
ECMAScript I18N Proposal 1 v 0.3, 1/15/99

Proposal for Improving Internationalization Support in
ECMAScript 2.0
Version 0.3
Friday, January 15, 1999

This document represents the current working set of recommendations from the internationalization
subcommittee as to what changes should go into the core ECMAScript language to better support
both internationalization and Unicode.

Pasted in below is the current working draft (1/14/99) of the standard. The changes we are
proposing are highlighted by change bars. Insertions and deletions are also shown. (In a few spots,
change marks from the draft we’re basing this draft on bled through.) We’ve taken out the text of all
sections of the standard we’re not proposing to change. When necessary, we’ve left in section
headings to preserve their numbering.

This proposal assumes the presence of a specification for a larger, more flexible library of
internationalization functions that is outside the core language. We intend this to be a separate
proposal that will either end up as an annex to this standard, or as a separate non-normative
technical report. It’s unclear what the appropriate way to refer to this in the standard is (especially
when we don’t yet have specific function names we can refer to).

When appropriate, explanatory text explaining why we’re proposing a certain change, or how it got
to be the way it is in this document, are inserted into the text in italic type.

1 Scope

2 Conformance

3 Normative References

ISO/IEC 9899:1996 Programming Languages – C, including amendment 1 and technical corrigenda 1 and
2.

ISO/IEC 10646-1:1993 Information Technology -- Universal Multiple-Octet Coded Character Set (UCS),
including amendments 1 through 9 and technical corrigendum 1.

ISO/IEC 646.IRV:1991 -- Information Processing -- ISO 7-bit Coded Character Set for Information
Interchange.

Unicode Inc. (1996), The Unicode Standard™, Version 2.0. ISBN: 0-201-48345-9, Addison-Wesley
Publishing Co., Menlo Park, California.

Unicode Inc. (1998), Unicode Technical Report #8: The Unicode Standard™, Version 2.1.
http://www.unicode.org/unicode/reports/tr8.html

Unicode Inc. (1998), Draft Unicode Technical Report #15: Unicode Normalization Forms, revision #10
(12/16/88). http://www.unicode.org/unicode/reports/tr15/tr15-10.html

ANSI/IEEE Std 754-1985: IEEE Standard for Binary Floating-Point Arithmetic. Institute of Electrical and
Electronics Engineers, New York (1985).

4 Overview

5 Notational Conventions

6 Source Text

ECMAScript source text is represented as a sequence of characters representable usingin the Unicode
version 2.0 character encoding, version 2.1 or later, using the UTF-16 transformation format.

We’re proposing to update the standard to reference Unicode 2.1 rather than Unicode 2.0
everywhere it references a particular version of Unicode. Unicode 2.1 is the last major revision of
the standard; it includes many corrections to the character database, and adds two new characters,
one of which is the Euro symbol.

The purpose of adding “UTF-16” above is to back up the reference to “16-bit values” below. Other
than that, the exact bit patterns used aren’t all that important—they do become important, however,
when you’re talking about characters in a String.

SourceCharacter ::
any Unicode character

Except within comments and string literals, every ECMAScript program shall consist of only characters from
the first 128 Unicode characters code points (that is, the first half of row zero). Other Unicode characters
may appear only within comments and string literals. In string literals, any Unicode character may also be
expressed as a Unicode escape sequence consisting of six characters from the first 128 characters,
namely \u plus four hexadecimal digits. Within a comment, such an escape sequence is effectively ignored
as part of the comment. Within a string literal, the Unicode escape sequence contributes one character to
the string value of the literal.

The rationale behind the change of “characters” to “code points” above is to get rid of the
repetition of the word “characters” in that sentence. In addition, we thought “first 128 characters”
might be a little ambiguous.

Although the characters in an ECMAScript program are Unicode characters, they are treated as
independent 16-bit values with none of the context-dependent interpretation specified in the Unicode
standard. Such values are often called “code points”. The Unicode standard refers to code points as
“coded character data elements”. Throughout this International standard the terms “character” and “code
point” are understood to mean “coded character data element”.

