comparison can be forced by: "" + a == "" + b.
Numeric comparison can be forcedby:a - 0 == b - 0.
Boolean comparison can be forced by: !la == 'b.

The equality operators maintain the following invariants:

1. A'=Bisequivalentto ! (A==B).

2. A ==Bisequivalent to B == A, except in the order of evaluation of A and B.
3. if A==Band B==C,=>A == C, assuming no side effects.

As no conversions are applied to the operands, equality is always transitive.

11.10BINARY BITWISE OPERATORS
Syntax

BitwiseANDExpression :
EqualityExpression
BitwiseANDExpression & EqualityExpression

BitwiseXORExpression :
BitwiseANDExpression
BitwiseXORExpression * BitwiseANDExpression

BitwiseORExpression :
BitwiseXORExpression
BitwiseORExpression | BitwiseXORExpression

Semantics

The production 4 : A @ B, where @ is one of the bitwise operators in the productions above, is
evaluated as follows:

305.Evaluate A.

306.Call GetValue(Result(1)).

307.Evaluate B.

308.Call GetValue(Result(3)).

309.Call ToInt32(Result(2)).

310.Call ToInt32(Result(4)).

311.Apply the bitwise operator @ to Result(5) and Result(6). The result is a signed 32 bit integer.
312.Return Result(7).

11.11BINARY LOGICAL OPERATORS
Syntax

Logical ANDExpression :
BitwiseORExpression
Logical ANDExpression && BitwiseORExpression

Logical ORExpression :
Logical ANDExpression
Logical ORExpression | | Logical ANDExpression

Semantics

The production LogicalANDExpression : Logical ANDExpression && BitwiseORExpression is
evaluated as follows:

313.Evaluate Logical ANDExpression.

314.Call GetValue(Result(1)).

315.Call ToBoolean(Result(2)).

316.If Result(3) is false, return Result(2).

317.Evaluate BitwiseORExpression.

318.Call GetValue((Result(5)).

319.Return Result(6).

The production Logical ORExpression : Logical ORExpression | | Logical ANDExpression is evaluated
as follows:

320.Evaluate Logical ORExpression.

321.Call GetValue(Result(1)).

322.Call ToBoolean(Result(2)).

323.1f Result(3) is true, return Result(2).

324 Evaluate Logical ANDExpression.

325.Call GetValue(Result(5)).

326.Return Result(6).

11.12CONDITIONAL OPERATOR (?:)

Syntax

Conditional Expression :
Logical ORExpression
Logical ORExpression ? AssignmentExpression : AssignmentExpression

Semantics

The production Conditional Expression : Logical ORExpression ? AssignmentExpression :
AssignmentExpression is evaluated as follows:

327.Evaluate Logical ORExpression.

328.Call GetValue(Result(1)).

329.Call ToBoolean(Result(2)).

330.If Result(3) is false, go to step 8.
331.Evaluate the first AssignmentExpression.
332.Call GetValue(Result(5)).

333.Return Result(6).

334.Evaluate the second AssignmentExpression.
335.Call GetValue(Result(8)).

336.Return Result(9).

Issue: Add an explanation of how the grammar differs slightly from that of C and Java here.

11.13ASSIGNMENT OPERATORS
Syntax

AssignmentExpression :
ConditionalExpression
LeftHandSideExpression AssignmentOperator AssignmentExpression

AssignmentOperator :: one of
= *= /= = 4= —= K<K= DO= DOD>= &= = |=

11.13.1Simple Assignment (=)

The production AssignmentExpression : LeftHandSideExpression = AssignmentExpression is evaluated
as follows:

337.Evaluate LeftHandSideExpression.

338.Evaluate AssignmentExpression.

339.Call GetValue(Result(2)).

340.Call PutValue(Result(1), Result(3)).

341.Return Result(3).

11.13.2Compound Assignment (op=)

The production AssignmentExpression : LeftHandSideExpression @= AssignmentExpression, where @
represents one of operators indicated above, is evaluated as follows:

342 Evaluate LeftHandSideExpression.

343.Call GetValue(Result(1)).

344 Evaluate AssignmentExpression.

345.Call GetValue(Result(2)).

346.Apply operator @ to Result(3) and Result(4).

347.Call PutValue(Result(1), Result(5)).

348.Return Result(5).

11.14CoMMA OPERATOR (,)
Syntax

Expression :
AssignmentExpression
Expression , AssignmentExpression

Semantics

The production Expression : Expression , AssignmentExpression is evaluated as follows:
349.Evaluate Expression.

350.Call GetValue(Result(1)).

351.Evaluate AssignmentExpression.

352.Call GetValue(Result(3)).

353.Return Result(4).

12STATEMENTS

Syntax

Statement :
Block
VariableStatement
EmptyStatement
ExpressionStatement
IfStatement
IterationStatement
ContinueStatement
BreakStatement
ReturnStatement
WithStatement

Block :
{ StatementList,,, }

StatementList :
Statement
StatementList Statement

Semantics
The production Block : { }is evaluated as follows:
354.Return Onormal completionO.

The production Block : { StatementList }is evaluated as follows:
355.Evaluate StatementList.
356.Return Result(1).

The production StatementList : StatementList Statement is evaluated as follows:

357.Evaluate StatementList.

358.1f Result(1) is an abrupt completion, return Result(1).

359.Evaluate Statement.

360.1f Result(3) is a value completion, return Result(3).

361.1f Result(1) is not a value completion, return Result(3).

362.Let V be the value carried by Result(1).

363.1If Result(3) is Oabrupt completion because of breakO,)
return Oabrupt completion after value 7 because of breakO.

364.If Result(3) is Oabrupt completion because of cont inueO,)
return Oabrupt completion after value V' because of continueO.

365.Return Onormal completion after value VO.

12.1VARIABLE STATEMENT
Syntax

VariableStatement :
var VariableDeclarationList ;

VariableDeclarationList :
VariableDeclaration
VariableDeclarationList , VariableDeclaration

VariableDeclaration :
Identifier Initializer,

Initializer :
= AssignmentExpression

Description

If the variable statement occurs inside a FunctionDeclaration, the variables are defined with function-
local scope in that function. Otherwise, they are defined with global scope, that is, they are created as
members of the global object as described in section Error: Reference source not found. Variables are
created when the execution scope is entered. A Block does not define a new execution scope. Only
Program and FunctionDeclaration produce a new scope. Eval code and anonymous code also define a
new execution scope, but these are not an explicit part of the grammer of ECMAScript. Variables are
initialized to the undefined value when created. A variable with an Initializer is assigned the value
of its AssignmentExpression when the VariableStatement is executed.

Semantics

The production VariableStatement : var VariableDeclarationList ; is evaluated as follows:
366.Evaluate VariableDeclarationList.
367.Return Onormal completionO.

The production VariableDeclarationList :VariableDeclaration is evaluated as follows:
368.Evaluate VariableDeclaration.

The production VariableDeclarationList : VariableDeclarationList , VariableDeclaration is evaluated
as follows:

369.Evaluate VariableDeclarationList.

370.Evaluate VariableDeclaration.

The production VariableDeclaration : Identifier is evaluated as follows:
371.Evaluate Identifier.

ISSUE: Does it really evaluate the identifier, or does it take no action?

The production VariableDeclaration : Identifier Initializer is evaluated as follows:
372.Evaluate Identifier.

373.Evaluate Initializer.

374.Call GetValue(Result(2)).

375.Call PutValue(Result(1), Result(3)).

The production Initializer : = AssignmentExpression is evaluated as follows:

376.Evaluate AssignmentExpression.
377.Return Result(1).

12.2EMPTY STATEMENT
Syntax
EmptyStatement :

’

Semantics

The production EmptyStatement : ; is evaluated as follows:
378.Return Onormal completionO.

12.3EXPRESSION STATEMENT
Syntax

ExpressionStatement :
Expression ;

Semantics

The production ExpressionStatement : Expression ; is evaluated as follows:

379.Evaluate Expression.
380.Call GetValue(Result(1)).
381.Return Onormal completion after value VO, where the value ¥ is Result(2).

12.4THE if STATEMENT

Syntax
IfStatement :
if (Expression) Statement else Statement
if (Expression) Statement
Semantics

The production [fStatement : 1 £ (Expression) Statement else Statement is evaluated as follows:
382.Evaluate Expression.

383.Call GetValue(Result(1)).

384.Call ToBoolean(Result(2)).

385.1f Result(3) is false, go to step 7.

386.Evaluate the first Statement.

387.Return Result(5).

388.Evaluate the second Statement.

389.Return Result(7).

The production [fStatement : 1£ (Expression) Statement is evaluated as follows:
390.Evaluate Expression.

391.Call GetValue(Result(1)).

392.Call ToBoolean(Result(2)).

393.1f Result(3) is false, return Onormal completionO.

394.Evaluate Statement.

395.Return Result(5).

12.5ITERATION STATEMENTS
Syntax

IterationStatement :
while (Expression) Statement
for (Expression,, ; Expression,, ; Expression,,) Statement
for (var VariableDeclarationList ; Expression,, ; Expression,,) Statement
for (LeftHandSideExpression in Expression) Statement
for (var Identifier Initializer,, in Expression) Statement

Description

These statements all define a “continue label” and a “break label” for use by an enclosed continue or
break statement. For the purposes of this specification, a label is a step number in an algorithm.
Continue labels are held in a continue label stack and break labels are held in a break label stack. These
stacks are local to the current execution scope. To execute a continue or break statement,
execution control is transferred to the label specified by the top value of the corresponding label stack.
If an implementation of ECMAScript has distinct compile and execute phases, the label stacks need
only be maintained during compilation as the label that a continue or break statement jumps to is
not dependent on any runtime state.

The WithStatement affects both stacks for the purposes of clean up: to remove its object from the scope
chain.

In algorithms, we use “PushBreak(n)” as short hand for “Push Step(n) on the break label stack”.
Similarly we use “PushContinue(n)”, “PopBreak(n)” and “PopContinue(n)” as short hand for the

obvious phrases. We use “JumpBreak” as short hand for “Transfer execution control to the position
indicated by the top label of the break label stack” and similarly for “JumpContinue”.

12.5.1The while Statement

The production IterationStatement : while (Expression) Statement is evaluated as follows:

396.Let C be Onormal completionO.

397.Evaluate Expression.

398.Call GetValue(Result(1)).

399.Call ToBoolean(Result(2)).

400.If Result(3) is false, go to step 12.

401.Evaluate Statement.

402.1f Result(6) a value completion, change C to be Onormal completion after value VO where V is the
value carried by Result(6).

403.1f Result(6) is a break completion, go to step 12.

404.1f Result(6) is a continue completion, go to step 1.

405.1f Result(6) is a return completion, return Result(6).

406.Go to step 2.

407.Return C.

12.5.2The for Statement

The production IterationStatement : £oxr (Expression ; Expression ; Expression) Statement is

evaluated as follows:

408.If the first Expression is not present, go to step 4.

409.Evaluate the first Expression.

410.Call GetValue(Result(2)). (This value is not used.)

411.Let C be Onormal completionO.

412.1f the second Expression is not present, go to step 9.

413.Evaluate the second Expression.

414.Call GetValue(Result(5)).

415.Call ToBoolean(Result(6)).

416.1f Result(7) is false, go to step 19.

417.Evaluate Statement.

418.1f Result(10) a value completion, change C to be Onormal completion after value VO where V is
the value carried by Result(6).

419.1f Result(10) is a break completion, go to step 19.

420.1f Result(10) is a cont inue completion, go to step 5.

421.1f Result(10) is a return completion, return Result(10).

422.1f the third Expression is not present, go to step 5.

423.Evaluate the third Expression.

424.Call GetValue(Result(11)). (This value is not used.)

425.Go to step 5.

426.Return C.

ISSUE: Finish the necessary changes for the other three forms of iteration statement for value returns.
The production IterationStatement : £or (var VariableDeclarationList ; Expression ; Expression)
Statement is evaluated as follows:

427.Evaluate VariableDeclarationList.

428.1f the second Expression is not present, go to step 7.

429.Evaluate the second Expression.

430.Call GetValue(Result(3)).

431.Call ToBoolean(Result(4)).

432.1f Result(5) is false, go to step 15.

433.Evaluate Statement.

434.1f Result(7) is Oabrupt completion because of breakO, go to step 15.

435.1f Result(7) is Oabrupt completion because of continueO, go to step 11.

436.1If Result(7) is Oabrupt completion because of return VO, return Result(7).
437.1f the third Expression is not present, go to step 2.

438.Evaluate the third Expression.

439.Call GetValue(Result(11)). (This value is not used.)

440.Go to step 2.

441.Return Onormal completionO.

12.5.3The for..in Statement

The production lterationStatement : £or (LeftHandSideExpression in Expression) Statement is

evaluated as follows:

442 .Evaluate the Expression.

443.Call GetValue(Result(1)).

444.Call ToObject(Result(2)).

445.Get the name of the next property of Result(3) which doesn’t have the DontEnum attribute. If there
is no such property, go to step 12.

446.Evaluate the LeftHandSideExpression (it may be evaluated repeatedly).

447.Call PutValue(Result(5), Result(4)).

448.Evaluate Statement.

449.1f Result(7) is Oabrupt completion because of breakO, go to step 12.

450.1f Result(7) is Oabrupt completion because of cont inueO, go to step 4.

451.1f Result(7) is Oabrupt completion because of return VO, return Result(7).

452.Go to step 4.

453 Return Onormal completionO.

The production lterationStatement : £oxr (var Identifier Initializer,, in Expression) Statement is

evaluated as follows:

454.1f the Initializer is not present, go to step 6.

455.Evaluate the Identifier.

456.Evaluate the Initializer.

457.Call GetValue(Result(3)).

458.Call PutValue(Result(2), Result(4)).

459.Evaluate the Expression.

460.Call GetValue(Result(6)).

461.Call ToObject(Result(7)).

462.Get the name of the next property of Result(8) which doesn’t have the DontEnum attribute. If there
is no such property, go to step 17.

463.Evaluate the Identifier (yes, it may be evaluated repeatedly).

464.Call PutValue(Result(10), Result(9)).

465.Evaluate Statement.

466.1f Result(12) is Oabrupt completion because of breakO, go to step 17.

467.1f Result(12) is Oabrupt completion because of cont inueO, go to step 9.

468.1If Result(12) is Oabrupt completion because of return VO, return Result(12).

469.Go to step 9.

470.Return Onormal completionO.

The mechanics of enumerating the properties (step 4) is implementation dependent. The order of
enumeration is defined by the object. Properties of the object being enumerated may be deleted
during enumeration. If a property that has not yet been visited during enumeration is deleted, then it
will not be visited. If new properties are added to the object being enumerated during enumeration, the
newly added properties are not guaranteed to be visited in the active enumeration.

Issue: Need to talk about enumerating properties of the prototype, and so on, recursively. Are shadowed
properties of the prototype(s) enumerated? (I hope not!)

12.6THE continue STATEMENT

Syntax

ContinueStatement :
continue ;

An ECMAScript program is considered syntactically incorrect and may not be executed at all if it
contains a continue statement that is not within at least one while or £or statement. The
continue statement is evaluated as:

471.Return Oabrupt completion because of continueO..

12.7THE break STATEMENT
Syntax

BreakStatement :
break ;

An ECMAScript program is considered syntactically incorrect and may not be executed at all if it
contains a break statement that is not within at least one while or for statement. The break
statement is evaluated as:

472.Return Oabrupt completion because of breakO.

12.8THE return STATEMENT

Syntax

ReturnStatement :
return [no LineTerminator here] Expression,,,,, ;

An ECMAScript program is considered syntactically incorrect and may not be executed at all if it
contains a return statement that is not within the Block of a FunctionDeclaration. It causes a
function to cease execution and return a value to the caller. If Expression is omitted, the return value is
the undefined value. Otherwise, the return value is the value of Expression.

The production ReturnStatement :: return [no LineTerminator here] EXxpression,, ; is evaluated as:
473.1f the Expression is not present, return Oabrupt completion because of return undefinedO.
474.Evaluate Expression.

475.Call GetValue(Result(2)).

476.Return Oabrupt completion because of return VO, where the value 7 is Result(3).

12.9THE with STATEMENT

Syntax

WithStatement :
with (Expression) Statement

Description

Thewith statement adds a computed object to the front of the scope chain of the current execution
context, then executes a statement with this augmented scope chain, then restores the scope chain.

Semantics

The production WithStatement : with (Expression) Statement is evaluated as follows:
477.Evaluate Expression.

478.Call GetValue(Result(1)).

479.Call ToObject(Result(2)).

480.Add Result(3) to the front of the scope chain.

481.Evaluate Statement using the augmented scope chain from step 4.

482.Remove Result(3) from the front of the scope chain.

483.Return Result(5).

Discussion

Note that no matter how control leaves the embedded Statement, whether normally or by some form of
abrupt completion, the scope chain is always restored to its former state.

13FUNCTION DEFINITION

Syntax

FunctionDeclaration :
function Identifier (FormalParameterList,,) Block

FormalParameterList :
Identifier
FormalParameterList , Identifier

Semantics

Defines a property of the global object whose name is the Identifier and whose value is a function
object with the given parameter list and statements. If the function definition is supplied text to the
eval function and the calling context has an activation object, then the declared function is added to
the activation object instead of to the global object..

14PROGRAM

Syntax

Program :
SourceElements

SourceElements :
SourceElement
SourceElements SourceElement

SourceElement :
Statement
FunctionDefinition

15NATIVE ECMASCRIPT OBJECTS

There are certain built-in objects available whenever an ECMAScript program begins execution. One,
the global object, is in the scope chain of the executing program. Others are accessible as initial
properties of the global object.

Many built-in objects are functions: they can be invoked with arguments. Some of them furthermore
are constructors: they are functions intended for use with the new operator. A few of them are intended
to be used both as ordinary functions and as constructors. . For each built-in function, this specification
describes the arguments required by that function and properties of the function object. For each built-
in constructor, this specification furthermore describes properties of the prototype object of that
constructor and properties of specific object instances returned by a new expression that invokes that
constructor.

Every built-in function object described in this sectionNwhether as a constructor, an ordinary function,
or bothNhas a 1ength property whose value is an integer. Unless otherwise specified, this value is
equal to the number of named arguments shown in the section heading for the function description; for
example, the function object that is the initial value of the indexOf£ property (section of the String
prototype object is described under the section heading OindexOf(searchString, position)O which
shows the two named arguments searchString and position; therefore the value of the 1length
property of that function object is 2. Sometimes the same function object is described under more than
one heading to emphasize its different behaviors when given different numbers of actual arguments; in
such a case, unless otherwise specified, the 1ength value is the largest number of arguments shown in
any applicable section heading. For example, the function object that is the initial value of the Object
property of the global object is described under four separate headings: as a function of one argument
(section 15.2.1.1), as a function of zero arguments (section 15.2.1.2), as a constructor of one argument
(15.2.2.1), and as a constructor of zero arguments (15.2.2.2). The largest number of arguments
described is 1, so that value of the 1ength property of that function object is 1.

