
5.2 Algorithm conventions
We often use a numbered list to specify steps in an algorithm. These algorithms are used to clarify semantics. In
practice, there may be more efficient algorithms available to implement a given feature.

When an algorithm is to produce a value as a result, we use the directive return x to indicate that the result of the
algorithm is the value of x and that the algorithm should terminate. We use the notation Result(n) as shorthand
for the result of step n. We also use Type(x) as shorthand for the type of x.

Mathematical operations such as addition, subtraction, negation, multiplication, division, and the mathematical
functions defined later in this section should always be understood as computing exact mathematical results on
mathematical real numbers, which do not include infinities and do not include a negative zero that is
distinguished from positive zero. Algorithms in this standard that model floating-point arithmetic include explicit
steps, where necessary, to handle infinities and signed zero and to perform rounding. If a mathematical operation
or function is applied to a floating-point number, it should be understood as being applied to the exact
mathematical value represented by that floating-point number. Such a floating-point number must be finite, and if
it is +0 or −−0 then the corresponding mathematical value is simply 0.

The mathematical function abs(x) yields the absolute value of x, which is −x if x is negative (less than zero) and
otherwise is x itself.

The mathematical function sign(x) yields 1 if x is positive and −1 if x is negative. The sign function is not used in
this standard for cases when x is zero.

The notation “x modulo y” (y must be finite and nonzero) computes a value k of the same sign as y such that
abs(k) < abs(y) and x−k = q⋅y for some integer q.

The mathematical function floor(x) yields the largest integer (closest to positive infinity) that is not larger than x.
Note that floor(x) = x−(x modulo 1).

If an algorithm is defined to generate a runtime error, execution of the algorithm is terminated and no result is
returned. The calling algorithms are also terminated, until an algorithm step is reached that explicitly deals with
the error. The same applies for exceptions that are explicitly thrown. See section 12.1. The algorithm step that
deals with the runtime error, or the explicitly thrown exception, has available to it the details about the error, or
the value thrown by the throw statement, respectively.

8.9 The Completion Type
The internal Completion type is not a language data type. It is defined by this specification purely for expository
purposes. An implementation of ECMAScript must behave as if it produced and operated upon Completion values
in the manner described here. However, a value of the Completion type is used only as an intermediate result of
statement evaluation and cannot be stored as the value of a variable or property.

The Completion type is used to explain the behavior of statements (break, continue, return and throw)
that perform nonlocal transfers of control. Values of the Completion type are triples of the form (type, value,
target), where type is one of normal, break, continue, return, or throw, value is any ECMAScript value, or
empty, and target is any ECMAScript identifier, or empty. If C is a completion triple, then the notation C.type
denotes the first element, C.value the second and C.target the third.

The term “abrupt completion” refers to any completion with a reason valuetype other than normal.

Invoking the [[Call]] or [[Construct]] method of a Function object, amounts to the evaluation of a Block (see
section 12.1) in an appropriate Execution Context (see section 10). The result of evaluating a Block is of the
Completion Type. This value should not be returned as the result of the method invocation, or it might end up
being stored in a variable or property. Instead, the value field of the completion value becomes the result of the
invocation, except that an empty value is replaced with undefined. If the completion value is of type throw,
execution of the algorithm that invoked the method should proceed as if a runtime error has occurred, see section
5.2.

12 Statements

Syntax

Statement :
Block
FunctionDeclaration
VariableStatement
EmptyStatement
ExpressionStatement
IfStatement
IterationStatement
ContinueStatement
BreakStatement
ReturnStatement
WithStatement
LabeledStatement
SwitchStatement
ThrowStatement
TryStatement

Semantics
A Statement can be part of a LabeledStatement, which itself can be part of a LabeledStatement, and so on. The
labels introduced this way are collectively referred to as the “current label set” when describing the semantics of
individual statements. A LabeledStatement has no semantic meaning other than the introduction of a label to a
label set. An IterationStatement, or SwitchStatement that is not part of a LabeledStatement is regarded as
possessing a label set containing a single element, empty.

