ECMA/TC39-TG1/2003/14
ECMA/TC39-TG2/2003/29
ECMA/TC39-TG4/2003/7

TECHNICAL ISO/IEC
REPORT TR
10176

Fourth edition
2003-04-15

Information technology — Guidelines for
the preparation of programming language
standards

Technologies de l'information — Lignes directrices pour la préparation
des normes des langages de programmation

Reference number
ISO/IEC TR 10176:2003(E)

= . © ISO/IEC 2003

michele

michele
ECMA/TC39-TG1/2003/14
ECMA/TC39-TG2/2003/29
ECMA/TC39-TG4/2003/7

michele

michele

michele

michele

michele

michele

ISO/IEC TR 10176:2003(E)

PDF disclaimer

This PDF file may contain embedded typefaces. In accordance with Adobe's licensing policy, this file may be printed or viewed but
shall not be edited unless the typefaces which are embedded are licensed to and installed on the computer performing the editing. In
downloading this file, parties accept therein the responsibility of not infringing Adobe's licensing policy. The ISO Central Secretariat
accepts no liability in this area.

Adobe is a trademark of Adobe Systems Incorporated.

Details of the software products used to create this PDF file can be found in the General Info relative to the file; the PDF-creation
parameters were optimized for printing. Every care has been taken to ensure that the file is suitable for use by ISO member bodies. In
the unlikely event that a problem relating to it is found, please inform the Central Secretariat at the address given below.

© ISO/IEC 2003

All rights reserved. Unless otherwise specified, no part of this publication may be reproduced or utilized in any form or by any means,
electronic or mechanical, including photocopying and microfilm, without permission in writing from either ISO at the address below or
ISO's member body in the country of the requester.

ISO copyright office

Case postale 56 « CH-1211 Geneva 20

Tel. +412274901 11

Fax +41 22749 09 47

E-mail copyright@iso.org

Web www.iso.org
Published in Switzerland

i © ISO/IEC 2003 — Al rights reserved

ISO/IEC TR 10176:2003(E)

Contents Page
0T =NV o iv
L e Yo 11T o2 oY o v
1 £ o o - PSSP 1
2 NOIrMAtiVe FEfEIrE@NCES ...t rr e e n e e n e ee s sn e e e s n e e e e s nne e e e nneeensnnennnnn 1
3 Terms and defiNitioNSooo oo 1
4 L0 T =T 11 4TS 7
4.1 Guidelines for the form and content of standardscccooeooirircccn e 7
4.1.1 Guideline: The general frameWOrKcccciciiiiiiiicicssscrrer s s sssssme e e e s s s s s s sssmse s e e s esssssssssmssessnsssnnnnns 7
41.2 Guideline: Definitions of syntax and semanticsccccciiniiiiiiinci 8
4.1.3 Guidelines on the use of character Sets..........ccoo e 8
4.1.4 Guideline: Error detection reqQUIrements............oooiiiiiiicccccrrrr e 14
4.1.5 Guideline: Exception detection reqUIrements ... 17
4.1.6 Guideline: Static detection of eXCepPLtionscoo i 19
41.7 Guideline: Recovery from non-fatal errors and exceptionscccccvriimiinciincn e, 20
4.1.8 Guideline: Requirements on user documentationcccciirmiiiiiisccc e 20
4.1.9 Guideline: Provision of processor OPtioNSccccccccemiiiriiisccccssecr e csssss e e s s mnnn e s e s s ssnmnnes 20
4.1.10 Guideline: Processor-defined limitsccccoeeooiirirricmmieccrr e e e 22
4.2 Guidelines on PresSentation............cccccceiiiiiiiiccciscrirr s s ms e s e mn e e e e s nsnnn e e e eeeannnn 23
4.21 Guideline: TermMiNOIOQYciiiiiiccerrriririiiiiccssssmrrererr s ssssssssr e e e e e s sssssssmsre e e e e ssasssssmnsseeeessassssnnnenssansssnnnens 23
4.2.2 Guideline: Presentation of SOUIrCe Programs...........cccccceeeiiiicccssmemrernnssssssssssssssssssssssssssssessssssssssssnees 24
4.3 Guidelines on processor dePENUENCE..........c.cccccrrirriiiiicssmmrrr e e ressessssme e e e e e s s se s s nme e e e e s s s s s s snmneeeeeassnn 24
4.3.1 Guideline: Completeness of definition ... 24
4.3.2 Guideline: Optional language featuresccccoiriirinni e ————— 24
4.3.3 Guideline: Management of optional language features..........ccccccvcmriiriiiiinni 24
4.3.4 Guideline: Syntax and semantics of optional language features...........ccccoceimriiiiicninnciicnniccien, 25
4.3.5 Guideline: Predefined keywords and identifiersc.ccccconiimminniicin e 25
4.3.6 Guideline: Definition of optional features ... ———— 25
4.3.7 Guideline: Processor dependence in numerical proCessingccccccveccevmmerrerriisssssssseeeesesssssssssnnees 26
4.4 Guidelines on conformity reqUIremMents.........ccccciiiiccccsimeirre s mnn e e e nan 26
4.5 GUIelines ON SIrategYcccccciiiiiiiicccirerre s e s s s s e e e e s s s s s s amnn e e e e e se s s s smnnn e e e e ssnmnneeeeesannsnn 26
4.51 Guideline: Secondary standards............cccccceiiiiiiiciiissnirre e nr e e nmnnes 26
4.5.2 Guideline: Incremental Standardscccccrrreierrrnrerrr e e 26
4.5.3 Guideline: Consistency of use of guidelinesccccvrriiiinni i —— 27
4.5.4 Guideline: Revision compatibilityc.ccccomiiiiimiiniii e ——————— 27
4.6 Guidelines on Cross-language ISSUESccciiiirriiiiirriiierr s e 29
4.6.1 Guideline: Binding to functional standardsccccvriiinnin e ———— 29
4.6.2 Guideline: Facilitation of BiNdingccccoviiiniii e ————— 29
4.6.3 Guideline: Conformity with multi-level functional standards............cccccmiiiiiiiiiciiiiic s 30
4.6.4 Guideline: Mixed language programmingccccecceerreriiiisicssssssmeeersesssssssssssssssesssssssssssnssssssssssssnens 30
4.6.5 Guideline: ComMmMON €leMENESccceiiiiiirererrr e e e s e n e e e e e e e e e e e s 30
4.6.6 Guideline: Use of data dictionaries..........ccccevereiiimrrriirier e e 30
4.7 Guidelines on Internationalization ... e e 30
4.7.1 Guideline: Cultural convention set switching mechanism............cccccoiiiiiii s 30
4.7.2 Guideline: Cultural convention related functionalitycccccimmriiiiccccic e 31
Annex A (informative) Recommended extended repertoire for user-defined identifiers.......................... 32

© ISO/IEC 2003 — Al rights reserved iii

ISO/IEC TR 10176:2003(E)

Foreword

ISO (the International Organization for Standardization) and IEC (the International Electrotechnical
Commission) form the specialized system for worldwide standardization. National bodies that are members of
ISO or IEC participate in the development of International Standards through technical committees
established by the respective organization to deal with particular fields of technical activity. ISO and IEC
technical committees collaborate in fields of mutual interest. Other international organizations, governmental
and non-governmental, in liaison with ISO and IEC, also take part in the work. In the field of information
technology, ISO and IEC have established a joint technical committee, ISO/IEC JTC 1.

International Standards are drafted in accordance with the rules given in the ISO/IEC Directives, Part 2.

The main task of the joint technical committee is to prepare International Standards. Draft International
Standards adopted by the joint technical committee are circulated to national bodies for voting. Publication as
an International Standard requires approval by at least 75 % of the national bodies casting a vote.

In exceptional circumstances, the joint technical committee may propose the publication of a Technical Report
of one of the following types:

— type 1, when the required support cannot be obtained for the publication of an International Standard,
despite repeated efforts;

— type 2, when the subject is still under technical development or where for any other reason there is the
future but not immediate possibility of an agreement on an International Standard;

— type 3, when the joint technical committee has collected data of a different kind from that which is
normally published as an International Standard (“state of the art”, for example).

Technical Reports of types 1 and 2 are subject to review within three years of publication, to decide whether
they can be transformed into International Standards. Technical Reports of type 3 do not necessarily have to
be reviewed until the data they provide are considered to be no longer valid or useful.

Attention is drawn to the possibility that some of the elements of this document may be the subject of patent
rights. ISO and IEC shall not be held responsible for identifying any or all such patent rights.

ISO/IEC TR 10176, which is a Technical Report of type 3, was prepared by Joint Technical Committee
ISO/IEC JTC 1, Information technology, Subcommittee SC 22, Programming languages, their environments
and system software interfaces.

This fourth edition cancels and replaces the third edition (ISO/IEC 10176:2001), which has been technically
revised.

iv © ISO/IEC 2003 — All rights reserved

ISO/IEC TR 10176:2003(E)

Introduction

Background: Over the last three decades (1966-2002), standards have been produced for a number of
computer programming languages. Each has dealt with its own language in isolation, although to some extent
the drafting committees have become more expert by learning from both the successes and the mistakes of
their predecessors.

The first edition of this Technical Report was produced during the 1980s to put together some of the
experience that had been gained to that time, in a set of guidelines, designed to ease the task of drafting
committees of programming language standards. This second edition enhances the guidelines to take into
account subsequent experiences and developments in the areas of internationalization and character sets.

This document is published as a Technical Report type 3 because the design of programming languages -
and hence requirements relating to their standardization - is still evolving fairly rapidly, and because existing
languages, both standardized and unstandardized, vary so greatly in their properties and styles that
publication as a full standard, even as a standard set of guidelines, did not seem appropriate at this time.

The need for guidelines: While each language, taken as a whole, is unique, there are many individual
features that are common to many, or even to most of them. While standardization should not inhibit such
diversity as is essential, both in the languages and in the form of their standards, unnecessary diversity is
better avoided. Unnecessary diversity leads to unnecessary confusion, unnecessary retraining, unnecessary
conversion or redevelopment, and unnecessary costs. The aim of the guidelines is therefore to help to
achieve standardization across languages and across their standards.

The existence of a guideline will often save a drafting committee from much discussion of detailed points all of
which have been discussed previously for other languages.

Furthermore the avoidance of needless diversity between languages makes it easier for programmers to
switch between one and another.

NOTE Diversity is a major problem because it uses up time and resources better devoted to the essential part, both
by makers and users of standards. Building a language standard is very expensive in resources and far too much time and
effort goes into “reinventing the wheel” and trying to solve again, from the beginning, the same problems that other
committees have faced.

However, a software writer faced with the task of building (say) a support environment (operating system facilities, utilities,
etc.) for a number of different language processors is also faced with many problems from the eventual standards. Quite
apart from the essential differences between the languages, there are to begin with the variations of layout, arrangement,
terminology, metalanguages, etc. Much worse, there are the variations between requirements of basically the same kind,
some substantial, some slight, some subtle - compounded by needless variations in the way they are specified. This
represents an immense extra burden - as does the duplication in providing different support tools for different languages
performing basically the same task.

How to use this Technical Report: This Technical Report does not seek to legislate on how programming
languages should be designed or standardized: it would be futile even to attempt that. The guidelines are, as
their name implies, intended for guidance only. Nevertheless, drafting commitiees are strongly urged to
examine them seriously, to consider each one with care, and to adopt its recommendation where practicable.
The guidelines have been so written that it will be possible in most cases to determine, by examination,
whether a given programming language standard has been produced in accordance with a given guideline, or
otherwise. However, the conclusions to be drawn from such an assessment, and consequent action to be
taken, are matters for individual users of this Technical Report and are beyond its scope.

Reasons for not adopting any particular guideline should be documented and made available, (e.g. in an

informative annex of the programming language standard). This and the reason therefore can be taken into
account at future revisions of the programming language standard or this Technical Report.

© ISO/IEC 2003 — All rights reserved \

ISO/IEC TR 10176:2003(E)

Of course, care must naturally be taken when following these guidelines to do so in a way which does not
conflict with the ISO/IEC Directives, or other rules of the standards body under whose direction the standard is
being prepared.

Further related guidelines: This Technical Report is concerned with the generality of programming
languages and general issues concerning questions of standardization of programming languages, and is not
claimed to be necessarily universally applicable to all languages in all circumstances. Particular languages or
kinds of languages, or particular areas of concern, may need more detailed and more specific guidelines than
would be appropriate for this Technical Report. At the time of publication, some specific areas are already the
subject of more detailed guidelines, to be found in existing or forthcoming Technical Reports. Such Technical
Reports may extend, interpret, or adapt the guidelines in this Technical Report to cover specific issues and
areas of application. Users of this Technical Report are recommended to take such other guidelines into
account, as well as those in this Technical Report, where the circumstances are appropriate. See, in particular,
ISO/TR 9547 and ISO/IEC TR 10034.

Vi © ISO/IEC 2003 — All rights reserved

TECHNICAL REPORT ISO/IEC TR 10176:2003(E)

Information technology — Guidelines for the preparation of
programming language standards

1 Scope

This Technical Report presents a set of guidelines for producing a standard for a programming language.

2 Normative references

The following referenced documents are indispensable for the application of this document. For dated
references, only the edition cited applies. For undated references, the latest edition of the referenced
document (including any amendments) applies.

ISO/IEC 646:1991, Information technology — ISO 7-bit coded character set for information interchange
ISO/IEC 2022:1994, Information technology — Character code structure and extension techniques

ISO/IEC 2382-15:1999, Information technology — Vocabulary — Part 15: Programming languages

ISO/IEC 4873:1991, Information technology — ISO 8-bit code for information interchange — Structure and
rules for implementation

ISO/IEC 6937:2001, Information technology — Coded graphic character set for text communication — Latin
alphabet

ISO/IEC 8859-1:1998, Information technology — 8-bit single-byte coded graphic character sets — Part 1:
Latin alphabet No. 1

ISO/TR 9547:1988, Programming language processors — Test methods — Guidelines for their development
and acceptability

ISO/IEC TR 10034:1990, Guidelines for the preparation of conformity clauses in programming language
standards

ISO/IEC 10646-1:2000, Information technology — Universal Multiple-Octet Coded Character Set (UCS) —
Part 1: Architecture and Basic Multilingual Plane

ISO/IEC TR 11017:1998, Information technology — Framework for internationalization

ISO/IEC 11404:1996, Information technology — Programming languages, their environments and system
software interfaces — Language-independent datatypes

ISO/IEC 14977:1996, Information technology — Syntactic metalanguage — Extended BNF

3 Terms and definitions

For the purposes of this document, the following terms and definitions apply.

© ISO/IEC 2003 — All rights reserved 1

ISO/IEC TR 10176:2003(E)

This clause contains terminology which is used in particular specialized senses in this Technical Report. It is
not claimed that all language standards necessarily use the terminology in the senses defined here; where
appropriate, the necessary interpretations and conversions would need to be carried out when applying these
guidelines in a particular case. Also, not all language standards use the terminology of ISO/IEC 2382-15; the
terminology defined here, itself divergent in some cases from that in ISO/IEC 2382-15, has been introduced to
minimize confusion which might result from such difference. Some remarks are made below about particular
divergences from ISO/IEC 2382-15, for further clarification.

3.1 programming language processor (abbreviated where there is no ambiguity to processor)
Denotes the entire computing system which enables the programming language user to translate and execute
programs written in the language, in general consisting both of hardware and of the relevant associated
software.

NOTE 1 A “processor” in the sense of this Technical Report therefore consists of more than simply (say) a “compiler”
or an “implementation” in conventional terminology; in general it consists of a package of facilities, of which a “compiler” in
the conventional sense may be only one. There is also no implication that the processor consists of a monolithic entity,
however constituted. For example, processor software may consist of a syntax checker, a code generator, a link-loader,
and a run-time support package, each of which exists as a logically distinct entity. The “processor” in this case would be
the assemblage of all of these and the associated hardware. Conformity to the standard would apply to the assemblage as
a whole, not to individual parts of it.

NOTE 2 In ISO/TR 9547 the term “processor” is used in a more restricted sense. For the purposes of ISO/TR 9547, a
differentiation is necessary between “processor” and “configuration”; that distinction is not necessary in this Technical
Report. Those using both Technical Reports will need to bear this difference in terminology in mind. See 3.3.4 for another
instance of a difference in terminology, where a distinction which is not necessary in ISO/TR 9547 has to be made in this
Technical Report.

3.2 syntax and semantics

Denote the grammatical rules of the language. The term syntax refers to the rules that determine whether a
program text is well-formed. The syntactic rules need not be exclusively “context-free”, but must allow a
processor to decide, solely by inspection of a program text, with a practicable amount of effort and within a
practicable amount of time, whether that text conforms to the rules. An error (see 3.3.1) is a violation of the
syntactic rules.

The term semantics refers to the rules which determine the behaviour of processors when executing well-
formed programs. An exception (see 3.3.2) is a violation of a non-syntactic requirement on programs.

NOTE In ISO/IEC 2382-15 the term static is defined (15.02.09) as “pertaining to properties that can be established
before the execution of a program” and dynamic (15.02.10) as “pertaining to properties that can only be established
during the execution of a program”. These therefore appear to be close to the terms “syntax” and “semantics” respectively
as defined in this Technical Report. ISO/IEC 2382-15 does not define “syntax” or “semantics”, though these are terms very
commonly used in the programming language community.

Furthermore, the uses of “static” and “dynamic” (and other terms) in ISO/IEC 2382-15 seem designed for use within a
single language rather than across all languages, but while that terminology can mostly be applied consistently within a
single language, it becomes much harder to do so across the generality of languages, which is the need in this Technical
Report. This problem is not totally absent with “syntax/semantics” but is much less acute.

3.3 errors, exceptions, conditions

3.31

errors

The incorrect program constructs which are statically determinable solely from inspection of the program text,
without execution, and from knowledge of the language syntax. A fatal error is one from which recovery is not
possible, i.e. it is not possible to proceed to (or continue with) program execution. A non-fatal error is one
from which such recovery is possible.

NOTE A fatal error may not necessarily preclude the processor from continuing to process the program, in ways
which do not involve program execution (for example, further static analysis of the program text).

2 © ISO/IEC 2003 — All rights reserved

ISO/IEC TR 10176:2003(E)

3.3.2

exceptions

The instances of incorrect program functioning which in general are determinable only dynamically, through
execution of the program. A fatal exception is one from which recovery is not possible, i.e. it is not possible to
continue with (or to proceed to) program execution. A non-fatal exception is one from which recovery is
possible.

NOTE 1 In case of doubt, “possible” within this section should be interpreted as “possible without violating definitions
within or requirements of the standard”. For example, the hardware element of a language processor may have the
technical capability of continuing program execution after division by zero, but in terms of a language standard which
defines division by zero as a fatal exception, the consequences of such continued execution would not be meaningful.

NOTE 2 See also 3.3.4.

3.3.3

conditions

Occurrences during execution of the program which cause an interruption of normal processing when
detected. A condition may be an exception, or may be some language-defined or user-defined occurrence,
depending on the language.

NOTE For example, reaching end-of-file on input may always be an exception in one language, may always be a
condition in another, while in a third it may be a condition if action to be taken on detection is specified in the program, but
an exception if its occurrence is not anticipated.

3.34

relationship to other terminology

In ISO/TR 9547 the term “error” is used in a more general sense to encompass what this Technical Report
terms “exceptions” as well as “errors”. For the purposes of ISO/TR 9547, the differentiation made here is not
necessary. Those using both Technical Reports will need to bear this difference in terminology in mind. See
Note 2 of 3.1 for another instance of a difference in terminology, where a distinction has to be made in
ISO/TR 9547 which is not necessary in this Technical Report.

ISO/IEC 2382-15 does not define “error” but does define “exception (in a programming language)” (15.06.12).
The definition reads “A special situation which may arise during execution, which is considered abnormal,
which may cause a deviation from the normal execution sequence, and for which facilities exist in the
programming language to define, raise, recognize, ignore and handle it". ON-conditions in PL/l and exceptions
in Ada are cited as examples.

The reason for not using this terminology in this Technical Report, which deals with the generality of existing
and potential standardized languages rather than just a single one, is that it makes it difficult to distinguish (as
this Technical Report needs to do) between “pure” exceptions, more general conditions, and processor
options for exception handling which are built into the language (all in the senses defined in this Technical
Report). It also does not aid making sufficient distinction between ON-conditions being enabled or disabled
(globally or locally), nor whether the condition handler is the system default or provided by the programmer.

3.4 processor dependence
For the purposes of this Technical Report, the following definitions are assumed.

If this Technical Report refers to a feature being left undefined in a standard (though referred to within the
standard), this means that no requirement is specified concerning its provision and the effect of attempting to
use the feature cannot be predicted.

If this Technical Report refers to a feature being processor-dependent, this means that the standard requires
the processor to supply the feature but that there are no further requirements upon how it is provided.

