ECMA/TC39/97/28

ECMASCRIPT LANGUAGE SPECIFICATION

ECMA CoMMITTEE#39
VERSIONO0.18

MAY 2, 1997

Please send feedback regarding this document tao Jan van den Beld (an@cna. ch) and to Guy
Steele (Quy. St eel e@ast . sun. com

2 CONFORMANC E ...ttt etee st e et e e et s e stee st e s e beeesbeseabee e bessasesasbessabeeeabessaseeesbessaseesbesesseesaneeas 2
Gt O s 3
@ AV o Y 4
4.1 VVEB SCRIPTING.uttieiitteeeaitteeesiteeeeatteeesasssasaisseeaaasteeeaassesasasesesassessesasssssssssesesanssssssassessssssesesanssesesnsens 4
4.2 LANGUAGEONVERVIEW. ...ceeiitteeeeitteeeeeteeeeeiteeasssseeasasteeesassesasssseesaseesssassssesassesssanssssesassessssssesesassssessnsens 4
O o] = £ 5

EC B B = =N 0] N TR 6
2 I 1Y/ o< TP U TP U TPRPPP 6
A.3.2 PIHIMITIVE VAIUB.......coctei ettt ettt ettt ettt e e be e e be e e s beesbe e e sbeesabesesbeeeabeesbaesabesensaesbeeans 6

T TR] o] = S 6
TG T e 1 1 U T (o] SRR 6
R o 011011, o< TP U TP OR PRSPPI 7

T N V= LAY =X @ o] = o F S 7
e A =TV =t S 7

T RS o1 A o] <o S 7
A3 UNUENINEAo ittt ettt e tee et e s be e e be e e sbeeebe e e sbeesbeeesbeesabessbeesabeeebaesbeeessaesseeans 7
4.3.10 UNAEfINEA TYPE... ettt ettt sttt ettt e bbbt s ae et e e e se e besbesbe s b e e st ese e e et e seeseesre e 7

L 01 I I N V1 SRR RRROSRRRUPI 7
e T 2 11 B Y/ oS RPR 7

4.3. 13 BOOIEAN VAIUE......coccteieitie ettt stte ettt s e ettt s s b e et e e sbeeebe e e s beesbeeesbeesbeeesbeesnbeesnbaesabesensaesseeans 7

e I oo == o I Y] o =TT STUPR U RPR 7
VT LN = To o =7 T] o] = 7

T T GRS (T o N 7= [T S 8
T s 1T 0o B Y o= U SUPRRPR 8
T R TS 1 T e 1L] = PSS 8

4.3 19 NUMDEN VAIUE.......cooveiectiecetee ettt ettt s e et e st e e te e e sbeeebe e e sbeesbeeesbeesabeseabeesabeesbaesbesensaesseeans 8
e 1 O N [F 01T G Y/ LT USRI 8
T N N0 00 o= S 8

T B 1 o 10 S 8
A.3.23 INAN. ...ttt ettt ettt e s e et e e et e e e eae e e shae e bee e abaeeabeeaabeeebeeeaheeabeeeaheeeabeeeabeeebeeeabaeeabeeeareeeareeans 8
S5NOTATIONAL CONVENTIONS. ... oottt eetee et eeee et s e sres s besseaessbasssaeessbesessesesbessssessbesesseesssees 9
5.1 SYNTACTIC ANDLEXICAL GRAMMARS.......utiiiiitieieeiieeeeiteeesastteeeeaseeasssaeeaaasteeesassesassssessssssesesassseessnsens 9
5.1.1 CONtEXI-FIEe GraMMAIS......cceeeeiiiiie et eeetee e s sttt e e e etee e e s ee e e s sabeeesaasaeassseeeeesstesesanseeessnseeasansseeesnns 9
B5.1.2 TRE LEXICAl GraMIMAT......ccicvieiieeeieeeieeceteeete e et e sbe e s teesabeesateesabeesaseesabeesaseesabeesaseesabeeaneeessreensneesens 9
5.1.3 The NUMEriC SIFiNG GramMIMar.........cciueieeiieiieeeeeeiesteesteesteetesseesseeseeesseessessessesseesseessesssesnsesenssenns 9
5.1.4 The SYNLACIC GIraIMIMIAL........ccueiieiieiee st et eieeeeese e s e e e eteestesseesreesreesteesseensesaeesseesseenseensesnsessenssenas 9
5.1.5 Grammiar NOLBLIONcccuieiieeiii ettt eee et e e e e sare e e ee e sare e saeeesabeesaseesabeesaseesabeesaseessteesnseesatens 10

5.2 ALGORITHMCONVENTIONS ... ttteeeitteteeeittreesiteeeeestteeesaseeassseeesaasseeesasseeasassesesanssesssasssssssseeesansenessnnens 12

(SRS O LU = O N G 13
T LEXICAL CONVENTIONSttt ettt et s st s st e st ssbe s sbessbessabessnsessnbessasessbesensessnres 14
T L VN HITE SPACE. ttie e ctteee e ettt e e ttee e e ettt e e e et e e e s beeeeesbteeesaasaeeesabeee e e seeeesasseeaeanbeseeanseeeeasaeeesasseeesanseeessnnens 14
7.2 LINETERMINATORS. .. .ttteiiittiteiittteeeiteeeeaiteeassaseeaaaasteeeaaseeesasesesaasesessassesasassesssanssesssnssssssassesesanssnessnnens 14
7.3 COMMENTS ...ttt iittiteectteeeeetee e e seteeeeestteeeeaseeeessaeaaaasteeeaassesesaaseseaaseeeesasseeeeasseeesansseeeasaeeasasseeesanseeesannens 15
0 0] = N TSP 15
T.4.1 RESEIVEU WOFTUS......cccuvieeieie ittt ettt ettt s e ette e stbe e s aee e sabeesaee e sabeesaseesabeesaseesabeesaseesabeesaseesateesnseesatens 15
S Q=Y o o S 16
T.4.3 FULUrE@ RESENVE WOIAS........oeccieieitieccee ettt ettt ettt e e e e s are e s aee e sabe e sareesabeesnneesabeesnreesareas 16

ST 1] = N T 1= T PP 16
7.6 PUNCTUATORS.eiieiitttteeeitteeeeitteeeastteeesaateeaesaseeaaassteeesassesasabeeaaaaseeeesasseeesassesesanseeesaasaeeasasseeesansseessnnens 17
A =3 PP 17

A N I =T = 1 K= TR 17

WA = 1o o L= T L (= = £ 17
AT N (Va1 g Lol I (< = 17
T.7.4 SING LITEIAIS.....citieeeieieee bbbttt b et b et e e b e enes 19
7.8 AUTOMATICSEMICOLONINSERTION ...cuvtiiteeitesiseesteseiseesstessseesssessnseesssessnsessssesssseesssessnseesssessnseesnsens 22

B T Y PES ...ttt ettt e et e st e e e te e e e bee e be e e bee e be e e beeebee e abeeeabeeebeeabee e beeebeeebaeeareeebeeereeenres

8.1 THE UNDEFINED TY PE....uicitiiteiteeiteeiteesteeitesaeesteesteeteenbessbesssesaaesteessesssesasssssesseesseensesnsesssessesssesssesssesnnes

Tz I T = O I 127 = =

SRR I T = S0 L0 T =7 N 7 = =

I I T Y T N N7 = =S

B THENUMBER TYPE......utiiiiiittieeiiteieeeitteeeeeiteeessiseeesesstesesasseeessbeeesassaeseaasssessasbesesanssessasseessasseeesansenessnsens

S ST = O =l s I = =
8.6.1 Property ALIFIDULES. ..ottt
8.6.2 Internal Properties and Methods

B.6.2.1 [[GEII(P)...vverreereeeeereesesesieeeesesesiesessesessssesses s ees e ss s sssesssses s eesses s aessssesesses e ssness s sessesnseean
8.6.2.2 [[PULTI(P, V) cvvvrrrerreereenrreesssiessiesssssnsssssssssssssssssssssssssssssssaseons

8.6.2.3 [[CANPULII(P)....vverveerrrerreririessessessssssssssssssssssssssssssssssssssnneens

8.6.2.4 [[HASPrOPEITYTT(P).. v eeveueireiirteiesietee stttk ne et b et nnene e
8.6.2.5 [[DefaultValue]] (hint)

8.7 THE REFERENCE TYPE ...tictiiteiteeiteeiteesteestesaeesteesteesbeesbesatessaesaaesteessesnsesnsessessseesbeentesntesssessesstesssessennns
S R = 7= = Y S
8.7.2 GEtPrOPEItYNAME(V).....eeeuiitirieiirtese sttt ettt b et b et b bbb bt bbb b e enes
B.7.3 GEEVAIUE(V) ...ttt bbb bbb et b e bbbt e b e
8.7 4 PUVAIUB(V, W)ttt ettt b et b ettt ettt

RS I T = I 4 = =

SRS I I T = O)Y 1= I = [N 17 =IO

O TYPE CONVERSION.......coii ittt ettt ettt e e e te e st e e s ebe e e beesbeesabesebeesabeeeseeeabaeeseeenbessseesnres 30

L0 TR A @) o Y RV =S 30

Lo T 0] =0 T I =7 O 30

LS TR @ VLU 1LY 1= = = O 31
9.3.1 ToNumber Applied t0 the SIFNG TYPE......ccvvireiririeee e 31

L0 I 0 N = = 33

9.5 TOINT32: (SIGNED32 BIT INTEGER) ...uccutiteueettsierietestesestestesessesteseesestesessestesessestesesbestenesbesbenessestenessessene 34

9.6 TOUINT32: (UNSIGNED32 BIT INTEGER) ...cueettrteieiestereetestesestestesestestesessesaesessesteessestenessessesessessenessessns 34

9.7 TOUINTLE: (UNSIGNEDLE BIT INTEGER) ...cueeviteeeuesterentesiesestesteestestesessesaesessestesessessenessessesessessenessessens 34

LR @) 111 N 35
9.8.1 ToString Applied to the NUMDEN TYPE......ccciiriirirere e 35

LS I 0O = =l L 36

TOEXECUTION CONTEXTS. ..ottt sttt ete e stte e s te e stae e saseesbee s aateesateesaseessseesaseebeeeasseesareesnsenssnens 37

05 B = = 1N N 37
10.1.1 FUNCEON ODJECES.....ectiitieetiitereeieste sttt sttt sttt st b e e b e sb e e b e se bt se bt st seebenbeneebenbe e 37
10.1.2 Types Of EXECULADIE COUE.........ceiirieiiiierieiesie ettt et st s sb e s sre e 37
10.1.3 Variabl € INSLANtIALION........cciceeiiieietee et ces et esetee st e s st eeabe s sbessabessbessabessbessabessnsessnresans 38
10.1.4 Scope Chain and ldentifier RESOIULTON..........coceiirieiiirieieeese e 38
10.1.5 GlODAI ODJECL......ccuiieeeiiieieieite ettt b e et b et b e st b e ettt et e b seenenbe e 39
10.1.6 ACIVALION OBJECL......c.iiiiieiiitieees bbb sttt b e bbb 39
O T A I 1 = TSSOSO 39
10.1.8 ArguMENES OBJECL.....c.eiiieiiitireeese ettt et et b bbb 39

10.2 ENTERINGAN EXECUTIONCONTEXT ..veeiutiesteesireenseeestreesseeessesessesesssssssssssssssssesessessssesssssssssesssessnesans 40
020 I €1 o] o= | o o (= 40
O 1 (@0 T [T 40
10.2.3 Function and ANONYMOUS COUE..........coireuiririeierie sttt ettt s sbe e bbb e 40
O T o1 O o (=T 40

TL EXPRESSIONSottt ettt ettt e s e e st e st e e ebe e e e abe e sabe e saseeebeeesaseeabeeeeabeesabeesaseesseeeasseeseeesaeeesarens 41

11.1 PRIMARY EXPRESSIONS.......ueiitiitiiteieteeeteesteeetesateestesseesteestessseesesssssasesssasseeseentesssesssesssesseessesssesnsesnns 41

11.1. 1 The thiS KEYWOIc.eitiieiiitereeeste ettt ettt b e st b e st eb b e b b e 41

I o 1= | L (S R S = = [0 TR 41
R R I (= I (= L= 41
11.1.4 The GroupPiNg OPEN G0Ncciiueerierieierterietesteseetesteseese st seesesbesee st st st e se st e seebesbeseebesbeseebesbeseesesteneas 41
11.2 LEFT-HAND-SIDE EXPRESSIONS......cccittiittiesieeitteesteesteeesseeesseeesseessseesssssessassnsesessessnsessssessssessssessnsenans 41
10.2.1 PrOPEItY ACCESSOIS......ueeeeurertearissesseeseeeesessessessessessess e sesseasesseaseaseeas e sessearesbesbeeseeaeensessenrennesneas 42
11.2.2 THE NEW OPEIALONeeiteeeteitereeieste sttt sttt st sttt sttt sb e st bt s b e se bt s b e se bt e b e se e b e s b e seebesbeseebenbeneenenbeneas 42

N ZRC B U Tox o L T @7 | 43
L1124 ArQUIMENT LISES....evieetiitereetiite ettt sttt sttt st sb e s b e bbb e bt b se bt be sttt sbese b e nbeneebenbe e 43
11.3 POSTFIX EXPRESSIONS.eeittieiteeitteesteeitreesseeessesanseeessssessessssseessesssssssasessssessnsesessessasessssessssessnsessnsesans 43
11.3.1 POSHiX INCremeNnt OPEIaLOr........ccirieiriirieiirie sttt st sbe st s b e s ebe b e b 44
11.3.2 POStiX DECIEMENE OPEIALOL.......ccuieeuerierietirterieierte sttt sttt sttt se et se bt see bt st e ebe st seesesbeneas 44
114 UNARY OPERATORS.ccutteitttesteesteasteesseeessseessssassesessssaasssessssaasessssssassessssessnsesessessnsessssessssessnsessnsesans 44
11.4.1 ThE Al L8 OPEIALOTeeeuirtereeiesteseeie sttt sttt sttt st b e s b e b e b e bt b e se bt st seebesbeneebesre e 44
11.4.2 THE VOIT OPEIALOTeivieeiirtireeieste st st sttt sttt sb e s b s b se et sb e se bt bese bt s besee bt sbeseebenbeneenenbe e 45
11.4.3 The tYPEOT OPEIALON.....cueieeiertereeieete sttt sttt sttt et b e s b e b sttt b e e bt b se bt st ese et e nbeseebenbe e 45
11.4.4 PrefixX INCremMENt OPEIALOTc.ciirieirierieiesieseeteste sttt st ettt sttt et se bt seebesbeseebesbeseesesbeneas 45
11.4.5 Prefix DECTEMENt OPEI G0Nc.ciirieiirierietirtereeteste sttt st sttt sttt se et s bt seebesbeseebesbeseesesreneas 45
11, 4.6 UNAIY + OPEIALOT ...c..ecveeueeutereeerestesseeieeee s s sse st sse s e e sr e s s e s besseebe e e e sessearesbesbeeseeaeennenrenrenrenneas 45
L12.4.7 UNAIY - OPEIALON. .. c.uecueeeeterteeress sttt e st s e ss s e e e se e s s s b sbeebe e e e seseearesbeebeebeeanennenrenrennenneas 46
11.4.8 The BitwiSE NOT OPEIrAION (=~).evvereererieriererierieierteseeieste sttt steseete st s et et st s be st seebe b seesesreneas 46
11.4.9 Logical NOT OPEFALOr (1) iueieirereeirierieesie ettt sttt sttt st st be e b b e b b e 46
11.5 MULTIPLICATIVEOPERATORSccutteitteitteesteestreasseeesseseassessseeaasesessssessessssessasesessessssesssessssessnsessnsesans 46
11.5.1 ApPIYING the ™ OPEIALOL........eieeieiterieiiite ettt et b et s b e st se bt se b b e 47
11.5.2 APPIYING the / OPEFALON......eitiieiiiterieieete ettt ettt st b e e bt ne b b e 47
11.5.3 APPIYING thE Y0 OPEIALON.......ieeueitereeieste sttt sttt st sttt se bt seebe b e ebenre e 47
11.6 ADDITIVEOPERATORSeeitteitteitteesteestreesseeessesanseeessesaassesssseassessssesaasessssesansesessesensessssessnsessnessnsesans 48
11.6.1 The Addition OPErator ()cccereierereere sttt st sttt b e e b b e besre e 48
11.6.2 The SUBLraction OPEIator (=)....c.ceveerereererieiesiereee sttt st sb e s sb et sbe s eb b e sre e 49
11.6.3 Applying the Additive Operators (+, -) t0 NUMDEYS........ccoviriiiinine e 49
11,7 BITWISESHIFT OPERATORS.....c.utteitttesteeitteesteessesasseeessesasseesssssassessssssansessssessassssssessasesssessnsessnsessnsesans 49
11.7.1 The Left Shift OPErator (<<)ittt sttt st s b b e sbe e 49
11.7.2 The Signed Right Shift OPErator (>)...cccivvciiiicesie e 50
11.7.3 The Unsigned Right Shift Operator (>)..cccciivciiiiicese s s 50
11.8 RELATIONALOPERATORS......eeiitteitttesteeisreeseeessesaaseeessssaasessssesaasesesssseasessssessasesessessnsessssessssesssessnsesans 50
11.9 EQUALITY OPERATORS.....ceittteiteeitteesteessreasseeesseeaaseeessseassessssseeasesesseseasessssessnsessssessnsessssessssessnessnsesans 52
11.10 BINARY BITWISEOPERATORS ...t ttettteeitttesuteestreesseeessesesseeesseeaasesessssaasssessessasesessessssesessessssessssessnsesans 53
11.11 BINARY LOGICAL OPERATORSceeitteitriesuteestreeseeessesassseessesassesessssaasssessessasessssessssessssassssessssessnsesans 53
11.12 CONDITIONALOPERATOR(25)eueeueruerteuerterteesiesteseesestesessesaessesesaessesesaesesesbesesesbessenessessenessessenessessens 54
11.13 ASSIGNMENTOPERATORS. . .ccutteitttesteeiureeseeesseeasseeesseeasseesssseassessssssesssssssessnsesessessssesssessnsessnessnsesans 54
11.13.1 SMPIE ASSIGNMENE (T oevertereeieriereeiesie st sttt st st et b e e bt b seebe st se b s beseebesbeseebesbeseebesbeneas 54
11.13.2 Compound ASSIGNMENT (0T).evereererierieierierieieste st sttt st st sbe et e b st e bt st seebesbeseesesbeneas 55
11.14 COMMA OPERATOR ())euvereeueruerueneruerseessesseessessessssessensesessessesessessesessensesessensesessensenessessenessessenessessens 55
T2 STATEMENT Sttt e st e e et e s e e e s be e e et e e s bbe e sabeesbeeesaeeeabeeesabeesabeesaseeaseeeaaseebeeesaeeessrens 56
R RV N = I =) N 1= Y1 = N P 57
= Y 7N = 1= N 57
12.3 EXPRESSION STATEMENT ...uttieiteeitteesteestteesseeessesessesessssesssesssssessesssssssassssssessnsesessessnsesessessnsessnsessnsesans 58
D T Y - I = Y1 = R 58
12,5 ITERATION STATEMENTS...c.ttteiteeitteesteestteesseeesseeesseeessesessesesseeeasesessessasessssessasesessessnsesesessnsessnsessnsenans 58
12.5.1 ThE WhIlE SALEMENL......ei ittt ettt et st s st e eab e s sbessabessabeesabessbessnbessreesnresans 58
A I L= (0TS = 1= 1= | AR 59
R L L (o T AT ¥= 1= 01 | A 60
12.6 THE CONtINUE STATEMENT....ccittitiiteeeteeeteesteetessteestesseesteesteesseesesasessessasasseebeenbesssesssesssesseessenssennsesnns 60
12.7 THE DIEAK STATEMENT. .. veeiteiitiete ittt eteeeteesteetessteestesseesaeesteesseesesasesaeesssasseabeenbesssesssessaesseesteessennsesnnes 61
12.8 THE FELUMN STATEMENT ...eiittieiteeiteeste e sttt esseeesteeesseeesseeeaseeesseeeasesassaeaasesessesansesessesansesessessnsessnsessnsenans 61
12,9 THE WD STATEMENT. ...ctiiitiiite ettt et e ete e st ettesreesbeesbeesteesesasesaeesaeasbeebeeabeeabesabesbaesbeesteesbeensesnnas 61

I3 FUNCTION DEFINITION. .. oottt s e s 62

O @ T CT 2 |, TR 63
IS5 NATIVE ECMASCRIPT OBJIECT S ...ttt ettt st s e it s s s bae e s s sba e e s saese s sebaeesssnbenesanns 64
15,1 THE GLOBAL OBJIECT .. iecttteetie et eesittetteesssesabsestsesssasssbbestsesssesasbasseeasssssasbbasseasssssassbaseeesssssssssesesesesss

15.1.1 Value Properties of the Global OBJECt..........ccciiiriiiic e
LS00 0 0 N = SRRSO U PSRRPPROPPN
L5, 112 INFINITY cutttetet ekt b bbb e b e R R bR e bt Rt bt bt et

15.1.2 Function Properties of the Global ObJECL...........cviiiirrinirereees e
L5.1.2.0 @VAI(X):euerveveeereeeteesteie sttt ie etttk bbbt b bR R h R R E R R R bRt e b e Rt bt bt e b
15.1.2.2 parsel nt(string, radix)
15.1.2.3 parseFl 0at(String).......cccoeerreereerenernenens
15.1.2.4 esCape(String).......cevvveereeerreererrenennenens
15.1.2.5 Unescape(String)........ccoveeerreereeeenereens
15.1.2.6 iSNaN(NUMDEN).........ccovveereiririiiriens
15.1.2.7 ISFINITE(NUIMIDEN) ...ttt b ettt bt b e bbbt e b s e b ettt b et ne et n e

15.2 OBJIECT OBJECTS. .. ttttteeueeeesressessessessessesseessessessessessessesaeesse s e sesaeaheabe s st es s e s e reseearenb e aneese e s ennenrearenne e

15.2.1 The Object Constructor Called as a Function
15.2.1.1 OBJECL(VAIUE) ...tttk e bt b ettt b et e bt eb ettt b et ne et e
15.2.1.2 OBJECH().veovrveerreeereeeeeeeeesesesesess s sesessseeseseesssses s essessseesessesessassssses s sessssesesanssssnessssessssessseesesnnessanees

15.2.2 The OBJECE CONSIIUCLOTccveeeiiiterieieste sttt sttt sttt st sttt s be st e ebe b e ebe b e
15.2.2.1 NEW OBJECH(VBIUE) ...ttt sttt b ettt et e bttt b et b e
15.2.2.2 NEW OBJECE() . ..vrveveuerreuireeterieteieste sttt sttt b et b et eb ettt b st se b e e b e bt b e st ne et e s eb ettt b st et e e

15.2.3 Properties of the ObjECt CONSIIUCTOL.ccciriiiireire ettt 68
15.2.3.1 ODJECE. PrOIOLYttt ettt stttk b et eb ettt b et st b e bbbt ne b s eb ettt b st e et e 68

15.2.4 Properties of the Object Prototype ODJECL..........ocoveiiirieree e 68
15.2.4.1 Object.prototype.constructor
15.2.4.2 Object.prototype.toString()...........coeene
15.2.4.3 Object. prototyPeNVAIUEOF (). ..c.vevieireiireeierieeestese ettt ettt

15.2.5 Properties of Object Instances

15.3 FUNCTIONOBUIECTS...evteueeueeuresrearessessessesseessessessessessessesseessessesessesbeasesseessensesesbearenbeaneeseenennenrenrenne e

15.3.1 The Function Constructor Called asa FUNCLION...........ccocvviiinireeiee e 69
15.3.1.1 Function(pl, p2, . . ., PN, DOAY) ...cviiiiiiei e 69

15.3.2 The FUNCLION CONSLIUCTONeviieeeeeeeeeeeese et eeeeee e see s et sreeseese e e seessessessesseeneeneeseensessessens 69
15.3.2.1 Function(pl, p2, . . ., PN, BOAY) ...cveiiiiiiiee e 69

15.3.3 Properties of the FUNCtioN CONSEIUCEOL............cuiirieiiiriere st 70
15.3.3.1 FUNCH ON.PTOIOLYPE ...tttk ettt b et b et b ettt b bttt b ettt b st e b 70
15.3.3.2 FUNCHONTENGLN. ...ttt et bbbt b e 70

15.3.4 Properties of the Function Prototype ODJECL. ..o 71
15.3.4.1 FUNCLI ON.PIOtOLYPE.CONSIIUCTON. ...ttt ettt ettt eb e bbbt e bbbt nn et e b e 71
15.3.4.2 FUNCLi ON.PrOtOLYPELOSIIING(). .+ cvvverereerereereestesestee ettt ettt b et et sb ettt 71

15.3.5 Properties of FUNCEION INSEANCES.........cooeiiiieiierieerte ettt s 71
L5.3.5. L TEBNGEN. ...t b bR e b h ettt e b
15.3.5.2 prototype.
15.3.5.3 BIGUMIEIES.ctiitetiieie ettt ettt b ettt et b e r e s e e b e e e st e bt e bt e Rt ne e e R e e e e e seeb e e Rt ne e nenn e e eseebeenenreanen 71

SN N o Y N A @ =N =0 = 71

15.4.1 The ArTaY CONSIIUCTO.c.eitirieiiiterieieste sttt sttt et b e st sb e st sb e s b et se bt st seebesbeseebenre e 72
15.4.1.1 new Array(itemO, ITEMIL, . .)ittt e 72
15.4. 0.2 NEW ATTAY(IEN).... ettt bbbt b et b et eb et b st e bt bt bbbt e b e
L5.4. 1.3 NMEW ATTAY() t-verteetinerreuertettse ettt ettt ettt b ettt s e b e b e b st b st e e bt e b e s e eE e s e b e st ne b et e b ettt b bt et e

15.4.2.1 Array.prototype

15.4.2.2 ATAY JENGEN. ...ttt et
15.4.3 Properties of the Array Prototype Object

15.4.3.1 Array.protOtYPE.CONSIIUCTOL........ccveeeueeeeetestertet ettt r e e b n e e s e e e e e eseenenreenens

15.4.3.2 Array.prototype.toString().......ccceevvenne

15.4.3.3 Array.prototype.valueOf()........ccovuenene

15.4.3.4 Array.prototype.join(separator)

15.4.3.5 Array.prototype.reverse()......c.ccoeevenene

15.4.3.6 Array.prototype.SOrt(COMPAIEFN).........cer ittt ettt et 73
15.4.4 Properties Of Array INSLANCES......ccveeereereresesieseseesee e seesteseesseeseeees e seessessessessessensessensessnssens 74

15,44 L [[PULIT(P, V) ceeititeieiei ittt bbbttt bbbttt bbbt 74

BN 1= o | { o SRR 75
15.5 STRINGOBIECTS ...ttteteeueeeesressesressesre st s ee e ss e be s b sresse s e es e e s e sesaesh e eb e s st es e e s e nesbesreab e eneeseenenneneenrenne e 75
15.5.1 The String Constructor Called @S a FUNCLION..........ccoiriiiineineeese e 75
15.5.1.0 SEIINGVBIUE. ... ettt sttt b ettt b et b e b bbbt e b s b ettt bt e et e 75
15.5.1.2 SHING() cvvverrveerreeeresesieeesesesesssssssessssessssesssssesssssssssesessessssssessesessasssssessssesssseessaessssasssssessssessssesssnsessanees 75
15.5.2 The SIHNG CONSITUCTONueitiieiiiterieieste sttt st sttt st se bbb b e 75
15.5.2.1 NEW SEINGIVAIUE) ...c.veuietiieieeeteeteese ettt bbbt et s bttt b et e et 75
15.5.2.2 NEW SEITNG(): vt ereeremerremereesenietene sttt sttt e bbbt s e eb e bt b st ne b e e e b e s e eb et b e st ne ke s e b et nb st b st et e e e 75
15.5.3 Properties of the SIring CONSIIUCLONcoureiiireeie ettt sre e 75
15.5.3.1 SHIINQ.PrOLOLYPE. . .ueveuireetetetee ettt sttt sttt stttk b ettt h st b e e b et eb et bt ne ke s eb ettt b et et 75
15.5.3.2 String.fromCharCode(Char0, Charl, . . .).cccoeeiieirieerreerees e 76
15.5.4 Properties of the String Prototype ODJECL.........c.cov i
15.5.4.1 String. ProtOtyPE.CONSIIUCTON.......c.civeuireeuireeteestesestestreetess bttt se b se b e bt b st e b e eb e e e ne b s e b e e
15.5.4.2 String.prototype.toString()cccovvveune
15.5.4.3 String.prototype.valueOf ()........ccccoueuene
15.5.4.4 String.prototype.charAt(pos)................
15.5.4.5 String.prototype.charCodeAt(pos)
15.5.4.6 String.prototype.indexOf (searchString, POSItiON)........ccoevrreeriieirieereereree e
15.5.4.7 String.prototype.lastlndexOf (searchString, position).
15.5.4.8 String.prototype.SPlit(SEPAratOr)........coeerereririeirieerieesiee ettt
15.5.4.9 String.prototype.substring(start)...............
15.5.4.10 String.prototype.substring(start, end)
15.5.4.11 String.prototype.toLowerCase...............
15.5.4.12 String.prototy PELOUPPEICASE.c.crveuerieteerieiistet ettt sttt eb et b et b et se bt eb ettt n et e b e
15.5.5 Properties of NG INSLANCES.vcvereererireseseeeereeeste e e s sse e e e seeseesressesseeeeneeseessessessens
T3S T0 T = o |4 OSSR
15.6 BOOLEANOBJIECTS....tetteueeueeuressesressessessesseessessessessessessesseessessesesseahease e st es s e s e seseeerenbeaneese e s enrennenrenne e
15.6.1 The Boolean Constructor Called asa FUNCLON..........cccvoviiiineeeeeee e
15.6.1.1 BOOIEAN(VBIUE)cvuieiiieieesteeste sttt ettt b et b ettt sttt eb ettt b et et n e
15.6.1.2 BOOIEAN() .. euvvereteuerteuireeteseste sttt sttt e bbbt b s b ettt h bt e b e e b e bbbt e bt e bbbt et
15.6.2 The BOOIEAN CONSLIUCTO.........ciuiieeieeeeeeeeesieseseeseesseeeeseeseessessessesseseeseessessessessessesnsensessensessessens
15.6.2.1 new Boolean(value)
15.6.2.2 NEW BOOIEAN() ... iueveiireetiietee sttt bbb bt ekt h ettt bt e b
15.6.3 Properties of the Boolean CONSLIUCLOL..........c..ciiirieiiirieirieseeesie s 80
15.6.3.1 BOOIAN. PIOLOLYPE........ceteieieeeteuesieie sttt ettt et e bttt b et st b et bbb bt ne et e s e bttt b st e b e 80
15.6.4 Properties of the Boolean Prototype OBJECt.........cociiireininereee e 80
15.6.4.1 B0OOI €aN.ProtOtYPE.CONSIIUCIONveuieeiiieteesteaisietc sttt ettt se bbbt et eb ettt nn et e b 80
15.6.4.2 Bool ean.prototype.toString()
15.6.4.3 Bool ean.prototype.valueOf()
15.6.5 Properties of BOOIEAN INSIANCES........c.coreiririeiriereeeste ettt s sre e 80
15.7 NUMBER OBUIECTS. .. tttteueeueeutessesressessessesseessessesbesnessesse s e esse s esesaesheabessees s e s easeseeareabeaneeseen e s e nrenrenne e 81
15.7.1 The Number Constructor Called asa FUNCLON..........ccccoviriiineeieeee e 81
15.7. 0.0 NUMDBEI(VAIUE)......cueieeiireetieteee ettt ettt et b ettt bt e b e
L5.7. 0.2 INUMIBEN() s+ttt stttk b et b e bbbt e b e b ettt b et et e
15.7.2 The NUMBDEI CONSLIUCLONiiviieeeeeeeeeeeesese e seeeseeee e sees e ssessesseee e e seessessessesseenseneeseensessessens
15.7.2.2 NEW NUMDBEI(VAIUE).eeiieiieetee ettt ettt et
15.7.2.2 NEW NUMBEN ().t ekt b e bbbt et e bbbt et e e
15.7.3 Properties of the Number Constructor
15.7.3.1 NUMDE PIOLOLYPE ...ttt b et b ettt e bttt b et ne et
15.7.3.2 Number. MAX_VALUE.........c.ceveene.
15.7.3.3 Number.MIN_VALUE..........cccevrneene.
15.7.3.4 Number.NaNccocevevereeieeneie e
15.7.3.5 Number NEGATIVE_INFINITY.........
15.7.3.6 NUMBEr . POSITIVE_INFINITY ..ottt sttt e et stesaesaeaeseesesnessesnens
15.7.4 Properties of the Number Prototype ODJECL.........coceiirieirircreeeeee e 82
15.7.4.1 NUMDEY . ProtOtYPE.CONSIIUCTON......c.vevieetiietiesteiiste sttt sttt sb bbbttt et 82
15.7.4.2 Number.prototype.toString()
15.7.4.3 Number.prototype.val ueOf()

15.7.5 Properties of NUMDEr INSANCES.........coiriiiirieerenieese ettt st s 82
15.8 THEIMATH OBUIECT ..tetieuieieuiestesrestessesse st et se et sh st e s s e se s e sh e bt s st e s e e e e nese e e renbeenees e e s ennennenrenne e 82
15.8.1 Value Properties of the Math OBJECL...........coveiiiriii e 82
TR T 00 U SOUSPRRPTPROPPN 82
RS 0 0 I N 1 O SO SUSRPSTRPPPRPPN 82