12.1 Block

Syntax

Block :
{ StatementListopt }

StatementList :
Statement
StatementList Statement

Semantics

The production Block : { } is evaluated as follows:

1. Return (normal, empty, empty).

The production Block : { StatementList }is evaluated as follows:

1. Evaluate StatementList.
2. Return Result(1).

The production StatementList : Statement is evaluated as follows:

1. Evaluate Statement.
2. If an exception value was thrown during the evaluation of Statement, go to step 7.
3. If a runtime error occurred during the evaluation of Statement, go to step 5.
4. Return Result(1).
5. Construct an appropriate Error object.
6. Return (throw, Result(5), empty).
7. Return (throw, V, empty) where V is the exception value thrown during the evaluation of Statement.

The production StatementList : StatementList Statement is evaluated as follows:

1. Evaluate StatementList.
2.If Result(1).type = break and Result(1).target occurs in the current label set, return (normal, Result(1).value,

empty).

3.2. If Result(1) is an abrupt completion, return Result(1).
4.3. Evaluate Statement.
5.If Result(4).value = empty, let V = Result(1).value, otherwise let V = Result(4).value.
6.If Result(4).type = break and Result(4).target occurs in the current label set, return (normal, Result(4).value,

empty).
4. Return (Result(4).type, V, Result(4).target).If an exception value was thrown during the evaluation of

Statement, go to step 10.
5. If a runtime error occurred during the evaluation of Statement, go to step 8.
6. If Result(3).value = empty, let V = Result(1).value, otherwise let V = Result(3).value.
7. Return (Result(3).type, V, Result(3).target).
8. Construct an appropriate Error object.
9. Return (throw, Result(8), empty).
10. Return (throw, W, empty) where W is the exception value thrown during the evaluation of Statement.

12.2 Variable statement

Syntax

VariableStatement :
var VariableDeclarationList ;

VariableDeclarationList :
VariableDeclaration
VariableDeclarationList , VariableDeclaration

VariableDeclaration :
Identifier Initializeropt

Initializer :
= AssignmentExpression

Description

If the variable statement occurs inside a FunctionDeclaration, the variables are defined with function-local scope
in that function, as described in section 10.1.3. Otherwise, they are defined with global scope, that is, they are
created as members of the global object, as described in section 10.1.6. Variables are created when the execution
scope is entered. A Block does not define a new execution scope. Only Program and FunctionDeclaration produce
a new scope. Variables are initialized to the undefined value when created. A variable with an Initializer is
assigned the value of its AssignmentExpression when the VariableStatement is executed, not when the variable is
created.

Semantics

The production VariableStatement : var VariableDeclarationList ; is evaluated as follows:

1. Evaluate VariableDeclarationList.
2. Return (normal, empty, empty).

The production VariableDeclarationList : VariableDeclaration is evaluated as follows:

1. Evaluate VariableDeclaration.

The production VariableDeclarationList : VariableDeclarationList , VariableDeclaration is evaluated as follows:

1. Evaluate VariableDeclarationList.
2. Evaluate VariableDeclaration.

The production VariableDeclaration : Identifier is evaluated as follows:

1. Return a string value containing the same sequence of characters as in the Identifier.

The production VariableDeclaration : Identifier Initializer is evaluated as follows:

1. Evaluate Identifier.
2. Evaluate Initializer.
3. Call GetValue(Result(2)).
4. Call PutValue(Result(1), Result(3)).
5. Return a string value containing the same sequence of characters as in the Identifier.

The production Initializer : = AssignmentExpression is evaluated as follows:

1. Evaluate AssignmentExpression.
2. Return Result(1).

12.3 Empty statement

Syntax

EmptyStatement :
;

Semantics

The production EmptyStatement : ; is evaluated as follows:

1. Return (normal, empty, empty).

12.4 Expression statement

Syntax

ExpressionStatement :
Expression ;

Semantics

The production ExpressionStatement : Expression ; is evaluated as follows:

1. Evaluate Expression.
2. Call GetValue(Result(1)).
3. Return (normal, Result(2), empty).

12.5 The IF statement

Syntax

IfStatement :
if (Expression) Statement else Statement
if (Expression) Statement

Each else for which the choice of associated if is ambiguous shall be associated with the nearest possible if
that would otherwise have no corresponding else.