If this Technical Report refers to a feature being processor-defined, this means that its definition is left
processor-dependent by the standard, but that the definition shall be explicitly specified and made available to
the user in some appropriate form (such as part of the documentation accompanying the processor, or
through use of an environmental enquiry function).

© ISO/IEC 2003 — All rights reserved 3

ISO/IEC TR 10176:2003(E)

NOTE 1 The term “feature” is used here to encompass both language features (syntactic elements a change to which
would change the text of a program) and processor features (e.g. processor options, or accompanying documentation, a
change to which would not change the text of a program). Examples of features which are commonly left undefined,
processor-dependent or processor-defined are the collating sequence of the supported character set (a language feature)
and processor action on detection of an exception (a processor feature).

NOTE 2 In any particular instance the precise effect of the use of any of these terms may be affected by the nature of
the feature concerned and the context in which the term is used.

NOTE 3 None of the above terms specifically covers the case where reference to a feature is omitted altogether from
the standard. While in general this might be regarded as “implicit undefined”, it is possible that an unmentioned feature
might necessarily have to be supplied for the processor to be usable (and would hence be processor-dependent) and that
some aspects of the feature might in turn have to be processor-defined for the feature to be usable.

3.5 secondary, incremental and supplementary standards

3.51

secondary standards

In this Technical Report, a secondary standard is one which requires strict conformity with another (“primary”)
standard - or possibly more than one primary standard - but places further requirements on conforming
products (e.g. in the context of this Technical Report, on language processors or programs).

NOTE A possible secondary standard for conforming programs might specify additional requirements with respect to
use of comments and indentation, provision of documentation, use of conventions for naming user-defined identifiers, etc.

A possible secondary standard for conforming processors might specify additional requirements with respect to error and
exception handling, range and accuracy of arithmetic, complexity of programs which can be processed, etc.

3.5.2

incremental standards

In this Technical Report, an incremental standard adds to an existing standard without modifying its content.
Its purpose is to supplement the coverage of the existing standard within its scope (e.g. language definition)
rather than (as with a secondary standard, see 3.5.1) to add further requirements upon products conforming
with an existing standard which are outside that scope. It is recognized that in some cases it might be
desirable to produce a standard additional to an existing one which was both “incremental” (in terms of
language functionality) and “secondary” (in terms of other requirements upon products).

3.53

supplementary standards

In this Technical Report, a supplementary standard adds functionality to an existing standard without
extending its range of syntactic constructs; such as by the binding of a language to a specific set of functions.
Supplementary standards are expected to be expressed in terms of the base language which they supplement,
but do not replace any elements of the primary standard.

3.6 terms related to character and internationalization

3.6.1
octet
An ordered sequence of eight bits considered as a unit.

3.6.2
byte
An individually addressable unit of data storage used to store a character, portion of a character or other data.

3.6.3
character
A member of a set of elements used for the organization, control, or representation of data.

NOTE The definition above is that from the standard developed by ISO/IEC JTC 1/SC2. This ensures that the term
“character” used in this TR is consistent with the coded character set standard. The composite sequence of
ISO/IEC 10646 is not considered as a character. Each element of a composite sequence (as it is in ISO/IEC 10646) is
considered as a “character” in this TR.

4 © ISO/IEC 2003 — All rights reserved

ISO/IEC TR 10176:2003(E)

3.64

combining character

A member of an identified subset of the coded character set of ISO/IEC 10646 intended for combination with
the preceding non-combining graphic character, or with a sequence of combining characters preceded by a
non-combining character.

3.6.5

composite sequence

A sequence of graphic characters consisting of a non-combining character followed by one or more combining
characters.

NOTE 1 A graphic symbol for a composite sequence generally consists of the combination of the graphic symbols of
each character in the sequence.

NOTE 2 A composite sequence is not a character and therefore is not a member of the repertoire of ISO/IEC 10646.

3.6.7
coded character
A character together with its coded representation.

3.6.8
basic character set

A character set that is common across every execution environment of a programming language, e.g. The
invariant set of ISO/IEC 646.

3.6.9

extended character set

A character set that is used in an execution environment, e.g. ISO/IEC 10646-1. In most cases, the repertoire
of the extended character set is larger than the basic character set.

3.6.10
character datatype
Character datatype is a family of datatypes whose value spaces are character sets.

NOTE The value space of the character datatype should be wide enough to represent every member of extended
character set, if the repertoire list of characters to be stored in the character datatype is not specified explicitly.

3.6.11
octet datatype
Octet datatype is the datatype of 8-bit codes, as used for character sets and private encodings.

NOTE The value space of the octet datatype is wide enough to represent every member of basic character set, but
may not be wide enough to every member of extended character sets.

3.6.12
octet string datatype
Octet string datatype is the datatype of variable-length encoding using 8-bit codes.

NOTE The octet string datatype may be used to represent a member of extended character sets.

3.6.13
multi-byte representation of character
A coded character represented by using a sequence of bytes (one-octet byte, two-octet byte, or four-octet

byte).

NOTE 1 A character that is encoded by UTF-8 (UCS Transformation format) specified by a DAM of ISO/IEC 10646-1
and stored in an octet-string datatype is an example of the multi-byte representation of a character. The size of a coded
character encoded by UTF-8 is up to six octets, therefore it may occupy up to 6 one-octet bytes in the octet string datatype.

© ISO/IEC 2003 — All rights reserved 5

ISO/IEC TR 10176:2003(E)

NOTE 2 To handle the multi-byte representation of character correctly in an octet string datatype, the character
boundary needs to be distinguished from the octet(s) boundary. Otherwise a multi-byte representation of character may
be bisected as the result of octet base string manipulation, thus becoming no longer a character. In following reference the
multi-byte representation of a character will be abbreviated as multi-byte character.

3.6.14

multi-octet representation of character

A coded character stored in a character datatype that size is equal to or larger than two octets with whose
values are multiple octets.

NOTE 1 A character that is encoded by UCS-2 stored in a character datatype is an example of the multi-octet
representation of character. The size of a coded character encoded by UCS-2 is always two octets, therefore it can be
considered as a coded character that is represented by single two-octet byte.

NOTE 2 In following reference the multi-octet representation of a character will be abbreviated as the multi-octet
character.

NOTE 3 A coded character represented by UTF-16 is categorized in both multi-byte and multi-octet character, because
the byte size of UTF-16 is two-octet, but a character may occupy 1 or 2 two-octet bytes in a octet string datatype.

3.6.15
collation
The logical ordering of strings according to defined precedence rules.

3.6.16

cultural convention

A convention of an information system which is functionally equivalent between cultures, but may differ in
presentation, operation behaviour or degree of importance.

NOTE Time zone, Summer time, Date and time format, Numeric format, Monetary format, Collation sequence, and
Character classification, are examples of cultural convention.

3.6.17
cultural convention set
A set of cultural conventions to be referred to by each programming language standard.

3.6.18
execution environment
An environment where a program is executed.

NOTE 1 An execution environment of program is not always the same as the compilation environment of the program.

NOTE 2 Coded character sets supported by execution environment and input from the environment to program may
vary from one to another. For example, ISO/IEC 8859-1 may be supported by an environment, and ISO/IEC 10646-1 may
be supported by another environment.

3.7 auxiliary verbs used in this TR

3.71
shall
An indication of a requirement on programming language standard or processors.

3.7.2
should
An indication of a recommendation to programming language standard or processors.

3.73

may

An indication of an optional feature of programming language standard or processors. When this Technical
Report provides a recommendation to the programming language standard that supports a specific optional
feature, the auxiliary verb “may” is used in the sentence explaining the condition.

6 © ISO/IEC 2003 — All rights reserved

ISO/IEC TR 10176:2003(E)

4 Guidelines
4.1 Guidelines for the form and content of standards

41.1 Guideline: The general framework
The standard should be designed so that it consists of at least the following elements:

1) The specification of the syntax of the language, including rules for conformity of programs and
processors.

2) The specification of the semantics of the language, including rules for conformity of programs and
processors.

3) The specification of all further requirements on standard-conforming programs, and of rules for
conformity.

4) The specification of all further requirements on standard-conforming processors (such as error and
exception detection, reporting and processing; provision of processor options to the user;
documentation; validation; etc.), and of rules for conformity.

5) One or more annexes containing an informal description of the language, a description of the
metalanguage used in 1) and any formal method used in 2), a summary of the metalanguage
definitions, a glossary, guidelines for programmers (on processor-dependent features,
documentation available, desirable documentation of programs, etc.), and a cross-referenced index
to the document.

6) An annex containing a checklist of any implementation defined features.
7) An annex containing guidelines for implementors, including short examples.

8) An annex providing guidance to users of the standard on questions relating to the validation of
conformity, with particular reference to ISO/IEC TR 10034, and any specific requirements relating to
validation contained in 1) to 4) above.

9) In the case where a language standard is a revision of an earlier standard, an annex containing a
detailed and precise description of the areas of incompatibility between the old and the new standard.

10) An annex which forms a tutorial commentary containing complete example programs that illustrate
the use of the language.

NOTE 1 The objective of this guideline is to provide a framework for use by drafting committees when producing
standards documents. This framework ensures that users of the standard, whether programmers, implementors or testers,
will find in the standards document the things that they are looking for; in addition, it provides drafting committees with a
basis for organizing their work.

NOTE 2 The elements referred to above are concerned only with the technical content of the standard, and are to be
regarded as logical elements of that content rather than necessarily physical elements (see note 4 below).

NOTE 3 It is to be made clear that the annexes referred to in elements 5) to 10) above are informative annexes (i.e.
descriptive or explanatory only), and not normative, i.e. do not qualify or amend the specific requirements of the standard
given in elements 1), 2), 3) and 4). It should be explicitly stated that, in any case of ambiguity or conflict, it is the standard
as specified in elements 1), 2), 3) and 4) that is definitive. Note that, if a definition (as opposed to a description) of any
formal method used in elements 1) and 2) cannot be established by reference, then the standard may need to incorporate
that definition, insofar as is allowed by the rules of the responsible standards body (see also 4.1.2).

NOTE 4 Given the requirements of note 3 above, a drafting committee has the right to interleave the various elements
of the standard it is producing if it feels that this has advantages of clarity and readability, provided that precision is not
compromised thereby, and that the distinction between the normative (specification) elements and the informative
(informal descriptive) elements is everywhere made clear.

© ISO/IEC 2003 — All rights reserved 7

ISO/IEC TR 10176:2003(E)

NOTE 5 Element 9) will be empty if the standard is not a revision of an earlier standard. No specific guidelines or
recommendations are included in this Technical Report concerning requirements on programs other than conformity with
the syntactic and semantic rules of the language, and if this is the case in a standard, element 3) will be empty; however, it
is recommended that in such a case an explicit statement be included that the only rules for conformity of programs are
those for conformity with the language definition. It is recommended that none of the other elements should be left empty.

4.1.2 Guideline: Definitions of syntax and semantics

Consideration should be given to the use of a syntactic metalanguage for the formal definition of the syntax of
the language, and the current “state of the art” in formal definition of semantics should be investigated, to
determine whether the use of a formal method in the standard is feasible; the current policies on the use of
formal methods within the standards body responsible for the standard should also be taken into account.

NOTE 1 Traditionally some language standards have not used a full metalanguage (with production rules) for defining
language syntax; some have used a metalanguage for only part of the syntax, leaving the remainder for natural-language
explanation; some have used notation which is not amenable to automatic processing. The advantages of a true syntactic
metalanguage are given in the introduction to ISO/IEC 14977:1996. The main ones can be summarized as conciseness,
precision and elimination of ambiguity, and suitability for automatic processing for purposes like producing tools such as
syntax analyzers and syntax-directed editors.

NOTE 2 At the time of publication of this Technical Report, formal semantic definiton methods suitable for
programming languages form an active research area, making it impractical to provide any definite guidelines concerning
whether to adopt a particular method, or any method at all; hence the recommendation to drafting committees to look at
the position current when they begin work on their standard.

NOTE 3 One of the purposes of including element 5) in 4.1.1 is to ensure that the standard as a whole is accessible to
non-specialist readers while still providing the exact definitions required by those who are to implement the language
processors.

NOTE 4 Any formal method used may be specified by reference to an external standard or other definitive document,
or may need to be specified in the standard itself (e.g. an annex providing a complete definition). In either case an informal
description of the formal method should be included [element 5) of 4.1.1] so that for many purposes the standard can be
read as a self-contained document even by those unfamiliar with the particular formal method concerned. As this guideline
itself indicates, in deciding on matters of this kind, the current policies governing use of formal methods will need to be
observed.

4.1.3 Guidelines on the use of character sets

The standard should ensure that it is possible within the language to support the handling of a wide range of
character sets, including multi-octet character sets, e.g. ISO/IEC 10646-1, and non-English single octet
character sets, e.g. ISO/IEC 8859-1.

NOTE 1 For some applications, and for some classes of users for all applications, it is vital for the language to have the
ability to accept and manipulate data from character sets other than the minimal character set needed for the basic
purpose of specifying programs. For some users this need will be greater than the need for international interchange. An
important task for any language standards committee is to ensure that it is possible for each of these needs to be metin a
standard-conforming way.

NOTE 2 Some programs will require both the ability to manipulate multi-octet and multi-byte characters and the
capability of international interchange. This may imply two or more alternative representations of the same “character”
(data object), one of which will be a representation (for interchange purposes) in the minimal character set defined in
4.1.3.1.1.

NOTE 3 In general it should be possible to use non-English single-octet, multi-octet and multi-byte coded character
sets in program text, character literals, comment, and data without recourse to the use of processors which are not
standard-conforming. Programs using such characters in program text, literals or comments may not be standard-
conforming and in general will be less portable internationally than those using only the minimal character set, but may still
be portable within the applications community for those programs. Defined mappings from other character sets to the
minimal character set of the language, and the presence of suitable processor options, are likely to maximize benefits and
use-ability for differing requirements.

8 © ISO/IEC 2003 — All rights reserved

ISO/IEC TR 10176:2003(E)

41.31 Guidelines on character sets used in program text

The guidelines in this clause covers the considerations on the character sets used in programming language
source code, i.e. characters used for syntax of programming language, user-defined identifier, character literal,
and comments.

4.1.3.1.1 Guideline: Character sets used for program text

As far as possible, the language should be defined in terms only of the characters included within
ISO/IEC 646, avoiding the use of any that are in national use positions. If any symbols are used which are not
included within ISO/IEC 646 or are in national use positions, an alternative representation for all such symbols
should be specified. A conforming processor should be required to be capable of accepting a program
represented using only this minimal character set. Great care should be taken in specifying how “non-printing”
characters are to be handled, i.e. those characters that correspond to integer values 0 to 32 inclusive and 127,
i.e. null (0/0) to space (2/0) and delete (7/15), in case of ISO/IEC 646 coded character set.

The guideline relates to the need for international interchange of programs, and hence is based on the
principle of using a minimal set of characters which can be expected to be common to all systems likely to use
the programs. In general this guideline is based on the default assumption that the form of representation of
the program is not critical for the application concerned. In some cases, however (such as a program to
convert text from one alphabet to another), interchange cannot be general but limited to processors capable of
handling larger character sets. The guideline is based on the principle that standards should ensure that
interchange of programs without such application dependence will be generally possible.

NOTE 1 The motivation here is to provide a common basis for representing programs, which does not exist with
current (published up to 1998) standards. The characters that are available in all national variants of ISO/IEC 646 cannot
represent programs in many programming languages in a way that is acceptable to programmers who are familiar with the
International Reference Version of ISO/IEC 646 that is equivalent with the U.S. national variant (usually referred to by its
acronym “ASCII”). In particular, square brackets, curly brackets and vertical line are unavailable.

Further, the characters that are available in the International Reference Version of ISO/IEC 646 cannot represent
programs in many programming languages in a way that is acceptable to programmers who are familiar with a particular
national variant of ISO/IEC 646. For example, the pound symbol may not be available. The characters that are available in
ISO/IEC 646 IRV (ASCII) cannot represent programs in many programming languages in a way that is acceptable to
programmers because their terminals support some other national variant of ISO/IEC 646.

Consideration needs also to be given to the use of upper and lower case (roman) letters. If only one case is required, it
should be made clear whether the other case is regarded as an alternative representation (so that, for example, TIME,
time, Time, tImE are regarded as identical elements) or its use is disallowed in a standard-conforming program. Where
both cases are required or allowed, the rules governing their use should be as simple as possible, and exactly and
completely specified.

Of the non-printing characters, nearly all languages allow space (2/0), and carriage return (0/13) line feed (0/10) as a pair,
though they differ as to whether these characters are meaningful or ignored. How carriage return without line feed (or vice
versa) is to be treated needs consideration, as do constructions such as carriage return, carriage return, line feed. If
characters are disallowed that do not show themselves on a printed representation, the undesirable situation may arise
where a program may be incorrect though its printout shows no fault. If a tabulation character (0/9) is disallowed, this can
cause trouble, since it appears to be merely a sequence of spaces; if allowed, the effect on languages such as FORTRAN,
having a given length of line, has to be considered.

NOTE 2 The characters that are available in the eight-bit coded character sets ISO/IEC 4873 with ISO/IEC 8859-1, or
ISO/IEC 6937-2, would be sufficient to represent programs in a way that, in the Western European and American cultures,
looks familiar to most (but not APL) programmers.

NOTE 3 The character sets that are available in the multi-octet coded character set of ISO/IEC 10646-1 would be
sufficient to represent programs in a way that looks familiar to most programmers from most cultures. However, in 1998,
the standard is not yet widely supported on printers and display terminals.

NOTE 4 For advice on character set matters, committees should consult the ISO/IEC JTC 1 subcommittee for
character coding.

© ISO/IEC 2003 — All rights reserved 9

ISO/IEC TR 10176:2003(E)

4.1.3.1.2 Guideline: Identification of characters used for program text

The programming language standard should provide an annex containing a correspondence table between
the graphic representation of the characters used for program text and character identifiers specified by
ISO/IEC 10646.

NOTE It is possible to write program text using a character set that includes characters whose shapes are identical or
very similar to one another. For example, in ISO/IEC 10646-1, “LATIN CAPITAL LETTER A”, “GREEK CAPITAL LETTER
ALPHA”, and “CYRILLIC CAPITAL LETTER A” have identical shapes. Also the shape of “FULL WIDTH LATIN CAPITAL
LETTER A” is very similar to these. In addition to that, ISO/IEC 10646-1 specifies many “non-printing” characters that
occupy a certain amount of space in the presentation of text. In some programming languages, these “non-printing”
characters act as token delimiters. Therefore, if a programming language standard specifies a character used for program
text only by using its shape, it is ambiguous whether this shape means the identical or a similar shape (e.g. in the case of
COBOL, character “A” means both “LATIN CAPITAL LETTER A” and “FULL WIDTH LATIN CAPITAL LETTER A” if the
character appears in program text not in data) or a particular one of them (e.g. only “LATIN CAPITAL LETTER A” in the
above example). Adoption of this guideline avoids such ambiguity.

4.1.3.1.3 Guideline: Character sets used in user-defined identifiers

The programming language standard should define which, and in what way, characters outside the “minimal”
set defined in 4.1.3.1.1 can be used in user-defined identifiers. If characters outside of the minimal set are
permitted, then the characters listed in annex A should be allowable.

NOTE 1 It is important to allow characters from outside the minimal set to be used in user-defined identifiers in
program text, to improve understandability for programmers whose native language is not English.

NOTE 2 Using an extended character repertoire for user-defined identifiers may have an adverse effect on the
portability of the program concerned.

NOTE 3 As an alternative way to represent characters outside of the minimal set in a user-defined identifier by using
the minimal character set for program portability, an escape character or an escape sequence followed by character short
identifier standardized by ISO/IEC JTC 1/SC2, can be considered. For example, if &u is an escape sequence,
&u000000C1 represents LATIN CAPITAL LETTER A WITH ACUTE. The SC2 specified the code value of characters in
ISO/IEC 10646, represented by 4 or 8 hexadecimal digits, for the character short identifier.

NOTE 4 In the case that a programming language standard allows use of combining characters for user-defined
identifier, the language standard need not require that a composite sequence is recognized as equivalent with the
character which is pre-composed from the composite sequence.

4.1.3.1.4 Guideline: Character sets used in character literals

Character literals permitted to be embedded in program text in a standard-conforming program should be
defined in such a way that each character may be represented using one or more of the following methods:

a) The character represents itself, e.g. A, B, g, 3, +, (.

b) A character is represented by a pair of characters: an escape character followed by a graphic character,
e.g. if & is the escape character, & to represent apostrophe, && to represent ampersand, &n to represent
newline.

c) A character is represented by an escape character or an escape sequence followed by character short
identifier, e.g. if &u is an escape sequence, &u000000C1 represents LATIN CAPITAL LETTER A WITH
ACUTE.

d) A character is represented by three, five or nine characters: an escape character followed by two, four or
eight hexadecimal digits that specify its internal value, e.g. if & is the escape character, the internal value
of LATIN CAPITAL LETTER A can be represented by &47 in the case of ISO/IEC 646, and can be
represented by &0041 or &00000041 in the case of ISO/IEC 10646-1 depending on its forms, i.e. Two-
octet Basic Multi-lingual Plane (BMP) form or Four-octet canonical form respectively.