In every case, a 1ength property of a built-in function object described in this section has the
attributes ReadOnly, DontDelete, and DontEnum (and no others). Every other property described in
this section has the attribute DontEnum (and no others) unless otherwise specified.

15.1THE GLOBAL OBJECT

The global object does not have a [[Construct]] property; it is not possible to use the global object as a
constructor with the new operator.

15.1.1Value Properties of the Global Object

15.1.1.1NaN
The initial value of NaN is NaN.

15.1.1.2Infinity

The initial value of Infinity is +oo.

15.1.2Function Properties of the Global Object

15.1.2.1eval(x)

484.1f x is not a string value, return x.
485.Parse x as an ECMAScript Program. If the parse fails, generate a runtime error
486.Evaluate the program from step 2.

487.1f Result(3) is Onormal completion after value VO, return the value V.
488.Return undefined.

15.1.2.2parselnt(string, radix)
15.1.2.3parseFloat(string)
15.1.2.4escape(string)
15.1.2.5unescape(string)

15.1.2.6isNaN(number)

Applies ToNumber to its argument, then returns true if the result is NaN, and otherwise returns false.

15.1.2.7isFinite(number)

Applies ToNumber to its argument, then returns false if the result is NaN, +oo, or —o, and otherwise
returns true.

15.20BJECT OBJECTS

15.2.1The Object Function

When Object is called as a function rather than as a constructor, it performs a type conversion.

15.2.1.10bject(value)

When the Object function is called with one argument value, the following steps are taken:

489.1f the value is null or undefined, create and return a newobject with no properties (other than
internal properties) exactly as for the expression new Object ().

490.Return ToObject(value).

15.2.1.20bject()

When the Object function is called with no arguments, the following step is taken:
491.Create and return a newobject with no properties (other than internal properties) exactly as for the
expression new Object ().

15.2.2The Object Constructor

When Object is called as part of a new expression, it is a constructor that may create an object.

15.2.2.1new Object(value)

When the Object constructor is called with one argument value, the following steps are taken:
492.1f the type of the value is not Object, go to step 6.
493.1f the value is a native ECMAScript object, do not create a new object; simply return value.
494.1f the value is a host object, then either step 4 or step 5 may be executed, the choice being made in
an implementation-dependent manner that may depend on the host object.
495.Return value.
496.Create a new native ECMAScript object to serve as a OwrapperO for the host object.
The [[Prototype]] property of the newly constructed object is set to value.
The [[Class]] property of the newly constructed object is set to "Object".
The [[Value]] property of the newly constructed object is set to value.
Return the newly created native object.
497.1f the type of the value is not String, go to step 8.
498.Create a new native ECMAScript object to serve as a OwrapperO for the string value, exactly as
for the expression new String (value).
The [[Prototype]] property of the newly constructed object is set to the String prototype object.

The [[Class]] property of the newly constructed object is set to "String".
The [[Value]] property of the newly constructed object is set to value.
Return the newly created native object.
499.1f the type of the value is not Boolean, go to step 10.
500.Create a new native ECMAScript object to serve as a OwrapperO for the boolean value, exactly as
for the expression new Boolean (value).
The [[Prototype]] property of the newly constructed object is set to the Boolean prototype
object.
The [[Class]] property of the newly constructed object is set to "Boolean".
The [[Value]] property of the newly constructed object is set to value.
Return the newly created native object.
501.1If the type of the value is not Number, go to step 12.
502.Create a new native ECMAScript object to serve as a OwrapperO for the number value, exactly as
for the expression new Number (value).
The [[Prototype]] property of the newly constructed object is set to the Number prototype
object.
The [[Class]] property of the newly constructed object is set to "Number".
The [[Value]] property of the newly constructed object is set to value.
Return the newly created native object.
503.Create a new native ECMAScript object.
The [[Prototype]] property of the newly constructed object is set to the Object prototype
object.
The [[Class]] property of the newly constructed object is set to "Object".
The newly constructed object has no [[Value]] property.
Return the newly created native object.

15.2.2.2new Object()

When the Object constructor is called with no argument, the following step is taken:
504.Create a new native ECMAScript object.
The [[Prototype]] property of the newly constructed object is set to the Object prototype
object.
The [[Class]] property of the newly constructed object is set to "Object".
The newly constructed object has no [[Value]] property.
Return the newly created native object.

15.2.3Properties of the Object Constructor

The value of the internal [[Prototype]] property of the Object constructor is the Function prototype
object.

Besides the internal [[Call]] and [[Construct]] properties and the 1ength property, the Object
constructor has the following properties:

15.2.3.10bject.prototype
The initial value of Object . prototype is the built-in Object prototype object.

15.2.4Properties of the Object Prototype Object

15.2.4 . 1constructor

The initial value of Object .prototype.constructor is the built-in Object constructor.

15.2.4.2toString()

When the toString method is called, the following steps are taken:

505.Get the [[Class]] property of this object.

506.Call ToString(Result(1)).

507.Compute a string value by concatenating the three strings " [object ", Result(2),and "1".
508.Return Result(3).

15.2.4.3valueOf()

As a rule, the valueOf method for an object simply returns the object; but if the object is a OwrapperO
for a host object, as may perhaps be created by the Object constructor (see section 15.2.2.1), then the
contained host object should be returned.

When the valueOf£ method is called, the following steps are taken:

509.Get the [[Class]] property of this object.

510.If Result(1) is "Object", return this object.

511.Get the [[Value]] property of this object.

512.1f Result(3) is undefined, return this object.

513.Return Result(3).

15.2.5Properties of Object Instances

Object instances have no special properties beyond those inherited from the Object prototype object.

15.3FUNCTION OBJECTS

15.3.1The Function Function

When Function is called as a function rather than as a constructor, it creates and initializes a new
function object. Thus the function call Function(. . .) is equivalent to the object creation
expression new Function(...) with the same arguments.

15.3.1.1Function(p1, p2, . . ., pn, body)

When the Function function is called with some arguments p/, p2, . . ., pn, body (where n might be
0, that is, there are no OpO arguments), the following steps are taken:
514.Create and return a newFunction object exactly as for the expression

new Function(pl,p2,...,pn, body).

15.3.2The Function Constructor

When Function is called as part of a new expression, it is a constructor: it initializes the newly
created object.

15.3.2.1Function(p1, p2, . . ., pn, body)

The last argument specifies the body (executable code) of a function; any preceding arguments specify
formal parameters.

When the Function constructor is called with some arguments p/, p2, .. ., pn, body (where n might
be 0, that is, there are no OpO arguments), the following steps are taken:

515.Let P be the empty strin.

516.1f no arguments were given, let body be the empty string and go to step 13.

517.1f one argument was given, call it body and go to step 13.

518.Let 4 be the first argument.

519.Let P be ToString(Result(4)).

520.Let k be 2.

521.1If k equals the number of arguments, call the kOth argument hody and go to step 13.

522.Let A be the kOth argument.

523.Call ToString(Result(8)).

524.Let P be the result of concatenating the previous value of P, the string ", " (a comma), and
Result(9).

525.Increase k by 1.

526.Go to step 7.

527.Call ToString(body).

528.Let F be the newly constructed Function object.
529.The [[Class]] property of F is set to "Function".

530.Create an executable function whose name is "Anonymous ", whose formal parameters are
specified by P and whose body is specified by Result(13). The string value P must be parsable

as a FormalParameterList,,; the string value result(13) must be parsable as a StatementList,.
(Note that both P and Result(13) may contain whitespace, line terminators, and comments.)
However, if either P or Result(13) is syntactically incorrect, or otherwise cannot be interpreted

as part of a correct ECMAScript function definition, then return an implementation-dependent
value that is not a Function object.
531.The [[Value]] property of F is set to Result(16).

532.Compute, as an integer number value of positive sign, the number of formal parameters that
resulted from the parse of P as a FormalParameterList,,.

533.The 1ength property of F is set to Result(18).

534.Create a new object as if by the expression new Object ().
535.The prototype property of F'is set to Result(20).

536.The arguments property of F is set to null.

Note that it is permissible but not necessary to have one argument for each formal parameter to be
specified. For example, all three of the following expressions produce the same result:

new Function(0ad, 0bO, 0cO, Oreturn a+b+cl)
new Function(0a, b, cO, Oreturn a+b+c0)
new Function(0a,b06, 0cO, Oreturn a+b+cO)

A prototype property is automatically created for every function, against the possibility that the
function will be used as a constructor. However, note that this prototype object is not automatically
given a constructor property. It is conventional for a prototype object to have a constructor
property whose value is the Function object whose prototype property has that prototype as its
value, but the creation of this property, if that is desired, is the responsibility of the programmer.

The 1ength property that is created in step 19 does not have the ReadOnly, DontDelete, or DontEnum
attribute. The prototype property that is created in step 21 does not have the DontEnum attribute.

15.3.3Properties of the Function Constructor

15.3.3.1Function.prototype

The value of Function.prototype is the built-in Function prototype object.

15.3.3.2Function.length

The 1ength property is 1. (Of course, the Function constructor accepts more than one argument,
because it accepts a variable number of arguments.)

15.3.4Properties of the Function Prototype Object

Note that the Function prototype object is itself a Function object.
WHAT HAPPENS WHEN YOU INVOKE IT???

15.3.4.1constructor

The initial value of Function.prototype.constructor is the built-in Function constructor.

15.3.4.2toString()

An implementation-dependent representation of the function is returned. This representation has the
syntax of a FunctionDeclaration. Note in particular that the use and placement of whitespace, line
terminators, and semicolons within the representation string is implementation-dependent.

15.3.4.3valueOf()

For Function objects, valueOf does the same thing as toString.

15.3.5Properties of Function Instances

15.3.5.1length

The value of the Length property is usually an integer that indicates the OtypicalO number of
arguments expected by the function. However, the language permits the function to be invoked with

some other number of arguments. The behavior of a function when invoked on a number of arguments
other than the number specified by its 1ength property depends on the function.

15.3.5.2prototype

The value of the prototype property may be used to intialize the internal [[Prototype]] property of a
newly created object when the Function object is invoked as a constructor for that newly created object.

15.3.5.3arguments

The value of the arguments property is normally null if there is no outstanding invocation of the
function in progress (that is, the function has been called but has not yet returned). When a Function
object is invoked, its arguments property is Odynamically boundO to a newly created Array object
that contains the arguments on which it was invoked; that is, the old value of the arguments property
is saved and the new Array object becomes its new value; then, when that function invocation has
completed execution, the old value of the arguments property is restored as the function returns to its
caller.

15.4ARRAY OBJECTS

Array objects give special treatment to a certain class of property names. A property name P (in the
form of a string value) is an array index if and only if ToString(ToUint32(P)) is equal to P and
ToUint32(P) is not equal to 2*>~1.Every Array object has a Length property whose value is always an
integer with positive sign and less than 2°2. Tt is always the case that the length property is
numerically greater than the name of every property whose name is an array index; whenever a
property of an Array object is created or changed, other properties are adjusted as necessary to maintain
this invariant. Specifically, whenever a property is added whose name is an array index, the length
property is changed, if necessary, to be one more than the numeric value of that array index; and
whenever the the 1length property is changed, every property whose name is an array index whose
value is not smaller than the new length is automatically deleted. This constraint applies only to
properties of the Array object itself and is unaffected by 1ength or array index properties that may be
inherited from its prototype.

15.4.1The Array Constructor

When Array is called as part of a new expression, it is a constructor: it initializes the newly created
object.

15.4.1.1new Array(item0, item1, . . .)

This description applies if and only if the Array constructor is given two or more arguments.
The [[Class]] property of the newly constructed object is set to "Array".
The 1ength property of the newly constructed object is set to the number of arguments.

The 0 property of the newly constructed object is set to item0; the 1 property of the newly constructed
object is set to ifem; and, in general, for as many arguments as there are, the k property of the newly
constructed object is set to argument k, where the first argument is considered to be argument number
0.

15.4.1.2new Array(len)

The [[Class]] property of the newly constructed object is set to "Array".

If the argument /en is a number, then the 1ength property of the newly constructed object is set to len.
If the argument /en is not a number, then the 1ength property of the newly constructed object is set to
1 and the 0 property of the newly constructed object is set to len.

15.4.1.3new Array()

The [[Class]] property of the newly constructed object is set to "Array".
The 1ength property of the newly constructed object is set to +0.

15.4.2Properties of the Array Constructor

The value of the internal [[Prototype]] property of the Array constructor is the Function prototype
object.

Besides the internal [[Call]] and [[Construct]] properties, the Array constructor has the following
properties:

15.4.2.1Array.prototype
The value of Array.prototype is the built-in Array prototype object.

15.4.2.2Array.length

The 1ength property is 1. (Of course, the Array constructor accepts more than one argument, because
it accepts a variable number of arguments.)

15.4.3Properties of the Array Prototype Object

Note that the Array prototype object is itself an array; it has a 1ength property (whose initial value is
+0) and the special internal [[Put]] method described in section 15.4.4.1.In following descriptions of
functions that are properties of the Array prototype object, the phrase Othis objectO refers to the object
that is the this value for the invocation of the function. It is permitted for this to refer to an object
for which the value of the internal [[Class]] property is not "Array".

15.4.3.1constructor

The initial value of Array.prototype.constructor is the built-in Array constructor.

15.4.3.2toString()

The elements of this object are converted to strings, and these strings are then concatenated, separated
by comma characters. The result is the same as if the built-in join method were invoked for this
object with no argument.

15.4.3.3valueOf()

The elements of this object are converted to strings, and these strings are then concatenated, separated
by comma characters. The result is the same as if the built-in join method were invoked for this
object with no argument.

In other words, for Array objects, valueOf does the same thing as toString.

15.4.3.4join(separator)

The elements of the array are converted to strings, and these strings are then concatenated, separated by
occurrences of the separator. If no separator is provided, a single comma is used as the separator.
When the join method is called with one argument separator, the following steps are taken:
537. Call the [[Get]] method of this object with argument "length".

538.Call ToUint32(Result(1)).

539.1f separator is undefined or not supplied, let separator be the single-character string ", ".
540.Call ToString(separator).

541.1f Result(2) is 0, return the empty string.

542.Call the [[Get]] method of this object with argument O.

543.1f Result(6) is undefined or null, use the empty string; otherwise, call ToString(Result(6)).
544.Let R be Result(7).

545.Let kbe 1.

546.1f k equals Result(2), return R.

547.Let S be a string value produced by concatenating R and Result(4).

548.Call the [[Get]] method of this object with argument £.

549.1f Result(12) is undefined or null, use the empty string; otherwise, call ToString(Result(12)).
550.Let R be a string value produced by concatenating S and Result(13).

551.Increase k by 1.

552.Go to step 10.

Note that the join function is intentionally generic; it does not require that its this value be an array.
Therefore it can be transferred to other kinds of objects for use as a method.

15.4.3.5reverse()

The elements of the array are rearranged so as to reverse their order. This object is returned as the result
of the call.

553.Call the [[Get]] method of this object with argument "length".

554.Call ToUint32(Result(1)).

555.Compute floor(Result(2)/2).

556.Let k be 0.

557.1f k equals Result(3), return this object.

558.Compute Result(2)-k-1.

559.Call the [[Get]] method of this object with argument £.

560.Call the [[Get]] method of this object with argument Result(6).

561.Call the [[Put]] method of this object with arguments & and Result(8).
562.Call the [[Put]] method of this object with arguments Result(6) and Result(7).
563.Increase k by 1.

564.Go to step 5.

Note that the reverse function is intentionally generic; it does not require that its this value be an
array. Therefore it can be transferred to other kinds of objects for use as a method.

15.4.3.6sort()

565.Call the [[Get]] method of this object with argument "length".

566.Call ToUint32(Result(1)).

567.Perform an implementation-dependent sequence of calls to the [[Get]] and [[Put]] methods of this
object where the first argument for each call is a nonnegative integer less than Result(2). After
this sequence is complete, this object must have the following two properties. First, there must
be some mathematical permutation ; of the nonnegative integers less than Result(2), such that
for every nonnegative integer j less than Result(2), new[#(j)] is exactly the same value as
old[/].
Second, for all nonnegative integers j and k, each less than Result(2), if either
old[j]<old[k],or bothj< kand old[j]<=old[k], then m(j) < m(k). Here we use the
notation old[/] to refer to the hypothetical result of calling the [[Get]] method of this object

with argument j before this step is executed, and the notation new[;] to refer to the
hypothetical result of calling the [[Get]] method of this object with argument j after this step
has been completely executed.

568.Return this object.

Note that the sort function is intentionally generic; it does not require that its this value be an array.
Therefore it can be transferred to other kinds of objects for use as a method.

15.4.4Properties of Array Instances

Array instances inherit properties from the Array prototype object and also have the following
properties.

15.4.4 A[[Put]](P, V)

Array objects use a variation of the [[Put]] method used for other native ECMAScript objects (section
8.6.2.2).

Assume 4 is an Array object and P is a string.

When the [[Put]] method of 4 is called with property P and value ¥, the following steps are taken:
569.Call the [[CanPut]] method of 4 with name P.

570.If Result(1) is false, return.

571.1f 4 doesn’t have a property with name P, go to step 7.

572.1fPis "length", go to step 12.

573.Set the value of property P of A to V.

574.Go to step 8.

575.Create a property with name P, set its value to V" and give it empty attributes.

576.1f P is not an array index, return.

577.1f A itself has a property (not an inherited property) named "length", andToUint32(P) is less
than the value of the 1ength property of 4, then return.

578.Change (or set) the value of the 1ength property of 4 to ToUint32(P)+1.

579.Return.

580.Compute ToUint32(V).

581.For every integer & that is less than the value of the 1ength property of 4 but not less than
Result(12), if A4 itself has a property (not an inherited property) named ToString(k), then delete
that property.

582.Set the value of property P of 4 to Result(12).

583.Return.

15.4.4 2length

The 1ength property of this Array object is always numerically greater than the name of every
property whose name is an array index.

The 1ength property has the DontDelete attribute.

15.5STRING OBJECTS

15.5.1The String Function

When String is called as a function rather than as a constructor, it performs a type conversion.

15.5.1.1String(value)

Returns a string value (not a String object) computed by ToString(value).

15.5.1.2String()
Returns the empty string " ".

15.5.2The String Constructor

When String is called as part of a new expression, it is a constructor: it initializes the newly created
object.

15.5.2.1new String(value)

The [[Class]] property of the newly constructed object is set to "String".
The [[Value]] property of the newly constructed object is set to ToString(value).

15.5.2.2new String()

The [[Class]] property of the newly constructed object is set to "String".
The [[Value]] property of the newly constructed object is set to the empty string.

15.5.3Properties of the String Constructor

The value of the internal [[Prototype]] property of the String constructor is the Function prototype
object.

Besides the internal [[Call]] and [[Construct]] properties and the 1ength property, the String
constructor has the following propert

15.5.3.1String.prototype
The value of String.prototype is the built-in String prototype object.

15.5.3.2String.fromCharCode(char0Q, char1, . . .)