Semantics

The production IfStatement : if (Expression) Statement else Statement is evaluated as follows:

1. Evaluate Expression.
2. Call GetValue(Result(1)).
3. Call ToBoolean(Result(2)).
4. If Result(3) is false, go to step 87.
5. Evaluate the first Statement.
6.If Result(5).type = break and Result(5).target occurs in the current label set, return (normal, Result(5).value,

empty).
7.6. Return Result(5).
8.7. Evaluate the second Statement.
9.If Result(8).type = break and Result(8).target occurs in the current label set, return (normal, Result(8).value,

empty).

10.8. Return Result(87).

The production IfStatement : if (Expression) Statement is evaluated as follows:

1. Evaluate Expression.
2. Call GetValue(Result(1)).
3. Call ToBoolean(Result(2)).
4. If Result(3) is false, return (normal, empty, empty).
5. Evaluate Statement.
6.If Result(5).type = break and Result(5).target occurs in the current label set, return (normal, Result(5).value,

empty).
7.6. Return Result(5).

12.6 Iteration statements

Syntax

IterationStatement :
do Statement while (Expression);
while (Expression) Statement
for (Expressionopt ; Expressionopt ; Expressionopt) Statement
for (var VariableDeclarationList ; Expressionopt ; Expressionopt) Statement
for (LeftHandSideExpression in Expression) Statement
for (var Identifier Initializeropt in Expression) Statement

12.6.1 The do…while Statement

The production do Statement while (Expression); is evaluated as follows:

1. Let V = empty.
2. Evaluate Statement.
3. If Result(2).value is not empty, let V = Result(2).value.
4. If Result(2).type = continue and Result(2).target is in the current label set, go to 2.
5. If Result(2).type = break and Result(2).target is in the current label set, return (normal, V, empty).
6. If Result(2) is an abrupt completion, return Result(2).
7. Evaluate Expression.
8. Call GetValue(Result(7)).
9. Call ToBoolean(Result(8)).
10. If Result(9) is true, go to step 2.
11. Return (normal, V, empty);

12.6.2 The while statement

The production IterationStatement : while (Expression) Statement is evaluated as follows:

1. Let V = empty.
2. Evaluate Expression.
3. Call GetValue(Result(2)).
4. Call ToBoolean(Result(3)).
5. If Result(4) is false, return (normal, V, empty).
6. Evaluate Statement.
7. If Result(6).value is not empty, let V = Result(6).value.
8. If Result(6).type = continue and Result(6).target is in the current label set, go to 2.
9. If Result(6).type = break and Result(6).target is in the current label set, return (normal, V, empty).
10. If Result(6) is an abrupt completion, return Result(6).
11. Go to step 2.

12.6.3 The for statement

The production IterationStatement : for (Expressionopt ; Expressionopt ; Expressionopt) Statement is
evaluated as follows:

1. If the first Expression is not present, go to step 4.
2. Evaluate the first Expression.
3. Call GetValue(Result(2)). (This value is not used.)
4. Let V = empty.
5. If the second Expression is not present, go to step 10.
6. Evaluate the second Expression.
7. Call GetValue(Result(6)).
8. Call ToBoolean(Result(7)).
9. If Result(8) is false, go to step 19.
10. Evaluate Statement.
11. If Result(10).value is not empty, let V = Result(10).value
12. If Result(10).type = break and Result(10).target is in the current label set, go to step 19.
13. If Result(10).type = continue and Result(10).target is in the current label set, go to step 15..
14. If Result(10) is an abrupt completion, return Result(10).
15. If the third Expression is not present, go to step 5.
16. Evaluate the third Expression.
17. Call GetValue(Result(16). (This value is not used.)
18. Go to step 5.
19. Return (normal, V, empty).

