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Brief History 
 
 
On 13 June 2002, a group of companies led by BEA Systems proposed a set of programming language extensions adding 
native XML support to ECMAScript (ECMA-262). The programming language extensions were designed to provide a simple, 
familiar, general purpose XML programming model that flattens the XML learning curve by leveraging the existing skills and 
knowledge of one of the largest developer communities worldwide. The benefits of this XML programming model include 
reduced code complexity, tighter revision cycles, faster time to market, decreased XML footprint requirements and looser 
coupling between code and XML data.  
 
The ECMAScript group (ECMA TC39/TG1) unanimously agreed to the proposal and established a sub-group to standardize 
the syntax and semantics of a general purpose, cross platform, vendor neutral set of programming language extensions called 
ECMAScript for XML (E4X). The development of this Standard started on 8 August 2002 in parallel with ECMAScript 
Edition 4. This Standard was developed as an extension to ECMAScript Edition 3, but may be applied to other versions of 
ECMAScript as well. 
 
This Standard adds a native XML datatype to the ECMAScript language, extends the semantics of familiar ECMAScript 
operators for manipulating XML data and adds a small set of new operators for common XML operations, such as searching 
and filtering. It also adds support for XML literals (i.e., initialisers), namespaces, qualified names and other mechanisms to 
facilitate XML processing. 
 
The ECMAScript group is working on significant enhancements for future versions of E4X, including mechanisms for 
defining XML types using the XML Schema language. In addition, the group is working on ECMAScript Edition 4, which will 
include E4X and additional features, such as support for classes. 
 
This Standard has been adopted as the 1st Edition of ECMA-<TBD ###> by the ECMA General Assembly in <TBD month>, 
2004. It will be integrated into future editions of ECMA-262 (ECMAScript). 
  
The following people have contributed to this specification: 
 

John Schneider, BEA (Lead Editor) 
Jeff Dyer, MacroMedia (Supporting Editor) 
Rok Yu, Microsoft (Supporting Editor) 
 

 Steve Adamski, AOL/Netscape 
 Patrick, Beard, AOL/Netscape 
 Waldemar Horwat, AOL/Netscape 
 Markus Scherer, IBM 
 Michael Shenfield, RIM 
 Peter Torr, Microsoft 
 Wayne Vicknair, IBM 
 Herman Venter, Microsoft 
 
This list is incomplete. If your name has been omitted, please let me know so I can add it. Also, please provide any additional 
people (internal or otherwise) who contributed to this specification by providing comments or feedback. Thanks! 
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1 Scope 
This standard defines the syntax and semantics of ECMAScript for XML (E4X), a set of programming language extensions 
adding native XML support to ECMAScript. 

2 Status of this Document 
This document is a final draft produced to motivate, facilitate and finalize discussions related to E4X with the goal of creating 
a general purpose, cross platform, vendor neutral E4X standard. It is considered stable, but has not yet been agreed or 
otherwise sanctioned by ECMA. Comments and suggestions are solicited and encouraged. 

3 Normative References 
Document Object Model (DOM) Level 2 Specifications, W3C Recommendation, 13 November 2000 
 
ECMA 262-3 (2000), ECMAScript Language Specification – Edition 3. 
 
Extensible Markup Language 1.0 (Second Edition), W3C Recommendation 6 October 2000 
 
Namespaces in XML, W3C Recommendation, 14 January 1999 
 
ISO/IEC 10646-1:1993 Information Technology – Universal Multiple-Octet Coded Character Set (UCS) plus its amendments 
and corrigenda. 
 
Unicode Inc. (1996), The Unicode StandardTM, Version 2.0. ISBN: 0-201-48345-9, Addison-Wesley Publishing Co., Menlo 
Park, California. 
 
Unicode Inc. (1998), Unicode Technical Report #8: The Unicode StandardTM, Version 2.1. 
 
Unicode Inc. (1998), Unicode Technical Report #15: Unicode Normalization Forms. 
 
XML Information Set, W3C Recommendation 24 October 2001 
 
XML Path Language (XPath) Version 1.0, W3C Recommendation 16 November 1999 
 
XML Schema Part 1: Structures, W3C Recommendation, 2 May 2001 
 
XML Schema Part 2: Datatypes, W3C Recommendation, 2 May 2001 
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4 Motivation 
4.1  The Rise of  XML Processing 
Developing software to create, navigate and manipulate XML data is a significant part of every Internet developer’s job. 
Developers are inundated with data encoded in the eXtensible Markup Language (XML). Web pages are increasingly encoded 
using XML vocabularies, including XHTML and Scalable Vector Graphics (SVG). On mobile devices, data is encoded using 
the Wireless Markup Language (WML). Web services interact using the Simple Object Access Protocol (SOAP) and are 
described using the Web Service Description Language (WSDL). Deployment descriptors, project make files and 
configuration files and now encoded in XML, not to mention an endless list of custom XML vocabularies designed for vertical 
industries. XML data itself is even described and processed using XML in the form of XML Schemas and XSL Stylesheets. 
  