Returns a string value containing as many characters asthe number of arguments. Each argument
specifies one character of the resulting string, with the first argument specifying the first character, and
so on, from left to right. An argument is converted to a character by applying the operation ToUint16
(section 9.7) and regarding the resulting 16-bit integer as the Unicode encoding of a character. If no
arguments are supplied, the result is the empty string.

15.5.4Properties of the String Prototype Object

In following descriptions of functions that are properties of the String prototype object, the phrase Othis
String objectO refers to the object that is the this value for the invocation of the function; it is an
error if this does not refer to an object for which the value of the internal [[Class]] property is not
"String". Also, the phrase Othis string valueO refers to the string value represented by this String
object, that is, the value of the internal [[Value]] property of this String object.

15.5.4.1constructor

The initial value of String.prototype.constructor is the built-in String constructor.

15.5.4.2toString()

Returns this string value. (Note that, for a String object, the toString method happens to return the
same thing as the valueOf method.)

15.5.4.3valueOf()

Returns this string value.

15.5.4.4charAt(pos)

Returns a string containing the character at position pos in this string. If there is no character at that

position, the result is the empty string. The result is a string value, not a String object.

If pos is a value of Number type, then the result of x . charAt (pos) is equal to the result of

x.substring(pos, pos+1) except in the strange case where pos is greater than -1 but less than 0.

When the charAt method is called with one argument pos, the following steps are taken:

584.Call ToString, giving it the this value as its argument.

585.Call Tolnteger(pos).

586.Compute the number of characters in Result(1).

587.1f Result(2) is less than 0 or is not less than Result(3), return the empty string.

588.Return a string of length 1, containing one character from Result(1), namely the character at
position Result(2), where the first (leftmost) character in Result(1) is considered to be at
position 0, the next one at position 1, and so on.

Note that the charAt function is intentionally generic; it does not require that its this value be an

array. Therefore it can be transferred to other kinds of objects for use as a method.

15.5.4.5charCodeAt(pos)

Returns a number (a nonnegative integer less than 2') representing the Unicode encoding of the

character at position pos in this string. If there is no character at that position, the result is NaN.

When the charCodeAt method is called with one argument pos, the following steps are taken:

589.Call ToString, giving it the this value as its argument.

590.Call Tolnteger(pos).

591.Compute the number of characters in Result(1).

592.1f Result(2) is less than 0 or is not less than Result(3), return NaN.

593.Return a value of Number type, of positive sign, whose magnitude is the Unicode encoding of one
character from Result(1), namely the character at position Result(2), where the first (leftmost)
character in Result(1) is considered to be at position 0, the next one at position 1, and so on.

Note that the charCodeAt function is intentionally generic; it does not require that its this value be

an array. Therefore it can be transferred to other kinds of objects for use as a method.

15.5.4.6indexOf(searchString, position)

If the given searchString appears as a substring of the result of converting this object to a string, at one

or more positions that are at or to the right of the specified position, then the index of the leftmost such

position is returned; otherwise -1 is returned. If position is undefined or not supplied, 0 is assumed, so

as to search all of the string.

When the index0Of method is called with two arguments searchString and position, the following

steps are taken:

594.Call ToString, giving it the this value as its argument.

595.Call ToString(searchString).

596.Call Tolnteger(position). (If position is undefined or not supplied, this step produces the value 0).

597.Compute the number of characters in Result(1).

598.Compute min(max(Result(3), 0), Result(4)).

599.Compute the number of characters in the string that is Result(2).

600.Compute the smallest possible integer £ not smaller than Result(5) such that k&+Result(6) is not
greater than Result(4), and for all nonnegative integers j less than Result(6), the character at
position k+j of Result(1) is the same as the character at position j of Result(2); but if there is
no such integer k, then compute the value -1.

601.Return Result(7).

Note that the indexOf£ function is intentionally generic; it does not require that its this value be an

array. Therefore it can be transferred to other kinds of objects for use as a method.

15.5.4.7lastIndexOf(searchString, position)

If the given searchString appears as a substring of the result of converting this object to a string, at one

or more positions that are at or to the left of the specified position, then the index of the rightmost such

position is returned; otherwise -1 is returned. If position is undefined or not supplied, the length of this

string value is assumed, so as to search all of the string.

When the 1astIndexOf method is called with two arguments searchString and position, the

following steps are taken:

602.Call ToString, giving it the this value as its argument.

603.Call ToString(searchString).

604.Call ToNumber(position).

605.1f Result(3) is NaN, use +; otherwise, call Tolnteger(Result(3)).

606.Compute the number of characters in Result(1).

607.Compute min(max(Result(4), 0), Result(5)).

608.Compute the number of characters in the string that is Result(2).

609.Compute the largest possible integer & not larger than Result(6) such that £+Result(7) is not greater
than Result(5), and for all nonnegative integers j less than Result(7), the character at position
k+j of Result(1) is the same as the character at position j of Result(2); but if there is no such
integer k, then compute the value -1.

610.Return Result(8).

Note that the 1astIndexOf function is intentionally generic; it does not require that its this value be

an array. Therefore it can be transferred to other kinds of objects for use as a method.

15.5.4.8split(separator)

Returns an Array object into which substrings of the result of converting this object to a string have
been stored. The substrings are determined by searching from left to right for occurrences of the given
separator; these occurrences are not part of any substring in the returned array, but serve to divide up
this string value. The separator may be a string of any length.

As a special case, if the separator is the empty string, the string is split up into individual characters; the
length of the result array equals the length of the string, and each substring contains one character.

If the separator is not supplied, then the result array contains just one string, which is the string.

When the split method is called with one argument separator, the following steps are taken:
611.Call ToString, giving it the this value as its argument.
612.Create a new Array object of length 0 and call it 4.

613.1f separator is undefined or not supplied, call the [[Put]] method of 4 with 0 and Result(1) as
arguments, and then return 4.

614.Call ToString(separator).

615.Compute the number of characters in Result(1).

616.Compute the number of characters in the string that is Result(4).

617.Let p be 0.

618.1f Result(6) is zero (the separator string is empty), go to step 17.

619.Compute the smallest possible integer £ not smaller than p such that k&+Result(6) is not greater than
Result(5), and for all nonnegative integers j less than Result(6), the character at position k+j of
Result(1) is the same as the character at position j of Result(2); but if there is no such integer
k, then go to step 14.

620.Compute a string value equal to the substring of Result(1), consisting of the characters at positions
p through k-1, inclusive.

621.Call the [[Put]] method of 4 with A.length and Result(10) as arguments.

622.Let p be k+Result(6).

623.Go to step 9.

624.Compute a string value equal to the substring of Result(1), consisting of the characters from
position p to the end of Result(1).

625.Call the [[Put]] method of 4 with A.length and Result(13) as arguments.

626.Return 4.

627.1f p equals Result(5), return 4.

628.Compute a string value equal to the substring of Result(1), consisting of the single character at
position p.

629.Call the [[Put]] method of 4 with A.length and Result(17) as arguments.

630.Increase p by 1.

631.Go to step 17.

Note that the split function is intentionally generic; it does not require that its this value be an array.

Therefore it can be transferred to other kinds of objects for use as a method.

15.5.4.9substring(start)

Returns a substring of the result of converting this object to a string, starting from character position

start and running to the end of the string. The result is a string value, not a String object.

If the argument is NaN or negative, it is replaced with zero; if the argument is larger than the length of

the string, it is replaced with the length of the string.

When the substring method is called with one argument szart, the following steps are taken:

632.Call ToString, giving it the this value as its argument.

633.Call Tolnteger(start).

634.Compute the number of characters in the string that is the value of the [[Value]] property of this.

635.Compute min(max(Result(2), 0), Result(3)).

636.Return a string whose length is the difference between Result(3) and Result(4), containing
characters from the string that is the value of the [[Value]] property of this, namely the
characters with indices Result(4) through Result(3)-1, in ascending order.

15.5.4.10substring(start, end)

Returns a substring of the result of converting this object to a string, starting from character position
start and running to character position end of the string. The result is a string value, not a String object.

If either argument is NaN or negative, it is replaced with zero; if either argument is larger than the
length of the string, it is replaced with the length of the string.

If start is larger than end, they are swapped.

When the substring method is called with two arguments start and end, the following steps are
taken:

637.Call ToString, giving it the this value as its argument.

638.Call Tolnteger(start).

639.Call Tolnteger (end).

640.Compute the number of characters in Result(1).

641.Compute min(max(Result(2), 0), Result(4)).

642.Compute min(max(Result(3), 0), Result(4)).

643.Compute min(Result(5), Result(6)).

644.Compute max(Result(5), Result(6)).

645.Return a string whose length is the difference between Result(8) and Result(7), containing
characters from Result(1), namely the characters with indices Result(7) through Result(8)-1,
in ascending order.

Note that the substring function is intentionally generic; it does not require that its this value be an
array. Therefore it can be transferred to other kinds of objects for use as a method.

15.5.4.11toLowerCase

Returns a string equal in length to the length of the result of converting this object to a string. The result
is a string value, not a String object.

Every character of the result is equal to the corresponding character of the string, unless that character
has a Unicode 2.0 lowercase equivalent, in which case the lowercase equivalent is used instead.

Note that the toLowerCase function is intentionally generic; it does not require that its this value be
an array. Therefore it can be transferred to other kinds of objects for use as a method.

15.5.4.12toUpperCase

Returns a string equal in length to the length of the result of converting this object to a string. The result
is a string value, not a String object.

Every character of the result is equal to the corresponding character of the string, unless that character
has a Unicode 2.0 uppercase equivalent, in which case the uppercase equivalent is used instead.

Note that the toUppercCase function is intentionally generic; it does not require that its this value be
an array. Therefore it can be transferred to other kinds of objects for use as a method.

15.5.5Properties of String Instances

String instances inherit properties from the String prototype object and also have a [[Value]] property
and a 1length property.

The [[Value]] property is the string value represented by this String object.

15.5.5.1length

The number of characters in the String value represented by this String object.
Once a String object is created, this property is unchanging.

15.6BOOLEAN OBJECTS

15.6.1The Boolean Function

When Boolean is called as a function rather than as a constructor, it performs a type conversion.

15.6.1.1Boolean(value)

Returns a boolean value (not a Boolean object) computed by ToBoolean(value).

15.6.1.2Boolean()

Returns false.

15.6.2The Boolean Constructor

When Boolean is called as part of a new expression, it is a constructor: it initializes the newly created
object.

15.6.2.1new Boolean(value)

The [[Class]] property of the newly constructed Boolean object is set to "Boolean".

The [[Value]] property of the newly constructed Boolean object is set to ToBoolean(value).

15.6.2.2new Boolean()

The [[Class]] property of the newly constructed Boolean object is set to "Boolean".
The [[Value]] property of the newly constructed Boolean object is set to false.

15.6.3Properties of the Boolean Constructor

The value of the internal [[Prototype]] property of the Boolean constructor is the Function prototype
object.

Besides the internal [[Call]] and [[Construct]] properties and the 1ength property, the Boolean
constructor has the following property:

15.6.3.1Boolean.prototype

The value of Boolean.prototype is the built-in Boolean prototype object.

15.6.4Properties of the Boolean Prototype Object

In following descriptions of functions that are properties of the Boolean prototype object, the phrase
Othis Boolean objectO refers to the object that is the this value for the invocation of the function; it is
an error if this does not refer to an object for which the value of the internal [[Class]] property is not
"Boolean". Also, the phrase Othis boolean valueO refers to the boolean value represented by this
Boolean object, that is, the value of the internal [[Value]] property of this Boolean object.

15.6.4.1constructor

The initial value of Boolean.prototype.constructor is the built-in Boolean constructor.

15.6.4.2toString()

If this boolean value is true, then the string "true" is returned. Otherwise, this boolean value must be
false, and therefore the string " false" is returned.

15.6.4.3valueOf()

Returns this boolean value.

15.6.5Properties of Boolean Instances

Boolean instances have no special properties beyond those inherited from the Boolean prototype object.

15.7NUMBER OBJECTS

15.7.1The Number Function

When Number is called as a function rather than as a constructor, it performs a type conversion.

15.7.1.1Number(value)

Returns a number value (not a Number object) computed by ToNumber(value).

15.7.1.2Number()

Returns +0.

15.7.2The Number Constructor

When Number is called as part of a new expression, it is a constructor: it initializes the newly created
object.

15.7.2.1new Number(value)

The [[Class]] property of the newly constructed object is set to "Number".
The [[Value]] property of the newly constructed object is set to ToNumber(value).

15.7.2.2new Number()

The [[Class]] property of the newly constructed object is set to "Number".
The [[Value]] property of the newly constructed object is set to +0.

15.7.3Properties of the Number Constructor

The value of the internal [[Prototype]] property of the Number constructor is the Function prototype
object.

Besides the internal [[Call]] and [[Construct]] properties and the 1ength property, the Number
constructor has the following property:

15.7.3.1Number.prototype
The value of Number . prototype is the built-in Number prototype object.

15.7.3.2Number.MAX_VALUE

The value of Number .MIN_VALUE is the largest positive finite value of the number type, which is
approximately 1.7976931348623157e308.

15.7.3.3Number.MIN_VALUE

The value of Number .MIN_VALUE is the smallest positive nonzero value of the number type, which
is approximately 5e-324.

15.7.3.4Number.NaN

The value of Number . NaN is NaN.

15.7.3.5Number.NEGATIVE_INFINITY
The value of Number . NEGATIVE_INFINITY is —oo.

15.7.3.6Number.POSITIVE_INFINITY

The value of Number . POSITIVE_INFINITY is +o.

15.7.4Properties of the Number Prototype Object

In following descriptions of functions that are properties of the Number prototype object, the phrase
Othis Number objectO refers to the object that is the this value for the invocation of the function; it is
an error if this does not refer to an object for which the value of the internal [[Class]] property is not
"Number". Also, the phrase Othis number valueO refers to the number value represented by this
Number object, that is, the value of the internal [[Value]] property of this Number object.
15.7.4.1constructor

The initial value of Number .prototype.constructor is the built-in Number constructor.

15.7.4.2toString()

This number value is given as an argument to the ToString operator ; the resulting string value is
returned.

15.7.4.3valueOf()

Returns this number value.

15.7.5Properties of Number Instances

Number instances have no special properties beyond those inherited from the Number prototype object.

15.8THE MATH OBJECT

The Math object is merely a single object that has some named properties, some of which are functions.

The Math object does not have a [[Construct]] property; it is not possible to use the Math object as a
constructor with the new operator.

Recall that, in this specification, the phrase Othe number value for xO means Othe value of number
type, not NaN but possibly infinite, that is closer than any other value of number type to the
mathematical value x, but if x lies exactly halfway between two such values then the number value
whose least significant bit is 0 is chosenO.

15.8.1Value Properties of the Math Object

15.8.1.1E

The number value for e, the base of the natural logarithms, which is approximately
2.7182818284590452354.

15.8.1.2LN10
The number value for the natural logarithm of 10, which is approximately 2.302585092994046.

15.8.1.3LN2
The number value for the natural logarithm of 2, which is approximately 0.6931471805599453.

15.8.1.4LOG2E

The number value for the base-2 logarithm of e, the base of the natural logarithms; this value is
approximately 1.4426950408889634. (Note that the value of Math .LOG2E is approximately the
reciprocal of the value of Math.LN2.)

15.8.1.5LOG10E

The number value for the base-2 logarithm of e, the base of the natural logarithms; this value is
approximately 0.4342944819032518. (Note that the value of Math . LOG2E is approximately the
reciprocal of the value of Math.LN2.)

15.8.1.6PI

The number value for m, the ratio of the circumference of a circle to its diameter, which is
approximately 3.14159265358979323846.

15.8.1.7SQRT1_2

The number value for the square root of 1/2, which is approximately 0.7071067811865476. (Note
that the value of Math.SQRT1_ 2 is approximately the reciprocal of the value of Math.SQRT2.)
15.8.1.8SQRT2

The number value for the square root of 2, which is approximately 1.4142135623730951.

15.8.2Function Properties of the Math Object

Every function listed in this section applies the ToNumber operator to each of its arguments (in left-to-
right order if there is more than one) and then performs a computation on the resulting number value(s).

The behavior of the functions acos, asin, atan, atan2, cos, exp, 1log, pow, sin, and sqrt is
not precisely specified here. They are intended to compute approximations to the results of familiar
mathematical functions, but some latitude is allowed in the choice of approximation algorithms. The
general intent is that an implementor should be able to use the same mathematical library for

ECMAScript on a given hardware platform that is available to C programmers on that platform.
Nevertheless, this specification recommends (though it does not require) the approximation algorithms
for IEEE 754 arithmetic contained in £d1ibm, the freely distributable mathematical library
[XXXREF]. This specification also requires specific results for certain argument values that represent
boundary cases of interest.

15.8.2.1abs(x)

Returns the absolute value of its argument; in general, the result has the same magnitude as the
argument but has positive sign.

* If the argument is NaN, the result is NaN.

* Ifthe argument is -0, the result is +0.

e If the argument is —o, the result is +oo.

15.8.2.2acos(x)

Returns an implementation-dependent approximation to the arc cosine of the argument. The result is
expressed in radians and ranges from +0 to +it.

* If the argument is NaN, the result is NaN.

* Ifthe argument is greater than 1, the result is NaN.
* Ifthe argument is less than -1, the result is NaN.

* If the argument is exactly 1, the result is +0.

15.8.2.3asin(x)

Returns an implementation-dependent approximation to the arc sine of the argument. The result is
expressed in radians and ranges from —m/2 to +/2.

* If the argument is NaN, the result is NaN.

* Ifthe argument is greater than 1, the result is NaN.
* Ifthe argument is less than -1, the result is NaN.

e If the argument is +0, the result is +0.

e If the argument is -0, the result is —0.

15.8.2.4atan(x)

Returns an implementation-dependent approximation to the arc tangent of the argument. The result is
expressed in radians and ranges from —/2 to +m/2.

* Ifthe argument is NaN, the result is NaN.

e If the argument is +0, the result is +0.

e If the argument is -0, the result is —0.

* Ifthe argument is +oo, the result is an implementation-dependent approximation to +st/2.
e Ifthe argument is —oo, the result is an implementation-dependent approximation to —/2.

15.8.2.5atan2(y, x)

Returns an implementation-dependent approximation to the arc tangent of the quotient y/x of the
arguments y and x, where the signs of the arguments are used to determine the quadrant of the result.
Note that it is intentional and traditional for the two-argument arc tangent function that the argument
named y be first and the argument named x be second. The result is expressed in radians and ranges
from - to +.

* Ifeither argument is NaN, the result is NaN.

e Ify>0 and x is +0, the result is an implementation-dependent approximation to +m/2.

* Ify>0 and x is -0, the result is an implementation-dependent approximation to +/2.

* Ifyis+0 and x>0, the result is +0.

e Ifyis+0and x is +0, the result is +0.

* Ifyis+0 and x is -0, the result is an implementation-dependent approximation to +.

* Ifyis+0 and %<0, the result is an implementation-dependent approximation to +st.