10 © ISO/IEC 2003 — All rights reserved

ISO/IEC TR 10176:2003(E)

Any conforming processor should be required to be able to accept “as themselves” [i.e. as in a)] at least all
printable characters in the “minimal set” defined in 4.1.3.1.1, apart possibly from any special-purpose
characters such as an escape character or those used to delimit literal character strings.

Any conforming processor should be required to be able to accept method c) to represent a character literal
outside of “minimal set” defined in 4.1.3.1.1, any “non-printing character”, or any special-purpose character, in
a way that is independent from any coded character set which is used to represent a source code in a
machine readable format.

The programming language committee should consider to provide the means to accept “as themselves” [i.e.
as in a)] all printable characters in the ISO/IEC 10646-1, apart possibly from any special-purpose characters
such as an escape character or those used to delimit literal character strings, for character literal, e.g. a pre-
processor to translate character literals represented by method a) to method c).

NOTE 1 For reasons of portability it is necessary to provide a common basis for representing character literals in
programs, in addition to the characters used for the program text itself. The required character set could be wider than
(and for general purpose text handling would need to be wider than) that which is necessary for representation of program
statements. Programs must be representable on as many different peripherals and systems as possible; the number of
characters required to represent a program therefore needs to be reduced to the minimum that is consistent with general
practice and readability. On the other hand, programs themselves need to be able to represent and process as many
different characters as possible.

These two needs make it impossible to represent every character by itself in a literal character string if the language is to
be suitable for general processing of character data.

NOTE 2 A particular problem arises with the representation of a space in a character or string literal. It can be
represented by a visible graphic character, the argument in favour being that blank spaces in program text should not
affect the meaning. However, it can also be represented by itself, the argument in favour being that this is the most natural
form of representation. The indistinguishability of a tabulation character from a sequence of spaces (in a printed
representation) is a particular problem since a function that returns the length of a string, in characters, may give different
results from two programs that appear identical. There can be further complications when using a “high quality” printer with
variable-width characters. Drafting committees are recommended to pay particular attention to these points.

NOTE 3 The character short identifier referred to by method c) is standardizedd by ISO/IEC JTC 1/SC2, and the SC2
uses the code value of characters in ISO/IEC 10646, represented by 4 or 8 hexadecimal digits, for the character short
identifier.

NOTE 4 The character set in ISO/IEC 6937 represents some graphic characters as a pair of octets. This is suitable for
printing but is difficult to process in operations such as comparison and sorting.

4.1.3.1.5 Guideline: Character sets used in comments

The programming language standard should define the characters that are permitted in comments in a
standard-conforming program. For comments, the programming language standard should permit as wide a
repertoire of the characters as possible.

NOTE For publication in the pages of a journal, some languages make no restriction on permitted characters in
comments, beyond making it clear where the comment finishes. For inclusion on a computer file, however, it is preferable
to restrict the characters to those that are widely available, to help portability. Since comments are intended for human
reading and hence escape mechanisms are unnecessary, there is no disadvantage in printing characters simply
representing themselves (apart of course from any characters or sequences of characters marking the end of the
comment), and in limiting non-printing characters to those (like carriage return and line feed) necessary for layout
purposes.

4.1.3.2 Guideline: Character sets used for data

The programming language standard should be defined in such a way that it is not assumed that character
data processed by a program is anything other than a sequence of octets whose meaning depends on the
context. However, a conforming processor should be required at least to be able to input, manipulate and
output characters from the minimal character set defined in 4.1.3.1.1 above.

© ISO/IEC 2003 — Al rights reserved 1

ISO/IEC TR 10176:2003(E)

The standard should also specify whether, and in what way, support for ISO/IEC 10646-1 is required to be
provided.

NOTE 1 The objective here is to provide a common basis for processing data. Many programs will assume that their
data is expressed in ISO/IEC 646 IRV (ASCII) or some other versions of ISO/IEC 646. But if the standard assumes that all
data is expressed in any one particular character set, it will cause difficulties for some users of other coded character sets.

NOTE 2 See also the guideline on collating sequences 4.1.3.5 below.
4.1.3.3 Guidelines on datatypes for character data

4.1.3.3.1 Guideline: Character datatype

The programming language standard should provide a character datatype whose value space is the entire
repertoire of the extended character set in an execution environment.

NOTE 1 In the case that the value space of a character datatype is not specified explicitly, by using the repertoire list
that enumerates allowable repertoire of characters for the datatype, the default value space of the character datatype
should be the entire repertoire of the extended character set.

NOTE 2 The repertoire of the extended character set may be processor-defined, but the language standard should not
restrict the repertoire.

The character datatype should be independent from any coded character set.

NOTE The character datatype may be sub-typed to restrict its value space specified by a character repertoire list
(see 4.1.3.3.3), but it should not be sub-typed by an encoding scheme of character data. For example, a distinct or a
subtype of the character datatype that is unique to the encoding scheme of ISO/IEC 10646-1 should not be provided. The
characters in the ISO/IEC 10646-1 should be handled through a generic character datatype that is independent from any
coded character set, as long as the programming language does not address the object code level portability. For the
programming languages that address the object code level portability, such as Java, use of ISO/IEC 10646 encoding is
recommended for the character datatype.

4.1.3.3.2 Guideline: Octet and octet string datatype

In addition to the character datatype (see 4.1.3.3.1), a programming language standard may use the octet or
the octet string datatype for character data.

NOTE 1 The value space of the octet datatype is large enough to represent the entire repertoire of the basic character
set, but may not represent the entire repertoire of the extended character set.

NOTE 2 The use of octet or octet string datatype for character data would be effective to keep the portability of
programs that assume the size of the datatype for character. For example, some program may share the same memory
area between character string and data of another datatype, e.g. union statement of C language. If the size of a datatype
for character becomes changed in order to contain an extended character set, the alignment of memory area assigned for
the data becomes broken. In order not to impact on existing programs that assum the size of character datatype is an
octet, the programming language standard could use the octet or the octet string datatype for character data, in addition to
the character datatype for backward compatibility of such program.

NOTE 3 The programming language standard may allow use of the octet string datatype to represent a wide range of
characters, from outside the basic character set, by means of a sequence of values of the octet string datatype, i.e. multi-
byte character (see also 4.1.3.7).

4.1.3.3.3 Guideline: Subtypes of character datatype

A programming language standard may provide sub-types of the character datatype or may provide multiple
distinct character datatypes, by specifying a character repertoire list, in order to restrict the character set that
can be assigned into the sub-type or the character datatype. An example of the sub-type of character datatype
is kind=n of FORTRAN. If the programming language standard provides such sub-types of character
character datatype or multiple distinct character datatypes, inter character datatype assignment and
comparison should be processor-defined.

12 © ISO/IEC 2003 — All rights reserved

ISO/IEC TR 10176:2003(E)

NOTE Assignment from a character datatype whose value space is ISO/IEC 646 IRV to another character datatype
whose value space is ISO/IEC 10646 is an example of the inter character datatype assignment.

4.1.3.4 Guidelines on character handling

41.3.4.1 Guideline: Character classification

The programming language standard should provide the means of testing whether a character data belongs to
subsets of the extended character set (character classes) likely to be of importance in programs, such as
alphabetic, alphanumeric, upper case letters, lower case letter, decimal digit, hexadecimal digit, control
character, punctuation character, printable character, graphic character, and space character. The
programming language standard should require that the means supplied does not depend on a specific coded
character set, and may require, or permit, the provision of such means of testing for further user-defined
subsets (user-defined character class) that are culture-specific or natural language-specific.

NOTE For example, LATIN CAPITAL LETTER A could be classified in alphabetic, alphanumeric, uppercase,
hexadecimal digit, printable, and graphic character subset, but not in lower case, decimal digit, punctuation nor space
character subset.

41.3.4.2 Guideline: Character transformation

The programming language standard should provide the means to transform a character to another. The
means provided by the standard should not depend on any specific coded character set, any specific culture,
nor any specific natural language.

NOTE 1 Transformation from an upper case letter to the corresponding lower case letter and from a full width letter to
the corresponding half width (normal) letter are examples of character transformation.

NOTE 2 This character transformation functionality should be usable by a programmer, but not necessarily applied
when a language processor is parsing the program text.

NOTE 3 The mapping rule such as upper case to lower case mapping is culture and natural language specific.

4.1.3.5 Guideline: Collating sequences

The programming language standard should specify completely the default collating sequence to be provided
by a conforming processor, and preferably that this should be that implied by the ordering of the characters in
the minimal character set drawn from ISO/IEC 646 as defined in 4.1.3.1.1 above. If the default collating
sequence is other than that implied by ISO/IEC 646, means should be provided whereby the user may
optionally switch to the ISO/IEC 646 collating sequences, and consideration should be given to providing
means for the user optionally to switch to alternative collating sequences, whether or not the defined default
collating sequence is that based on ISO/IEC 646.

If a programming language standard provides the functionality to switch collating sequence from one to
another, the cultural convention set switching mechanism described in 4.7.1 could be used for the purpose,
since the collation sequence is a cultural convention.

NOTE 1 Programs which perform ordering of character data are in general not portable unless the collating sequence
is completely defined. This guideline ensures that such programs will be portable at least where only those characters
drawn from the minimal character set defined in 4.1.3.1.1 are used.

NOTE 2 Drafting committees may wish to consider further guidance relating to characters not included in the minimal
character set, especially where ordering of character data is a major anticipated use of the language.

NOTE 3 Possible means of including alternative collating sequences are language features or processor options (see
4.1.9).

NOTE 4 Possible reasons for wishing to provide such alternative means are to obtain maximum processing efficiency
by use of a processor-defined internal character set, or to allow orderings more useful for particular purposes, e.g. a=A <
b=B < ... <z=Z. (ISO/IEC 646 implies0<1<..<9<A<B..<Z<a<b...<z which is not always convenient.)

© ISO/IEC 2003 — Al rights reserved 13

ISO/IEC TR 10176:2003(E)

NOTE 5 The international default ordering of character strings that consist of characters defined by ISO/IEC 10646, the
switching mechanism of the ordering from the default to an alternative sequence, and language independent string
comparison APIs, are presently being standardized towards ISO/IEC 14651.

4.1.3.6 Guideline: Multiple-octet coded character sets

The programming language standard should provide a character datatype whose value space is an extended
character set representable by a multiple-octet code. The programming language standard should ensure that
at least every character specified by ISO/IEC 10646 can be a value of the character datatype.

The programming language standard need not require that a composite sequence of ISO/IEC 10646 be
recognized as a single character. Each character in a composite sequence should be stored in an extended
character datatype and processed separately. The programming language standard may specify functionality
to test the boundary of a composite sequence in a character string, and to convert the composite sequence
into the corresponding pre-composed character, if it exists.

If a programming language standard has a requirement to store a composite sequence in single value of a
datatype, the programming language standard committee should consider the provision datatype distinct from
other character datatypes, whose values include composite sequences of characters, and provide functionality
to convert a character string to and from a value of this datatype or to and from a string of this datatype.

4.1.3.7 Guideline: Multiple-byte coded character sets

A programming language standard may support characters using the multi-byte representation. If the
programming language standard supports a multi-byte representation of characters, the standard should
provide both or either of the following functionality.

a) Convert the multi-byte character stored in an octet string datatype to the corresponding character stored
in an character datatype, and vice versa.

b) Test or find out the character boundary of a multi-byte character in an octet string datatype.

4.1.4 Guideline: Error detection requirements

Requirements should be included covering error detection, reporting and handling, with appropriate conformity
clauses. The standard should specify a minimum set of errors which a conforming processor must detect (in
the absence of any masking errors); minimum level of accuracy and readability of error reports; whether an
error is fatal or non-fatal; and, for non-fatal errors, the minimum recovery action to be taken.

NOTE 1 The objective of this guideline is to enhance the value of standards to users. The inclusion of requirements on
error detection, reporting and handling provides a minimum level of assurance to the programmer of assistance from the
processor in identifying errors.

NOTE 2 See 3.3.1 for a definition of the term “error” in this context.

NOTE 3 That an error is statically determinable (see 3.3.1) does not imply that the processor must necessarily
determine it statically rather than dynamically.

NOTE 4 It is recognized that requiring provision of specific error detection requirements within the standard entails a
certain overhead in a conforming processor. It is a matter for each standards committee to determine how severely such
overhead will affect the users of the language concerned, and consequently whether requiring detection is worthwhile. It is
of course open to the committee to specify or recommend the provision of processor options which would permit the user
to control the use of error detection (see 4.1.9).

4.1.4.1 Checklist of potential errors

The following is a list of typical errors which can arise in the submission of program text to a processor.
Drafting committees should check all of the following for relevance to their language, and the standard
produced should address all that are appropriate, plus others specific to the language concerned. This list is
not to be considered either as exhaustive or as prescriptive.

14 © ISO/IEC 2003 — All rights reserved

ISO/IEC TR 10176:2003(E)

In all cases the standard should specify whether the error concerned is fatal or non-fatal. Depending on the
design and philosophy of the language, it may occur that a particular usage is not invalid (whereas it would be
in another language) but that users would nevertheless benefit from the availability of a warning message
within the processor.

41.411 Errors of program structure

a) unmatched brackets - either open without close, or vice versa.

NOTE This covers all sorts of bracket: (), [], {} etc.

b) unmatched structure - similarly. (e.g. begin-end, IF-ENDIF, repeat-until, ELSE without IF, etc.);
NOTE In some languages, such as Algol 68, it is not meaningful to try to distinguish between this and a).

c) line number missing (e.g. in Basic);

d) absence of program heading (e.g. in Pascal);

e) constructs in disallowed order (e.g. parameter statement after data statement in FORTRAN, or if...then
for...do...else in Algol 60);

f) program incomplete (e.g. no main program in FORTRAN);

NOTE In many languages this is a particular case of b).

g) program overcomplete (e.g. two main programs in FORTRAN);

NOTE In many languages this is a particular case of b).

h) section of program that cannot be accessed;

NOTE This is disallowed in (e.g.) FORTRAN, but is not a fault in many languages.

i) limitation on construct violated (e.g. too many continuation lines in FORTRAN, level 01 statement starting
in incorrect margin in COBOL);

j) construct in disallowed context (e.g. declaration in Pascal statement-part).

41.41.2 Transfer of control

a) reference to non-existent or out-of-scope label;
b) transfer into a loop or procedure body

NOTE In some languages this is included in a).

c) exit from function instead of normal return.
41.41.3 Words and numbers

a) unknown or misspelt keyword;

b) undeclared identifier;

c) duplicated identifier;

d) invalid syntax of numerical value (e.g. two decimal points).

© ISO/IEC 2003 — All rights reserved 15

ISO/IEC TR 10176:2003(E)

41.41.4 Procedures
a) function that does not define its result (e.g. no assignment to function identifier in FORTRAN or Pascal);

b) call of unknown procedure or other named program segment (e.g. attempt to PERFORM non-existent
paragraph in COBOL);

c) wrong number of arguments in procedure call;

d) wrong type of argument in procedure call.

4.1.41.5 Data structures

a) array declared with too many dimensions;

b) attempt to select element of non-existent structure (e.g. A[i] where A is not an array);

c) array variable unsubscripted (in context where subscript necessary);

d) incorrect number of subscripts;

e) use of unknown field selector;

f) incorrect type of subscript or selector;

g) invalid use of structure element (e.g. in many languages, array variable used as control variable of loop);

h) empty structure in disallowed context (e.g. character string in FORTRAN).

41.4.1.6 Lexical requirements

a) symbol not in character set.

41.41.7 Assignments

a) type incompatibility (e.g. int j; real x;...; j:=x; in Algol 68);

b) assignment to loop control variable (not a fault in some languages);

c) assignment to constant (e.g. const k=2; ... k:=4 in Pascal).

d) assignment between different datatypes (e.g. from character datatype to octet string datatype)
41.41.8 Program element structure

a) expression incorrectly formed (e.g. A*-B in FORTRAN);

b) incorrect statement syntax (e.g. IF(A.EQ.B) 12, 15 in FORTRAN);

c) reference incorrectly formed;

d) declaration incorrectly formed.

16 © ISO/IEC 2003 — All rights reserved

ISO/IEC TR 10176:2003(E)

4.1.5 Guideline: Exception detection requirements

Requirements should be included covering exception detection, reporting and handling, with appropriate
conformity clauses. A minimum set should be specified of exceptions which a conforming processor must be
capable of detecting (possibly by the user invoking a processor option). Conforming processors should be
required to be capable of accurately reporting the occurrence of exceptions; whether an exception is fatal or
non-fatal; and, for non-fatal exceptions, the recovery action to be taken.

NOTE 1 The objective of this guideline is to enhance the value of standards to users by the inclusion of requirements
on exception detection, reporting and handling. This ensures a minimum level of “safety” to the user, e.g. in executing a
program with incorrect data.

NOTE 2 See 3.3.2 for a definition of the term “exception”.

NOTE 3 That an exception is in general determinable only dynamically (see 3.3.2) does not imply that the processor is
precluded from determining it statically rather than dynamically if the nature of the language itself and the processor
concerned makes static detection feasible (see 4.1.6).

NOTE 4 It is recognized that languages exist which do not in themselves recognize the concept of “exception” in the
sense that any syntactically correct program is regarded as executable even if the consequent output may be empty or
meaningless. Nevertheless it is recommended that in such cases standards committees consider requiring processors to
provide an appropriate amount of detection and reporting of specified conditions (chosen to suit the particular language,
see 3.3.3) which can arise during program execution, as a processor option (see 4.1.9).

NOTE 5 It is recognized that requiring provision of specific requirements within the standard for the detection of
exceptions entails a certain overhead in a conforming processor. It is a matter for each standards committee to determine
how severely such overhead will affect the users of the language concerned, and consequently whether requiring
detection is worthwhile. It is of course open to the committee to specify or recommend the provision of processor options
which would permit the user to control the use of exception handling (see 4.1.9).

41.51 Checklist of potential exceptions

The following is a list of typical exceptions which can arise during execution of a program by a processor.
Drafting committees should check all of the following for relevance to their language, and the standard
produced should address all that are appropriate, plus others specific to the language concerned. This list is
not to be considered either as exhaustive or as prescriptive.

In all cases the standard should specify whether the exception concerned is fatal or non-fatal. Depending on
the design and philosophy of the language, it may occur that the occurrence of a particular event is not invalid
(whereas it would be in another language) but that users would nevertheless benefit from the availability of a
warning message within the processor.

When considering requirements in this area, drafting committees may well need to take execution overhead
into account, which for some languages, some processors or some applications could be considerable. A
possible way of dealing with conflicting priorities (e.g. between speed and safety) for differing applications

could be to specify that processor options (see 4.1.9) should be available to allow the level and extent of
checking to be controlled.

41.51.1 Data operations

a) attempt to divide by zero;

b) numeric overflow on arithmetic (floating-point or fixed-point, including integer) operation;
c) numeric underflow on floating-point operation;

NOTE It is recommended that a processor option be specified, to permit the user to treat such an exception as non-
fatal, replacing the underflow value by zero and continuing, or as fatal, which would be the default.

© ISO/IEC 2003 — All rights reserved 17

ISO/IEC TR 10176:2003(E)

d) attempt to raise a negative value to a non-integral power (where a real arithmetic result rather than a
complex arithmetic result is expected);

e) attempt to raise zero to a negative or zero power;

NOTE Even where the language accepts and defines the result of such an operation it is recommended that the
processor be capable of treating such a condition as a non-fatal exception.

f) overflow upon string or list concatenation;

g) attempt to perform an operation undefined for an empty string or list (e.g. car(L) in Lisp, where L is
empty);

h) operation undefined for value (e.g. succ(last) in Pascal, or ordering operation attempted on item of
(unordered) set type);

i) attempt to perform operation on an undefined value;

j) attempt to dereference a nil pointer value;

k) attempt to delete a non-existent item;

I) overlapping assignment (e.g. A[2:5]=A[m:n] where m=1 and n=4 - valid in some languages);
m) operation requiring dynamic storage allocation (not a fault in many languages);

n) truncation of a multi-byte character;

0) data (code value) is not in repertoire.

4.1.5.1.2 Violations of aggregate limits

a) subscript out of range;

b) substring reference out of range;

c) incorrect dimensionality in array reference;

d) unrecognized dynamically generated field selector of record;
e) index of control flow switch out of range;

NOTE For example, index out of implied range in “computed GOTO” statements; while this may not be an exception
in the language - the default being to proceed to the next statement - the possibility of a warning or non-fatal exception
message being available should be considered.

f) value of case selector not allowed for.