4.2  Current XML Processing Approaches 
Current XML processing techniques require ECMAScript programmers to learn and master a complex array of new concepts 
and programming techniques. The XML programming models often seem heavyweight, complex and unfamiliar for 
ECMAScript programmers. This section provides a brief overview of the more popular XML processing techniques. 
 
4.2 .1  The Document  Object  Model  (DOM) 
One of the most common approaches to processing XML is to use a software package that implements the interfaces defined 
by the W3C XML DOM (Document Object Model). The XML DOM represents XML data using a general purpose tree 
abstraction and provides a tree-based API for navigating and manipulating the data (e.g., getParentNode(), getChildNodes(), 
removeChild(), etc.).  
  
This method of accessing and manipulating data structures is very different from the methods used to access and manipulate 
native ECMAScript data structures. ECMAScript programmers must learn to write tree navigation algorithms instead of object 
navigation algorithms. In addition, they have to learn a relatively complex interface hierarchy for interacting with the XML 
DOM. The resulting XML DOM code is generally harder to read, write, and maintain than code that manipulates native 
ECMAScript data structures. It is more verbose and often obscures the developer’s intent with lengthy tree navigation logic. 
Consequently, XML DOM programs require more time, knowledge and resources to develop. 
 
4.2 .2  The eXtensible  Sty lesheet  Language (XSLT)  
XSLT is a language for transforming XML documents into other XML documents. Like the XML DOM, it represents XML 
data using a tree-based abstraction, but also provides an expression language called XPath designed for navigating trees. On 
top of this, it adds a declarative, rule-based language for matching portions of the input document and generating the output 
document accordingly. 
 
From this description, it is clear that XSLT’s methods for accessing and manipulating data structures are completely different 
from those used to access and manipulate ECMAScript data structures. Consequently, the XSLT learning curve for 
ECMAScript programmers is quite steep. In addition to learning a new data model, ECMAScript programmers have to learn a 
declarative programming model, recursive decent processing model, new expression language, new XML language syntax, and 
a variety of new programming concepts (templates, patterns, priority rules, etc.). These differences also make XSLT code 
harder to read, write and maintain for the ECMAScript programmer. In addition, it is not possible to use familiar development 
environments, debuggers and testing tools with XSLT. 
 
4.2 .3  Object  Mapping 
Several have also tried to navigate and manipulate XML data by mapping it to and from native ECMAScript objects. The idea 
is to map XML data onto a set of ECMAScript objects, manipulate those objects directly, then map them back to XML. This 
allows ECMAScript programmers to reuse their knowledge of ECMAScript objects to manipulate XML data. 
 
This is a great idea, but unfortunately it does not work for a wide range of XML processing tasks. Native ECMAScript objects 
do not preserve the order of the original XML data and order is significant for XML. Not only do XML developers need to 
preserve the order of XML data, but they also need to control and manipulate the order of XML data. In addition, XML data 
contains artifacts that are not easily represented by the ECMAScript object model, such as namespaces, attributes, comments, 
processing instructions and mixed element content.  
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4.3  The E4X Approach 
ECMAScript for XML was envisioned to address these problems. E4X extends the ECMAScript object model with native 
support for XML data. It reuses familiar ECMAScript operators for creating, navigating and manipulating XML, such that 
anyone who has used ECMAScript is able to start using XML with little or no additional knowledge. The extensions include a 
native XML data type, XML literals (i.e., initialisers) and a small set of new operators useful for common XML operations, 
such as searching and filtering. 
 
E4X applications are smaller and more intuitive to ECMAScript developers than comparable XSLT or DOM applications. 
They are easier to read, write and maintain requiring less developer time, skill and specialized knowledge. The net result is 
reduced code complexity, tighter revision cycles and shorter time to market for Internet applications. In addition, E4X is a 
lighter weight technology enabling a wide range of mobile applications. 



-  4  -  

 

5 Design Principles 
The following design principles are used to guide the development of E4X and encourage consistent design decisions. They are 
listed here to provide insight into the E4X design rational and to anchor discussions on desirable E4X traits 
 

• Simple: One of the most important objectives of E4X is to simplify common programming tasks. Simplicity should 
not be compromised for interesting or unique features that do not address common programming problems. 

 
• Consistent: The design of E4X should be internally consistent such that developers can anticipate its behaviour. 

 
• Familiar: Common operators available for manipulating ECMAScript objects should also be available for 

manipulating XML data. The semantics of the operators should not be surprising to those familiar with ECMAScript 
objects. Developers already familiar with ECMAScript objects should be able to begin using XML objects with 
minimal surprises. 

