
ECMA/TC39/98/5

ECMA comments ISO/IEC DIS 16262, ECMAScript

under ballot until 1998-04-09

1)The second paragraph of clause 2 on conformance need to be improved.

 A proposal for such an improvement is the following:

 "A conforming implementation of this International standard shall interpret characters in
conformance with The Unicode Standard, Version 2.0, and ISO/IEC 10646-1 with UCS-2 as the
adopted encoding form, implementation level 3. If the adopted ISO/IEC 10646-1 subset is not
otherwise specified, it is presumed to be the BMP subset, collection 300."

Background information

The above proposed text does talk about implementation level 3 as described in 10646, but it does not
mean that ECMAScript would have to process a character and a combining sequence as yet another
uniquely identified character. ECMAScript can treat a combining sequence as just another 16-bit
value. Combining sequences are encoded for use with some base characters especially for Indic, Thai,
Arabic and Hebrew scripts. Platforms and application software decides how to process a base
character and a combining sequence.

 Note that combining sequences can be used for Latin as well but the vast majority of Latin script
characters are already encoded in 10646.

For conformance with The Unicode Standard it is important that combining sequences are not
damaged as they go through a process, such as ECMAScript. Unicode supports combining sequences
and provides an equivalence algorithm that facilitates comparing precomposed characters with a base
character followed by a combining sequence. All that ECMAScript, and other programming
languages, need to do is to let a data stream of 16-bit values pass through the process cleanly and with
no damage to the data.

2) 7.4.3 Reserved words

 The following keywords are reserved in at least one implementation and

 should be included as future reserved words:

 abstract boolean byte char double final float goto implements

 instanceof int interface long native package private protected public

 short static synchronized throws transient volatile

3) 7.7.3 Numeric literals

 This section does not define precisely what is meant by hexadecimal and

 octal literals that result in Mathematical Values that are larger than

 can be accommodated in a IEEE double. Since octal and hexadecimal

 literals only make sense when used in conjunction with bitwise

 operators, which operate on unsigned 32 bit integers, it would make

 sense to limit octal literals and hexadecimal literals to specifying

 unsigned 32 bit integers.

ECMA/TC39/98/5

4) 9.3.1 StrWhiteSpaceChr

 This does not handle Unicode strings that use white space characters

 other than ASCII. The definition of this should be changed to

 correspond to the definition of isWhiteSpace in the Java class library.

5) 10.1.6 Activation Object, and 15.3 Function Objects

 The arguments property of Function instances should be deleted instead

 of discouraged. The way it is defined now is over-specified and

 thread-unsafe. It neither makes sense for future implementations

 (which may implement threads) nor describes existing practice.

6) 11.2 Left-Hand-Side expressions

 The grammar should not allow nonsensical expressions such as new new

 foo(), and should not accept Function calls and new expressions on the

 left-hand-side of an assignment.

7) 11.4.1 The delete operator

 Step 2 will generate a runtime error if Result(1) is not a reference.

 This does not appear to be the intent, as in Step 4 GetBase always

 returns an object (if it returns at all), hence this test is redundant

 and in Step 5, Objects are required to implement the [[Delete]] method,

 hence this test is redundant.

8) 12.2 Variable statement

 Globals explicitly declared with var should be marked DontDelete.

9) 12.2 Variable statement, evaluation of Identifier Initializer

 Step 1 is incorrect: Identifier is not a syntax rule, hence it does not

 make sense to evaluate it. The intent seems to be "Evaluate Identifier

 as if it appeared in a PrimaryExpression : Identifier production, see

 section 11.1.2." However, this could lead to strange behavior when

 variable declarations appear inside with statements. A better

ECMA/TC39/98/5

 formulation is "Construct a value of type Reference whose base object

 is the next activation object on the scope chain and whose property

 name is the Identifier." Step 5 should then be: "Return Result(1)."

10) 12.6.3 The for..in statement, evaluation of for(var ...)

 Step 7 is not needed, provided that the definition of

 VariableDeclaration is fixed appropriately, and similarly Step 8 can

 then use "Result(1)".

11) 15.1 The Global Object

 The standard should outlaw calling the global object's eval method

 indirectly. In particular, programs should not extract the global

 object's eval property except when calling it directly, or assign to

 the global object's eval property.

12) 15.2.4.2 Object.prototype.toString()

 This conversion could result in a runtime error, which does not seem to

 be the intent here. If [[class]] is required to be a string, this

 conversion is not needed.

13) 15.4.2.2 new Array(len)

 This constructor constructs a very large array if given an argument

 such as -1. The language of the new Array(len) constructor should be

 changed to require that ToInteger(len) be between 0 and 2^31-1,

 inclusive; if len is a number outside this range, new Array(len) should

 signal an error. The same applies to setting the "length" property of

 an array via [[Put]].

14) 15.4.4.5 Array.prototype.sort(comparefn)

 Step 3, last paragraph: the phrase "and the result of applying ToNumber

 to this value is not NaN" is not necessary and creates the erroneous

 impression that the compare function need not return a number. See

 earlier "If comparefn is provided, it should be a function that accepts

 two arguments x and y and returns a negative value if x < y, zero if x

ECMA/TC39/98/5

 = y, or a positive value if x > y." While "value" is not a specific as

 "number", it seems unlikely that the intent was that "negative value"

 be shorthand for "a value which can be converted to a negative number".

15) 15.4.5.1 [[Put]](P, V)

 Array instances always have a length property, hence the first test in

 Step 9 is not needed.

16) 15.5.4 Properties of the String Prototype Object, final paragraph

 The phrase "it is a runtime error if this does not refer to an object

 for which the value of the internal [[Class]] property is 'String'."

 should be deleted. It contradicts the note at the end of section

 17) 15.5.4.4 and as well as the implicit intent.

18) 15.9.5.34 setMonth and 15.9.5.34 setUTCMonth

 Step 2 of the algorithm should refer to 'mon', not 'date'.

