ECMA/TC39-TG1/0V14
ECMA TC 39 TG 1 Meeting

Dat e: 27/ 08/ 2001

Location: Mcrosoft, Rednond, WA

Convenor: Peter Torr (M)

Att endees: Wl demar Horwat (Netscape)
Patrick Beard (Netscape)
Her man Venter (M crosoft)
Eric Lippert (Mcrosoft)
Peter Torr (M crosoft)

Prelimnaries

The minutes of the last neeting, whilst |late, were deemed OK by
everyone.

ECVAScri pt 4 Processes

We had a snall discussion about how we are progressing on the
standard. W decided that the convenor should be responsible for
naggi ng people to get assigned tasks done. W al so decided to

regul arly have phone conversati ons between neetings. As far as
actually witing the docunment goes, Wl demar wi shes to spend the next
few nonths witing up the core, and then individual chapters will be
handed off to individual nmenbers for conpletion. W will use a
process simlar to ECMAScript Edition 3, where chapters go through
various stages, etc. The current schedul e for discussing the docunent
is as foll ows:

Chapters 9 and 10: August

Chapters 5, 8, 11, and 12: Septenber

Chapters 13, 14, and 15: Cctober

Chapters 16, 17, 18, 19, and 20: Novenber
Chapters 21, 22, and 23.1: Decenber

C eanup : January - March

Chapters 1, 2, 3, and 4 can be witten in parallel

* 0k X F 3k X F

Wl denmar believes this schedul e is aggressive, but achi evable. There
is a good chance of success.

Upcom ng Communi cati ons

W will have a tel ephone conversation at 10 amon Friday, 14th of
Septenber. | will send out information about the call (nunber,
neeting ID, etc.) closer to the date.

Qur next nmeeting will NOT be at HP with the rest of the TGs, as

Herman will not be able to attend. Instead, we will meet at Netscape
on Monday, 1st of Cctober, at 9:30 am

Hoi sting Al gorithm

ECMA/TC39-TG1/0V/14

After discussing various options, we settled on a sinple algorithm
that preserves | egacy code but enables true bl ock scoping for
ECVAScript 4 prograns. The algorithmis as foll ows:

1. If all declarations of a variable are not decorated (they have no
type
annotations or other attributes), it is treated as an ECVAScri pt
3
declaration and it is hoisted to the enclosing function or gl oba
scope

2. If one or nore of the declarations of a variable are decorated,
t he
declaration is hoisted to the enclosing function or global scope,
but
the hoisted value will always generate an error when accessed

3. If a conpiler can detect that access to a hoisted variable will
al ways

fail (ie, it is covered by #2 above), it nmay give a conpile-tine
error;

otherwi se, the error occurs at run-tine

One inportant inplication of this algorithmis that a declaration in
an inner scope wll shadow decl arations at an outer scope, thus
maki ng them i naccessi bl e. For exanpl e:

I Begin Code ---------- \\
/1l dobal x
var x : int = 42

function foo(b)

{ .
if (b)
/] Declare x local to the if block. Not only is this x
/1 not accessible outside of this block, but the gl oba
/1 x is not accessible el sewhere in the function
var x : int = 123
}
/1 lllegal; doesn't access the global x because the x decl ared
/1 above is hoisted to function scope as a val ue that always
/1 throws when accessed
/1 This may be caught at conpile-tine or run-tine
print(x)
}
R End Code ---------- \\

It was al so decided that [oop control variables would be scoped to
the bl ock conprising the | oop, not to the encl osing scope.

The .class Built-in Property

W decided to renove .class fromthe Netscape proposal as it was not
cl ear what use the resultant value would be without a defined
reflection nmechanismin ECVMAScript. There are no other areas of the

ECMA/TC39-TG1/0V/14

proposal that are affected by this, but we will re-visit it in a
future edition of the | anguage.

Inplicit Late Binding

Otentines, a script author may have a variable of t type T, but they
know it will contain a reference to a sub-type of T, say U. It would
be very convenient for themto access nenbers of Udirectly fromt,

wi thout performng a cast. For exanple:

L Begin Code ---------- \\

/] Base class; no interesting nenbers
class T {}

// Derived class adds a function 'f'
class U extends T

{
}

/1 Factory nmethod that is typed to return a T,
// but in sone situations returns a U instead
function Getbhject(flag) : T

if (flag)
return new U

function f() {}

el se
return new T

}

/1 Declare variable of type T, but the author knows it
/1 will contain a Uat run-tinme. This type may al so have
/1 been inferred by the conpiler if no explicit type was
/1 given.

var t : T = Get Qbject(true)

/1 Access Us nethod wi thout an explicit cast

t.f()

In situations such as the above, the conpiler should enmit a warning
for the access tot.f, stating that it may fail at run-tine, and
generate a | ate-bound | ookup for f. In this exanple, the | ookup will
succeed, but in other exanples it nmay fail

W had anot her |ong discussion about arrays, but came to a concl usion
this time. We decided the type hierarchy would | ook like this:

Array

|
Array[T]
I\

T[] List[T]

ECMA/TC39-TG1/0V/14

I
T n]

Wer e:

Array denotes any kind of array, with elenents of any type
Array[T] denotes any kind of array, with elenents of type T

T[] denotes a non-resizable of any size, with elenents of type T
T[n] denotes a non-resizable of size n, with elenents of type T
Li st[T] denotes a resizable of any size, with elenents of type T