* Ifyis -0 and x>0, the result is —0.

* Ifyis—0and x is +0, the result is —0.

* Ifyis—0and x is —0, the result is an implementation-dependent approximation to —.

e Ifyis -0 and x<0, the result is an implementation-dependent approximation to —a.

* Ify<O0 and x is +0, the result is an implementation-dependent approximation to —/2.

* Ify<0 and x is -0, the result is an implementation-dependent approximation to —g/2.

* Ify>0 and y is finite and x is +oo, the result is +0.

* Ify>0 and y is finite and x is —o, the result if an implementation-dependent approximation to +t.
* Ify<O0 and y is finite and x is +oo, the result is —0.

e Ify<0 and y is finite and x is —oo, the result is an implementation-dependent approximation to —.
* Ifyis+o and x is finite, the result is an implementation-dependent approximation to +s/2.

* Ifyis—ooand x is finite, the result is an implementation-dependent approximation to —/2.

* Ifyis+ew and x is +oo, the result is an implementation-dependent approximation to +m/4.

* Ifyis+o and x is —oo, the result is an implementation-dependent approximation to +3m/4.

* Ifyis—ooand x is +oo, the result is an implementation-dependent approximation to —t/4.

* Ifyis—ooand x is —oo, the result is an implementation-dependent approximation to —3m/4.

15.8.2.6ceil(x)

Returns the smallest (closest to —o0) number value that is not less than the argument and is equal to a
mathematical integer. If the argument is already an integer, the result is the argument itself.

* If the argument is NaN, the result is NaN.

* Ifthe argument is +0, the result is +0.

* Ifthe argument is -0, the result is —0.

e Ifthe argument is +oo, the result is +oo.

* If the argument is —o, the result is —oo.

* Ifthe argument is less than 0 but greater than -1, the result is —0.

The value of Math.ceil (x) is the same as the value of -Math. floor (-x).

15.8.2.7cos(x)

Returns an implementation-dependent approximation to the cosine of the argument. The argument is
expressed in radians.

* If the argument is NaN, the result is NaN.

* If the argument is +0, the result is 1.

e Ifthe argument is -0, the result is 1.

* If the argument is +oo, the result is NaN.

* If the argument is —oo, the result is NaN.

15.8.2.8exp(x)

Returns an implementation-dependent approximation to the exponential function of the argument (e
raised to the power of the argument, where e is the base of the natural logarithms).

e If the argument is NaN, the result is NaN.

e If the argument is +0, the result is 1.

* If the argument is -0, the result is 1.

* Ifthe argument is +oo, the result is +oo.

e If the argument is —o, the result is +0.

15.8.2.9floor(x)

Returns the greatest (closest to +o) number value that is not greater than the argument and is equal to a
mathematical integer. If the argument is already an integer, the result is the argument itself.

* If the argument is NaN, the result is NaN.

e Ifthe argument is +0, the result is +0.

e If the argument is -0, the result is —0.

* If the argument is +oo, the result is +oo.

* Ifthe argument is —oo, the result is —o.

e Ifthe argument is greater than 0 but less than 1, the result is +0.

The value of Math. floor (x) is the same as the value of -Math.ceil (-x).

15.8.2.10log(x)

Returns an implementation-dependent approximation to natural logarithm of the argument.
* Ifthe argument is NaN, the result is NaN.

e If the argument is less than 0, the result is NaN.

* Ifthe argument is +0 or —0, the result is —o°.

e Ifthe argument is 1, the result is +0.

* If the argument is +o, the result is +oo.

15.8.2.11max(x, y)

Returns the larger of the two arguments.

* Ifeither argument is NaN, the result is NaN.
e If x>y, the result is x.

e Ify>x, theresultisy.

e Ifxis+0andy is +0, the result is +0.

* Ifxis+0and y is =0, the result is +0.

e Ifxis-0andy is +0, the result is +0.

e Ifxis—-0andy is -0, the result is —0.

15.8.2.12min(x, y)

Returns the smaller of the two arguments.

e Ifeither argument is NaN, the result is NaN.
* If x<y, the result is x.

* Ify<x, theresultis y.

e Ifxis+0andy is +0, the result is +0.

* Ifxis+0and y is =0, the result is —0.

* Ifxis—0andy is +0, the result is —0.

e Ifxis-0andy is -0, the result is —0.

15.8.2.13pow(X, y)

Returns an implementation-dependent approximation to the result of raising x to the power y.
e Ifyis NaN, the result is NaN.

* Ifyis+0, the result is 1, even if x is NaN.

* Ifyis—0, the result is 1, even if x is NaN.

e IfxisNaN and y is nonzero, the result is NaN.

* Ifabs(x)>1and y is +oo, the result is +oo.

* Ifabs(x)>1and y is —o%, the result is +0.

¢ Ifabs(x)==1and y is +oo, the result is NaN.

* Ifabs(x)==1and y is -, the result is NaN.

* Ifabs(x)<1and y is +oo, the result is +0.

* Ifabs(x)<1and y is—oo, the result is +oo.

e Ifxis+owand y>O0, the result is +oo.

* Ifxis+owand y<O0, the resultis +0.

* Ifxis—oand y>0 and y is an odd integer, the result is —oo.

* Ifxis—oand y>0 and y is not an odd integer, the result is +oo.
* Ifxis—oand y<O and y is an odd integer, the result is —0.

* Ifxis—oand y<O and y is not an odd integer, the result is +0.
* Ifxis+0and y>0, the result is +0.

* Ifxis+0and y<0, the result is +oo.

* Ifxis-0and y>O0 andy is an odd integer, the result is —0.

* Ifxis—-0and y>O0 and y is not an odd integer, the result is +0.
* Ifxis—-0and y<O andy is an odd integer, the result is —co.

* Ifxis—-0and y<O and y is not an odd integer, the result is +oo.
* Ifx<0 and x is finite and y is finite and y is not an integer, the result is NaN.

15.8.2.14random()

Returns a number value with positive sign, greater than or equal to 0 but less than 1, chosen randomly
or pseudorandomly with approximately uniform distribution over that range, using an implementation-
dependent algorithm or strategy. This function takes no arguments.

15.8.2.15round(x)

Returns the number value that is closest to the argument and is equal to a mathematical integer. If two
integer number values are equally close to the argument, then the result is the number value that is
closer to +oo. If the argument is already an integer, the result is the argument itself.

* If the argument is NaN, the result is NaN.

e Ifthe argument is +0, the result is +0.

e Ifthe argument is -0, the result is —0.

e If the argument is +oo, the result is +oo.

* Ifthe argument is —oo, the result is —oo.

* Ifthe argument is greater than O but less than 0.5, the result is +0.

* If the argument is less than O but greater than or equal to -0. 5, the result is —0.

Note that Math.round (3.5) returns 4, but Math.round (-3.5) returns -3.

The value of Math.round (x) is the same as the value of Math. floor (x+0.5), except when x is
—0; for this case Math.round (x) returns -0, but Math. floor (x+0.5) returns +0.

15.8.2.16sin(x)

Returns an implementation-dependent approximation to the sine of the argument. The argument is
expressed in radians.

* Ifthe argument is NaN, the result is NaN.

e If the argument is +0, the result is +0.

e If the argument is -0, the result is —0.

* If the argument is +oo or —oo, the result is NaN.

15.8.2.17sqrt(x)

Returns an implementation-dependent approximation to the square root of the argument.
* Ifthe argument is NaN, the result is NaN.

* If the argument less than 0, the result is NaN.

e If the argument is +0, the result is +0.

* Ifthe argument is -0, the result is —0.

* Ifthe argument is +oo, the result is +oo.

15.8.2.18tan(x)

Returns an implementation-dependent approximation to the tangent of the argument. The argument is
expressed in radians.

* If the argument is NaN, the result is NaN.

* Ifthe argument is +0, the result is +0.

e If the argument is -0, the result is —0.

* If the argument is +o or —oo, the result is NaN.

15.9DATE OBJECTS

15.9.10verview of Date Objects

A Date object contains a number indicating a particular instant in time to within a millisecond. The
number may also be NaN, indicating that the Date object does not represent a specific instant of time.

The following sections define a number of functions for operating on time values. Note that, in every
case, if any argument to such a function is NaN, the result will be NaN.

15.9.1.1Time Range

Time is measured in ECMAScript in milliseconds since 01 January, 1970 UTC. Leap seconds are
ignored. It is assumed that there are exactly 86,400,000 milliseconds per day. ECMAScript number
values can represent all integers from iMin = D9,007,199,254,740,991 to iMax =
9,007,199,254,740,991; this range suffices to measure times to millisecond precision for any instant
that is within approximately 285,616 years, either forward or backward, from 01 January, 1970 UTC.

The actual range of times supported by ECMAScript Date objects is slightly smaller: exactly
D100,000,000 days to 100,000,000 days measured relative to midnight at the beginning of 01 January,
1970 UTC. This gives a range of 8,640,000,000,000,000 milliseconds to either side of 01 January, 1970
UTC. This span easily covers all of recorded human history and a fair amount of unrecorded human
history.

15.9.1.2Day Number and Time within Day

A given time value ¢ belongs to day number
Day(¢) = floor(¢ / msPerDay)

where the number of milliseconds per day is
msPerDay = 86400000

The remainder is called the time within the day:

TimeWithinDay(#) = t modulo msPerDay

15.9.1.3Year Number

ECMAScript uses an extrapolated Gregorian system to map a day number to a year number and to
determine the month and date within that year. In this system, leap years are precisely those which are
(divisible by 4) and ((not divisible by 100) or (divisible by 400)). The number of days in year number y
is therefore defined by

DaysInYear(y) =365 if (y modulo 4) = 0
=366 if (y modulo 4) = 0 and (y modulo 100) = 0
=365 if (¥ modulo 100) = 0 and (y modulo 400) = 0

=366 if (y modulo 400) =0

Of course all non-leap years have 365 days with the usual number of days per month and leap years
have an extra day in February. The day number of the first day of year y is given by:

DayFromYear(y) = 365-(y—=1970) + floor((y—1969)/4) — floor((y—1901)/100) + floor((y—1601)/400)
The time value of the start of a year is:
TimeFromYear(y) = msPerDay-DayFromY ear(y)
A time value determines a year by:

YearFromTime(?) = the largest integer y (closest to positive infinity) such that TimeFromYear(y) <
t

The leap-year function is 1 for a time within a leap year and otherwise is zero:

InLeapYear() =0 if DaysInYear(YearFromTime(y)) = 365
=1 if DaysInYear(YearFromTime(y)) = 366

15.9.1.4Month Number

Months are identified by an integer in the range 0 to 11, inclusive. The mapping MonthFromTime(f)
from a time value ¢ to a month number is defined by:

MonthFromTime(7) =0 if 0 =< DayWithinYear(f) < 31
=1 if 31 < DayWithinYear () <

59+InLeapYear(f)

=2 if 59+InLeapYear(r) < DayWithinYear (f) <
90+InLeapYear(?)

=3 if 90+InLeapYear(r) < DayWithinYear (¢) <
120+InLeapYear(?)

=4 if 120+InLeapYear(f) = DayWithinYear (¢) <
151+InLeapYear(?)

=5 if 151+InLeapYear(r) < DayWithinYear (f) <
181+InLeapYear(?)

=6 if 181+InLeapYear(r) < DayWithinYear (f) <
212+InLeapYear(?)

=7 if 212+InLeapYear(f) < DayWithinYear (¢) <
243+InLeapYear(?)

=8 if 243+InLeapYear(r) < DayWithinYear (f) <
273+InLeapYear(?)

=9 if 273+InLeapYear(r) < DayWithinYear (¢) <
304+InLeapYear(?)

=10 if 304+InLeapYear(f) =< DayWithinYear (¢) <
334+InLeapYear(?)

=11 if 334+InLeapYear(r) < DayWithinYear (f) <
365+InLeapYear(¢)

where

DayWithinYear(¢) = Day(f)-DayFromYear(?)

A month value of 0 specifies January; 1 specifies February; 2 specifies March; 3 specifies April;
4Especifies May; 5 specifies June; 6 specifies July; 7 specifies August; 8 specifies September; 9
specifies October; 10 specifies November; and 11 specifies December. Note that MonthFromTime(0) =
0, corresponding to Thursday, 01 January, 1970.

15.9.1.5Date Number

A date number is identified by an integer in the range 1 through 31, inclusive. The mapping
DateFromTime(#) from a time value ¢ to a month number is defined by:

DateFromTime(#) = DayWithinYear(#)+1 if MonthFromTime(#)=0
= DayWithinYear(f)-30 if MonthFromTime(7)=1
= DayWithinYear(f)-58-InLeapYear(f) if MonthFromTime(¢)=2
= DayWithinYear(f)-89-InLeapYear(f) if MonthFromTime(#)=3
= DayWithinYear(f)-119-InLeapYear(r) if MonthFromTime(#)=4
= DayWithinYear(f)-150-InLeapYear(f) if MonthFromTime(¢)=5
= DayWithinYear(f)-180-InLeapYear(f) if MonthFromTime(#)=6
= DayWithinYear(f)-211-InLeapYear(f) if MonthFromTime(¢)=7
= DayWithinYear(f)-242-InLeapYear(f) if MonthFromTime(#)=8
= DayWithinYear(f)-272-InLeapYear(t) if MonthFromTime(#)=9
= DayWithinYear(f)-303-InLeapYear(f) if MonthFromTime(#)=10
= DayWithinYear(f)-333-InLeapYear(f) if MonthFromTime(¢)=11

15.9.1.6Week Day
The week day for a particular time value ¢ is defined as
WeekDay(#) = (day(f) +4) modulo 7

A weekday value of 0 specifies Sunday; 1 specifies Monday; 2 specifies Tuesday; 3 specifies
Wednesday; 4Especifies Thursday; 5 specifies Friday; and 6 specifies Saturday. Note that WeekDay(0)
=4, corresponding to Thursday, 01 January, 1970.

15.9.1.7Local Time Zone Adjustment

An implementation of ECMAScript is expected to determine the local time zone adjustment by
whatever means are available. The local time zone adjustment is a value LocalTZA measured in
milliseconds which when added to UTC represents the local standard time. Daylight saving time is not
reflected by LocalTZA. The value LocalTZA does not vary with timebut depends only on the
geographic location.

15.9.1.8Daylight Saving Time Adjustment

An implementation of ECMAScript is expected to determine the daylight saving time algorithm by
whatever means are available. The algorithm to determine the daylight saving time adjustment
DaylightSavingTA(#) , measured in milliseconds, must depend only on four things:

(1) the time since the beginning of the year
t b TimeFromYear(YearFromTime(?))
(2) whether it is a leap year
InLeapYear(?)
(3) the week day of the beginning of the year
WeekDay(TimeFromYear(YearFromTime(%))

and (4) the geographic location.

The implementation of ECMAScript should not try to determine whether the exact time was subject to
daylight saving time, but just whether daylight saving time would have been in effect if the current
daylight saving time algorithm had been used at the time. This avoids complications such as taking into
account the years that the USA observed daylight saving time year round.

If the underlying operating system provides functionality for determining daylight saving time, the
implementation of ECMAScript is free to map the year in question to an equivalent year (same leap-
year-ness and same starting week day for the year) for which the operating system provides daylight
saving time information. The only restriction is that all equivalent years should produce the same result.

15.9.1.9Local Time
Conversion from UTC to local time is defined by

LocalTime(#) = ¢ + LocalTZA + DaylightSavingTA(?)
Conversion from local time to UTC is defined by

UTC(¢) = ¢t B LocalTZA D DaylightSavingTA (¢ D LocalTZA)
Note that UTC(LocalTime(#)) is not necessarily always equal to ¢.

15.9.1.10Hours, Minutes, Second, and Milliseconds
The following functions are useful in decomposing time values:

HourFromTime(?) = floor(t / msPerHour) modulo HoursPerDay
MinFromTime(?) = floor(¢ / msPerMinute) modulo MinutesPerHour
SecFromTime(¢) = floor(¢ / msPerSecond) modulo SecondsPerMinute

msFromTime(¢) = ¢ modulo msPerSecond
where

HoursperDay = 24
MinutesPerHour = 60
SecondsPerMinute = 60

msPerSecond = 1000

msPerMinute = msPerSecond * SecondsPerMinute = 60000

msPerHour = msPerMinute - MinutesPerHour = 3600000

15.9.1.11MakeTime(hour, min, sec, ms)

The operator MakeTime calculates a number of milliseconds from its four arguments, which must be

ECMAScript number values. This operator functions as follows:

646.1f hour is not finite or min is not finite or sec is not finite or ms is not finite, return NaN.

647.Call Tolnteger(hour).

648.Call Tolnteger(min).

649.Call Tolnteger(sec).

650.Call Tolnteger(ms).

651.Compute Result(2) * msPerHour + Result(3) * msPerMinute + Result(4) * msPerSecond +
Result(5), performing the arithmetic according to IEEE 754 rules (that is, as if using the
ECMAScript operators * and +).

652.Return Result(6).

15.9.1.12MakeDay(year, month, date)

The operator MakeDay calculates a number of days from its three arguments, which must be

ECMAScript number values. This operator functions as follows:

653.1f year is not finite or month is not finite or date is not finite, return NaN.

654.Call Tolnteger(year).

655.Call Tolnteger(month).

656.Call Tolnteger(date).

657.Compute Result(2) + floor(Result(3)/12).

658.Compute Result(3) modulo 12.

659.Find a value ¢ such that YearFromTime(¢)==Result(5) and MonthFromTime(f)==Result(6) and
DateFromTime(f)==1; but if this is not possible (because some argument is out of range or
fractional), return NaN.

660.Compute Day(Result(7)) + Result(4) — 1.

661.Return Result(8).

15.9.1.13MakeDate(day, time)

The operator MakeDay calculates a number of milliseconds from its two arguments, which must be
ECMAScript number values. This operator functions as follows:

662.1f day is not finite or time is not finite, return NaN.

663.Compute day - msPerDay + time.

664.Return TimeClip(Result(2)).

15.9.1.14TimeClip(time)

The operator TimeClip calculates a number of milliseconds from its argument, which must be an
ECMAScript number value. This operator functions as follows:

665.1f time is not finite, return NaN.

666.1f abs(Result(2)) > 8.64e15 (that is, 8.64 - 10"), return NaN.

667.Return Tolnteger(Result(2)).

15.9.2The Date Constructor

When Date is called as part of a new expression, it is a constructor: it initializes the newly created
object.

15.9.2.1new Date(year, month, date, hours, minutes, seconds)

The [[Class]] property of the newly constructed object is set to "Date".

The [[Value]] property of the newly constructed object is set as follows:
668.Call ToNumber(year).

669.Call ToNumber(month).

670.Call ToNumber(date).

671.Call ToNumber(hours).

672.Call ToNumber(minutes).

673.Call ToNumber(seconds).

674.Compute MakeDay(Result(1), Result(2), Result(3)).

675.Compute MakeTime(Result(4), Result(5), Result(6), 0).
676.Compute MakeDate(Result(7), Result(8)).