 
• Minimal: Where appropriate, E4X defines new operators for manipulating XML that are not currently available for 

manipulating ECMAScript objects. This set of operators should be kept to a minimum to avoid unnecessary 
complexity. It is a non-goal of E4X to provide, for example, the full functionality of XPath. 

 
• Loose Coupling: To the degree practical, E4X operators will enable applications to minimize their dependencies on 

external data formats. For example, E4X applications should be able to extract a value deeply nested within an XML 
structure, without specifying the full path to the data. Thus, changes in the containment hierarchy of the data will not 
require changes to the application. 

 
• Complementary: E4X should integrate well with other languages designed for manipulating XML, such as XPath, 

XSLT and XML Query. For example, E4X should be able to invoke complementary languages when additional 
expressive power is needed without compromising the simplicity of the E4X language itself.  

 



-  5  -  

 

6 Notational Conventions 
This specification extends the notational conventions used in the ECMAScript Edition 3 specification. In particular, it extends 
the algorithm notation to improve the clarity, readability and maintainability of this specification. The new algorithm 
conventions are described in this section. 

6.1 Algorithm Conventions 
This section introduces the algorithm conventions this specification adds to those used to describe the semantics of 
ECMAScript Edition 3. These conventions are not part of the E4X language. They are used within this specification to 
describe the semantics of E4X operations. 

6.1.1  Indentation Style 
This specification extends the notation used in the ECMAScript Edition 3 specification by defining an algorithm indentation 
style. The new algorithm indention style is used in this specification to group related collections of steps together. This 
convention is useful for expressing a set of steps that are taken conditionally or repeatedly. For example, the following 
algorithm fragment uses indentation to describe a set of steps that are taken conditionally.  
 

1. if resetParmeters is true 
a. Let x = 0 
b. Let y = 0 
c. Let deltaX = 0.5 

2. else 
a. Let deltaX = deltaX + accelerationX 

 
In the example above, steps 1.a through 1.c are taken if the condition expressed in step 1 is true. Otherwise, step 2.a is taken. 
 
Standard outline numbering form is used to identify steps and distinguish nested levels of indentation when it might not 
otherwise be obvious due to pagination.  

6.1.2  Property Access 
This specification extends the notation used in the ECMAScript Edition 3 specification by defining three property access 
conventions. The property access conventions are used in this specification for specifying that the value of a property be 
retrieved from an object based on its property name.  
 
There are three forms of the property access conventions, two for accessing normal properties and one for accessing internal 
properties. The first convention for accessing normal properties is expressed using the following notation: 
 
 object . propertyName 
 
This property access convention is equivalent to calling the [[Get]] method of object passing the string literal containing the 
same sequence of characters as propertyName as an argument and returning the result. For example, the following algorithm 
fragment: 
 

1. Let price = item.price 
 
is equivalent to the following algorithm fragment: 
 

1. Let price be the result of calling the [[Get]] method of item with argument "price" 
 
The second convention for accessing normal properties is expressed using the following notation: 
 
 object [ propertyName ] 
 
This property access convention is equivalent to calling the [[Get]] method of object with argument ToString(propertyName) 
and returning the result. For example, the following algorithm fragment: 
 

1. Let item2 = item[1] 
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is equivalent to the following algorithm fragment: 
 

1. Let price be the result of calling the [[Get]] method on item with argument ToString(1) 
 
This is a convenient and familiar notation for specifying numeric property names used as array indices. It is also used for 
retrieving properties based on a computed property name. 
 
The convention for accessing internal property names, including those that refer to internal methods, is specified using the 
following notation: 
 
 object . [[ internalPropertyName ]] 
 
This property access convention is a short hand for retrieving the value of an internal property from a given object. 

6.1.3  Iteration 
This specification extends the notation used for describing ECMAScript Edition 3 by defining two iteration conventions. These 
iteration conventions are used by this specification for expressing that a set of steps must be taken once for each item in a 
collection or once for each integer in a specified range. 
 
The first iteration convention is defined for expressing a sequence of steps that must be taken once for each member of a 
collection. It is expressed using the following for each notation: 
 
 For each item in collection steps 
 
This for each notation is equivalent to performing the given steps repeatedly with the variable item bound to each member of 
collection. The order in which item is bound to members of collection is arbitrary. The repetition ends after item has been 
bound to all the members if collection (or when the algorithm exits via a return or a thrown exception). The steps may be 
specified on the same line following a comma or on the following lines using the indentation style described above. For 
example, 
 

1. Let total = 0 
2. For each product in groceryList 

a. If (product.price > maxPrice), throw an exception 
b. Let total = total + product.price 

 
In this example, steps 2.a and 2.b are repeated once for each member of the collection groceryList. The variable product is 
bound to the value of a different member of groceryList before each repetition of these steps. 
 