Vi

L5.8. 1.3 LINZ ottt E R R e R R R R R e et e Rt Rt E e R e e e neen e ene 83

15.8. 1.4 LOG2Ec.ooiiiiiiieieieiit sttt bbbttt ettt b bbb R etk E bbbt ettt bbb 83
15.8. 1.5 LOGILOEcuiuiiiteteieiirerereseste ettt bttt ettt b bbb st s e bbbttt b b bbbttt bbb e et bbb b 83
L5.8.1.8 Pl ..ttt bbb R A bbb bRt e bbbttt bt 83
15.8.1.7 SQRT L 2.ttt sttt ettt e bbbt £ b bbb e Rttt st bbbt e e bbb bRttt etk b ettt b b b 83
15.8.1.8 SQRT 2.ttt sesesee ettt bebe sttt bbb st e e bbb e b e Rt e s e e bbb e et e e bbb bR e e ettt bRttt b b b 83
15.8.2 Function Properties of the Math ObjECL..........ccoireiiirienecr e 83
L5.8.2.1 BIS(X) . vuvvemenereirinteiesineseseseeteteseseseses bbb sttt b bRt b bbb R e e bbb E bbbttt bRttt b b nne 83
L5.8.2.2 BOS(X) - trvveurrerertenessestreesessese sttt s s st se bt s e eb et et s e b e st ne b e s b e e b s e b b e bR R e R R bRt ek e Rt bt bt e b 84
L5.8.2.3 BSIN(X).-vurverenereereeueresireneseseetesesesesesessesesesesesesesssbesesese e s b e bebebeRe et e e bbb et e e bbb bRttt et bRttt b b nne 84
15.8.2.4 BEAN(X). 1. teveueneerereetereseseseseseetetesesesesessesesesese st e e bbb e s et e b bbb e Rt e e bbb e £ bbb Rttt b bRttt b b b 84
15.8.2.5 BEAN2(Y, X).rererervrrrueresirerereresteseseneresessesesesesesessssssesesesessssssesesesesesesessssesesesensasssssesesesesessssssesesesenessssssesesans 84
L5.8.2.8 CEII(X) wuvveuemenereriririeiesitsisesie bt sttt ettt e bbbt b bbb R ettt E £ bbbt ekt bRttt b b b 85
L5.8.2.7 COS(X) - vuteverrerereetenestestreese st eue sttt b st se bt e b etk et b e st ne b e e b e e e e s e b b e b e R e R R bRt e bt Rt bt bt et 85
L5.8.2.8 EXP(X) +uveeevererererteuestestrtete sttt sttt b st h et h kb s ek R b e R R h R R E R R £ R R bRt e bt Rt bt b st et n e 85
15.8.2.9 FIOON(X) c-tvverereeeteesteie sttt ettt stttk b et b e bbb e b e R R b n ek e Rt bt bt et 85
L5.8.2. 10 1OG(X) cvuvrverererererrereresirererereetesesesesesessesesesesesesessssesesenesssssssesesasestssssssesesesensssssasesesesesessssssesesesenessssssesesans 85
L5.8.2. 1L IM@X(X, Y):veurerererrenerrenereesenseseeesesesseseseesesseseessesesses st es e s ebe e seese b e st eeeb e s eh e e eb s e b e st ne b et e b et et st nn e st ne et e e 86
15.8.2. 12 IMIN(X, V) +vtrerererrinesresereesesesseeetee st se et se bt st s b st neeb e s ebe e b es e s b e bt et e b e s e R et eb e st b e st ne b et eb et st e st s e st ne et e e ne 86
L5.8.2. 13 POW(X, ¥) crveveereruereensereeneasessesteseessaseeseasessesseseensaseessasensessessessessessesessessessensessensessesessessessessensesensensessensens 86
oIS 0 o (o o OSSR 87
15.8.2. 15 FOUNG(X) . vvvteveiteteieseeueetestesteseesteteseesestesbestesseseeseeseeseaseseeaseseeseeseesesbesseabeseenseseeseasessensesaensnsensensessensens 87
L5.8.2.16 SIN(X) cvuveverererererieueresiresereseetesesesesesessssesesesesesessssebesesenessssesebesese et st etk b e et a e b b e b e b e R ettt bbbttt b b nne 87
L5.8.2.17 SOI(X) wevrverererereruerererereseserestssesesesesessesesasesesesessssesesesesssssasesesesestsessssesesesensssssasesesesesessssssesesesensssssssesesans 87
L5.8.2. 18 LBN(X) cvvvrverererereruruererereseseseetesesesesesessssesasesesesesssseteseseessssesesesasesesesseseseseseeas et bebebes et nese ettt ebe et et et ebenne 87
15,9 DATE OBUIECTS. .. ttttterteeueeeesressesrestessessesaeessess e besbeshees e e st es s e s e ae s Rt eh e eb e e Rt es e e s e be s b e eRenb e eneeb e e s enneneenrenne e 87
15.9.1 Overview Of Date OBJECLS........ciiirieiie ettt st s b e s sre e 87
15.9. 1.0 TIME RANGE. ...ttt stttk b ettt b bt b et bbb st ne ke s eb ettt b e bt et e e 88
15.9.1.2 Day Number and Time Within Day........cccecirerieirieirieieniiesisieesie e 88
15.9.1.3 YA INUIMDETc.uiiiieieieit ettt ettt b te st et et eseebe s be st e s s e e e e eseeseese st e saeseeneeseasensentenbens 88
15.9.1.4 MONEN NUMDENeiiieeieitee ettt ettt st be e e eseesesbestesseaeseeseeseesesbesbesaensesensesseseenbens 88
15.9.1.5 DA@ NUMDETc.viiiieeiee ettt e et se b e b e te st e e e e eseebeebe st e sbesaeneeseesensestenbens 89
15.9. 1.8 WEEK DY ...ttt ettt bbbttt bbbtttk s bbb 89
15.9.1.7 Local Time ZoN€ AGJUSIMENL......coueiriiiriitiieiesie ettt ettt et 89
15.9.1.8 Daylight Saving Time AGJUSIMENL.......c.cciiiriiiiieireees ettt 90
I e T 1o o= | T 1TSS 20
15.9.1.10 Hours, Minutes, Second, and MilliSECONAS.........c..covieiiiieiiiie ettt srae e saee s 90
15.9.1.11 MakeTime(hour, MiN, SEC, MS)......ccuiieeiirierierieieeeesresestesaeseesessessestessesaeseseesessessessesaensesessessessessens 91
15.9.1.12 MakeDay(year, MONtN, AALE).........curueiririirieiriet ettt et 91
15.9.1.13 MaKEDAE(AY, TIME)......cueueriueririririsieieiie ettt ettt ettt ettt e st bbb 91
15.9.1.24 TiMECTP(HIME). c.c.eiveuireeteietere ettt ettt bttt bt b e bbb st e b e e eb ettt b st ne b e 91
15.9.2 ThE DAt CONSLIUCTONccieriisiisieeeeeeeees e s e s ste st e e eeseestessesre s e e e e seeseesresaeeseenneneessensessnssens 91
15.9.2.1 new Date(year, month, date, hours, minutes, SECONAS, MS)........cccevviirirereiieieeere e see e 91
15.9.2.2 new Date(year, month, date, hours, MinULES, SECONAS).........ccuevueiriiirenerieieeee e 92
15.9.2.3 new Date(year, month, date, hoUrsS, MINULES)...........ccccviiriirerieieieesi e se e sse e saens 92
15.9.2.4 new Date(year, month, date, NOUIS)..........ccciiirieiieieieiii ettt e e esesnesresaen 92
15.9.2.5 new Date(Year, MONN, aY).......coiueireiriiirierie ettt ettt et 93
15.9.2.6 NeW Date(Year, MONTN)........cuii ittt ettt ettt b e 93
15.9.2.7 NEW D@E(VBIUE).........cuieeeiieiiietei ettt ettt b et eb et bt ekt eb ettt b bt ne et 93
15.9.2.8 NEW DBEE() ..ueuvuvuvererieriresieie ettt ettt bbbt b bbb R etttk bbb bbbt b bbbt b bt 93
15.9.3 Properties of the Date CONSITUCIONcuiirieeririeestereetesie ettt sbe e 93
RS R R DT (X o o1 (0]1Y] o T OSSR TPT OSSPSR PR URPPTON 93
15.9.3.2 DAt@.PASE(SIITING) ... eveueereeeteeeteestete sttt st ettt bt b e sb et b st st b s b et eb st b bt ne ekt R et bt h st e b 93
15.9.3.3 Date. UTC(year, month, date, hours, MinuUteS, SECONAS, MS)........ccccvrirerereerieieeeseseseseeseeessesseseessens 94
15.9.3.4 Date. UTC(year, month, date, hours, MinULES, SECONS)........c..evureriririenerieieieesesese e seeessesee e saens 94
15.9.3.5 Date. UTC(year, month, date, hOUrS, MINULES)..........cccviirirerieieeeesi e se e e e seesaens 94
15.9.3.6 Date. UTC(year, month, dat€, NOUIS)..........ccceriirieieieiiisiesie ettt ae e e se s s seesnens 94
15.9.3.7 Date. UTC(year, MONtN, GALE)..........ccurueiiriiiirieiitei ettt et 95
15.9.3.8 Date.UTC(YEAr, MOMNEN).......ciiiiiiiiieiirteteriete ettt ettt e b 95
15.9.3.9 DAE.UTC(YEAN)...vueririerereeteieiesenesesiete et sesas bbb esesbs b b bese sttt b ekttt e b e b b e st sttt bbb et et et nne 95
15.9.3. 10 DAE.UTC() - euvveeeerirerereresieieiesesesisistesesese st seses bbbt e b bbb ese ettt bt ae b bbbt ettt b b et e bbb 95
15.9.4 Properties of the Date Prototype ODJECL.........cccvireiririeirereesie e 95
15.9.4.1 Date.ProtOtyPE.CONSIIUCTONceveueeuirieeteite ettt ettt r e et b e sr e e e ne e e e e esennenreenen 95
15.9.4.2 Date.protOtyPELOSIIING(). ... eueerreuerrerireereriereeeteesseseseese bt sa et se et se b e bt b st et e bt bt b et ne b 95
15.9.4.3 Date.prototyPeVA UEOT().....c.eiveiiiieireeieri ettt ettt ettt et 95

Vi

15.9.4.4 Date.protOtyPE.GEITIME() ... c.erveriiireiireeieri ettt ettt b ettt b et b ettt et 96

15.9.4.5 Date.protOtyPE.GELY EAN().....cuervereeirerireeterieieestee ettt ettt sttt b ettt ekttt e b e 96
15.9.4.6 Date.prototyPe.gEIFUITY EBI().....coviveeireeeerieieeeterie ettt et 96
15.9.4.7 Date.prototype.getUT CRUITY €a().....oveerreeierieiiieireet ettt 96
15.9.4.8 Date.prototype.getM ONTN().........covireirieireiesie e 96
15.9.4.9 Date.prototype.getUT CMONTN()......cvrreereirerieirieieei ettt 96
15.9.4.10 Date.protOtyPE.GEIDEIE()cvrveueireiireeieriete ettt ettt ettt 96
15.9.4.11 Date.prototype.gEtUTCDAE()......ueuerrerereereerteirieie sttt sttt sttt sttt 96
15.9.4.12 Date.protOtYPE.GEIDAY (). .. vevrremerrerireetiristeesteesie ettt sttt bbbt b 96
15.9.4.13 Date.prototyPe.gEtUTCDAY (). . v veuereerererreririeeriesireeiese sttt eb bbbt et sttt eb s 96
15.9.4.14 Date.prototyPe.gEHOUIS()......cvieirerireeiirieieistesie sttt ettt et 97
15.9.4.15 Date.prototype.getUTCHOUIS().....c.crvererieriirieirieiireeiesi ettt ettt ettt e 97
15.9.4.16 Date.prototyPe.gEIMINULES().......ccveuirrerereeriisteiiriec sttt ettt e bbbt eb e 97
15.9.4.17 Date.prototype.getUTCIMINULES).......c.erverererieirieiireetesietese sttt sb et se bbbt 97
15.9.4.18 Date.prototyPe.getSECONAS() ... uvivererrererrrrererteirtetreetess sttt sttt b et b et e b e bbb e b e 97
15.9.4.19 Date.prototype.getUTCSECONAS(). ...veverereerrenirreririesesteresesiesesi et se et ss ettt e bttt sn e 97
15.9.4.20 Date.prototype.getMilliSECONAS().......cuerrereririeirieiirieiest ettt 97
15.9.4.21 Date.prototype.getUTCMIillISECONAS()......c.vrveurrreririerinisieesieesie sttt 97
15.9.4.22 Date.prototype.get TimeZONEOFFSEL). ... vevererrririeireeteririe sttt 97
15.9.4.23 Date.prototype.SETIME(LIME)........eirreierieieririeiite ettt ettt b ettt n et eb e 97
15.9.4.24 Date.prototype.SEtMilli SECONAS(MS).....c..eviiriiuirieiirieieri ettt 98
15.9.4.25 Date.prototype.SetUTCMilliSECONAS(MS).......cuviveuireeririiieinieesiee sttt 98
15.9.4.26 Date.prototype.SetSECONAS(SEC [, MST).vevervriiririeirieieririeresieesie sttt 98
15.9.4.27 Date.prototype.SetUTCSECONAS(SEC [, MST)eruvrveirieriririirerieesieit sttt sees e 98
15.9.4.28 Date.prototype.setMinutes(min [, SEC [, MST] Juvevreirmirreirieirie st 98
15.9.4.29 Date.prototype.setUTCMinutes(min [, SEC [, MS]] Jevrveerrierieirieienneerieesee et 98
15.9.4.30 Date.prototype.setHours(hour [, min [, SEC [, MS]]])vvevererererieirieirinerieese e 99
15.9.4.31 Date.prototype.setUTCHours(hour [, min [, SeC[, MS]]])evrreereenniririeereireeeseeeseee e 99
15.9.4.32 Date.prototype.SEDELE(UALE).evrvererieeeieteirie sttt et 99
15.9.4.33 Date.prototype.SEtUT CDAE(UALE).covevererieirieiireeiesieiese sttt ettt 99
15.9.4.34 Date.prototype.SetMonth(MOn [, AaE])...coveverieeririeirieirieere e 100
15.9.4.35 Date.prototype.setUTCMonth(MOon [, date])...e.eveveoerieirieirieiesieseeree et 100
15.9.4.36 Date.prototype.setFullY ear(year [, mONn [, date]).eeovoveereeereirieereerieesee e 100
15.9.4.37 Date.prototype.setUTCFull Y ear(year [, mONn [, date]]).oeeeeermrrenieirieeniecreeieesieeseees e 100
15.9.4.38 Date.protOtYPE.SELY QAN(YEAIN). .cveverereeuerteitrtetesiste sttt seesess bbbttt b et e bt ne bt nn et 100
15.9.4.39 Date.prototype.toL OCAIESEING(). .. .vevererrerereererrrrererieesiese ettt ettt e et ne e e 101
15.9.4.40 Date.prototype.tOUTCSIING(). ... veerremerrerireerererreresieesseseseesesseseseeieesse e ss e et e b seese s s neesenens 101
15.9.4.41 Date.prototypELtOGM TSIIING(). .. veerrererrerereeierirreresieesresereesess et se sttt b et se et e bt see e be e b e 101
15.9.5 Properties Of Date INSLANCES.........coeiririeireriee sttt ettt sttt bbb snne 101
LB ERRORS ...ttt b e b e ettt ae e she e s Rt e et eas e eab e e R e e e beeabe e be e b e s anesRe e sneeeneeneenns 102

viii

1 ScCOPE

(To be supplied.)

2 CONFORMANCE

A conforming implementation of ECM A Script must provide and support all the types, values, objects,
properties, functions, and program syntax described in this specification.

A conforming implementation of ECM A Script is permitted to provide additional types, values, objects,
properties, and functions beyond those described in this specificaition. In particular, a conforming
implementation of ECMA Script is permitted to provide properties not described in this specification,
and values for those properties, for objects that are described in this specification.

A conforming implementation of ECMAScript is permitted to support program syntax not described in
this specification. In particular, a conforming implementation of ECM A Script is permitted to support
program syntax that makes use of the “future reserved words” listed in sectioi.4.3 of this
specification.

3 REFERENCES

RFC 1738 for % escape sequences
Unicode or 10646 specification
|EEE 754 standard

ANSI X3.159-1989: American National Standard for Information Systems - Programming Language -
C, American National Standards I nstitute (1989)

Gay, David M. Correctly Rounded Binary-Decimal and Decimal -Binary Conversions. Numerical
Analysis Manucript 90-10. AT& T Bell Laboratories (Murray Hill, New Jersey). November 30, 1990.
Availableasht t p: // cm bel | -1 abs. conl cnf cs/ doc/ 90/ 4- 10. ps. gzAssociated code available
ashttp://cmbell-labs.comnetlib/fp/dtoa.c.gandashttp://cm bell -

| abs. cominetlib/fp/g_fnt.c.gzand may also befound at the variousnet | i b mirror sites.

Gosling, James, Bill Joy and Guy Steele. The Java Language Specification Addison Wesley
Publishing Company 1996.

David Ungar and Randall B. Smith.Self: The Power of Smplicity OOPSLA '87 Conference
Proceedings, pp. 227-241, Orlando, FL, October, 1987.

4 OVERVIEW

EMCA Script is an object-oriented programming language for performing computations and

mani pulating computational objects within a host environment. ECM A Script as defined here is not
intended to be computationally self-sufficient; indeed, there are no provisionsin this specification for
input of external data or output of computed results. Instead, it is expected that the computational
environment of an ECM A Script program will provide not only the objects and other facilities described
in this specification but also certain environment-specifitiost objects, whose description and behavior
are beyond the scope of this specification except to indicate that they may provide certain properties
that can be accessed and certain functions that can be called from an ECM A Script program.

A scripting languageis a programming language that is used to manipulate, customize, and automate
the facilities of an existing system. In such systems, useful functionality is already available through a
user interface, and the scripting language is a mechanism for exposing that functionality to program
control. In thisway, the existing system is said to provide a host environment of objects and facilities
which completes the capabilities of the scripting language. A scripting language is intended for use by
both professional and non-professional programmers, and therefore there may be a number of
informalities and built into the language.

ECMA Script was originally designed to be aVeb scripting language, providing a mechanism to
enliven Web pages in browsers and to perform server computation as part of a Web-based client-server
architecture. ECMA Script can provide core scripting capabilities for a variety of host environments,
and therefore the core scripting language is specified in this document apart from any particular host
environment.

4.1 WEB SCRIPTING

A web browser provides an ECM A Script host environment for client-side computation including, for
instance, objects that represent windows, menus, pop-ups, dialog boxes, text areas, anchors, frames,
history, cookies, and input/output. Further, the host environment provides a means to attach scripting
code to events such as change of focus, page and image loading, unloading, error, and abort, selection,
form submission, and mouse actions. Scripting code appears within the HTML and the displayed page
isacombination of user interface elements and fixed and computed text and images. The scripting code
is reactive to user interaction and there is no need for a main program.

A web server provides a different host environment for server-side computation including objects
representing requests, clients, and files, and mechanisms to lock and share data. By using browser-side
and server side scripting together it is possible to distribute computation between the client and server
while providing a customized user interface for a Web-based application.

Each Web browser and server that supports ECM A Script supplies its own host environment,
completing the ECM A Script execution environment.

4.2 LANGUAGEOVERVIEW

The following is an informal overview of ECMA Script—not all parts of the language are described.
This overview isnot part of the standard proper.

ECMA Script is object-based: basic language and host facilities are provided by objects, and an

ECMA Script program is a cluster of communicating objects. An ECM A Scripbbject is an unordered
collection of properties each with 0 or moreattributes which determine how each property can be
used—for example, when the ReadOnly attribute for a property is set to true, any attempt by executed
ECMA Script code to change the value of the property has no effect. Properties are containers that hold
other objects, primitive values, or methods. A primitive value is a member of one of the following

built-in types: Undefined, Null, Boolean, Number, and String; an object is a member of the remaining
built-in typeObject; and a method is a function associated with an object via a property.

ECMA Script defines a collection ofbuilt-in objects which round out the definition of ECM A Script
entities. These built-in objects include theGlobal object, the Object object, the Function object, the
Array object, the String object, the Boolean object, the Number object, the M ath object, and the
Date object.

ECMA Script also defines a set of built-inoperatorswhich may not be, strictly speaking, functions or
methods. ECM A Script operators include various unary operations, multiplicative operators, additive
operators, bitwise shift operators, relational operators, equality operators, binary bitwise operators,
binary logical operators, assignment operators, and the comma operator.

ECMA Script syntax intentionally resembles Java syntax. ECMA Script syntax is relaxed to enable it to
serve as an easy-to-use scripting language. For example, avariable is not required to have its type
declared nor are types associated with properties, anddefined functions are not required to have their
declarations appear textually before calls to them

4.2.1 Objects

ECM A Script does not contain proper classes such as those in C++, Smalltalk, or Java, but rather,
supports constructorswhich create objects by executing code that allocates storage for the objects and
initializes all or part of them by assigning initial valuesto their properties. All functions including
constructors are objects, but not all objects are constructors. Each constructor has &r ototype property
which is used to implementprototype-based inheritance and shared properties Objects are created by
using constructors innew expressions, for example,new String(“A String”) createsanew string
object. Invoking a constructor without usingnew has consequences that depend on the constructor. For
example, String(“A String”) producesa primitive string, not an object.

ECM A Script supportsprototype-based inheritance Every constructor has an associated prototype, and
every object created by that constructor has an implicit reference to the prototype (called thebject’s
prototype) associated with its constructor. Furthermore, aprototype may have a non-null implicit
reference to its prototype, and so on; thisis called theprototype chain. When areference ismadeto a
property in an object, that reference isto the property of that name in the first object in the prototype
chain that contains a property of that name. In other words, first the object mentioned directly is
examined for such a property; if that object contains the named property, that is the property to which
the reference refers; if that object does not contain the named property, the prototype for that object is
examined next; and so on.

In aclass-based object-oriented language, in general, state is carried by instances, methods are carried
by classes, and inheritance is only of structure and behavior. In ECM A Script, the state and methods are
carried by objects, and structure, behavior, and state are all inherited.

All objects that do not directly contain a particular property that their prototype contains share that
property and its value. The following diagram may illustrate this discussion:

"""" CE A implicit prototype link
pr ot ot ype Cf, :
P1 (o= I
P2
'Yy
----- Cfl sz Cf3 Cf4 Cf5
gl ql ql ql ql
g2 g2 q2 g2 q2

CF isaconstructor (and also an object). Five objects have been created by using new expressiongf;,
cf,, cfs, cf4, and cfs.Each of these objects contains properties namedyl and g2. The dashed lines
represent the implicit prototype relationship; so, for examplecf;'s prototype isCF,. The constructor,
CF, hastwo propertiesitself, namedP1 and P2, which are not visible toCF,, cfy, cf,, cfs, cfy, or cfs.
The property named CFP1 in CF, is shared by: cfy, cf,, cf;, cf4, and cfs, as are any properties found in
CF,'simplicit prototype chain which are not namedy1, q2, or CFP1. Notice that there is no implicit
prototype link betweenCF, and CF.

Unlike class-based object languages, properties can be added to objects on the fly simply by assigning
values to them. That is, constructors are not required to name or assign valuesto all or any of its
properties. In the above diagram, one could add a new shared property forcf,, cf,, cfs, cf4, and cfs by
assigning a new value to the property inCF.

4.3 DEFINITIONS

The following are informal definitions of key terms associated with ECM A Script.

4.3.1 Type

A typeisaset of datavalues. In general, the correct functioning of a program is not affected if different
data values of the same type are substituted for others.

4.3.2 Primitive Value

A primitive value is a member of one of the typesUndefined, Null, Boolean, Number, or String. A
primitive value is a datum which is represented directly at the lowest level of the language
implementation.

4.3.3 Object

An object isamember of the typeObject. It is an unordered collection of properties which contain
primitive values, objects, or functions. A function stored in the property of an object is called a method.
4.3.4 Constructor

A constructor isafunction object which creates and initializes objects. Each constructor has an
associated prototype object which is used to implement inheritance and shared properties.

4.3.5 Prototype

A prototypeis an object used to implement structure, state, and behavior inheritance in ECM A Script.
When a constructor creates an abject, that object implicitly references the constructor’ s associated
prototype for the purpose of resolving property references. The constructor’ s associated prototype can
be referenced by the program expressionconst r uct or. pr ot ot ype , and properties added to an
object’ s prototype are shared, through inheritance, by all objects sharing the prototype.

4.3.6 Native Object

A native object is any object supplied by an ECM A Script implementation independent of the host
environment. Standard native objects are defined in this specification. Some native objects are built-in;
others may be constructed during the course of execution of an ECM A Script program.

4.3.7 Built-In Object

A built-in object is any object supplied by an ECM A Script implementation, independent of the host
environment, that is present at the start of the execution of an ECM A Script program. Standard built-in
objects are defined in this specification, and the ECM A Script implementation may specify and define
others. Every built-in object is a native object.

4.3.8 Host Object

A host object is any object supplied by the host environment to complete the execution environment of
ECMA Script. Any object that is not native is a host object.

4.3.9 Undefined

Undefined is a primitive value used when a variable has not been assigned a value.

4.3.10 Undefined Type
The type Undefined has exactly one value, calledundefined.

4.3.11 Null

Null is a primitive value that represents the null, empty, or nonexistent reference.

4.3.12 Null Type
The typeNull has exactly one value, callednull.

4.3.13 Boolean Value

A boolean valueis a member of the typeBoolean and is one of either two unique valuestrue and
false.

4.3.14 Boolean Type

The type Boolean represents alogical entity and consists of exactly two unique values. Oneis called
true and the other is calledfalse.

4.3.15 Boolean Object

A Boolean object is a member of the typeObject and is an instance of the Boolean object whichisa
constructor. That is, a boolean object is created by using the Boolean constructor in a new expression,
supplying a boolean as an argument. The resulting object has an implicit (unnamed) property which is
the boolean. A boolean object can be coerced to a boolean value. A boolean object can be used
anywhere a boolean value is expected.

Thisis an example of one of the conveniences built into ECMA Script—in thiscaseit isto
accommodate programmers of varying backgrounds. Those familiar with imperative or procedural

programming languages may find number values more natural, while those familiar with object-oriented
languages may find number objects more intuitive.

4.3.16 String Value

A string valueis a member of the typeString and is the set of all finite ordered sequences of zero or
more Unicode characters.

4.3.17 String Type

Thetype String is the set of all finite ordered sequences of zero or more Unicode characters.

4.3.18 String Object

A string object is amember of the typeObject and is an instance of the String object whichisa
constructor. That is, a string object is created by using the String constructor in a new expression,
supplying a string as an argument. The resulting object has an implicit (unnamed) property which isthe
string. A string object can be coerced to a string value. A string object can be used anywhere a string
value is expected.

4.3.19 Number Value

A number value a member of the typeNumber and is a direct representation of a number.

4.3.20 Number Type

ThetypeNumber is a set of values representing numbers. In ECM A Script the set of values represent
the double-precision 64-bit format |EEE 754 value along with a special “Not-a-Number” (NaN) value,
positive infinity, and negative infinity.

4.3.21 Number Object

A number object is amember of the typeObject and is an instance of the Number object whichisa
constructor. That is, a number object is created by using the Number constructor in a new expression,
supplying a number as an argument. The resulting object has an implicit (unnamed) property whichis
the number. A number object can be coerced to a number value. A number object can be used anywhere
anumber value is expected. Note that a number object can have shared properties by adding them to the
Number prototype.

4.3.22 Infinity

The primitive valuel nfi ni ty represents the positive infinite number value.

4.3.23 NaN
The primitive valueNaN represents the set of |EEE Standard “ Not-a-Number” values.

S5 NOTATIONAL CONVENTIONS

5.1 SYNTACTIC ANDLEXICAL GRAMMARS

This section describes the context-free grammars used in this specification to define the lexical and
syntactic structure of an ECM A Script program.

5.1.1 Context-Free Grammars

A context-free grammar consists of a number of productions. Each production has an abstract symbol
called anonterminal as itsleft-hand side, and a sequence of one or more nonterminal ancter minal
symbols as itsright-hand side For each grammar, the terminal symbols are drawn from a specified
alphabet.

Starting from a sentence consisting of a single distinguished nonterminal, called thgoal symbol, a
given context-free grammar specifies danguage, namely, the (perhaps infinite) set of possible
sequences of terminal symbols that can result from repeatedly replacing any nonterminal in the
sequence with aright-hand side of a production for which the nonterminal is the left-hand side.

5.1.2 The Lexical Grammar

A lexical grammar for ECMAScript is given in Chaptei7. This grammar has as its terminal symbols the
characters of the Unicode character set. It defines a set of productions, starting from the goal symbol
Input, that describe how sequences of Unicode characters are translated into a sequence of input
elements.

Input elements other than white space and comments form the terminal symbols for the syntactic
grammar for ECM A Script and are called ECM A Scriptokens. These tokens are the reserved words,
identifiers, literals, and punctuators of the ECMA Script language. Moreover, line terminators, although
not considered to be tokens, also become part of the stream of input elements and guide the process of
automatic semicolon insertion (see sectior7.8). Simple white space and single-line comments are
simply discarded and do not appear in the stream of input elements for the syntactic grammar. A multi-
line comment is likewise simply discarded if it contains no line terminator; but if a multi-line comment
contains one or more line terminators, then it is replaced by a single line terminator, which becomes
part of the stream of input elements for the syntactic grammar.

Productions of the lexical grammar are distinguished by having two colons:*: " as separating
punctuation.

5.1.3 The Numeric String Grammar

A second grammar is used for translating strings into numeric values. This grammar is similar to the
part of the lexical grammar having to do with numeric literals and has as its terminal symbols the
characters of the Unicode character set. This grammar appears in sectior®.3.1.

Productions of the numeric string grammar are distinguished by having three colons® : " as
punctuation.

5.1.4 The Syntactic Grammar

The syntactic grammar for ECM A Script is given in Chaptersll, 12, 13, and 0. This grammar has
ECMA Script tokens defined by the lexical grammar asits terminal symbols (see sectidh.1.2). It
defines a set of productions, starting from the goal symbolProgram, that describe how sequences of
tokens can form syntactically correct ECM A Script programs.

When a stream of Unicode charactersisto be parsed as an ECMA Script program, it is first converted to
astream of input elements by repeated application of the lexical grammar; this stream of input elements
isthen parsed by a single application of the syntax grammarThe program is syntactically in error if the
tokens in the stream of input elements cannot be parsed as a single instance of the goal nonterminal
program, with no tokens |eft over.

Productions of the syntactic grammar are distinguished by having just one colon:*” as punctuation.

The syntactic grammar as presented in Chapters 7, 8, 9, and 10 is actually not a complete account of
which token sequences are accepted as correct ECM A Script programs. Certain additional token
sequences are also accepted, namely, those that would be described by the grammar if only semicolons
were added to the sequence in certain places (such as before end-of-line characters). Furthermore,
certain token sequences that are described by the grammar are not considered acceptable if an end-of-
line character appearsin certain “awkward” places.

A LALR(1) version of the syntactic grammar is presented in Appendix E. This version provides an
exact account of which token sequences are acceptable ECM A Script programs without needing special
rules about automatically adding semicolons or forbidding end-of-line characters. However, it is much
more complex than the grammar presented in Chapters 7, 8, 9, and 10.

5.1.5 Grammar Notation

Terminal symbols of the lexical and string grammars, and some of the terminal symbols of the syntactic
grammar, are shown inf i xed wi dt hfont, both in the productions of the grammars and throughout this
specification whenever the text directly refers to such aterminal symbol. These are to appear in a
program exactly as written.

Nonterminal symbols are shown initalic type. The definition of a nonterminal isintroduced by the
name of the nonterminal being defined followed by one or more colons. (The number of colons
indicates to which grammar the production belongs.) One or more alternative right-hand sides for the
nonterminal then follow on succeeding lines. For example, the syntactic definition:

WithStatement :
with (Expression) Satement

states that the nonterminalWithStatement represents the tokenwi t h, followed by aleft parenthesis
token, followed by anExpression, followed by aright parenthesis token, followed by é&tatement. The
occurrences of Expression and Statement are themselves nonterminals. As another example, the
syntactic definition:

ArgumentList:
AssignmentExpression
ArgumentList , AssignmentExpression

states that an ArgumentList may represent either a singleAssignmentExpressionor an ArgumentList,
followed by a comma, followed by anAssignmentExpression This definition of ArgumentListis
recursive that isto say, it is defined in terms of itself. The result is that a\rgumentList may contain
any positive number of arguments, separated by commas, where each argument expression is an
AssignmentExpression Such recursive definitions of nonterminals are common.

The subscripted suffix “opt”, which may appear after aterminal or nonterminal, indicates amptional
symbol. The alternative containing the optional symbol actually specifies two right-hand sides, one that
omits the optional element and one that includes it. This means that:

VariableDeclaration:
Identifier Initializer,,

is a convenient abbreviation for:

VariableDeclaration:
Identifier
Identifier Initializer

and that:

10

IterationStatement :
for (Expression, ; Expression, ; Expression,) Statement

is a convenient abbreviation for:

IterationStatement :
for (; Expression, ; Expression,) Statement
for (Expression ; Expression, ; Expression,) Statement

which in turn is an abbreviation for:

IterationStatement :

for (; ; EXpression,) Statement
for (; Expression ; Expression,) Satement
for (Expression ; ; Expression,) Satement

for (Expression ; Expression ; Expression,) Statement

which in turn is an abbreviation for:

IterationStatement :

for (; ;) Statement

for (; ; Expression) Statement

for (; Expression ;) Satement

for (; Expression ; Expression) Statement

for (Expression; ;) Satement

for (Expression ; ; Expression) Satement

for (Expression ; Expression ;) Statement

for (Expression ; Expression ; Expression) Statement

so the nonterminal IterationStatement actually has eight alternative right-hand sides.

If the phrase “[no LineTerminator here]” appears in the right-hand side of a production of the syntactic
grammar, it indicates that the production isa restricted productiort it may not be used if a
LineTerminator occurs in the input stream at the indicated position. For example, the production:

ReturnStatement :
return [noLineTerminator here] EXPressiony ;

indicates that the production may not be used if d.ineTerminator occurs in the program between the
r et ur n token and theExpression.

Unless the presence of aLineTerminator is forbidden by arestricted production, any number of
occurrences of LineTerminator may appear between any two consecutive tokensin the stream of input
elements without affecting the syntactic acceptability of the program.

When the words “one of” follow the colon(s) in agrammar definition, they signify that each of the
terminal symbols on the following line or linesis an alternative definition. For example, the lexical
grammar for ECM A Script contains the production:

ZeroToThree:: one of
0 1 2 3

which is merely a convenient abbreviation for:

ZeroToThree::
0

1
2
3

When an alternative in a production of the lexical grammar or the numeric string grammar appears to be
amulticharacter token, it represents the sequence of characters that would make up such atoken.

The right-hand side of a production may specify that certain expansions are not permitted by using the
phrase “but not” and then indicating the expansions to be excluded. For example, the production:

11

Identifier ::
I dentifierNamebut not ReservedWord

means that the nonterminalldentifier may be replaced by any sequence of characters that could replace
| dentifier Nameprovided that the same sequence of characters could not replacédreser vedWord

Finally, afew nonterminal symbols are described by a descriptive phrase in roman type in cases where
it would be impractical to list all the alternatives:

SourceCharacter:
any Unicode character

5.2 ALGORITHM CONVENTIONS

We often use a numbered list to specify stepsin an algorithm. When the algorithm is to produce a value
as aresult, we use the directive “return x” to indicate that the result of the algorithm is the value of x
and that the algorithm should terminate. We use the notation Result(n) as shorthand for “the result of
step n”. We a'so use Type(x) as shorthand for “the type of x”.