The production IterationStatement : for (var VariableDeclarationList ; Expressionopt ; Expressionopt)
Statement is evaluated as follows:

1. Evaluate VariableDeclarationList.
2. Let V = empty.
3. If the second Expression is not present, go to step 8.
4. Evaluate the second Expression.
5. Call GetValue(Result(4)).
6. Call ToBoolean(Result(5)).
7. If Result(6) is false, go to step 15.
8. Evaluate Statement.
9. If Result(8).value is not empty, let V = Result(8).value.
10. If Result(8).type = break and Result(8).target is in the current label set, go to step 17.
11. If Result(8).type = continue and Result(8).target is in the current label set, go to step 13.
12. If Result(8) is an abrupt completion, return Result(8).
13. If the third Expression is not present, go to step 3.
14. Evaluate the third Expression.
15. Call GetValue(Result(14)). (This value is not used.)
16. Go to step 3.
17. Return (normal, V, empty).

12.6.4 The for..in statement

The production IterationStatement : for (LeftHandSideExpression in Expression) Statement is evaluated as
follows:

1. Evaluate the Expression.
2. Call GetValue(Result(1)).
3. Call ToObject(Result(2)).
4. Let V = empty.
5. Get the name of the next property of Result(3) that doesn’t have the DontEnum attribute. If there is no such

property, go to step 14.
6. Evaluate the LeftHandSideExpression (it may be evaluated repeatedly).
7. Call PutValue(Result(6), Result(5)).
8. Evaluate Statement.
9. If Result(8).value is not empty, let V = Result(8).value.
10. If Result(8).type = break and Result(8).target is in the current label set, go to step 14.
11. If Result(8).type = continue and Result(8).target is in the current label set, go to step 5.

12. If Result(8) is an abrupt completion, return Result(8).
13. Go to step 5.
14. Return (normal, V, empty).

The production IterationStatement : for (var VariableDeclaration in Expression) Statement is evaluated
as follows:

1. Evaluate VariableDeclaration.
2. Evaluate Expression.
3. Call GetValue(Result(2)).
4. Call ToObject(Result(3)).
5. Let V = empty.
6. Get the name of the next property of Result(4) that doesn’t have the DontEnum attribute. If there is no such

property, go to step 19.
7. Evaluate Result(1) as if it were an Identifier; see Error! Reference source not found.Error! Reference

source not found.10.1.4 (yes, it may be evaluated repeatedly).
8. Call PutValue(Result(7), Result(6)).
9. Evaluate Statement.
10. If Result(9).value is not empty, let V = Result(9).value.
11. If Result(9).type = break and Result(9).target is in the current label set, go to step 15.
12. If Result(9).type = continue and Result(9).target is in the current label set, go to step 6.
13. If Result(8) is an abrupt completion, return Result(8).
14. Go to step 6.
15. Return (normal, V, empty).

The mechanics of enumerating the properties (step 5 in the first algorithm, step 6 in the second) is
implementation dependent. The order of enumeration is defined by the object. Properties of the object being
enumerated may be deleted during enumeration. If a property that has not yet been visited during enumeration
is deleted, then it will not be visited. If new properties are added to the object being enumerated during
enumeration, the newly added properties are not guaranteed to be visited in the active enumeration.

Enumerating the properties of an object includes enumerating properties of its prototype, and the prototype of
the prototype, and so on, recursively; but a property of a prototype is not enumerated if it is “shadowed” because
some previous object in the prototype chain has a property with the same name.

12.7 The CONTINUE statement

Syntax

ContinueStatement :
continue [no LineTerminator here] Identifieropt ;

Semantics

A program is considered syntactically incorrect if either of the following are true:

• The program contains a continue statement without the optional Identifier, which is not nested, directly or
indirectly (but not crossing function boundaries), within an IterationStatement.

• The program contains a continue statement with the optional Identifier, where Identifier does not appear in
the label set of an enclosing IterationStatement.

