
ECMA/TC39/97/26

Standardiz ing Informat ion and Communicat ion Sys tems

Phone: +41 22 849.60.00 - Fax: +41 22 849.60.01 - URL: http:/ /www.ecma.ch - Internet: helpdesk@ecma.ch
MB 97-026.doc 21-04-97 11,09

>From: Wiltamuth S.

>Sent: mercredi, 19. mars 1997 09:58

>To: e-tc39

>Subject: Notes from the March 18 TC39 technical meeting

>

>

>

>Progress

>------------------------------------

>General agreement from the working group participants that we have made

>excellent progress over the last several months. There are some

>technical issues left to discuss, and there is editing to do. But from

>a technical perspective there appear to be no barriers to completing

>the standard on-schedule for the June ECMA g.a.

>

>

>Next meetings

>------------------------------------

>We discussed whether another full TC39 meeting would be required for

>ECMAScript v1. We agreed that a v1 meeting may be required, e.g., if

>the name issue is not resolved tomorrow. We also agreed that since

>multiple vendors are continuing to innovate in this space, it would

>behoove us to schedule a full TC39 meeting to kick off ECMAScript v2

>work. A scheduled TC39 meeting for v2 would be a good target for

>interested vendors to contribute design proposals. We will pick a date

>for this TC39 meeting tomorrow.

>

>The next working group meetings ahve already been scheduled:

>* 3/24 Teleconference 11 am - 1 pm, organized by Scott

>* 4/1 working group meeting at JavaSoft

>

>

>Next steps for the standard

>------------------------------------

>Discussion of the steps that the ECMAScript v1 standard will take over

>the next six months. (I didn't take notes on this discussion.)

- 2 -

>

>

>Comments on the document -- need for standard standard language

>------------------------------------

>We need to add the standard "boilerplate" standard language, including:

>1. Scope

>2. Conformance clause

>3. Normative references. E.g., we need to reference the Unicode

>standard and the floating point number standard.

>4. (Optional) Terms and their definitions

>5. Conventions

>

>

>Review of the "Dates" proposal from Shon

>------------------------------------

>Changes from last time

>* Changed the set* members. We discussed set

>* Added setFullYear.

>* The time value for a date object can be NaN.

>

>

>Comments/changes:

>* "GMT" is the wrong term. We should be using "UTC" instead.

>* Handling daylight savings time when handling setHours and setDate.

>There are probems with crossing the daylight savings time boundary.

>Both MS and NS set the time back to a non-fictional time. E.g., if the

>daylight savings time rule is "leap ahead one hour at 2 am" then 2:30

>am

>doesn't exist. If one tries to set the time/date to such a fictional

>time, then the time is set back to 1:30 am This logic is not

>reflected

>in the current proposal. Shon will revise the proposal to incorporate

>this logic.

>

>

>General comments on the document

>------------------------------------

>Grammar notation -- where did we get the grammar notation? Some

>comments on "non-standard" notations, e.g., the use of "but not" in

- 3 -

>productions.

>

>Minimum maximums. Do we need to specify more "minimum maximums"?

>E.g.,

>the length of identifiers is currently unspecified. Should we tighten

>this up by providing a specific minimu maximum. E.g., implementations

>must support identifiers with t least 256 characters. In general we

>have avoided doing this. By not specifying these minimum maximums, we

>require implementors to be limited only by system resources. We

>discussed this and decided not to change anything.

>

>A.4. My summary mail from the last meeting was a bit misleading. NaN

>and Infinity are not literals in the same way that true and false are.

>E.g., this program is legal:

> var NaN = 123

> alert(NaN) // 123

>and this is not:

> var true = 123

>So, the way we will describe this is that NaN and Infinity are members

>of the global object -- they are not literals.

>

>toNumber and Infinity. toNumber("Infinity") will give the infinity

>value

>

>toNumber and NaN. You could say the same thin about NaN --

>toNumber("NaN") gives a NaN. But this is true even if NaN is just

>treated like a regular string.

>

>Versioning. We need a compile-time check and a runtime check.

>

>

>Review of Buffer/Blob/BinaryObject proposal from Nombas

>------------------------------------

>We discussed this proposal and agreed:

>* We will not pursue this for v1.

>* Something like this is interesting for v2.