Mathematical operations such as addition, subtraction, multiplication, and division should always be
understood as computing exact mathematical results. Algorithms that model floating-point arithmetic
include explicit stepsto perform rounding, where necessary.

The mathematical function absk) yields the absolute value ofx, which is- x if X is negative (less than
zero) and otherwise isx itself.

The mathematical function signk) yields 1 if x ispositive and- 1 if x is negative. The sign function is
not used in this document for cases wherx is zero.

The notation “x moduloy” (y must be afinite and nonzero) computes avaluek of the same sign asy
such that abs(k) < abs(y) and x- k = g% for some integer g.

The mathematical function floorg) yields the largest integer (closest to positive infinity) that is not
larger thanx. Note that floor(x) = x- (x modulo 1).

If an algorithm is defined to “ generate a runtime error”, execution of the algorithm (and any calling
algorithms) is terminated and no result is returned.

These algorithms are used to clarify semantics. In practice, there may be more efficient algorithms
available to implement a given feature.

12

6 SOURCE TEXT

ECMA Script source text is represented asa sequence of characters representable using thdJnicode
version 2.0 character encoding

SourceCharacter ::
any Unicode character

However, it is possible to represent every ECMA Script program using only ASCII characters (which
are equivalent to the first 128 Unicode characters). Non-ASCI1 Unicode characters may appear only
within comments and string literals. In string literals, any Unicode character may also be expressed as a
Unicode escape sequence consisting of six ASCII characters, namely u plus four hexadecimal digits.
(Within a comment, such an escape sequence is effectively ignored as part of the comment. Within a
string literal, the Unicode escape sequence contributes one character to the string value of the literal.

Note that ECM A Script differs from the Java programming language in the behavior of Unicode escape
sequences. In a Java program, if the Unicode escape sequencé u000A, for example, occurs within a
single-line comment, it isinterpreted as aline terminator (Unicode characted00Ais line feed) and
therefore the next character is not part of the comment. Similarly, if the Unicode escape sequence

\ uOOOA occurs within a string literal in a Java program, it is likewise interpreted as a line terminator,
which is not allowed within a string literal—one must writen instead of \ uO00Ato cause aline feed to
be part of the string value of a string literal. In an ECM A Script program, a Unicode escape sequence
occurring within acomment is never interpreted and therefore cannot contribute to termination of the
comment. Similarly, a Unicode escape segquence occurring within a string literal in an ECM A Script
program always contributes a character to the string value of the literal and is never interpreted asaline
terminator or as a quote mark that might terminate the string literal.

13

7 LEXICAL CONVENTIONS

The source text of a ECM A Script program is first converted into a sequence of tokens and white space.
A token is a sequence of characters that comprise alexical unit. The source text is scanned from left to
right, repeatedly taking the longest possible sequence of characters as the next token.

7.1 WHITE SPACE

White space characters are used to improve source text readability and to separate token§ndivisible
lexical unitg from each other but are otherwise insignificant. White space may occur between any two
tokens, and may occur within strings (where they are considered significant characters forming part of
the literal string value),but cannot appear within any other kind of token.

The following characters are consideredto be white space:

Unicode Value Name Formal Name
\u0009 Tab <TAB>
\u000B Vertical Tab <VT>
\u000C Form Feed <FF>
\u0020 Space <SP>
Syntax
WhiteSpace::

<TAB>

<VT>

<FF>

<SP>

7.2 LINE TERMINATORS

Line terminator characters, like whitespace characters, are used to improve source text readability and
to separate tokens(indivisible lexical unit3 from each other. Unlike whitespace characters, line
terminators have some influence over thébehavior of the syntactic grammar. In general, line terminators
may occur between any two tokensbut there are a few places where they are forbidden by the syntactic
grammar. A line terminator cannot occur withirany token (not even a string. Line terminators also

affect the process of automatic semicolon insertion (see sectiold).

The following characters are consideredto be line terminators

Unicode Value Name Formal Name
\uOOOA Line Feed <LF>
\uO00D Carriage Return <CR>
Syntax
LineTerminator ::
<LF>
<CR>

14

7.3 COMMENTS

Description
Comments can be either single or multi-line. Multi-line comments cannot nest.

Because a single-line comment can contain any character except &ineTerminator character, and
because of the general rule that atoken is always as long as possible, a single-line comment always
consists of all characters from the' / marker to the end of the line. However, theLineTerminator at the
end of the lineis not considered to be part of the single-line comment; it is recognized separately by the
lexical grammar and becomes part of the stream of input elements for the syntactic grammar. This point
is very important, because it implies that the presence or absence of single-line comments does not
affect the process of automatic semicolon insertion (see sectiom).

Syntax
Comment ::

MultiLineComment
SingleLineComment

MultiLineComment::
[* MultiLineCommentCharg * /

MultiLineCommentChars::
MultiLineNotAsteriskChar MultiLineCommentCharg;
* PostAsteriskCommentChar g

PostAsteriskCommentChars::
MultiLineNotFawardSashOrAsteriskChar MultiLineCommentChar g,
* PostAsteriskCommentChar gy

MultiLineNotAsteriskChar::
SourceCharacter but not asterisk *

MultiLineNotFawardSashOr AsteriskChar::
SourceCharacter but not forward-slash/ or asterisk*

SingleLineComment ::
/1 SingleLineCommentChar g

SingleLineCommentChars::
SingleLineCommentChar SingleLineCommentChar g,

SngleLineCommentChar ::
SourceCharacter but not LineTerminator

7.4 TOKENS
Syntax

Token ::
ReservedWord
Identifier
Punctuator
Literal

7.4.1 Reserved Words

Description
Reserved words cannot be used as identifiers.

15

ReservedWord::
Keyword
FutureReservedWord
NullLiteral
BooleanLiteral

7.4.2 Keywords

The followingtokens are ECM A Scriptkeywordsand may not be used as identifiers in ECM A Script
programs

Syntax
Keyword: one of
br eak for new var
conti nue function return voi d
del ete i f this whi | e
el se in t ypeof with

7.4.3 Future Reserved Words

The following words are used as keywords in proposed extensions and are térefore reserved to allow
for the possibility of futureadoption of those extensions.

Syntax
FutureReservedWord: one of
case debugger export super
cat ch def aul t ext ends switch
cl ass do finally t hr ow
const enum i mport try

7.5 |IDENTIFIERS

Description

Anidentifier is acharacter sequence of unlimited length, where each character in the sequence must be
aletter, adecimal digit, an underscore (_) character, or adollar sign ($) character, and the first
character may not be adecimal digit ECMA Script identifiers are case sensitive: identifiers whose
characters differin any way, even ifonly in case are considered to be distinct

Syntax

Identifier ::
I dentifierNamebut not ReservedWord

IdentifierName::
Identifier Letter
| dentifierName I dentifier Letter
I dentifier Name Decimal Digit

IdentifierLetter :: one of
abcdef ghij kIl mnopagr st uvwxyz
ABCDEFGHI JKLMNOPQRSTUVWXY Z
$

DecimalDigit:: one of
0123458672829

16

7.6 PUNCTUATORS

Syntax
Punctuator :: one of

= > < == <=

I = , ! ~ ?
&& [++ -

- * / &

% << >> >>> +=

* = = &= I = N=

<<= >>= >>>= ()

7.7 LITERALS
Syntax

Literal ::
NullLiteral
BooleanLiteral
NumericLiteral
StringLiteral

7.7.1 Null Literals
Syntax

NullLiteral ::
nul |
Semantics
The value of the null literalnul | isthe sole value of the Null type, namelynull.

7.7.2 Boolean Literals
Syntax

BooleanLiteral ::
true
fal se

Semantics
The value of the Boolean literalt r ue is avalue of the Boolean type, namelytrue.
The value of the Boolean literalf al se isavalue of the Boolean type, namelyfalse.

7.7.3 Numeric Literals
Syntax

NumericLiteral ::
DecimalLiteral
HexlIntegerLiteral
OctallntegerLiteral

DecimalLiteral ::
DecimallntegerLiteral
DecimallntegerLiteral. DecimalDigits,, ExponentPart;y
. DecimalDigits ExponentPart,y
DecimalIntegerLiteral ExponentPart

17

DecimallntegerLiteral ::
0

NonZeroDigit DecimalDigitS,y

DecimalDigits::
DecimalDigit
DecimalDigits DecimalDigit

NonZeroDigit :: one of
1 2 3 4 5 6 7 8 9

ExponentPart ::
Exponentindicator Signedinteger

Exponentindicator :: one of
e E

Sgnedinteger ::
DecimalDigits
+ Decimal Digits
- DecimalDigits

HexIntegerLiteral ::
Ox HexDigit
0X HexDigit
HexIntegerLiteral HexDigit

HexDigit :: one of
0 1 2 3 456 7 8 9 abc def ABZCDEF

OctallntegerLiteral ::
0 OctalDigit
OctalLiteral OctalDigit

OctalDigit:: one of
0 1 2 3 4 5 6 7
Semantics

A numeric literal standsfor avalue of the Number type. This value is determined in two steps: first, a
mathematical value (MV) is derived from the literal; second, this mathematical value is rounded, ideally
using |EEE 754 round-to-nearest mode, to a representable value of the number type.

The MV of NumericLiteral :: DecimalLiteral isthe MV of DecimalLiteral.

The MV of NumericLiteral :: HexIntegerLiteralisthe MV of HexIntegerLiteral.

The MV of NumericLiteral :: OctallntegerLiteralisthe MV of OctallntegerLiteral.

The MV of DecimalLiteral :: DecimallntegerLiteralisthe MV of DecimallntegerLiteral.
The MV of DecimalLiteral :: DecimalIntegerLiteral. isthe MV of DecimallntegerLiteral.
The MV of DecimalLiteral :: DecimallntegerLiteral. DecimalDigitsisthe MV of
DecimalIntegerLiteral plus (the MV of DecimalDigitstimes 10 "), wheren is the number of
characters in DecimalDigits.

The MV of DecimalLiteral :: DecimallntegerLiteral. ExponentPartisthe MV of
DecimalIntegerLiteral times 1¢f, whereeisthe MV of ExponentPart.

The MV of DecimalLiteral :: DecimallntegerLiteral. DecimalDigits ExponentPartis (the MV of

DecimallIntegerLiteral plus (the MV of DecimalDigitstimes 10 ")) times 1¢f, wheren is the number
of charactersinDecimalDigitsand eisthe MV of ExponentPart.

The MV of DecimalLiteral ::. DecimalDigitsisthe MV of DecimalDigitstimes 10", wheren is
the number of charactersinDecimalDigits.

The MV of DecimalLiteral ::. DecimalDigits ExponentPartisthe MV of DecimalDigitstimes 16°
", wheren is the number of characters inDecimalDigits and eisthe MV of ExponentPart.

18

The MV of DecimalLiteral :: DecimallntegerLiteral ExponentPartisthe MV of
DecimallIntegerLiteral times 1, whereeisthe MV of ExponentPart.

The MV of DecimallntegerLiteral:: 0 isO.
The MV of DecimallntegerLiteral :: NonZeroDigit DecimalDigitsis (the MV of NonZeroDigit
times 10") plus the MV of DecimalDigits, wheren is the number of characters inDecimal Digits.
The MV of DecimalDigits:: DecimalDigit isthe MV of DecimalDigit
The MV of DecimalDigits:: Decimal DigitsDecimalDigit is (the MV of Decimal Digitstimes 10)
plusthe MV of DecimalDigit

The MV of ExponentPart :: Exponentindicator Sgnedintegeristhe MV of Sgnedinteger.
:: DecimalDigitsisthe MV of DecimalDigits

.. + Decimal Digitsisthe MV of DecimalDigits

.. - DecimalDigitsis the negative of the MV of Decimal Digits
:: 0 or of HexDigit:: 0 or of OctalDigit:: 0 isO.

The MV of Sgnedinteger
The MV of Sgnedinteger
The MV of Sgnedinteger
The MV of Decimal Digit
The MV of Decimal Digit
The MV of Decimal Digit
The MV of Decimal Digit
The MV of Decimal Digit
The MV of Decimal Digit
The MV of Decimal Digit
The MV of Decimal Digit
The MV of Decimal Digit
The MV of Decimal Digit

:» 1 or of NonZeroDigit::
:: 2 or of NonZeroDigit ::
:» 3 or of NonZeroDigit::
:» 4 or of NonZeroDigit ::
:: 5 or of NonZeroDigit ::
:» 6 or of NonZeroDigit::
:: 7 or of NonZeroDigit::
:: 8 or of NonZeroDigit::
:: 9 or of NonZeroDigit::

1 or of HexDigit
2 or of HexDigit
3 or of HexDigit
4 or of HexDigit
5 or of HexDigit
6 or of HexDigit
7 or of HexDigit
8 or of HexDigit
9 or of HexDigit

:» 1 or of OctalDigit ::
:: 2 or of OctalDigit ::
:: 3 or of OctalDigit ::
:: 4 or of OctalDigit ::
:: 5 or of OctalDigit ::
:: 6 or of OctalDigit::
:: 7 or of OctalDigit ::

::8is8.
2 9is9.

lisl.
2is2.
3is3.
4is4.
5isb.
6is6.
7is7.

Ais10.
Bis11.
Cis12.
Dis13.

The MV of HexDigit :: a or of HexDigit ::
The MV of HexDigit :: b or of HexDigit ::
The MV of HexDigit :: ¢ or of HexDigit ::
The MV of HexDigit :: d or of HexDigit ::
The MV of HexDigit :: e or of HexDigit:: Eis 14.

The MV of HexDigit:: f or of HexDigit:: F is 15.

The MV of HexIntegerLiteral :: Ox HexDigitisthe MV of HexDigit.

The MV of HexIntegerLiteral :: 0X HexDigitisthe MV of HexDigit.

The MV of HexIntegerLiteral :: HexIntegerLiteral HexDigitis (the MV of HexInteger Literal times
16) plusthe MV of HexDigit.

The MV of OctallntegerLiteral :: 0 OctalDigitisthe MV of OctalDigit.

The MV of OctallntegerLiteral :: OctallntegerLiteral OctalDigit is (the MV of OctallntegerLiteral
times 8) plusthe MV of OctalDigit.

Once the exact MV for anumeric literal has been determined, it is then rounded to a value of the
Number type. If the MV is 0, then the rounded value is+0; otherwise, the rounded value must bethe
number value for the MV (in the sense defined in sectiorB.4), unless the literal is aDecimalLiteral and
the literal has more than 20 significant digits, in which case the number value may be any
implementation-dependent approximation to the MV. A digit isignificantif it is not part of an
ExponentPart and (either it isnot0 or it is animportant zeroor there is no decimal point .’ in the
literal). A digit0 isan important zero if there is at least one important item to its left and at least one
important item to its right within the literal. Any digit that is nad and is not part of an ExponentPartis
an important item.

7.7.4 String Literals

A string literal is zero or more characters enclosed in single or double quotes. Each character may be
represented by an escape segquence.
Syntax
StringLiteral ::
" DoubleStringCharacter g, "
" SingleStringCharacters, '

19

DoubleStringCharacters ::
DoubleStringCharacter DoubleStringChar acter g,

SngleStringCharacters ::
SingleStringCharacter SingleStringChar acter gy

DoubleStringCharacter ::
SourceCharacter but not double-quote” or backslash\ or LineTerminator
EscapeSequence

SngleStringCharacter ::
SourceCharacter but not single-quote’ or backslash\ orLineTerminator
EscapeSequence

EscapeSequence::
Character EscapeSequence
Octal EscapeSequence
HexEscapeSequence
UnicodeEscapeSequence

Character EscapeSeguence::
\ SingleEscapeCharacter
\' NonEscapeCharacter

SngleEscapeCharacter :: one of
' " \ b f n r t

NonEscapeCharacter::
SourceCharacter but not EscapeCharacter or LineTerminator

EscapeCharacter ::
SingleEscapeCharacter
OctalDigit
X
u

HexEscapeSequence::
\ x HexDigit HexDigit

Octal EscapeSequence::
\ OctalDigit
\ OctalDigit OctalDigit
\ ZeroToThree OctalDigit OctalDigit

ZeroToThree:: one of
0 1 2 3

UnicodeEscapeSequence::
\ u HexDigit HexDigit HexDigit HexDigit

The definitions of the nonterminalsHexDigit and OctalDigit are given in section7.7.3.

A string literal stands for avalue of the String type. The string value (SV) of the literal is described in
terms of character values (CV) contributed by the various parts of the string literal. As part of this
process, some characters within the string literal are interpeted as having a mathematical value (MV), as
described below or in section7.7.3

The SV of SringLiteral :: " " isthe empty character sequence .
The SV of SringLiteral :: ' ' isthe empty character sequence.
The SV of SringLiteral :: " DoubleStringCharacters" isthe SV of DoubleStringCharacters

20

The SV of SringLiteral :: ' SingleSringCharacters' isthe SV of SingleStringCharacters
The SV of DoubleStringCharacters:: DoubleStringCharacter is a sequence of one character, the
CV of DoubleStringCharacter.

The SV of DoubleStringCharacters:: DoubleStringCharacter DoubleStringCharacte's isa
sequence of the CV of DoubleStringCharacter followed by all the charactersin the SV of
DoubleStringCharacte'sin order.

The SV of SingleStringCharacters:: SngleStringCharacter is a sequence of one character, the CV
of SingleStringCharacter.

The SV of SingleStringCharacters:: SngleStringCharacter SngleStringCharacters is a sequence
of the CV of SingletringCharacter followed by al the charactersin the SV of
SingleStringCharactersin order.

The CV of DoubleStringCharacter :: SourceCharacter but not double-quote” or backslash\ or
LineTerminator isthe SourceCharacter character itself.

The CV of DoubleStringCharacter :: EscapeSequenceisthe CV of theEscapeSequence

The CV of SingleStringCharacter :: SourceCharacter but not single-quote' or backslash\ or
LineTerminator is the SourceCharacter character itself.

The CV of SingleStringCharacter :: EscapeSequenceisthe CV of theEscapeSequence

The CV of EscapeSequence : Character EscapeSequenceisthe CV of the

Character EscapeSequence

The CV of EscapeSequence : Octal EscapeSequenceisthe CV of theOctal EscapeSequence

The CV of EscapeSequence : HexEscapeSequenceis the CV of theHexEscapeSequence

The CV of EscapeSequence : UnicodeEscapeSequenceis the CV of theUnicodeEscapeSequence
The CV of Character EscapeSequence:: \ SngleEscapeCharacter is the Unicode character whose
Unicode value is determined by theS ngleEscapeCharacter according to the following table:

Escape Sequence Unicode Value Name Symbol
\b \ u0008 backspace <BS>
\t \ u0009 horizontal tab <HT>
\n \ UOOOA linefeed (new line) <LF>

\ f \ u000C form feed <FF>
\r \ u000D carriage return <CR>
\" \ u0022 double quote "

X \ u0027 single quote '

W\ \ u005C backslash \

The CV of Character EscapeSequence:: \ NonEscapeCharacter isthe CV of the
NonEscapeCharacter.

The CV of NonEscapeCharacter :: SourceCharacter but not EscapeCharacter or LineTerminator
is the SourceCharacter character itself.

The CV of HexEscapeSequence:: \ x HexDigit HexDigit is the Unicode character whose code is
(16 timesthe MV of the firstHexDigit) plus the MV of the secondHexDigit.

The CV of Octal EscapeSequence:: \ OctalDigitis the Unicode character whose code isthe MV of
the Octal Digit.

The CV of Octal EscapeSequence:: \ OctalDigit OctalDigitis the Unicode character whose code is
(8 timesthe MV of the firstOctal Digit) plus the MV of the secondOctal Digit.

The CV of Octal EscapeSequence:: \ ZeroToThreeOctalDigit OctalDigitis the Unicode character
whose code is (64 (that is, &) timesthe MV of theZeraToThree) plus (8 timesthe MV of the first
OctalDigit) plusthe MV of the secondOctal Digit.

The MV of ZeroToThree:: 0isO.

The MV of ZeroToThree:: 1is1.

The MV of ZeroToThree:: 2 is2.

The MV of ZeroToThree:: 3is3.

21

The CV of UnicodeEscapeSequence:: \ u HexDigit HexDigit HexDigit HexDigit is the Unicode
character whose code is (4096 (that is, 16) timesthe MV of the firstHexDigit) plus (256 (that is,
16°) times the MV of the secondHexDigit) plus (16 times the MV of the thirdHexDigit) plus the
MV of the fourthHexDigit.

Note that aLineTerminator character cannot appear in astring literal, even if preceded by a backslash
\ . The correct way to cause aline terminator character to be part of the string value of astring literal is
to use an escape sequence such as\ n or \ u000A

7.8 AUTOMATIC SEMICOLONINSERTION

Description

Certain ECM A Script statements(empty statement, variable statement, expression statement,

cont i nue statement,br eak statement, andr et ur n statement) must each be terminated with a
semicolon. Such a semicolon may always appear explicitly in the source text. For convenience,
however, such semicolons may be omitted from the source text in certain situations. We describe such
situations by saying that semicolons are automatically inserted into the source code token stream in
those situations:

When, as the program is parsed from left to right,a token (called theoffending token) is
encountered that is not allowed by any production of the grammar and the parser is not currently
parsing theheader of af or statement, then a semicolonis automatically insertedbefore the
offending tokenif one or more of the following conditionsis true

1. Theoffending token is separated from the previous token by at least oné.ineTerminator.
2. Theoffending tokenis} .
When, as the program is parsed from left to right,the end of the input stream of tokenss

encountered and the parser is unable to parse the input token stream as a single complete
ECMA Script Program, then a semicolonis automatically inserted at the end of the input stream.

However, there is an additional overriding condition on the preceding rules: a semicolon is never
inserted automatically if the semicolon would then be parsed as an empty statement.

When, as the program is parsed from left to right,a token is encountered that is allowed bysome
production of the grammar, but the production is aestricted productionand the token would be

the first token for aterminal or nonterminal immediately following the annotatiorfio

LineTerminator here]” within the restricted production (and therefore such atoken is called arestricted
token), and the restricted token is separated from the previous token by at least one
LineTerminator, then there are two cases:

1. If the parser is not currently parsing theheader of af or statement, a semicolonis
automatically insertedbefore the restricted token.

2. If the parser iscurrently parsing theheader of af or statement, it isa syntax error.
These are all the restricted productions in the grammar:

Member Expression:
new Member Expression [no LineTerminator here] Arguments

CallExpression:
Member Expression [no LineTerminator here] Arguments
CallExpression [no LineTerminator here] Arguments

PostfixExpression:
LeftHandSideExpression [no LineTerminator here] ++
LeftHandSideExpression [no LineTerminator here] - -

ReturnStatement :
return [noLineTerminator here] EXPressiony ;

The practical effect of these restricted productionsis as follows:

22

1. Whenthetoken(isencountered where the parser would treat it as the first token of a
parenthesized Argumentslist, and at least oneLineTerminator occurred between the preceding
token and the(token, then a semicolon is automatically inserted before the¢ token.

2. When thetoken++ or - - isencountered where the parser would treat it as a postfix operator,
and at least oneLineTerminator occurred between the preceding token and the++ or - - token,
then a semicolon is automatically inserted before the-+ or - - token.

3. Whenthetokenr et ur n isencountered anda LineTerminator is encountered before the next
token is encountered, a semicolonis automatically insertedafter the tokenr et ur n.

The resulting practical advice to ECMA Script programmersis:

1. The(that starts an argument list should be on the same line as the expression that indicates the
function to be called.

2. A postfix ++ or - - operator should appear on the same line as its operand.
3. AnExpressioninar et ur n statement should start on the same line as the et ur n token.

For example, the source

{12} 3
isnot avalid sentence in the ECM A Script grammareven with the automatic semicolon insertion rules
In contrast, the source

{1

2} 3
isalso not avalid ECMA Script sentence, but is transformed by automatic semicolon insertion into the
following:

{1

251 3
which isavalid ECMA Script sentence.
The source

for (a; b

)
isnot avalid ECMA Script sentence and is not altered by automatic semicolon insertiobecause the
place where a semicolon is needed is within the header of & or statement. Automatic semicolon
insertion never occurs within the header of & or statement.
The source

return

a+hb
is transformed by automatic semicolon insertion into the following:

return;

a + b;
Note that the expressiona + bisnot treated as a value to be returned by the et ur n statement,
because aLineTerminator separates it from the tokenr et ur n.
The source

a=>n

++C
is transformed by automatic semicolon insertion into the following:

a = b;

++C;
Note that the token++ is not treated as a postfix operator applying to the variable, because a
LineTerminator occurs betweenb and ++.
The source

if (a>b)

elsec =4d
isnot avalid ECMA Script sentence and is not altered by automatic semicolon insertiobefore theel se
token, even though no production of the grammar applies at that point, because an automatically
inserted semicolon would then be parsed as an empty statement

23

8 TYPES

A valueis an entity that takes on one ofninetypes. There are six standard types(Undefined, Null,
Boolean, String, Number, and Object) and threeinternal types called Reference, List, and
Completion. Values of typeReference, List, and Completion are used only as intermediate results of
expression evaluation and cannot be stored to properties of objects.

8.1 THE UNDEFINED TYPE

The Undefined type has exactly one value, calledundefined. Any variable that has not been assigned a
value is of typeUndefined.

8.2 THENuULL TYPE
The Null type has exactly one value, callechull.

8.3 THEBOOLEANTYPE

The Boolean type represents alogical entity and consists of exactly two unique value®neis called
true and the other is calledfalse.

8.4 THE STRING TYPE

The String typeisthe set of all finiteordered sequences of zero or more Unicode characters. Each
character is regarded as occupying a position within the sequence. These positions are identified by
nonnegative integers. The leftmost character(if any) is at position 0, the next character (if any) at
position 1, and so on. The length of a string is the number of distinct positions within it. The empty
string has length zero and therefore contains no characters.

8.5 THE NUMBER TYPE

The Number type has exactly 18437736874454810627(that is, 2**- 2°°+3) values, representing the
double-precision 64-bit format |EEE 754 values as specified in the |EEE Standard for Binary Floating-
Point Arithmetic, except that the 9007199254740990(that is, 2°- 2) distinct “Not-a-Number” values of
the |EEE Standard are represented in ECM A Script asa single special NaN value. (Note that the NaN
value is produced by the program expressionNaN, assumingthat the globally defined variableNaN has
not been altered by program execution.) In some implementations, external code might be able to detect
a difference between various Non-a-Number values, but such behavior isimplementation-dependent; to
ECMA Script code, al NaN values are the same.

There are two other special values, calledpositive | nfinity and negative I nfinity. For brevity, these
values are also referred to for expository purposes by the symbols¥ and - ¥, respectively. (Note that
these two infinite number values are produced by the program expressions! nf i ni t y (or simply
Infinity)and-Infinity, assumingthat the globally defined variablel nf i ni t y has not been
altered by program execution.)

The other 18437736874454810624 (that is, 2**- 2°°) values are called the finite numbers. Half of these
are positive numbers and half are negative numbers; for every finite positive number thereisa
corresponding negative number having the same magnitude.

Note that there is both apositive zer o and anegative zer o. For brevity, these values are also referred to
for expository purposes by the symbols+0 and - 0, respectively. (Note that these two zero number
values are produced by the program expressions+0 (or ssmply 0) and - 0.)

24

The 18437736874454810622 (that is, 2**- 2°°- 2) finite nonzero values are of two kinds:
18428729675200069632 (that is, 2~ 2°%) of them are normalized, having the form
s xm x2°

wheresis+1 or - 1, mis a positive integer less than 2° but not less than 22, and e is an integer ranging
from- 1074 to 971, inclusive.

The remaining 9007199254740990 (that is, 2°°- 2) values are denormalized, having the form
s xm x2°
wheresis+1 or - 1, misapositive integer less than 2% and eis- 1074.

Note that all the positive and negative integers whose magnitude is no greater than®3 are representable
in the Number type (indeed, the integer 0 has two representationsy0 and - 0).

We say that afinite number has anodd significand if it is nonzero and the integerm used to express it
(in one of the two forms shown above) is odd. Otherwise we say that it has aeven significand

In this specification, the phrase “the number value foi” where x represents an exact nonzero real
mathematical quantity (which might even be an irrational number such g3) means a number value
chosen in the following manner. Consider the set of all finite values of the Number type, withO
removed and with two additional values added to it that are not representable in the Number type,
namely 219 (which is+1 x2% x2°") and - 29 (which is- 1 x2% x2°"). Choose the member of this set
that is closest in value tox. If two values of the set are equally close, then the one with an even
significand is chosen; for this purpose, the two extra values #?* and - 2'%%* are considered to have even
significands. Finally, if 2% was chosen, replace it with+¥; if - 29 was chosen, replace it with- ¥; if
+0 was chosen, replace it with- 0 if and only if x is less than zero; any other chosen value is used
unchanged. The result is the number value forx. (This procedure corresponds exactly to the behavior
of the IEEE 754 “round to nearest” mode.)

Some ECMA Script operators deal only with integers in the range 2** through 2*- 1, inclusive, or in
the range O through 22 1, inclusive. These operators accept any value of the Number type but first
convert each such value to one of 2 integer values. See the descriptions of the Tolnt32 and ToUint32
operators in sections9.5 and 9.6, respectively.

8.6 THE OBJECTTYPE

An Object isan unordered collection of properties. Each property consists of a name, avalue and a set
of attributes.

8.6.1 Property Attributes

A property can have zero or more attributes from the following set:

Attribute Description

ReadOnly The property is aread-only property. Attemptsy ECM A Script codeto write to
the property will be ignored.(Note, however, that in some cases the value of a

property with the ReadOnly attribute may change over time because of actions
taken by the underlying implementation; therefore “ReadOnly” does not mean
“constant and unchanging”!)

DontEnum The property is not enumerated by af or -i n enumeration (section 12.5.3

DontDelete Attempts to del ete the property will be ignored. See the description of the
del et e operator in sectionl1.4.1.

Internal Internal properties have no name and are not directly accessible viathe property
accessor operators. How these properties are accessed is implementation specific.
How and when some of these properties are used is specified by the language
specification.

25

8.6.2 Internal Properties and Methods

Internal properties and methods are not exposed in the language. For the purposes of this document, we
give them names enclosed in double square bracketg[]]. When an algorithm uses an internal property
of an object and the object does not implement the indicated internal property, aruntime error is
generated.

There are two types of access for exposed propertiesiget and put, corresponding to retrieval and
assignment.

Native ECM A Script objects have an internal property called [[Prototype]]. The value of this property is
either nul | or an object and is used for implementing inheritance. Properties of the [[Prototype]]

object are exposed as properties of the child object for the purposes of get access, but not for put

access.

The following table summarizes the internal propertiesised by this specification. The description
indicates their behavior for native ECM A Script objects. Host objects may implement these internal
methods with any implement-dependent behavior, or it may be that a host object implements only some
internal methods and not others.

property Parameters

[[Prototype]] none The prototype of thisobject.

[[Class]] none The kind of this object.

[[Valuel] none Internal state information associated with this object.
[[Get]] (PropertyName) Returns the value of the property.

[[Put]] (PropertyName, Value) Sets the specified property to Value.

[[CanPut]] (PropertyName, Vaue) Returns a boolean value indicating whether a [[Put]]

operation with the same arguments will succeed.

[[HasProperty]] (PropertyName) Returns a boolean value indicating whether the object
already has a member with the given name.
[[DefaultValue]] | (Hint) Returns the default value of the object, which should be
a primitive value (not an object or reference).
[[Construct]] optional user-provided (Constructor) Constructs an object. Invoked viathe
parameters new operator.
[[Call] optional user-provided (Function) Executescode associated withthe object.

parameters Invoked via afunction call expression.

Every object must implement the [[Class]] property and the [[Get]], [[Put]], [[HasProperty]], and
[[DefaultValue]] methods, even host objects.

The value of the [[Prototype]] property must be either an object omull, and every [[Prototype]] chain
must have finite length (that is, starting from any object, recursively accessing the [[Prototype]]
property must eventually lead to anull value).

The value of the [[Class]] property is defined by this specification for every kind of built-in object. The
value of the [[Class]] property of a host object may be any value, even avalue used by a built-in object
for its[[Class]] property. Note that this specification does not provide any means for a program to
access the value of a[[Class]] property; it is used internally to distinguish different kinds of built-in
objects.

Every built-in object implements the [[Get]], [[Put]], [[CanPut]], and [[HasProperty]] methodsin the
manner described in sections8.6.2.1, 8.6.2.2, and 8.6.2.3, respectively, except that Array objects have a
dlightly different implementation of the [[Put]] method (section). Host objects may implement these
methods in any manner; for example, one possibility isthat [[Get]] and [[Put]] for a particular host
object indeed fetch and store property values but [[HasProperty]] always generatefal se.

In the following algorithm descriptions, asumeO is anative ECM A Script object andP is a string.

8.6.2.1 [[Get]](P)
When the [[Get]] method of O is called with property nameP, the following steps are taken:

26

If O doesn’t have a property with nameP, go to step 4.

Get the value of the property.

Return Result@).

If the [[Prototype]] of Oisnul |, returnundef i ned.

Call the [[Get]] method of [[Prototype]] with property name®.
Return Result().

o0~ wWNPE

8.6.2.2 [[Put]](P, V)

When the [[Put]] method of O is called with property P and valueV, the following steps are taken:
Call the [[CanPut]] method of O with nameP.

If Result(1) isfalse, return.

If O doesn’t have a property with nameP, go to step 6.

Set the value of the property toV. The attributes of the property are not changed.

Return.

Create a property with nameP, set its value toV and give it empty attributes.

Return.

NogkwbdpE

Note, however, that if O isan Array object, it has a more elaborate [[Put]] method (sectiorl5.4.4.1).

8.6.2.3 [[CanPut]](P)

The [[CanPut]] method is usedonly by the [[Put] methad.

When the [[CanPut]] method of O is called with property P, the following steps are taken:
If O doesn’t have a property with nameP, go to step 4.

If the property has the ReadOnly attribute, returrfalse.

If the [[Prototype]] of O isnull, returntrue.

Call the [[CanPut]] method of [[Prototype]] of O with property NameP.