L

The rules for constructing / converting these are as foll ows:
* new T[5](a, b, ¢, d, e)
Creates a fixed-size array of 5 items, all of type T
* new List[T](a, b, ¢, d, e)
Creates a resizable array with 5 initial items, all of type T
* new List[T](length : 5)

Creates a new resizable array with an initial length of 5
el ement s,
all of type T (they have the default val ue)

* T[] (existingArray)

Converts an existing array to a fixed-size array of type T. If

existingArray is not already a fixed-size array of T, this
creates

a copy of the array (you | ose object identity)

* List[](existingArray)

Converts an existing array to a resizable array of type T. If
existingArray is not already a resizable array of T, this
creates a

copy of the array (you | ose object identity)

Si nce there was sone confusion and nuch white-board action during the
di scussion of arrays, everyone agreed to try witing sone "typical"
user code using this proposed syntax, and provide feedback to the
list before the tel ephone conversation on Septenber 14th. | wll be
sendi ng out rem nders!

W al so had sone discussions about paraneterised types in general
For Mcrosoft's inplenmentation, when the conpiler sees an expression
such as the foll ow ng:

new expr[val]
if <expr> resolves to a type, and <val > resolves to an integer, a new
array of <expr> things is created with size <val> O herwi se,
ECVAScript 3 rules apply, and the <val > property is retrieved from
<expr>, then called as a constructor. For exanple:

I Begin Code ---------- \\

ECMA/TC39-TG1/01/14
var ob = { x : function() { this.bar = "hello" } }

[/ An array of 5 integers
var vector = new int[5]

/1 An object with a '"bar' property with the value 'hello
var hello = new ob["x"]

Paraneteri sed types need to be able to override the [] operator to
al | ow t hi ngs such as:

var t = new Tree[10]

to declare a Tree of Cbjects with an initial size of 10 nodes,
whi | st :

var t = new Tree[Stri ng]
woul d declare a Tree of Strings with a default initial size. To allow
this, all types will have a default [] operator that returns an

array, but individual types could override / overload the [] operator
to return different val ues as needed.

Posi ti onal and Nanmed Argunents

We had a |l ong discussion about this, but again cane to an agreenent.
The canoni cal exanple for Mcrosoft is the Ofice Cbject Mdel, which
was designed with VB in mnd. There are nany methods in Ofice that
take 20 or nore paraneters, all of which are both positional and
named, and all have default values. JScript users would Iike to be
able to call these the same way VB users can. One of the canonical
exanpl es for Netscape is the new List[T](...) exanple above -- it can
take a variabl e nunber of arguments, or a naned argunent.
W deci ded on the foll ow ng:
* The formal paraneter declaration nmust be in the foll ow ng order:
[posi tional -argunents] [positional-varargs] [naned-argunents]
or
[posi tional -argunents] naned-varargs
and where positional -arguments can be broken down into:
[requi red-positional -argunents] [optional-positional-argunents]
+ To declare a required positional argunent, one uses:
identifier [: Type]
+ To declare an optional position argunent, one uses:

identifier [: Type] = default

+ To decl are positional varargs, one uses:

ECMA/TC39-TG1/0V/14

identifier [: Type]

where if specified, Type nmust be an array type, defaulting to
oj ect[]

+ To declare a nanmed argunent (which nmust be optional), one uses:
named identifier [: Type] = value
+ To decl are nanmed varargs, one uses:
named identifier

where a type is not allowed; <identifier>is an ECMAScri pt
hject with
expando properties representing the additional named arguments.

* The caller nust specify all positional argunents first (including
varar gs),

then any nanmed argunents |ast. Conceptually, the callee wll
receive three

lists of paranmeters: A list of positional paranmeters, a list of
naned

paraneter nanes, and a |list of named paraneter val ues. The
i mpl ement ati on nust

then map those to actual argunents of the function call

Uni code Format Control Characters

Due to issues with not pulling out FCCs, we decided to reverse | ast
nont h' s deci sion, and continue with ECVMAScript Edition 3's rules
about stripping FCCs from String and Regul ar Expression literals.

Addi ti onal notes from \Wal denmar

W decided that a class has no inherent visible properties (not even
toString) but can be converted to a string using the interna
[[ToString]] nmethod. The reason for this is a clash between a
class's static nmenbers and its inherent properties (the instance
nmenbers it has by virtue of being an instance of the type Type).

"new bject" will actually return an instance of a hi dden subtype
(I'1l call it "Z" in this message) of Cbject. bjects of type Z are
the only ones for which one can access their dynam c properties using
the "a.x" notation. Other user-defined classes can be decl ared
dynanmi c, which has the effect of providing a [] operator that
supports reading, witing, and deleting dynam c properties. These
properties would not be visible using the "a.x" notation. | don't
think we need the "fixed" attribute any nore. A prototype of an

obj ect of type Z nmust be either null or another object of type Z
Prototypes are not defined on objects other than type Z

Her man asked that the binary operator dispatch algorithm be extended
to consider inplicit coercions. To avoid hijacking, one of the two
operands must still be an instance of the class (or its subcl asses)

ECMA/TC39-TG1/0V/14

that defined the operator. The C# draft should contain nore

information. |'Il look into this and see if | can nake it work
I"d like to add sonme nore rationale for killing .class. The problem
| had with it was that it conprom sed abstraction -- a factory nethod

could be declared to return objects of class A but actually return
obj ects of hidden subclasses of A Wth unrestricted .class users
could tell what subcl asses these are and then prevent the factory
nmet hod from bei ng evol ved