A ContinueStatement without an Identifier is evaluated as follows:

1. Return (continue, empty, empty).

A continue statement with the optional Identifier is evaluated as follows:

1. Return (continue, empty, Identifier).

12.8 The BREAK statement

Syntax

BreakStatement :
break [no LineTerminator here] Identifieropt ;

Semantics

A program is considered syntactically incorrect if either of the following are true:

• The program contains a break statement without the optional Identifier, which is not nested, directly or
indirectly (but not crossing function boundaries), within an IterationStatement or a SwitchStatement.

• The program contains a break statement with the optional Identifier, where Identifier does not appear in the
label set of an enclosing Statement.

A BreakStatement without an Identifier is evaluated as follows:

1. Return (break, empty, empty).

A break statement with an Identifier is evaluated as follows:

1. Return (break, empty, Identifier).

12.9 The RETURN statement

Syntax

ReturnStatement :
return [no LineTerminator here] Expressionopt ;

Semantics

An ECMAScript program is considered syntactically incorrect if it contains a return statement that is not
within the Block of a FunctionDeclaration. It causes a function to cease execution and return a value to the caller.
If Expression is omitted, the return value is the undefined value. Otherwise, the return value is the value of
Expression.

The production ReturnStatement :: return [no LineTerminator here] Expressionopt ; is evaluated as:

1. If the Expression is not present, return (return, undefined, empty).
2. Evaluate Expression.
3. Call GetValue(Result(2)).
4. Return (return, Result(3), empty).

12.10 The WITH statement

Syntax

WithStatement :
with (Expression) Statement

Description

The with statement adds a computed object to the front of the scope chain of the current execution context, then
executes a statement with this augmented scope chain, then restores the scope chain.

Semantics

The production WithStatement : with (Expression) Statement is evaluated as follows:

1. Evaluate Expression.
2. Call GetValue(Result(1)).
3. Call ToObject(Result(2)).
4. Add Result(3) to the front of the scope chain.

5. Evaluate Statement using the augmented scope chain from step 4.
6. Remove Result(3) from the front of the scope chain.
7. Return Result(5).

Discussion

Note that no matter how control leaves the embedded Statement, whether normally or by some form of abrupt
completion, the start of the scope chain is always restored to its former state.

12.11 The SWITCH Statement

Syntax

SwitchStatement :
switch (Expression) CaseBlock

CaseBlock :
{ CaseClausesopt }
{ CaseClausesopt DefaultClause CaseClausesopt }

CaseClauses :
CaseClause
CaseClauses CaseClause

CaseClause :
case Expression : StatementListopt

DefaultClause :
default : StatementListopt

Semantics

The production SwitchStatement : switch (Expression) CaseBlock is evaluated as follows:

1. Evaluate Expression.
2. Call GetValue(Result(1)).
3. Evaluate CaseBlock, passing it Result(2) as a parameter.
4. If Result(3).type = break and Result(3).target is in the current label set, return (normal, Result(3).value,

empty).
5. Return Result(3).

The production CaseBlock : { CaseClauses DefaultClause CaseClauses } is given an input parameter, input, and
is evaluated as follows:

1. Let A be the list of CaseClause items in the first CaseClauses, in source text order.
2. For the next CaseClause in A, evaluate CaseClause. If there is no such CaseClause, go to step 7.
3. If input is not equal to Result(2), as defined by the !== operator, go to step 2.
4. Evaluate the StatementList of this CaseClause.
5. If Result(4) is an abrupt completion then return Result(4).
6. Go to step 13.
7. Let B be the list of CaseClause items in the second CaseClauses, in source text order.
8. For the next CaseClause in B, evaluate CaseClause. If there is no such CaseClause, go to step 15.
9. If input is not equal to Result(8), as defined by the !== operator, go to step 8.
10. Evaluate the StatementList of this CaseClause.
11. If Result(10) is an abrupt completion then return Result(10).
12. Go to step 18.
13. For the next CaseClause in A, evaluate the StatementList of this CaseClause. If there is no such CaseClause,

go to step 15.
14. If Result(13) is an abrupt completion then return Result(13).
15. Execute the StatementList of DefaultClause.