Return Result(4).

agrwDdDPRE

8.6.2.4 [[HasProperty]](P)

When the [[HasProperty]] method of O is called with property nameP, the following steps are taken:

1. If O hasaproperty with nameP, returntrue.

2. If the[[Prototype]] of O isnull, return false.

3. Call the [[HasProperty]] method of [[Prototype]] with property namé®.
4, Return Result(@3).

8.6.2.5 [[DefaultValue]](hint)

When the [[DefaultValug] method of O is called withhint String, the following steps are taken:
If O does not have at oSt ri ng method, go to step 4.

Call thet oSt ri ng method of object O (with no arguments).

If Result(2) is aprimitive value, return Result(2).

If O does not have aval ueOf method, go to step 7.

Call theval ueOf method of object O (with no arguments).

If Result(5) is aprimitive value, return Result(5).

Return O.

Noor~®WDNPRE

When the [[DefaultValug] method of O is called withhint Number, the following steps are taken:
If O does not have aval ueOf method, go to step 4.

Call theval ued method of object O (with no arguments).

If Result(2) is aprimitive value, return Result(2).

If O does not have at oSt ri ng method, go to step 7.

Call thet oSt ri ng method of object O (with no arguments).

If Result(5) is aprimitive value, return Result(5).

Return O.

No gk~ wdhpRE

27

When the [[DefaultValug] method of O is called withno hint, then it behaves asif the hint were
Number, unlessO is a Date object (see section15.9), in which case it behaves asif the hint were String.

8.7 THE REFERENCETYPE

The internal Referencetype is not a language data type. It is defined by this specification purely for
expository purposes. An implementation of ECMA Script must behave asiif it produced and operated
upon references in the manner described here. However, avalue of typeReferenceis used only asan
intermediate result of expression evaluation and cannot be stored as the value of avariable or property.
The Reference type is used to explain the behavior of such operators aslel et e, t ypeof, and the
assignment operators. For example, the left-hand operand of an assignment is expected to produce a
reference. The behavior of assignment could, instead, be explained entirely in terms of a case analysis
on the syntactic form of the left-hand operand of an assignment operator, but for one difficulty: function
calls are permitted to return references. This possibility is admitted purely for the sake of host objects.
No built-in ECMA Script function defined by this specification returns areference and thereis no
provision for a user-defined function to return areference.

A Referenceis areference toa property of an object. A Reference consists oftwo parts, the base object
and the property name.

The following abstract operations are used in this specification to describe the behavior of references:
GetBase(V). Returns the base object componentof the reference V.
GetPropertyName(V). Returns the property-name component of the reference V.
GetValue(V). Returns the value of the propertyindicated by the reference V.
PutValue(V, W). Changesthe value of the propertyindicated by the reference Vto be W.

8.7.1 GetBase(V)

1. If Type(V) is Reference, return the base object component of V.
2. Generate aruntime error.

8.7.2 GetPropertyNamgV)

1. If Type(V) is Reference, return the propertyname component of V.
2. Generate aruntime error.

8.7.3 GetValug(V)

If Type(V) is not Reference, return V.

Call GetBase(V).

If Result(2) isnull, generate aruntime error.

Call the [[Get]] method of Result(2), passing GetPropertyName(V) for the propertyname.
Return Result(4).

akrwbdpE

8.7.4 PutValuegV, W)

If Type(V) is not Reference, generate aruntime error.

2. Cadl GetBase(V).

3. If Result(2) isnull, go to step 6.

4. Call the [[Put]] method of Result(2), passing GetPropertyName(V) for the property name and W

for the value.

Return.

6. Call the [[Put]] method for the global object, passing GetPropertyName(V) for the property name
and W for the value.

7. Return.

=

o

8.8 THELISTTYPE

Theinternal List type isnot a language data type. It is defined by this specification purely for
expository purposes. An implementation of ECMA Script must behave asiif it produced and operated

28

upon List values in the manner described here. However, aralue of the List typeisused only asan
intermediate result of expression evaluation and cannot be stored as the value of a variable or property.

The List typeis used to explain the evaluation of argument lists (sectioi1.2.4) in newexpressions and
in function calls. Values of the List type are simply ordered sequences of values. These sequences may
be of any length.

8.9 THE COMPLETIONTYPE

Theinternal Completion typeis not a language data type. It is defined by this specification purely for
expository purposes. An implementation of ECMA Script must behave as if it produced and operated
upon Completion values in the manner described here. However, aalue of the Completiontypeis used
only as an intermediate result of statement eval uation and cannot be stored as the value of avariable or
property.

The Completion type is used to explain the behavior of statementsir eak, cont i nue, andr et ur n)
that perform nonlocal transfers of control. Values of the Completion type have one of the following
forms:

“normal completion”

“normal completion after valuev”

“abrupt completion because ofbr eak”

“abrupt completion after valueV because of br eak”

“abrupt completion because ofcont i nue”

“abrupt completion after valueV because of cont i nue”
“abrupt completion because ofr et ur n V' whereV isavalue

Any completion of one of the four forms that carries avalud/ is called avalue completion Any
completion of one of the first two formsis called axormal completion; any other completion is called
an abrupt completion. Any completion of aform that mentiondr eak is called abr eak completion.
Any completion of aform that mentionsont i nueiscaled acont i nue completion. Any completion
of aform that mentionsr et ur niscalled ar et ur n completion.

29

9 TyYPE CONVERSION

The ECMA Script runtime system performs automatic type conversion as needed. To clarify the
semantics of certain constructsit is useful to define a set of conversion operators. These operators are
not a part of the language; they are defined here to aid the specification of the semantics of the
language. The conversion operators are polymorphic; that is, they can accept a value of any standard
type, but not of type Reference.

9.1 ToPRIMITIVE

The operator ToPrimitive takes a Value argument and an optional PreferredType argument. The
operator ToPrimitive attempts to convert its value argument to a non-Object type. If an object is
capable of converting to more than one primitive type, it may use the optional hirfereferredTypeto
favor that type. Conversion occurs according to the following table:

Input Type Result

Undefined The result equal sthe input argument (no conversion)

Null The result equalsthe input argument (no conversion)

Boolean The result equal sthe input argument (no conversion)

Number The result equalsthe input argument (no conversion)

String The result equal sthe input argument (no conversion)

Object Return the default value of the Object. The default value of an object isretrieved

by calling the intemal [[DefaultValue]] method of the object passing the optional
hint PreferredType The behavior of the [[DefaultValue]] method is defined by this
specification for all native ECM A Script objectgsee section 8.6.2.5). If the return
valueis of type Object or Reference, a runtime error is generated.

9.2 ToOBOOLEAN

The operator ToBoolean attempts to convert its argument to a value of type Boolean according to the

following table:

Input Type Result

Undefined fal se

Null fal se

Boolean The result equals the input argument (no conversion)

Number Theresult isf al se if the argument is+0, - 0, or NaN; otherwise the result is
true.

String Theresult isf al se if the argument is the empty string (its length is zero);
otherwise theresult ist r ue.

Object true

30

9.3 ToNUMBER

The operator TONumber attempts to convert its argument to a value of type Number according to the
following table:

Input Type Result
Undefined NaN
Null NaN
Boolean Theresultisl if theargument ist r ue. The result is+0 if the argument isf al se.
Number The result equalsthe input argument (no conversion)
String See grammar and discussion below.
Object Apply the following steps:
1. Call ToPrimitive(input argument, hint Number).
2. Cal ToNumber(Result(1)).
3. Return Result(2).

9.3.1 ToNumber Applied to the String Type

ToNumber applied to strings applies the following grammar to the input string. If the grammar cannot
interpret the stringas an expansion of StringNumericLiteral, then the result of ToNumber isNaN.

SringNumericLiteral:::
StirwhiteSpace,,: StrNumericLiteral StrwhiteSpace

StrWhiteSpace:::
StrwhiteSpaceChar Str\whiteSpacey

SrwhiteSpaceChar :::
<TAB>
<SP>
<FF>
<VT>
<CR>
<LF>

SrNumericLiteral :::
SrDecimalLiteral
+ StrDecimalLiteral
- SrDecimalLiteral
HexlIntegerLiteral

SrDecimalLiteral :::
Infinity
DecimalDigits
DecimalDigits. DecimalDigits,,: ExponentParty
. DecimalDigits ExponentParty
DecimalDigits ExponentPart

DecimalDigits:::
DecimalDigit
DecimalDigits DecimalDigit

DecimalDigit::: one of
012345672829

31

ExponentPart :::
Exponentindicator Signedinteger

Exponentindicator ::: one of
e E

Sgnedinteger :::
DecimalDigits
+ DecimalDigits
- DecimalDigits

HexIntegerLiteral :::
Ox HexDigit
0X HexDigit
HexIntegerLiteral HexDigit

HexDigit ::: one of
0 1 2 3 456 7 8 9 abc def ABZCDTEF

Some differences should be noted between the syntax of &tringNumericLiteraland a NumericLiteral
(sectlon 7.7.3):

A StringNumericLiteral may be preceded and/or followed by whitespace and/or line terminators.

A StringNumericLiteral may not use octal notation.

A SringNumericLiteralthat is decimal may have any number of leading digits.

A StringNumericLiteralthat is decimal may be preceded by+ or - to indicate its sign.

A StringNumericLiteralthat is empty or contains only whitespace and/or one occurrence of+ is

converted to +0.

A StringNumericLiteral that contains only whitespace and/or one occurrence of - is converted to-

0.
The conversion of astring to a number value is similar overall to the determination of the number value
for anumeric literal (section7.7.3), but some of the details are different, so the process for converting a
string numeric literal to avalue of Number type is given herein full. Thisvalue is determined in two
steps: first, a mathematical value (MV) is derived from the string numeric literal; second, this
mathematical value is rounded, ideally using |EEE 754 round-to-nearest mode, to a representable value
of the number type.

The MV of SringNumericLiteral ::: StrWhiteSpace,, StrNumericLiteral StrwhiteSpaceg,, is the

MV of SrNumericLiteral, no matter whether whitespace is present or not.

The MV of SrNumericLiteral::: StrDecimalLiteralisthe MV of StrDecimalLiteral.

The MV of SrNumericLiteral::: + SrDecimalLiteralisthe MV of StrDecimalLLiteral.

The MV of SrNumericLiteral::: - StrDecimalLiteral isthe negative of the MV of

StrDecimalLiteral.

The MV of StrNumericLiteral::: HexIntegerLiteralisthe MV of HexIntegerLiteral.

The MV of StrDecimalLiteral ::: I nfi ni tyis 10" (avalue so large that it will round to+¥).

The MV of SrDecimallLiteral ::: (an empty character sequence)is 0.

The MV of SrDecimalLiteral ::: DecimalDigitsisthe MV of Decimal Digits

The MV of StrDecimalLiteral ::: DecimalDigits isthe MV of DecimalDigits

The MV of StrDecimalLiteral ::: DecimalDigits DecimalDigitsisthe MV of the first

Decimal Digitsplus (the MV of the secondDecimalDigitstimes 10 "), wheren is the number of

charactersin the secondDecimalDigits.

The MV of SrDecimalLiteral ::: DecimalDigits ExponentPartisthe MV of DecimalDigitstimes

10°, whereeisthe MV of ExponentPart.

The MV of SrDecimalLiteral ::: DecimalDigits DecimalDigits ExponentPartis (the MV of the

first Decimal Digitsplus (the MV of the secondDecimalDigitstimes 10 ")) times 10°, wheren is the

number of charactersin the secondDecimalDigits and eisthe MV of ExponentPart.

The MV of SrDecimalLiteral :::. DecimalDigitsisthe MV of DecimalDigitstimes 10", wheren

is the number of charactersinDecimalDigits.

32

The MV of SrDecimalLiteral :::. DecimalDigits ExponentPartisthe MV of DecimalDigitstimes
10° ", wheren is the number of characters inDecimalDigits and eisthe MV of ExponentPart.
The MV of StrDecimalLiteral ::: DecimalDigitsExponentPartisthe MV of Decimal Digitstimes
10°, whereeisthe MV of ExponentPart.

The MV of DecimalDigits::: DecimalDigitisthe MV of DecimalDigit

The MV of DecimalDigits::: DecimalDigitsDecimalDigit is (the MV of Decimal Digitstimes 10)
plusthe MV of DecimalDigit

The MV of ExponentPart ::: Exponentlndicator Sgnedintegeristhe MV of Sgnedinteger.

The MV of Signedinteger ::: DecimalDigitsisthe MV of Decimal Digits

The MV of Sgnedinteger ::: + DecimalDigitsisthe MV of DecimalDigits

The MV of Signedinteger ::: - DecimalDigitsis the negative of the MV of Decimal Digits

The MV of DecimalDigit::: 0 or of HexDigit:: 0 isO.
The MV of DecimalDigit::: 1 or of HexDigit::: 1is1.
The MV of DecimalDigit::: 2 or of HexDigit::: 2 is2.
The MV of DecimalDigit::: 3 or of HexDigit::: 3is3.
The MV of DecimalDigit::: 4 or of HexDigit::: 4 is4.
The MV of DecimalDigit::: 5 or of HexDigit::: 5is5.
The MV of DecimalDigit::: 6 or of HexDigit::: 6 iS6.
The MV of DecimalDigit::: 7 or of HexDigit::: 7 is7.
The MV of DecimalDigit::: 8 or of HexDigit::: 8 is8.
The MV of DecimalDigit::: 9 or of HexDigit::: 9is9.

The MV of HexDigit::: a or of HexDigit::: Ais 10.

The MV of HexDigit ::: b or of HexDigit::: Bis11.

The MV of HexDigit::: ¢ or of HexDigit::: Cis12.

The MV of HexDigit::: d or of HexDigit::: Dis 13.

The MV of HexDigit::: e or of HexDigit::: Eis 14.

The MV of HexDigit::: f or of HexDigit::: Fis 15.

The MV of HexintegerLiteral::: O0x HexDigitisthe MV of HexDigit.

The MV of HexintegerLiteral::: 0X HexDigitisthe MV of HexDigit.

The MV of HexIntegerLiteral::: HexlntegerLiteral HexDigitis (the MV of HexInteger Literal times

16) plusthe MV of HexDigit.
Once the exact MV for a string numeric literal has been determined, it is then rounded to a value of the
Number type. If the MV is 0, then the rounded value is+0 unless the first non-whitespace character in
the string numeric literal is* ', in which case the rounded value is- 0. Otherwise, the rounded value
must bethe number value for the MV (in the sense defined in sectior8.4), unlessthe literal includes a
StrDecimalLiteral and the literal has more than 20 significant digits, in which case the number value
may be any implementation-dependent approximation to the MV. A digit isignificant if it is not part of
an ExponentPart and (either itisnot0 or it isanimportant zeroor there is no decimal point ‘.’ in the
literal). A digit0 isan important zero if there is at least one important item to its left and at least one
important itemto its right within the literal. Any digit that is nob and is not part of anExponentPartis
an important item; a decimal point : ’ is also an important item.

9.4 TOINTEGER

The operator Tolnteger attempts to convert its argument to an integral numeric value. This operator
functions as follows:

1. Call ToNumber on the input argument.

If Result(1) isNaN, return +0.

If Result(1) is+0, - 0, +¥, or - ¥, return Result(1).

Compute sign(Result(1)) * floor(abs(Result(1))).

Return Result(4).

akrwDdN

33

9.5 ToINT32: (SIGNED 32 BIT INTEGER)

The operator Tolnt32 converts its argument to one of 32 integer valuesin the range- 2** through 2**- 1,

inclusive. This operator functions as follows:

1. Call ToNumber on the input argument.

2. If Result(1) isNaN, +0, - 0, +¥, or - ¥, return +0.

3. Compute sign(Result(1)) * floor(abs(Result(1))).

4. Compute Result(3) modulo 27 that is, afinite integer valuek of Number type with positive sign
and less than 22 in magnitude such the mathematical difference of Result(3) andt is
mathematically an integer multiple of Z.

5. If Result(4) is greater than or equal to 2%, return Result(5)- 2%% otherwise return Result5).

Discussion:

Note that the Tolnt32 operation isidempotent: if applied to aresult that it produced, the second
application leaves that value unchanged.

Note also that Tolnt32(ToUint32(x)) is equal to Tolnt32(x) for all values of x.

(It isto preserve this latter property that+¥ and - ¥ are mapped to+0.)

Note that Tolnt32 maps- 0 to +0.

9.6 TOUINT32: (UNSIGNED32 BIT INTEGER)

The operator ToUint32 converts its argument to one of 22 integer values in the range 0 through 3 1,

inclusive. This operator functions as follows:

1. Call ToNumber on the input argument.

2. If Result(1) isNaN, +0, - 0, +¥, or - ¥, return +0.

3. Compute sign(Result(1)) * floor(abs(Result(1))).

4. Compute Result(3) modulo % that is, afinite integer valuek of Number type with positive sign
and less than 2 in magnitude such the mathematical difference of Result(3) anét is
mathematically an integer multiple of &,

5. Return Result@).

Discussion:

Notethat gep 6 isthe only difference between ToUint32 and Tolnt32.

Note that the ToUint32 operation isidempotent: if applied to aresult that it produced, the second
application leaves that value unchanged.

Note also that ToUint32(Tolnt32(x)) is equal to ToUint32(x) for all values of x.

(It isto preserve this latter property that+¥ and - ¥ are mapped to+0.)

Note that ToUint32 maps- 0 to +0.

9.7 TOUINT16: (UNSIGNED16 BIT INTEGER)

The operator ToUint16 convertsits argument to one of 2° integer values in the range 0 through 2°- 1,

inclusive. This operator functions as follows:

1. Call ToNumber on the input argument.

2. If Result(1) isNaN, +0, - 0, +¥, or - ¥, return +0.

3. Compute sign(Result(1)) * floor(abs(Result(1))).

4. Compute Result(3) modulo 2% that is, afinite integer valuek of Number type with positive sign
and less than 2 in magnitude such the mathematical difference of Result(3) andt is
mathematically an integer multiple of &.

5. Return Result@).

Discussion:
Note that the substitution of 2° for 2%2in step 4 is the only difference between ToUint32 andToUnit16.
Note that ToUint16 maps- 0 to +0.

34

9.8 TOSTRING

The operator ToString attempts to convert its argument to a value of type String according to the
following table:

Input Type Result
Undefined "undefi ned"
Null "nul I'"
Boolean true > "true"
false > "fal se"
Number See discussion below.
String Return the input argument (no conversion)
Object Apply the following steps:

1. Cdl ToPrimitive(input argument, hint String).
2. Cal Tostring(Result(1)).
3. Return Result(2).

9.8.1 ToString Applied to the Number Type

The operator ToString converts a number to string format as follows:
If the argument isNaN, the result is the string" NaN".
If the argument is+0 or - 0, the result is" 0".
If the argument is+¥, theresultis" I nfinity".
If theargument is- ¥, theresultis"- I nfinity".

Otherwise, the result is a string that represents the sign and finite nonzero magnitude (absolute
value) of the argument. If the sign is negative, the first character of theresultis”; if thesignis
positive, no sign character appears in the result. Asfor the magnituden:

If misan integer less than 1G*, then it is represented as that integer value in decimal form with
no leading zeroes and no decimal point.

If mis greater than or equal to 10° but less than 10, and is not an exact integer value, then it
is represented as the integer part (floor) ofm, in decimal form with no leading zeroes, followed
by adecimal point ‘. ’, followed by one or more decimal digits (see below) representing the
fractional part of m.

If mislessthan 10° or not less than 107, then it is represented in so-called “computerized
scientific notation.” Letn, k, and a be integers such thatk 3 1, 10¢ £ a < 10", the number
valuefor a x10™¥ism, and k is as small as possible. The magnitude is then represented as the
integer part (floor) of a x10™¥, asasingle decimal digit, followed by a decimal point.‘”,
followed by one or more decimal digits (see below) representing the fractional part of x10° K
followed by the lowercase letter &', followed by arepresentation ofn as a decimal integer
(firstaminussign -’ if nisnegative or aplussign +’ if nisnot negative, followed by the
decimal representation of the magnitude ofn with no leading zeros).
How many digits must be printed for the fractional part ofn or a x10 2 There must be at least one
digit; beyond that, there must be as many, but only as many, more digits as are needed to uniquely
distinguish the argument value from all other representable numeric values. That is, suppose thatis the
exact mathematical value represented by the decimal representation produced by this method for afinite
nonzero argument; thend must be the value of Number type nearest tax; or if two values of the Number
type are equally close tox, then d must be one of them and the least significant bit ofd must be 0. A
consequence of this specification is that ToString never produces trailing zero digits for a fractional
part.

There remains some choice asto the last digit generated for afractional part. The following
specification was considered but not adopted:

35

(This paragraph is not part of the ECMAScript specification) The decimal string produced must
be as close in its mathematical value to the mathematical value of the original number as any
other decimal string with the same number of digits; and if two decimal strings of the same
minimal length would be equally close in value to the original humber, then the decimal string
whose last digit is even should be chosen.

While such a strategy is recommended to implementors, the actual rule is somewhat more permissive
(and isimplied by the rules above):

If X isany number value, then ToNumber(ToStringk)) must be exactly the same as x.

Implementors of ECMA Script may find useful the paper and code written by David M. Gay for binary-
to-decimal conversion of floating-point numbers [Gay 1990].

9.9 ToOBJECT

The operator ToObject attempts to convert its argument to a value of type Object according to the

following table:

Input Type Result

Undefined Generate a runtime error.

Null Generate a runtime error.

Boolean Create anew Boolean object whose default value is the value of the boolean. See
section 15.6 for a description of Boolean objeck.

Number Create anew Number object whose default value is the value of the number. See
section 15.7 for a description of Number objecs.

String Create anew String object whose default value is the value of the string. See
section 15.5for a description of String objecs.

Object The result isthe input argument (no conversion)

36

10 EXECUTION CONTEXTS

When control is transferred to ECM A Script executable code, we say that control is entering an
execution context Active execution contexts logically form a stack. The top execution context on this
logical stack is the running execution context.

10.1 DEFINITIONS

10.1.1 Function Objects

There are four types of function objects:
Declared functions are defined in source text by @ unctionDeclaration

Anonymous functions are created dynamically by using the built-iffunct i on object asa
constructor, which we refer to as instantiatingFunct i on.

Host functions are created at the request of the host with source text supplied by the host. The
mechanism for their creation is implementation dependent. Host functions may have any subset of
the following attributes { ImplicitThis, ImplicitParents } Note that these are attributes of function
objects, not of properties. These attributes are described below.

Internal functions are built-in objects of the language, such apar sel nt and Mat h. exp. An
implementation may also provide implementation-dependent internal functions that are not
described in this specification.These functions do not contain executable code defined by the
ECMA Script grammar, so are excluded from this discussion of execution contexts.

10.1.2 Types of Executable Code

There are five types of executable ECM A Script source text:

Global codeis source text that is outside all function declarations. More precisely, the global code
of a particular ECM A ScriptProgram consists of all SourceElementsin the Program production
which come from theStatement definition.

Eval codeis the source text supplied to the built-ineval function. More precisely, if the parameter
to the built-ineval functionisastring, it istreated asan ECMA ScripProgram. The eval code for
aparticular invocation ofeval isthe global code portion of the string parameter.

Function codeis source text that isinside a function declaration. More precisely, the function code
of a particular ECM A ScriptFunctionDeclaration consists of theBlock in the definition of
FunctionDeclaration

Anonymous codeis the source text supplied when instantiating=unct i on. More precisely, the last
parameter provided in an instantiation ofFunct i on is converted to a string and treated as the
SatementList of the Block of a FunctionDeclaration If more than one parameter is provided in an
instantiation of Funct i on, al parameters except the last one are converted to strings and
concatenated together, separated by commas. The resulting string is interpreted as the
FormalParameterListof a FunctionDeclarationfor the StatementList defined by the last parameter.

Host codeis the source text supplied by the host when creating a host function. The source text is
treated as the StatementList of the Block of a FunctionDeclaration Depending on the
implementation, the host may also supply @& ormalParameterList

37

10.1.3 Variable Instantiation

Every execution context has associated with it avariable object Variables declared in the source text
are

added as properties of the variable object. For global and eval code, functions defined in the source text
are added as properties of the variable object. Function declarations in other types of code are not
allowed by the grammar. For function, anonymous and host code, parameters are added as properties of
the variable object.

Which object is used as the variable object and what attributes are used for the properties depends on
the

type of code, but the remainder of the behavior is generic:

For each FunctionDeclarationin the code, in source text order, instantiate a declared function from
the FunctionDeclarationand create a property of the variable object whose name is the Identifier in
the FunctionDeclaration, whose value is the declared function and whose attributes are determined
by the type of code. If the variable object already has a property with this name, replace its value
and attributes.

For each formal parameter, as defined in the=ormalParameterList create a property of the variable
object whose name is thel dentifier and whose attributes are determined by the type of code. The
values of the parameters are supplied by the caller. If the caller supplies fewer parameter values than
there are formal parameters, the extraformal parameters have valuendef i ned. If two or more
formal parameters share the same name, hence the same property, the corresponding property is
given the value that was supplied for the last parameter with this namdf the value of this last
parameter was not supplied by the caller, the value of the corresponding property isndef i ned.

For each VariableDeclarationin the code, create a property of the variable object whose nameis
the Identifier in VariableDeclaration whose valueisundef i ned and whose attributes are
determined by the type of code. If there is already a property of the variable object with the name of
adeclared variable, the value of the property and its attributes are not changed. Semantically, this
step must follow the creation of theFunctionDeclarationand Formal ParameterList properties. In
particular, if adeclared variable has the same name as a declared function or formal parameter, the
variable declaration does not disturb the existing property.

10.1.4 Scope Chain and Identifier Resolution

Every execution context has associated with it acope chain. Thisislogically alist of objectsthat are

searched whenbinding an Identifier. When control enters an execution context, the scope chainis

created and is populated with aninitial set of objects, depending on the type of code. When control

leaves the execution context, the scope chain is destroyed.

During execution, the scope chain of the execution context is affected only byithStatement When

execution enters awi t h block, the object specified in thewi t h statement is added to the front of the

scope chain. When execution leaves awi t h block, whether normally or viaabr eak or conti nue

statement, the object is removed from the scope chain. The object being removed will always be the

first object in the scope chain.

During execution, the syntactic productionPrimaryExpression: Identifier is evaluated using the

following algorithm:

1. Get the next object in the scope chain. If thereisn't one, go to step 5.

2. Call the [[HasProperty]] method of Result(l), passing thedentifier as the property.

3. If Result(2) ist r ue, return avalue of type Reference whose base object is Result(and whose
property name is theldentifier.

4. Gotostepl.
5. Return avalue of type Reference whose base object isiul | and whoseproperty name isthe
Identifier.

Theresult of binding an identifier is always a value of type Reference with its member name component
equal to the identifier string.

38

10.1.5 Global Object

There is auniqueglobal object which is created before control enters any execution context. Initially
the global object has the following properties:

Built-in objects such as Math, String, Date, parselnt, etc. These have attributes { DontEnum }.

Additional host defined properties. This may include a property whose value is the global object
itself, for examplewi ndowin HTML.

As control enters execution contexts, and as ECM A Script code is executed, additional properties may
be added to the global object and the initial properties may be changed.

10.1.6 Activation Object

When control enters an execution context fordeclared function code, anonymous code or host code, an
object called the activation object is created and associated with the execution contexil he activation
object isinitialized with a property with namer gunent s and property attributes{ DontDelete }. The
initial value of this property is the arguments object described below.

If the function object being invoked has anar gurent s property, let X be the value of that property; the
activation object isalso given an internal property [[OldArguments]] whose initial value is otherwise,
an ar gument s property is created for the function object but the activation object is not given an
[[OldArguments]] property. Next, arguments object described below (the same one stored in the

ar gunent s property of the activation object) is used as the new value of therr gunent s property of

the function object. This new valueisinstalled even if thar gument s property already exists and has
the ReadOnly attribute. (These actions are taken to provide compatibility with aform of program syntax
that is now discouraged: to access the arguments object for functiofi within the body off by using the
expressionf . ar gunment s. The recommended way to access the arguments object for functiofi within
the body of f issimply to refer to the variablear gunent s.)

The activation object isthen used as the variable object for the purposes of variable instantiation.

When avalueisto be returned from the call to afunction, its activation object is no longer needed and
may be permanently decommissioned. At thistime, if the activation object has no [[OldArguments]]
property, then thear gunment s property of the function object is deleted; otherwise, the value of the
[[OldArguments]] property of the activation object is stored into ther gunent s property of the
function object (anar gunent s property is created for the function object if necessary). This old value
isstored even if thear gunment s property already exists and has the ReadOnly attribute.

The activation object is purely a specification mechanism. It isimpossible for an ECMA Script program
to access the activation object. It can access members of the activation object, but not the activation
object itself. When the call operation is applied to a Reference value whose base object is an activation
object, nul | isused asthet hi s value of the call.

10.1.7 This

Thereisat hi s value associated with every active execution context. The hi s value depends on the
caller and the type of code being executed and is determined when control enters the execution context.
Thet hi s value associated with an execution context isimmutable.

10.1.8 Arguments Object

When control enters an execution context for declared function code, anonymous code, or host code, an
arguments object is created and initialized as follows:

A property is created with namecal | ee and property attributes { DontEnum }. The initial value of
this property is the function object being executed. This allows anonymous functions to be
recursive.

A property is created with name engt h and property attributes { DontEnum }. The initial value of
this property is the number of actual parameter values supplied by the caller.

For each non-negative integer,iarg, less than the value of thel engt h property, a property is
created with name ToString{arg) and property attributes{ DontEnum }. The initial value of this
property is the value of the corresponding actual parameter supplied by the caller. The first actual
parameter value correspondstoiarg = 0, the second toiarg = 1 and so on. In the case wheniarg is

39

less than the number of formal parameters for the function object, this property shares its value with
the corresponding property of the activation object. This means that changing this property changes
the corresponding property of the activation object and vice versa. The value sharing mechanism
depends on the implementation.

10.2 ENTERING AN EXECUTION CONTEXT

When control enters an execution context, the scope chain is created and initialized, variable
instantiation is performed,and thet hi s value is determined

Theinitialization of the scope chain variable instantiation and the determination of thet hi s value
depend on the type of code being entered.

10.2.1 Global Code

The scope chain is created and initialized to contain the global object and no others.

Variable instantiation is performed using the global object as the variable object and using empty
property attributes.

Thet hi s valueisthe global object.

10.2.2 EvalCode

When control enters an execution context for eval code, the previous active execution context, referred
to asthecalling context, is used to determine the scope chain the variable object, and thet hi s value

If there is no calling context,then initializing the scope chain variable instantiation and determination
of thet hi s valueare performed just as for global code.

The scope chain isinitialized to contain the same objects, in the same order, as the calling context's
scope chain. Thisincludes objects added to the calling context's scope chain byVithStatement.

Variable instantiation is performed using the calling context's variable object and using empty
property attributes.

Thet hi s value isthe same as thet hi s value of the calling context.

10.2.3 Function and Anonymous Code

The scope chain isinitialized to contain the activation object followed by the global object.

Variable instantiation is performed using the activation object as the variable object and using
property attributes { DontDelete} .

The caler providesthet hi s value. If thet hi s value provided by the caller is not an object
(including the case whereit isnul 1), then thet hi s value is the global object.

10.2.4 Host Code

The scope chain isinitialized to contain the activation object asits first element.

If the host function has the ImplicitThis attribute, the hi s value is placed in the scope chain after
the activation object.

If the host function has the ImplicitParents attribute, alist of objectdetermined solely by thet hi s
value, isinserted in the scope chain after the activation object and hi s object. Note that thislistis
determined at runtime by thet hi s value. It is not determined by any form of lexical scoping.

The global object is placed in the scope chain after all other objects.

Variable instantiation is performed using the activation object as the variable object and using
attributes { DontDelete} .

Thet hi s valueis determined just as for function and anonymous code.

40

11 EXPRESSIONS

11.1 PRIMARY EXPRESSIONS
Syntax
PrimaryExpression:
this
Identifier

Literal
(Expression)

11.1.1 Thethis Keyword

Thet hi s keyword evaluates to thet hi s value of the execution context.

11.1.2 Identifier Reference

An ldentifier is evaluated using the scoping rules statedn section Scope Chain and Identifier
Resolution The result of anldentifier is always a value of type Reference.

11.1.3 Literal Reference

A Literal isevaluated as described in sectionLiterals

11.1.4 The Grouping Operator

The production PrimaryExpression: (Expression) isevaluated asfollows:
1. Evaluate Expression. This may be of type Reference.
2. Return Result(l).

11.2 LEFT-HAND-SIDE EXPRESSIONS
Syntax

Member Expression:
PrimaryExpression
MemberExpression[Expression]
Member Expression. ldentifier
new MemberExpression [no LineTerminator here] Arguments

NewEXxpression:
Member Expression
new NewExpression

CallExpression:
Member Expression [no LineTerminator here] Arguments
CallExpression [no LineTerminator here] Arguments
CallExpression[Expression]
CallExpression. ldentifier

41

Arguments:

()
(ArgumentList)

ArgumentList:
AssignmentExpression
ArgumentList, AssignmentExpression

LeftHandS deExpression:
NewExpression
CallExpression

11.2.1 Property Accessors

Properties are accessed by name, using either the dot notation
MemberExpression. ldentifier
CallExpression. ldentifier
or the bracket notation
Member Expression| Expression]
CallExpression[Expression]
The dot notation isexplained by the following syntactic conversion:
MemberExpression. ldentifier
isidentical inits behavior to
Member Expression| <identifier-string>]
and similarly
CallExpression. ldentifier
isidentical inits behavior to
CallExpression[<identifier-string>]
where <identifier-string> is a string literal containing the same sequence of characters as thelentifier.

The production Member Expression: Member Expression| Expression] isevaluated asfollows:
Evaluate Member Expression

Call GetVaue(Result(1)).

Evaluate Expression.

Call GetVaue(Result(3)).

Call ToObject(Result(2)).

Call ToString(Result(4)).

Return a value of type Reference whose base object is Result(5pnd whoseproperty nameis
Result(6).

Nook~wbdpE

The production CallExpression: CallExpression| Expression] isevaluatedin exactly the same
manner, except that the containedCallExpressionis evaluated in step 1.

11.2.2 The new Operator

The production NewExpression: new NewExpressionis evaluated as follows:

Evaluate NewExpression.

Call GetVaue(Result(1)).

If Type(Result(2)) is not Object, generate a runtime error.

If Result(2) does not implement the internal [[Construct]] method, generate a runtime error.
Call the [[Construct]] method on Result(2), providingho arguments (that is, an empty list of
arguments).

If Type(Result(5) is not Object, generate a runtime error.

7. Return Result(5.

grwDNPE

o

42

The production NewCallExpression: hew NewExpression Argumentsis evaluated as follows:
Evaluate NewEXxpression.