677.Set the [[Value]] property of the newly constructed object to Result(9).

15.9.2.2new Date(year, month, date, hours, minutes)

The [[Class]] property of the newly constructed object is set to "Date".
The [[Value]] property of the newly constructed object is set as follows:
678.Call ToNumber(year).

679.Call ToNumber(month).

680.Call ToNumber(date).

681.Call ToNumber(hours).

682.Call ToNumber(minutes).

683.Compute MakeDay(Result(1), Result(2), Result(3)).

684.Compute MakeTime(Result(4), Result(5), 0, 0).

685.Compute MakeDate(Result(6), Result(7)).

686.Set the [[Value]] property of the newly constructed object to Result(8).

15.9.2.3new Date(year, month, date, hours)

The [[Class]] property of the newly constructed object is set to "Date".

The [[Value]] property of the newly constructed object is set as follows:
687.Call ToNumber(year).

688.Call ToNumber(month).

689.Call ToNumber(date).

690.Call ToNumber(fhours).

691.Compute MakeDay(Result(1), Result(2), Result(3)).

692.Compute MakeTime(Result(4), 0, 0, 0).

693.Compute MakeDate(Result(5), Result(6)).

694.Set the [[Value]] property of the newly constructed object to Result(7).

15.9.2.4new Date(year, month, day)

The [[Class]] property of the newly constructed object is set to "Date".

The [[Value]] property of the newly constructed object is set as follows:
695.Call ToNumber(year).

696.Call ToNumber(month).

697.Call ToNumber(date).

698.Compute MakeDay(Result(1), Result(2), Result(3)).

699.Compute MakeDate(Result(4), 0).

700.Set the [[Value]] property of the newly constructed object to Result(5).

15.9.2.5new Date(value)

The [[Class]] property of the newly constructed object is set to "Date".
The [[Value]] property of the newly constructed object is set as follows:
701.Call ToPrimitive(value).

702.1f Type(Result(1)) is String, then go to step 8.

703.Let ¥ be ToNumber(Result(1)).

704.1f V'is NaN, go to step 7.

705.1f abs(Result(2)) > 8 . 64e15 (that is, 8.64 - 10"), go to step 7.

706.Set the [[Value]] property of the newly constructed object to ¥ and return.
707.Set the [[Value]] property of the newly constructed object to NaN and return.
708.Call the [[Get]] method of the global object, passing "Date" as the argument.
709.Call ToObject(GetValue(Result(8))).

710.Call the [[Get]] method of Result(9), passing "Parse" as the argument.
711.1f Result(10) is not an object, generate a runtime error.

712.Construct a singleton internal list containing Result(1)

713.Call the [[Call]] method of Result(10), passing Result(12) as the argument list.
714.Let V' be ToNumber(Result(13)).

715.Go to step 4.

15.9.2.6new Date()

The [[Class]] property of the newly constructed object is set to "Date".
The [[Value]] property of the newly constructed object is set to NaN.

15.9.3Properties of the Date Constructor

The value of the internal [[Prototype]] property of the Date constructor is the Function prototype object.

Besides the internal [[Call]] and [[Construct]] properties and the 1ength property (whose value is 6),
the Date constructor has the following properties:

15.9.3.1Date.prototype
The value of Date.prototype is the built-in Date prototype object.

15.9.3.2Date.parse()
The.

15.9.3.3Date.UTC()
The.

15.9.4Properties of the Date Prototype Object

In following descriptions of functions that are properties of the Date prototype object, the phrase Othis
Date objectO refers to the object that is the this value for the invocation of the function; it is an error
if this does not refer to an object for which the value of the internal [[Class]] property is not

"Date". Also, the phrase Othis time valueO refers to the number value for the time represented by this
Date object, that is, the value of the internal [[Value]] property of this Date object.
15.9.4.1constructor

The initial value of Date.prototype.constructor is the built-in Date constructor.

15.9.4.2toString()
15.9.4.3valueOf()

15.9.4.4getTime()

716.1f the this value is not an object whose [[Class]] property is "Date", generate a runtime error.
717.Return this time value.

15.9.4.5getYear()

This function is specified here for backwards compatibility only. The function getFullyear is much
to be preferred for nearly all purposes, because it avoids the Oyear 2000 problem.O
718.Let ¢ be this time value.

719.1f ¢ is NaN, return NaN.
720.Return YearFromTime(LocalTime(#)) — 1900.

15.9.4.6getFullYear()

721.Let t be this time value.
722.If t is NaN, return NaN.
723.Return YearFromTime(LocalTime(?)).

15.9.4.7getUTCFullYear()

724 .Let t be this time value.
725.1f t is NaN, return NaN.
726.Return YearFromTime(?).

15.9.4.8getMonth()

727.Let ¢ be this time value.
728.1f t is NaN, return NaN.
729.Return MonthFromTime(LocalTime(?)).

15.9.4.9getUTCMonth()

730.Let ¢ be this time value.
731.1f ¢ is NaN, return NaN.
732.Return MonthFromTime(?).

15.9.4.10getDate()

733.Let ¢ be this time value.
734.1f t is NaN, return NaN.
735.Return DateFromTime(Local Time(z)).

15.9.4.11getUTCDate()

736.Let t be this time value.
737.1f t is NaN, return NaN.
738.Return DateFromTime(%).

15.9.4.12getDay()

739.Let ¢ be this time value.
740.1If ¢ is NaN, return NaN.
741.Return WeekDay(LocalTime(?)).

15.9.4.13getUTCDay()

742.Let t be this time value.
743.1f t is NaN, return NaN.
744 .Return WeekDay(¥).

15.9.4.14getHours()

745.Let ¢ be this time value.
746.1f t is NaN, return NaN.
747.Return HourFromTime(LocalTime(?)).

15.9.4.15getUTCHours()

748.Let ¢ be this time value.
749.1f t is NaN, return NaN.
750.Return HourFromTime(?).

15.9.4.16getMinutes()

751.Let ¢ be this time value.
752.1f t is NaN, return NaN.
753.Return MinFromTime(LocalTime()).

15.9.4.17getUTCMinutes()

754 .Let t be this time value.
755.1f t is NaN, return NaN.
756.Return MinFromTime(?).

15.9.4.18getSeconds()

757.Let ¢ be this time value.
758.1f t is NaN, return NaN.
759.Return SecFromTime(LocalTime(%)).

15.9.4.19getUTCSeconds()

760.Let ¢ be this time value.
761.1f t is NaN, return NaN.
762.Return SecFromTime(?).

15.9.4.20getMilliseconds()

763.Let ¢ be this time value.
764.1f t is NaN, return NaN.
765.Return msFromTime(LocalTime(z)).

15.9.4.21getUTCMilliseconds()

766.Let t be this time value.
767.1f t is NaN, return NaN.
768.Return msFromTime(%).

15.9.4.22getTimezoneOffset()

Returns the difference between local time and UTC time in minutes.
769.Let t be this time value.

770.1If ¢ is NaN, return NaN.

771.Return (¢ — LocalTime(#)) / msPerMinute.

15.9.4.23setTime(time)

772.Call ToNumber(time).

773.Call TimeClip(Result(1)).

774.Set the [[Value]] property of the this value to Result(2).
775.Return the value of the [[Value]] property of the this value.
776.

15.9.4.24setMilliseconds(ms)

777.Let t be the result of LocalTime(this time value).

778.Call ToNumber(ms).

779.1f t is NaN or Result(2) is NaN, go to step 7.

780.Compute MakeTime(HourFromTime(f), MinFromTime(#), SecFromTime(f), Result(2)).
781.Compute UTC(MakeDate(Day(f), Result(4))).

782.Set the [[Value]] property of the this value to Result(5).

783.Return the value of the [[Value]] property of the this value.

15.9.4.25setUTCMilliseconds(ms)

784.Let ¢ be this time value.

785.Call ToNumber(ms).

786.1f t is NaN or Result(2) is NaN, go to step 7.

787.Compute MakeTime(HourFromTime(¢), MinFromTime(#), SecFromTime(¢), Result(2)).
788.Compute MakeDate(Day(?), Result(4)).

789.Set the [[Value]] property of the this value to Result(5).

790.Return the value of the [[Value]] property of the this value.

15.9.4.26setSeconds(sec [, ms])

If ms is not specified, this behaves as if ms were specified with the value getMilliseconds().
791.Let ¢ be the result of LocalTime(this time value).

792.Call ToNumber(sec).

793.1f ms is undefined or not specified, compute msFromTime(); otherwise, call ToNumber(ms).
794.1f t is NaN or Result(2) is NaN or Result(3) is NaN, go to step 8.

795.Compute MakeTime(HourFromTime(f), MinFromTime(#), Result(2), Result(3)).
796.Compute UTC(MakeDate(Day(¢), Result(5))).

797.Set the [[Value]] property of the this value to Result(6).

798.Return the value of the [[Value]] property of the this value.

15.9.4.27setUTCSeconds(sec [, ms])

If ms is not specified, this behaves as if ms were specified with the value getUTCMilliseconds().
799.Let ¢ be this time value.

800.Call ToNumber(sec).

801.If ms is undefined or not specified, compute msFromTime(); otherwise, call ToNumber(ms).
802.1f ¢ is NaN or Result(2) is NaN or Result(3) is NaN, go to step 8.

803.Compute MakeTime(HourFromTime(¢), MinFromTime(f), Result(2), Result(3)).
804.Compute MakeDate(Day(#), Result(5)).

805.Set the [[Value]] property of the this value to Result(6).

806.Return the value of the [[Value]] property of the this value.

15.9.4.28setMinutes(min [, sec [, ms]])

If sec is not specified, this behaves as if sec were specified with the value getSeconds ().

If ms is not specified, this behaves as if ms were specified with the value getMilliseconds().
807.Let ¢ be the result of LocalTime(this time value).

808.Call ToNumber(min).

809.If sec is undefined or not specified, compute SecFromTime(?); otherwise, call ToNumber(sec).
810.1f ms is undefined or not specified, compute msFromTime(¢); otherwise, call ToNumber(ms).
811.1f ¢ is NaN or Result(2) is NaN or Result(3) is NaN or Result(4) is NaN, go to step 9.
812.Compute MakeTime(HourFromTime(?), Result(2), Result(3), Result(4)).

813.Compute UTC(MakeDate(Day(¢), Result(6))).

814.Set the [[Value]] property of the this value to Result(7).

815.Return the value of the [[Value]] property of the this value.

15.9.4.29setUTCMinutes(min [, sec [, ms]])

If sec is not specified, this behaves as if sec were specified with the value getUTCSeconds ().

If ms is not specified, this behaves as if ms were specified with the value getUTCMilliseconds().
816.Let ¢ be this time value.

817.Call ToNumber(min).

818.1f sec is undefined or not specified, compute SecFromTime(f); otherwise, call ToNumber(sec).
819.1f ms is undefined or not specified, compute msFromTime(); otherwise, call ToNumber(ms).
820.1f t is NaN or Result(2) is NaN or Result(3) is NaN or Result(4) is NaN, go to step 9.
821.Compute MakeTime(HourFromTime(?), Result(2), Result(3), Result(4)).

822.Compute MakeDate(Day(#), Result(6)).

823.Set the [[Value]] property of the this value to Result(7).
824 Return the value of the [[Value]] property of the this value.

15.9.4.30setHours(hour [, min [, sec [, ms]]])

If min is not specified, this behaves as if min were specified with the value getMinutes().
If sec is not specified, this behaves as if sec were specified with the value getSeconds ().

If ms is not specified, this behaves as if ms were specified with the value getMilliseconds().

825.Let ¢ be the result of LocalTime(this time value).

826.Call ToNumber(hour).

827.1f min is undefined or not specified, compute MinFromTime(?); otherwise, call ToNumber(min).

828.1f sec is undefined or not specified, compute SecFromTime(f); otherwise, call ToNumber(sec).

829.1f ms is undefined or not specified, compute msFromTime(?); otherwise, call ToNumber(ms).

830.If 7 is NaN or Result(2) is NaN or Result(3) is NaN or Result(4) is NaN or Result(5) is NaN,
goEto step 10.

831.Compute MakeTime(Result(2), Result(3), Result(4), Result(5)).

832.Compute UTC(MakeDate(Day(#), Result(7))).

833.Set the [[Value]] property of the this value to Result(8).

834.Return the value of the [[Value]] property of the this value.

15.9.4.31setUTCHours(hour [, min [, sec [, ms]]])

If min is not specified, this behaves as if min were specified with the value getUTCMinutes().
If sec is not specified, this behaves as if sec were specified with the value getUTCSeconds ().

If ms is not specified, this behaves as if ms were specified with the value getUTCMilliseconds().

835.Let ¢ be this time value.

836.Call ToNumber(hour).

837.1f min is undefined or not specified, compute MinFromTime(¢); otherwise, call ToNumber(min).

838.1f sec is undefined or not specified, compute SecFromTime(); otherwise, call ToNumber(sec).

839.1f ms is undefined or not specified, compute msFromTime(); otherwise, call ToNumber(ms).

840.1f ¢ is NaN or Result(2) is NaN or Result(3) is NaN or Result(4) is NaN or Result(5) is NaN,
goEto step 10.

841.Compute MakeTime(Result(2), Result(3), Result(4), Result(5)).

842.Compute MakeDate(Day(¢), Result(7)).

843.Set the [[Value]] property of the this value to Result(8).

844 Return the value of the [[Value]] property of the this value.

15.9.4.32setDate(date)

845.Let ¢ be the result of LocalTime(this time value).

846.Call ToNumber(date).

847.1f t is NaN or Result(2) is NaN, go to step 7.

848.Compute MakeDay(YearFromTime(¢), MonthFromTime(f), Result(2)).
849.Compute UTC(MakeDate(Result(4), TimeWithinDay())).

850.Set the [[Value]] property of the this value to Result(5).

851.Return the value of the [[Value]] property of the this value.

15.9.4.33setUTCDate(date)

852.Let ¢ be this time value.

853.Call ToNumber(date).

854.1f t is NaN or Result(2) is NaN, go to step 7.

855.Compute MakeDay(YearFromTime(f), MonthFromTime(?), Result(2)).
856.Compute MakeDate(Result(4), TimeWithinDay(%)).

857.Set the [[Value]] property of the this value to Result(5).

858.Return the value of the [[Value]] property of the this value.

15.9.4.34setMonth(mon [, date])

If date is not specified, this behaves as if date were specified with the value getDate().

859.Let ¢ be the result of LocalTime(this time value).

860.Call ToNumber(date).

861.1f date is undefined or not specified, compute DateFromTime(¢); otherwise, call ToNumber(date).
862.1f t is NaN or Result(2) is NaN or Result(3) is NaN, go to step 8.

863.Compute MakeDay(YearFromTime(?), Result(2), Result(3)).

864.Compute UTC(MakeDate(Result(5), TimeWithinDay())).

865.Set the [[Value]] property of the this value to Result(6).

866.Return the value of the [[Value]] property of the this value.

15.9.4.35setUTCMonth(mon [, date])

If date is not specified, this behaves as if date were specified with the value getUTCDate().

867.Let ¢ be this time value.

868.Call ToNumber(date).

869.1f date is undefined or not specified, compute DateFromTime(¢); otherwise, call ToNumber(date).
870.1f ¢ is NaN or Result(2) is NaN or Result(3) is NaN, go to step 8.

871.Compute MakeDay(YearFromTime(?), Result(2), Result(3)).

872.Compute MakeDate(Result(5), TimeWithinDay(%)).

873.Set the [[Value]] property of the this value to Result(6).

874.Return the value of the [[Value]] property of the this value.

15.9.4.36setFullYear(year [, mon [, date]])

If mon is not specified, this behaves as if mon were specified with the value getMonth().

If date is not specified, this behaves as if date were specified with the value getDate().

875.Let ¢ be the result of LocalTime(this time value).

876.Call ToNumber(year).

877.1f mon is undefined or not specified, compute MonthFromTime(¢); otherwise, call
ToNumber(mon).

878.1f date is undefined or not specified, compute DateFromTime(¢); otherwise, call ToNumber(date).

879.1f ¢t is NaN or Result(2) is NaN or Result(3) is NaN or Result(4) is NaN, go to step 8.

880.Compute MakeDay(Result(2), Result(3), Result(4)).

881.Compute UTC(MakeDate(Result(6), TimeWithinDay())).

882.Set the [[Value]] property of the this value to Result(7).

883.Return the value of the [[Value]] property of the this value.

15.9.4.37setUTCFullYear(year [, mon [, date]])

If mon is not specified, this behaves as if mon were specified with the value getUTCMonth().

If date is not specified, this behaves as if date were specified with the value getUTCDate().

884.Let ¢ be this time value.

885.Call ToNumber(year).

886.1f mon is undefined or not specified, compute MonthFromTime(?); otherwise, call
ToNumber(mon).

887.1f date is undefined or not specified, compute DateFromTime(¢); otherwise, call ToNumber(date).

888.1f t is NaN or Result(2) is NaN or Result(3) is NaN or Result(4) is NaN, go to step 8.

889.Compute MakeDay(Result(2), Result(3), Result(4)).

890.Compute MakeDate(Result(6), TimeWithinDay(#)).

891.Set the [[Value]] property of the this value to Result(7).

892.Return the value of the [[Value]] property of the this value.

15.9.4.38setYear(year)

This function is specified here for backwards compatibility only. The function setFullyear is much
to be preferred for nearly all purposes, because it avoids the Oyear 2000 problem.O
893.Let ¢ be the result of LocalTime(this time value).

894.Call ToNumber(year).

895.1f t is NaN or Result(2) is NaN, go to step 8.

896.Call Tolnteger(Result(1)).

897.1f 0 < Result(3) < 99, then Result(4) is Result(3) + 1900. Otherwise, Result(4) is Result(3).
898.Compute MakeDay(Result(5), MonthFromTime(#), DateFromTime(?)).

899.Compute UTC(MakeDate(Result(6), TimeWithinDay(?))).

900.Set the [[Value]] property of the this value to Result(7).

901.Return the value of the [[Value]] property of the this value.

15.9.5Properties of Date Instances

Date instances have no special properties beyond those inherited from the Date prototype object.

16ERRORS

This specification specifies the last possible moment an error occurs. A given implementation may
generate errors sooner (e.g. at compile-time). Doing so may cause differences in behavior among
implementations. Notably, if runtime errors become catchable in future versions, a given error would
not be catchable if an implementation generates the error at compile-time rather than runtime.

An ECMAScript compiler should detect errors at compile time in all code presented to it, even code
that detailed analysis might prove to be OdeadO (never executed). A programmer should not rely on the
trick of placing code within an if (false) statement, for example, to try to suppress compile-time
error detection.

Issue: If a compiler can prove that a construct cannot execute without error under any circumstances,
then it may issue a compile-time error even though the construct might not be executed at all?

17REFERENCES

ANSI X3.159-1989: American National Standard for Information Systems - Programming Language -
C, American National Standards Institute (1989).