16. If Result(15) is an abrupt completion then return Result(15).
17. Let B be the list of CaseClause items in the second CaseClauses, in source text order.
18. For the next CaseClause in B, evaluate the StatementList of this CaseClause. If there is no such CaseClause,

return (normal, empty, empty).
19. If Result(18) is an abrupt completion then return Result(18).
20. Go to step 18.

The production CaseClause : case Expression : StatementListopt is evaluated as follows:

1. Evaluate Expression.
2. Call GetValue(Result(1)).
3. Return Result(2).

Note that evaluating CaseClause does not execute the associated StatementList. It simply evaluates the Expression
and returns the value, which the CaseBlock algorithm uses to determine which StatementList to start executing.

12.12 Labeled Statements

Syntax

LabeledStatement :
Identifier : Statement

Semantics

A Statement may be prefixed by a label. Labeled statements are only used in conjunction with labeled break and
continue statements. ECMAScript has no goto statement.

An ECMAScript program is considered syntactically incorrect if it contains a LabeledStatement that is enclosed
by a LabeledStatement with the same Identifier as label. This does not apply to labels appearing within the body of
a FunctionDeclaration that is nested, directly or indirectly, within a labeled statement.

The production Identifier : Statement is evaluated by adding Identifier to the label set of Statement and then
evaluating Statement. If the LabeledStatement itself has a non-empty label set, these labels are also added to the
label set of Statement before evaluating it. If the result of evaluating Statement is (break, V, L) where L is equal to
Identifier, the production results in (normal, V, empty).

Prior to the evaluation of a LabeledStatement, the contained Statement is regarded as possessing an empty label
set, except if it is an IterationStatement or a SwitchStatement, in which case it is regarded as possessing a label set
consisting of the single element, empty.

12.10 The THROW statement

Syntax

ThrowStatement :
throw [no LineTerminator here] Expression ;

Semantics

The production ThrowStatement :: throw [no LineTerminator here] Expression ; is evaluated as:

1. Evaluate Expression.
2. Call GetValue(Result(1)).
3. Return (throw, Result(2), empty), behaving as if a runtime error has occurred. See section 5.2.

12.11 The TRY statement

Syntax

TryStatement :
try Block catch (var Identifier) Block

Description

The try statement encloses a block of code in which an exceptional condition can occur, such as a runtime error
or a throw statement. The catch clause provides the exception-handling code. The identifier introduces a local
variable that is created when the execution scope containing the try statement is entered.

Semantics

The production TryStatement :: try Block catch (var Identifier) Block ; is evaluated as follows:

1.Evaluate the first Block.
2.If Result(1).type is not throw, return Result(1).
3.Evaluate Identifier.
4.Call PutValue(Result(3), V).
5.Evaluate the second Block.
6.Return Result(5).

Syntax

TryStatement :
try Block CatchList
try Block Finally
try Block CatchList Finally

CatchList :
Catch
CatchList Catch

Catch :
catch (Identifier CatchGuardopt) Block

CatchGuard :
: Expression

Finally :
finally Block

Description

The try statement encloses a block of code in which an exceptional condition can occur, such as a runtime error
or a throw statement. The catch clauses provide the exception-handling code. Entering a catch clause is
similar to calling a function: there is a new execution context and the binding of a value to a formal parameter.
The finally clause is executed just before control finally leaves a try block (that is, after any exception-handling
code has been executed).

Semantics

The production TryStatement : try Block CatchList is evaluated as follows:

1. Evaluate Block.
2. If Result(1).type is not throw, return Result(1).
3. Evaluate CatchList with parameter Result(1).
4. If Result(3) = (throw, empty, empty), return Result(1)
5. Return Result(3).