Call GetVaue(Result(1)).

Evaluate Arguments, producing an internal list of argument values (sectiorl1.2.4).

If Type(Result(2)) is not Object, generate a runtime error.

If Result(2) does not implement the internal [[Construct]] method, generate a runtime error.
Call the [[Construct]] method on Result(2), providing the lisResult(3) as the argument values
If Type(Result(6)) is not Object, generate a runtime error.

Return Result(6).

©No Ok~ wODNRE

11.2.3 Function Calls

The production CallExpression: MemberExpression Argumentsis evaluated as follows:

Evaluate M emberExpression.

Evaluate Arguments producing an internal list of argument values (sectiori1.2.4).

Call GetVaue(Result(1)).

If Type(Result(3)) is not Object, generate a runtime error.

If Result(3) does not implement the internal [[Call]] method, generate a runtime error.

If Type(Result(1)) is Reference, Result(6) is GetBase(Result(1)). OtherwiseResult(6) isnull.

If Result(6) is an activation object, Result(7) iswll. Otherwise, Result(7) is the same as Result(6).
Call the [[Call]] method on Result(3), providing Result) asthet hi s value and providing the list
Result(2) as the argument values

9. Return Result@).

© NGO WDNE

The production CallExpression: CallExpression Arguments is evaluatedin exactly the same manney
except that the containedCallExpressionis evaluated in step 1.

Note: Result(8) will never be of type Referenceif Result(3) is anative ECMA Script object. Whether
calling a host object can return avalue of type Reference isimplementati ordependent.

11.2.4 Argument Lists

The evaluation of an argument list produces an internal list of values (sectioB.8).

The production Arguments: () isevaluated asfollows:
1. Return an empty internal list of values.

The production Arguments: (ArgumentList) isevaluated as follows:
1. Evaluate ArgumentList
2. Return Result(1).

The production ArgumentList: AssignmentExpression is evaluated as follows:
1. Evaluate AssignmentExpression

2. Call GetVaue(Result(1)).

3. Return aninternal list whose sole item is Result(2).

The production ArgumentList: ArgumentList , AssignmentExpression is evaluated as follows:

1. Evaluate ArgumentList

2. Evaluate AssignmentExpression

3. Cal GetVaue(Result(2)).

4. Return aninternal list whose length is one greater than the length of Result(1) and whose items are
the items of Result(1), in order, followed at the end by Result(3), which is the last item of the new
list.

11.3 POSTFIX EXPRESSIONS
Syntax

43

PostfixExpression:
LeftHandS deExpression
LeftHandSideExpression [no LineTerminator here] ++
LeftHandSideExpression [no LineTerminator here] - -

11.3.1 Postfix Increment Operator

The production Member Expression: Member Expression++ is evaluated as follows:
Evaluate Member Expression

Call GetVaue(Result(1)).

Call ToNumber(Result(2)).

Add the value1l to Result(3), using the same rules as for ther operator (section11.6.3).
Call PutValue(Result(1), Result(4)).

Return Result(3).

o gk wdpE

11.3.2 Postfix Decrement Operator

The production Member Expression: Member Expression- - is evaluated as follows:

Evaluate Member Expression

Call GetVaue(Result(1)).

Call ToNumber(Result(2)).

Subtract the valuel from Result(3), using the same rules as for the operator (section11.6.3).
Call PutValue(Result(1), Result(4)).

Return Result(3).

ok wbdpE

11.4 UNARY OPERATORS
Syntax

UnaryExpression:
PostfixExpression
del et e UnaryExpression
voi d UnaryExpression
t ypeof UnaryExpression
++ UnaryExpression
- - UnaryExpression
+ UnaryExpression
- UnaryExpression
~ UnaryExpression
I UnaryExpression

11.4.1 Thedel ete Operator

The production UnaryExpression: del et e UnaryExpressionis evaluated as follows:

Evaluate UnaryExpression

Call GetBase(Result(1)).

Call GetPropertyName(Result(1)).

If Type(Result(2)) is not Object,returntrue.

If Result(2) does not implement the internal [[Delete]] methodgo to step 8.

Call the [[Delete]] method on Result(2), providing Result(3) as the property name to delete.
Return Result(6).

Call the [[HasProperty]] method on Result(2), providing Result(3) as the property name to check
for.

9. If Result(8) istrue, returnfalse.

10. Returntrue.

© Nk wDdE

11.4.2 Thevoi d Operator

The production UnaryExpression: voi d UnaryExpressionis evaluated as follows:

1.
2.
3.

Evaluate UnaryExpression
Call GetValue(Result(1)).
Return undefined.

11.4.3 Thetypeof Operator

The production UnaryExpression: t ypeof UnaryExpressionis evaluated as follows:

1.

2.
3.
4

Evaluate UnaryExpression

If Type(Result(1)) is Reference and GetBase(Result(1)) iswill, return” undef i ned".
Call GetVaue(Result(1)).

Return a string determined by Type(Result(3)) according to the following table:

Type Result
Undefined "undef i ned"

Null "obj ect"

Boolean "bool ean”

Number "nunber"

String "string"

Object (native and "obj ect”

doesn’t implement

[[Cal]])

Object (native and "function”

implements [[Call]])

Object (host) | mplementation-dependent

11.4.4 Prefix Increment Operator

The production UnaryExpression: ++ UnaryExpressionis evaluated as follows:

oo kwdpE

Evaluate UnaryExpression

Call GetVaue(Result(1)).

Call ToNumber(Result(2)).

Add the valuel to Result(3), using the same rules as for the+ operator (section11.6.3).
Call PutValue(Result(1), Result(4)).

Return Result(4).

11.4.5 Prefix Decrement Operator

The production UnaryExpression: - - UnaryExpressionis evaluated as follows:

o ukwdpE

Evaluate UnaryExpression

Call GetVaue(Result(1)).

Call ToNumber(Result(2)).

Subtract the valuel from Result(3), using the same rules as for the operator (section11.6.3).
Call PutValue(Result(1), Result(4)).

Return Result(4).

11.4.6 Unary + Operator

The unary + operator converts its operand to Number type.
The production UnaryExpression: + UnaryExpressionis evaluated as follows:

1
2.
3.

Evaluate UnaryExpression
Call GetVaue(Result(1)).
Call ToNumber(Result(2)).

45

4. Return Result(3).

11.4.7 Unary - Operator

The unary - operator convertsits operand to Number type and then negates it. Note that negating0
produces - 0, and negating - 0 produces +0.

The production UnaryExpression: - UnaryExpressionis evaluated as follows:

Evaluate UnaryExpression

Call GetVaue(Result(1)).

Call ToNumber(Result(2)).

If Result(3) is NaN, return NaN.

Negate Result(3), that is, compute a number with the same magnitude but opposite sign
Return Result(5).

oukwbdpE

11.4.8 The Bitwise NOT Operator (~)

The production UnaryExpression: ~ UnaryExpressionis evaluated as follows:
Evaluate UnaryExpression

Call GetVaue(Result(1)).

Call Tolnt32(Result(2)).

Apply bitwise complement to Result(3).The result is a signed 32-bit integer.
Return Result(4).

agrwDNPE

11.4.9 Logical NOT Operator (!)

The production UnaryExpression: ! UnaryExpressionis evaluated as follows:
Evaluate UnaryExpression

Call GetVaue(Result(1)).

Call ToBoolean(Result(2)).

If Result(3) istrue, return false.

Return true.

agrwDNPE

11.5 MULTIPLICATIVEOPERATORS
Syntax

MultiplicativeExpression:
UnaryExpression
MultiplicativeExpression* UnaryExpression
MultiplicativeExpression/ UnaryExpression
MultiplicativeExpression%UnaryExpression

Semantics

The production MultiplicativeExpression: MultiplicativeExpression @ UnaryExpressionwhere @
stands for one of the operators in the above definitions, is evaluated as follows:

Evaluate MultiplicativeExpression.

Call GetVaue(Result(1)).

Evaluate UnaryExpression.

Call GetVaue(Result(3)).

Call ToNumber(Result(2)).

Call ToNumber(Result(4)).

Apply the specified operation (*, /, or %) to Result(5) and Result(6). See the discussions below
(7.4.1,7.4.2,7.4.3).

8. Return Result(7).

Nook~wbdpE

46

11.5.1 Applying the* Operator

The* operator performs multiplication, producing the product of its operands. Multiplicationis
commutative. Multiplication is not always associative in ECM A Script, because of finite precision.

The result of afloating-point multiplication is governed by the rules of |EEE 754 double-precision
arithmetic:

If either operand is NaN, the result is NaN.

The sign of the result is positive if both operands have the same sign, negative if the operands have
different signs.

Multiplication of an infinity by a zero resultsin NaN.

Multiplication of an infinity by an infinity results iran infinity. The sign is determined by the rule
already stated above.

Multiplication of an infinity by afinite non-zero value resultsin asigned infinity. The signis
determined by the rule already stated above.

In the remaining cases, where neither an infinity or NaN isinvolved, the product is computed and
rounded to the nearest representable value using |EEE 754 round-to-nearest mode. |f the magnitude
istoo large to represent, the result is then an infinity of appropriate sign. If the magnitude is too
small to represent, the result is then a zero of appropriate sign. The ECM A Script language requires
support of gradual underflow as defined by |EEE 754.

11.5.2 Applying the/ Operator

The/ operator performs division, producing the quotient of its operands. The left operand isthe
dividend and the right operand is the divisor. ECMA Script does not perform integer division. The
operands and result of all division operations are double-precision floating-point numbers. The result of
division is determined by the specification of |EEE 754 arithmetic:

If either operand is NaN, the result is NaN.

The sign of the result is positive if both operands have the same sign, negative if the operands have
different signs.

Division of aninfinity by an infinity resultsin NaN.

Divisionof an infinity bya zero resultsinan infinity. The sign is determined by the rule already
stated above.

Division of an infinity by a non-zero finite value resultsin a signed infinity. The sign is determined
by the rule already stated above.

Division of afinite value by an infinity resultsin zero. The sign is determined by the rule already
stated above.

Division of azero by azero resultsin NaN; division of zero by any other finite value results in zeto
with the sign determined by the rule already stated above..

Division of anon-zero finite value by a zero results in asigned infinity. The sign is determined by
the rule already stated above.

In the remaining cases, where neither an infinity, nor a zero, nor NaN isinvolved, the quotient is
computed and rounded to the nearest representable value using |EEE 754 round-to-nearest mode. If
the magnitude is too large to represent, we say the operation overflows; the result is then an infinity
of appropriate sign. If the magnitude istoo small to represent, we say the operation underflows and
the result isa zero of the appropriate sign The ECM A Script language requires support of gradual
underflow as defined by |IEEE 754.

11.5.3 Applying the%Operator

The binary %operator is said to yield the remainder of its operands from an implied division; the left
operand is the dividend and the right operand is the divisor. In C and C++, the remainder operator
accepts only integral operands, but in ECM A Script, it also accepts floating-point operands.

The result of afloating-point remainder operation as computed by thé&ooperator is not the same as the
"remainder" operation defined by |IEEE 754. The |[EEE 754 "remainder" operation computes the

47

remainder from arounding division, not atruncating division, and so its behavior is not analogous to
that of the usual integer remainder operator. Instead the ECM A Script language defineoon floating-
point operations to behave in a manner analogous to that of the Java integer remainder operator; this
may be compared with the C library function fmod.

The result of a ECM A Script floating-point remainder operation is determined by the rules of IEEE
arithmetic:

If either operand is NaN, the result is NaN.

The sign of the result equals the sign of the dividend.

If the dividend is an infinity, or the divisor is a zero, or both, the result is NaN.

If the dividend is finite and the divisor is an infinity, the result equals the dividend.
If the dividend is a zero and the divisor is finite, the result ishe same as the dividend

In the remaining cases, where neither an infinity, nor a zero, nor NaN isinvolved, the floating-point
remainder r from adividend n and adivisor d is defined by the mathematical relationr =n (d * Q)
where g is an integer that is negative only if n/d is negative and positive only if n/d is positive, and
whose magnitude is as large as possible without exceeding the magnitude of the true mathematical
quotient of nand d.

11.6 ADDITIVE OPERATORS
Syntax

AdditiveExpression:
MultiplicativeExpression
AdditiveExpression+ MultiplicativeExpression
AdditiveExpression- MultiplicativeExpression

11.6.1 The Addition Operator (+)

The addition operator either performs string concatenation or numeric addition.

The production AdditiveExpression: AdditiveExpression+ MultiplicativeExpressionis evaluated as
follows:

1. Evaluate AdditiveExpression.

2. Call GetVaue(Result(1)).

3. Evaluate MultiplicativeExpression.

4. Cdl GetValue(Result(3)).

5. Cal ToPrimitive(Result(2)).

6. Call ToPrimitive(Result(4)).

7. 1f Type(Result(5)) is String or Type(Result(6)) is String, go to step 2. (Note that this step differs
from step 3 in the algorithm for comparison for the relational operators in usingr instead of and.)

8. Call ToNumber(Result(5)).

9. Call ToNumber(Result(6)).

10. Apply the addition operation to Result(8) and Result(9). See the discussion below.
11. Return Result(10).

12. Call ToString(Result(5)).

13. Call ToString(Result(6)).

14. Concatenate Result(12) followed by Result(13).

15. Return Result(14).

Note that no hint is provided in the calls to ToPrimitive in steps 5 and 6. All native ECM A Script
objects except Date objects handle the absence of ahint asif the hint Number were given; Date objects
handle the absence of a hint asif the hint String were given. Host objects may handle the absence of a
hint in some other manner.

48

11.6.2 The Subtraction Operator (-)

The production AdditiveExpression: AdditiveExpression- MultiplicativeExpressionis evaluated as
follows:

1. Evaluate AdditiveExpression.

Call GetVaue(Result(1)).

Evaluate MultiplicativeExpression.

Call GetVaue(Result(3)).

Call ToNumber(Result(2)).

Call ToNumber(Result(4)).

Apply the subtraction operation to Result(5) and Result(6). See the discussion below (7.5.3).
Return Result(7).

© NGk WDN

11.6.3 Applying the Additive Operators<, -)to Numbers
The + operator performs addition when applied to two operands of numeric type, producing the sum of
the operands. The- operator performs subtraction, producing the difference of two numeric operands.
Addition is a commutative operation, but not always associative.
The result of an addition is determined using the rules of IEEE 754 double-precision arithmetic:

If either operand isNaN, the result isNaN.

The sum of two infinities of opposite sign ifNaN.

The sum of two infinities of the same sign isthe infinity of that sign.

The sum of an infinity and afinite value is equal to the infinite operand.

The sum of twonegativezerosis- 0. The sum of two positive zeros, or of two zeros of opposite
sign, is+0.

The sum of azero and a nonzero finite value is equal to the nonzero operand.
The sum of two nonzero finite values of the same magnitude and opposite sign is0.

In the remaining cases, where neither an infinity, nor a zero, nor NaN isinvolved, and the operands
have the same sign or have different magnitudes, the sum is computed and rounded to the nearest
representable value using | EEE 754 round-to-nearest mode. If the magnitude istoo large to
represent, the operation overflows and the result is then an infinity of appropriate sign. The

ECMA Script language requires support of gradual underflow as defined by IEEE 754.

The- operator performs subtraction when applied to two operands of numeric typgproducing the
difference of its operands; the left operand is the minuend and the right operand is the subtrahend.
Given numeric operandsa and b, it is always the case thata- b produces the same result asa+(- b) .

11.7 BITWISE SHIFT OPERATORS

Syntax
ShiftExpression:
AdditiveExpression
ShiftExpression<< AdditiveExpression
ShiftExpression>> AdditiveExpression
ShiftExpression>>> AdditiveExpression
Semantics

The result of evaluatingShiftExpressionis always truncated to 32 bits. If the result of evaluating
ShiftExpression produces a fractional component, the factional component is discarded. The result of
evaluatingan AdditiveExpresionthat is the right-hand operand of a shift operatoris always truncated to
five bits.

11.7.1 The Left Shift Operator (<<)

Performs a bitwise left shift operation on the left argument by the amount specified by the right
argument.

49

The production ShiftExpression: ShiftExpression<< AdditiveExpressionis evaluated as follows:
Evaluate ShiftExpression.

Call GetVaue(Result(1)).

Evaluate AdditiveExpression.

Call GetVaue(Result(3)).

Call Tolnt32(Result(2)).

Call Tolnt32(Result(4)).

Mask out all but the least significant 5 bits of Result(6), that is, compute Result(6) & Ox1F.
L eft shift Result(5) by Result(7) bits. The result is a signed 32 bit integer.

Return Result(8).

©OoNOOOA®WNE

11.7.2 The Signed Right Shift Operator &>)

Performs a sign-filling bitwise right shift operation on the left argument by the amount specified by the
right argument.

The production ShiftExpression: ShiftExpression>> AdditiveExpressionis evaluated as follows:
Evaluate ShiftExpression.

Call GetVaue(Result(1)).

Evaluate AdditiveExpression.

Call GetVaue(Result(3)).

Call Tolnt32(Result(2)).

Call Tolnt32(Result(4)).

Mask out all but the least significant 5 bits of Result(6), that is, compute Result(6) & Ox1F.
Perform sign-extending right shift of Result(5) by Result(7) bits. The most significant bit is
propagated. Theresult is a signed 32 bit integer.

9. Return Result(8).

Nk wDdPR

11.7.3 The Unsigned Right Shift Operator &>>)

Performs a zero-filling bitwise right shift operation on the left argument by the amount specified by the
right argument.

The production ShiftExpression: ShiftExpression>>> AdditiveExpressionis evaluated as follows:
Evaluate ShiftExpression.

Call GetVaue(Result(1)).

Evaluate AdditiveExpression.

Call GetVaue(Result(3)).

Call ToUint32(Result(2)).

Call Tolnt32(Result(4)).

Mask out all but the least significant 5 bits of Result(6), that is, compute Result(6) & Ox1F.
Perform zero-filling right shift of Result(5) by Result(7) bits. Vacated bits are filled with zero. The
result is an unsigned 32 bit integer.

9. Return Result(8).

©NOo Ok~ wODNRE

11.8 RELATIONALOPERATORS
Syntax
Relational Expression:

ShiftExpression
Rel ational Expression< ShiftExpression
Relational Expression> ShiftExpression
Rel ational Expression<= ShiftExpression
Relational Expression>= ShiftExpression

Semantics
The production Relational Expression Relational Expression< ShiftExpressionis evaluated as follows:
1. EvaluateRelational Expression

50

oukwd

Call GetVaue(Result(1)).

Evaluate ShiftExpression

Call GetVaue(Result(3)).

Perform the comparison Result(2) < Result(4). (See below.)

If Result(5) isundefined, return false. Otherwise, return Result(5).

The production Relational Expression Relational Expression> ShiftExpressionis evaluated as follows:

o ukwbdpE

Evaluate Rel ational Expression

Call GetVaue(Result(1)).

Evaluate ShiftExpression

Call GetVaue(Result(3)).

Perform the comparison Result(4) < Result(2). (See below.)

If Result(5) isundefined, return false. Otherwise, return Result(5).

The production Relational Expression Relational Expression<= ShiftExpressionis evaluated as
follows:

1.

Evaluate Rel ational Expression

2. Cadl GetValue(Result(1)).

3. Evauate ShiftExpression

4. Call GetVaue(Result(3)).

5. Perform the comparison Result(4) < Result(2). (See below.)

6. If Result(5) istrueor undefined, return false. Otherwise, returntrue.

The production Relational Expression Relational Expression>= ShiftExpressionis evaluated as
follows:

1. EvaluateRelational Expression

o gk wd

Call GetVaue(Result(1)).

Evaluate ShiftExpression

Call GetVaue(Result(3)).

Perform the comparison Result(2) < Result(4). (See below.)

If Result(5) istrue or undefined, return false. Otherwise, returntrue.

The comparisonx <y, wherex and y are values, producestr ue, false, or undefined (which indicates
that at least one operand isNaN). Such a comparison is performed as follows:

17.

Call ToPrimitivef, hint Number).

Call ToPrimitivefy, hint Number).

If Type(Result(1)) is String and Type(Result(2)) is String, go to step16. (Note that this step differs
from step 7 in the algorithm for the addition operator+ in usingand instead of or.)
Call ToNumber(Result()).

Call ToNumber(Result@)).

If Result(4) isNaN, return undefined.

If Result(5) isNaN, return undefined.

If Result(4) and Result(5) are the same number value, returrial se.

If Result(4) is+0 and Result(5) is- 0, return false.

If Result(4) is- 0 and Result(5) is+0, return false.

. If Result(4) is+¥, return false.

If Result(5) is+¥, returntrue.

If Result(5) is- ¥, return false.

If Result(4) is- ¥, returntrue.

If the (finite, nonzero) mathematical value of Result(4) is less than the (finite, nonzero)
mathematical value of Result(5), returrtrue. Otherwise, returnfalse.

If Result(2) isaprefix of Result (1), returnfalse. (A string valuep is aprefix of string valueq if q
can be the result of concatenatingp and some other stringr. Note that any string is a prefix of itself,
because r may be the empty string.)

If Result(1) isaprefix of Result (2), returntrue.

51

18. Let k be the smallest nonnegative integer such that the character at positiofk within Result(1) is
different from the character at positionk within Result(2). (There must be such &, for neither
string is a prefix of the other.)

19. Let mbetheinteger that isthe Unicode encoding for the character at positiork within Result(1).

20. Letn bethe integer that is the Unicode encoding for the character at positiotk within Result(2).

21. If m<n, returntrue. Otherwise, returnfalse.

11.9 EQUALITY OPERATORS
Syntax

EqualityExpression:
Relational Expression
EqualityExpression== Relational Expression
EqualityExpression! = Relational Expression

The production EqualityExpression EqualityExpression== Relational Expressionis evaluated as
follows:

1. EvaluateEqualityExpression

Call GetVaue(Result(1)).

Evaluate Rel ational Expression

Call GetVaue(Result(3)).

Perform the comparison Result(4) == Result(2). (See below.)

Return Result(5).

oukwd

The production EqualityExpression EqualityExpression = Relational Expressionis evaluated as
follows:

1. EvaluateEqualityExpression

2. Call GetVaue(Result(1)).

3. Evaluate Relational Expression

4. Cdl GetValue(Result(3)).

5. Perform the comparison Result(4) == Result(2). (See below.)

6. If Result(5) istrue, return false. Otherwise, returntrue.

The comparisonx ==y, wherex and y are values, producestrue or false. Such a comparison is
performed as follows:
1. If Type(x) isdifferentfrom Type(y), go to step 14.
If Type(X) is Undefined, returntrue.
If Type(X) is Null, returntrue.
If Type(x) isnot Number, go to step 11.
If xisNaN, returnfalse.
If yisNaN, returnfalse.
If x is the same number value asy, returntrue.
If xis+Oandyis- 0, returntrue.
If xis-0andyis+0, returntrue.
Returnfalse.
. If Type(x) is String, then returntrueif x and y are exactly the same sequence of characters (same
length and same characters in corresponding positions). Otherwise, returiiial se..
12. If Type(x) is Boolean, returntrue if x and y are both true or both false. Otherwise return false.
13. Returntrueif x and y refer to the same object. Otherwise, returnfalse.
14. If xisnull andy isundefined, returntrue.
15. If xisundefined and y isnull, returntrue.
16. If Type(X) is Number and Typefy) is String,
return the result of the comparison ToStringk) ==y.
17. If Type(X) is String and Typefy) is Number,
return the result of the comparisonx == ToString(y).

© o Nk WDN

ol
= o

52

18. If Type(X) is either String, Number, or Boolean and Typey) is Object,
return the result of the comparisonx == ToPrimitive(y).

19. If Type(X) is Object and Typefy) is either String, Number, or Boolean,
return the result of the comparison ToPrimitive) ==y.

20. Returnfalse.

Discussion

String comparison can beforced by:"" + a == "" + b.
Numeric comparison can beforcedby:a - 0 == - 0.
Boolean comparison can be forced by:'a == !b.

The equality operators maintain the following invariants:
1. Al!=Bisequivadentto! (A==B).
2. A==Bisequivalent toB == A, except in the order of evaluation of A and B.

Note that the equality operator is not always transitive. For example, there might be two distinct String
objects, each representing the same string value; each String object would be considered equal to the
string value by the== operator, but the two String objects would not be equal to each other.

11.10 BINARY BITWISE OPERATORS
Syntax

BitwiseANDExpression:
EqualityExpression
BitwiseANDExpression& EqualityExpression

BitwiseXOREXxpression:
BitwiseANDExpression
BitwiseXORExpression” BitwiseANDEXxpression

BitwiseOREXxpression:
BitwiseXOREXxpression

BitwiseORExpression| BitwiseXORExpression

Semantics

The production A : A @ B, where @ is one of the bitwise operators in the productions above, is
evaluated as follows:

EvaluateA.

Call GetValue(Result(1)).

EvaluateB.

Call GetVaue(Result(3)).

Call Tolnt32(Result(2)).

Call Tolnt32(Result(4)).

Apply the bitwise operator @ to Result(5) and Result(6). The result isasigned 32 bit integer.
Return Result(7).

©No Ok~ wODNRE

11.11 BINARYLOGICAL OPERATORS
Syntax

Logical ANDExpression:
BitwiseOREXpression
Logical ANDEXxpression&& Bitwi seORExpression

Logical ORExpression:
Logical ANDEXxpression
Logical ORExpression| | Logical ANDEXxpression

Semantics

53

The production Logical ANDExpression: Logical ANDExpression&& BitwiseOREXxpressionis
evaluated as follows:

Evaluate Logical ANDEXpression

Call GetVaue(Result(1)).

Call ToBoolean(Result(2)).

If Result(3) isfalse, returnResult(2).

Evaluate BitwiseOREXpression

Call GetValue((Result(5)).

Return Result().

Nook~wbdpR

The production Logical ORExpression: LogicalORExpression| | Logical ANDEXxpressionis evaluated
asfollows:

1. EvaluateLogical ORExpression

Call GetVaue(Result(1)).

Call ToBoolean(Result(2)).

If Result(3) istrue, returnResult(2).

Evaluate Logical ANDEXxpression

Call GetVaue(Result(5)).

Return Result(6).

Nogkowd

11.12 CONDITIONALOPERATOR(?:)

Syntax
Conditional Expression:
Logical ORExpression
Logical ORExpression ? AssignmentExpression: AssignmentExpression
Semantics

The production Conditional Expression: Logical ORExpression? AssignmentExpression:
AssignmentExpressionis evaluated as follows:
Evaluate Logical ORExpression

Call GetVaue(Result(1)).

Call ToBoolean(Result(2)).

If Result(3) isfalse, go to step 8.
Evaluatethe first AssignmentExpression.
Call GetVaue(Result(5)).

Return Result(6).

Evaluate the second AssignmentExpression
. Call GetValue(Result(8)).

10. Return Result(9).

Issue: Add an explanation of how the grammar differs slightly from that of C and Java here.

©oNo Ok wWDNE

11.13 ASSIGNMENTOPERATORS
Syntax

AssignmentExpression:
Conditional Expression
LeftHandS deExpression AssignmentOperator AssignmentExpression

AssignmentOperator :: one of
= *= [= OF 4= -= <<= >>= >>>= &&= = |:

11.13.1 Simple Assignment (=)

The production AssignmentExpression: LeftHandS deExpression = AssignmentExpressionis evaluated
asfollows:

54

Evaluate LeftHandS deExpression.
Evaluate AssignmentExpression
Call GetVaue(Result(2)).

Call PutVaug(Result(1), Result(3)).
Return Result(3).

akrwbdpRE

11.13.2 Compound Assignment (op=)

The production AssignmentExpression: LeftHandS deExpression @= AssignmentExpression where @
represents one of operators indicated above, is evaluated as follows:

Evaluate LeftHandS deExpression.

Call GetValue(Result(1)).

Evaluate AssignmentExpression

Call GetValue(Result@)).

Apply operator @ to Result@) and Result(4).

Call PutVaug(Result(1), Result(5)).

Return Result(5).

Nook~wbdpE

11.14 CoMMA OPERATOR(,)

Syntax
Expression:
AssignmentExpression
Expression, AssignmentExpression

Semantics

The production Expression: Expression, AssignmentExpressionis evaluated as follows:
Evaluate Expression.

Call GetVaue(Result(1)).

Evaluate AssignmentExpression

Call GetVaue(Result(3)).

Return Result(4).

akrwbdpRE

55

12 STATEMENTS

Syntax

Satement :
Block
VariableStatement
EmptyStatement
ExpressionStatement
IfSatement
IterationStatement
ContinueStatement
BreakSatement
ReturnSatement
WithSatement

Block :
{ StatementListyy }

SatementList:
Satement
SatementList Satement

Semantics

The productionBlock:: { }isevaluated as follows:
1. Return “normal completion”.

The productionBlock : { StatementList} is evaluated as follows:
1. Evauate SatementList
2. Return Result(1).

The production StatementList: Statement is evaluated as follows:
1. Evaluate Statement.
2. Return Result(1).

The production StatementList: StatementList Satementis evaluated as follows:

Evaluate StatementList

If Result(1) is an abrupt completion, return Result(1).

Evaluate Statement.

If Result(3) is avalue completion, return Result(3).

If Result(1) is not avalue completion, return Result(3).

Let V bethe value carried by Result(1).

If Result(3) is“abrupt completion because ofbr eak”,

return “abrupt completion after valueV because of br eak”.

8. If Result(3) is“abrupt completion because ofcont i nue”,
return “abrupt completion after valueV because of cont i nue”.

9. Return “normal completion after valuev”.

Nook~wbdpE

56

12.1 VARIABLESTATEMENT
Syntax

VariableStatement :
var VariableDeclarationList;

VariableDeclarationList:
VariableDeclaration
VariableDeclarationList, VariableDeclaration

VariableDeclaration:
Identifier Initializer,

Initializer :
= AssignmentExpression

Description

If the variable statement occurs inside @ unctionDeclaration, the variables are defined with function-
local scopein that function. Otherwise, they are defined with global scope, that is, they are created as
members of the global object as described in sectiorError! Reference source not found.. Variables
are created when the execution scope is entered. ABlock does not define a new execution scope. Only
Programand FunctionDeclar ationproduce a hew scope. Eval code and anonymous code also define a
new execution scope, but these are not an explicit part of the grammer of ECMA Script. Variables are
initialized to theundef i ned value when created. A variable with aninitializer is assighed the value
of its AssignmentExpressionwhen the VariableStatement is executed.

Semantics

The production VariableStatement: var VariableDeclarationList; isevaluated as follows:

1. EvauateVariableDeclarationList

2. Return“normal completion”.

The production VariableDeclarationList: VariableDeclarationis evaluated by taking no action.

The production VariableDeclarationList: VariableDeclarationList, VariableDeclarationis evaluated
asfollows:

1. EvaluateVariableDeclarationList

2. EvaluateVariableDeclaration

The production VariableDeclaration: Identifier is evaluated as follows:
1. Evaluateldentifier.

ISSUE: Does it really evaluate the identifier, or doesit take no action?

The production VariableDeclaration: Identifier Initializer is evaluated as follows:
1. Evaluateldentifier.

2. Evauatelnitializer.

3. Call GetValue(Result(2)).

4. Call PutVaue(Result(1), ResultB)).

The production Initializer : = AssignmentExpressionis evaluated as follows:
1. Evaluate AssignmentExpression
2. Return Result(1).

12.2 EMPTY STATEMENT

Syntax
EmptyStatement :

Semantics

57

The production EmptyStatement : ; is evaluated as follows:
1. Return “normal completion”.

12.3 EXPRESSIONSTATEMENT
Syntax

ExpressionStatement :
Expression;

Semantics

The production ExpressionStatement: Expression; isevaluated as follows:
1. EvaluateExpression.

2. Call GetVaue(Result(1)).

3. Return “normal completion after valuev”, where the valueV is Result(2).

12.4 THE i f STATEMENT
Syntax

[fStatement :
i f (Expression) Statementel se Statement
i f (Expression) Statement

Semantics

The production IfStatement : i f (Expression) Satementel se Statement is evaluated as follows:
Evaluate Expression.

Call GetVaue(Result(1)).

Call ToBoolean(Result(2)).

If Result(3) isfalse, goto step 7.

Evaluatethe first Satement.

Return Result(5).

Evaluatethe second Statement.

. Return Result(7).

The production IfStatement : i f (Expression) Statementis evaluated as follows:
Evaluate Expression.

Call GetVaue(Result(1)).

Call ToBoolean(Result(2)).

If Result(3) isfalse, return “normal completion”.

Evaluate Statement.

Return Result(5).

©NOoO O WDNE

o gk wbdpE

12.5 ITERATION STATEMENTS
Syntax

IterationStatement :
whi | e (Expression) Statement
for (Expression,; Expression,; Expression,) Statement
for (var VariableDeclarationList; Expressiorn,y; Expression,) Statement
for (LeftHandSdeExpressioni n Expression) Statement
for (var Identifier Initializeryy i N Expression) Statement

12.5.1 Thewhi |l e Statement

The production IterationStatement: whi | e (Expression) Statementis evaluated as follows:
1. LetCbe“normal completion”.
2. Evaluate Expression.

58

No ko

8.
9.
10.

11.
12.

Call GetVaue(Result(D).

Call ToBoolean(Result(2).

If Result(3) isfalse, go to step 12.

Evaluate Statement.

If Result(6) avalue completion, changeC to be “normal completion after valuev” whereV is the
value carried by Result(6).

If Result(6) is abr eak completion, go to step 12.

If Result(6) isacont i nue completion, go to step 1.
If Result(6) is ar et ur n completion, return Result(6).
Go to step 2.

Return C.

12.5.2 Thefor Statement

The production IterationStatement: f or (Expression; Expression; Expression) Statementis
evaluated as follows:

©ooNOOOAWDNE

ol
= o

12.
13.
14.
15.
16.
17.
18.
19.

If the first Expression isnot present, go to step 4.
Evaluatethe first Expression.

Call GetVaue(Result(3). (Thisvalueis not used.)
Let C be “normal completion”.

If the second Expression is not present, go to step 9.
Evaluate the second Expression.

Call GetValue(Result(5).

Call ToBoolean(Result(§).

If Result(7) isfalse, go to step 19.

Evaluate Statement.

. If Result(10) a value completion, changeC to be “normal completion after valuev” whereV isthe

value carried by Result(6).

If Result(10) isabr eak completion, go to step 19.

If Result(10) isacont i nue completion, go to step 15.
If Result(10) isar et ur n completion, return Result(10).
If the third Expression is not present, go to step 5.
Evaluatethe third Expression.