NOTE ECMAScript differs from the Java™ programming language in the behaviour of Unicode escape sequences. In
a Java™ program, if the Unicode escape sequence \u000A, for example, occurs within a single-line comment, it is
interpreted as a line terminator (Unicode character 000A is line feed) and therefore the next character is not part of the
comment. Similarly, if the Unicode escape sequence \u000A occurs within a string literal in a Java™ program, it is
likewise interpreted as a line terminator, which is not allowed within a string literal—one must write \n instead of
\u000A to cause a line feed to be part of the string value of a string literal. In an ECMAScript program, a Unicode
escape sequence occurring within a comment is never interpreted and therefore cannot contribute to termination of the
comment. Similarly, a Unicode escape sequence occurring within a string literal in an ECMAScript program always
contributes a character to the string value of the literal and is never interpreted as a line terminator or as a quote mark
that might terminate the string literal.

7 Lexical Conventions

8 Types

8.1 The Undefined Type

8.2 The Null Type

8.3 The Boolean Type

8.4 The String Type

The String type is used to represent textual data in a running ECMAScript program and consists of the set
of all finite ordered sequences of zero or more 16-bit Unicode characters (more properly referred to as code
points; section 6). Each character is regarded as occupying a position within the sequence. These positions
are identified by nonnegative integers. The leftmost character (if any) is at position 0, the next character (if
any) at position 1, and so on. The length of a string is the number of distinct positions within it. The empty
string has length zero and therefore contains no characters.

Text stored in a String must be treated as a sequence of 16-bit unsigned integers, regardless of how the
characters are actually storeed. This format is the standard Unicode format, and is equivalent to the UTF-
16 transformation format in the ISO/IEC 10646 universal character encoding.

The reason for specifying the transformation format is that UTF-8, UTF-16, and UCS-4 would all
have different character positions within the same string—surrogate pairs in UTF-16 are single
characters in UCS-4, and single characters in UCS-4 can occupy one, two, three, or four bytes in
UTF-8. The idea here is to standardize things here so that offsets within Strings are always
interpreted as if the String were stored in UTF-16.

Because Unicode can represent single characters with a sequence of code points (a “combining character
sequence”), and UTF-16 represents characters with code-point values above 0xFFFF as a sequence of two
16-bit code points (a “surrogate pair”), it is possible for string operations to affect the semantics of the
characters in the string (by breaking up combining character sequences and surrogate pairs). All of the
built-in String operations in this standard (except toUpperCase() and toLowerCase() treat a String as a
sequence of 16-bit integer values and make no attempt to protect the integrity of these sequences.

This was part of the long discussion we had on the subject of normalization at the 1/11 meeting. We
all agreed that all core-language functions that operate on Strings (except toUpperCase() and
toLowerCase()) completely ignore the semantics of the characters they operate on. Strings are
treated as sequences of undifferentiated 16-bit values. There is nothing to stop a user from splitting
up a combining character sequence or concatenating a string that begins with a combining diacritic
to the end of another string (which changes the interpretation of that string’s last character). No
automatic normalization happens, and the programmer is responsible for not messing up his strings.

It is also possible to represent the same string with several different sequences of code points. The built-in
String operations do not take this into account when comparing Strings for equality. Because of this, we
recommend that text coming into the environment of a running ECMAScript program from the host
environment be converted to Unicode Normalized Form C (canonical composition). Usually this process
would occur at the same time as incoming text is converted from its original character encoding into
Unicode. However, string literals in ECMAScript source code should never be normalized, and none of the
built-in String functions automatically normalize either their inputs or their results.

This was also part of the long discussion on normalization at the 1/11 meeting. We all agreed to
relax the requirement that strings be normalized to a recommendation (in the case of strings coming
in through the embedding), and to explicitly not allow automatic normalization of strings within the
running program’s environment.

1.58.5 The Number Type

8.6 The Object Type

8.7 The Reference Type

8.8 The List Type

8.9 The Completion Type

9 Type Conversion

9.1 ToPrimitive

9.2 ToBoolean

9.3 ToNumber

9.3.1 ToNumber Applied to the String Type

ToNumber applied to strings applies the following grammar to the input string. If the grammar cannot
interpret the string as an expansion of StringNumericLiteral, then the result of ToNumber is NaN.

StringNumericLiteral :::
StrWhiteSpaceopt

StrWhiteSpaceopt StrNumericLiteral StrWhiteSpaceopt

StrWhiteSpace :::
StrWhiteSpaceChar StrWhiteSpaceopt

StrWhiteSpaceChar :::
<TAB>
<SP>
<FF>
<VT>
<CR>
<LF>
All Unicode white-space characters (i.e., everything defined in the Unicode character database as
belonging to categories Zs, Zp, or Zl).