The second iteration convention defined by this specification is for expressing a sequence of steps that must be repeated once 
for each integer in a specified range of integers. It is expressed using the following for notation: 
 
 For variable = first to last steps 
 
This for notation is equivalent to computing first and last, which will evaluate to integers i and j respectively, and performing 
the given steps repeatedly with the variable variable bound to each member of the sequence i, i+1 … j in numerical order. The 
repetition ends after variable has been bound to each item of this sequence (or when the algorithm exits via a return or a 
thrown exception). The steps may be specified on the same line following a comma or on the following lines using the 
indentation style described above. For example, 
 

1. For i = 0 to priceList.length-1, call ToString(priceList[i]) 
 
In this example, ToString is called once for each item in priceList in sequential order. 
 
A modified version of the for notation exists for iterating through a range of numbers in reverse sequential order. It is 
expressed using the following notation: 
 
 For variable = first downto last steps 
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The modified for notation works exactly as described above except the variable variable is bound to each member of the 
sequence i, i-1, .. j in reverse numerical order. 

6.1.4  Conditional Repetition 
This specification extends the notation used in the ECMAScript Edition 3 specification by defining a convention for expressing 
conditional repetition of a set of steps. This convention is defined by the following notation: 
 
 While ( expression ) steps 
 
The while notation is equivalent to computing the expression, which will evaluate to either true or false and if it is true, taking 
the given steps and repeating this process until the expression evaluates to false (or the algorithm exits via a return or a thrown 
exception). The steps may be specified on the same line following a comma or on the following lines using the indentation 
style described above. For example, 
 

1. Let log2 = 0 
2. While (n > 1) 

a. Let n = n / 2 
b. Let log2 = log2 + 1 

 
In this example, steps 2.a and 2.b are repeated until the expression n > 1 evaluates to false. 

6.2 Method Invocation 
This specification extends the notation used in the ECMAScript Edition 3 specification by defining a method invocation 
convention.  The method invocation convention is used in this specification for calling a method of a given object passing a 
given set of arguments and returning the result. This convention is defined by the following notation: 
 
 object . methodName ( arguments ) 
 
where arguments is a comma separated list of zero or more values. The method invocation notation is equivalent to 
constructing a new Reference r with base-object = object and property-name set to a string literal containing the same 
sequence of characters as methodName, constructing a list l of the values in arguments, invoking the CallMethod operator 
passing r and l as arguments and returning the result. For example, the following algorithm fragment: 
 

1. Let sub = s.substring(2, 5) 
 
Is equivalent to the following algorithm fragment: 
 

1. Let r be a new Reference with base-object = s and property-name = "substring" 
2. Let l be an internal list containing the values 2 and 5 
3. Let sub = CallMethod(r, l) 
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7 Lexical Conventions 
This section introduces the lexical conventions E4X adds to ECMAScript.  
 
E4X modifies the existing lexical grammar productions for InputElementRegExp and Punctuators. It also introduces goal 
symbols InputElementXMLTag and InputElementXMLContent that describe how sequences of Unicode characters are 
translated into parts of XML initialisers.  
 
The InputElementDiv symbol is used in those syntactic grammar contexts where a division (/), division-assignment (/=), less 
than (<), less than or equals (<=), left shift (<<) or left shift-assignment (<<=) operator is permitted. The InputElementXMLTag 
is used in those syntactic contexts where the literal contents of an XML tag are permitted. The InputElementXMLContent is 
used in those syntactic contexts where the literal contents of an XML element are permitted. The InputElementRegExp symbol 
is used in all other syntactic grammar contexts.  
 
The addition of the production InputElementRegExp :: XMLMarkup and reuse of the existing production InputElementRegExp 
:: Punctuator :: < allow the start of XML initialisers to be identified. 
 
To better understand when these goal symbols apply, consider the following example: 
 
order = <{x}>{item}</{x}>; 
 
The input elements returned from the lexical grammar along with the goal symbol and productions used for this example are as 
follows: 
 

Input Element Goal Productions 
order InputElementRegExp Token::Identifer 
= InputElementDiv Punctuator 
< InputElementRegExp Punctuator 
{ InputElementXMLTag { 
x InputElementRegExp Token::Identifier 
} InputElementDiv Punctuator 
> InputElementXMLTag XMLTagPunctuator 
{ InputElementXMLContent { 
item InputElementRegExp Token::Identifier 
} InputElementDiv Punctuator 
</ InputElementXMLContent </ 
{ InputElementXMLTag { 
x InputElementRegExp Token::Identifier 
} InputElementDiv Punctuator 
> InputElementXMLTag XMLTagPunctuator 
; InputElementRegExp Token::Punctuator 

 
Syntax 
 
E4X extends the InputElementRegExp goal symbol defined by ECMAScript with the following production: 
 

InputElementRegExp :: 
 XMLMarkup 

 
E4X extends ECMAScript by adding the following goal symbols: 
 

InputElementXMLTag :: 
 XMLTagCharacters 
 XMLTagPunctuator 
 XMLAttributeValue 
 { 
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InputElementXMLContent :: 
 XMLMarkup 
 XMLText 
 { 
 < 
 </ 
 

7 .1  Punctuators  
E4X adds the descendent (..) input element to Punctuator to support the XML descendent accessor (section 10.2.3) with the 
following production: 
 
 Punctuator :: 
  .. 
 