Gay, David M. Correctly Rounded Binary-Decimal and Decimal -Binary Conversions. Numerical
Analysis Manucript 90-10. AT&T Bell Laboratories (Murray Hill, New Jersey). November 30, 1990.
Available as http://cm.bell-labs.com/cm/cs/doc/90/4-10.ps.gz. Associated code
available as http://cm.bell-labs.com/netlib/fp/dtoa.c.gz and as
http://cm.bell-labs.com/netlib/fp/g_£fmt.c.gz and may also be found at the various
netlib mirror sites.

Gosling, James, Bill Joy and Guy Steele. The Java Language Specification. Addison Wesley
Publishing Company 1996.

David Ungar and Randall B. Smith. Self: The Power of Simplicity. OOPSLA '87 Conference
Proceedings, pp. 227-241, Orlando, FL, October, 1987.

OAPPENDIX A: OPEN ISSUES

0A.1 STRING NUMERIC LITERALS

Is it really true that an empty string, or a string containing only whitespace and/or a sign, is a valid
string literal? Is the result a zero (negative zero if minus sign present)? Or is it necessary that at least
one digit be present (or Infinity)?

1A.2 ARGUMENT

The arguments property of a function object is Odynamically boundO every time that function is called
and restored as the call returns. (Agreed to on March 14; still needs to be done.)

Also need to write up a step-by-step, algorithmic account of function calls.

2A.3 VAR STATEMENTS AND EVAL

It was agreed that only the values of expression statements contribute to the result of eval. It follows
that a var statement never contributes to the result of eval, or can its initializers contribute?

3A.4 USING ARRAY METHODS ON NON-ARRAYS

It was agreed that join, reverse, and sort could be used on non-arrays. All that is needed is a
length. What is the behavior if the 1ength property does not exist, or if its value is not of the Number
type, or is not a nonnegative integer?

For now, I have assumed that ToUint32 is applied to the result of getting the 1ength property.

4A.5 REVERSE OF NONEXISTENT PROPERTIES

Is reverse intended to preserse the status of nonexistent properties? For example, if an array object
has properties 0, 1, and 3, and its 1ength is 4, then will applying reverse cause it to have properties
0, 2, and 3 but no property 1?

For now, I assume not; rather, reverse simply does gets and puts and therefore will cause all
properties to exist, if only with undefined values.

1APPENDIX B: PROPOSED EXTENSIONS

5B.1 THE CLASS STATEMENT'
Syntax

ClassDeclaration :
class IdentifierFormalParameters ., ExtendsClausey { ClassBody }

FormalParameters :
(FormalParameterList,,)

FormalParameterList :
Identifier
FormalParameterList , Identifier

ExtendsClause :
extends Identifier ActualArguments,,

ActualArguments :
(ExpressionList,,)

ClassBody :
Constructor ., Methods.,,

Constructor :
StatementList

Methods :
FunctionDefinition
Methods FunctionDefinition

Semantics

Similar to a function except:

* The class name space is global but distinct from the global function name space.

* The functions (methods) defined within a class definition are in a name space private to the class.

* The inclusion of methods automatically creates one property in the constructed object for each
method defined.

* Classes may not be called directly but rather can only be used via the new operator.

6B.2 THE TrY AND THROW STATEMENTS'

0B.2.1 The try Statement’

A try statement executes a block. If a value is thrown and the try statement has one or more catch
clauses that can catch it, then control will be transfered to the first such catch clause. If the try
statement has a £inally clause, then the £inally block of code is executed no matter whether the
try block completes normally or abruptly and regardless of whether a catch clause is first given
control.

TryStatement :
try Block Catches

try Block Catchesopt FinallyClause

Catches:
CatchClause

Catches CatchClause

CatchClause:
catch (FormalParameter) Block

FinallyClause:
finally Block

1B.2.2 The Throw Statment’

A throw statement causes an exception to be thrown. The result is an immediate transfer of control that
may exit multiple statements and method invocations until a try statement is found that catches the
thrown value. If no such try statement is found, then a runtime error is generated.

ThrowStatement:
throw Expression

7 B.3 THE DATE TYPE'

The Date Type is used to represent date and time. It is a Julian value on which certain operations such
as date arithmetic are defined. Arithmetic operators, relational operators and equality operators apply to
this type'

Note 1: Of the three current ECMAScript implementations, only the Borland implementation currently
supports date operators. This feature is really just a convenience that can be implemented with Date
Object methods. However, the same argument can be made for the String type.

Note 2: Of the three current ECMAScript implementations, only the Borland implementation currently
implements dates as Julian dates and thus dates before (January 1970). Without this representation,
dates are very limited in their usage (i.e. you cannot otherwise, represent arbitrary dates, for example
from existing databases)

2B.3.1 ToDate'

The operator ToDate attempts to convert its argument to a value of subtype Date Object according to
the following table:

Input Type Result
Undefined Blank date value.
Null Blank date value.
Boolean Blank date value.
Number Blank date value.
String See discussion below.
Date Return the input argument (no conversion)
Object Apply the following steps:
1. Call ToPrimitive(input argument, hint Date).
2. Call ToDate(Result(1)).
Return Result(2).

3B.3.2 ToDate Applied to the String Type

Issue: define this.

8B.4 IMPLICIT THIS?

In function code where the function definition specifies the implicit keyword, the this object is
placed in the scope chain immediately before the global object.

9 B.5 THE switch STATEMENT"?
Syntax

SwitchStatement :
switch (Expression) CaseBlock

CaseBlock :
{ CaseClauses,, }

{ CaseClauses,, DefaultClause CaseClauses,y }

CaseClauses :
CaseClause

CaseClauses CaseClause

CaseClause :
case Expression : StatementList,,

DefaultClause :
default : StatementList,,

Semantics

The SwitchStatement adds a label to the break label stack, which is described in section 12.5. It also
adds a label to the continue label stack for clean up purposes only.

The production SwitchStatement : switch (Expression) CaseBlock is evaluated as follows:
902.1If the continue label stack is not empty, PushContinue(9).

903.PushBreak(6).

904.Evaluate Expression.

905.Call GetValue(Result(3)).

906.Evaluate CaseBlock, passing it Result(4) as a parameter.

907.PopBreak(6).

908.1If the continue label stack is not empty, PopContinue(9).

909.Return.

910.PopBreak(6).

911.PopContinue(9).

912.JumpContinue.

The production CaseBlock : { CaseClauses; DefaultClause CaseClauses; } is given an input

parameter, input, and is evaluated as follows:

913.For the next CaseClause in CaseClauses], in source text order, evaluate CaseClause. If there is no
such CaseClause, go to step ©.

914.1f input is not equal to Result(1) (as defined by the != operator), go to step 1.

915.Execute the StatementList of this CaseClause.

916.Execute the StatementList of each subsequent CaseClause in CaseClauses].

917.Go to step 11.

918.For the next CaseClause in CaseClauses2 , in source text order, evaluate CaseClause. If there is no
such CaseClause, go to step 11.

919.1f input is not equal to Result(6) (as defined by the != operator), go to step 6.

920.Execute the StatementList of this CaseClause.

921.Execute the StatementList of each subsequent CaseClause in CaseClauses?2.

922 Return.

923.Execute the StatementList of DefaultClause.

924 Execute the StatementList of each CaseClause in CaseClauses?2.

925.Return.

If CaseClauses; is omitted, steps 1 through 5 are omitted from execution. If DefaultClause is omitted
(in which case CaseClauses; is also omitted), steps 11 and 12 are omitted from execution. If
CaseClauses, is omitted, steps 6 through 10 and 12 are omitted from execution.

Typically there will be a break statement in one or more StatementList, which will transfer execution
back to the break label for the SwitchStatement.

The production CaseClause : case Expression : StatementList,, is evaluated as follows:

926.Evaluate Expression.
927.Call GetValue(Result(1)).
928.Return Result(2).

Note that evaluating CaseClause does not execute the associated StatementList. It simply evaluates the
Expression and returns the value, which the CaseBlock algorithm uses to determine which
StatementList to start executing.

10 B.6 CONVERSION FUNCTIONS

The conversion functions, ToBoolean, ToNumber, Tolnteger, Tolnt32, ToUint32, ToString and
ToObject are global functions that operate as described in this document.

11 B.7 ASSIGNMENT-ONLY OPERATOR (:=)1

The assignment-only operator operates identically to the assignment operator (=) except that if the
given lvalue doesn’t already exist, prior to the statements execution, a runtime error is generated.

12 B.8 SEALING OF AN OBJECT2

A facility to prevent an object from being further expanded may be invoked at any time after an object
has been constructed. This is semantically the dynamic equivalent to the static Java final class
modifier. This facility may be implemented as a method of the object, a global function, or, if the
class statement is adopted, as a class modifier to class. Once an object has been sealed or
finalized, any attempt to add a new property to the object results in a runtime error.

13 B.9 THE ARGUMENTS KEYWORD?

The arguments keyword refers to the arguments object. Within global code, arguments returns
null. Within eval code, arguments returns the same value as in the calling context.

Discussion:

This interpretation of the "arguments" within a function body differs from existing practice but has two
important advantages over the current mechanism:

1. It can be much more efficiently implemented, especially in the case of recursive functions.

2. It eliminates some complex and confusing semantic issues that arise as a result of the arguments to
an activation frame being accessible from a function object.

It solves scope resolution issues related to using arguments within a with block on an object that has an
arguments member, such as Math.

14 B.10 PREPROCESSOR

15 B.11 THE DO..WHILE STATEMENT

16B.12 BINARY OBJECT

17B.13 LABELS WITH BREAK AND CONTINUE

As in Java, allow statements to be labeled with an identifier followed by a colon. Allow a label to

appear in a break or continue statement. The label referred to by a break or continue
statement must be an iteration statement that contains the break or continue statement in question.

The use of labels makes code more readable and more robust. In addition, it makes possible certain
transfers of control that otherwise could not be easily expressed at all.

2APPENDIX C: PEOPLE CONTACTS

Brendan Eich (brendan@netscape.com)
C. Rand McKinney (rand@netscape.com)

Donna Converse (converse@netscape.com)

Clayton Lewis (clayton@netscape.com)
Randy T. Solton (rsolton@wpo.borland.com)

Mike Gardner (mgardner@wpo.borland.com)
Shon Katzenberger (shonk@microsoft.com)
Robert Welland (robwell@microsoft.com)
Guy Steele (guy.steele@east.sun.com)

3APPENDIX D: RESOLUTION HISTORY

18 D.1 JANUARY 15, 1997

4D.1.1 White Space

Updated the White Space section to include form feed and vertical tab as white space.

5D.1.2 Keywords

Updated the Keywords section to exclude those keywords related to proposed extensions. Also updated
this section to include the delete keyword which was missing.

6D.1.3 Future Reserved Words

Update the Future Reserved Words to only include keywords related to proposed extensions. We
decided to remove words that had been only included as future reserved for Java compatibility
purposes.

7D.1.4 Octal And Hex Escape Sequence Issue

Decided to support octal and hex notation. Since only two hex digits are used with hex notation, many
unicode characters cannot be represented this way. Furthermore, we were not sure if the high 128
characters match up with unicode. (Removed open issue at bottom of section Once the exact MV for a
numeric literal has been determined, it is then rounded to a value of the Number type. If the MV is 0,
then the rounded value is +0; otherwise, the rounded value must be the number value for the MV (in the
sense defined in section 8.4), unless the literal is a DecimalLiteral and the literal has more than 20
significant digits, in which case the number value may be any implementation-dependent
approximation to the MV. A digit is significant if it is not part of an ExponentPart and (either it is not 0
or it is an important zero or there is no decimal point O.0 in the literal). A digit 0 is an important zero if
there is at least one important item to its left and at least one important item to its right within the
literal. Any digit that is not 0 and is not part of an ExponentPart is an important item; a decimal point
0.0 is also an important item.)

The argument against was that these notations are redundant since any character can be represented

using the unicode escape sequence. The arguments for were that hex and octal notation are convenient
and simple and also that there is a language tradition to be upheld.

8D.1.5 ToPrimitive

Removed the erroneous note stating that errors are never generated as a result of calling ToPrimitive in
the ToPrimitive section.

9D.1.6 Hex in ToNumber

We decided to allow hex in ToNumber but not octal. Looking at it from the user input source point of
view, we decided that it was reasonable to use hex but not octal since it might be common to include
leading zeros in a user input field. Furthermore we did not believe that the ability to use octal in data
entry was desirable. (Removed open issue at the bottom of 5.3.1 ToNumber Applied to the String

Type)

10D.1.7 Attributes of Declared Functions and Built-in Objects

We decided that built-in objects will have attributes { DontEnum } and that variables declared in global
code will have empty attributes. (Updated the 6.1.1 Global Object section)

11D.1.8 The Grouping Operator

We decided that the grouping operator would return the result of GetValue() so that the result is never
of type reference. (Updated the The Grouping Operator and removed the open issue at the bottom of
this section)

12D.1.9 Prefix Increment and Decrement Operators

We decided to not to perform GetValue to the return value and thus leave the algorithm as is. (removed
the open issue at the bottom of the Prefix Increment Operator)

13D.1.10 Unary Plus

We decided to leave the algorithm for unary plus alone and continue to call GetValue() and
ToNumber() after evaluating the unary expression which guarantees a numeric result as opposed to
only evaluating the unary expression which would not guarantee a numeric result. (Updated the Prefix
Decrement Operator section)

14D.1.11 Multiplicative Operators

Updated step nine in the Multiplicative Operators section to refer to three new sections 7.41, 7.42 and
7.43 which define the behavior of *, / and %.

15D.1.12 Additive Operators

Updated step 11 in 7.5.1 and step 10 in 7.5.2 to refer to a new section 7.5.3 which define the behavior
of + and -.

16D.1.13 Left Shift Operator

We decided to leave the algorithm for left shift as is, which converts the left operand using ToInt32
rather than ToUint32. Although an unsigned conversion might be arguably preferred, we decided to
continue to convert to signed, as we can always add a new operator (<<<) to accomplish an unsigned
shift. (Removed the open issue at the bottom of The Left Shift Operator (<<))

17D.1.14 Binary Bitwise Operators

We decided to leave the algorithm for the binary bitwise operators as is, which uses signed conversion
on the GetValue of its operands. (Removed the open issue at the bottom of Binary Bitwise Operators)

18D.1.15 Conditional Operator (> :)

We decided to leave the algorithm for the conditional operator as is, which performs a GetValue on the
result before returning. Current implementations do not do this. (Removed the open issue at the
bottom of Conditional Operator (?:))

19D.1.16 Simple Assignment

We decided to leave the algorithm for simple assignment as is. (Removed the open issue at the bottom
of Simple Assignment (=))

20D.1.17 The for. . in Statement

We decided to impose no restrictions on Expressionl. (Removed the first open issue at the bottom of
ISSUE: Finish the necessary changes for the other three forms of iteration statement for value returns.)

21D.1.18 The return Statement

We decided to not generate an error if one return statement in a function returns a value and another
return in the same function does not return a value. (Removed the first open issue at the bottom of the
The return Statement The second issue at the bottom of this section has been moved to)

22D.1.19 New Proposed Extensions
Sections B.10 Preprocessor, B.11 The do..while Statement and B.12 Binary Object were added.

19D.2 JANUARY 24, 1997

23D.2.1 End Of Source

Updated Error: Reference source not found section to describe the end of source token as logical rather
than physical \u0000 since strings may contain embedded \u0000 characters.

24D.2.2 Future Reserved Words

Updated Future Reserved Words section to include the word do and removed the footnotes indicating
the origin of the proposed keywords.

25D.2.3 White Space

Updated White Space section. Updated the lexical production for SimpleWhiteSpace to include <VT>
and <FF> (already mentioned in the white table above).

26D.2.4 Comments

Added new issue to 3.2 regarding nested comments.

27D.2.5 Identifiers

Updated section 3.3.2 to correctly state what is an allowable first character in an identifier.

28D.2.6 Numeric Literals

Updated section 3.3.4.3 Numeric Literals to disallow leading zeros in floating point literals.

29D.2.7 String Literals

Updated the table describing the set of character escape characters in section Once the exact MV for a
numeric literal has been determined, it is then rounded to a value of the Number type. If the MV is 0,
then the rounded value is +0; otherwise, the rounded value must be the number value for the MV (in the
sense defined in section 8.4), unless the literal is a DecimalLiteral and the literal has more than 20
significant digits, in which case the number value may be any implementation-dependent
approximation to the MV. A digit is significant if it is not part of an ExponentPart and (either it is not 0
or it is an important zero or there is no decimal point O.0 in the literal). A digit 0 is an important zero if
there is at least one important item to its left and at least one important item to its right within the
literal. Any digit that is not 0 and is not part of an ExponentPart is an important item; a decimal point
0.0 is also an important item., to include a new column indicating the unicode value. Also added a
new issue to the end of this section.

30D.2.8 Automatic Semicolon Insertion

Added two new issues to the end of .

31D.2.9 Property Attributes

Renamed Permanent to DontDelete in the property attributes table in the Property Attributes section.

32D.2.10 ToPrimitive

Reworded section ToPrimitive to better describe the optional hint PreferredType.

33D.2.11 ToNumber

Updated section ToNumber. Added Hint Number in call to ToPrimitive. Also added new issue to the
end of this section.

34D.2.12 White Space

Updated section ToNumber Applied to the String Type Updated the lexical production for
SimpleWhiteSpace to include <VT> and <FF>.

35D.2.13 ToNumber Applied to the String Type

Updated section 5.3.1, ToNumber Applied to the String Type. Reworked lexical productions to be
similar to those used in section, . The difference between string numeric literals and numeric literals is
that string numeric literals do not allow octal notation and do allow leading zeros.

36D.2.14 ToString
Updated section Note that ToUint32 maps -0 to +0.. Added Hint String in call to ToPrimitive.

37D.2.15 Postfix Increment and Decrement Operators

Updated section Error: Reference source not found. Updated the algorithm to return Result(3) (the
result of converting ToNumber), rather than (Result(2).

38D.2.16 The typeof operator

Added a new issue at the end of section The typeof Operator.

39D.2.17 Prefix Increment and Decrement Operators

Removed extraneous calls to ToPrimitive from the algorithm in section Prefix Increment Operator.

40D.2.18 Multiplicative Operators

Remove step 7 in the algorithm in section 7.4 (either operand NaN) and added a new rule to 7.4.1 and
7.4.2 to reiterate what was in the old step.

41D.2.19 The Subtraction Operator

Removed extraneous calls to ToPrimitive from the algorithm in section 7.5.2.

42D.2.20 The Subtraction Operator

Remove the old step 9 in the algorithm in section 7.5.2 (either operand NaN) and added a new rule to
section 7.5.3 to reiterate what was in the old step.

43D.2.21 Applying the Additive Operators (+, -)

Update the last rule in section 7.5.3 to clearly state that operands mentioned in the final sentence must
be numeric.

44D.2.22 Equality Operators

Moved the Semantic discussion at the beginning of 7.8 to the discussion section at the end of 7.8

45D.2.23 ToPrimitive Usage
Added issue at the end of sections 7.5.1 and 7,7.