We discussed extended the definition of DecimalDigit similarly, and we also considered adding
proper interpretation of other Unicode mathematical operators (particularly the minus sign), but
decided to leave all that to the internationalization package. The expanded definition of white space
here is to make sure that all white space is treated as white space rather than merely as illegal
characters.

StrNumericLiteral :::
StrDecimalLiteral
+ StrDecimalLiteral
- StrDecimalLiteral
HexIntegerLiteral

StrDecimalLiteral :::
Infinity
 DecimalDigits . DecimalDigitsopt ExponentPartopt

. DecimalDigits ExponentPartopt

DecimalDigits ExponentPartopt

DecimalDigits :::
DecimalDigit
DecimalDigits DecimalDigit

DecimalDigit ::: one of
0 1 2 3 4 5 6 7 8 9

ExponentPart :::
ExponentIndicator SignedInteger

ExponentIndicator ::: one of
e E

SignedInteger :::
DecimalDigits
+ DecimalDigits
- DecimalDigits

HexIntegerLiteral :::
0x HexDigit
0X HexDigit
HexIntegerLiteral HexDigit

HexDigit ::: one of
0 1 2 3 4 5 6 7 8 9 a b c d e f A B C D E F

Some differences should be noted between the syntax of a StringNumericLiteral and a NumericLiteral
(section Error! Reference source not found.):

• A StringNumericLiteral may be preceded and/or followed by whitespace and/or line terminators.
• A StringNumericLiteral may not use octal notation.
• A StringNumericLiteral that is decimal may have any number of leading 0 digits.
• A StringNumericLiteral that is decimal may be preceded by + or - to indicate its sign.
• A StringNumericLiteral that is empty or contains only whitespace is converted to +0.

The conversion of a string to a number value is similar overall to the determination of the number value for
a numeric literal (section Error! Reference source not found.), but some of the details are different, so the
process for converting a string numeric literal to a value of Number type is given here in full. This value is
determined in two steps: first, a mathematical value (MV) is derived from the string numeric literal; second,
this mathematical value is rounded, ideally using IEEE 754 round-to-nearest mode, to a representable
value of the number type.

• The MV of StringNumericLiteral ::: (an empty character sequence) is 0.
• The MV of StringNumericLiteral ::: StrWhiteSpace is 0.
• The MV of StringNumericLiteral ::: StrWhiteSpaceopt StrNumericLiteral StrWhiteSpaceopt is the MV of

StrNumericLiteral, no matter whether whitespace is present or not.
• The MV of StrNumericLiteral ::: StrDecimalLiteral is the MV of StrDecimalLiteral.
• The MV of StrNumericLiteral ::: + StrDecimalLiteral is the MV of StrDecimalLiteral.
• The MV of StrNumericLiteral ::: - StrDecimalLiteral is the negative of the MV of StrDecimalLiteral.

(Note that if the MV of StrDecimalLiteral is 0, the negative of this MV is also 0. The rounding rule
described below handles the conversion of this signless mathematical zero to a floating-point +0 or −−0
as appropriate.)

• The MV of StrNumericLiteral ::: HexIntegerLiteral is the MV of HexIntegerLiteral.
• The MV of StrDecimalLiteral ::: Infinity is 1010000 (a value so large that it will round to +∞∞).
• The MV of StrDecimalLiteral ::: DecimalDigits. is the MV of DecimalDigits.
• The MV of StrDecimalLiteral ::: DecimalDigits. DecimalDigits is the MV of the first DecimalDigits plus

(the MV of the second DecimalDigits times 10−n), where n is the number of characters in the second
DecimalDigits.

• The MV of StrDecimalLiteral ::: DecimalDigits. ExponentPart is the MV of DecimalDigits times 10e,
where e is the MV of ExponentPart.

• The MV of StrDecimalLiteral ::: DecimalDigits. DecimalDigits ExponentPart is (the MV of the first
DecimalDigits plus (the MV of the second DecimalDigits times 10−n)) times 10e, where n is the number
of characters in the second DecimalDigits and e is the MV of ExponentPart.

• The MV of StrDecimalLiteral :::. DecimalDigits is the MV of DecimalDigits times 10−n, where n is the
number of characters in DecimalDigits.

• The MV of StrDecimalLiteral :::. DecimalDigits ExponentPart is the MV of DecimalDigits times 10e−n,
where n is the number of characters in DecimalDigits and e is the MV of ExponentPart.