7.2  XML Init ial iser Input Elements 
The goal symbols InputElementXMLTag and InputElementXMLContent describe how Unicode characters are translated into 
input elements that describe parts of XML initialisers. These input elements are consumed by the syntactic grammars described 
in Sections 10.1.4 and 10.1.5.   
 
The lexical grammar is not strict and allows characters which may not form a valid XML initialiser. The syntax and semantics 
described in the syntactic grammar verify that the final initialiser is well formed XML. 
 
Unlike in string literals, the back-slash (\) is not a treated as the start of escape sequence inside XML Initialisers. Instead the 
XML entity references specified in the XML 1.0 specification should be used to escape characters. For example, the entity 
&apos; can be used for a single-quote ('), &quot; for a double-quote ("), and &lt; for less-than (<). 
 
The left-curly ({) and right-curly (}) are used to delimit expressions that may be embedded in tags or element content to 
dynamically compute portions of the XML initialiser. The curly braces may appear in literal form inside an attribute value, a 
CDATA, PI, or XML Comment. In all other cases, the character entity &#x7B; must be used to represent the left-curly ({} and 
the character entity &#x7D; must be used to represent the right-curly (}). 
 
Syntax 
 

XMLMarkup :: 
 XMLComment 
 XMLCDATA 
 XMLPI 
  
XMLTagCharacters :: 
 SourceCharacters, but no embedded XMLTagPunctuator 

or left-curly { or quote ' or double-quote " 
 
XMLText :: 
 SourceCharacters, but no embedded left-curly { or less-than < 
 
XMLComment :: 
 <!-- XMLCommentCharactersopt --> 
 
XMLCommentCharacters :: 
 SourceCharacters, but no embedded sequence -- 
 
XMLCDATA :: 
 <![CDATA[ XMLCDATACharactersopt ]]> 
 
XMLCDATACharacters :: 
 SourceCharacters, but no embedded sequence ]]> 
 
XMLPI :: 
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 <? XMLPICharactersopt ?> 
 
XMLPICharacters :: 
 SourceCharacters, but no embedded sequence ?> 

 
XMLAttributeValue:: 
 " XMLDoubleStringCharactersopt " 
 ' XMLSingleStringCharactersopt ' 
 
XMLDoubleStringCharacters :: 
 SourceCharacters, but no embedded double-quote " 
 
XMLSingleStringCharacters :: 
 SourceCharacters, but no embedded single-quote ' 
 
SourceCharacters :: 
 SourceCharacter SourceCharactersopt 
 
XMLTagPunctuator :: one of 

= > />    
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8 Types 
E4X extends ECMAScript by adding two new fundamental data types for representing XML elements and XML lists. Future 
versions will also provide the capability to derive user-defined types for specific XML vocabularies using XML Schemas. 
 
8.1  The XML Type 
The XML type is an ordered collection of properties with a name, a set of XML attributes, a set of in-scope namespaces and a 
parent. Each property of an XML value has a unique numeric property name P, such that ToString(ToUint32(P)) is equal to P, 
and has a value of type XML representing a child node. The name of an XML value is a QName object or null. Each XML 
attribute is an instance of the XML type. Each namespace is a Namespace object. The parent is a value of type XML or null. 
Methods are associated with a XML values using non-numeric property names. 
 
Each value of type XML represents an XML element, attribute, comment, processing-instruction or text node. The internal 
[[Class]] property is set to “element”, “attribute”, “comment”, “processing-instruction” or “text” as appropriate. Each XML 
value representing an XML attribute, comment, processing-instruction (PI) or text node has no properties and stores a String 
value representing the value of the associated attribute, comment, PI or text node in the [[Value]] property logically inherited 
from the Object type.  
   
8.1.1  Internal  Properties  and Methods 
Internal properties and methods are not part of the E4X language. They are defined by this specification purely for expository 
purposes. An implementation of E4X must behave as if it produced and operated upon internal properties in the manner 
described here. This specification reuses the notation for internal properties from the ECMAScript Edition 3 specification, 
wherein the names of internal properties are enclosed in double square brackets [[ ]]. When an algorithm uses an internal 
property of an object and the object does not implement the indicated internal property, a TypeError exception is thrown. 
 
The XML type is logically derived from the Object type and inherits its internal properties. The following table summarises the 
internal properties the XML type adds to those defined by the Object type.  
 