NOTE Similar remarks apply as for e).

4.1.5.1.3 Procedure calls

a) unable to execute call (e.g. named procedure unavailable);

b) mismatch between actual and formal parameters (in number, datatype, or other attributes);

c) recursive call of procedure in disallowed context (e.g. where the language does not support recursion, or
a recursive procedure must specifically be declared as such);

18 © ISO/IEC 2003 — All rights reserved

ISO/IEC TR 10176:2003(E)

NOTE Though some such cases can be detected as errors, the possibility of indirect recursion, including through the
use of procedure parameters, means that consideration must also be given to detecting them as exceptions.

d) argument out of defined range for intrinsic function (e.g. sqrt(x) where x is negative).

4.1.5.1.4 Input-output operations

a) attempt to open file which cannot be found;

b) attempt to open file which is already open;

NOTE Perhaps non-fatal though it may indicate incorrect file naming.

c) illegal file name;

NOTE File names may be generated dynamically.

d) attempt to access (for input or output) file to which access is unauthorized;

NOTE It is advisable not to require in the standard the provision of an unnecessary amount of information or lower
levels of security than provided by the host environment. Any message should be aimed at a legitimate user who has
merely omitted to unlock a protected file for read or write access, and who will be able to obtain the needed information
and take the necessary action without direct assistance from the processor.

e) unexpected end of file during input;

NOTE May be fatal, non-fatal or condition-raising, depending on the language.
f) required record not found on input (in random-access input);

g) attempt to input from output-only file (e.g. printer stream);

h) attempt to output to input-only file (e.g. keyboard);

i) attempt to create a record which already exists;

j) attempt to replace a non-existing record;

k) attempt to close file already closed.

4.1.5.1.5 System limitations and characteristics

a) insufficient memory available for specified operation;

b) time limit exceeded;

c) limit on depth of nesting (e.g. of recursion) exceeded;

d) use of non-standard dynamic processor-defined extension;

e) language/culture dependent service is not available.

4.1.6 Guideline: Static detection of exceptions
The standard should specify that, where a processor will detect, solely by inspection of the program text, that

an exception may (or will) occur if an otherwise well-formed program is executed, a processor option (see
4.1.9)is to be provided whereby the user may choose how the anticipated exception is to be handled.

© ISO/IEC 2003 — Al rights reserved 19

ISO/IEC TR 10176:2003(E)

NOTE 1 In a particular case the most appropriate form of handling will depend on the nature of the exception in the
context of the application and the stage of development of the program. This cannot be foreseen either by the standard or
by the designer of the processor if the action is left processor-dependent. Provision of a user-controlled processor option
reduces the need for the user to include devious codes to “program around” restrictions.

NOTE 2 In the case of a fatal exception, it is recommended that the default option be to treat the statically-detected
exception as if it were a fatal error, an alternative option being to treat it as a non-fatal error and to continue processing
(until, unless some other action intervenes, the anticipated fatal exception is encountered).

NOTE 3 In the case of a non-fatal exception, it is recommended that the default option be to treat the statically-
detected exception as if it were a non-fatal error and to continue processing (until, unless some other action intervenes,
the anticipated non-fatal exception is encountered, and thereafter as if the non-fatal error had not been anticipated), an
alternative being to treat it as a non-fatal error but not to proceed to execution.

NOTE 4 The recommendations in notes 2 and 3 above do not preclude the provision of further alternative options.

4.1.7 Guideline: Recovery from non-fatal errors and exceptions

Where the standard permits recovery mechanisms from error or exception conditions, the required results of
the actions to be taken by the processor (when such a recovery mechanism is invoked) should be defined as
fully as are defined the normal semantic features of the language.

NOTE The objective of this guideline is to improve the predictability of processor action in the case of recoverable
faults. Users of standard-conforming processors should be able to expect a similar degree of consistency of behaviour in
such circumstances as they do with normal programs.

4.1.8 Guideline: Requirements on user documentation

Requirements on the documentation which is to be provided with a standard-conforming processor should be
included. Some particular requirements of this kind may be found in ISO/IEC TR 10034. Committees may
wish to extend the documentation requirements which those guidelines recommend.

NOTE 1 The value of standards to users is enhanced by the inclusion of requirements on documentation, since to
make effective use of a processor it is necessary that adequate documentation is available to explain its use. Specific
examples will be found in ISO/IEC TR 10034.

NOTE 2 This guideline does not specify the form in which the documentation is to be provided; this is also the case
with ISO/IEC TR 10034. Some language committees may specify conventional manuals, others may specify “on-line” help
systems, yet others may require both, or leave the question open, depending on the nature of the languages. However, it
is envisaged that all should specify a reasonable level of minimal provision, in some form, in this area, at least to the level
recommended in ISO/IEC TR 10034.

NOTE 3 Whatever form of documentation is required by the standard, it should be specified in such a way that the user
of the processor can check by inspection that the processor conforms with such requirements. By the very nature of
documentation this should be possible. Validation services should not be expected, and should not feel it necessary, to
check conformity with requirements related to this guideline, except as envisaged in ISO/IEC TR 10034 and in
ISO/TR 9547.

4.1.9 Guideline: Provision of processor options

The standard should specify processor options required to be provided within a standard-conforming
processor, including in each case a specification of standard default settings of the option and the form or
forms in which the processor options are to be made available to the user.

NOTE 1 The aim here is to widen the range of facilities guaranteed to the user by standard conformity of a processor.
When a processor is being used, almost always some facilities are needed in addition to the ability to process standard-
conforming programs and to detect programs which are not standard-conforming, depending on the particular application;
this guideline assures the user that a standard-conforming processor will provide at least a minimum set of such facilities.

NOTE 2 “Processor option” in this context means an option for the user which the processor is required to supply, not a
facility which the processor may optionally provide.

20 © ISO/IEC 2003 — All rights reserved

ISO/IEC TR 10176:2003(E)

NOTE 3 Options may be provided, for example, as “switches” set when the processor is invoked by the user, or as
“processor directives” embedded in a standard-conforming program.

NOTE 4 Default settings of an option could possibly vary between different types of processor, such as compilers or
interpreters.

NOTE 5 In some cases it will be appropriate to require the option to be provided both statically - e.g. processor option -
and dynamically - e.g. processor directive or interactive session command.

NOTE 6 In general the form of provision of a required option can be left processor-dependent, though where it is
invoked by a directive embedded in the program text, a program invoking it will not be standard-conforming or (e.g. if the
directive is embedded in “pragmatic comments”) will not be fully portable unless the form is specified in the standard.

NOTE 7 A checklist of appropriate options is given in 4.1.9.1. The choice from these or others to be covered in a
particular standard is a matter for the individual language commitiee to determine in the light of the nature of their
particular language.

NOTE 8 Provision of processor options is sufficiently common that this guideline, and many of the specific items listed
in 4.1.9.1, can be regarded as recommending standardization of “existing practice”.

NOTE 9 It should be noted that, for purposes of validation of conformity, e.g. by a registered validation service or
agency, each possible combination of settings of options produces, in general, a different processor requiring validation. It
is not reasonable to expect that the effect on conformity of all possible combinations of settings can be checked and
validated. Rather than, as a consequence, limiting the number of options or removing them from the standard, drafting
committees are recommended to ensure that

— checking that the provision of options is in accordance with the standard can, as far as possible, be performed
by the user;

— the requirements upon provision of options are so designed as to limit the validation overhead, e.g. by making
as many as possible checkable independently without interaction with the effects of other options.

4191 Checklist of potential processor options

Drafting committees should consider all of the following features as potential areas for specifying standard
processor options, and the standard produced should address all that are appropriate for the language and
types of processor covered:

— the handling of non-standard features;

— the use of machine-dependent or processor-dependent features;

— the type(s) of optimization;

— the use of overlays;

— the selection of debugging, profiling and trace options, including post-mortem dumps;

— the handling of errors, exceptions and warning messages;

— the handling of array bound, overflow and similar range checking;

— the control of output listing and pagination, including any listing of variable attributes and usage and listing
of object or intermediate code;

— operating modes, such as execution automatically following compilation;

— the mapping of relevant language elements (such as files or input-output channels into corresponding
elements of the host environment);

© ISO/IEC 2003 — Al rights reserved 21

ISO/IEC TR 10176:2003(E)

— the use of preconnected files and their status on termination;

— the rounding or truncation of arithmetic operations;

— the precision and accuracy of representation and of arithmetic, as appropriate;
— the default setting of uninitialized variables;

— in the case where a language standard is a revision of an earlier standard, the detection within programs,
and reporting, of usage incompatible with the old standard.

NOTE 1 It may well be appropriate in many cases to specify several different settings of a given option, or a hierarchy
of combinations of settings, though see note 9 of 4.1.9 above.

NOTE 2 See also 4.1.6 and 4 .4.

4.1.10 Guideline: Processor-defined limits

Minimum levels should be specified of guaranteed translation time and run-time support to be supplied by
conforming processors in appropriate circumstances, namely where

a) itis probable that programs in the language may encounter processor-defined limits in the implementation
of the language, and

b) such limits can be expressed in terms of the logical behaviour of programs (rather than implementation
issues such as storage capacity);

and provide advice on choice of actual levels.

NOTE 1 Users should be able to feel assured of a guaranteed minimal level of support from a conforming processor.
Severe processor restrictions (e.g. inability to handle SET OF CHAR in Pascal) impede portability; at a minimum, all such
restrictions should be documented. In all the cases listed above, it is desirable that programmers be able to rely on a
specified minimum, while allowing processors to supply additional capability if they so choose.

NOTE 2 The limits specified in the standard may be semantic or syntactic, depending on the language.

NOTE 3 As can be seen from the checklist below, it is clear that some of these requirements upon processors may be
interdependent, and drafting committees are advised to pay particular attention to ensuring mutual consistency between
them. Attention also needs to be paid to the implications of having to meet all the limits on provision simultaneously; for
example, it may be relatively simple for a processor to meet any individual one of these limits, but meeting them all at once
places a much greater demand upon the resources of the underlying system supporting the processor.

4.1.10.1 Checklist of potential processor-defined limits

Examples of features for which it may be appropriate to specify minimal limits in standards are
— length of character strings;

— range of integers;

— internal precision of real numbers;

— magnitude of real numbers;

— number of files which can be open simultaneously;

— number of dimensions for arrays;

— number of array elements;

22 © ISO/IEC 2003 — All rights reserved

ISO/IEC TR 10176:2003(E)

— length of external names;

— length of records which can be read or written;

— length of keys in keyed files;

— length in characters of a line of source text;

— length in items of a list-structured object;

— depth of nesting of various constructs (e.g. lists, records, procedure calls, loop constructs);

— number of items in various program constructs (e.g. declarations or statements in a block or compilation
unit, procedures or modules in a package) and the accumulated length of such items.

Particular care is needed where limit requirements impinge on the external world, for example in the context of
mixed language processing (see 4.6.4).

4.1.10.2 Actual values of limits

When advising implementors on considerations involved in setting the actual values of processor-defined
limits, note that such advice may do one or more of

— recommending specific values;
— recommending minimum useful values;
— recommending maximum useful values;

— recommending that limits should depend on processor thresholds where efficiency changes sharply (such
as word size, or memory size);

— recommending that limits should depend on resource availability, which may fluctuate during processing;
— setting forth other criteria appropriate to the specific language.

In each case the reasons for the recommendations should be explained. Different recommendations may be
appropriate for different limits.

It should be noted that appropriate processor-defined limits need to be made accessible to users, in particular
for those performing conformity testing, as well as being documented. Where this is not available through
language facilities (such as environmental enquiry functions), appropriate guidance to implementors should be
provided.

4.2 Guidelines on presentation

4.21 Guideline: Terminology

As far as possible, the standard document should use the terminology given in the appropriate parts of ISO
2382, taking into account common practice in the language community concerned and possible costs of
transfer to new terminology (see 4.5.4). Additional terms not covered by ISO 2382 should be defined in a
specific section of the standard, and these additional terms should be registered with the appropriate
subcommittee of ISO/IEC JTC 1.

NOTE 1 The objective of this guideline is to avoid unnecessary variations in terminology between standards for
different languages. In general, the same word should be used for the same concept in all language standards; this aids
“programmer portability” between languages, mutual understanding, and promotion of commonality between languages,
and also strengthens the credibility of standards generally by making sure that one standard recognizes the existence and
validity of other related standards.

© ISO/IEC 2003 — Al rights reserved 23

ISO/IEC TR 10176:2003(E)

NOTE 2 Any divergence from standard terminology should be explicitly documented in the glossary section of the
standard. Where for historical reasons a different word is commonly used, the standard should record this fact in an
appropriate way, and could use that different word in any informal language definition included as an annex. Similarly the
same word should not be used for different concepts in different language standards, and explanations should similarly be
incorporated.

4.2.2 Guideline: Presentation of source programs

A consistent format should be adopted for textual presentation of source programs, and should be used in the
relevant programming language standards documents for examples of language constructs, program
fragments, and complete programs; when determining this format, such matters as indentation, how to break
up long statements into lines, etc. should be taken into account.

NOTE 1 Guidance from standards committees on matters of source program presentation is useful to implementors
trying to determine how to present source code listings, to those developing utilities (e.g. prettyprinters) which transform
syntactically correct programs into programs formatted in a universally recognized way, to those publishing programs, and
more generally to the community of language users who read and maintain programs.

NOTE 2 In recommending consistency of appearance of programs in standards documents, there is no suggestion that
standards, or drafting committees, should specify style.

4.3 Guidelines on processor dependence

4.3.1 Guideline: Completeness of definition

The number of aspects within its scope that the standard leaves not completely defined should be minimized
(and preferably eliminated altogether). Where full definition is impracticable, in general such aspects should
be required to be processor-defined, subject where appropriate to specified minimal or other limits, rather than
left as processor-dependent or undefined. In this case, a complete checklist should be provided of all such
processor-defined features [see 4.1.1, elements 6) and 7)], guidance should be provided for implementors,
required limits (see 4.1.10), as appropriate, should be specified, and the documentation accompanying the
processor should be required to provide for the user a full specification of the processor definitions used.

NOTE 1 Though in particular cases counter-arguments to this guideline may exist on the grounds of “flexibility”,
everything within the scope of a standard which is left undefined, processor-dependent or processor-defined weakens the
standard and harms portability. Flexibility may sensibly be provided within the standard itself in the form of guaranteed
ranges of facility for the user, but not as unguaranteed variations in provision which are outside the control of the user.

NOTE 2 This guideline applies to matters within the scope of the standard and it is important that the definition of
scope is itself sufficiently precise that it is clear when a matter is outside the scope. Where genuine doubt can exist - or
simply as an aid to the user of the standard, to avoid misunderstanding - it may be appropriate to state explicitly that
something is undefined by the standard. However, the scope of a standard should not be given contrived precision by the
use of exclusion clauses which remove from its definition aspects which, given the objective of the standard, fall naturally
within it.

4.3.2 Guideline: Optional language features

Inclusion within the standard of optional language features, whether as optional additions or as optional
alternatives, should be minimized.

NOTE 1 The argument here is similar to note 1 under 4.3.1. Language options provided for the user within the standard
are acceptable provided the choice is with the user. Language options which may or may not be available and are out of
the control of the user are not acceptable.

NOTE 2 Ideally, the aim should be to have no optional features at all.
4.3.3 Guideline: Management of optional language features

Where complete avoidance of language options is impracticable, they should be organized in levels so that
each level is a pure subset of all higher levels, and the number of different levels should be minimized.

24 © ISO/IEC 2003 — All rights reserved

ISO/IEC TR 10176:2003(E)

NOTE 1 If a standard contains N optional features (whether separate facilities, or modules containing several facilities),
this implies the existence of 2 to the power N different possible combinations and hence different processor configurations.
This severely harms portability and greatly increases the problems of validation.

NOTE 2 Drafting committees will always have to balance the arguments against levels and subsets, the arguments
against making the language and its implementations too large, and the dangers of leaving extensions to provide further
functionality outside the standard and hence liable to be provided in incompatible ways.

NOTE 3 Revision of an existing standard offers an opportunity to reduce the number of options and levels, including by
migration of optional features to mandatory features.

4.3.4 Guideline: Syntax and semantics of optional language features

Whenever a language feature is made optional in a standard, whether by inclusion in a level higher than a
minimal level, or otherwise, and if a processor accepts, syntactically, a standard-conforming program beyond
the level or subset for which standard conformity is claimed, then the standard should require that,
nevertheless, the processor must process that program in the way described by the standard.

NOTE 1 The aim of this guideline is to ensure consistency of semantics. It must be possible to be sure that any syntax
defined in the standard, whether optional or not, means the same thing in any standard-conforming implementation, and
that if a feature is described in the standard, whether optional or not, it is provided in the same way in all standard-
conforming implementations.

There can also be the problem that a processor claiming conformity only at a lower level may still provide equivalent
functionality to some language feature at a higher level, but provide it with different syntax. Any program using that
functionality will not be standard-conforming. Standards committees may wish to consider whether this is a likely scenario
with their language which might cause serious problems, and whether some further conformity statement or at least
warning might be appropriate.

NOTE 2 Detailed consequences of this general guideline are provided below (see 4.3.5, 4.3.6).

4.3.5 Guideline: Predefined keywords and identifiers

The standard should specify that any standard keyword or identifier defined in any section of a language
standard, whether optional or not, retains the same standard-defined meaning throughout the whole standard
and applies to all standard-conforming processors, at whatever level, even if, when optional, the keyword or
identifier is not directly supported by the processor.

NOTE 1 In line with 4.3.4, this guideline ensures consistency of use of standard-defined words.

NOTE 2 This applies, for example, to COBOL reserved words, FORTRAN keywords, Pascal word-symbols and
required identifiers, and predefined identifiers such as the names of standard datatypes, and to the names of optional
built-in functions; but it does not preclude redefinition within a program of the meaning of a standard-defined identifier if the
language (and the standard) permits this (e.g. by application of scope rules).

4.3.6 Guideline: Definition of optional features

As far as possible, any optional (or higher level) features should be defined functionally in terms of mandatory
(or lower level) features.

NOTE 1 This guideline enhances portability because a user of (say) a lower level processor but who needs higher level
features can implement those features individually in a (functionally) standard-conforming way.

NOTE 2 The purpose of including such higher level features in the standard is often to relieve the user of the need to
implement them individually, and (very often) so that the implementor can provide them more efficiently than can a user
with only the lower level language features available. (A simple example is that of the standard intrinsic functions
commonly required to be supplied by a standard-conforming processor, many of which - like the common trigonometric or
arithmetic functions - can be programmed in the language itself.) On the other hand the purpose of providing them as
options or higher level features is often so that users will not have to “pay” in some way to get features they will never or
will rarely use. This guideline simply recognizes this and suggests a means whereby it can be taken into account without
impairing portability.

© ISO/IEC 2003 — All rights reserved 25

ISO/IEC TR 10176:2003(E)

It is recognized that some optional or higher level features are intrinsically incapable of being treated in this way and it is
not suggested that they should therefore be avoided. However, it may be felt appropriate to point out in the standard that
their use has a greater impact on portability than those which are expressible in terms of mandatory or lower level features.

4.3.7 Guideline: Processor dependence in numerical processing

Where a major anticipated use of the language is for arithmetic processing, means whereby the user may
specify and interrogate the range, precision and accuracy of arithmetic operations should be included in the
standard.

NOTE 1 Because of the wide variety of data processing equipment with which languages are used, these features of
numerical work are commonly left processor-defined or processor-dependent. While for many uses it is adequate for the
default ranges, precisions and accuracy of arithmetic to be processor-defined, such variations severely inhibit the
production of portable numerical software, and specifying lower limits (see 4.1.10) is only a partial solution.

NOTE 2 Suitable means of providing such facilities may be specific language features, processor options, or binding of
a language-independent facility.

NOTE 3 Processor limits, as in 4.1.10, should still also be specified for processor-defined defaults.

NOTE 4 It is recommended that processor (or language-independent facility) documentation be required to include a
specification of the means (including algorithms for controlling accuracy) used to achieve requirements under this heading.

NOTE 5 Drafting committees, and also implementors (through recommendations in element 7) of the standard, see
4.1.1) should seek guidance from professional numerical analysts on how to draw up and how to meet requirements under
this heading.

4.4 Guidelines on conformity requirements
Guidelines on requirements for conformity to the standard may be found in ISO/IEC TR 10034. Particular

attention is drawn to the need for consistency between requirements for different levels or options, if the
standard permits subsets or optional modules.

4.5 Guidelines on strategy

4.5.1 Guideline: Secondary standards

Where existing standards do not address all of the issues proposed in these guidelines, standards committees
should consider producing secondary standards to cover such matters (e.g. requirements upon processors).