• The MV of StrDecimalLiteral ::: DecimalDigits is the MV of DecimalDigits.
• The MV of StrDecimalLiteral ::: DecimalDigits ExponentPart is the MV of DecimalDigits times 10e,

where e is the MV of ExponentPart.
• The MV of DecimalDigits ::: DecimalDigit is the MV of DecimalDigit.
• The MV of DecimalDigits ::: DecimalDigits DecimalDigit is (the MV of DecimalDigits times 10) plus the

MV of DecimalDigit.
• The MV of ExponentPart ::: ExponentIndicator SignedInteger is the MV of SignedInteger.
• The MV of SignedInteger ::: DecimalDigits is the MV of DecimalDigits.
• The MV of SignedInteger ::: + DecimalDigits is the MV of DecimalDigits.
• The MV of SignedInteger ::: - DecimalDigits is the negative of the MV of DecimalDigits.
• The MV of DecimalDigit ::: 0 or of HexDigit ::: 0 is 0.
• The MV of DecimalDigit ::: 1 or of HexDigit ::: 1 is 1.
• The MV of DecimalDigit ::: 2 or of HexDigit ::: 2 is 2.
• The MV of DecimalDigit ::: 3 or of HexDigit ::: 3 is 3.
• The MV of DecimalDigit ::: 4 or of HexDigit ::: 4 is 4.
• The MV of DecimalDigit ::: 5 or of HexDigit ::: 5 is 5.
• The MV of DecimalDigit ::: 6 or of HexDigit ::: 6 is 6.
• The MV of DecimalDigit ::: 7 or of HexDigit ::: 7 is 7.
• The MV of DecimalDigit ::: 8 or of HexDigit ::: 8 is 8.
• The MV of DecimalDigit ::: 9 or of HexDigit ::: 9 is 9.
• The MV of HexDigit ::: a or of HexDigit ::: A is 10.
• The MV of HexDigit ::: b or of HexDigit ::: B is 11.
• The MV of HexDigit ::: c or of HexDigit ::: C is 12.
• The MV of HexDigit ::: d or of HexDigit ::: D is 13.
• The MV of HexDigit ::: e or of HexDigit ::: E is 14.
• The MV of HexDigit ::: f or of HexDigit ::: F is 15.
• The MV of HexIntegerLiteral ::: 0x HexDigit is the MV of HexDigit.
• The MV of HexIntegerLiteral ::: 0X HexDigit is the MV of HexDigit.
• The MV of HexIntegerLiteral ::: HexIntegerLiteral HexDigit is (the MV of HexIntegerLiteral times 16)

plus the MV of HexDigit.

Once the exact MV for a string numeric literal has been determined, it is then rounded to a value of the
Number type. If the MV is 0, then the rounded value is +0 unless the first non-whitespace character in the
string numeric literal is ‘-’, in which case the rounded value is −0. Otherwise, the rounded value must be the
number value for the MV (in the sense defined in section 8.5), unless the literal includes a StrDecimalLiteral
and the literal has more than 20 significant digits, in which case the number value may be either the
number value for the MV of a literal produced by replacing each significant digit after the 20th with a 0 digit
or the number value for the MV of a literal produced by replacing each significant digit after the 20th with a
0 digit and then incrementing the literal at the 20th digit position. A digit is significant if it is not part of an
ExponentPart and (either it is not 0 or (there is a nonzero digit to its left and there is a nonzero digit, not in
the ExponentPart, to its right)).

1.49.4 ToInteger

9.5 ToInt32: (Signed 32 Bit Integer)

9.6 ToUint32: (Unsigned 32 Bit Integer)

9.7 ToUint16: (Unsigned 16 Bit Integer)

9.8 ToString

9.9 ToObject

10 Execution Contexts

11 Expressions

11.1 Primary Expressions

11.2 Left-Hand-Side Expressions

11.3 Postfix Expressions

11.4 Unary Operators

11.5 Multiplicative Operators

11.6 Additive Operators

11.7 Bitwise Shift Operators

11.8 Relational Operators

11.8.1 The Less-than Operator (<)

11.8.2 The Greater-than Operator (>)

11.8.3 The Less-than-or-equal Operator (<=)

11.8.4 The Greater-than-or-equal Operator (>=)

11.8.5 The Abstract Relational Comparison Algorithm

The comparison x < y, where x and y are values, produces true, false, or undefined (which indicates that
at least one operand is NaN). Such a comparison is performed as follows:

1. Call ToPrimitive(x, hint Number).
2. Call ToPrimitive(y, hint Number).
3. If Type(Result(1)) is String and Type(Result(2)) is String, go to step 16. (Note that this step differs from

step 7 in the algorithm for the addition operator + in using and instead of or.)
4. Call ToNumber(Result(1)).
5. Call ToNumber(Result(2)).
6. If Result(4) is NaN, return undefined.
7. If Result(5) is NaN, return undefined.
8. If Result(4) and Result(5) are the same number value, return false.
9. If Result(4) is +0 and Result(5) is −−0, return false.
10. If Result(4) is −−0 and Result(5) is +0, return false.
11. If Result(4) is +∞∞, return false.
12. If Result(5) is +∞∞, return true.

13. If Result(5) is −−∞∞, return false.
14. If Result(4) is −−∞∞, return true.
15. If the mathematical value of Result(4) is less than the mathematical value of Result(5)—note that these

mathematical values are both finite and not both zero—return true. Otherwise, return false.
16. If Result(2) is a prefix of Result(1), return false. (A string value p is a prefix of string value q if q can be

the result of concatenating p and some other string r. Note that any string is a prefix of itself, because r
may be the empty string.)

17. If Result(1) is a prefix of Result(2), return true.
18. Let k be the smallest nonnegative integer such that the character at position k within Result(1) is

different from the character at position k within Result(2). (There must be such a k, for neither string is a
prefix of the other.)

19. Let m be the integer that is the Unicode encoding for the character at position k within Result(1).
20. Let n be the integer that is the Unicode encoding for the character at position k within Result(2).
21. If m < n, return true. Otherwise, return false.

NOTE The comparison of strings uses a simple lexicographic ordering on sequences of Unicode code point values.
There is no attempt to use the more complex, semantically oriented definitions of character or string equality and
collating order defined in the Unicode 2.0 specification. This means that strings which are canonically equal according
to the Unicode standard could test as unequal. In effect, this algorithm assumes both strings are already in normalized
form.

11.8.6 The instanceof operator

11.8.7 The in operator

11.9 Equality Operators

11.9.1 The Equals Operator (==)

11.9.2 The Does-not-equals Operator (!=)

11.9.3 The Abstract Equality Comparison Algorithm

The comparison x == y, where x and y are values, produces true or false. Such a comparison is performed
as follows:

1. If Type(x) is different from Type(y), go to step 14.
2. If Type(x) is Undefined, return true.
3. If Type(x) is Null, return true.
4. If Type(x) is not Number, go to step 11.
5. If x is NaN, return false.
6. If y is NaN, return false.
7. If x is the same number value as y, return true.
8. If x is +0 and y is −−0, return true.
9. If x is −−0 and y is +0, return true.
10. Return false.
11. If Type(x) is String, then return true if x and y are exactly the same sequence of characters (same

length and same characters in corresponding positions). Otherwise, return false..
12. If Type(x) is Boolean, return true if x and y are both true or both false. Otherwise, return false.
13. Return true if x and y refer to the same object. Otherwise, return false.
14. If x is null and y is undefined, return true.
15. If x is undefined and y is null, return true.
16. If Type(x) is Number and Type(y) is String,

return the result of the comparison x == ToNumber(y).
17. If Type(x) is String and Type(y) is Number,

return the result of the comparison ToNumber(x) == y.
18. If Type(x) is Boolean, return the result of the comparison ToNumber(x) == y.
19. If Type(y) is Boolean, return the result of the comparison x == ToNumber(y).
20. If Type(x) is either String or Number and Type(y) is Object,

return the result of the comparison x == ToPrimitive(y).
21. If Type(x) is Object and Type(y) is either String or Number,

return the result of the comparison ToPrimitive(x) == y.
22. Return false.

NOTE Given the above definition of equality::

String comparison can be forced by: "" + a == "" + b.

Numeric comparison can be forced by: a - 0 == b - 0.

Boolean comparison can be forced by: !a == !b.

The equality operators maintain the following invariants:

1. A != B is equivalent to !(A == B).

2. A == B is equivalent to B == A, except in the order of evaluation of A and B.

The equality operator is not always transitive. For example, there might be two distinct string objects, each
representing the same string value; each string object would be considered equal to the string value by the ==
operator, but the two string objects would not be equal to each other.