46D.2.24 Binary Logical Operators
Added issue at the end of 7.10.

20D.3 JANUARY 31, 1997

47D.3.1 MultiLineComment

Updated the lexical production MultiLineComment in section Comments, to allow empty multi-line
comments. Also removed the issue at the end of this section regarding nested mutli-line comments.
The MultiLineComment production continues to disallow multi-line comments.

48D.3.2 String Literals

Removed open issue at the end of section Once the exact MV for a numeric literal has been determined,
it is then rounded to a value of the Number type. If the MV is 0, then the rounded value is +0;
otherwise, the rounded value must be the number value for the MV (in the sense defined in section 8.4),
unless the literal is a DecimalLiteral and the literal has more than 20 significant digits, in which case
the number value may be any implementation-dependent approximation to the MV. A digit is
significant if it is not part of an ExponentPart and (either it is not O or it is an important zero or there is
no decimal point 0.0 in the literal). A digit 0 is an important zero if there is at least one important item
to its left and at least one important item to its right within the literal. Any digit that is not 0 and is not
part of an ExponentPart is an important item; a decimal point O.0 is also an important item. which
stated that the maximum string constant supported must be at least 32000 characters long.

49D.3.3 Automatic Semicolon Insertion

Updated section , to include rules governing parsing the for statement and dealing with postfix ++ and
postfix —— tokens.

50D.3.4 The Number Type
Updated the description in section The String Type.

51D.3.5 Put with Explicit Access Mode

Update section 4.5.2.3, Put with Explicit Access Mode to include looking in the prototype object for
access violations.

52D.3.6 Put with Implicit Access Mode

Update section 4.5.2.4, Put with Implicit Access Mode to include looking in the prototype object for
access violations.

53D.3.7 The String type
Updated the description in section 4.6, The String Type.

54D.3.8 ToNumber
Updated section 5.3, ToNumber to return a NaN for an input type of Null.

55D.3.9 ToNumber Applied to the String Type

Updated the lexical production for SimpleWhiteSpace in section 5.3.1 to include <CR> and <LF>.
Also updated the lexical productions StrFloatingPointLiteral and StrintegerLiteral to allow signs.

56D.3.10 Tolnt32

Updated description in section 5.5, ToInt32: (signed 32 bit integer) to tentatively use Guy’s Conversion
modulo 2732 algorithm.

57D.3.11 ToUint32

Updated description in section ToUint32: (unsigned 32 bit integer) to tentatively use Guy’s Conversion
modulo 2732 algorithm.

58D.3.12 Execution Contexts (Variables)

Section 6 (Variables) replaced by new section (Execution Contexts).

59D.3.13 Function Calls
Swapped steps 2 and 3 in section 7.2.4, Function Calls.

60D.3.14 The typeof Operator

Updated the table in section The typeof Operator to specify the result when the input type is an external
object. Removed related open issue at the end of this section.

61D.3.15 Applying the % Operator

Removed step 7 in the algorithm in section 7.4.(either operand NaN) and added a new rule to 7.4.3 to
reiterate what was in the old step.

62D.3.16 The Addition Operator (+)

Added the hint Number in the calls to ToPrimitive in section 7.5.1, The Addition Operator (+).
Removed related open issue at the end of this section.

63D.3.17 Relational Operators

Added the hint Number in the calls to ToPrimitive in section 7.7, Relational Operators. Removed

related open issue at the end of this section.

64D.3.18 Conditional Operator (?:)

Updated the syntactic production, ConditionalExpression, in section Conditional Operator (?:)

65D.3.19 Compound Assignment (op=)
Swapped steps 2 and 3 in section 7.12.2, Compound Assignment (op=)

21D.4 FEBRUARY 21, 1997

66D.4.1 Unicode Escape Sequences

Rewrote section Error: Reference source not found to reflect the restriction that non-ASCII Unicode
characters may appear only within comments and string literals. Moved the description of Unicode
escape sequences to Once the exact MV for a numeric literal has been determined, it is then rounded to
a value of the Number type. If the MV is 0, then the rounded value is +0; otherwise, the rounded value
must be the number value for the MV (in the sense defined in section 8.4), unless the literal is a
DecimalLiteral and the literal has more than 20 significant digits, in which case the number value may
be any implementation-dependent approximation to the MV. A digit is significant if it is not part of an
ExponentPart and (either it is not 0 or it is an important zero or there is no decimal point 0.0 in the
literal). A digit O is an important zero if there is at least one important item to its left and at least one
important item to its right within the literal. Any digit that is not 0 and is not part of an ExponentPart is
an important item; a decimal point 0.0 is also an important item..

67D.4.2 Future Reserved Words
Added import and super to table in Future Reserved Words.

68D.4.3 Automatic Semicolon Insertion

Rewrote the rules for semicolon insertion in section to incorporate the rule that a semicolon is not
inserted if it would be treated as an empty statement. Also, broke out the empty statement as a separate
kind of statement for expository purposes in section The production Initializer : =
AssignmentExpression is evaluated as follows:.

69D.4.4 The Number Type

Corrected formatting of formulae in section The String Type.

70D.4.5 Notimplicit and NotExplicit Property Attributes Deleted

The NotImplicit and NotExplicit property attributes were deleted from the table in section Property
Attributes. Many changes throughout the rest of chapter 4 to reflect this deletion. Also, the
[[TestPutExplicit]] helper method was renamed [[CanPut]].

71D.4.6 ToInt32 and ToUint32

Corrected formatting of formulae in sectionTolInt32: (signed 32 bit integer) and section ToUint32:
(unsigned 32 bit integer). Also, change the discarding of the fractional part to truncate toward zero
rather than using a simple floor operation.

Correct an error in the descriptions by adding a new step 4 to each one, which makes sure that if
the input is negative zero, the output is positive zero.

72D.4.7 Grouping Operator

Delete step 2 from section The Grouping Operator. Parentheses no longer force dereferencing.

73D.4.8 Shift Expressions

Correct the grammar for ShiftExpression by adding AdditiveExpression as an alternative in section
Bitwise Shift Operators.

74D.4.9 Conversion Rules for Relational Operators

Updated description in section Relational Operators so that lexicographic string ordering is used only
if both operands become strings when converted to primitive type; if one is a string and one is a
number, then numeric ordering is used. Thus relational operators differ from the + operator, which, if
one operand is a string and one is a number, performs string concatenation rather than addition.

75D.4.10 && and || Semantics

Updated description in section Binary Logical Operators so that && and | | have PERL-like semantics;
that is, the result of 1| | 2 is 1, not true, and the result of 0 | | OHe1100 is OHe1100.

76D.4.11 Conditional Operator

Updated section Conditional Operator (?:) to reflect the change that the second and third
subexpressions should each be AssignmentExpression.

77D.4.12 Assignment Operators

Updated section Assignment Operators to reflect the change that the left-hand side of an assignment
should be a PostfixExpression. Also change two occurrences in subsections of SetVal to PutValue.

78D.4.13 Syntax of Class Statement

Updated section B.1 The Class Statementl to allow the parentheses in a class declaration to be optional.

79D.4.14 Syntax of Try Statement

Updated section B.2.1 The try Statementl to require the body of a catch or £inally clause to be a
Block.

22D.5 FEBRUARY 27, 1997

80D.5.1 Grammar Notation

Big rewrite of section Syntactic and Lexical Grammars to make the description of grammar notation
more detailed and rigorous. Is this okay? (Much of the text was borrowed, in form at least, from the

Java Language Specification.) The notation is still a bit inconsistent throughout the document
(example: OexceptO versus Obut notO), and should be made consistent within itself and with section
Syntactic and Lexical Grammars.

Also decided to call out the grammar in Chapter 5 as a separate grammar and use triple colons on its
productions.

Restructured some of the grammar in Chapter 3 to make it a bit more readable. Is this okay?

81D.5.2 End of Medium Character Is No Longer WhiteSpace

Deleted character \u0019 (End of Medium) from the table in section White Space, and deleted <EOM>
as an alternative for SimpleWhiteSpace in that same section. Also deleted <EOM> as an alternative for
StrWhiteSpaceChar in section ToNumber Applied to the String Type. These changes reflect the
decision that neither \u0019 (End of Medium, mistakenly also referred to in previous drafts of this
document as *Z) nor \u0O1A (Substitute, which really is ~Z) shall be considered whitespace in an
ECMAScript program. It is expected that host environments will filter any ~Z character that might
occur at the end of the host environmentOs representation of an ECMASCript program.

82D.5.3 Meaning of Null Literal

Added to section Null Literals a discussion of the meaning of a null literal.

83D.5.4 Meaning of Boolean Literals

Added to section Semantics a discussion of the meaning of a boolean literal.

84D.5.5 Meaning of Numeric Literals

Added to section a discussion of the meaning of a numeric literal. It does not yet address the restriction
to 19 significant digits. Is this the style of description we want?

85D.5.6 Automatic Semicolon Insertion

Updated description of automatic semicolon insertion in section . Systematically replaced the word
OinjectedO with OinsertedO. Invented a new theory of Orestricted productionsO to explain in a general
way why the parser inserts semicolons in places where there would otherwise be a valid parse without a
semicolon. Added more examples and advice. Also modified productions in sections Left-Hand-Side
Expressions and The return Statement to indicate the restrictions explicitly.

86D.5.7 The Number Type

Updated section The String Type to provide explanations of those large numbers as sums and
differences of powers of two.

87D.5.8 ToString on Numbers

Updated section ToString Applied to the Number Type have a draft specification of how this
conversion ought to be done. This needs to be reviewed. This version requires that, when the number
has a nonzero fractional part, the output must be correctly rounded and produce no more digits than
necessary for the fractional part. Added a bibliographic reference to the paper and code of David M.
Gay on this subject.

88D.5.9 New Operator

Updated description in section The production CallExpression : MemberExpression [Expression] is
evaluated in exactly the same manner, except that the contained CallExpression is evaluated in step 1.
to describe the case where no argument list is provided. This needs to be reviewed.

89D.5.10 Delete Operator

Updated description in section The delete Operator to reflect decision that this operator shall return a
boolean value; the value true indicates that, after the operation, the object is guaranteed not to have
the specified property.

90D.5.11 == Semantics

Updated section If Result(2) is a prefix of Result (1), return false. (A string value p is a prefix of string
value q if q can be the result of concatenating p and some other string r. Note that any string is a prefix
of itself, because r may be the empty string.) so that (a) null and undefined are considered equal,
and (b) when a number meets a string, the number is converted to a string and then string equality is
used.

91D.5.12 && and || Semantics

Updated description in section Binary Logical Operators to delete step 7 for eachoperator (the result of
this step was no longer used).

92D.5.13 Separate Productions for Continue, Break, Return

To make certain kinds of cross-reference in the document simpler, I broke out the continue, break, and
return statements into separate grammatical productions, eliminating the production for
ControlFlowStatement (which was something of a misnomer anyway, and other statements also result
in (structured) control flow.

93D.5.14 Dead Code Is Not Protected from Compile-Time Analysis
Added text to chapter 12 (Errors).

23D.6 MARCH 6, 1997

94D.6.1 Reformatted the Entire Document

I order to make future revisions easier and to take better advantage of the desktop-publishing
capabilities of Word, the entire document was reformatted using some newly defined Word styles.
Heading numbering was turned on to facilitate automatic numbering of headings in the main text
(sections of the appendices are still numbered manually, using new styles Appendix Heading 1,
Appendix Heading 2, and Appendix Heading 3). A new style Algorithm is used for algorithmic steps;
in some cases, the last step should be styled with AlgorithmLast to provide extra vertical space after the
last step.

Added a style called MathSpecialCase (generates bullet lists for now).

The title page now uses styles Title and Subtitle, which were modified to use apropriate fonts and
paragraph spacing.

Extraneous tab characters and multiple spaces were deleted from all headings.

The paragraph spacing of Normal, the various headings, Algorithm, AlgorithmLast, SyntaxRule, and
SyntaxDefinition were adjusted so that the correct vertical space is inserted automatically. All blank
paragraphs in the document were deleted.

The index and all index entries were deleted. Sorry, but they were somehow interfering with other
formatting, and the index entries were terribly incomplete anyway. If we have time to do a good index,
entries can be added semi-systematically.

The document was divided into three of what Word calls OsectionsO so that the pages of the Table of
Contents could be numbered with the customary roman numerals, with the main text starting on page
1.

All the revisions listed in this item were accepted and the change bars reset before the following items
were entered, so that all the changes of this item would not clutter the manuscript.
95D.6.2 Designed a Section Outline for Chapter 11

Filled in nearly all necessary section headings for Chapter 1 for describing Object, Function, Array,
String, Boolean, Number, and Math and all their properties and methods. Added a fair amount of
boilerplate text.

96D.6.3 Defined Math Functions

Added complete definitions for all properties in the Math object, following the example of C9X for the
treatment of IEEE 754 special cases.

24D.7 MARCH 10, 1997

97D.7.1 Added Definition of OThe Number Value for xO

In section 8.4, the phrase Othe number value for xO is now defined. It encapsulates the entire IEEE 754
process for converting any nonzero mathematical value to a representable value by using round-to-
nearest mode. This phrase is of great use in Chapter 15 and elsewhere.

Also corrected two typos in this section: —1073 replaced by —1074, and 2> replaced by 2%

98D.7.2 atan and atan2 May Use Implementation-Dependent Values for m, etc.

It was decided at the phone meeting that when Math . atan, for example, is supposed to return 7t/2, it
need not return exactly one-half the initial value of Math.pi, but may produce an approximation. The
motivation is to allow implementors the use of whatever C math library is present on the hardware
platform at hand, whether or not it conforms to the high quality standards of, for example, the C9X
proposal.

99D.7.3 Improved Discussion of Input Stream for Syntactic Grammar

Text added to section 5.1 to better explain the handling of whitespace, comments, and line terminators,
and the fact that line terminators become part of the input stream for the syntatic grammar. Also
corrected a type in section 5.1.5 where the phrase O[no LineTerminator here]O had been inadvertently
omitted.

100D.7.4 Improved Treatment of LineTerminator in Lexical Grammar

Eliminated the mythical <EOS> character. As a result, LineEnd is not needed either. The trick is not to
include LineEnd (or LineTerminator) as part of the grammar of a single-line comment. This works out
better, because a single-line comment still runs to the end of the line (as dictated by the longest-token-
possible rule), but it doesnOt swallow the LineTerminator, so it doesnOt affect automatic semicolon
insertion. (That the previous production did swallow the LineTerminator was thus a bug.)

The section on whitespace has been divided into two sections, one on WhiteSpace (formerly called
SimpleWhiteSpace) and one on Line Terminators.

THIS CHANGE REQUIRES REVIEW.

101D.7.5 Clarify Behavior of Unicode Escape Sequences

In Chapter 6, clarify that a Unicode escape sequence such as \u000D does not produce a carriage return
that could end a single-line comment, for example.

102D.7.6 Add Careful Description of the String Value of a String Literal

In imitation of the text already present describing the value of a numeric literal, text was added to
section 7.7.4 to describe carefully the exact sequence of characters represented by a string literal. In the
process, missing productions for DoubleStringCharacters and SingleStringCharacters were added, and
the redundant defintions of HexDigit and OctalDigit were removed. Also dealt with an open issue by
emphasizing that a LineTerminator may not appear within a string literal.

103D.7.7 Description of Identifiers Reworded

Improvements to the wording in section 7.5. Also repaired a typo (capital I replaced by lowercase I).

104D.7.8 Table of Punctuators Corrected

Underscore replaced by + operator in table in section 7.6.

105D.7.9 Improved Descriptions of Tolnt32 and ToUint32

Step 5 of the algorithms in sections 9.5 and 9.6 have been clarified to use a mathematical description
rather than fragments of code .

106D.7.10 Changes to ToString Applied to the Number Type

See section 9.8.1. Negative zero now produces "0" ., not "-0".. Integers less than 10% shall print
without decimal points. Values less than 1 but not less than 10-° will not require scientific notation.
107D.7.11 Revised Syntax for NewExpression and MemberExpression

Made the changes to section 11.2 as suggested by Shon, eliminating NewCallExpression and providing
a pleasing symmetry in which the number of new operators can exceed or fall short of the number of
argument lists.

108D.7.12 Clarify Multiplicative and Additive Operators

In section 11.5.1, describe the multiplication of infinity by infinity.
In section 11.5.2, describe the division of infinity by zero.
In section 11.5.3, better describe the remainder of a zero by a finite number.

In section 11.6, better describe the sum of two zeros and the sum of finite numbers of same magnitude
and opposite sign.
109D.7.13 Addition Operator No Longer Gives Hint Number

When the addition operator + calls ToPrimitive, it no longer gives hint Number. Note that all built-in
objects respond to ToPrimitive without a hint as if hint Number were given, so thius change affects
only external objects.

110D.7.14 Correct Description of Relational Operators

Miscellaneous small corrections.

111D.7.15 Assignment Operator LHS Must Be PostfixExpression

Change four occurrences of UnaryExpression to PostfixExpression in section 11.13.

112D.7.16 Changes to For-in Loops

Without var, the expression before in must be a PostfixExpression (as for an assignment),
With var, an optional Initializer is permitted after the Identifier.

A For-In loop enumerates not only properties of the given object itself, but also properties of its
prototype, and so on, recursively.

ISSUE: Are shadowed properties of the prototype enumerated?

113D.7.17 Break and Continue Must Occur within While or For Loop

Added text to sections 12.6 and 12.7 to require break and continue to appear within loop
statements.

25D.8 MARCH 12, 1997

114D.8.1 Added Overview Chapter

Added a chapter at the beginning as a placeholder for introductory exposition.

115D.8.2 More Exposition about Internal Properties
Renamed section 8.6.2 from OProperty AccessO to the more general Olnternal Propeties and
MethodsO.

Added properties [[Class]], [[Value]], [[CanPut]], and [[DefaultValue]] to the table so as to complete
the list.

Added some discussion of these internal properties.

116D.8.3 Date Object
Added the Date object to chapter 15 and method descriptions, etc.

117D.8.4 Array, String, Boolean, Number Objects

Tons of work in chapter 15 to add method descriptions, etc.

118D.8.5 Math Object

Corrections to atan2 and floor.

26D.9 MARCH 24, 1997

119D.9.1 Numeric Literals

Revamped the grammar for numeric literals to simplify it (per ShonOs suggestion) and added prose
indicating that the number value for a decimal literal need only be an implementation-dependent
approximation is there are more than 20 significant digits. In the process, the words Ofloating-pointO
disappear from the grammar; floating-point literals are merely one kind of decimal literal.

120D.9.2 String Numeric Literals

Revamped the grammar for string numeric literals and added prose indicating that the number value for
a decimal literal need only be an implementation-dependent approximation is there are more than 20
significant digits. In the process, the words Ofloating-pointO disappear from the grammar; floating-
point literals are merely one kind of decimal literal.

Also added the text describing how to calculate a mathematical value for a string numeric literal. The
details are a bit different from those for ordinary numeric literals.
27D.9.3 Prefix and Postfix Increment and Decrement Operators

Revise the grammar (for expository reasons), restructure the sections, and revise the algorithms for the
++ and -- operators to be more precise.