Property Parameters Description 
[[Name]] None The name of this XML object. 
[[Parent]] None The parent of this XML object. 
[[Attributes]] None The attributes associated with this XML object. 
[[InScopeNamespaces]] None The namespaces in scope for this XML object 
[[Length]] None The number of ordered properties in this XML object. 
[[DeepCopy]] ( ) Returns a deep copy of this XML object. 
[[ResolveValue]] ( ) Returns this XML object. This method is used when attempting 

to resolve the value of an empty XMLList. 
[[Descendants]] (PropertyName) Returns an XMLList containing the XML valued descendants of 

this XML object with names that match propertyName. 
[[Filter]] (Expression) Returns an XMLList containing this XML object if this XML 

object satisfies the criteria specified by Expression. Otherwise, 
returns an empty XMLList. 

[[Equals]] (Value) Returns a Boolean value indicating whether this XML value has 
the same XML content as the given XML Value. 

[[Insert]] (PropertyName, Value) Inserts one or more new properties before the property with 
name PropertyName (a numeric index). 

[[Replace]] (PropertyName, Value) Replaces the value of the property with name PropertyName (a 
numeric index) with one or more new properties 

[[AddInScopeNamespace]] ( Namespace ) Adds the given Namespace to the [[InScopeNamespaces]] 
property of this XML object. 

 
The value of the [[Name]] property must be null or a QName object containing a legal XML element name, attribute name, or 
PI name. The value of the [[Name]] property is null if and only if the XML value represents an XML comment or text node. 
The [[Name]] for each XML value representing a processing-instruction will have its uri property set to the empty string. 
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The value of the [[Parent]] property must be either an XML object or null. When an XML object occurs as a property (i.e., a 
child) of another XML object, the [[Parent]] property provides convenient access to the containing XML object (i.e., the 
parent).  
 
The value of the [[Attributes]] property is a set of zero or more XML objects. When a new object is added to the [[Attributes]] 
set, it replaces any existing object in [[Attributes]] that has the same set identity. The set identity of each XML object x ∈ 
[[Attributes]] is defined to be x.[[Name]]. Therefore, there exists no two objects x, y ∈ [[Attributes]] such that the result of the 
comparison x.[[Name]] == y.[[Name]] is true. The value of the [[Attributes]] property is the empty set if the XML value 
represents an XML attribute, comment, PI or text node. Note: Although namespaces are declared using attribute syntax in 
XML, they are not represented in the [[Attributes]] property. 
 
The value of the [[InScopeNamespaces]] property is a set of zero or more Namespace objects representing the namespace 
declarations in scope for this XML object. When a new object is added to the [[InScopeNamespaces]] set, it replaces any 
existing object in the [[InScopeNamespaces]] set that has the same set identity. The set identity of each Namespace object n ∈ 
[[InScopeNamespaces]] is defined to be n.prefix. Therefore, there exists no two objects x,y ∈ [[InScopeNamespaces]], such 
that the result of the comparison x.prefix == y.prefix is true. 
  
The value of the [[Length]] property is a non-negative, whole Number. 
 
8.1.1 .1  [[Get]]  (P)  
Overview 
 
The XML type overrides the internal [[Get]] method defined by the Object type. The XML [[Get]] method is used to retrieve 
the value of a property by its numeric property name, an XML attribute by its name or a set of XML elements by their name. 
The input variable P may be a numeric property name, an unqualified name for an XML attribute (distinguished from the name 
of XML elements by a leading “@” symbol) or a set of XML elements, a QName for a set of XML elements, an 
AttributeName for a set of XML attributes, the properties wildcard “*” or the attributes wildcard “@*”. When the input 
variable P is an unqualified XML element name, it identifies XML elements in the default namespace. When the input variable 
P is an unqualified XML attribute name, it identifies XML attributes in no namespace. 
 
Note: Unlike the internal Object.[[Get]] method, the internal XML [[Get]] method is never used for retrieving methods 
associated with XML values. E4X modifies the ECMAScript method lookup semantics for XML values as described in section 
10.2.2. 
  
Semantics 
 
When the [[Get]] method of an XML object x is called with property name P, the following steps are taken: 
 

1. If ToString(ToUint32(P)) == P 
a. Call the Object.[[Get]] method with x as the this object and argument P, then return the result 

2. Let n = ToXMLName(P) 
3. Let l be a new XMLList with l.[[TargetObject]] = x and l.[[TargetProperty]] = n 
4. If Type(n) is AttributeName 

a. For each a in x.[[Attributes]] 
i. If ((n.[[Name]].localName == "*") or (n.[[Name]].localName == a.[[Name]].localName))  

and ((n.[[Name]].uri == undefined) or (n.[[Name]].uri == a.[[Name]].uri)) 
1. Call the [[Append]] method of l with argument a 

b. Return l 
5. For (k = 0 to x.[[Length]]-1) 

a. If ((n.localName == "*")  
   or ((x[k].[[Class]] == "element") and (x[k].[[Name]].localName == n.localName))) 
and ((n.uri == undefined) or (n.uri  == x[k].[[Name]].uri)) 