NOTE 1 The advantage of the use of secondary standards is that they make it possible, in effect, to improve the
content of the corresponding primary standards without introducing unnecessary delay, such as by having to wait for the
next full revision.

NOTE 2 See 3.5.1 for a definition of “secondary standard”.

NOTE 3 This procedure could also be considered for standards not yet in existence but in an advanced stage of
processing, where delay in order to introduce further requirements would be undesirable.

4.5.2 Guideline: Incremental standards

Standards committees should, in general, use incremental standards to add new constructs to existing
languages rather than incorporate them in a complete revision.

NOTE 1 The advantage of incremental standards is that they make it possible, in effect, to augment the content of
existing standards without introducing unnecessary delay, e.g. while waiting for the next full revision.

NOTE 2 See 3.5.2 for a definition of “incremental standard”.

26 © ISO/IEC 2003 — All rights reserved

ISO/IEC TR 10176:2003(E)

NOTE 3 Consideration should always be given to producing a revised standard (to correct errors but not change the
language except perhaps to extend existing constructs) and an incremental standard in parallel, rather than attempt to do
the two together; though perhaps in such a way that the two could be merged at a later revision, after gaining experience
of the new standard.

NOTE 4 For an example of the incremental standards approach see ISO 1989/AMD1.

4.5.3 Guideline: Consistency of use of guidelines

Where guidelines in this Technical Report are applied in a primary standard, they should be applied, as
appropriate, to related secondary, incremental and supplementary standards, in the same manner.

NOTE 1 The concept of secondary, incremental and supplementary standards will provide a mechanism whereby
additions and corrections can be made to primary standards without the need to reconsider and reapprove those
standards immediately. Standards committees should consider utilizing these mechanisms to revise portions of primary
standards on a more frequent basis than is possible for the complete standard. To maintain stylistic compatibility,
secondary, incremental and supplementary standards should follow the same form as the primary standard. This will
enhance the ability of the committee to integrate any changes or modifications into the primary standard when that
standard is updated as a whole.

NOTE 2 For guidelines relevant to secondary, incremental and supplementary standards see 4.5.1, 4.5.2, 4.6.1 and
4.6.2.

4.5.4 Guideline: Revision compatibility

For each proposed addition, deletion or modification that represents a potential incompatibility from an earlier
standard

— the rationale for the proposed change should be stated;

— the way in which the proposed change will affect the original language feature should be determined, in
accordance with the classifications in 4.5.4.1 below;

— the difficulty of converting affected programs should be assessed, according to 4.5.4.2 below;
— an attempt should be made to determine how widely the affected feature is used;

— all the above should be documented, and conversion guidance should be provided in the relevant section
of the standard [see element 9) of 4.1.1].

NOTE Altering a standard in an incompatible manner during a revision may bring benefits but will also entail costs,
and so should not be undertaken lightly. The rationale for a proposed change should include statements of

— Specific benefits, and how the benefits result from the change. Benefits may fall into such categories as
improved programming practice, better portability, better machine performance, elimination of ambiguity,
or improved consistency and clarity of the language specification.

— Costs (other than those directly associated with compatibility, which are discussed below). Costs may fall
into such categories as use-ability, performance, or ease of learning.

4541 Classifications of types of change
1) Change to semantics of well-defined feature. A change is made to the semantic specification of a
feature for which the original document guarantees a reasonably precise result. The feature remains
syntactically valid, but a program may now produce different results.

2) Deletion of semantically well-defined feature. A feature well-defined in the original document is
rendered syntactically invalid by the new specification.

© ISO/IEC 2003 — All rights reserved 27

ISO/IEC TR 10176:2003(E)

3) Deletion of semantically ill-defined feature. A feature which was not well-defined in the original
document is rendered syntactically invalid by the new specification.

4) Clarification of semantically ill-defined feature. A feature which was not well-defined in the
original document, so that its interpretation was open to question, is properly defined in the new
specification. (This, strictly speaking, is not an incompatibility, since no guarantee has been
withdrawn, but is included here for completeness since some past interpretations may not be
compatible with that in the revised document.)

5) Change or deletion of obsolescent feature. A feature designated in the original document as
obsolescent is deleted or changed in the new specification.

6) Change of level definition.

7) Change of processor defined limit.

8) Change of other processor requirement.
9) Change of conformity clause.

NOTE Conversion problems (if any) in cases 6) to 9) are different from those in cases 1) to 5), where the language
definition has been changed.

4.5.4.2 Difficulty of converting affected programs

At least four levels of difficulty may be distinguished. In doubtful cases use the more severe classification.
From the standardization point of view, the following are listed in order of decreasing conversion effort:

1) No possible translation. There is no feasible way to implement the original function within the new
standard.

2) Semantic transformation. The original function can still be performed using the language, but
human translation, based upon knowledge of the purpose of the program, is required.

3) Significant syntactic transformation. A mechanical translation is feasible, but some analysis of the
program structure as a whole may be required, or a significant amount of code may be generated.

4) Simple syntactic transformation. Old statements can be mechanically transformed to the new
syntax with little or no knowledge of the rest of the program or its purpose.

NOTE 1 The extent of use of the affected feature may be estimated in terms of whether a high or low proportion of
programs use the feature, or of frequency of use within programs. In making this estimate the drafting committee should
consider the existing pattern of implementation. Thus, for example, even though many programs use the feature in
question, few may actually be affected if the committee is simply ratifying existing practice. It is recognized that this
estimate cannot be precise; the point is to distinguish at least between clearing up anomalous cases which are technically
valid, but probably unused in practice, and changing features on which many programs may truly depend.

The inference is that a higher proportion of use would increase the total conversion cost. The conversion complexity, along
with frequency of use, will provide a comparative measure of the conversion cost.

NOTE 2 Documentation will be needed under one or more of the following headings:

a) Obsolescence. A notification that the standard's support for the language feature in question is scheduled to be
withdrawn in the next revision. This action allows users to plan a smooth evolution of their software base away from
dependence upon the feature (or upon the old interpretation of the feature, if there is a semantic change).

b) Documentation of transition semantics. (see note 3)
c) Conversion guidance. This may be one or more of

1) A conversion program.

28 © ISO/IEC 2003 — All rights reserved

ISO/IEC TR 10176:2003(E)

2) An algorithm that is detailed enough to be understood by a reasonably informed user of the language.
3) A commentary describing the conversion process.
4) As much conversion information as possible, in cases when a well-defined conversion process is not feasible.

NOTE 3 Transition semantics: Transition between two interpretations of the same language feature may be provided
in various ways:

a) The standard may require conforming implementations to make both the old and the new interpretations available to
the user through the use of a user-controlled option (which itself may be part of the language, or provided as a
processor option).

b) The standard may allow implementations to use either the old or the new interpretation, but with the old interpretation
scheduled to be withdrawn in the next version. (The implementation should then be required to document which
interpretation it is using.)

c) If it is judged that the costs of such measures outweigh the benefits, the standard may simply adopt the new
interpretation and require implementations to provide a “flagging” capability which would detect and report cases of
possible incompatibility. [Flagging may also be required in conjunction with case b).] If this course of action is taken
then the standard should be as specific as possible about the cases to be flagged and should provide appropriate
guidance on the form of flagging, the user documentation which will be needed, and so on.

(In general, changing the interpretation of a language feature is to be avoided if possible, but may be essential in order to
eliminate inconsistencies, or as enabling action to permit other desirable changes.)

NOTE 4 While this section applies primarily to revision of an existing standard, in cases where a new (initial) standard
is based upon a previous informal, unofficial or “de facto” standard (for example a published and implemented language
definition) the drafting committee may well find it appropriate to take into account at least some of the guidelines when
preparing the formal standard.

4.6 Guidelines on cross-language issues

NOTE At the time that this Technical Report is published, active work is in progress which is expected to result in
another Technical Report giving guidelines for language bindings. The guidelines resulting from this work could lead to
those described below in this section being modified or extended. Standards committees should therefore check on the
progress of this work before applying these guidelines.

4.6.1 Guideline: Binding to functional standards

Where a binding is required between the programming language and a functional standard defined externally,
the standards committee should ensure that this is specified in a supplementary (or incremental) standard to
the functional specification, cross-referenced to the primary language standard.

NOTE The objective here is to specify the location of the binding specification for a functional standard.

4.6.2 Guideline: Facilitation of binding

The standard should be designed so that it takes into account the existence of relevant existing or potential
language-independent functional standards, in such a way that it facilitates binding (preferably by means of a
supplementary standard), including the possibility of generic bindings for future functional standards.

NOTE 1 Many language processors currently obtain specialized functionality from language-independent subsystems
provided by the host environment. Many users want and expect functionality to be provided in a uniform manner across
language systems. Functional standards recognize both of these needs and it is beneficial for language standards to be so
designed as to take account of them.

NOTE 2 Examples of existing (or emerging) functional standards are GKS (graphics), DBMS (database systems) and
IRDS (information resource dictionary). Examples of potential functional standards are for communications facilities,
screen management, mathematical library facilities, etc. It will be necessary for users to be able to invoke each of these
from a variety of different languages.

© ISO/IEC 2003 — Al rights reserved 29

ISO/IEC TR 10176:2003(E)

4.6.3 Guideline: Conformity with multi-level functional standards

The standards committee should ensure that the rules for conformity with multi-level functional standards are
consistent with those for conformity with multi-level primary standards given above, both for programs and for
processors.

NOTE 1 It is necessary, especially with the increasing number of functional standards, to ensure that the same criteria
apply to conformity with external functional standards as to the primary language itself.

NOTE 2 The requirements for processors apply equally to subroutine packages (or their equivalent) which implement
functional standards, since in the terms used in this Technical Report such a subroutine package will form part of the
processor as far as binding to the functional standard is concerned.

4.6.4 Guideline: Mixed language programming

When specifying requirements upon conforming processors, possible needs of users for mixed language
programming should be taken into account. These may include the incorporation of modules or segments in
programs mainly written in another language, as well as the use of modules or segments written in another
language. The committee should consider whether it is appropriate to require conforming processors to
provide means to facilitate this, or to provide guidance to implementors on such provision.

NOTE Standards are commonly designed as if the language and its community operate in an isolated world in which
other languages do not exist. However, in practice many users of many languages find the need to invoke in some way
facilities written in other languages. The growth of libraries of reusable software packages which are not necessarily
available in a specific language, and the risk of decreased reliability in the configuration management of multiple copies of
those packages, reinforces the need to give attention to this topic.

4.6.5 Guideline: Common elements

Those elements and properties within the language which may be held in common with those of other
languages should be defined in the standard; the hierarchy of the elements should be specified; and the
functionality of the common holding of definitions to be performed internal and external to the language should
be specified.

NOTE This guideline is aimed at ensuring that common elements may be used consistently across languages.

4.6.6 Guideline: Use of data dictionaries

Where a standard exists for a data dictionary and users of the language standard require access to that
dictionary through their language, the semantics and the matching of the structures, elements and properties
of those data elements in the language which are associated with the dictionary standard should be specified,
preferably in a supplementary standard.

NOTE The aim of this guideline is to remove any possible ambiguity between the data descriptors in the language
and those in the dictionary, provide an additional check on the functionality, semantics and structure of the dictionary, and
provide some commonality within the dictionary for the use of alternative languages.

The holding of elements within the dictionary requires definition of properties for each element type which, if commonly
defined for instances, provides the necessary means for the validation of format, content, and relationship with other
instances.

4.7 Guidelines on internationalization

4.7.1 Guideline: Cultural convention set switching mechanism

The programming language standard should provide the functionality to dynamically switch from one cultural
convention set to another (e.g. setlocale() function in C language). If the programming language supports
multiple threads in a process, the cultural convention set binding should be done by thread or by API, not by
process.

30 © ISO/IEC 2003 — Al rights reserved

ISO/IEC TR 10176:2003(E)

NOTE 1 setlocale() function in C and POSIX standards is an example of the culture convention set switching
mechanism.

NOTE 2 locale object may be used for object oriented languages in order to indicate a cultural convention set to be
applied for a method of a cultural sensitive object.

4.7.2 Guideline: Cultural convention related functionality

Every cultural convention related functionality, e.g. character string ordering service, provided by a
programming language standard should refer to the cultural convention, e.g. collating sequence, associated at
execution time, and behave correctly as defined in the cultural convention.

The programming language committee should consider what cultural convention related functionality are
relevant to and should be provided by the subjecting programming language standard.

NOTE Candidates of cultural convention related functionality provided by programming language standards are
described in ISO/IEC TR 11017 “Framework of internationalization”.

© ISO/IEC 2003 — Al rights reserved 31

ISO/IEC TR 10176:2003(E)

Annex A
(informative)

Recommended extended repertoire for user-defined identifiers

The recommended extended repertoire consists of those characters which collectively can be used to
generate word-like identifiers for most natural languages of the world. This list comprises the letters
(combining or not), syllables, and ideographs from ISO/IEC 10646-1, together with the modifier letters and
marks conventionally used as parts of words. The list excludes punctuation and symbols not generally
included in words or considered appropriate for use in identifiers. Also excluded are most presentation forms
of letters and a number of compatibility characters. The inclusion of combining characters corresponds to
those allowed under a level 2 implementation of ISO/IEC 10646-1. These are the minimum required to do a
reasonable job of representing word-like identifiers in Hebrew, Arabic, and scripts of South and Southeast
Asia, which make general use of combining marks. However, combining marks for level 3 implementations of
ISO/IEC 10646-1 are not included in the list, so as to avoid the problem of alternative representations of
identifiers.

Attention is drawn to the fact that using the extended repertoire for identifiers may impact source code
portability, since the presence of these characters in program text may not be supported on systems that
implement less than the full repertoire of ISO/IEC 10646-1.

The character repertoire listed in this annex is based on ISO/IEC 10646-1:2000. It is subject to expansion in
the future, to track future amendments to the standard. Characters currently listed in this Annex will not be
removed from the recommended extended repertoire in future revisions. However, the use of some characters
may be discouraged.

The character repertoire listed in this annex should be conceived of as a recommendation for the minimum
extended repertoire for use in user-defined identifiers. Each programming language standard or
implementation of the standard can extend the repertoire at the adaptation, in accordance with established
practice of identifier usage for the language and any additional user requirements that may be present. For
example, the C language should allow U0O03F LOW LINE in addition to the character repertoire listed below;
COBOL should allow U002D HYPHEN-MINUS as well; Java allows a rather large extension to support a
level 3 implementation of ISO/IEC 10646-1. Some programming language standards may allow half- or full-
width compatibility characters from ISO/IEC 10646-1, and some of the standards, e.g. COBOL, may recognize
these characters in a width-insensitive manner.

Programming language standards generally have restrictions on what characters may be allowed as the first
character of an identifier. For example, digits are often constrained from appearing as the first character of an
identifier. To assist in their identification, the decimal digits in ISO/IEC 10646-1 are separately noted in the list
below. In addition, combining characters should not appear as the first character of an identifier. To maximize
the chances of interoperability between programming languages (as for example, when linking compiled
objects between languages), programming language standards and their implementations should follow these
restrictions when making use of the extended repertoire for user-defined identifiers.

The characters, recommended for identifiers in programming languages consist of the following character
ranges of ISO/IEC 10646-1. Combining characters for scripts are separated out.

The table shows

— the first and the last code point in hexadecimal form for a range of characters
— the General Category property of these characters (see legend below)

— the number of characters in this range between square brackets

— and the names of the first and the last character in the range.

32 © ISO/IEC 2003 — All rights reserved

ISO/IEC TR 10176:2003(E)

The following table is also available in electronic form on the ITTF secure web site for downloading. Its file name
is ISOIEC_TR_10176_2003_Table.txt and the URL is http://www.iso.org/ittf/ISOIEC_TR_10176_2003_Table.txt.

Legend:

The following table identifies the property of characters suitable for identifiers, as used in the Unicode
Character Database and in the table ISOIEC_TR _10176_2003_Table.ixt on the ITTF web site.

Abbr. Description

L& | The symbol “L&” indicates characters of type Lu, LI, or Lt (see below).

Lu Letter, Uppercase

LI Letter, Lowercase

Lt Letter, Titlecase

Lm |Letter, Modifier
Lo Letter, Other

Mn | Mark, Non-Spacing

Mc | Mark, Spacing Combining

Nd Number, Decimal Digit

NI Number, Letter

Pc | Punctuation, Connector

© ISO/IEC 2003 — Al rights reserved 33

http://www.iso.org/ittf/ISOIEC_TR_10176_2003_Table.txt

2003(E)

ISO/IEC TR 10176

INHNNYIDHEODS0dd HLIM VYDHWO HHLLAT TYLIAVYD MHHID " " INHWOdSIYdHd HLIM ¥DHWO

INHNNYIODHEO0dA ANV VIXO HLIM VOHWO HHLLAT TIVWS MEHED " " INHWWNYIDHEDOJX ANV VIYVA HLIM YOHWO
YISVYd HLIIM OHY YHLLAT TYLIAYD MHHED " "AHOVIA HLIM NOTISdN

YIXO HIIM VIOI YHLLAT TYLIAYD MUHED " "INHNOdSIdHd HLIM VIOI

YIXO ANV VAILATIVIA HIIM VIOI YHLLAT TIVWS MHHYD " "AHOVIA HLIM VIOI

INHNNYIOHEOSOdd HLIM YIH YHLLIHET TYLIAVYD MHHEED " "INHWOdSIYHEd HLIM YILId

INHNNYIOHEO0dA ANV VIXO HLIM YIH JHILHET TIVAS MHHEED " " INHNAVIDADOdA ANV VIYVA HLIM YIHE
INHNNYIOHEOSOdd HLIM VHATV YHLLAT TYLIAVYD MHHYD " " INHWOdSIYHd HLIM VHATY

INIWNNYIDHEDO0dA ANV VIXO HLIM VHATVY JHLLAT TIVNS MEEED " " INHWWNYIDHEODOdA ANV ITISd HLIM VYHATVY

HHLLAT
HHILLAT
HHILLAT
HHLLAT
HHLLAT
HHILLAT
HHILLAT
HHILLAT
HHLLAT

TTIVYINS
TTIVYNS
TTIVYNS
TTIVYINS
TIVINS
TTIVYNS
TTIYWS
TTIYNS
TTIVYINS

YIXO HILIM ¥DHWO JULLHAT TIVWS MHHYD " " INHWOdSIdHd dNV VISV HLIM NOTISdN YHLLAT TYLIIVYD
YIXO ANV VISVA HLIM NOTISdN YHLLAT TYLIAVD

YIYVYA ANV VISVYA HLIM NOTISdN YHLIAT TYLIAVYD

YISVd HLIM NOTISdN ¥HLLAT TYLIJVYD

INHWNOdSIdHd ANV VISVA HLIM NOTISdN YHLLAT TIVWS MHHYD " "ITISd HLIM NOTISdN dHLLHAT TIVIS
YIXO ANV VISVA HLIM NOJYDIWO H¥HLLIAT TVLIAVD MHHYD " "ITISd HLIM NOJIDIWO HHLLAT TYLIIVYD
YIXO ANV VYISVA HLIM NOJYDIWO YHLLAT TTIVWS MEHYD " "ITISd HIIM VIH YULLAT TTIVRS

YIXO ANV VISVA HLIM NOTISdH Y¥HLLAT TVLIAVYD MHHYD " "ITISd HLIM NOTISdH HHLLAT TYLIIVYD
YIXO ANV VISVA HLIM NOTISdH HHLLAT TIVWS MHHYD " "ITISd HLIIM VHATIVY JULLAT TIVINS

LOL YHLLHET MHETED " "YWOILS YHLLAT

TOWAS IVM MHHYD " “TOAWAS VYIdd

SONOL HILIM VDHWO HHLLAT TIVWS MHHYD " "VWOIS dHLLHAT

OHYd Y¥HLLAT TVYLIAVYD MHHYD " "SONOL HLIM NOTISdN dHLLHAT

SONOL HLIM NOYJDIWO dHLLHT

SONOL HLIM VYIOI ¥HLLAT TVYLIAVYD MHHYD " "SONOL HLIM NOTISdH HHLLHAT
SONOL HLIM VHATVY YHLLAT

TYLIdVYO
TYLIdVYO
TYLIdVYO
TYLIdVYD
TYLIdVYD

MHEED
MHEEID
MHEEID
MHEED
MHEED
MHEEYD
MHEEID
MHEEID
MHEED
MHEED
MHEEID
MHEEID
MHEED
MHEED
MHEEID
MHEEID
MHEED
MHEED
MHEEID
MHEEID
MHEED
MHEED
MHEED
MHEEID
MHEEID

N dHLLET TIVWS NILVT LdI¥DSdIHdNS

HATIL HLIM A JHLLIHET TIVWNS NILVT® "MOTHd LOd HLIM V¥V ¥HLLAT TYLIJVYD
HAO0dY I0d HLIM S ONOT ¥HLLAT TIVWNS NILVYT® "MOTHd ONIY HLIM ¥ JHLLAT TYLIVYO
HAISSNOYHEd TVINHAIE JdHILHET NILIVT® "V ENINL JHLLAT TTIVYRNS