The comparison of strings uses a simple lexicographic ordering on sequences of Unicode code point values. There
is no attempt to use the more complex, semantically oriented definitions of character or string equality and collating
order defined in the Unicode specification. This means that strings which are canonically equal according to the
Unicode standard could test as unequal. In effect, this algorithm assumes both strings are already in normalized
form.

Comparison of strings uses a simple equality test on sequences of Unicode code point values. There is no attempt
to use the more complex, semantically oriented definitions of character or string equality and collating order
defined in the Unicode 2.0 specification.

11.9.4 The Strict Equals Operator (===)

11.9.5 The Strict Does-not-equal Operator (!==)

11.9.6 The Strict Equality Comparison Algorithm

11.10 Binary Bitwise Operators

11.11 Binary Logical Operators

11.12 Conditional Operator (?:)

11.13 Assignment Operators

11.14 Comma Operator (,)

12 Statements

13 Function Definition

14 Program

15 Native ECMAScript Objects

15.1 The Global Object

15.2 Object Objects

15.2.1 The Object Constructor Called as a Function

15.2.2 The Object Constructor

15.2.3 Properties of the Object Constructor

15.2.4 Properties of the Object Prototype Object

15.2.4.1 Object.prototype.constructor

15.2.4.2 Object.prototype.toString ()

15.2.4.3 Object.prototype.toLocaleString(locale)

This function merely calls toString(): the locale parameter is ignored.

This is here so that all ECMAScript objects have a toLocaleString() method. The default behavior is
to call toString(); this is only different for Number, Date, and Array objects (and possibly user-
defined objects). Having toLocaleString() on everything allows Array to produce localized results
without having to worry about what specifically is stored in it.

The locale parameter is here to allow the user to specify a locale if the external I18N package is
present (in which case that library defines the type of this parameter); otherwise, this parameter is
ignored by the toLocaleString() functions in the core language.

15.2.4.315.2.4.4 Object.prototype.valueOf ()

15.2.4.5 Object.prototype.hasProperty(V)

15.2.4.6 Object.prototype.hasDelegate(V)

15.2.4.7 Object.prototype.propertyIsEnumerable(V)

15.2.5 Properties of Object Instances

15.3 Function Objects

15.4 Array Objects

15.4.1 The Array Constructor Called as a Function

15.4.2 The Array Constructor

15.4.3 Properties of the Array Constructor

15.4.4 Properties of the Array Prototype Object

15.4.4.1 Array.prototype.constructor

15.4.4.2 Array.prototype.toString ()

The elements of this object are converted to strings using their toString() methods, and these strings are
then concatenated, separated by comma characters. The result is the same as if the built-in join method
were invoked for this object with no argument.

15.4.4.3 Array.prototype.toLocaleString(locale)

The elements of this object are converted to strings using their toLocaleString(locale) methods. The locale
parameter to this function is passed through to all of the other toLocaleString() calls. These strings are then
concatenated, separated by comma characters.

15.4.4.315.4.4.4 Array.prototype.concat(array1, array2, …)Array.prototype.concat ([item1 [,
item2 [, …]]])

15.4.4.415.4.4.5 Array.prototype.join (separator)

15.4.4.515.4.4.6 Array.prototype.pop ()

15.4.4.615.4.4.7 Array.prototype.push (item1, item2, …)

15.4.4.715.4.4.8 Array.prototype.reverse ()

15.4.4.815.4.4.9 Array.prototype.shift ()

15.4.4.915.4.4.10 Array.prototype.slice (start [,end])

15.4.4.1015.4.4.11 Array.prototype.sort (comparefn)

15.4.4.1115.4.4.12 Array.prototype.splice(start, deleteCount, item1, item2,
…)Array.prototype.splice (start, deleteCount [, item1 [, item2 [, …]]])

15.4.4.1215.4.4.13 Array.prototype.unshift(item1, item2, …)Array.prototype.unshift ([item1 [,
item2 [, …]]])

15.4.5 Properties of Array Instances

15.5 String Objects

15.5.1 The String Constructor Called as a Function

15.5.2 The String Constructor

15.5.3 Properties of the String Constructor

The value of the internal [[Prototype]] property of the String constructor is the Function prototype object.