28D.9.4 Left-Hand-Side Expressions

Revise the grammar for PostfixExpression so that uses of the postfix ++ and —- operators cannot occur
to the left of a . or =, for example. Now only a LeftHandSideExpression may occur on the left-hand
side of an assignment or in keyword. Also updated the list of restricted productions accordingly in the
description of automatic semicolon insertion (section 7.8).

29D.9.5 Reference Type

Revise description of the internal reference type (section 8.7).

30D.9.6 Infinities and Zeros

Decided to use the forms NaN, positive zero, negative zero, positive infinity, and negative infinity
(Times bold, no caps except for NaN) consistently throughout the document to refer to those quantities.
(Overridden by D.10.2.)

31D.9.7 Miscellaneous Small Corrections

Among the small corrections is the deletion of step 10, which was redundant, in the algorithm for the
addition operator (section 11.6.1).

32D.10 MARCH 27, 1997

121D.10.1 Corrections to [[CanPut]] and [[HasProperty]]

Allow for the possibility that the [[Prototype]] is not implemented or has an undefined or primitive
value.

122D.10.2 Discussion of Number Type

Explicitly introduce +o, —o0, +0, and —0 as symbols used for expository purposes in this specification,
and briefly point out the program expressions NaN, +Infinity, -Infinity, +0, and -0.

Then override D.9.6 to use the symbols in preference to positive zero, negative zero, positive infinity,
and negative infinity in most places, as they have turned out to be visually clumsy..

123D.10.3 Infinity and NaN

Add properties NaN (initial value is NaN) and Infinity (initial value is) to the global object.
Specify that Sign,,, Infinity be recognized when ToNumber is applied to a string.

Whilel am at it, clarify the process fo converting a mathematical value (MV) to a rounded value of
Number type, both for numeric literals and for string numeric literals.

124D.10.4 charCodeAt and String.fromCharCode

Add charcodeAt method for String objects and String. fromCharCode function to the String
object.. In support of the description of String. fromCharcCode, add the ToUint16 abstract
operator.

125D.10.5 Last fraction digit from ToString applied to a number

Added discussion of the rule that if x is a number, ToNumber(ToString(x)) must be the same as x.
126D.10.6 Multi-line comment containing line terminator treated as line
terminator

In section 5.1.2, added text to say that a multi-line comment is simply discarded if it contains no line
terminator; but if a multi-line comment contains one or more line terminators, then it is replaced by a
single line terminator, which becomes part of the stream of input elements for the syntactic grammar.

127D.10.7 Automatic semicolon insertion at end of source

Reworked the description of automatic semicolon insertion yet again. Handle end of course as a special
case in section 7.8; as a consequence, it is not necessary to specially append a line terminator to the
input stream in section 5.1.4.

128D.10.8 Added proposed extension for labelled break and continue

New section B.13 proposes the use of labels as in Java to allow transfer to other than the innermost
containing loop.

129D.10.9 Lowercase OeO for scientific notation in ToString of a number

A lowercase OeO shall be used, not uppercase OEO (section 9.8.1).

130D.10.10 Evaluation of argument lists

Added algorithmic explanation of the evaluation of argument lists (section 11.2.4). To this end,
invented yet another fictitious expository data type, List (section 8.8).

131D.10.11 For ToPrimitive of native objects, no hint is same as hint Number
Added a helpful note to section 11.6.1.

132D.10.12 Major overhaul of equality and relational operators

Revised descriptions to make them more precise, especially about NaN.

133D.10.13 String type

Moved the section on the String type and augmented its description (section 8.4).

33D.11 APRIL 9, 1997

134D.11.1 Added mathematical operators to notation section

Added definitions of sign, abs, floor, modulo to section 5.2.

135D.11.2 Added overview text

Added overview text from Richard Gabriel. Renumbered sections so that Scope, Conformance, and
Normative References come first (ECMA format).

136D.11.3 Added Date stuff
Added material provided by Shon to section 15.9 and did a lot of reformatting.

137D.11.4 Lots of work on native objects chapter

In particular, corrected lots of typos per Shon and added material about Object and Function.

34D.12 APRIL 14, 1997

138D.12.1 Lots of corrections

Finished all my outstandiong corrections to the native objects chapter.

(Still to come: work on the functions and program chapters and on function invocation, including
dynamic binding of the arguments property.)

139D.12.2 Reworked Date type

Provided a more mathematical treatment, relying less on invoking other methods.

4APPENDIX E: LALR(1) SYNTACTIC GRAMMAR

Issue: To be supplied?

	1 Scope
	2 Conformance
	3 Normative References
	4 Overview
	4.1 Web Scripting
	4.2 Language Overview
	4.2.1 Objects

	4.3 Definitions
	4.3.1 Type
	4.3.2 Primitive Value
	4.3.3 Object
	4.3.4 Constructor
	4.3.5 Prototype
	4.3.6 Native Object
	4.3.7 Host Object
	4.3.8 Undefined
	4.3.9 Undefined Type
	4.3.10 Null
	4.3.11 Null Type
	4.3.12 Boolean Value
	4.3.13 Boolean Type
	4.3.14 Boolean Object
	4.3.15 String Value
	4.3.16 String Type
	4.3.17 String Object
	4.3.18 Number Value
	4.3.19 Number Type
	4.3.20 Number Object
	4.3.21 Infinity
	4.3.22 NaN

	4.4 Definitions

	5 Notational Conventions
	5.1 Syntactic and Lexical Grammars
	5.1.1 Context-Free Grammars
	5.1.2 The Lexical Grammar
	5.1.3 The Numeric String Grammar
	5.1.4 The Syntactic Grammar
	5.1.5 Grammar Notation

	5.2 Algorithm Conventions

	6 Source Text
	7 Lexical Conventions
	7.1 White Space
	7.2 Line Terminators
	7.3 Comments
	7.4 Tokens
	7.4.1 Reserved Words
	7.4.2 Keywords
	7.4.3 Future Reserved Words

	7.5 Identifiers
	7.6 Punctuators
	7.7 Literals
	7.7.1 Null Literals
	7.7.2 Boolean Literals
	7.7.3 Numeric Literals
	7.7.4 String Literals

	7.8 Automatic Semicolon Insertion

	8 Types
	8.1 The Undefined Type
	8.2 The Null Type
	8.3 The Boolean Type
	8.4 The String Type
	8.5 The Number Type
	8.6 The Object Type
	8.6.1 Property Attributes
	8.6.2 Internal Properties and Methods
	8.6.2.1 [[Get]](P)
	8.6.2.2 [[Put]](P, V)
	8.6.2.3 [[CanPut]](P)
	8.6.2.4 [[HasProperty]](P)

	8.7 The Reference Type
	8.7.1 GetBase(V)
	8.7.2 GetPropertyName(V)
	8.7.3 GetValue(V)
	8.7.4 PutValue(V, W)

	8.8 The List Type
	8.9 The Completion Type

	9 Type Conversion
	9.1 ToPrimitive
	9.2 ToBoolean
	9.3 ToNumber
	9.3.1 ToNumber Applied to the String Type

	9.4 ToInteger
	9.5 ToInt32: (signed 32 bit integer)
	9.6 ToUint32: (unsigned 32 bit integer)
	9.7 ToUint16: (unsigned 16 bit integer)
	9.8 ToString
	9.8.1 ToString Applied to the Number Type

	9.9 ToObject

	10 Execution Contexts
	10.1 Definitions
	10.1.1 Function Objects
	10.1.2 Types of Executable Code
	10.1.3 Variable Instantiation
	10.1.4 Scope Chain and Identifier Resolution
	10.1.5 Global Object
	10.1.6 Activation Object
	10.1.7 This
	10.1.8 Arguments Object

	10.2 Entering An Execution Context
	10.2.1 Global Code
	10.2.2 EvalCode
	10.2.3 Function and Anonymous Code
	10.2.4 Host Code

	11 Expressions
	11.1 Primary Expressions
	11.1.1 The this Keyword
	11.1.2 Identifier Reference
	11.1.3 Literal Reference
	11.1.4 The Grouping Operator

	11.2 Left-Hand-Side Expressions
	11.2.1 Property Accessors
	11.2.2 The new Operator
	11.2.3 Function Calls
	11.2.4 Argument Lists

	11.3 Postfix Expressions
	11.3.1 Postfix Increment Operator
	11.3.2 Postfix Decrement Operator

	11.4 Unary Operators
	11.4.1 The delete Operator
	11.4.2 The void Operator
	11.4.3 The typeof Operator
	11.4.4 Prefix Increment Operator
	11.4.5 Prefix Decrement Operator
	11.4.6 Unary + Operator
	11.4.7 Unary - Operator
	11.4.8 The Bitwise NOT Operator (~)
	11.4.9 Logical NOT Operator (!)

	11.5 Multiplicative Operators
	11.5.1 Applying the * Operator
	11.5.2 Applying the / Operator
	11.5.3 Applying the % Operator

	11.6 Additive Operators
	11.6.1 The Addition Operator (+)
	11.6.2 The Subtraction Operator (-)
	11.6.3 Applying the Additive Operators (+, -) to Numbers

	11.7 Bitwise Shift Operators
	11.7.1 The Left Shift Operator (<<)
	11.7.2 The Signed Right Shift Operator (>>)
	11.7.3 The Unsigned Right Shift Operator (>>>)

	11.8 Relational Operators
	11.9 Equality Operators
	11.10 Binary Bitwise Operators
	11.11 Binary Logical Operators
	11.12 Conditional Operator (?:)
	11.13 Assignment Operators
	11.13.1 Simple Assignment (=)
	11.13.2 Compound Assignment (op=)

	11.14 Comma Operator (,)

	12 Statements
	12.1 Variable Statement
	12.2 Empty Statement
	12.3 Expression Statement
	12.4 The if Statement
	12.5 Iteration Statements
	12.5.1 The while Statement
	12.5.2 The for Statement
	12.5.3 The for..in Statement

	12.6 The continue Statement
	12.7 The break Statement
	12.8 The return Statement
	12.9 The with Statement

	13 Function Definition
	14 Program
	15 Native ECMAScript Objects
	15.1 The Global Object
	15.1.1 Value Properties of the Global Object
	15.1.1.1 NaN
	15.1.1.2 Infinity

	15.1.2 Function Properties of the Global Object
	15.1.2.1 eval(x)
	15.1.2.2 parseInt(string, radix)
	15.1.2.3 parseFloat(string)
	15.1.2.4 escape(string)
	15.1.2.5 unescape(string)
	15.1.2.6 isNaN(number)
	15.1.2.7 isFinite(number)

	15.2 Object Objects
	15.2.1 The Object Function
	15.2.1.1 Object(value)
	15.2.1.2 Object()

	15.2.2 The Object Constructor
	15.2.2.1 new Object(value)
	15.2.2.2 new Object()

	15.2.3 Properties of the Object Constructor
	15.2.3.1 Object.prototype

	15.2.4 Properties of the Object Prototype Object
	15.2.4.1 constructor
	15.2.4.2 toString()
	15.2.4.3 valueOf()

	15.2.5 Properties of Object Instances

	15.3 Function Objects
	15.3.1 The Function Function
	15.3.1.1 Function(p1, p2, . . . , pn, body)

	15.3.2 The Function Constructor
	15.3.2.1 Function(p1, p2, . . . , pn, body)

	15.3.3 Properties of the Function Constructor
	15.3.3.1 Function.prototype
	15.3.3.2 Function.length

	15.3.4 Properties of the Function Prototype Object
	15.3.4.1 constructor
	15.3.4.2 toString()
	15.3.4.3 valueOf()

	15.3.5 Properties of Function Instances
	15.3.5.1 length
	15.3.5.2 prototype
	15.3.5.3 arguments

	15.4 Array Objects
	15.4.1 The Array Constructor
	15.4.1.1 new Array(item0, item1, . . .)
	15.4.1.2 new Array(len)
	15.4.1.3 new Array()

	15.4.2 Properties of the Array Constructor
	15.4.2.1 Array.prototype
	15.4.2.2 Array.length

	15.4.3 Properties of the Array Prototype Object
	15.4.3.1 constructor
	15.4.3.2 toString()
	15.4.3.3 valueOf()
	15.4.3.4 join(separator)
	15.4.3.5 reverse()
	15.4.3.6 sort()

	15.4.4 Properties of Array Instances
	15.4.4.1 [[Put]](P, V)
	15.4.4.2 length

	15.5 String Objects
	15.5.1 The String Function
	15.5.1.1 String(value)
	15.5.1.2 String()

	15.5.2 The String Constructor
	15.5.2.1 new String(value)
	15.5.2.2 new String()

	15.5.3 Properties of the String Constructor
	15.5.3.1 String.prototype
	15.5.3.2 String.fromCharCode(char0, char1, . . .)

	15.5.4 Properties of the String Prototype Object
	15.5.4.1 constructor
	15.5.4.2 toString()
	15.5.4.3 valueOf()
	15.5.4.4 charAt(pos)
	15.5.4.5 charCodeAt(pos)
	15.5.4.6 indexOf(searchString, position)
	15.5.4.7 lastIndexOf(searchString, position)
	15.5.4.8 split(separator)
	15.5.4.9 substring(start)
	15.5.4.10 substring(start, end)
	15.5.4.11 toLowerCase
	15.5.4.12 toUpperCase

	15.5.5 Properties of String Instances
	15.5.5.1 length

	15.6 Boolean Objects
	15.6.1 The Boolean Function
	15.6.1.1 Boolean(value)
	15.6.1.2 Boolean()

	15.6.2 The Boolean Constructor
	15.6.2.1 new Boolean(value)
	15.6.2.2 new Boolean()

	15.6.3 Properties of the Boolean Constructor
	15.6.3.1 Boolean.prototype

	15.6.4 Properties of the Boolean Prototype Object
	15.6.4.1 constructor
	15.6.4.2 toString()
	15.6.4.3 valueOf()

	15.6.5 Properties of Boolean Instances

	15.7 Number Objects
	15.7.1 The Number Function
	15.7.1.1 Number(value)
	15.7.1.2 Number()

	15.7.2 The Number Constructor
	15.7.2.1 new Number(value)
	15.7.2.2 new Number()

	15.7.3 Properties of the Number Constructor
	15.7.3.1 Number.prototype
	15.7.3.2 Number.MAX_VALUE
	15.7.3.3 Number.MIN_VALUE
	15.7.3.4 Number.NaN
	15.7.3.5 Number.NEGATIVE_INFINITY
	15.7.3.6 Number.POSITIVE_INFINITY

	15.7.4 Properties of the Number Prototype Object
	15.7.4.1 constructor
	15.7.4.2 toString()
	15.7.4.3 valueOf()

	15.7.5 Properties of Number Instances

	15.8 The Math Object
	15.8.1 Value Properties of the Math Object
	15.8.1.1 E
	15.8.1.2 LN10
	15.8.1.3 LN2
	15.8.1.4 LOG2E
	15.8.1.5 LOG10E
	15.8.1.6 PI
	15.8.1.7 SQRT1_2
	15.8.1.8 SQRT2

	15.8.2 Function Properties of the Math Object
	15.8.2.1 abs(x)
	15.8.2.2 acos(x)
	15.8.2.3 asin(x)
	15.8.2.4 atan(x)
	15.8.2.5 atan2(y, x)
	15.8.2.6 ceil(x)
	15.8.2.7 cos(x)
	15.8.2.8 exp(x)
	15.8.2.9 floor(x)
	15.8.2.10 log(x)
	15.8.2.11 max(x, y)
	15.8.2.12 min(x, y)
	15.8.2.13 pow(x, y)
	15.8.2.14 random()
	15.8.2.15 round(x)
	15.8.2.16 sin(x)
	15.8.2.17 sqrt(x)
	15.8.2.18 tan(x)

	15.9 Date Objects
	15.9.1 Overview of Date Objects
	15.9.1.1 Time Range
	15.9.1.2 Day Number and Time within Day
	15.9.1.3 Year Number
	15.9.1.4 Month Number
	15.9.1.5 Date Number
	15.9.1.6 Week Day
	15.9.1.7 Local Time Zone Adjustment
	15.9.1.8 Daylight Saving Time Adjustment
	15.9.1.9 Local Time
	15.9.1.10 Hours, Minutes, Second, and Milliseconds
	15.9.1.11 MakeTime(hour, min, sec, ms)
	15.9.1.12 MakeDay(year, month, date)
	15.9.1.13 MakeDate(day, time)
	15.9.1.14 TimeClip(time)

	15.9.2 The Date Constructor
	15.9.2.1 new Date(year, month, date, hours, minutes, seconds)
	15.9.2.2 new Date(year, month, date, hours, minutes)
	15.9.2.3 new Date(year, month, date, hours)
	15.9.2.4 new Date(year, month, day)
	15.9.2.5 new Date(value)
	15.9.2.6 new Date()

	15.9.3 Properties of the Date Constructor
	15.9.3.1 Date.prototype
	15.9.3.2 Date.parse()
	15.9.3.3 Date.UTC()

	15.9.4 Properties of the Date Prototype Object
	15.9.4.1 constructor
	15.9.4.2 toString()
	15.9.4.3 valueOf()
	15.9.4.4 getTime()
	15.9.4.5 getYear()
	15.9.4.6 getFullYear()
	15.9.4.7 getUTCFullYear()
	15.9.4.8 getMonth()
	15.9.4.9 getUTCMonth()
	15.9.4.10 getDate()
	15.9.4.11 getUTCDate()
	15.9.4.12 getDay()
	15.9.4.13 getUTCDay()
	15.9.4.14 getHours()
	15.9.4.15 getUTCHours()
	15.9.4.16 getMinutes()
	15.9.4.17 getUTCMinutes()
	15.9.4.18 getSeconds()
	15.9.4.19 getUTCSeconds()
	15.9.4.20 getMilliseconds()
	15.9.4.21 getUTCMilliseconds()
	15.9.4.22 getTimezoneOffset()
	15.9.4.23 setTime(time)
	15.9.4.24 setMilliseconds(ms)
	15.9.4.25 setUTCMilliseconds(ms)
	15.9.4.26 setSeconds(sec [, ms])
	15.9.4.27 setUTCSeconds(sec [, ms])
	15.9.4.28 setMinutes(min [, sec [, ms]])
	15.9.4.29 setUTCMinutes(min [, sec [, ms]])
	15.9.4.30 setHours(hour [, min [, sec [, ms]]])
	15.9.4.31 setUTCHours(hour [, min [, sec [, ms]]])
	15.9.4.32 setDate(date)
	15.9.4.33 setUTCDate(date)
	15.9.4.34 setMonth(mon [, date])
	15.9.4.35 setUTCMonth(mon [, date])
	15.9.4.36 setFullYear(year [, mon [, date]])
	15.9.4.37 setUTCFullYear(year [, mon [, date]])
	15.9.4.38 setYear(year)

	15.9.5 Properties of Date Instances

	16 Errors
	17 References