The production TryStatement : try Block Finally is evaluated as follows:

1. Evaluate Block.
2. Evaluate Finally.
3. If Result(2).type is normal, return Result(1).
4. Return Result(2).

The production TryStatement : try Block CatchList Finally is evaluated as follows:

1. Evaluate Block.
2. Let C = Result(1).
3. If Result(1).type is not throw, go to step 6.
4. Evaluate CatchList with parameter Result(1).
5. Let C = Result(4).
6. If Result(4) = (throw, empty, empty), let C = Result(1).
7. Evaluate Finally.
8. If Result(7).type is normal, return C.
9. Return Result(7).

The production CatchList : Catch is evaluated as follows:

1. Evaluate Catch passing it the parameter passed to this production.
2. Return Result(1).

The production CatchList : CatchList Catch is evaluated as follows:

1. Evaluate CatchList passing it the parameter passed to this production.
2. If Result(1) is not (throw, empty, empty), return Result(1).
3. Evaluate Catch passing it the parameter passed to this production.
4. Return Result(2).

The production Catch : catch (Identifier CatchGuardopt) Block is evaluated as follows:

1. Let C = (throw, empty, empty).
2. Create a new Object object.
3. Call the [[Put]] method of Result(2) with parameters Identifier and C.value.
4. Add Result(2) to the front of the scope chain.
5. If there is no CatchGuard, go to step 10.
6. Evaluate CatchGuard.
7. If an exception value was thrown during the evaluation of CatchGuard, go to step 13.
8. If a runtime error occurred during the evaluation of CatchGuard, go to step 15.
9. If ToBoolean(Result(6)) is not true, go to step 17.
10. Evaluate Block.
11. Let C = Result(10).
12. Go to step 17.
13. Let C = (throw, W, empty) where W is the exception value thrown during the evaluation of CatchGuard.
14. Go to step 17.
15. Construct an appropriate Error object.
16. Let C = (throw, Result(15), empty).
17. Remove Result(2) from the front of the scope chain.
18. Return C.

The production CatchGuard : if Expression is evaluated as follows:

1. Evaluate Expression.
2. Return Result(1).

The production Finally : finally Block is evaluated as follows:
1. Evaluate Finally.
2. Return Result(1).

14 Program

Syntax

Program :
SourceElements

SourceElements :
SourceElement
SourceElements SourceElement

SourceElement :
Statement
FunctionDeclaration

The production Program : SourceElements is evaluated as follows:

1. Process SourceElements for function declarations.
2. Evaluate SourceElements.
3. Return Result(2).

The production SourceElements: SourceElement is processed for function declarations as follows:

1. Process SourceElement for function declarations.

The production SourceElements: SourceElement is evaluated as follows:

1. Evaluate SourceElement.
2. Return Result(1).

The production SourceElements: SourceElements SourceElement is processed for function declarations as follows:

1. Process SourceElements for function declarations.
2. Process SourceElement for function declarations.

The production SourceElements: SourceElements SourceElement is evaluated as follows:

1. Evaluate SourceElements.
2. If Result(1) is an abrupt completion, return Result(1)
2.3. Evaluate SourceElement.
3.4. If Result(23).value = empty, let Result(23).value = Result(1).value.
4.5. Return Result(23).

The production SourceElement: Statement is processed for function declarations by taking no action.

The production SourceElement: Statement is evaluated as follows:

1. Evaluate Statement.
2. Return Result(1).

The production SourceElement: FunctionDeclaration is processed for function declarations as follows:

1. Process FunctionDeclaration for function declarations.

The production SourceElement: FunctionDeclaration is evaluated as follows:

1. Return (normal, empty, empty).

15.1.2 Function properties of the global object

15.1.2.1 eval(x)

When the eval function is called with one argument x, the following steps are taken:

1. If x is not a string value, return x.
2. Parse x as an ECMAScript Program. If the parse fails, generate a runtime error.
3. Evaluate the program from step 2.
4. If Result(3).type = throw, return Result(3), behaving as if a runtime error has occurred, see section 5.2.
5. If Result(3).value is not empty, return Result(3).value.
6. Return undefined.