NOJOVW HLIM A YHLLAT TIVWS NILVT® "N0 JHLLAT TYLIIVYD

NOJVD HLIM H YHLLHAT TIVWS NILVT® "NOJVD HLIM Zd YHLLAT TYLIIVYD
MOITO XHTAOILHEE JULLHAT NILVT® "MOITO TVINAA dHLLAT

NNAM YHELLAT NILVT® "HAIA ENOL JHLLIHET TVYLIJVYD

H¥MOdLS HLIM OMIL ¥HLLHAT

TIVL HLIM HZH YHLLAT TIVNS NILIVT® "HYO4LS HLIM O YHLLHET TTIVIWS
SISHIUVIA HLIM O YHLILAT TIVWS NILVT® "HYMO4LS HLIM O YHLLAT TVYLIIVD
SISHIUVIA HLIM O YHLLAT TVYLIAVYD NILVT® "HAVID HLIM ¥V YHLLAT TYLIAVYD
FOLVYOIANI TUYNICIO HENITADSVYIN

FOLVOIANI TYNIQIO HANINIWHA

Z JULLAT TIVNS NILVT® "V JHLLIHET TIVNS NILVT

Z JULLAT TYLIdVYO NIIYT® "V dHLLAT TYLIVYD NILVT

NIIVT
NIIVT
NILVT
NILVT
NIIVT
NIIVT
NILVT
NILVT
NILVT
NIIVT
NIIVT

371
3T
3T
3T
3T
3T
3T
3T
3T
3T
3T
3T
3T
371
3T
3T
3T
371
3T
3T
371
3T
3T
3T
3T

3T
3T
3T
3T
3T
3T

3T

3T
3T
3T
3T
3T
3T
371

044T" " 944T
pAAT " 24T
DHAT" " 0HAT
daqdT- " 9adr
€QqdT"T0adt
00471 " 90471
yOAT " " ZOAT
04471 " 9441
AT 0841
QLAT" "AGAT
ascat

ac4aT

6GAT

LGAT "0GAT
avdT" "8rdT
SPAT""0zdT
ATAT" "8TAT
GTAT "004T
€4€0" "¥dE0
LAEO0" *0dED
IDE0 " "EVED
TVEOD ™ "E8€E0
08€0

¥8€E€0" "88€0
98€0

o219 #
AL0¢C
6d9T " " 0VIT
d63T" "003T
avezo* t0Gzo
€€20°°2220
ATZ0" "¥OT0
€DT0° 0210
A4T0 " "04dT0
gg710

vd10° 8400
9.400" "800
9d00- " 0200
vd00

¥Y00
YL00""T900
¥G00" "TF00
utleT 4

*93TS gem 2Indes JALLI oYl 3® 3IXI S[Cel £00Z 9LTOT ¥l OHIOSI Se ATTedTuoIloe[e STqe[TeA® ST 3ISTT STYUL

I0 000Z:T-9%90T DHI/OSI UT SI93deIeyd JO ©I1TO01Iadel BYl UO POseq ‘SISTITIUSPT I0J POMOTTER SI930eIRUD JO 3ISTT

Iy Xauuy -

0°€ °pooTun
UOTATPS UYIINoJ

‘9LTOT ¥l

© ISO/IEC 2003 — All rights reserved

34

2003(E)

ISO/IEC TR 10176

HAVYTIY LdIY9DSdHdNS dHLLAT

MYL 9HLLHET DOVIYAS® "HIHE dHLLHT
HAVTIVY JHLLAT

WHHN MOT TIVWS D2IdVIY" "dOLS MOT HIINHD ALJWAH

NOON HOIH TIVWS DJIdVdY ' "HHAX HODIH TIVKS

NUHS HOIH TIVIWS DJIdVdVY "™ "VINSAVW AHTVY HLIM WYT HLIM dVYS HINLVOIT HOIH TIVIS
AUTVY LdITFOSEHdNS FHLLAT

NOMAS DIIVYIY " " NVILVHIVA

MOTHE IO0d HLIM NIVHD YHLLAT DIVYV" "MOTHd LOd HLIM NUHHHS YHLLAT
HYIX TIVWNS DIdVdVY "™ "MYM TTIVINS

Y dHLLAT

HAOAY VZWYH HLIM HHYIVE HHA FHLLAT DIAVAVY " "YISYM AHTY JHLLHT
HEIX ¥HLLIAT DIAVYVY" "HHA JHLLIHT

THIMIYL

NIVHD JULLHAT OIIVIY " "VYZWVH dHLLAT

LO0d NIS INIOd MHJHH® *I1Od NIHS LNIOd
HAYd LNIOd

DHELAN INIOd MAIGHH® *SINENO INIOd
WYTOH INIOd MHEYAHH® "VAHHS INIOd

dOX HTdNOd HSIAAIX HINLVDIT MHIIHH® "AVA HTdN0d HSIAAIX HINLVOIT
AYL dHLLET MEIGHH ™ "dH3TVY JHLLET

OVIYAS

OVIYAS
OVIYAS

0IdvdY
0IdvdaY
OIdvdY
OIdvdY
0IdvdaY

0IdvdY
OIdvdY
OIdvdY
0IdvdY
0IdvdY
OIdvdY
OIdvdY

MHIIHH
MEIIHH
MHIIHH
MHIIHH

MHIIHH
MHIIHH

NMIX HOH HINLVYDIT TIVWNS NYINHWAVY "™ "HAV FHLLAT TIVNS NYINHNIY
HYd FHLLAT TVYLIAVYD NVYINHWIY ™ "dAV JHLLAT TYLIAYD NYINHWNIY

SISHIUVIA HLIM NEHA JHLLHET TIVAS DOITIIYAD "SISHYAVIA HLIM NEHX FHLLAT TYLIAVYD DITTIIYEAD
SISHIUVIA HLIM HHD YHLLHET TIVWS DITIIYAD ™ "HAHYE HLIM Y JHLIHAT TYLIIVYD DITTIIYAD

HHD NVISSVYMVYHM ¥HLLAT TIVWS DITIIYAD® "HHD NVISSVYMVHM YHLLAT TYLIAYD DITTIIYAD

JMOOH HIIM NE ¥HLLAT TIVWNS DITIIYAD" "MOOH HLIM NH YHLLAT TYLIAVYD DITTIIYAD

JOOH HLIM VM YHLLAT TIVWS DITIIYAD ™ "NDIS LAOSIWHS YHALLHET TYLIAVO DITTIIHAD

YddOo¥d dHLLAT TIVNS DITIIYAD® "HAVYD HLIM HI YHLLAT TYLIAYD OITTIIYAD

(buTuTqWOD)

[Lz]

[7]
[z]
(L]

[8]

(buTuTqWOD)

[€]
fotl

(butuTqWOD)

[€]
[Lel

[zl
g€l
[z]
[z]
[Lg]
[o€T]

U

o7
o7

UN
UN
Un
Un
UN

oT
wg
oT
oT
oT
ug
oT

U
Ui
Ui
U

oT
oT

3T
3T

3T
3T
3T
3T
371
371

TTLO
0eTIAS #
D2CL0""CTILO
0TLO
OBTIAS #
adE90 " "vd90
8H90 " "LHU90
2d90° "9d90
0L90

Z2690° "d¥#90
OTqRIY #
2490 "Y4aA90
9H90 " "SH90
Sdgo

€d90° "TL90
¥%90°"T¥90
0790
YE90""TC90
OTqeayY #
Z20S0° "1DS0
A9G0
adso - "ddso
6450 04dS0
MOICOH #
2450 " 04590
YHS0 " " 0dS0
MOICOH #
L8S0""T9G0
9660 "T€S0

ueTUSWIY #

6470 " 8410
GAF0 " " 0dF0
20F0 " "€0F0
8070 " LOF0
pOv0 " "08%0
870" "00%0
OTTTTIAD #

35

© ISO/IEC 2003 — All rights reserved

2003(E)

ISO/IEC TR 10176

TT DITYOOA NDIS THMOA ITVONHG™ T DITVOOA NOIS THMOA ITVONHL
YNYIIA NOIS ITVONHL

NV NOIS THMOA ITUYDNHA O NOIS THMOA ITVONHL

IV NDIS THMOA ITVYDNHA® " NDIS THMOA ITVONHA

dd DITYOOA NDIS THMOA ITVONHA ™ "1 NOIS THMOA ITVONHL

IT NDIS THMOA ITVODNHA® VYV NODIS THMOA ITVONHL

YOUVSIA NOIS ITVONHL® "VIVASANY NDIS ITVONHA

NANIGVIANYD NOIS ITVONHL

TYNOOVYIA ¥HMOT HLIM Vd JHILHT ITYONHLG® "TYNODVIA HTAAIW HLIM Y JHLLHET ITVONHL
TT DITVYOOA dHLLAT ITVYONHAL®™ "VAX FHLLAT ITVONHL

YHY dHLLHET ITVYONHI ™ "Vdd JYHLLIET ITVONHLG

VH YHLLAT ITVYONHA® "VHS YHULLAT ITVYONHA

YT JUELLAT ITVYONHA

Yd JHLLET ITVONHG ™ "Vd dHLLAT ITYONHEG

YN JHLLIET ITVONHG "O YHLLAT ITVYONHI

IV JHLLET ITVONHG ™ "H YHLLAT ITYONHd

T DITVOOA ¥HLLAT ITVONHI® "V JdHLLHET ITVONHL

TT DITYOOA NOIS THMOA TUVODOUNVAHA® "T DITUYDOA NDIS THMOA
YLLVAANY NODIS SSHYLS IYUVDUNVAHA '™ "VILVYAN NODIS SSHALS
YIWVIIA NOIS

NY NOIS THMOA TUVYDVUNVAHA® "O VIANVYD NDIS THMOA

IY NDIS THMOA IYVDUNVAHA® "1 NOIS THMOA

ITI NDIS THMOA IYVODVUNVAHJ® "VYY NDIS THMOA

VYOdVSIA NOIS

YIVASONY NODIS IYVDUYNVAHA ™ "NANIIYIANYD NOIS

TT DITVOOA ¥YHIIAT IY¥VOVNVAHEA' "YO ¥HLLIET
WO

VYHYIOVAY NOIS

YH JHLIET TIVOVYNVAHA® Y JHLIHT

TIVYDUNVYAHA
TIVYDUNVYAHA
TIVYDUYNVYAHA
TIVYDUYNVYAHA
TIVYDUNVYAHA
TIVYDUNVYAHA
TIVYDUYNVYAHA
TIVYDUNVYAHA

TIVYDUNVYAHA
TIVYDUYNVYAHA
TIVYDUNVYAHA
TIVYDUNVYAHA

NOMAS ¥NVVHL® "ITIAVAY VYNVYHL

NAYVYM JYHLLAT ¥YNVVHL® "YVYH dHLLHT YNVYYHL

[z] un ¢ €Hd60° "2H60
up ¢ aseo

[z] oW ¢ 0060 " "dD60
[z] oW ¢ 8060 "LD60
[v] upn ¢ 7060 1060
[e] oW ¢ 0060 " "H4d60
[z] oW ¢ €860 2860
up ! 1860
(butuTqWoDo) TTebusg #
[z] o1 ! Td60° " 0460
[e] o1 ! TH60 " "4d60
[z] o1 ! ade0 - "2d60
[v] o1 ! 6460 94960
ot ! 24960

[L] o1 ! 0960 " "YY60
[zzl o1 ¢ 8Y60°"€660
[z] o1 ! 0660 "4860
[8] ot ¢ 0860° 6860
TTebusg #

[z] upn ¢ €960 2960
[z] upn ¢ 2660 "1G60
up arveo

[v] oW ¢ O¥60° "6%60
[8] upn ¢ 8760 "T¥60
[€] oW ¢ 060" "HEGOD
oW €060

[z] upn ¢ 2060 °T060
(buTuTqWoOD) TIebRURASQ #
[oT] o1 ¢ T960°"8S60
oT ¢ 0660

ot ! aceo

[eg] o1 ¢ 6€60° 5060
Tiebeueasqg #

[TT] umw ¢ 0dL0" "9VYLO
(butuTqWOD) ®UEEYJ #
[ge]l o1 ¢ GYL0""08L0
eueey] #

© ISO/IEC 2003 — All rights reserved

36

2003(E)

ISO/IEC TR 10176

YTT JULLAT YAIYO" "Y1

Yd JHLLET YAIYEO™ "¥d

YN JHLLHET YAIEO0™ O

IV JHLIAT YAIEO0™ *d

T DITVOOA ¥HLLAT YAIHO" "¥Y

NY NDIS THMOA IIVIVLND® "O

O YJANVYD

IY NDIS THMOA ILVIVLAD™ "H
d YIANVYD NOIS THMOA IIVIVLND® "N

IT NDIS THMOA ILVIVLND™ "VY

YINVI I
NDIS
NDIS
NDIS
NDIS
NDIS

A NDIS
THMOA
THMOA
THMOA
THMOA
THMOA

UYDIVSIA NOIS
YIVASANY NODIS ILVIVYLND " "NANIIVIANYD NOIS

dd DITVYOOA dHLLHET

WO

VYHYIOVAY NOIS
YH YHLIET ILVIVLND ™ "VA JYHLLAT

YIT 93LLET ILVIVLND " VT JHLLET
Yd 9JHLLIET ILVIVLND ™ "Vd JdHLLAET

UN dHLIAT ILVIVLND ™ "O dHLLHAT

O YJANVYD THMOA ILVIVLND® "H YHLLAT
d YIANYD THMOA
d OITVOOA JHLLIHET ILVIVLND® "V JHLILAT

YWYIIA NOIS IHMAWIND® “00
IY NDIS THMOA IHMAWIND® "HH
NN NOIS THMOA IHMAWIND ™ "N

IT NDIS THMOA IHMNWIND® "VY

NDIS
NDIS
NDIS
NDIS
IANT

THMOA
THMOA
THMOA
THMOA
g NDIS

AYMINO ME IHMAWIND ™ " IYI

A

Ydd JHLLET IHMAWGND® ° YHHX

YH dHLLAT
YHS dHLLAT
YI1T 9HLLET

Yd JHLLET

YN JHLLAT

IV dHLLAT

IHYONIND *
IHMONIND *
IHINWIND -
IHINWIND -~
IHYONIND *
IHMONIND *

‘¥S
‘YA
‘YT
"vd
‘00
JRCicH

NN FELLAT IHMAWIND " "¢

HHLLAT
HHLLAT
HHLLET
HHLLET
HHLLAT
HHLLAT
HHLLET
HHLLET
HHLLAT

HHLLET YAIEO
HULLAT YATHO
JULLAT YATHO
HHLLET YAIEO
HHLLET YAIEO

ILYIYLND
ILVYIYLND
ILYIYLND
ILYIYLND
ILVYIYLND
ILYIYLND
ILYIYLND
ILYIYLND

ILVYIYLND
ILYIYLND
ILYIYLND
ILYIYLND
ILVYIYLND
ILVYIYLND
ILYIYLND
ILYIYLND
ILVYIYLNo
ILVYIYLND

IHINWIND
IHYINWIND
IHINWIND
ITHINWIND
IHINWIND

IHYNWIND
ITHINWIND
ITHINWIND
IHMNWIND
IHYINWIND
ITHINWIND
ITHINWIND
IHYOWIND
IHMOWIND
ITHINWIND

[z]

(buTuTqWOD)

[€]
[z]
[zl
el

(butuTqWOD)

[€]

(vl

U
oI
oI
Ui
U
oI
oI
Ui

o7

UN
UN
U
O
UN

oT
oT
oT
oT
oT
oT

€ed0 " "2ed0
0€40 " "¥Ycd0
8240 "€140
0Td0 " "40490
00d0° "504d0
BATIO #
adsvo
D0V0 " "ddOVv0
60Y0
80VY0 " " LOY0
GOY0 " " TOVY0
0O¥0 " "H4Y0
€8Y0
Z8Y0 " " TI8Y0
T3exelng #
0dY0

0dYo0

agvo
6dY0 " " SdvY0
€dY0 " " ¢Zdv0
09Y0 " "¥YYY0
8YVY0 " "€6Y0
T6Y0 ™ "d8Y0
asvo
d8VY0 " "S8Y0

T3ezelng 4

ayvo - "4dvvo
8FY0 " " LFYO
ZyY0 " " TPY0
0PVY0 " "HEVYO0

Z0Y0
TynuInD 4
7LY0 " "ZLY0

dGVY0
DGVY0 " "6G5VY0
6EY0" "8EY0
9€Y0 " "SEY0
€EY0 " "ZEY0
0€Y0 " "¥ZY0
8CY0 " "€TVY0
0TY0 " "40Y0
Y0OY0 " "S0Y0
TUYNUIND #

37

© ISO/IEC 2003 — All rights reserved

2003(E)

ISO/IEC TR 10176

TT DITVYOOA FHLLAT NDNTHL® *dd DITVOOA dHLLHT
YH YHLLIET NDNTHL™ "VA dHLLAT

YTT JULLET NDNTHL " "Vd dHLLAT

UN dHELLAT NADATHL® O JHLLIHT

IV JHLIET NDATHL ™ "H ¥HLLAT

T DITVYOOA ¥HLLAT NONTHL® "V YHLLAT

YINVI I

NY NOIS THMOA TIWVL® "0 NDIS
IY NDIS THMOA TIWVL®"d NDIS
NN NOIS THMOA TIWVL® "N NDIS
IT NDIS

I NDIS THMOA TIWVL® VY NDIS
VOdVSI

A NDIS
THMOA
THMOA
THMOA
THMOA
THMOA

A NDIS

YIYASONY NOIS

VYH YULLAT TIWVL® "¥YSS
YA JELLAT TIWYL® “VYW
Yd 9HLLET TIWYL® "¥N

YL YHLLET TIWYL® "YNN

YIL JULLET TINWYL® “YAN
Yr

YO YHLLHET TIWVYL® "¥DN
Y JHLLET TINYL® O

IV JHLIAT TINYL® "d

NN FELLAT TIWYL® *Y

YINYI T

NV NOIS THMOA YAIYO® O NDIS

IY NDIS THMOA VYAIYHO"™"d NODIS

d OITVYDOA NDIS THMOA YAIYO™ "1 NOIS
IT NDIS

I NDIS

YV NODIS

HHILLAT
HHILLAT
dHLLAT
dHLLAT
HHILLAT
HHILLAT
HHLLAT
HHLLAT
HHILLAT
HHILLAT

A NOIS
THMOA
THMOA
THMOA
THMOA
THMOA
THMOA

VYOJIVSIA NOIS VAIYHO®™ "VIVASANY NOIS
NANIGVIANYD NOIS

TT DITVYOOA H¥HLLAT YATIYO" "YAX
VHY JULLET YATHO ™ "Ydd

HHILLAT
HHILLAT

YHYIOVAY NOIS

YH YHLLAET VYAIFO" "VHS

dHLLAT

NONTHL
NONTHL
NONTHL
NONTHL
NONTHL
NONTHL

TINY.L
TINY.L
TINYL
TINYL
TINY.L
TINY.L
TINYL
TINYL

TINWY.L
TINWY.L
TINY.L
TINY.L
TINWY.L
TINWY.L
TINY.L
TINY.L
TINWY.L
TIWY.L

YAIEO0
YAIE0
YATIH0
YATIJ0
YAIEO0
YAIEO0
YATIHJ0
YATH0
YAIEO0

YAIEO0
YAIEO0
YATIH0
YATH0

[zl
[sl]
fotl
[ezZ]
[€]
[8l

[€]
[z]

[9]

oT ¢ 79200920
o1 ¢ 6€D00°"S€D0
ot ! €€00° "¥ZD0
o ! 82200 "ZTD0
ot ! 0TD0 " "H0D0
o1 ¢ D020° "S020
nbnisr #

uw ¢ ando
OW ¢ 2040 "¥Dd0
oW ¢ 8240 "904d0
oW ¢ 2240 " 1240
uWw ¢ 0240
OW ¢ Add0 " " d494d0
oW ¢ €840
up ¢ 2840
(bututquoo) TrTwer #
o1 ! 6494d0" " L4940
o1 ¢ Gdd0 " " dvd0
o1 ! Yvd0 " " 8vdo0
o1 ¢ yv¥d0 " " €VY40
o1 ¢ A6490 " "H64d0
ot ! D640
o1 ¢ Y6d0 " "66490
o1 ¢ G640 2640
ot ! 06490 " "HE84d0
o1 ¢ ¥8d0 " "S840
TTwel #

U ¢ ardo
OW ¢ ovd0 " "dyd0
oW 8740 " L7440
up €740 " 1740
oW ¢ 0¥d0
U ¢ A€40
oW ¢ 4€40
oW €040 2040
U ¢ 1040
(butuTqWoD) ®BATIO #
o1 ¢ T9d0 " "4S640
o1 ¢ asdo - *0s4do
o1 ! aedo
oT ¢ 6€d0°"9¢40