15.5.4 Properties of the String Prototype Object

15.5.4.1 String.prototype.constructor

15.5.4.2 String.prototype.toString ()

15.5.4.3 String.prototype.valueOf ()

15.5.4.4 String.prototype.charAt (pos)

15.5.4.5 String.prototype.charCodeAt (pos)

15.5.4.6 String.prototype.concat (string1, string2, …)

15.5.4.7 String.prototype.indexOf (searchString, position)

15.5.4.8 String.prototype.lastIndexOf (searchString, position)

15.5.4.9 String.prototype.slice (start [, end])

15.5.4.10 String.prototype.split (separator)

15.5.4.11 String.prototype.substring (start [, end])

15.5.4.12 String.prototype.toLowerCase (locale)

Returns a string equal in length to the length of the result of converting this object to a string.If this object is
not a String, it is converted to a String. The characters in that String are converted one by one to lower
case. The result is a string value, not a string object.

The characters in the String are converted one by one. The result of each conversion is the original
character, Every character of the result is equal to the corresponding character of the string, unless that
character has a Unicode 2.10 lowercase equivalent, in which case the lowercase equivalent is used
instead. (The canonical Unicode 2.0 case mapping shall be used, which does not depend on
implementation or locale.) The result is intended to be produced in a locale-sensitive way. ECMAScript
implementations supporting the external internationalization package should vector through to an
appropriate routine in that package, passing the locale parameter through. Implementations not supporting
the internationalization package should ignore the locale parameter and produce a result that is correct for
the system default locale, if possible, and fall back on the canonical Unicode case mappings otherwise.

We’re specifically proposing changing toLowerCase() and toUpperCase() to have language-specific
behavior (the canonical Unicode case mappings get you about 95% of the way there, so this isn’t
that hard). Again, if the I18N package is there, these functions are supposed to vector through to it
and it defines the interpretation of that parameter. If the I18N package isn’t there, the parameter is
ignored, and you either get locale-specific behavior if it’s available from the host environment or
fall back on the canonical mappings.

Note that the toLowerCase function is intentionally generic; it does not require that its this value be a
string object. Therefore, it can be transferred to other kinds of objects for use as a method.

15.5.4.13 String.prototype.toUpperCase (locale)

Returns a string equal in length to the length of the result of converting this object to a string. If this object is
not a String, it is converted to a String. The characters in that String are converted one by one to upper
case. The result is a string value, not a string object.

Every character of the result is equal to the corresponding character of the string, The characters in the
String are converted one by one. The result of each conversion is the original character, unless that
character has a Unicode 2.10 uppercase equivalent, in which case the uppercase equivalent is used
instead. (The canonical Unicode 2.0 case mapping shall be used, which does not depend on
implementation or locale.) The result is intended to be produces in a locale-sensitive way. ECMAScript
implementations supporting the external internationalization package should vector through to an
appropriate routine in that package, passing the locale parameter through. Implementations not supporting
the internationalization package should ignore the locale parameter and produce a result that is correct for
the system default locale, if possible, and fall back to the canonical Unicode case mappings otherwise.

Note that the toUpperCase function is intentionally generic; it does not require that its this value be a
string object. Therefore, it can be transferred to other kinds of objects for use as a method.

15.5.4.14 String.prototype.normalize()

Converts the String to Unicode Normalized Form C (canonical decomposition followed by canonical
composition) as described in Unicode Technical Report #15. The result is semantically equal to the input
string. If the input string was already properly normalized, the result is identical to the input string.

The purpose of this function is to convert a String into its canonical representation. Normalizing two strings
before comparing them ensures that two strings that the Unicode standard says are equal are actually
treated as equal by the program. If an ECMAScript implementation produces normalized text as part of the
process of translating from the native character encoding to Unicode, programmers should not have to
worry about normalization unless they’re dealing with malformed Unicode text (e.g., sequences that begin
with combining characters, or sequences containing isolated surrogate characters) or deliberately create
non-normalized strings themselves.

We had originally taken normalize() out of this proposal and put it in the external library, but there
seemed to be widespread consensus that it was needed in the core language. The data tables
necessary to do normalization are currently about 40K in size (although it might be possible to do
better), so we may need some kind of escape hatch here.