Call GetVaue(Result(1)). (Thisvalueis not used.)

Go to step 5.

Return C.

The production IterationStatement: f or (var VariableDeclarationList; Expression; Expression)
Statement is evaluated as follows:

©ooNOOA®NE

Evaluate VariableDeclarationList

If the second Expression is hot present, go to step 7.
Evaluate the second Expression.

Call GetVaue(Result(3).

Call ToBoolean(Result(4).

If Result(5) isfalse, go to step 15.

Evaluate Statement.

If Result(7) isabr eak completion, go to step 15.

If Result(7) isacont i nue completion, go to step 11.
If Result(7) isar et ur n completion, return Result(7).

. If the third Expressionis not present, go to step 2.

Evaluatethe third Expression.

Call GetVaue(Result(1)). (Thisvalueis not used.)
Go to step 2.

Return “normal completion”.

59

12.5.3 Thefor..in Statement

The production IterationStatement: f or (LeftHandSideExpressioni n Expression) Statementis
evaluated as follows:

1. Evaluatethe Expression.

Call GetVaue(Result(1)).

Call ToObject(Result(2)).

Get the name of the next property of Result(3) which doesn’t have the DontEnum attribute. If there
is no such property, go to step 12.

Evaluatethe LeftHandSideExpression (it may be evaluated repeatedly).

Call PutValue(Result(5), Result(4)).

Evaluate Statement.

If Result(7) abr eak completion, go to step 12.

If Result(7) acont i nue completion, go to step 4.

10 If Result(7) ar et ur n completion, return Result(7).

11. Goto step 4.

12. Return*“normal completion”.

Wb

© N O

The production IterationStatement: f or (var Identifier Initializer,, i N Expression) Statementis
evaluated as follows:

If the Initializer is not present, go to step6b.

Evaluatethe Identifier.

Evaluatethe Initializer.

Call GetVaue(Result(3)).

Call PutVaue(Result(2), Result(4)).

Evaluatethe Expression.

Call GetVaue(Result(6)).

Call ToObject(Result(7)).

Get the name of the next property of Result(8) which doesn’t have the DontEnum attribute. If there
is no such property, go to step 17.

10. Evaluatethe ldentifier (yes, it may be evaluated repeatedly).

11. Call PutVaue(Result(10), Result(9)).

12. Evaluate Statement.

13. If Result(12) abr eak completion, go to step 17.

14. If Result(12) acont i nue completion, go to step 9.

15. If Result(12) ar et ur n completion, return Result(12).

16. Goto step 9.

17. Return*“normal completion”.

©oNo Ok wWDNE

The mechanics of enumerating the properties (stept) is implementation dependent. The order of
enumeration is defined by the object. Properties of the object being enumerated may be deleted during
enumeration. |f a property that has not yet been visited during enumeration is deleted, then it will not
be visited. If new properties are added to the object being enumerated during enumeration, the newly
added properties are not guaranteed to be visited in the active enumeration.

Enumerating the properties of an abject includes enumerating properties of its prototype, and the
prototype of the prototype, and so on, recursively; but a property of a prototype is not enumerated if it is
“shadowed” because some previous object in the prototype chain has a property with the same name.

12.6 THEconti nue STATEMENT
Syntax

ContinueStatement :
conti nue;

An ECMAScript program is considered syntactically incorrect and may not be executed at all if it
containsacont i nue statement that is not within at least onenhi | e or f or statement. The
cont i nue statement is evaluated as:

60

1. Return “abrupt completion because ofcont i nue”..

12.7 THE br eak STATEMENT

Syntax

BreakSatement :
br eak ;

An ECMAScript program is considered syntactically incorrect and may not be executed at all if it
contains abr eak statement that is not within at least onewhi | e or f or statement. Thebr eak
statement is evaluated as:

1. Return “abrupt completion because ofbr eak”.

12.8 THETr et ur n STATEMENT
Syntax

ReturnStatement :
return [noLineTerminator here] EXPressiony ;

An ECMAScript program is considered syntactically incorrect and may not be executed at all if it
containsar et ur n statement that is not withinthe Block of a FunctionDeclaration It causes afunction
to cease execution and return avalue to the caller. IfExpressionis omitted, the return value is the
undef i ned value. Otherwise, the return value is the value ofExpression.

The production ReturnStatement:: r et ur N [no LineTerminator here] EXpressiony ; is evaluated as:

1. If theExpressionis not present, return “abrupt completion because ofr et ur n undefined”.

2. EvauateExpression.

3. Call GetVaue(Result(2)).

4. Return “abrupt completion because ofr et ur n V', where the valueV is Result(3).

12.9 THEW t h STATEMENT

Syntax

WithStatement :
wi t h (Expression) Statement

Description

Thewi t h statement adds a computed object to the front of the scope chain of the current execution
context, then executes a statement with this augmented scope chain, then restores the scope chain.
Semantics

The production WithStatement: wi t h (Expression) Statement is evaluated as follows:

Evaluate Expression.

Call GetVaue(Result(l)).

Call ToObject(Result@)).

Add Result(3) to the front of the scope chain.

Evaluate Statement using the augmented scope chain from step 4.

Remove Result@) from the front of the scope chain.

Return Result(5).

Discussion

Note that no matter how control |eaves the embeddedtatement, whether normally or by some form of
abrupt completion, the scope chain is always restored to its former state.

NogkwbdpE

61

13 FUNCTION DEFINITION

Syntax

FunctionDeclaration:
functi on Identifier (FormalParameterListy) Block

Formal Parameter List:
Identifier
FormalParameterList, ldentifier

Semantics

Defines a property of the global object whose name is thédentifier and whose valueis a function
object with the given parameter list and statements. If the function definition is supplied text to the
eval function and the calling context has an activation objegtthen the declared function is added to
the activation objectinstead of to the global object.

The production FunctionDeclaratiort f unct i on Identifier () Blockis processed for function

declarationsas follows:

1. Create anew Function object (15.3.2.1) with no parameters,theBlock as the body, and I dentifier as
its name.

2. Put this new Function object asthe new value of the property nameddentifier in the global object
or the activation object, as appropriate (see above).

The production FunctionDeclarationt f unct i on Identifier (FormalParameterList) Blockis
processed for function declarationsas follows:
1. Create anew Function object (15.3.2.1) with the parameters specified by the
Formal Parameter Listthe Block as the body, and I dentifier as its name.
2. Put this new Function object as the new value of the property nameddentifier in the global object
or the activation object, as appropriate (see above).

62

14 PROGRAM

Syntax

Program:
Sour ceElements

SourceElements:
SourceElement
Sour ceElements Sour ceElement

SourceElement :
Statement
FunctionDeclaration

The production Program: { SourceElements } isevaluated asfollows:
1. Process SourceElementsfor function declarations

2. Evaluate SourceElements

3. Return Result(2).

The production SourceElements SourceElementis processed for function declarationsas follows:
1. Process SourceElement for function declarations

The production SourceElements SourceElementis evaluated as follows:
1. Evaluate SourceElement
2. Return Result(1).

The production SourceElements SourceElements SourceElementis processed for function declarations
as follows:

1. Process SourceElementsfor function declarations

2. Process SourceElement for function declarations

The production SourceElements SourceElements SourceElementis evaluated as follows:
1. Evaluate SourceElements

2. Evaluate SourceElement.

3. If Result(2) isavalue completion, return Result(2).

4. Return Result(1).

The production SourceElement Statement is processed for function declarations by taking no action.

The production SourceElement Statement isevaluated as follows:
1. Evaluate Statement.
2. Return Result(1).

The production SourceElement. FunctionDeclarationis processed for function declarationsas follows:
1. ProcessFunctionDeclarationfor function declarations

The production SourceElement. FunctionDeclarationis evaluated as follows:
1. Return “normal completion”.

63

15 NATIVE ECMASCRIPT OBJECTS

There are certain built-in objects available whenever an ECM A Script program begins execution. One,
the global object, isin the scope chain of the executing program. Others are accessible asinitial
properties of the global object.

Many built-in objects are functions: they can be invoked with arguments. Some of them furthermore are
constructors: they are functions intended for use with theew operator. A few of them are intended to

be used both as ordinary functions and as constructors. . For each built-in function, this specification
describes the arguments required by that function and properties of the function object. For each built-in
constructor, this specification furthermore describes properties of the prototype object of that
constructor and properties of specific object instances returned by aew expression that invokes that
constructor.

Unless otherwise specified specified in the description of a particular function, if afunction or
constructor described in this section is given fewer arguments than the function is specified to require,
the function or constructor shall behave exactly asif it had been given sufficient additional arguments,
each such argument being theundefined value.

None of the built-in functions described in this section shall initially have aar gunent s property.

None of the built-in functions described in this section shall initially have gr ot ot ype property unless
otherwise specified in the description of a particular function.Every built-in function object described in
this section—whether as a constructor, an ordinary function, or both—has &engt h property whose
valueis an integer. Unless otherwise specified, thisvalueis equal to the number of nhamed arguments
shown in the section heading for the function description; for example, the function object that is the
initial value of thei ndexOF property (section0) of the String prototype object is described under the
section heading “indexOf(searchString, position)” which shows the two named argumentsear chString
and position; therefore the value of thel engt h property of that function object is2. Sometimes the
same function object is described under more than one heading to emphasize its different behaviors
when given different numbers of actual arguments; in such a case, unless otherwise specified, the

I engt h value is the largest number of arguments shown in any applicable section heading. For
example, the function object that isthe initial value of th&bj ect property of the global object is
described under four separate headings: as a function of one argument (sectiord5.2.1.1), as afunction
of zero arguments (section15.2.1.2), as a constructor of one argument (15.2.2.1), and as a constructor
of zero arguments (15.2.2.2). The largest number of arguments described is 1, so that value of the

| engt h property of that function object is1.

In every case, al engt h property of abuilt-in function object described in this section has the attributes
{ ReadOnly, DontDelete, DontEnum } (and no others). Every other property described in this section
has the attribute { DontEnum } (and no others) unless otherwise specified.

15.1 THE GLOBAL OBJECT

The global object does not have a[[Construct]] property; it is not possible to use the global object asa
constructor with thenew operator.

15.1.1 Value Properties of the Global Object

15.1.1.1 NaN
Theinitial value of NaNis NaN.

64

15.1.1.2 Infinity

Theinitial value of I nfinityis+¥.

15.1.2 Function Properties of the Global Object

15.1.2.1 eval(x)

When theeval functioniscalled withone argumentx, the following steps are taken:
If xisnot astring value, returnx.

Parse x as an ECMA ScriptProgram If the parse fails, generate a runtime error.
Evaluate the program from step 2.

If Result(3) is“normal completion after value/”, return the valueV.

Return undefined.

agkrwbdpE

15.1.2.2 parselnt(string, radix)

Thepar sel nt function produces an integer value dictated by intepretation of the contents of thetring

argument according to the specifiedradix.

When thepar sel nt functionis called, the following steps are taken:

1. Call ToString(string).

2. Compute a substring of Result(1) consisting of the leftmost character that is not a
SrWhiteSpaceChar and all characters to the right of that character.(In other words, remove leading
whitespace.)

3. Letsignbel.

If Result(2) is not empty and the first character of Result(2) isaminussign, let sign be- 1.

5. If Result(2) is not empty and the first character of Result(2) isaplussigr or aminussign-,

thenResult(5) is the substring of Result(2) produced by removing the first character; otherwise,

Result(5) is Result(2).

If theradix argument is not supplied, go to step 12.

Call Tolnt32(radix).

If Result(7) < 2 or Result(7) > 36, returnNaN.

Let R be Result(7).

10. If R=16 and the length of Result(5) isat least 2 and the first two characters of Result(5) are either
“Ox” or “0X", let Sbe the substring of Result(5) consisting of all but the first two characters;
otherwise, let Sbhe Result(5).

11. Goto step 22.

12. If Result(5) is not empty and the first character of Result(5) is nod, go to step 20.

13. If the length of Result(5) is at least 2 and the second character of Result(5) ig or X, go to step 17.

14. Let Rbe8.

15. Let Sbethe substring of Result(5) consisting of all but the first character.

16. Goto step 22.

17. Let Rbe 16.

18. Let Sbethe substring of Result(5) consisting of all but the first two characters.

19. Goto step 22.

20. Let R be 10.

21. Let She Result(5).

22. |f Scontains any character that is not aradixR digit, then let Z be the substring of S consisting of
all charactersto the left of the leftmost such character; otherwise, 1eZ be S

23. If Zisempty, returnNaN.

24. Compute the mathematical integer value that is represented by in radix-R notation.

25. Compute the number value for Result(24).

26. Returnsign xResult(25).

&

© 0N

Note that par sel nt may interpret only aleading portion of the string as an integer value; it ignores any
characters that cannot be interpreted as part of the notation of an integer, and no indication is given that
any such characters were ignored.

65

15.1.2.3 parseFloat(string)

Thepar seFl oat function produces a number value dictated by intepretation of the contents of the

string argument as a decimal literal.

When thepar seFl oat functionis called, the following steps are taken:

1. Call ToString(string).

2. Compute a substring of Result(1) consisting of the leftmost character that is not a
SrwhiteSpaceChar and all characters to the right of that character.(In other words, remove leading
whitespace.)

3. If neither Result(2) nor any prefix of Result(2) satisfies the syntax of &rDecimalLiteral (see
9.3.1), return NaN.

4. Compute the longest prefix of Result(2), which might be Result(2) itself, that satisfies the syntax of
aStrDecimalLiterd.

5. Return the number value for the MV of Result(4).

Note that par seFl oat may interpret only aleading portion of the string as a number value; it ignores
any characters that cannot be interpreted as part of the notation of an decimal literal, and no indication
is given that any such characters were ignored.

15.1.2.4 escape(string)

The escape function computes a new version of a string value in which certain have been replaced by a
hexadecimal escape sequence. The result thus contains no special characters that might have special
meaning within aURL.

For characters whose Unicode encoding i0xFF or less, atwo-digit escape sequence of the formpxxis
used in accordance with RFC1738. For characters whose Unicode encoding is greater thaoxFF, a
four-digit escape sequence of the formoamxxxxis used

When theescape functionis called withone argument string, the following steps are taken:

1. Call ToString(string).

2. Compute the number of charactersin Result(1).

3. Let Rbethe empty string.

4. LetkbeO.

5. If kequals Result(2), returnR.

6. Get the character at positionk within Result(1).

7. If Result(6) is one of the 62 nonblank ASCII charactersABCDEFGHI JKLIMNOPQRSTUVWKYZ
abcdef ghi j kl mopqgr st uvwxyz0123456789 @ _+-./, goto step 14.

8. Compute the 16-bit unsigned integer that is the Unicode character encoding of Result(6).

9. If Result(8), islessthan 256, go to step 12.

10. Let Sbeastring containing six characters ‘%uwxyz' wherewxyz are four hexadecimal digits
encoding the value of Result(8).

11. Goto step 15.

12. Let Sbe astring containing three characters %xy” wherexy are two hexadecimal digits encoding
the value of Result(8).

13. Goto step 15.

14. Let Sbe astring containing the single character Result(6).

15. Let Rbe anew string value computed by concatenating the previous value oR and S

16. Increasek by 1.

17. Goto step 5.

15.1.2.5 unescape(string)

The unescape function computes a new version of a string value in which each escape sequences of
the sort that might be introduced by theescape function is replaced with the character that it
represents.

When theunescape functionis called with one argument string, the following steps are taken:

1. Call ToString(string).

2. Compute the number of charactersin Result(1).

66

Let R be the empty string.

Letk beO.

If k equals Result(2), returnR.

Let ¢ be the character at positionk within Result(1).

If cisnot % go to step 17.

If kis greater than Result(2) 6, go to step 14.

If the character at positionk+1 within result(1) is notu, go to step 14.

10. If the four characters at positionsk+2, k+3, k+4, and k+5 within Result(1) are not al hexadecimal
digits, go to step 14.

11. Letc be the character whose Unicode encoding is the integer represented by the four hexadecimal
digits at positionsk+2, k+3, k+4, and k+5 within Result(1).

12. Increasek by 5.

13. Goto step

14. If kis greater than Result(2) 3, go to step 18.

15. If thetwo characters at positionsk+1 and k+2 within Result(1) are not both hexadecimal digits, go
to step 18.

16. Let c be the character whose Unicode encoding is the integer represented by two zeroes plus the
two hexadecimal digits at positionsk+1 and k+2 within Result(1).

17. Increasek by 2.

18. Let Rbeanew string value computed by concatenating the previous value oR and c.

19. Increasek by 1.

20. Goto step 5.

© o N kW

15.1.2.6 isNaN(number)

Applies ToNumber to its argument, then returngrueif the result isNaN, and otherwise returnsfalse.

15.1.2.7 isFinite(number)
Applies ToNumber to its argument, then returndalseif the result isNaN, +¥, or - ¥, and otherwise
returnstrue.

15.2 OBJECT OBJECTS

15.2.1 The Object Constructor Called as a Function

When Qbj ect iscalled as afunction rather than as a constructor, it performs a type conversion.

15.2.1.1 Object(value)

When the Qbj ect functionis called withone argument value, the following steps are taken:

1. If thevalueisnull or undefined, create and return a newobject with no properties (other than
internal properties) exactly as for the expressiomew Qbj ect ().

2. Return ToObject(value).

15.2.1.2 Object()

When the Qbj ect functionis called withno arguments the following stepis taken:
1. Create and return a newobject with no properties (other than internal properties) exactly as for the
expressionnew Qbj ect ().

15.2.2 The Object Constructor

When Obj ect iscalled as part of anewexpression, it is a constructor that may create an object.

15.2.2.1 new Object(value)

When the Qbj ect constructor is called withone argument value, the following steps are taken:
1. If thetype of thevalueis not Object, go to step 4.

67

10.

If the value is a native ECM A Script object, do not create a new object; simply returmal ue.

If the valueis a host object, then actions are taken and aresult is returned in an implementation-
dependent manner that may depend on the host object.

If the type of the value is not String, go to step 6.

Create anew native ECM A Script object to serve asa“wrapper” for the string value

The [[Prototype]] property of the newly constructed object is set to the original String prototype
object, the one that isthe initial value ofSt ri ng. pr ot ot ype

The [[Class]] property of the newly constructed object isset td St ri ng".

The [[Valug]] property of the newly constructed object is set tovalue.

Return the newly created native object.

If the type of the value is not Boolean, go to step 8.

Create a new native ECMA Script object to serve as a“wrapper” for the boolean value

The [[Prototype]] property of the newly constructed object is set to the original Boolean prototype
object, the one that is the initial value ofBool ean. pr ot ot ype

The[[Class]] property of the newly constructed object is set td Bool ean”.

The [[Valug]] property of the newly constructed object is set tovalue.

Return the newly created native object.

If the type of the value is not Number, go to step 10.

Create a new native ECM A Script object to serve asa“wrapper” for the number value

The [[Prototype]] property of the newly constructed object is set to the original Number prototype
object, the one that is the initial value ofNunber . pr ot ot ype

The [[Class]] property of the newly constructed object is set td Nunber ".

The [[Valug]] property of the newly constructed object is set tovalue.

Return the newly created native object.

(The type of the value must be Null or Undefined.) Create a new native ECM A Script object.
The [[Prototype]] property of the newly constructed object is set to the Object prototype object.
The [[Class]] property of the newly constructed object is set td Obj ect .

The newly constructed object has no [[Value]] property.

Return the newly created native object.

15.2.2.2 new Object()
When the Qbj ect constructor is called withno argument, the following step is taken:

1.

Create a new native ECMAScript object.

The [[Prototype]] property of the newly constructed object is set to the Object prototype object.
The[[Class]] property of the newly constructed object is set td hj ect ".

The newly constructed object has no [[Valug]] property.

Return the newly created native object.

15.2.3 Properties of the Object Constructor

The value of theinternal [[Prototype]] property of the Object constructor isthe Function prototype
object.

Besides the internal [[Call]] and [[Construct]] properties and the engt h property, the Object
constructor has the following properties:

15.2.3.1 Object.prototype

Theinitial value of Obj ect . pr ot ot ypeisthe built-in Object prototype object.
This property shall have the attributes { DontEnum, ReadOnly }.

15.2.4 Properties of the Object Prototype Object

15.2.4.1 Object.prototype.constructor

Theinitial value of Obj ect . pr ot ot ype. const r uct oristhe built-inOoj ect constructor.

68

15.2.4.2 Object.prototype.toString()

When thet oSt ri ng methodis called, the following steps are taken:

1. Getthe[[Class]] property of this object.

2. Cadl Tostring(Result(1)).

3. Compute astring value by concatenating the three string$[obj ect ", Result(2), and"]".
4. Return Result(3).

15.2.4.3 Object.prototype.valueOf()

Asarule, the valueOf method for an object simply returns the object; but if the object is a“wrapper”
for ahost object, as may perhaps be created by the Object constructor (see sectiori5.2.2.1), then the
contained host object should be returned.

When theval uef methodis called, the following steps are taken:

Get the [[Class]] property of this object.

If Result(1) is" Obj ect ", return this object.

Get the [[Value]] property of this object.

If Result(3) isundefined, return this object.

Return Result(3).

akrowdE

15.2.5 Properties of Object Instances
Object instances have no special properties beyond those inherited from the Object prototype object.

15.3 FuNCTION OBJECTS

15.3.1 The Function Constructor Called as a Function

When Funct i oniscalled as afunction rather than as a constructor, it creates and initializes a new
function object. Thus the function callFunct i on(. . .) is equivalent to the object creation expression
new Function(...) withthe same arguments.

15.3.1.1 Function(pl, p2, ..., pn, body)

When theFunct i on functionis called withsome argumentspl, p2, . . ., pn, body (wheren might be 0,
that is, there are no “p” arguments), the following steps are taken:
1. Create and return anew Function object exactly as for the expression

new Function(pl, p2, ..., pn, body).

15.3.2 The Function Constructor

When Funct i oniscalled as part of anewexpression, it is aconstructor: it initializes the newly created
object.

15.3.2.1 Function(pl, p2, ..., pn, body)

The last argument specifies the body (executable code) of afunction; any preceding arguments specify
formal parameters.

When theFunct i on constructor is called withsome argumentspl, p2, . . ., pn, body (wheren might be
0, that is, there are no “p” arguments), the following steps are taken:

L et P be the empty string.

If no arguments were given, letbody be the empty string and go to step 13.

If one argument was given, letbody be that argument and go to step 13.

Let A be the first argument.

Let P be ToString(Result(4)).

Letk be2.

If k equals the number of arguments, letbody be the k' th argument and go to step 13.

Let A be thek'th argument.

Call ToString(Result(8)).

=

© N ORAWDN

69

10. Let P betheresult of concatenating the previous value ofP, the string" , " (a comma), and
Result(9).

11. Increasek by 1.

12. Gotostep 7.

13. Cadll ToString(body).

14. LetF bethe newly constructed Function object.

15. The[[Class]] property of F isset to" Functi on".

16. Set the[[Call]] property of F to a method such that, when it is invoked, the executable function will
be invoked whose formal parameters are specified byP and whose body is specified by Result(13).
The string valueP must be parsable as aFormal Parameter List,y; the string value result(13) must
be parsable as aStatementLisi,,. (Note that both P and Result(13) may contain whitespace, line
terminators, and comments.) However, if eithe or Result(13) is syntactically incorrect, or
otherwise cannot be interpreted as part of a correct ECM A Script function definition, then the
[[Call]] property of F is not set and a runtime error is generated.

17. Set the [[Construct]] property of F to a method that, when it isinvoked, constructs a new object
whose [[Prototype]] property is equal to the value ofF. pr ot ot ype at the time the [[Construct]]
method is invoked, then invokesF as afunction (using its[[Call]] property) with the new object as
thet hi s value and the arguments given to the [[Construct]] method as the arguments. If the result
of invoking the [[Call]] method is an object, that object becomes the result of the invocation of the
[[Construct]] method; otherwise the new object becomes the result of the invocation of the
[[Construct]] method.

18. If thet oSt ri ng method of F islater invoked, it will use “‘anonynous” as the name of the function
in rendering the function as a string.

19. Compute, as an integer number value of positive sign, the number of formal parameters that
resulted from the parse of P as a Formal Parameter Lisy,.

20. Thel engt h property of F is set to Result(18). This property is given attributes {DontDelete,
DontEnum, ReadOnly} .

21. Create anew object asif by the expressiomew Obj ect ().

22. Thepr ot ot ype property of F is set to Result(21). This property is given attributes {DontEnum}.

23. Theconst ruct or property of Result(21) isset to F. This property is given attributes
{ DontEnum}.

24. Thear gunent s property of F is set to null. This property is given attributes { DontDel ete,
DontEnum, ReadOnly} .

Note that it is permissible but not necessary to have one argument for each formal parameter to be
specified. For example, al three of the following expressions produce the same result:

new Function(“a”, “b”", “c”, “return a+b+c”)
new Function(“a, b, c”, “return a+b+c”)
new Function(“a,b”, “c”, “return a+b+c")

A pr ot ot ype property is automatically created for every function, against the possibility that the
function will be used as a constructor. However, note that this prototype object is not automatically
given aconst r uct or property. It is conventional for a prototype object to have azonst r uct or
property whose value is the Function object whosepr ot ot ype property has that prototype as its value,
but the creation of this property, if that is desired, is the responsibility of the programmer.

15.3.3 Properties of the Function Constructor

15.3.3.1 Function.prototype

Theinitial value of Funct i on. pr ot ot ypeisthe built-in Function prototype object.
This property shall have the attributes { DontEnum, ReadOnly }.

15.3.3.2 Function.length

Thel engt h property is1. (Of course, the Function constructor accepts more than one argument,
because it accepts a variable number of arguments.)

70

15.3.4 Properties of the Function Prototype Object

Note that the Function prototype object isitself a Function object. It is a function with an “empty
body”; if it isinvoked, it merely returnaundefined.

The Function prototype object does not have aval ueOf property of its own; however, it inherits the
val ueOF property from the Object prototype Object.

15.3.4.1 Function.prototype.constructor

Theinitial value of Funct i on. pr ot ot ype. const r uct oristhe built-inFunct i on constructor.

15.3.4.2 Function.prototype.toString()

An implementation-dependent representation of the function is returned. This representation has the
syntax of aFunctionDeclaration Notein particular that the use and placement of whitespace, line
terminators, and semicolons within the representation string is implementation-dependent.

Thet oSt ri ng function is not generic; it generates aruntime error if it$ hi s value is not a Function
object. Therefore it cannot be transferred to other kinds of objects for use as a method.

15.3.5 Properties of Function Instances
Every function instance has a [[Call]] property and a [[Construct]] property.

15.3.5.1 length

The value of thel engt h property isusually an integer that indicates the “typical” number of arguments
expected by the function. However, the language permits the function to be invoked with some other
number of arguments. The behavior of afunction when invoked on a number of arguments other than
the number specified by itsl engt h property depends on the function.

15.3.5.2 prototype

The value of thepr ot ot ype property is used to initialize the internal [[Prototype]] property of anewly
created object before the Function object is invoked as a constructor for that newly created object.

15.3.5.3 arguments

The value of thear gunent s property is normallynull if there is no outstanding invocation of the
function in progress (that is, the function has been called but has not yet returned). When a non-internal
Function object (15.3.2.1) isinvoked, itsar gunent s property is“dynamically bound” to a newly
created object that contains the arguments on which it was invoked (se#0.1.6 and 10.1.8). Note that
the use of this property is discouraged; it provided principally for compatibility with existing old code.

15.4 ARRAY OBJECTS

Array objects give special treatment to a certain class of property names. A property name (in the
form of astring value) is anarray indexif and only if ToString(ToUint32@)) is equal toP and
ToUint32(P) is not equal to 2> 1.Every Array object has al engt h property whose value is always an
integer with positive sign and less than 2% It is always the case that thel engt h property is numerically
greater than the name of every property whose name is an array index; whenever a property of an Array
object is created or changed, other properties are adjusted as necessary to maintain this invariant.
Specifically, whenever a property is added whose name is an array index, theengt h property is
changed, if necessary, to be one more than the numeric value of that array index; and whenever the the
| engt h property is changed, every property whose nameis an array index whose value is not smaller
than the new length is automatically deleted. This constraint applies only to properties of the Array
object itself and is unaffected byl engt h or array index properties that may be inherited from its
prototype.

71

15.4.1 The Array Constructor

When Ar r ay is called as part of anewexpression, it isa constructor: it initializes the newly created
object.

15.4.1.1 new Array(item0O, item1, .. .)

This description appliesif and only if the Array constructor is given two or more arguments.
The [[Class]] property of the newly constructed object is set td Arr ay".
Thel engt h property of the newly constructed object is set to the number of arguments.

The 0 property of the newly constructed object is set tatem0; the 1 property of the newly constructed
object is set toitem1; and, in general, for as many arguments as there are, thé property of the newly
constructed object is set to argumentk, where the first argument is considered to be argument numbep.

15.4.1.2 new Array(len)

The [[Class]] property of the newly constructed object is set td Arr ay".

If the argumentlen is a number, then thel engt h property of the newly constructed object is set tden.
If the argumentlen is not a number, then thel engt h property of the newly constructed object is set tal
and the 0 property of the newly constructed object is set tden.

15.4.1.3 new Array()

The [[Class]|] property of the newly constructed object isset td Array".
Thel engt h property of the newly constructed object is set to+0.

15.4.2 Properties of the Array Constructor

The value of theinternal [[Prototype]] property of the Array constructor is the Function prototype
object.

Besides the internal [[Call]] and [[Construct]] properties, the Array constructor has the following
properties:
15.4.2.1 Array.prototype

Theinitial value of Ar r ay. pr ot ot ypeisthe built-in Array prototype object.
This property shall have the attributes { DontEnum, ReadOnly }.

15.4.2.2 Array.length

Thel engt h property is1. (Of course, the Array constructor accepts more than one argument, because
it accepts a variable number of arguments.)

15.4.3 Properties of the Array Prototype Object

Note that the Array prototype object isitself an array; it has & engt h property (whose initial valueis
+0) and the special internal [[Put]] method described in sectiorl5.4.4.1.In following descriptions of
functions that are properties of the Array prototype object, the phrase “this object” refersto the object
that isthet hi s value for the invocation of the function. It is permitted fot hi s to refer to an object for
which the value of the internal [[Class]] property isnot Arr ay"”.

15.4.3.1 Array.prototype.constructor

Theinitial value of Arr ay. pr ot ot ype. const r uct oristhe built-inAr r ay constructor.

15.4.3.2 Array.prototype.toString()

The elements of this object are converted to strings, and these strings are then concatenated, separated
by comma characters. The result is the same as if the built-ifi oi n method were invoked for this object
with no argument.

72

15.4.3.3 Array.prototype.valueOf()

The elements of this object are converted to strings, and these strings are then concatenated, separated
by comma characters. The result is the same as if the built-ifi oi n method were invoked for this object
with no argument.

In other words, for Array objects,val ueOf doesthe samething ast oSt ri ng.

15.4.3.4 Array.prototype.join(separator)

The elements of the array are converted to strings, and these strings are then concatenated, separated by
occurrences of theseparator. If no separator is provided, a single commais used as the separator.
When thej oi n method is called withone argument separator, the following steps are taken:

1. Call the[[Get]] method of this object with argument | engt h".

2. Call ToUint32(Result(1)).

3. |If separator isundefined or not supplied, letseparator be the single-character string”, ".

4. Cal ToString(separator).

5. If Result(2) is0, return the empty string.

6. Call the [[Get]] method of this object with argumenD.

7. If Result(6) isundefined or null, use the empty string; otherwise, call ToString(Result(6)).

8. LetRbeResult(7).

9. Letkbel.

10. If k equals Result(2), returnR.

11. Let Sbeastring value produced by concatenatingR and Result(4).

12. Call the [[Get]] method of this object with argumenk.

13. If Result(12) isundefined or null, use the empty string; otherwise, call ToString(Result(12)).
14. Let Rbeastring value produced by concatenatingS and Result(13).

15. Increasek by 1.

16. Goto step 10.

Note that thej oi n function is intentionally generic; it does not require that its hi s value be an Array
object. Therefore it can be transferred to other kinds of objects for use as a method.

15.4.3.5 Array.prototype.reverse()

The elements of the array are rearranged so as to reverse their order. This object is returned as the result
of the call.

Call the [[Get]] method of this object with argument | engt h".

Call ToUint32(Result(1)).

Compute floor(Result(2)/2).

Let k beo.

If k equals Result(3), return this object.

Compute Result(2) k- 1.

Call the [[Get]] method of this object with argumenk.

Call the [[Get]] method of this object with argument Result(6).

Call the [[Put]] method of this object with argumentk and Result(8).

10 Call the [[Put]] method of this object with arguments Result(6) and Result(7).
11. Increasek by 1.

12. Goto step 5.

©ONOOOA~WDNPE

Note that ther ever se function isintentionally generic; it does not require that it$ hi s value be an
Array object. Therefore it can be transferred to other kinds of objects for use as a method.

15.4.3.6 Array.prototype.sort(comparefn)

The elements of this array are sorted. The sort is not necessarily stable. If comparefn is provided, it
should be afunction that accepts two argumentsc and y and returns a negative value ifx <y, zero if x =
y, or apositivevalueifx >y.

1. Call the [[Get]] method of this object with argument | engt h".

73

2. Call ToUint32(Result(1)).

3. If comparefnis supplied, Result(3) iscomparefn. Otherwise, Result(3) is the SortCompare operator
of two arguments, which is described below.

4. Perform an implementation-dependent sequence of callsto the [[Get]] and [[Put]] methods of this
object and to Result(3), where the first argument for each call to [[Get]] and [[Put]] isa
nonnegative integer less than Result(2) and where the arguments for calls to Result(3) are results of
previous calls to the [[Get]] method. After this sequence is complete, this object must have the
following two properties.

(1) There must be some mathematical permutatiorp of the nonnegative integers less than

Result(2), such that for every nonnegative integeij less than Result(2),new p(j)] isexactly the
same value asol d[j] .

(2) If comparefnis a consistent comparison function for the elements of this array, then foall
nonnegative integersj and k, each less than Result(2), ifol d[j] compareslessthan ol d[K], then
p() < p(K).

Here we use the notationol d[j] to refer to the hypothetical result of calling the [[Get]] method of
this object with argumentj before this step is executed, and the notatiomewf j] to refer to the
hypothetical result of calling the [[Get]] method of this object with argumerijtafter this step has
been completely executed.