© ISO/IEC 2003 — All rights reserved

38

2003(E)

ISO/IEC TR 10176

UYNNVAVA YHELLAT YIVHNIS® "VYNNVAVA dHLLHT

YNNVAVT VLOVINVA JHLLAT

YNNVAVE JELLAT YIVHNIS®™ "YNNVAVA VMVANVS HHLLAT

YNNVAVN VLOVINVA SULLHET YIVHNIS ™ "UYNNVAVYY VNVYVIAVATIY JHLLAET

YTIYHNIS
YIVHNIS
YIVHNIS
YIVHNIS

YNNVANY YHELLAT YIVHNIS® "YNNVAY JdHLLHAT VIVHNIS

YNYIIA NOIS WYTIVAYTIVN

NV NOIS THMOA WYIVAVYIVA® "O NDIS THMOA WYTIYAVTIVI

IY NDIS THMOA WYTIVAVIVI ™ "d NDIS THMOA WYIVAVTIVN

d OITVOOA NDIS THMOA WYTVAVIVIA™ "1 NDIS THMOA WYTIVAVTIVW
II NDIS THMOA WYTIVAVIVW® VY NOIS THMOA WYTIVAVTIVN
YOUVSIA NOIS WYTIVAVIVN® “VIVASANY NOIS WYTIVAYTIVN

TT DITVYOOA HHLLAT WYTIVAVIVA ™ "dd DITVOOA HHLILAT WYTVAVIVN
YH JHLLIHET WYTVAYVIVA® "Vd JHLLIHET WYTYAYTIVN

YN JHLLET WYTYAYIVA® "O JYHLLIHET WYIVAYIVW

IV JHLLIET WYIVAYIVA® "4 YHLLET WYTYAYTIVN

T DITVOOA HHLLAT WYTIVAVIVN® "V JHLLAT WYTYAVIVRN

YWYIIA NOIS VAVYNNVYM® "NV NDIS THMOA VAVYNNY
00 NOIS THMOA YAUYNNYX' O NOIS THMOA VAVNNYX

IY NDIS THMOA YAVYNNVX " "HH NODIS THMOA
d NOIS THMOA

YAYNNY
YAYNNY

dd DITUYODOA NDIS THMOA VAVNNYM® "ITI NOIS THMOA VAVNNYX
I NDIS THMOA YAVYNNVX

YY NDIS THMOA
VOJIVSIA NOIS VAVYNNVYM " "VIVASANY NOIS

TT DITYOOA FHLLAT VYAYNNVYY " 99 DITVOOA dHLLHAT
Yd JHLLIET

YAYNNY
YAYNNY

YAYNNY
YAYNNY

VH YUELLAT VYAYNNYM " VA JHLLAT VAYNNYY
YTT JULLET YAYNNYX " "Vd YHLLAT VYAYNNYI

YN JHLLET YAYNNYX " "O dHLLAT
IV YHLLHET VYAVNNVA® "3 JHLLAT

YAYNNY
YAYNNY

T DITVOOA ¥HLLAT VAVYNNYM " "V JHLLHAT VYAYNNYXI

YWYIIA NOIS NDATHL® "O NDIS THMOA

IV NDIS THMOA NDATHL® "H NDIS THMOA

dd DITUYOOA NDIS THMOA NDATHL® "N NDIS THMOA
IT NDIS THMOA NDATHL" "YY NDIS THMOA
VYOJIVSIA NODIS NONTHL® "NANIIVYIANYD NOIS

NONTHL
NONTHL
NONTHL
NONTHL
NONTHL

[L] o1 ! 92d0 " *02d0
o1 ! adao

[6] o1 ! g4dd0 " " €4ddo
[yz] o1 ¢ Tdd0 - "¥6do0
[gT] o1 ¢ 96d0 " *S8d0
BTRUUTS #

up ! aryao

(€] oW ¢ ovao - "¥vao
[e] oW ¢ 87d0 " "97A0
[e] upn ¢ €7ao - " 1Tvdo
[€] oW ¢ 0%do0 " "HEAO
[z] oW ¢ €0d0 " *20d0
(butuTqWoo) weTeAeTen #
[z] o1 ! 1900° 0900
[91] o ! 6€0d0 " "Ycao
[ez]l o1 ¢ 8zd0 " "ZT1do
[e] o1 ! 0Td0 " "H0d0
[8] o ! 00d0 " "50d0
weTeAeTen #

[Z] upn ¢ asd0 - "2d220
[Z] oW ¢ g020 " "¥D2D0
[z] oW ¢ 8020 " " LDD0
uW ¢ 9020

[G] oW ¢ 70200 0020
U ¢ AdD0

O ¢ 44900

[z] oW ¢ €800 2800
(buTuTqWOD) ®epPRUURY #
[z] o1 ! TED0 " " 0dD0
o7 ! H4d20

[G] oT ¢ 6400 " *54dD0
[oT] o1 ¢ €400 " "Y¥D0
[ez]l o1 ¢ 8YD0 " "Z600
[e] o1 ! 0620 "H8D0
[8] ot ! 0820° "6820
epeuuRy #

[v] upn ¢ dayd0° "¥¥20
[€] upn ¢ 8700 "9%D0
[7] oW ¢ 7472810 R R 72010)
[e] upn ¢ 0720 "HEDO
[e] oW ¢ €000 "T0D0
(butuTqWoOD) nbnisl #

39

© ISO/IEC 2003 — All rights reserved

2003(E)

ISO/IEC TR 10176

YLIHVYDODIN OVT" "MH IVIW HNOL

OT NOIS THMOAIWHAS OVYT™ "NOXM IVW NODIS THMOA
NN NOIS THMOA OYT" "I NODIS THMOA

NV IVW NDIS THMOA

OW OH OYT"

‘ON OH
YT O4

IY NDIS THMOA OVYT™"H NOIS THMOA
OAN NOIS THMOAIWHS
WY NOIS THMOA OYT" "YV¥ NOIS THMOA

Y NOIS THMOA OYT" "0
ONAS OH YHLLAT OV¥T" "ONAS OS
oM

LO0T OT

ONIT OT YHLLAT OYT" "OW
ONAS Od JHLLHAT OV¥TI" "ON
WYL OHIL YHLLAT OYT’ "0d
OAN

WYL OS

0D Y¥HLLAT OYT" "ODN

WYL OHX

ONAS OHY ¥HLLAT OVYTI" "OM

HHLLET
HHLLAT
HHLLAT
HHLLET
HHLLET
HHLLAT
HHLLAT
HHLLAT
HHLLET
HHLLET
HHLLAT
HHLLAT

NYMMYWYA dHLOVIVHD IVHL® "AHMIVLIVIN JHLOVIVHD
NHINIHd YHLOVAIVHD IVHL "I YIVS ¥HLOVIVHD
IYMVY-NVH IVIW JHLOVIVHD

MOWVAIVIN JHLOYIVHD

OVADNVHMMVT YHLOVIVHD IVHL® "H YIVS JYHLOVIVHD
WY VdVS JYHLOVIVHD IVHL ™ "VYV YIVS JHLOVIVHD

Y VYdVS YHLOVIVHD IVHL® "IVM OM JHLOVIVHO

YLLIMAONYAVYD ¥VOIA NDIS THMOA YIVHNIS® "VITId-VILILAVD ¥DOIA NOIS THMOA
YLLIMANYAVYD NOIS THMOA YIVHNIS® "VITId-VILLAYD NDIS THMOA

YTIId-VYYd ¥OId NOIS THMOA

YI1TIId-Y¥Yd ILLHEYM NDIS THMOA YTIVHNIS® "VTITId-SI ILLHEM NDIS THMOA
YIIId-VYAEY ¥DIA NDIS THMOA YIVHNIS® "VTITId-YTHY NODIS THMOA
UNAMYT-TY NOIS

YAVYDIVSIA NDIS VYIVHNIS® "VAVIVASANY NOIS

Ov'T
Ov'T
OY'T
OvY'1

OY'T
oY1
Ov'T
Ov'T
OvY'T
oY1
Ov¥'T
Ov'T
oY1
OY'T
Ov'T
Ov'T
Ov'T
OY'T
oY1
Ov'T
Ov'T

IVHL
IYHL
IYHL

IVHL
IVHL
IVHL
IVHL

YIVHNIS
YTIYHNIS
YTIYHNIS
YIVHNIS
YIVHNIS
YTIYHNIS
YTIYHNIS

[91] up f dd30 " " 8240
[z] up f 0dH0 " " ddd0
[9] upn ¢ 64940 " 7940
U ¢ 1440
(butuTqWOD) OPT #

[z] ot ! daddo © " odado
wy ¢ 9230

[G] o1 ¢ 7OH0 " 0240
o1 ¢ addo

[z] o1 ! €930 " " 2dd0
[v] o1 ! 0430 "AYH0
[z] o1 ¢ [EAvACTORM A 4C (0]
o1 ! LYE0

o1 ¢ SYH0

[€] o1 ! €Vd0 " T TYd0
[L] o1 ¢ A640°"6630
[v] o1 ¢ L6E0" "76H0
o1 ! asHo

o1 ¢ Y830

[z] o ¢ 88H0 " " L8HO0
o1 ! 7820

[z] o1 ¢ Z8H0" " T8H0
oeT #

[8] up f d¥E0° T LY EO
[L] up ¢ YeHd0 " v EHO0
U ¢ TE€H0
(butuTqWOD) TEYL #

wy ! 9730

[9] o1 ! S¥E0" " 0VEO0
[z] o1 ¢ €€E0 " "Z€HE0
[gy] o1 ¢ 0€H0" "T0H0
TeurL #

[z] oW €400 " " z4d0
[8] oW ¢ 4ddo * - 8ado
U ¢ 9aao

[e] U f 7ddo - - zado
[e] oW TAAo " *42d0
U ¢ ¥2ao

[z] OW ¢ €800 "800
(butuTtqwoo) eTeyurs #

© ISO/IEC 2003 — All rights reserved

40

2003(E)

ISO/IEC TR 10176

AMHO dTdVTITIAS OIJOIHIA" *IMHO HTAVTITIAS
YMHO ETdVYTITXS

OHO HT1gVTTIAS DJIAOIHLIE' "VYHO ATAVITXS
dMO ETEYTTIAS DIJOIHLE® "IMO HTIVTITAS
¥MO HTAVTITXS

00 ETVTIXS JIdOIHLIE' "V¥T HTVTITIXS

OH HTAVYTTIAS DIdOIHLH" "VH HTVTITAS

Id YHLLIET NYIDJIOHD ™ "NV JHLLAT
HOH JHULLIHET TVYLIdVYD NVIDJOHD ™ "NV JHLLHAT TYLIVYO

TT DITYOOA NDIS THMOA JVWNVAW® T DITVYOOA NDIS THMOA
dd DITUYODOA NDIS THMOA AVHNVAW® 9 DITVYOOA NOIS THMOA
YWYIIA NOIS

VO4IVSIA NDIS

MOTHd I10d NDIS UVWNVAW® “VIVASOANY NOIS

IY NDIS THMOA

d NOIS THEMOA

NN NOIS THMOA YVYWNYAW® "I NOIS THMOA

YY NDIS THMOA

TT DITVYOOA dHLLAT IVWNVAN® "YHS HHLLAT
NV FHLLAT IYANYAW® *O JHLLAT

d JULLAT IVWNVAN® "I JdHLLIHT

YV dHULLAT JVWANVAN® "V dHLLIET

Yd WIOA-AEXId YHLLAT JEANIOLdNS NVLHAIL® "VAN JdHLLIAT dINIOLdNS

YL YHLLET dINIOLdAS NYLHAIL® "V JHLLIAT dINIOLdNsS

SOVYLY ONVA NDIS NVLHIIL® "SOVLd IDT NOIS

YINVIVH MIVW NYLHIIL® "I dISYHAHY NODIS THMOA

avdod WYNd NOIS

Od VDN NS SHLE NDIS NVILAIIL® "VYY NOIS THMOA

NdHd- ¥YSI MIVIN

SOYLY JODS ONNZd SYDN NIV

YTIZ IAN DNNZd SYON MIVIW

SDAHSL DNOAS NDIS TVOIDOTOULSY NVILAIIL® "¥d JAAHM- NOIS TVDIDOTOALSY

SONIADY THW NYD NOIS NVYLHLIL® "NYD VSIL HDT NOIS
Yd WIOA-AEXIA YHLLAT NVLHIIL® "YAN dHLLAT

YL JHLLET NYLEAIL® VY JHLLAET

WO HUTIYTTIAS

OIdOIHLA
OIdOIHLA
OIdOIHLA
OIdOIHLA
OIdOIHLA
OIdOIHLA
OIdOIHLA

NYIDIOHD
NYIDIOHD

AYNNY AN
IYNNY AN
IYNNY AN
IYNNY AN
AYNNY AN
AYNNY AN
IYNNY AN
IYNNY AN
AYNNY AN

AYNNY AN
AYNNY AN
TYNNY AN
TYNNY AN

NYLAIIL
NYLAIIL
NVILHDIL
NVIHDIL
NYLAIIL
NYLAIIL
NVIHDIL
NVILHDIL
NYLAIIL
NYLAIIL

NYLHdIL
NYLAdIL
NVILHDIL
NVILHDIL

[z]

[7]

[9l]
[zl
[s]
[vel

[9¢]
[8]

[sl]

[vT]

[z]

[7]
[vel
8l

ot ! asct- "¥scet
o1 ¢ 8G¢CT
o1 ! 9GZT " 06CT
o1 ! ayct- "¥Yrct
oT ! 8vcT
ot ! 9%ZT""80CT
o1 ¢ 90ZT " 00CT
otdoTyld #

o1 ¢ 940T " "0d0T
3T ! GO0T""0Y0T
ueTbrosn #

up 6G0T""8G0T
oW ¢ LSOT""9G60T
up ¢ 6€0T
oW ¢ 8€0T
up LEOT "9€0T
up Ze0T
oW ¢ TE0T
upW ¢ 0€0T" "dZ0T
oW 0¢0T
(buTuTqWOD) IPWURAN #
oT ¢ GG0T " 0G60T
oT ¢ YZ0T "6¢0T
o ! LZOT""€C0T
ot ! TZOT""000T
TewueA| #

up ! 0dd0" "6640
uy ¢ L640° 0640
up L840 79840
up 7840 " 0840
oW ¢ 240
up ! HL40° " TLAO
up 6€40
up LE€A0
up ! GEA0
up ¢ 6T40" "8T40
(butuTqWoOD) ue3ISATIL #
ot ! 840" "8840
ot ¢ Y940 "6¥740
oT ! L7A0 " 0740
oT ¢ 0040
uelsqrL #

4

© ISO/IEC 2003 — All rights reserved

2003(E)

ISO/IEC TR 10176

IVYSYWVYHIVE NODIS YHWHX® *NVOLVMISNNW NODIS YHWH
NINIdVHTYYMANA NDIS HHWHM " "MAWHVHEY NDIS HHWHM
LIHVYAIN NOIS dHWHX
NV NOIS THMOA YHWH " "HO NOIS THMOA dHWH
YN NDIS THMOA YHWHM® "I NDIS THMOA HHWHMX
YY NOIS THEMOA ¥HWHMY ' "OV¥ INHIHHNI THMOA HHWHM

OVO TEAMOA INHANIJIHANI ¥HAWHM® "¥¥ YEILAT YEIWHY

TOIWAS JOHILOTHI DJINNY ™ "TOAWAS DAYTIVY DINNY
X dHLLAET JINAY™ "4 H4 HOHA NHHA FHLLHAT DINNY

HLTHd YHLLAT WYHDO " "HLIHd HYHLLAT WYHDO

YYONN SOIEVTTIAS NVYIQYNYD® "IVO
YSLL dHIYEVD SOIAVTITAS NVIAUNVOD ™ "d

AR JHLLET dIMOIHHD "

YAd HTAVTTIAS DIdOIHIH™ "Vd
0ZL HTAIVYTIAS DIdOIHLH® "VHL
0DD HTAVYTIAS DIdOIHLH® "¥DD
AMD HTIVTTIAS DOIJOIHLHA" " IMD

YMD

0D HIAGVYTTIAS DIdOIHLA" "¥d

OX HTAVYTIAS DIJOIHIH" "VZ

O TVHEDNAYVHd HTIVTITIAS DIJOIHLIA" "¥Y TYHIDNAYVYHAI
OM HTAVYTTIAS DIJOIHLIH™ "V¥M
AMXM UTIVYTTIAS DIJOIHLHE" " IMXM
YMXM

OXM HTAVYTTIAS DOIdOIHLH' VXM
AMM HTIVYTTIAS OIJOIHLA" " IMM
M

O HTIAVYTIAS DIJOIHIH® "¥N

AMX dTIVYTTIAS DIJOIHLHA" " IMX
YMX

OX HWIAVYTTAS DIdOIHLH" "Vd

SOIAVYTTIAS
SOIAVYTTIAS

'Y dHELLAT

ATIVYTTAS
HATAVYTTIAS
HATAVYTTIAS
HATAVYTTIAS
ATIVYTTAS
ATIVYTTAS
HATAVYTTIAS
HATAVYTTIAS
ATIVYTTAS
ATIVYTTAS
HATAVYTTIAS
HATAVYTTIAS
ATAVYTTAS
ATAVYTTAS
HATAVYTTIAS
HATAVYTTIAS
ATIVYTTAS
ATIVYTTAS

NVIAVYNYO
NVIAYNYO

SOTqeTTAS TeUTHTIOQY

HAMOIHHD

OIdOIHLA
OIdOIHLA
OIdOIHLA
OIdOIHLA
OIdOIHLH
OIdOIHLA
OIdOIHLA
OIdOIHLA
OIdOIHLA
OIdOIHLA
OIdOIHLA
OIdOIHLA
OIdOIHLA
OIdOIHLA
OIdOIHLA
OIdOIHLA
OIdOIHLA
OIdOIHLH

[8]

el

[0z9]

[g8]

[61]
o€l

up ! €ALT" "60LT
oW 8DLT "LOLT
up ¢ 90LT
oW ¢ GOLT® "HALT
U ¢ adLT" " L4LT
oW ¢ 9dLT" "pdLT
(buTuTqWOD) ISWUM #
oT ¢ €dLT" "08LT

Iowyy #
N 049T " "HHOT
oT ¢ YHEOT "0V9T

oTuny #
oT ¢ Y69T "189T

weybo #
oT ¢ 9L9T" "d99T
o1 ¢ 0991 "T0%T

oT

o7
o7
o7
o7
o7
o7
o7
o7
o7
o7
o7
o7
o7
o7
o7
o7
o7
o7

ueTpeUR) #

PAET " "0OVET
oo30IayD #
YGET" "8FET
9%€T " "0¢C¢ET
HTET "8TI€T
GTIET "CI€ET

0TET
H0E€ET " "04CT
HHZT " "8dCT
9dcT " *0dcCT
d0CT" "80¢CT
GOCT™"2o¢t

020CT
HddcZT " "84T
GdeZT "2del

0dcZT
dYZT"06CT
ascr" "v¥ect

88¢CT
98CT""09¢T

© ISO/IEC 2003 — All rights reserved

42

2003(E)

ISO/IEC TR 10176

ANIN LIDIA DIANI-DIIVIVY JHEANHLIXH® *OdHZ LIDIA DIANI-DIFVIVY JHANILXH
ANIN LIDIA OIANI-DIAVIVY" "OdHdZ LIDIA DIANI-DIdVdY

ANIN LIDIA IHMAWIND® "O0ddZ LIDIA IHMNWIND

ANIN LIDIA ITVONHG™ "OdHZ LIDIA ITVYONHG

ANIN LIDIA TYYDUYNVAHA® "OddZ LIDIA IFVOVYNVAHA

HIH dTdVTTIAS TAONVH' "V¥D FTIVITAS TOAONVH [ZLTTT]

ANIN LIDIA® "0ddZ LIDIA

JAX HTAYTIAS IA" LI HTIIVYTIAS IX
6CYA-HAVIDOHAI ALITIILYIWOD LD *LZVA-HAVIDOHAI ALITIAILVAWOD LD
YZYA-HAVID0HAI ALITIIILVAWOD MLD" " €ZVA-HAVIDOHAI ALITIAILVAWOD LD
TZYA-HdVID0HAI ALITIHILVYAWOD LD
ATVA-HAVIDOHAI ALITIIILVdWOD LD
PIVA-HAVIDOHAI ALITIAILVAWOD YLD " "€TVA-HAVIDOHAI ALITIEILVYAWOD LD
TIVA-HdYIDO0HAI ALITIHILVYAWOD LD
A0YA-HAVIDOHAI ALITIAILVAWOD MLD" "HOVA-HAVIDOHAI ALITIILVAWOD YLD