i. Call the [[Append]] method of l with argument x[k] 
6. Return l 

 
8.1.1 .2   [ [Put]]  (P,  V) 
Overview 
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The XML type overrides the internal [[Put]] method defined by the Object type. The XML [[Put]] method is used to replace 
and insert properties or XML attributes in an XML value. The input variable P identifies which portion of the XML value will 
be affected and may be a numeric property name, an unqualified name for an XML attribute (distinguished from XML valued 
property names by a leading “@” symbol) or set of XML elements, a QName for a set of XML elements, an AttributeName for 
a set of XML attributes or the properties wildcard “*”. When the input variable P is an unqualified XML element name, it 
identifies XML elements in the default namespace. When the input variable P is an unqualified XML attribute name, it 
identifies XML attributes in no namespace. The input variable V may be an XML value, an XMLList value or any value that 
may be converted to a String with ToString(). 
 
Semantics 
 
When the [[Put]] method of an XML object x is called with property name P and value V, the following steps are taken: 
 

1. If x.[[Class]] ∈ {"text", "comment", "processing-instruction", "attribute"}, return  
2. If (Type(V) ∉ {XML, XMLList}) or (V.hasSimpleContent() == true) 

a. Let c = ToString(V) 
3. Else  

a. Let c be the result of calling the [[DeepCopy]] method of V 
4. If ToString(ToUint32(P)) == P 

a. Call the [[Replace]] method of x with arguments P and c and return 
5. Let n = ToXMLName(P) 
6. Let defaultNamespace = GetDefaultNamespace() 
7. If Type(n) is AttributeName 

a. Call the function isXMLName with argument n.[[Name]] and if the result is false, return 
b. If Type(c) is XMLList 

i. If c.[[Length]] == 0, let c be the empty string 
ii. Else 

1. Let s = ToString(c[0]) 
2. For i = 1 to c.[[Length]]-1 

a. Let s be the result of concatenating s, the string " " (space) and ToString(c[i]) 
3. Let c = s  

c. Else 
i. Let c = ToString(c) 

d. Let a = null 
e. For j = 0 to x.[[Attributes]].length 

i. If (n.[[Name]].localName == x.[[Attributes]][j].[[Name]].localName) 
and ((n.[[Name]].uri == undefined) or (n.[[Name]].uri  == x.[[Attributes]][j].[[Name]].uri)) 

1. If (a == null), a = x.[[Attributes]][j] 
2. Else call the [[Delete]] method of x with argument x.[[Attributes]][j].[Name] 

f. If a == null 
i. Let name be a new QName created as if by calling the constructor new QName(n.[[Name]]) 

ii. If name.uri == undefined 
1. Let nons be a new Namespace created as if by calling the constructor new Namespace() 
2. Call the [[SetNamespace]] method of name with argument nons 

iii. Create a new XML value a with a.[[Name]] = name, a.[[Class]] == "attribute" and a.[[Parent]] = 
x 

iv. Let x.[[XMLAttributes]] = x.[[XMLAttributes]] ∪ a 
v. Let ns be the result of calling the [[GetNamespace]] method of name with no arguments 

vi. Call the [[AddInScopeNamespace]] method of x with argument ns 
g. Let a.[[Value]] = c 
h. Return 

8. Call the function isXMLName with argument n and if the result is false, return 
9. Let i = undefined 
10. If Let primitiveAssign = (Type(c) ∉ {XML, XMLList}) and (n.localName is not equal to the string "*") 
11. For (k = 0 to x.[[Length]]-1) 

a. If ((n.localName == "*")  
   or ((x[k].[[Class]] == "element") and (x[k].[[Name]].localName==n.localName))) 
and ((n.uri == undefined) or (n.uri  == x[k].[[Name]].uri )) 
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i. If (i == undefined), let i = k 
ii. Else call the [[Delete]] method of x with argument ToString(k) 

12. If i == undefined 
a. Let i = x.[[Length]] 
b. Let name be a new QName created as if by calling the constructor new QName(n) 
c. If (primitiveAssign == true) 

i. If name.uri == undefined, call [[SetNamespace]] on name with argument defaultNamespace 
ii. Create a new XML object y with y.[[Name]] = name, y.[[Class]] = "element" and y.[[Parent]] = x 

iii. Let ns be the result of calling [[GetNamespace]] on name with no arguments 
iv. Call the [[Replace]] method of x with arguments ToString(i) and y 
v. Call [[AddInScopeNamespace]] on y with argument ns 

13. If (primitiveAssign == true) 
a. Delete all the properties of the XML value x[i] 
b. Let s = ToString(c) 
c. If s is not the empty string, call the [[Replace]] method of x[i] with arguments "0" and s 