A function is a consistent comparison function for a set of valuesif (a) for any two of those values
(possibly the same value) considered as an ordered pair, it always returns the same value when
given that pair of values asits two arguments, and the result of applying ToNumber to thisvalueis
not NaN; (b) when considered as arelation, where the pair X, y) is considered to be in the relation

if and only if applying the function tox and y and then applying ToNumber to the result produces a
negative value, thisrelation is a partial order; and (c) when considered as a different relation, where
the pair (X, y) is considered to be in the relation if and only if applying the function tax and y and
then applying ToNumber to the result produces a zero value (of either sign), thisrelationisan
equivalence relation.In this context, the phrase “x compares less thany” meansapplying Result(2)
to x and y and then applying ToNumber to the result produces a negative value

5. Return this object.

When the SortCompare operator (the default comparison operation for thaor t method) is called with
two argumentsx and y, the following steps are taken:

If xisundefined, return 1.

If yisundefined, return - 1.

Call ToString(x).

Call ToString(y).

If Result(3) < Result(4), return- 1.

If Result(3) > Result(4), return 1.

Return +0.

No g MwDdPE

Note that thesort function isintentionally generic; it does not require that its hi s value be an Array
object. Therefore it can be transferred to other kinds of objects for use as a method.

15.4.4 Properties of Array Instances

Array instances inherit properties from the Array prototype object and also have the following
properties.

15.4.4.1 [[Put]](P, V)

Array objects use a variation of the [[Put]] method used for other native ECM A Script objects (section
8.6.2.2).

AssumeA isan Array object and P is a string.

When the [[Put]] method of A is called with property P and valueV, the following steps are taken:

1. Call the[[CanPut]] method of A with name P.

2. If Result(1) isfalse return.

3. If Adoesn't have a property with nameP, goto step 7.

4. If Pis"l ength", goto step 12.

74

Set the value of propertyP of Ato V.

Goto step 8.

Create a property with nameP, set its value toV and give it empty attributes.

If Pisnot an array index, return.

If Aitself has aproperty (not an inherited property) named' | engt h", andToUint32(P) is less than

the value of thel engt h property of A, then return.

10. Change (or set) the value of thel engt h property of A to ToUint32(P)+1.

11. Return.

12. Compute ToUint32(V).

13. For every integerk that isless than the value of the engt h property of A but not less than
Result(12), if A itself has a property (not an inherited property) named ToStrindf), then delete that
property.

14. Set the value of property P of A to Result(12).

15. Return.

© NGO

15.4.4.2 length

Thel engt h property of this Array object is always numerically greater than the name of every property
whose nameis an array index.

Thel engt h property has the DontDelete attribute.

15.5 STRING OBJECTS

15.5.1 The String Constructor Called as a Function

When St ri ng iscalled as afunction rather than as a constructor, it performs a type conversion.

15.5.1.1 String(value)
Returns a string value (not a String object) computed by ToString(value).

15.5.1.2 String()
Returns the empty string"".

15.5.2 The String Constructor

When St ri ngis called as part of anewexpression, it is a constructor: it initializes the newly created
object.

15.5.2.1 new String(value)

The [[Class]] property of the newly constructed object isset td St ri ng”.
The [[Valuge]] property of the newly constructed object is set to ToString(value).

15.5.2.2 new String()

The [[Class]] property of the newly constructed object isset td St ri ng".
The [[Valug]] property of the newly constructed object is set to the empty string.

15.5.3 Properties of the String Constructor

The value of theinternal [[Prototype]] property of the String constructor is the Function prototype
object.

Besides the internal [[Call]] and [[Construct]] properties and theé engt h property, the String
constructor has the following propert

15.5.3.1 String.prototype
Theinitial value of St ri ng. pr ot ot ypeisthe built-in String prototype object.

75

This property shall have the attributes { DontEnum, ReadOnly }.

15.5.3.2 String.fromCharCode(charO, charl, . . .)

Returns a string value containing as many characters asthe number of arguments. Each argument
specifies one character of the resulting string, with the first argument specifying the first character, and
so on, from left to right. An argument is converted to a character by applying the operation ToUint16
(section 9.7) and regarding the resulting 16-bit integer as the Unicode encoding of a character. If no
arguments are supplied, the result is the empty string.

15.5.4 Properties of the String Prototype Object

In following descriptions of functions that are properties of the String prototype object, the phrase “this
String object” refersto the object that isthe hi s value for the invocation of the function; it isan error
if t hi s does not refer to an object for which the value of the internal [[Class]] property is not
"String". Also, the phrase “this string value” refers to the string value represented by this String
object, that is, the value of the internal [[Value]] property of this String object.

15.5.4.1 String.prototype.constructor

Theinitial value of St ri ng. pr ot ot ype. const r uct oristhe built-inSt r i ng constructor.

15.5.4.2 String.prototype.toString()

Returns this string value. (Note that, for a String object, the oSt ri ng method happens to return the
same thing as theval ueOf method.)

Thet oSt ri ng function is not generic; it generates aruntime error if it$ hi s value is not a String
object. Therefore it cannot be transferred to other kinds of objects for use as a method.

15.5.4.3 String.prototype.valueOf()

Returns this string value.

Theval ueO function is not generic; it generates aruntime error if it$ hi s valueis not a String object.
Therefore it cannot be transferred to other kinds of objects for use as a method.

15.5.4.4 String.prototype.charAt(pos)

Returns a string containing the character at positiorposin this string. If there is no character at that
position, the result is the empty string. The result is a string value, not a String object.

If posisavalue of Number type, then the result ofx. char At (pos) isequal to the result of

X. substring(pos, pos+1) exceptinthe strange case whereposis greater than- 1 but less thanO.
When thechar At method is called withone argument pos, the following steps are taken:

Call ToString, giving itthet hi s value asits argument.

Call Tolnteger(pos).

Compute the number of charactersin Result(1).

If Result(2) islessthan O or is not less than Result(3), return the empty string.

Return a string of length 1, containing one character from Result(1), namely the character at
position Result(2), where the first (Ileftmost) character in Result(1) is considered to be at position O,
the next one at position 1, and so on.

Note that thechar At function isintentionally generic; it does not require that its hi s value be a String
object. Therefore it can be transferred to other kinds of objects for use as a method.

grwDdPRE

15.5.4.5 String.prototype.charCodeAt(pos)
Returns a number (a nonnegative integer less than &) representing the Unicode encoding of the
character at positionposin this string. If there is no character at that position, the result iNaN.

When thechar CodeAt method is called with one argument pos, the following steps are taken:
1. Call ToString, giving itthet hi s valueasits argument.
2. Call Tolnteger(pos).

76

w

Compute the number of charactersin Result(1).

If Result(2) islessthan O or is not less than Result(3), returrNaN.

5. Returnavalue of Number type, of positive sign, whose magnitude is the Unicode encoding of one
character from Result(1), namely the character at position Result(2), where the first (leftmost)
character in Result(1) is considered to be at position 0, the next one at position 1, and so on.

Note that thechar CodeAt function isintentionally generic; it does not require that its hi s value be a
String object. Therefore it can be transferred to other kinds of objects for use as a method.

&

15.5.4.6 String.prototype.indexOf(searchString, position)

If the given searchString appears as a substring of the result of converting this object to a string, at one
or more positions that are at or to the right of the specified position, then the index of the leftmost such
position is returned; otherwise- 1 isreturned. If position is undefined or not supplied, O is assumed, so
asto search al of the string.

When thei ndexOf method is called withtwo argumentssearchString and position, the following steps

are taken:

1. Call ToString, giving itthet hi s valueas its argument.

2. Call ToString(searchString).

3. Call Tolnteger(position). (If positionisundefined or not supplied, this step produces the valueo).

4. Compute the number of charactersin Result(1).

5. Compute min(max(Result(3), 0), Result(4)).

6. Compute the number of charactersin the string that is Result(2).

7. Compute the smallest possible integerk not smaller than Result(5) such thatk+Result(6) is not
greater than Result(4), and for all nonnegative integer$ less than Result(6), the character at
position k+j of Result(1) isthe same as the character at positiorj of Result(2); but if thereisno
such integer k, then compute the value- 1.

8. Return Result(7).

Note that thei ndexOf function isintentionally generic; it does not require that its hi s value be a
String object. Therefore it can be transferred to other kinds of objects for use as a method.

15.5.4.7 String.prototype.lastindexOf(searchString, position)

If the given searchString appears as a substring of the result of converting this object to a string, at one
or more positions that are at or to the left of the specified position, then the index of the rightmost such
position is returned; otherwise- 1 isreturned. If position is undefined or not supplied, the length of this
string value is assumed, so as to search all of the string.

When thel ast | ndexOf methodis called withtwo argumentssearchString and position, the following
steps are taken:

Call ToString, giving itthet hi s valueas its argument.

Call ToString(search&tring).

Call ToNumber(position).

If Result(3) isNaN, use +¥; otherwise, call Tolnteger(Result(3)).

Compute the number of charactersin Result(1).

Compute min(max(Result(4), 0), Result(5)).

Compute the number of charactersin the string that is Result(2).

Compute the largest possible integerk not larger than Result(6) such thatk+Result(7) is not greater
than Result(5), and for all nonnegative integerg less than Result(7), the character at positiork+j of
Result(1) is the same as the character at positiorj of Result(2); but if there is no such integerk,

then compute the value- 1.

9. Return Result(8).

Note that thel ast | ndexOf function isintentionally generic; it does not require that its hi s value be a
String object. Therefore it can be transferred to other kinds of objects for use as a method.

Nk~ WD R

15.5.4.8 String.prototype.split(separator)

Returns an Array object into which substrings of the result of converting this object to a string have
been stored. The substrings are determined by searching from left to right for occurrences of the given

77

separator; these occurrences are not part of any substring in the returned array, but serve to divide up
this string value. The separator may be a string of any length.

Asaspecial case, if the separator is the empty string, the string is split up into individual characters; the
length of the result array equals the length of the string, and each substring contains one character.

If the separator is hot supplied, then the result array contains just one string, which is the string.

When thespl i t method is called withone argument separator, the following steps are taken:

1. Call ToString, giving itthet hi s valueas its argument.

2. Create anew Array object of lengtho and call it A.

3. If separator is undefined or not supplied, call the [[Put]] method ofA with 0 and Result(1) as

arguments, and then returnA.

Call ToString(separator).

Compute the number of charactersin Result(1).

Compute the number of charactersin the string that is Result(4).

LetpbeoO.

If Result(6) is zero (the separator string is empty), go to step 17.

Compute the smallest possible integerk not smaller thanp such that k+Result(6) is not greater than

Result(5), and for all nonnegative integerg less than Result(6), the character at positiork+j of

Result(1) is the same as the character at positiorj of Result(2); but if there is no such integerk,

then go to step 14.

10. Compute a string value equal to the substring of Result(1), consisting of the characters at positions
p through k- 1, inclusive.

11. Call the[[Put]] method of Awith A. | engt h and Result(10) as arguments.

12. Let p be k+Result(6).

13. Gotostep 9.

14. Compute a string value equal to the substring of Result(1), consisting of the characters from
position p to the end of Result(1).

15. Call the [[Put]] method of Awith A. | engt h and Result(13) as arguments.

16. ReturnA.

17. If p equals Result(5), returnA.

18. Compute a string value equal to the substring of Result(1), consisting of the single character at
position p.

19. Call the[[Put]] method of Awith A. | engt h and Result(17) as arguments.

20. Increasep by 1.

21. Goto step 17.

Note that thespl i t function isintentionally generic; it does not require that its hi s value be a String
object. Therefore it can be transferred to other kinds of objects for use as a method.

© o No A

15.5.4.9 String.prototype.substring(start)

Returns a substring of the result of converting this object to a string, starting from character position
start and running to the end of the string. The result is a string value, not a String object.

If the argument is NaN or negative, it is replaced with zero; if the argument is larger than the length of
the string, it is replaced with the length of the string.

When thesubst ri ng method is called withone argument start, the following steps are taken:

Call ToString, giving itthet hi s value asits argument.

Call Tolnteger(start).

Compute the number of charactersin the string that is the value of the [[Value]] property dfhi s.
Compute min(max(Result(2), 0), Result(3)).

Return a string whose length is the difference between Result(3) and Result(4), containing
characters from the string that is the value of the [[Value]] property of hi s, namely the characters
with indices Result(4) through Result(3) 1, in ascending order.

aghrwbdE

15.5.4.10 String.prototype.substring(start, end)

Returns a substring of the result of converting this object to a string, starting from character position
start and running to character positionend of the string. The result is a string value, not a String object.

78

If either argument is NaN or negative, it isreplaced with zero; if either argument is larger than the
length of the string, it is replaced with the length of the string.

If startislarger thanend, they are swapped.

When thesubst ri ng method is called withtwo argumentsstart and end, the following steps are taken:
Call ToString, giving itthet hi s valueas its argument.

Call Tolnteger(start).

Call Tolnteger (end).

Compute the number of charactersin Result(1).

Compute min(max(Result(2), 0), Result(4)).

Compute min(max(Result(3), 0), Result(4)).

Compute min(Result(5), Result(6))

Compute max(Result(5), Result(6))

Return a string whose length is the difference between Result(8) and Result(7), containing
characters from Result(1), namely the characters with indices Result(7) through Result(8L, in
ascending order.

Note that thesubst ri ng function isintentionally generic; it does not require that its hi s value be a
String object. Therefore it can be transferred to other kinds of objects for use as a method.

©ONOOORA®WNRE

15.5.4.11 String.prototype.toLowerCase

Returns a string equal in length to the length of the result of converting this object to a string. The result
isastring value, not a String object.

Every character of the result is equal to the corresponding character of the string, unless that character
has a Unicode 2.0 lowercase equivalent, in which case the lowercase equivalent is used instead.

Note that thet oLower Case function isintentionally generic; it does not require that its hi s value be a
String object. Therefore it can be transferred to other kinds of objects for use as a method.
15.5.4.12 String.prototype.toUpperCase

Returns a string equal in length to the length of the result of converting this object to a string. The result
isastring value, not a String object.

Every character of the result is equal to the corresponding character of the string, unless that character
has a Unicode 2.0 uppercase equivalent, in which case the uppercase equivalent is used instead.

Note that thet oUpper Case function isintentionally generic; it does not require that its hi s value be a
String object. Therefore it can be transferred to other kinds of objects for use as a method.

15.5.5 Properties of String Instances

String instances inherit properties from the String prototype object and also have a[[Value]] property
and al engt h property.

The [[Value]] property isthe string value represented by this String object.

15.5.5.1 length

The number of charactersin the String value represented by this String object.
Once a String object is created, this property is unchanging.

15.6 BOOLEANOBJECTS

15.6.1 The Boolean Constructor Called as a Function

When Bool eanis called as afunction rather than as a constructor, it performs a type conversion.

15.6.1.1 Boolean(value)

Returns a boolean value (not a Boolean object) computed by ToBoolean(value).

79

15.6.1.2 Boolean()

Returnsfalse.

15.6.2 The Boolean Constructor

When Bool eanis called as part of anewexpression, it isa constructor: it initializes the newly created
object.

15.6.2.1 new Boolean(value)

The [[Class]] property of the newly constructed Boolean object is set td Bool ean”.
The [[Value]] property of the newly constructed Boolean object is set to ToBoolean(value).

15.6.2.2 new Boolean()

The [[Class]] property of the newly constructed Boolean object is set t¢ Bool ean”.
The [[Valug]] property of the newly constructed Boolean object is set tdalse.

15.6.3 Properties of the Boolean Constructor

The value of theinternal [[Prototype]] property of the Boolean constructor is the Function prototype
object.

Besides the internal [[Call]] and [[Construct]] properties and theé engt h property, the Boolean
constructor has the following property:

15.6.3.1 Boolean.prototype

Theinitial value of Bool ean. pr ot ot ypeis the built-in Boolean prototype object.
This property shall have the attributes { DontEnum, ReadOnly }.

15.6.4 Properties of the Boolean Prototype Object

In following descriptions of functions that are properties of the Boolean prototype object, the phrase
“this Boolean object” refersto the object that is the hi s value for the invocation of the function; it is
an error if t hi s does not refer to an object for which the value of the internal [[Class]] property is not
" Bool ean". Also, the phrase “this boolean value” refers to the boolean value represented by this
Boolean object, that is, the value of the internal [[Value]] property of this Boolean object.

15.6.4.1 Boolean.prototype.constructor

Theinitial value of Bool ean. pr ot ot ype. const r uct oristhe built-inBool ean constructor.

15.6.4.2 Boolean.prototype.toString()

If this boolean value istrue, then the string" t r ue" is returned. Otherwise, this boolean value must be
false, and therefore the string” f al se" isreturned.

Thet oSt ri ng function is not generic; it generates aruntime error if it$ hi s value is not a Boolean
object. Therefore it cannot be transferred to other kinds of objects for use as a method.
15.6.4.3 Boolean.prototype.valueOf()

Returns this boolean value.

Theval ued function isnot generic; it generates aruntime error if it$ hi s value is not a Boolean
object. Therefore it cannot be transferred to other kinds of objects for use as a method.

15.6.5 Properties of Boolean Instances

Boolean instances have no special properties beyond those inherited from the Boolean prototype object.

80

15.7 NUMBER OBJECTS

15.7.1 The Number Constructor Called as a Function

When Nunber iscalled as afunction rather than as a constructor, it performs a type conversion.

15.7.1.1 Number(value)

Returns a number value (not a Number object) computed by ToNumber(value).

15.7.1.2 Number()
Returns+0.

15.7.2 The Number Constructor

When Nunber iscalled as part of anewexpression, it is a constructor: it initializes the newly created
object.

15.7.2.1 new Number(value)

The [[Class]] property of the newly constructed object is set td Nunber ".
The [[Value]] property of the newly constructed object is set to ToNumber(value).

15.7.2.2 new Number()

The [[Class]] property of the newly constructed object is set td Nunber ".
The [[Valueg]] property of the newly constructed object is set to+0.

15.7.3 Properties of the Number Constructor

The value of theinternal [[Prototype]] property of the Number constructor is the Function prototype
object.

Besides the internal [[Call]] and [[Construct]] properties and the engt h property, the Number
constructor has the following property:
15.7.3.1 Number.prototype

Theinitial value of Nunber . pr ot ot ypeisthe built-in Number prototype object.
This property shall have the attributes { DontEnum, ReadOnly }.

15.7.3.2 Number.MAX_VALUE

The value of Nunber . M N_VALUEIs the largest positive finite value of the number type, whichis
approximately 1. 7976931348623157e308

This property shall have the attributes { DontEnum, ReadOnly }.

15.7.3.3 Number.MIN_VALUE

The value of Number . M N_VALUEIs the smallest positive nonzero value of the number type, whichiis
approximately 5e- 324.

This property shall have the attributes { DontEnum, ReadOnly }.

15.7.3.4 Number.NaN

The value of Number . NaNis NaN.
This property shall have the attributes { DontEnum, ReadOnly }.

15.7.3.5 Number.NEGATIVE_INFINITY
The value of Number . NEGATI VE_I NFI NI TYis- ¥.

81

This property shall have the attributes { DontEnum, ReadOnly }.

15.7.3.6 Number.POSITIVE_INFINITY

The value of Nunber . PGSI TI VE_| NFI NI TYis +¥.
This property shall have the attributes { DontEnum, ReadOnly }.

15.7.4 Properties of the Number Prototype Object

In following descriptions of functions that are properties of the Number prototype object, the phrase
“this Number object” refers to the object that is the hi s value for the invocation of the function; itis
an error if t hi s does not refer to an object for which the value of the internal [[Class]] property is not

" Nunber ". Also, the phrase “this number value’ refers to the number value represented by this Number
object, that is, the value of the internal [[Value]] property of this Number object.

15.7.4.1 Number.prototype.constructor

Theinitial value of Nunber . pr ot ot ype. const r uct oristhe built-inNunber constructor.

15.7.4.2 Number.prototype.toString()

This number value is given as an argument to the ToString operator ; the resulting string value is
returned.

Thet oSt ri ng function is not generic; it generates aruntime error if it$ hi s value is not a Number
object. Therefore it cannot be transferred to other kinds of objects for use as a method.

15.7.4.3 Number.prototype.valueOf()

Returns this number value.

Theval ued function is not generic; it generates aruntime error if it$ hi s value is not a Number
object. Therefore it cannot be transferred to other kinds of objects for use as a method.

15.7.5 Properties of Number Instances

Number instances have no special properties beyond those inherited from the Number prototype object.

15.8 THE MATH OBJECT

The Math object is merely a single object that has some named properties, some of which are functions.

The Math object does not have a[[Construct]] property; it is not possible to use the Math object asa
constructor with thenew operator.

Recall that, in this specification, the phrase “the number value fok” means “the value of number type,
not NaN but possibly infinite, that is closer than any other value of number type to the mathematical
valuex, but if x lies exactly halfway between two such values then the number value whose |east
significant bitis 0 is chosen”.

15.8.1 Value Properties of the Math Object

158.1.1 E

The number value for e, the base of the natural logarithms, which is approximately
2.7182818284590452354

This property shall have the attributes { DontEnum, ReadOnly }.

15.8.1.2 LN10O

The number value for the natural logarithm of 10, which is approximatel®. 302585092994046
This property shall have the attributes { DontEnum, ReadOnly }.

82

15.8.1.3 LN2

The number value for the natural logarithm of 2, which is approximatelp. 6931471805599453
This property shall have the attributes { DontEnum, ReadOnly }.

15.8.1.4 LOG2E

The number value for the base-2 logarithm ofe, the base of the natural logarithms; thisvalueis
approximately 1. 4426950408889634 (Note that the value of Mat h. LOG2Eis approximately the
reciprocal of the value of Mat h. LN2.)

This property shall have the attributes { DontEnum, ReadOnly }.

15.8.1.5 LOGI10E

The number value for the base-2 logarithm ofe, the base of the natural logarithms; thisvalueis
approximately 0. 4342944819032518 (Note that the value of Mat h. LOREis approximately the
reciprocal of the value of Mat h. LN2.)

This property shall have the attributes { DontEnum, ReadOnly }.

15.8.1.6 PI

The number value forp, the ratio of the circumference of acircle to its diameter, which is
approximately 3. 14159265358979323846

This property shall have the attributes { DontEnum, ReadOnly }.

15.8.1.7 SQRTL_2

The number value for the square root of 1/2, which is approximately. 7071067811865476 (Note that
the value of Mat h. SQRT1_2is approximately the reciprocal of the value ofivat h. SQRT2.)

This property shall have the attributes { DontEnum, ReadOnly }.

15.8.1.8 SQRT2

The number value for the square root of 2, which is approximatelyl. 4142135623730951
This property shall have the attributes { DontEnum, ReadOnly }.

15.8.2 Function Properties of the Math Object

Every function listed in this section applies the ToNumber operator to each of its arguments (in | eft-to-
right order if there is more than one) and then performs a computation on the resulting number value(s).
The behavior of the functionsacos, asi n, at an, at an2, cos, exp, | og, pow, si n, andsqrt isnot
precisely specified here. They are intended to compute approximations to the results of familiar
mathematical functions, but some latitude is allowed in the choice of approximation algorithms. The
general intent is that an implementor should be able to use the same mathematical library for

ECMA Script on a given hardware platform that is available to C programmers on that platform.
Nevertheless, this specification recommends (though it does not require) the approximation algorithms
for |IEEE 754 arithmetic contained inf dI i bm the freely distributable mathematical library [XXXREF].
This specification also requires specific results for certain argument values that represent boundary
cases of interest.

15.8.2.1 abs(x)

Returns the absolute value of its argument; in general, the result has the same magnitude as the
argument but has positive sign.

If the argument isNaN, the result isNaN.

If the argument is- O, the result is+0.

If the argument is- ¥, the result is+¥.

83

15.8.2.2 acos(x)

Returns an implementation-dependent approximation to the arc cosine of the argument. The result is
expressed in radians and ranges from+0 to +p.

If the argument isNaN, the result isNaN.

If the argument is greater thani, the result isNaN.

If the argument is less than- 1, the result isNaN.

If the argument is exactly1, the result is+0.

15.8.2.3 asin(x)

Returns an implementation-dependent approximation to the arc sine of the argument. The result is
expressed in radians and ranges from- p/2 to +p/2.
- If the argument isNaN, the result isNaN.

If the argument is greater thanl, the result isNaN.

If the argument is less than- 1, the result isNaN.

If the argument is+0, the result is+0.

If the argument is- 0, the result is- 0.

15.8.2.4 atan(x)

Returns an implementation-dependent approximation to the arc tangent of the argument. The result is
expressed in radians and ranges from- p/2 to +p/2.

If the argument isNaN, the result isNaN.

If the argument is+0, the result is+0.

If the argument is- 0, the result is- 0.

If the argument is+¥, the result is an implementation-dependent approximation to /2.

If the argument is- ¥, the result is an implementation-dependent approximation te p/2.

15.8.2.5 atan2(y, x)

Returns an implementation-dependent approximation to the arc tangent of the quotient/ x of the
argumentsy and x, where the signs of the arguments are used to determine the quadrant of the result.
Note that it isintentional and traditional for the two-argument arc tangent function that the argument
namedy be first and the argument namedx be second. The result is expressed in radians and ranges
from- p to +p.

If either argument isNaN, the result isNaN.

If y>0 and x is+0, the result is an implementation-dependent approximation to /2.

If y>0 and x is- 0, the result is an implementation-dependent approximation to /2.

If y is+0 and x>0, the result is+0.

If y is+0 and x is+0, the result is+0.

If yis+0and x is- 0, theresult is an implementation-dependent approximation to p.

If y is+0 and x<0, the result is an implementation-dependent approximation to .

If y is- 0 and x>0, theresult is- 0.

Ifyis-0andx is+0, theresult is- 0.

Ifyis-0andx is- 0, theresult is an implementation-dependent approximation to- p.

If y is- 0 and x<0, the result is an implementation-dependent approximation to- p.

If y<0 and x is+0, the result is an implementation-dependent approximation to- p/2.

If y<0 and x is- 0, the result is an implementation-dependent approximation to- p/2.

If y>0 andy isfiniteandx is+¥, theresult is+0.

If y>0 andy isfiniteandx is- ¥, the result if an implementation-dependent approximation to .

If y<O0andy isfiniteandx is+¥, theresultis- 0.

If y<O0 andy isfinite andx is- ¥, the result is an implementation-dependent approximation to- p.

If y is+¥ and x isfinite, the result is an implementation-dependent approximation to pi/2.

If y is-¥ and x isfinite, the result is an implementation-dependent approximation to- p/2.

84

If y is+¥ and x is+¥, theresult is an implementation-dependent approximation to /4.
Ify is+¥ and x is- ¥, theresult is an implementation-dependent approximation to +#/4.
Ifyis-¥ and x is+¥, theresult is an implementation-dependent approximation to- p/4.
Ifyis-¥ andx is- ¥, theresult is an implementation-dependent approximation to- 3p/4.

15.8.2.6 ceil(x)

Returns the smallest (closest to- ¥) number value that is not less than the argument and is equal to a
mathematical integer. If the argument is already an integer, the result is the argument itself.

If the argument isNaN, the result isNaN.

If the argument is+0, the result is+0.

If the argument is- O, the result is- 0.

If the argument is+¥, the result is+¥.

If the argument is- ¥, theresult is- ¥.

If the argument is less than0 but greater than- 1, the result is- 0.
Thevalue of Mat h. cei | (x) isthe same asthe value of- Mat h. f | oor (- x).

15.8.2.7 cos(x)

Returns an implementation-dependent approximation to the cosine of the argument. The argument is
expressed in radians.
- If the argument isNaN, the result isNaN.

If the argument is+0, the result is1.

If the argument is- 0, the result is1.

If the argument is+¥, the result isNaN.

If the argument is- ¥, the result isNaN.

15.8.2.8 exp(x)

Returns an implementation-dependent approximation to the exponential function of the argument(
raised to the power of the argument, wheree is the base of the natural logarithms).

If the argument isNaN, the result isNaN.
If the argument is+0, the result is1.

If the argument is- 0, the result is1.

If the argument is+¥, the result is+¥.

If the argument is- ¥, the result is+0.

15.8.2.9 floor(x)

Returns the greatest (closest to+¥) number value that is not greater than the argument and is equal to a
mathematical integer. If the argument is already an integer, the result is the argument itself.

If the argument isNaN, the result isNaN.

If the argument is+0, the result is+0.

If the argument is- O, the result is- 0.

If the argument is+¥, the result is+¥.

If the argument is- ¥, theresult is- ¥.

If the argument is greater than0 but lessthan 1, the result is+0.
Thevalue of Mat h. f | oor (x) isthe same asthe value of- Mat h. cei | (-x).

15.8.2.10 log(x)

Returns an implementation-dependent approximation to natural logarithm of the argument.
If the argument isNaN, the result isNaN.
If the argument is less thano, the result isNaN.
If the argument is+0 or - O, the result is- ¥.
If the argument is1, the result is+O0.

85

If the argument is+¥, the result is+¥.

15.8.2.11 max(x, y)

Returns the larger of the two arguments.
If either argument isNaN, the result isNaN.
If x>y, theresult isx.
If y>x, theresult isy.
If x is+0andy is+0, the result is+0.
If xis+Oandy is- 0, theresult is+0.
If xis-0andy is+0, the result is+0.
If xis-0andy is- 0, theresultis- 0.

15.8.2.12 min(x, y)

Returns the smaller of the two arguments.

If either argument isNaN, the result isNaN.
If x<y, theresult isx.

If y<x, theresultisy.

If x is+Oandy is+0, theresult is+0.

If xis+0andy is- 0, theresult is- 0.

If x is-0andy is+0, theresult is- 0.

If xis-0Oandy is- 0, theresult is- 0.

15.8.2.13 pow(X, y)

Returns an implementation-dependent approximation to the result of raising to the powery.
If y isNaN, the result isNaN.
If y is+0, theresult is1, evenif x isNaN.
Ifyis- 0, theresultisi, evenif x isNaN.
If xisNaN and vy isnonzero, the result isNaN.
If abs(x)>1and y is+¥, theresult is+¥.
If abs(x)>1and y is- ¥, theresult is+O0.
If abs(x)==1and y is+¥, theresult isNaN.
If abs(x)==1and y is- ¥, theresult isNaN.
If abs(x)<1and y is+¥, theresult is+0.
If abs(x)<land yis-¥,theresultis+¥.
If x is+¥ and y>0, theresult is+¥.
If x is+¥ and y<O0, the result is+0.
If x is-¥ and y>0andy isan odd integer, theresult is- ¥.
If xis-¥ and y>0andy isnot an odd integer, the result is+¥.
If x is-¥ and y<0andy isan odd integer, the result is- 0.
If xis-¥ and y<0 andy isnot an odd integer, the result is+0.
If x is+0and y>0, theresult is+0.
If xis+0and y<0, theresult is+¥.
If x is-0and y>0andy isan odd integer, the result is- 0.
If xis-0and y>0andy isnhot an odd integer, the result is+O0.
If x is-0and y<0andy isan odd integer, the result is- ¥.
If xis-0and y<0andy ishot an odd integer, the result is+¥.
If x<0 and x isfinite andy isfinite andy is not an integer, the result isNaN.

86

15.8.2.14 random()

Returns a number value with positive sign, greater than or equal to 0 but less than 1, chosen randomly
or pseudorandomly with approximately uniform distribution over that range, using an implementation-
dependent algorithm or strategy. This function takes no arguments.

15.8.2.15 round(x)

Returns the number value that is closest to the argument and is equal to a mathematical integer. If two
integer number values are equally close to the argument, then the result is the number value that is
closer to +¥. If the argument is already an integer, the result is the argument itself.

If the argument isNaN, the result isNaN.

If the argument is+0, the result is+0.

If the argument is- O, the result is- 0.

If the argument is+¥, the result is+¥.

If the argument is- ¥, theresult is- ¥.

If the argument is greater than0 but less than0. 5, the result is+0.

If the argument is less than0 but greater than or equal to- 0. 5, the result is- 0.
Note that Mat h. r ound(3. 5) returns4, but Mat h. r ound(- 3. 5) returns- 3.
The value of Mat h. r ound(x) isthe same asthe value ofMat h. f | oor (x+0. 5), except whenx is- 0;
for this caseMat h. r ound(x) returns- 0, but Mat h. f | oor (x+0. 5) returns+0.

15.8.2.16 sin(x)

Returns an implementati on-dependent approximation to the sine of the argument. The argument is
expressed in radians.

If the argument isNaN, the result isNaN.

If the argument is+0, the result is+0.

If the argument is- 0, the result is- 0.

If the argument is+¥ or - ¥, theresult isNaN.

15.8.2.17 sqrt(x)

Returns an implementation-dependent approximation to the square root of the argument.
If the argument isNaN, the result isNaN.
If the argument less thano, the result isNaN.
If the argument is+0, the result is+0.
If the argument is- O, the result is- 0.
If the argument is+¥, the result is+¥.

15.8.2.18 tan(x)

Returns an implementation-dependent approximation to the tangent of the argument. The argument is
expressed in radians.

If the argument isNaN, the result isNaN.

If the argument is+0, the result is+0.

If the argument is- O, the result is- 0.

If the argument is+¥ or - ¥, theresult isNaN.

15.9 DATE OBJECTS

15.9.1 Overview of Date Objects

A Date object contains a number indicating a particular instant in time to within a millisecond. The
number may also beNaN, indicating that the Date object does not represent a specific instant of time.

The following sections define a number of functions for operating on time values. Note that, in every
case, if any argument to such afunction idNaN, the result will beNaN.

87

15.9.1.1 Time Range

Timeis measured in ECMA Script in milliseconds since 01 January, 1970 UTC. Leap seconds are
ignored. It is assumed that there are exactly 86,400,000 milliseconds per day. ECM A Script number
values can represent all integers from iMin = -9,007,199,254,740,991 to iMax =
9,007,199,254,740,991,; this range suffices to measure times to millisecond precision for any instant
that is within approximately 285,616 years, either forward or backward, from 01 January, 1970 UTC.