GVA6-HAVYIDOHAI dHTIAINA MLD°°00dy-HAVIDOHAI dATAINA M0D [2060Z]
[zg8g9]

Gddy-HdVID0HdI dHEIAINA YMLD° "007€-HAVIDOHAI dHAIAINA LD

H 9dHLLHET TYNIA O40WOdOd ™ "Nd JHLLHAT OA0WOdOd
ND ¥HLLAT OA0WOdOd" "d dHLLHAT OJA0WOdOd

NIV ANAOS dHONOTOdd VYNVOVIIH-YNVMVLVY
L0 HTAAIW ¥YNVMYLIVX
OA YHLLAT VUNYMVLIVM® "V TIVNS JYHLLHET YNVMYLIVYI

NA FELLAT UYNVYOVIIH® "V TIVNS JYHLLHET YNVDVIIH

¥OTIVOVA ITVD ITV YHLLAT NYITOONOW

YHA ITUYD ITVY NHONVW FHLLAT NYITODNOW® “HNO YIVASANY ITVD ITV JHLLIHT NYITOONOW
YHZ OHONVW JHLLIHET NVITOONOW® "d OdOL YHLILAT NYITOONOW

NDIS THMOA ONOT OJOL YHLLHAT NVYITODONOW

IHD YHLLHET NVITODONOW® "V JHLLHT NYITODNOW

fotl
fotl
[0T]
[0T]
fotl
fot]

[gotT]

[€]
[z]

[zl

[z]

[pg] o1 ¢
[oy] o1 ¢
wy ¢
ogd !
[o6] o1 ¢
[vg] o1 ¢
uW ¢
(butuTqWOD)
[Tp] o1 ¢
[zg] o1 ¢
w ¢
[gel o1 ¢

PN
PN
PN
PN
PN
PN

oT

A9Y0 " "99Y0
AF60° " 9360
4960 °9960
6490 *0490
6990 °0990
6£00°"0€00
s31thTa #
€YLA" " 000¥
Tnbueyg #
D8F¥ " "000¥
TR #
62Yd" " L7V
AL At
ARAAS

ATVA

pIVA" €IV
ARAAS
A0VYd " THOVYA
GVd6° T 00d¥
Gday - -00ve

sydexbospIl paTITUN MLD #

LATE "0VYIE
OCTE " "G0T¢E
ojowodog #
240¢
g40¢
YA0€ " "TVY0€E

eueyeley #

760€" "

1874013

eURDRITH #

6VY8T

UeTTODUOR #

8Y8T" "
LLBT" "

(474

088T
78T
€78T
0¢8T

URTTODUON #

43

© ISO/IEC 2003 — All rights reserved

2003(E)

ISO/IEC TR 10176

*SI930BIRUD JO ISTT #
PutMOTTOF ©ya sutejuod osTe Ajxzedoad enuriuo) gl 9Y3 JO UOIFTUTIOP #
WNT3IOSUOD SPODTUN SY} ‘3ISTT PLOUTISP 9400 29Ul O3 UOTITPPE UT #

P R R R R TR

ALGIHL TYEHINNN NOHZONVH ™ “NAL TYIHNNN NOHZONVH [€] N ¢ YE0E " "8€0€E

ANIN TYEIHNON NOHZONVH® “ENO TVIHWAN NOHZONVH [6] N 620€" " 120¢€

OddZ YAIWAN DJIHAVIDOHAT N ¢ L00€

MIVIN ONISOTD DIHAVIDOHAT o1 !¢ 900€

MIVA NOILVIALI OIHAVIDOHAT wy ! S00€

AIIANNH ENO AISYIATY TYIIWAN NVYWOY® *EINO TYIAWAN NVYWOd [9€] TN ¢ €812 "0912

d0¥N0S NOIILVIWNIOJANT 3T ¢ 6€1C

TOIWAS LATVA" " TOIWAS JAdTY [¥] o1 ! 8€TC " "GETC

O TIVWS IdI¥DS" "W TYLIdVD IdI¥dsS [Z] 3T ! VETC "€€T1C

d TYLIAYD IdI¥DS” "d TIVWS IdI¥dSs [€] 3T ¢ T€TZ" "A212

D IVLIAVD YALIAT-MOVId" "NOIS NIATAM [¥] T ¢ aziz-°"v¥eie

7 TYLIAYD ¥ALLAT-MOVId 3T ! 821¢

NODIS WHO 3T ! 9212

Z TYLIAYD MONULS-ATdN0d 3T ¢ vZ12e

¥ TYLIAYD MONdLS-HTdN0d " *d TYLIdVD MONJLS-d7dNod [G] 3T ¢ attz 611z

N TYLIAYD MONILS-ATdN0od 3T ¢ GT1¢C

T TIVWS IdI¥DS® 9 TIVWS IdI¥ds [0T] »T ¢ €TTC" "¥Y0TIC

INVISNOD ¥dTNA 3T ! L0TZ

0 TYLIAYD MONILS-ATdN0od 3T ¢ 2012

HIL YALOVIVHD® "HITYAANN [Z] o4 ! 0%70Z" "d€02

INANAYIDADSOUd MHAYD 3T ! q94T

ONIY ATVH LJAAT YALLAT YAIATAOW NV INANIY wy ¢ 6GG0

INANNYIOEDOdX MATID wy VYLEO

HHAOYILSOdY dTdN0d YALLHET YHTATIAON wy 4920

dOLS TVYLIOTO QASYAATY TIVWS HHLLIAT YHIATIAONW® “VIWNVYD TTIVWS ¥ALLIAT YHIAIAOW [G] wy ¢ 7HEZ0° 0420
NOTOD ¥VINONVIYIL ATVH YALIAT YHIAIAOW® *NOTOD YYINONVIEL YALLAT JHATIATIAON [Z] wy ! Tdz0 - °0dzo
dOLS TVIIOTD QHASYIATY ¥HLLIAT YHIATIAONW" *VWWOD QHANYNL YHLIET YHATAIAOW [L] wy 1220 °9d20
A TIVAS ¥ALLAT YATAIAOW® "H TIVWNS ¥YALIET YETAIAON [6] wy 8dz0" " 0420

NOIS O¥DINW 3T ! G400

sIo30eIRYD TeTO=dS #

ANIN LIDIA NYITOONOW® "O¥dZ LIDIA NYITOONOW [0T] PN ¢ 6T8T 0T8T
ANIN LIODIA YHAWHM " *0ddZ LIDIA ddWHM [0T] PN ¢ 6ULT" "0HULT

ANIN LIDIA OIJOIHIA® “ENO LIDIA DIJOIHIA [6] PN ¢ TLET "69€T
ANIN LIDIA YYWNVAW® “O¥dZ LIDIA Y¥WNVAW [0T] PN ¢ 670T""0F0T
ANIN LIDIA NYLIALGIL® "O¥dZ LIDIA NYIAIIL [0T] PN ¢ 62300230
ANIN LIDIA OYTI° "O¥dZ LIDIA OVI [0T] PN ¢ 6dd0 " 040

ANIN LIDIA IVHL® "O¥dZ LIDIA IVHL [0T] PN ¢ 6GH0 " "0GH0

ANIN LIDIA WYTIVAVIV® "O¥dZ LIDIA WYIVAVIVW [0T] PN ¢ 4900 " "9900
ANIN LIDIA YAYNNYM ™ "0¥dZ LIDIA YAYNNVY [0T] PN ¢ AdD0 " 9400
ANIN LIDIA ADATHAL "Od3Z LIDIA N9NTAL [0T] PN ¢ A9D0° 79900

ANIN LIDIA TIWYL® “ENO LIDIA TIWVL [6] PN ¢ Add0 " L3490

ANIN LIDIA YAI¥MO® "O¥dZ IIDIA VAI¥O [0T] PN ¢ 4940 " "9940

ANIN LIDIA ILVIVLND® "0¥dZ LIDIA ILVYvVrnd [0T] PN ¢ AAY0 " " 94AV0

© ISO/IEC 2003 — All rights reserved

44

2003(E)

ISO/IEC TR 10176

HATVA-HAVIDOHAI ALITIILVAWOD YLD " " €TVA-HIVIDOHATI
¢TYA-HdVID0HAI
0TYd-HdVID0HAI

AOVYAd-HAVIDOHATI ALITIAILVAWOD YMLD° "0064-HAVIDOHEAT

ALITIAILVYANOD LD
ALITIHILYANOD LD
ALITIHILYANOD LD
ALITIHILYANOD LD

HVEVIVY JHLLAT TADNVH® “MOHAIM ¥HLLAT TADONVH

MAYN NOILVIHLI dEDIOA YNVMVLYM ™ * MV
MIVYWN NOILVIHLI dHOIOA ¥YNVOVAIH' *“MIVIW
MIYN ANNOS JHDIOA-IWHS VYNUYDVIIH-UYNVAVIVY ONINICWOD ™ *MIVIWN dNNOS dIDIOA ¥NVOVIIH-

NOILVIHLI VYNVYMVLIVM
NOILVIHLI VYNVOVAIH
YNVAVYIYY DNINICWOD

ATVH JHMOT MIVW ILVEAJHT UYNYM TYOILEHA® “MIVW IVAJHT YNV TYVOILIHA

IV ENOL LOd HTdN0d TADNVH® “MYVW HENOL
HAOAY MOJEY LH

HAOAY SI0d dN0d ONINIFWOD ™ *HAOdY NOOd
HOITHNIYOHIX ONOHSONOL TADNVH ' "MOHAT
YHYIYONYSS ONOHSONAL TADNVH® "{dHTT

THAET DIHAVIOOHAI
OId LJAHT DNINIFWOD
dVYH LAHT DNINICWOD
3 DNOHESONOL TNONVH
I4 DNOHESOHD TNONVH

HOAITHNIYOHXA ONOISOHD TNDNVH ™ "MOHAIMN ONOHSOHD TNONVH
NVdD VIWNAVYd TOdWAS NVYLAIIL

SHHSL YVIW NOIS NVYLALIL® " SHHS

L dYA NDIS NVLHAIL

MAYN HIONAT NV WYTVAYTIVIN
AV HIONAT IV VAVYNNYM " “MYVIN HLONHT VAVYNNY

MIVYW HIONAT IV NDNTHL" "

MIVW HIONAT NONTHL

MIYWN HIONHT NV TINWVYL
MAIYN HIONHT NV YATYO
MIYN HIONHT IV YAIYO

YLMAN NOIS VAIYO

YLMAN NOIS ILVIVLND

JVAdY IHMAWGND® "IddILl IHMAWIND
YIMAN NDIS IHMAWIND

MIVYW HIONAT NV ITYONHEG

INHEDOV HINDVY IFYOVYNVAHA " " LNHDD

YILMAN NOIS ITVONHd
Y HATYID IYVYDVNVAHA

YIMAN NDIS TUYDUYNVAHA

HATIIVE OVIYAS ™ "HAOAY VHVHLd OVIYAS

YAAYW HOIH TIVWS OIdVdY ™ "OdHZ dHIANNOd HOIH TIVWS DIdVdV
MOTHd YZWVYH DIdVdVY " "HAOCIY HYAAVW DIdVdVY

hnelel

dHddN MIVN MIIIHEH

HTIDUID YIOSYW MAVIW MHIEHH ™ "HUYNAW INEDOVY MHIDHH

dHZYd INHOOV MHEYGHH " *VY.LH

YLVWAEINd ITISd OITTIIY¥AD ODONINICWOD® "OTLIL
MOTHI MOJYYVY SAIVMIHODIY HTNOd ONINIHWOD ™ "HATI
MOTHI MOJYYVY SAIVYMAN ONINIFWOD * * LNHD

*(ANIT MOT 4

¥ X9uuy JI0J DUTISTIT UTBW 2Y3 UT POPNTOUT JI0U 9IB SIS3ORIRYD 2SaYL

YNLH INHOOV MHAIIHH
OITTIIYAD ONINIFWOD
L d7T9dN0d ONINIIWOD
OY HAVYED DNINIFWOD

ANIT MOT

[zT]

[692]
[v6]

[9]

[eT]
[z8]
[89]
[06]

[z]

[z]
[zl

[z]

[et]
[L1]
(vl
[€]
loL]

o7
o7
o7
o7
o7
ury
urg
U
ury
Ui
U
U
o7
o7
o7
U
oI
oI
oI
U
oI
oI
Ui
U
U
Ui
Ui
oI
U
Ui
Ui
U
U
U
Ui
Ui
U
U
Ui
Ui
o4

G00+n "Hb- o) ssosed TeIOads aq
s (so3eoTTdnp A3TTTgr3edwod ‘-o°T) sIo3oeaeyd MrD AFTTTgIr3edwod o
*swIoJ uoTjejussaid AJTTTT3Iedwod JO 3STSUOD

ruoTlejussaidea snbTun I0J UOTIRZT[RPWIOU SaxTnbsx

‘9901 UT SyJIew DUTUTQqWOD JO suoTiejuswsaTdwr ¢ Toaa9T ATdwT
1SUOSEaI TRISASS

ronTea Ajasdoad Axobsjzedo Teasusb o IO ‘PN

sxo3oeIRYD TTe snid (T

N+OT+WT+AIT+TT+NT =

1Ol

CRRA:0

aova-
ag81e”
a40¢€-”
d60€°
¥60€ "
geoe”
Az0¢€°

oaoc:
6ATT"
CYTT”
6GTT"

A€40 "

9d20°
9600~

TLYO"

7560°

¥¥LO"
7d90°
§G690°

AYGS0 "
TYS0-
98¥%0°
c9€0”
aveo”

ARew Asyg
Rew Asyg
Rew Asyg
UyosTym

Rew Asyg

‘uy e butaey
)y A3jzsdoad 3xe1s dI =ya
butaey sasyoeaRUD TR St pauriep Ajxedoad poATISp B ST SNUTIUOD (I

RN A1
¢Tvd
0Tvd
0064
TTETE
*adaoe
*de0€
‘660€
“TE0€
4403
Td0C
*0doc
"8YTT
TAGTT
"00TT
9240
THEA0
LSao
*Gasno
*9G600
Ld490
LG40
9640
0€d0
0dv0
*0LY0
DEY0
Ld60
0d60
"€G60
0€60
*0€LO
*Ad90
T€G90
72060
TEYS0
*16S0
TE8T0
*09¢€0
*00€0
AG00

[Sal

T
103

H= 3= = e e S 3 S S e S

45

© ISO/IEC 2003 — All rights reserved

2003(E)

ISO/IEC TR 10176

I YULIET TAONVH HLAIMATVYH® "NH YHLLAT
NX YELLAT TAONVH HIAIMATVH® "OX ¥HLLHAT
HdO YHELLAT TADNVH HLAIMATVH® "OHX YHLLAT
d dULLAT TADNVH HLAIMATVH® "V dHLLAT
HOAIH JULLET TADNVH HLAIMATVYH® “dHTTIA

TNONVYH
TNDONYH
TNDONYH
TNONVYH
TNONVYH

MAYIN ANAOS dHDIOA-IWHS VYNVMVIVM HIAIMATVH® “MIVW ANAOS dHDIOA YNYMVLVM
N dHILHET VUYNYMVYLVY HLAIMATVYH® 'V JHLLHT YNVYAVLIVI

IV ANNOS dHONOTOdd VYNVOVIIH-YNVMVLVM

AL TIVAS dHLLHET YNVYMVYLVM HLAIMATYH® "OM YHLLAT YNVYAVIVI

100 HTAAIW ¥YNVMVYIVX

Z dULLAT TIVNS NILVT HLAIMTINA® 'V FHLLAT TIVWNS NILV'T

q

NIT MOT

Z JULLAET TYLIdYD NIIVT HLAIMTIINA® *Y YHLLAT TYLIdYD NILVT

ANIN LIDIA HILAIMTITINA® *OdH

Z LIDIA

HILAIMATVH
HIAIMATVH
HIAIMATVH
HILAIMATVH
HILAIMATVH
HIAIMATVH
HIAIMATVH
HILAIMATVH
HILAIMATVH
HILAIMATVYH
HIAIMTINA
HIAIMTINA
HIAIMTTINA
HIAIMTTINA

WJ04 TUNIA AHTY HLIM WYT HINLVYOIT DIAVIVY " "WJIO4 dHLVYTIOSI VHIVA DIAVIY

IO dHLVTIOSI NVIVISYM DIAVIY

WJ0d dHLVYTOSI NVYLVWANYA OIdVIY ™ "WJOd dIILVIOSI NVIVHLVA DIdVdVY

ANIT MOT AAVYM® "ENIT MOT dHHSYA

ANIT MOT AAYM TUYDILYHA ¥0d WJOA NOILVINHSHAd ® "ENIT MOT TYIILIHA ¥OA WJIOA NOILVINHSHIL

ATVH IHOIY HATIL HTdNOd DNINIFWOD ™ "ATVH LAHT HINLVYOIT ONINIHWOD

NOHNOTIYTVYLYTIVL HINLVYOIT DIAVIVY "™ "WJ0d dHLYTOSI NOIS dOLS DINVIOXM SV ddEsN VITIVS HINLVYDIT DIVIVY

W04 TYNIA HHA HLIM WHHL HLIM NOON HINLVYDIT DIAVIV"™ "WJO4 TVILINI HVYHY HLIIM WHHL HLIM WHHN HINLVOIT DIVIVY
WIOd TVYILINI WHHN HLIM HYHY HLIM WHHN HINIVOIT DIAVIVY ™ "WJOA TVILINI WHHN HLIM WHHL HLIM HIL HINLVDIT DIFVIY
ON JHLIHET DIAYdY

WJ04 dHIVTIOSI NVLVHIVA HLIM AHTV HINLVYOIT DIFVIV " "WJIO4 dHLVYTIOSI

WJ0d TUNIA HAOAY VZWVYH HLIM HEYYVE HHA JHLIHET DIAVAY ™ "HSHEOVA HLIM IdVSL
HSHDOVA HLIM Hd YHLLIET MIIHHH® "HSHOVA HLIM Hd TUNIA

HSHDOVA HLIM HMEWVS YHLLAT MHIHH" "HSHUOVA HLIM

HSHOVYA HLIM WHW

HSHOVA HLIM JHEWYT JHLLIAT MHIIHH® "HSHOVA HLIM
HSHDOVA HLIM NIAVZ FHLLUT MEJEHH® *L1Od NIHS HLIM N

AZYAd-HIVIDOHAI ALITIAILVYAWOD YLD " "V¥ZVA-HIVIDOHAI
9CYA-HAVIDOHAI ALITIIILVAWOD LD ' *SZYA-HAVIDOHAT
ZC¢V¥A-HdVID0HaT
0Z¥d-HdVID0HaAT

HHLLET MHEIDHH
HHLLAT MEIGHH

NAN JHLLAT MEIGHH

HULLET MEIIHH

LEL JULLET MIIIHEH
IHS 9HLLET MHIIHH
AYL HAIM JULLET MIIdHEH" "HYILVd dOX JOA HSIAAIA HINLVOIT MEIIHH
YMIYVYA HSINVAS-0HANL INIOd MHEIIHH

OI¥IH HIIM dOX ¥HALLIAT MIAIEHH

HEIX NHW HINLVOIT TIVIAS NYINHWGY® *MON NHN HINILVOIT TIVNS NYINHNIY
LS HINILVOIT TIVWS NILVT® "dd HINLVYOIT TIVWNS NILVT

ALTITIHILVYANOD LD
ALTITIHILVYANOD LD
ALITIHILYANOD LD
ALITIHILYANOD LD

el
[9]
[9]
[91]
[1e]
[z]
(67l

[9z]

[oz]
fotl
[geT]

el

[z]
[v]
[zT]
[7G]
[v9]
[e9€]
[g0T]

[zl

odda -
Laddq"
A044 "
LO4d"
Addq "
Ad644 "
dedd -

A944°

Yedd "

vedd:
6Tdd"
O IC: N

cLad-
A7dEd "
pedad-:
[yACK:
g4d4 "
L0d4 "
4804
aead-
Tad4”
vrdd-
Trdd-

oeda”
9edd-
8cdd”

LTdA”
90d4d-"
azvd-
9Zva”

"vagdq
*cadd
"YOo44d
T2odd
T0vdd
Tdedd
‘TLdad

0LdAd

*9944d

S94d

‘Thad

Acad

‘Tcdad
0Tdd
‘9LUd

PLdd

0Ldd
"aydd
Teedd
O4CE:
T04dd
TZedd
*06d4
Teada
‘ordd
Tevdd
0vdd

dedd

‘8edd
‘vedd
tATdd

CRRSIC]
artda

TeTdd
t00dd
‘YZed
TGevd

[4A£
0cvd

© ISO/IEC 2003 — All rights reserved

46

ISO/IEC TR 10176:2003(E)

ICS 35.060

Price based on 46 pages

© ISO/IEC 2003 — All rights reserved