15.5.5 Properties of String Instances

15.6 Boolean Objects

15.7 Number Objects

15.7.1 The Number Constructor Called as a Function

15.7.2 The Number Constructor

15.7.3 Properties of the Number Constructor

15.7.4 Properties of the Number Prototype Object

15.7.4.1 Number.prototype.constructor

15.7.4.2 Number.prototype.toString (radix)

15.7.4.3 Number.prototype.toLocaleString(locale)

Produces a String that represents the value of the Number formatted according to the conventions of the
specified locale. If the implementation supports the external internationalization package, this function
should vector through to an appropriate routine in that package, passing the locale parameter through.
Otherwise, it should ignore the locale parameter and produce a result that is formatted correctly for the
system default locale. If this is not possible, this function is permitted to fall back on toString().

15.7.4.315.7.4.4 Number.prototype.valueOf ()

15.7.5 Properties of Number Instances

15.8 The Math Object

15.9 Date Objects

15.9.1 Overview of Date Objects and Definitions of Internal Operators

15.9.2 The Date Constructor Called as a Function

15.9.3 The Date Constructor

15.9.4 Properties of the Date Constructor

15.9.5 Properties of the Date Prototype Object

15.9.5.1 Date.prototype.constructor

15.9.5.2 Date.prototype.toString ()

15.9.5.3 Date.prototype.valueOf ()

15.9.5.4 Date.prototype.getTime ()

15.9.5.5 Date.prototype.getYear ()

15.9.5.6 Date.prototype.getFullYear ()

15.9.5.7 Date.prototype.getUTCFullYear ()

15.9.5.8 Date.prototype.getMonth ()

15.9.5.9 Date.prototype.getUTCMonth ()

15.9.5.10 Date.prototype.getDate ()

15.9.5.11 Date.prototype.getUTCDate ()

15.9.5.12 Date.prototype.getDay ()

15.9.5.13 Date.prototype.getUTCDay ()

15.9.5.14 Date.prototype.getHours ()

15.9.5.15 Date.prototype.getUTCHours ()

15.9.5.16 Date.prototype.getMinutes ()

15.9.5.17 Date.prototype.getUTCMinutes ()

15.9.5.18 Date.prototype.getSeconds ()

15.9.5.19 Date.prototype.getUTCSeconds ()

15.9.5.20 Date.prototype.getMilliseconds ()

15.9.5.21 Date.prototype.getUTCMilliseconds ()

15.9.5.22 Date.prototype.getTimezoneOffset ()

15.9.5.23 Date.prototype.setTime (time)

15.9.5.24 Date.prototype.setMilliseconds (ms)

15.9.5.25 Date.prototype.setUTCMilliseconds (ms)

15.9.5.26 Date.prototype.setSeconds (sec [, ms])

15.9.5.27 Date.prototype.setUTCSeconds (sec [, ms])

15.9.5.28 Date.prototype.setMinutes (min [, sec [, ms]])

15.9.5.29 Date.prototype.setUTCMinutes (min [, sec [, ms]])

15.9.5.30 Date.prototype.setHours (hour [, min [, sec [, ms]]])

15.9.5.31 Date.prototype.setUTCHours (hour [, min [, sec [, ms]]])

15.9.5.32 Date.prototype.setDate (date)

15.9.5.33 Date.prototype.setUTCDate (date)

15.9.5.34 Date.prototype.setMonth (month [, date])

15.9.5.35 Date.prototype.setUTCMonth (month [, date])

15.9.5.36 Date.prototype.setFullYear (year [, month [, date]])

15.9.5.37 Date.prototype.setUTCFullYear (year [, month [, date]])

15.9.5.38 Date.prototype.toLocaleString (locale)

This function returns a string value. The contents of the string are implementation-dependent, but are
intended to represent the Date in a convenient, human-readable form appropriate to the geographic or
cultural locale. If an ECMAScript implementation supports the external internationalization package, this
function should vector through the appropriate function in that library, passing the locale parameter along.
Otherwise, it should ignore the locale parameter and produce a result appropriate to the current system
default locale. Failing this, it is permissible to fall back on toString().

15.9.5.39 Date.prototype.toUTCString ()

15.9.5.40 Date.prototype.toGMTString ()

15.9.6 Properties of Date Instances

16 Errors

17 Compatibility

Our original proposal also suggested some extensions (and some explanatory language) to the
section on regular expressions. Since this working draft of the standard doesn’t have the sections
on regular expressions, we had nowhere to introduce these changes. Presumably, the whole
regular-expression syntax is the subject of a different proposal that hasn’t been integrated into the
working draft yet—the proper place for our changes is there.