The actual range of times supported by ECM A Script Date objectsis slightly smaller: exactly —
100,000,000 days to 100,000,000 days measured relative to midnight at the beginning of 01 January,
1970 UTC. This gives arange of 8,640,000,000,000,000 milliseconds to either side of 01 January,
1970 UTC. This span easily covers all of recorded human history and a fair amount of unrecorded
human history.
15.9.1.2 Day Number and Time within Day
A given time valuet belongs to day number

Day(t) = floor(t / msPerDay)
where the number of milliseconds per day is

msPerDay = 86400000
The remainder is called the time within the day:

TimeWithinDay¢) =t modulo msPerDay

15.9.1.3 Year Number

ECMA Script uses an extrapolated Gregorian system to map a day number to a year number and to
determine the month and date within that year. In this system, leap years are precisely those which are
(divisible by 4) and ((not divisible by 100) or (divisible by 400)). The number of daysin year numbey
istherefore defined by

DaysinYear(y) = 365 if (ymodulo4)® 0
= 366 if (y modulo 4) =0 and (y modulo 100)t 0
=365 if (y modulo 100) = 0 and (y modulo 400)* 0
= 366 if (y modulo 400) =0

Of course all non-leap years have 365 days with the usual number of days per month and leap years
have an extraday in February. The day number of the first day of yeay is given by:

DayFromY ear(y) = 365¢y- 1970) + floor((y- 1969)/4) - floor((y- 1901)/100) + floor((y- 1601)/400)
Thetime value of the start of ayear is:
TimeFromY ear(y) = msPerDayDayFromY ear(y)
A time value determines a year by:
Y earFromTime(t) = the largest integery (closest to positive infinity) such that TimeFromY eay) £ t
The leap-year function is 1 for atime within aleap year and otherwise is zero:

InLeapYear(t) =0 if DayslnY ear(Y earFromTimef)) = 365
=1 if DaysInY ear(Y earFromTimét)) = 366

15.9.1.4 Month Number

Months are identified by an integer in the range 0 to 11, inclusive. The mappind/ onthFromTime()
from atime valuet to a month number is defined by:

MonthFromTimef) =0 if 0 £ DayWithinYear() < 31
=1 if 31 £ DayWithinY ear () <
59+InLeapY ear(t)
=2 if 59+InLeapYear(t) £ DayWithinYear ¢) <
90+InLeapY ear(t)

88

=3 if 90+InLeapYear(t) £ DayWithinYear ¢) <
120+InLeapY ear(t)

=4 if 120+InLeapY ear(t) £ DayWithinY ear) <
151+InLeapY ear(t)

=5 if 151+InLeapYear(t) £ DayWithinYear ¢) <
181+InLeapY ear(t)

=6 if 181+InLeapYear(t) £ DayWithinYear {) <
212+InLeapY ear(t)

=7 if 212+InLeapYear(t) £ DayWithinY ear ¢) <
243+InLeapY ear(t)

=8 if 243+InLeapY ear(t) £ DayWithinYear {) <
273+InLeapY ear(t)

=9 if 273+InLeapYear(t) £ DayWithinY ear ¢) <
304+InLeapY ear(t)

=10 if 304+InLeapY ear(t) £ DayWithinYear) <
334+InLeapY ear(t)

=11 if 334+InLeapYear(t) £ DayWithinYear ¢) <

365+InLeapY ear(t)
where
DayWithinY eart) = Day(t)- DayFromY ear(Y earFromTimef))

A month value of 0 specifies January; 1 specifies February; 2 specifies March; 3 specifies April;

4 specifies May; 5 specifies June; 6 specifies July; 7 specifies August; 8 specifies September; 9
specifies October; 10 specifies November; and 11 specifies December. Note that MonthFromTime(0) =
0, corresponding to Thursday, 01 January, 1970.

15.9.1.5 Date Number

A date number isidentified by an integer in the rangel through 31, inclusive The mapping
DateFromTimet) from atime valuet to a month number is defined by:

DateFromTimef) = DayWithinY ear¢)+1 if MonthFromTimeg)=0
= DayWithinY eart)- 30 if MonthFromTimef)=1
= DayWithinY ear()- 58- InLeapYeart) if MonthFromTime()=2
= DayWithinY ear()- 89- InLeapY ear(t) if MonthFromTimeg)=3
= DayWithinY ear()- 119- InLeapYear(t) if MonthFromTimet)=4
= DayWithinY ear{)- 150- InLeapYear(t) if MonthFromTimeg)=5
= DayWithinY ear()- 180- InLeapYear(t) if MonthFromTime(t)=6
= DayWithinY ear()- 211- InLeapYear(t) if MonthFromTimef)=7
= DayWithinY ear()- 242- InLeapYear(t) if MonthFromTimet)=8
= DayWithinY ear()- 272- InLeapYear(t) if MonthFromTimeg)=9
= DayWithinY ear()- 303- InLeapYear(t) if MonthFromTimet)=10
= DayWithinY ear()- 333- InLeapYear(t) if MonthFromTimef)=11

15.9.1.6 Week Day
The week day for a particular time valud is defined as
WeekDay(t) = (Day(t) + 4) modulo 7

A weekday value of 0 specifies Sunday; 1 specifies Monday; 2 specifies Tuesday; 3 specifies
Wednesday; 4 specifies Thursday; 5 specifies Friday; and 6 specifies Saturday. Note that WeekDay(0)
= 4, corresponding to Thursday, 01 January, 1970.

15.9.1.7 Local Time Zone Adjustment

An implementation of ECMA Script is expected to determine the local time zone adjustment by
whatever means are available. The local time zone adjustment is avalukocal TZA measured in
milliseconds which when added to UTC represents the locaktandard time. Daylight saving time isnot

89

reflected by Local TZA. The value Local TZA does not vary with timebut depends only on the
geographic location.
15.9.1.8 Daylight Saving Time Adjustment

An implementation of ECM A Script is expected to determine the daylight saving time algorithm by
whatever means are available. The algorithm to determine the daylight saving time adjustment
DaylightSavingTA() , measured in milliseconds, must depend only on four things:

(1) the time since the beginning of the year
t — TimeFromY ear(Y earFromTime())
(2) whether it isaleap year
InLeapY ear(t)
(3) the week day of the beginning of the year
WeekDay(TimeFromY ear(Y earFromTimel))

and (4) the geographic location.

The implementation of ECM A Script should not try to determine whether the exact time was subject to
daylight saving time, but just whether daylight saving time would have been in effect if the current
daylight saving time algorithm had been used at the time. This avoids complications such as taking into
account the years that the USA observed daylight saving time year round.

If the underlying operating system provides functionality for determining daylight saving time, the
implementation of ECMA Script is free to map the year in question to an equivalent year (same leap-
year-ness and same starting week day for the year) for which the operating system provides daylight
saving time information. The only restriction isthat all equivalent years should produce the same resuilt.

15.9.1.9 Local Time
Conversion from UTC to local time is defined by

LocalTime(t) =t + Local TZA + DaylightSavingTAf)
Conversion from local timeto UTC is defined by

UTC(t) =t—LocaTZA — DaylightSavingTA {—LocaTZA)
Note that UTC(Local Time()) is not necessarily always equal tat.

15.9.1.10 Hours, Minutes, Second, and Milliseconds
The following functions are useful in decomposing time values:

HourFromTime(t) = floor(t / msPerHour) modulo HoursPerDay
MinFromTime() = floor(t / msPerMinute) modulo MinutesPerHour
SecFromTimet) = floor(t / msPerSecond) modulo SecondsPerMinute

msFromTimet) = t modulo msPerSecond
where

HoursPerDay = 24

MinutesPerHour = 60

SecondsPerMinute = 60

msPerSecond = 1000

msPerMinute = msPerSecondxSecondsPerMinute = 60000

msPerHour = msPerMinutexM inutesPerHour = 3600000

90

15.9.1.11 MakeTime(hour, min, sec, ms)

The operator MakeTimecal culates a number of milliseconds from its four argumentswvhich must be
ECMA Script number values. This operator functions as follows:

If hour isnot finite or min is not finite or sec is not finite or msis not finite, returnNaN.
Call Tolnteger(hour).

Call Tolnteger(min).

Call Tolnteger(sec).

Call Tolnteger(ms).

Compute Result(2)* msPerHour + Result(3) * msPerMinute+ Result(4) * msPerSecond +
Result(5), performing the arithmetic according to IEEE 754 rules (that is, asif using the
ECMA Script operators* and +).

7. Return Result(®).

oukwbdpE

15.9.1.12 MakeDay(year, month, date)

The operator MakeDay calculates a number of days from its three argumentswhich must be

ECMA Script number values. This operator functions as follows:

1. If year isnot finite or month is not finite or date is not finite, returnNaN.

Call Tolnteger(year).

Call Tolnteger(month).

Call Tolnteger(date).

Compute Result(2) + floor(Result(3)/12).

Compute Result(3) modulo 12.

Find avaluet such that Y earFromTimef)==Result(5) and MonthFromTimef)==Result(6) and
DateFromTimet)==1; but if thisis not possible (because some argument is out of range), return
NaN.

8. ComputeDay(Result(7)) + Result(4) - 1.

9. Return Result(8).

Nogakwd

15.9.1.13 MakeDate(day, time)

The operator M akeDate cal culates a number of milliseconds from its two argumentswvhich must be
ECMA Script number values. This operator functions as follows:

1. If dayisnot finite ortimeis not finite, returnNaN.

2. Computeday xmsPerDay + time.

3. Return TimeClip(Result(2)).

15.9.1.14 TimecClip(time)

The operator TimeClip cal culates a number of milliseconds from its argumentwhich must bean
ECMA Script number value This operator functions as follows:

1. If timeisnot finite, returnNaN.

2. If abs(Result(1)) >8. 64e15 (that is, 8.64 x10™), return NaN.

3. Return Tolnteger(Result(2)).

15.9.2 The Date Constructor

When Dat e is called as part of anewexpression, it is a constructor: it initializes the newly created
object.

15.9.2.1 new Date(year, month, date, hours, minutes, seconds, ms)

The [[Class]] property of the newly constructed object is set td Dat e”.
The [[Value]] property of the newly constructed object is set as follows:
1. Call ToNumber(year).

2. Call ToNumber(month).

91

Call ToNumber(date).

Call ToNumber(hours).

Call ToNumber(minutes).

Call ToNumber(seconds).

Call ToNumber(ms).

If O £ Tolnteger(Result(1)) £ 99, Result(8) is 1900+Result(1); otherwise, Result(8) is Result(1).
Compute MakeDay(Result(8), Result(2), Result(3)).

10 Compute MakeTime(Result(4), Result(5), Result(6), Result(7)).

11. Compute M akeDate(Result(9), Result(10)).

12. Setthe[[Valu€]] property of the newly constructed object to UTC(Result(11)).

©o NGO A~

15.9.2.2 new Date(year, month, date, hours, minutes, seconds)

The [[Class]] property of the newly constructed object is set td Dat e".

The [[Valuge]] property of the newly constructed object is set as follows:

Call ToNumber(year).

Call ToNumber(month).

Call ToNumber(date).

Call ToNumber(hours).

Call ToNumber(minutes).

Call ToNumber(seconds).

If O £ Tolnteger(Result(1)) £ 99, Result(7) is 1900+Result(1); otherwise, Result(7) is Result(1).
Compute MakeDay(Result(7), Result(2), Result(3)).

Compute MakeTime(Result(4), Result(5), Result(6), 0).

10 Compute MakeDate(Result(8), Result(9)).

11. Setthe[[Value]] property of the newly constructed object to UTC(Result(10)).

©CoOoNORA®DNRE

15.9.2.3 new Date(year, month, date, hours, minutes)

The [[Class]] property of the newly constructed object is set td Dat e".

The [[Valuge]] property of the newly constructed object is set as follows:

Call ToNumber(year).

Call ToNumber(month).

Call ToNumber(date).

Call ToNumber(hours).

Call ToNumber(minutes).

If O £ Tolnteger(Result(1)) £ 99, Result(6) is 1900+Result(1); otherwise, Result(6) is Result(1).
Compute MakeDay(Result(6), Result(2), Result(3)).

Compute MakeTime(Result(4), Result(5), 0, 0).

Compute MakeDate(Result(7), Result(8)).

10 Set the [[Value]] property of the newly constructed object to UTC(Result(9)).

©o~No O~ ®DNRE

15.9.2.4 new Date(year, month, date, hours)

The [[Class]] property of the newly constructed object is set td Dat e".

The [[Valuge]] property of the newly constructed object is set as follows:

Call ToNumber(year).

Call ToNumber(month).

Call ToNumber(date).

Call ToNumber(hours).

If O £ Tolnteger(Result(1)) £ 99, Result(5) is 1900+Result(1); otherwise, Result(5) is Result(1).
Compute MakeDay(Result(5), Result(2), Result(3)).

Compute MakeTime(Result(4), 0, 0, 0).

Compute MakeDate(Result(6), Result(7)).

Set the [[Value]] property of the newly constructed object to UTC(Result(8)).

©o~No U kAwWDNPRE

92

15.9.2.5 new Date(year, month, day)

The [[Class]] property of the newly constructed object is set td Dat e".

The [[Value]] property of the newly constructed object is set as follows:

1. Call ToNumber(year).

Call ToNumber(month).

Call ToNumber(date).

If 0 £ Tolnteger(Result(1)) £ 99, Result(4) is 1900+Result(1); otherwise, Result(4) is Result(1).
Compute MakeDay(Result(4), Result(2), Result(3)).

Compute MakeDate(Result(5), 0).

Set the [[Value]] property of the newly constructed object to UTC(Result(6)).

No ok wd

15.9.2.6 new Date(year, month)

An attempt to call the Date constructor with two arguments generates a runtime error.

15.9.2.7 new Date(value)

The [[Class]] property of the newly constructed object is set td Dat e".

The [[Value]] property of the newly constructed object is set as follows:

1. Call ToPrimitivefvalue).

If Type(Result(1)) is String, then go to step 8.

Let V be ToNumber(Result(1)).

If VisNaN, goto step 7.

If abs(Result(2)) >8. 64e15 (that is, 8.64 x10™), go to step 7.

Set the [[Value]] property of the newly constructed object td/ and return.
Set the [[Value]] property of the newly constructed object taNaN and return.
Parse Result(1) as adate, in exactly the same manner as for thgar se method (15.9.3.2); let V be
the time value for this date.

9. Gotostep4.

© N A WN

15.9.2.8 new Date()

The [[Class]] property of the newly constructed object is set td Dat e".
The [[Value]] property of the newly constructed object is set to the current time (UTC).

15.9.3 Properties of the Date Constructor

The value of the internal [[Prototype]] property of the Date constructor is the Function prototype object.

Besides the internal [[Call]] and [[Construct]] properties and the engt h property (whose value is7),
the Date constructor has the following properties:

15.9.3.1 Date.prototype

Theinitial value of Dat e. pr ot ot ypeisthe built-in Date prototype object.
This property shall have the attributes { DontEnum, ReadOnly }.

15.9.3.2 Date.parse(string)

The par se function applied to ToString operator to its argument and interprets the resulting string as a
date; it returns a number, the UTC time value corresponding to the date. The string may be interpreted
asalocal time, aUTC time, or atime in some other time zone, depending on the contents of the string.
If xis any Date object within a particular implementation of ECM A Script, then al of the following
expressions should produce the same numeric value in that implementation, if al the properties
referenced have their initial values:

x. val ueXf ()

Dat e. parse(x.toString())

Dat e. parse(x. t oGSt ri ng())

93

However, the expression

Dat e. parse(x.toLocal eString() _
is not required to produce the same number value as the preceding three expressions and, in general, the
value produced by Dat e. par se isimplementation dependent when given any string value that could
not be produced in that implementation by the oSt ri ng or t o GMTI'St r i ng method.

15.9.3.3 Date.UTC(year, month, date, hours, minutes, seconds, ms)

When theUTC function is called with seven arguments, the following steps are taken:

Call ToNumber(year).

Call ToNumber(month).

Call ToNumber(date).

Call ToNumber(hours).

Call ToNumber(minutes).

Call ToNumber(seconds).

Call ToNumber(ms).

If 0 £ Result(1) £ 99, Result(8) is 1900+Result(1); otherwise, Result(8) is Result(1).

Compute MakeDay(Result(8), Result(2), Result(3)).

10 Compute MakeTime(Result(4), Result(5), Result(6), Result(7)).

11. Return MakeDate(Result(9), Result(10)).

The UTC function differs from the Date constructor in two ways: it returns atime value as a number,
rather than creating a Date object, and it interprets the argumentsin UTC rather than as local time.

©Co Nk~ ®DRE

15.9.3.4 Date.UTC(year, month, date, hours, minutes, seconds)

When theUTC function is called with six arguments, the following steps are taken:

Call ToNumber(year).

Call ToNumber(month).

Call ToNumber(date).

Call ToNumber(hours).

Call ToNumber(minutes).

Call ToNumber(seconds).

If 0 £ Result(1) £ 99, Result(7) is 1900+Result(1); otherwise, Result(7) is Result(1).

Compute MakeDay(Result(7), Result(2), Result(3)).

Compute MakeTime(Result(4), Result(5), Result(6), 0).

10 Return MakeDate(Result(8), Result(9)).

The UTC function differs from the Date constructor in two ways: it returns atime value as a number,
rather than creating a Date object, and it interprets the argumentsin UTC rather than as local time.

CoNoTk~wDdDPRE

15.9.3.5 Date.UTC(year, month, date, hours, minutes)

When theUTC function is called with five arguments, the following steps are taken:

Call ToNumber(year).

Call ToNumber(month).

Call ToNumber(date).

Call ToNumber(hours).

Call ToNumber(minutes).

If 0 £ Result(1) £ 99, Result(6) is 1900+Result(1); otherwise, Result(6) is Result(1).
Compute MakeDay(Result(6), Result(2), Result(3)).

Compute MakeTime(Result(4), Result(5), 0, 0).

Return MakeDate(Result(7), Result(8)).

The UTC function differs from the Date constructor in two ways: it returns atime value as a number,
rather than creating a Date object, and it interprets the argumentsin UTC rather than as local time.

©CoNo gD PRE

15.9.3.6 Date.UTC(year, month, date, hours)

When theUTC function is called with four arguments, the following steps are taken:

94

Call ToNumber(year).

Call ToNumber(month).

Call ToNumber(date).

Call ToNumber(hours).

If 0 £ Result(1) £ 99, Result(5) is 1900+Result(1); otherwise, Result(5) is Result(1).

Compute MakeDay(Result(5), Result(2), Result(3)).

Compute MakeTime(Result(4), 0, 0, 0).

Return MakeDate(Result(6), Result(7)).

The UTC function differs from the Date constructor in two ways: it returns a time value as a number,
rather than creating a Date object, and it interprets the argumentsin UTC rather than as local time.

©No O A®DNE

15.9.3.7 Date.UTC(year, month, date)

When theUTCfunction is called with three arguments, the following steps are taken:
Call ToNumber(year).

Call ToNumber(month).

Call ToNumber(date).

If 0 £ Result(1) £ 99, Result(4) is 1900+Result(1); otherwise, Result(4) is Result(1).
Compute MakeDay(Result(4), Result(2), Result(3)).

Return MakeDate(Result(5), 0).

The UTC function differs from the Date constructor in two ways: it returns a time value as a number,
rather than creating a Date object, and it interprets the argumentsin UTC rather than as local time.

o0k wNPE

15.9.3.8 Date.UTC(year, month)

An attempt to call theUTC function with two arguments generates a runtime error.

15.9.3.9 Date.UTC(year)

An attempt to call theUTC function with one argument generates a runtime error.

15.9.3.10 Date.UTC()

An attempt to call theUTC function with no arguments generates a runtime error.

15.9.4 Properties of the Date Prototype Object

In following descriptions of functions that are properties of the Date prototype object, the phrase “this
Date object” refersto the object that is thet hi s value for the invocation of the function; it isan error if
t hi s does not refer to an object for which the value of the internal [[Class]] property is not Dat e".
Also, the phrase “thistime value” refers to the number value for the time represented by this Date
object, that is, the value of the internal [[Value]] property of this Date object.

15.9.4.1 Date.prototype.constructor

Theinitial value of Dat e. pr ot ot ype. const r uct oristhe built-inDat e constructor.

15.9.4.2 Date.prototype.toString()

This function returns a string value. The contents of the string are implementation dependent, but are
intended to represent the Date in a convenient, human-readable form in the current time zone. Different
time values must result in different string values from this function.

Thet oSt ri ng function is not generic; it generates aruntime error if it$ hi s valueis not a Date object.
Therefore it cannot be transferred to other kinds of objects for use as a method.
15.9.4.3 Date.prototype.valueOf()

Theval ued function returns a number, which is this time value.

Theval ueCOf function is not generic; it generates aruntime error if it$ hi s valueis not a Date object.
Therefore it cannot be transferred to other kinds of objects for use as a method.

95

15.9.4.4 Date.prototype.getTime()

1. If thet hi s valueis not an abject whose [[Class]] property is' Dat e", generate a runtime error.
2. Return thistime value.

15.9.4.5 Date.prototype.getYear()

This function is specified here for backwards compatibility only. The functioget Ful | Year is much
to be preferred for nearly all purposes, because it avoids the “year 2000 problem.”

1. Lettbethistimevalue.

2. IftisNaN, return NaN.

3. Return YearFromTime(Local Timef)) - 1900.

15.9.4.6 Date.prototype.getFullYear()

1. Lettbethistimevaue.
2. IftisNaN, return NaN.
3. Return Y earFromTime(Local Timef)).

15.9.4.7 Date.prototype.getUTCFullYear()

1. Lettbethistimevaue.
2. IftisNaN, return NaN.
3. Return YearFromTimet).

15.9.4.8 Date.prototype.getMonth()

1. Lettbethistimevaue.
2. IftisNaN, return NaN.
3. Return MonthFromTime(Local Timef)).

15.9.4.9 Date.prototype.getUTCMonth()

1. Lettbethistimevaue.
2. IftisNaN, return NaN.
3. Return MonthFromTimef).

15.9.4.10 Date.prototype.getDate()

1. Lettbethistimevaue.
2. IftisNaN, return NaN.
3. Return DateFromTime(Local Timef)).

15.9.4.11 Date.prototype.getUTCDate()

1. Lettbethistimevaue.
2. IftisNaN, return NaN.
3. Return DateFromTimeg).

15.9.4.12 Date.prototype.getDay()

1. Lettbethistimevaue.
2. IftisNaN, return NaN.
3. Return WeekDay(L ocal Timef)).

15.9.4.13 Date.prototype.getUTCDay()

1. Lettbethistimevaue.
2. IftisNaN, return NaN.
3. Return WeekDay).

96

15.9.4.14 Date.prototype.getHours()

1. Lettbethistimevalue.
2. If tisNaN, return NaN.
3. Return HourFromTime(L ocal Timef)).

15.9.4.15 Date.prototype.getUTCHours()

1. Lettbethistimevalue.
2. IftisNaN, return NaN.
3. Return HourFromTimeg).

15.9.4.16 Date.prototype.getMinutes()

1. Lettbethistimevalue.
2. IftisNaN, return NaN.
3. Return MinFromTime(L ocal Time()).

15.9.4.17 Date.prototype.getUTCMinutes()

1. Lettbethistimevaue.
2. IftisNaN, return NaN.
3. Return MinFromTimef).

15.9.4.18 Date.prototype.getSeconds()

1. Lettbethistimevalue.
2. IftisNaN, return NaN.
3. Return SecFromTime(Local Time()).

15.9.4.19 Date.prototype.getUTCSeconds()

1. Lettbethistimevaue.
2. IftisNaN, return NaN.
3. Return SecFromTimet).

15.9.4.20 Date.prototype.getMilliseconds()

1. Lettbethistimevalue.
2. If tisNaN, return NaN.
3. Return msFromTime(L ocal Timef)).

15.9.4.21 Date.prototype.getUTCMilliseconds()

1. Lettbethistimevaue.
2. IftisNaN, return NaN.
3. Return msFromTimeg).

15.9.4.22 Date.prototype.getTimezoneOffset()

Returns the difference between local time and UTC time in minutes.
1. Lettbethistimevalue.

2. IftisNaN, return NaN.

3. Return (t- LocaTime()) / msPerMinute.

15.9.4.23 Date.prototype.setTime(time)

Call ToNumber(time).

Call TimeClip(Result(1)).

Set the [[Value]] property of thet hi s value to Result(2).
Return the value of the [[Valu€]] property of the hi s value.

ok wdE

97

15.9.4.24 Date.prototype.setMilliseconds(ms)

Lett bethe result of Local Time(this time value).

Call ToNumber(ms).

Compute MakeTime(HourFromTimef), MinFromTime(t), SecFromTime(), Result(2)).
Compute UTC(MakeDate(Day(), Result(3))).

Set the [[Value]] property of thet hi s value to Result(4).

Return the value of the [[Valu€]] property of the hi s value.

oukwdpE

15.9.4.25 Date.prototype.setUTCMilliseconds(ms)

Lett be thistime value.

Call ToNumber(ms).

Compute MakeTime(HourFromTimef), MinFromTime(), SecFromTime(), Result(2)).
Compute MakeDate(Day(), Result(3)).

Set the [[Value]] property of thet hi s value to Result(4).

Return the value of the [[Value]] property of the hi s value.

ok wdpE

15.9.4.26 Date.prototype.setSeconds(sec [, ms])

If msisnot specified, this behaves as ifms were specified with the value getMilliseconds().
1. Lettbetheresult of Local Time(thistime value).

Call ToNumber(sec).

If msis not specified, compute msFromTime(); otherwise, call ToNumber{ms).
Compute MakeTime(HourFromTimef), MinFromTime(), Result(2), Result(3)).
Compute UTC(MakeDate(Day(), Result(4))).

Set the [[Value]] property of thet hi s value to Result(5).

Return the value of the [[Value]] property of the hi s value.

Nogakwd

15.9.4.27 Date.prototype.setUTCSeconds(sec [, ms])

If msisnot specified, this behaves as ifms were specified with the value getUTCMuilliseconds().

1. Lettbethistimevalue.

Call ToNumber(sec).

If msis not specified, compute msFromTime(); otherwise, call ToNumber{ms).
Compute MakeTime(HourFromTimef), MinFromTime(t), Result(2), Result(3)).
Compute MakeDate(Day(), Result(4)).

Set the [[Value]] property of thet hi s value to Result(5).

Return the value of the [[Value]] property of the hi s value.

Nogakwd

15.9.4.28 Date.prototype.setMinutes(min [, sec [, ms 1])

If secis not specified, this behaves as ifsec were specified with the value getSeconds ().

If msis not specified, this behaves as ifms were specified with the value getMilliseconds().
1. Lettbetheresult of Local Time(thistime value).

Call ToNumber(min).

If secis not specified, compute SecFromTimef); otherwise, call ToNumbergec).

If msis not specified, compute msFromTime(); otherwise, call ToNumber{ms).
Compute MakeTime(HourFromTimef), Result(2), Result(3), Result(4)).

Compute UTC(MakeDate(Day(), Result(5))).

Set the [[Value]] property of thet hi s value to Result(6).

Return the value of the [[Valu€]] property of the hi s value.

© N A WN

15.9.4.29 Date.prototype.setUTCMinutes(min [, sec [, ms]])
If secis not specified, this behaves as ifsec were specified with the value getUTCSeconds ().

If msisnot specified, this behaves as ifms were specified with the value getUTCMuilliseconds().

1. Lettbethistimevalue.

98

O N GAWN

Call ToNumber(min).

If secis not specified, compute SecFromTimef); otherwise, call ToNumbergec).
If msis not specified, compute msFromTime(); otherwise, call ToNumber{ms).
Compute MakeTime(HourFromTimef), Result(2), Result(3), Result(4)).
Compute MakeDate(Day(), Result(5)).

Set the [[Value]] property of thet hi s value to Result(6).

Return the value of the [[Value]] property of the hi s value.

15.9.4.30 Date.prototype.setHours(hour [, min [, sec [, ms 1]])

If minisnot specified, this behaves as ifmin were specified with the value getMinutes().
If secis not specified, this behaves as ifsec were specified with the value getSeconds ().
If msisnot specified, this behaves as ifms were specified with the value getMilliseconds().

1.

©ooNOGAWN

Lett be the result of Local Time(thistime value).

Call ToNumber(hour).

If minisnot specified, compute MinFromTime); otherwise, call ToNumbergin).
If secis not specified, compute SecFromTimef); otherwise, call ToNumbergec).
If msis not specified, compute msFromTime(); otherwise, call ToNumber{ms).
Compute MakeTime(Result(2), Result(3), Result(4), Result(5)).

Compute UTC(MakeDate(Day(), Result(6))).

Set the [[Value]] property of thet hi s value to Result(7).

Return the value of the [[Value]] property of the hi s value.

15.9.4.31 Date.prototype.setUTCHours(hour [, min [, sec [, ms]]])

If minisnot specified, this behaves as ifmin were specified with the value getUTCMinutes().
If secis not specified, this behaves as ifsec were specified with the value getUTCSeconds ().
If msisnot specified, this behaves as ifms were specified with the value getUTCMuilliseconds().

1.

©ooNOGAWN

Lett be thistime value.

Call ToNumber(hour).

If minisnot specified, compute MinFromTime); otherwise, call ToNumbergin).
If secis not specified, compute SecFromTimef); otherwise, call ToNumbergec).
If msis not specified, compute msFromTime(); otherwise, call ToNumber{ms).
Compute MakeTime(Result(2), Result(3), Result(4), Result(5)).

Compute MakeDate(Day(), Result(6)).

Set the [[Value]] property of thet hi s value to Result(7).

Return the value of the [[Value]] property of the hi s value.

15.9.4.32 Date.prototype.setDate(date)

oukwbdpE

Lett bethe result of Local Time(this time value).

Call ToNumber(date).

Compute MakeDay(Y earFromTimef), MonthFromTime(), Result(2)).
Compute UTC(MakeDate(Result(3), TimeWithinDay))).

Set the [[Value]] property of thet hi s value to Result(4).

Return the value of the [[Valu€]] property of the hi s value.

15.9.4.33 Date.prototype.setUTCDate(date)

ok wdpE

Lett be thistime value.

Call ToNumber(date).

Compute MakeDay(Y earFromTimef), MonthFromTime(), Result(2)).
Compute M akeDate(Result(3), TimeWithinDay)).

Set the [[Value]] property of thet hi s value to Result(4).

Return the value of the [[Value]] property of the hi s value.

99

15.9.4.34 Date.prototype.setMonth(mon [, date)

If dateis not specified, this behaves as ifdate were specified with the value getDate().
1. Lettbetheresult of Local Time(thistime value).

Call ToNumber(date).

If dateis not specified, compute DateFromTimef); otherwise, call ToNumber(ate).
Compute MakeDay(Y earFromTimef), Result(2), Result(3)).

Compute UTC(MakeDate(Result(4), TimeWithinDay))).

Set the [[Value]] property of thet hi s value to Result(5).

Return the value of the [[Value]] property of the hi s value.

Nogakwd

15.9.4.35 Date.prototype.setUTCMonth(mon [, date])

If dateis not specified, this behaves as ifdate were specified with the value getUTCDate().
1. Lettbethistimevalue.

Call ToNumber(date).

If dateis not specified, compute DateFromTimef); otherwise, call ToNumber(ate).
Compute MakeDay(Y earFromTimef), Result(2), Result(3)).

Compute M akeDate(Result(4), TimeWithinDay)).

Set the [[Value]] property of thet hi s value to Result(5).

Return the value of the [[Value]] property of the hi s value.

Nogakwd

15.9.4.36 Date.prototype.setFullYear(year [, mon [, date]])

If mon is not specified, this behaves as ifmon were specified with the value getMonth().

If dateis not specified, this behaves as ifdate were specified with the value getDate().

1. Lettbetheresult of Local Time(thistime value).

Call ToNumber(year).

If mon is not specified, compute MonthFromTimef); otherwise, call ToNumbergnon).
If dateis not specified, compute DateFromTime(); otherwise, call ToNumber(ate).
Compute MakeDay(Result(2), Result(3), Result(4)).

Compute UTC(MakeDate(Result(5), TimeWithinDay))).

Set the [[Value]] property of thet hi s value to Result(6).

Return the value of the [[Valu€]] property of the hi s value.

© N A WN

15.9.4.37 Date.prototype.setUTCFullYear(year [, mon [, date]])

If mon is not specified, this behaves as ifmon were specified with the value getUTCMonth().
If dateis not specified, this behaves as ifdate were specified with the value getUTCDate().
1. Lettbethistimevalue.

Call ToNumber(year).

If mon is not specified, compute MonthFromTime); otherwise, call ToNumbernon).

If dateis not specified, compute DateFromTimef); otherwise, call ToNumber(ate).
Compute MakeDay(Result(2), Result(3), Result(4)).

Compute M akeDate(Result(5), TimeWithinDay)).

Set the [[Value]] property of thet hi s value to Result(6).

Return the value of the [[Value]] property of the hi s value.

O N OAWN

15.9.4.38 Date.prototype.setYear(year)

This function is specified here for backwards compatibility only. The functioset Ful | Year is much
to be preferred for nearly all purposes, because it avoids the “year 2000 problem.”

Lett be the result of Local Time(thistime value).

Call ToNumber(year).

If Result(2) isNaN, set the [[Value]] property of thet hi s value to NaN and return NaN.

Call Tolnteger(Result(1)).

If 0 £ Result(3) £ 99, then Result(4) is Result(3) + 1900. Otherwise, Result(4) is Result(3).

arwdPRE

100

Compute MakeDay(Result(5), MonthFromTime(), DateFromTime()).
Compute UTC(M akeDate(Result(6), TimeWithinDayt))).

Set the [[Value]] property of thet hi s value to Result(7).

Return the value of the [[Value]] property of the hi s value.

© 00N

15.9.4.39 Date.prototype.toLocaleString()

This function returns a string value. The contents of the string are implementation dependent, but are
intended to represent the Date in a convenient, human-readable form appropriate to the geographic or
cultural locale. Different time values must result in different string values from this function.
15.9.4.40 Date.prototype.toUTCString()

This function returns a string value. The contents of the string are implementation dependent, but are
intended to represent the Date in a convenient, human-readable form in UTC. Different time values
must result in different string values from this function.

15.9.4.41 Date.prototype.toGMTString()

The function object that isthe initial value ofDat e. pr ot ot ype. t oGMISt ri ngis the same function
object that istheinitial value ofDat e. pr ot ot ype. t oUTCSt ri ng Thet oGMISt ri ng property is
provided pricinpally for compatibility with old code. It is recommended that theoUTCSt r i ng property
be used in new ECMA Script code.

15.9.5 Properties of Date Instances

Date instances have no special properties beyond those inherited from the Date prototype object.

101

16 ERRORS

This specification specifies the last possible moment an error occurs. A given implementation may
generate errors sooner (e.g. at compile-time). Doing so may cause differences in behavior among
implementations. Notably, if runtime errors become catchable in future versions, a given error would
not be catchable if an implementation generates the error at compile-time rather than runtime.

An ECMAScript compiler should detect errors at compiletimein al code presented to it, even code
that detailed analysis might prove to be “dead” (never executed). A programmer should not rely on the
trick of placing code within ani f (f al se) statement, for example, to try to suppress compile-time
error detection.

Issue: If acompiler can prove that a construct cannot execute without error under any circumstances,
then it may issue a compile-time error even though the construct might not be executed at all?

END OF DOCUMENT

102

103