>* Nombas will revise the proposal, based on the feedback from today,

>and

>present it at a future meeting.

- 4 -

>

>

>Versioning

>------------------------------------

>There are three issues:

>* Runtime check

>* Compile time check

>* External (e.g., browser) verison management.

>

>Versioning and a compilation-time check

>------------------------------------

>A proposal:

>* Make it like a C-preprocessor but very simple and limited, and with

>different syntax so as not to

>interfere with the use of a C pre-processor.

>* No macro substitution.

>* Allow switching on the version and on keywords. Need to define the

>exact list.

>* Desired set of operators. The expression language would be limited,

>The productions in 8.3.5 through 8.10 make sense. We could do a

>smaller

>set, and this would not be a serious restriction. What a smaller set

>would look like:

> Predefined identifiers

> Version (as an integer, correlated with the ECMA

>standard version)

> Keywords (all keywords)

> Ability for a user to define identifiers

> Ability to do conditional compilation (if/else)

> Operators

> These operators:

> <, >, <=, >=, ==, !=

> !

> ||, &&

> Grouping with (. . .)

> No arithmetic operators

> No bitwise operators

>* What types are allowed in the expressions? Boolean and Number. No

>Strings.

- 5 -

>* No function access.

>* Should we make it look more like ECMAScript or more like the C

>preprocessor? Like ECMAScript. LineTerminators are not significant.

>* Letting old engines work without modification. There should be a way

>to hide this stuff from old engines which do not support this

>mechanism.

>This hiding mechanism should be orthogonal to the conditional

>compilation mechanism so that the hiding mechanism can eventually go

>away.

>* Language sketch:

> @var <id> = <constant>

> //@var <id> = <constant>

> @if (exp)

> //@if (exp)

> @else

> //@else

> @elif

> //@elif

> /*@<ws>

> @*/

> @endif

> //@endif

>

><constant> is true, false or a numeric constant (hex, octal or

>decimal).

>Undefined symbols are treated as false.

>

>* If an @if statement fails, are conditional compilation expressions

>within the @if block evaluated.

> @if (test)

> @var x = true

> @endif

> @if (x) // Is x defined? No, so it is false.

> ...

> @else

> ...

> @endif

>

>* Example 1:

- 6 -

> /*@

> @var debug = true

>

> @if (debug)

> // Debug code here.

> @else @if (profile)

> // Profiling code here.

> @endif

> @endif

> @*/

>

>* Example 2 (same as Example #1 but using elif and without hiding):

> @var debug = true

>

> @if (debug)

> // Debug code here.

> @elif (profile)

> // Profiling code here.

> @endif

>

>* Example 3

> /*@

> @if (version >= 3)

> // Use v3 features

> @elif (version >= 2)

> // Use v2 features

> @else @*/

> // Use v1 features. Note that this code is unhidden.

> //@endif

>

>* Example 4

> alert("This message always appears.")

>

> /*@

> alert("This message appears if conditional compilation is

>supported.")

> @*/

>

> /*@

- 7 -

> @if (true)

> // Do nothing

> @else @*/

> alert("This message appears if conditional compilation

>is not supported.")

> //@endif

>

>* Example 5

> //@if (noisy) alert('here'); @endif

>

>

>Versioning and a run-time check

>------------------------------------

>Agreed to add a member to the global object named

> ECMAScriptVersion

>It returns an integer value. For ECMAScript 1.0, it returns 100.

>

>As with Infinity and NaN, this member is r/w. Changing the value isn't

>a very smart thing to do, but it is allowed.

>

>Things to add to the extensions list

>------------------------------------

>Randy proposed some version 2 features. Randy will write up proposals

>for these later. Here is a list of the new members:

>

>String extensions:

>* isAlpha, isLower, isUpper

>* leftTrim, rightTrim

>* String.replicate, String.space

>* right, left

>* stuff

>* toProperCase

>

>Math questions/issues

>* Math.int -- chop toward 0 rounding.

>* dtor -- degrees to radians

>* rtod -- radians to degrees

>

>Array extensions:

- 8 -

>* scan(expr, [start, [count]]), returns the element number for the

>match.

>* fill(expr, [start, [count]]), fills the designated array positions

>with expr

>* multi-dimensional arrays

>* other members related to multi-dimensional arrays

>