14. Else  
a. Call the [[Replace]] method of x with arguments ToString(i) and c 

15. Return 
 
8.1.1 .3   [ [Delete]]  (P)  
Overview 
 
The XML type overrides the internal [[Delete]] method defined by the Object type. The XML [[Delete]] method is used to 
remove a property by its numeric property name, as set of XML attributes by name or a set of XML valued properties by name. 
Unlike, the internal Object [[Delete]], the XML [[Delete]] method shifts all the properties following deleted properties up to 
fill in empty slots created by the delete. The input variable P may be a numeric property name, an unqualified name for an 
XML attribute (distinguished from the name of XML elements by a leading “@” symbol) or a set of XML elements, a QName 
for a set of XML elements, an AttributeName for a set of XML attributes, the properties wildcard “*” or the attributes wildcard 
“@*”. When the input variable P is an unqualified XML element name, it identifies XML elements in the default namespace. 
When the input variable P is an unqualified XML attribute name, it identifies XML attributes in no namespace. 
 
Semantics 
 
When the [[Delete]] method of an XML object x is called with property name P, the following steps are taken: 
 

1. Let i = ToUint32(P) 
2. If ToString(i) == P 

a. If i is greater than or equal to x.[[Length]], return true 
b. Else 

i. Let x[P].[[Parent]] = null 
ii. Remove the property with the name P from x 

iii. For each property q of x such that ToUint32(q) > i, rename q to ToString(ToUint32(q) – 1) 
iv. Let x.[[Length]] = x.[[Length]] – 1 

c. Return true 
3. Let n = ToXMLName(P) 
4. If Type(n) is AttributeName 

a. For each a in x.[[Attributes]] 
i. If ((n.[[Name]].localName == "*") or (n.localName == a.[[Name]].localName)) 

and ((n.[[Name]].uri == undefined) or (n.[[Name]].uri  == a.[[Name]].uri)) 
1. Let a.[[Parent]] = null 
2. Remove the attribute a from x.[[Attributes]] 

b. Return true 
5. Let dp = 0 
6. For each property q in x 

a. If ((n.localName=="*")  
   or (x[q].[[Class]]=="element" and x[q].[[Name]].localName==n.localName)) 
and ((n.uri == undefined) or (n.uri  == x[q].[[Name]].uri ))  

i. Let q.[[Parent]] = null 
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ii. Remove the property q from x 
iii. Let dp = dp + 1 

b. Else 
i. If dp > 0, rename q to ToString(ToUint32(q) – dp) 

7. Let x.[[Length]] = x.[[Length]] - dp 
8. Return true. 

 
8.1.1 .4  [[DefaultValue]]  (hint)  
Overview 
 
The XML type overrides the internal [[DefaultValue]] method defined by the Object type. The XML [[DefaultValue]] method 
returns a primitive value representing this XML object. Unlike, the [[DefaultValue]] method defined by the Object type, the 
XML [[DefaultValue]] method always returns a string. The hint parameter is ignored. 
  
Semantics 
 
When the [[DefaultValue]] method of an XML object x is called with parameter hint, the following step is taken: 
 

1. Return ToString(x) 
 
8.1.1 .5  [[HasProperty]]  (P)  
Overview 
 
The XML type overrides the internal [[HasProperty]] method defined by the Object type. The XML [[HasProperty]] method is 
used to determine whether this XML object contains an XML element or attribute by its name or ordinal position. The input 
variable P may be a numeric property name, an unqualified name for an XML attribute (distinguished from the name of XML 
elements by a leading “@” symbol) or a set of XML elements, a QName for a set of XML elements, an AttributeName for a 
set of XML attributes, the properties wildcard “*” or the attributes wildcard “@*”. When the input variable P is an unqualified 
XML element name, it identifies XML elements in the default namespace. When the input variable P is an unqualified XML 
attribute name, it identifies XML attributes in no namespace. 
  
Semantics 
 
When the [[HasProperty]] method of an XML object x is called with property name P, the following steps are taken: 
 

2. If ToString(ToUint32(P)) == P 
a. Return (ToUint32(P) < x.[[Length]]) 

3. Let n = ToXMLName(P) 
4. If Type(n) is AttributeName 

a. For each a in x.[[Attributes]] 
i. If ((n.[[Name]].localName == "*") or (n.[[Name]].localName == a.[[Name]].localName))  

and ((n.[[Name]].uri == undefined) or (n.[[Name]].uri == a.[[Name]].uri)) 
1. Return true 

b. Return false 
5. For (k = 0 to x.[[Length]]-1) 

a. If ((n.localName == "*")  
   or ((x[k].[[Class]] == "element") and (x[k].[[Name]].localName == n.localName))) 
and ((n.uri == undefined) or (n.uri  == x[k].[[Name]].uri)) 

i. Return true 
6. Return false 

 
8.1.1 .6   [ [DeepCopy]]   (  )  
Overview 
 
The XML type adds the internal [[DeepCopy]] method to the internal properties defined by the Object type. The XML 
[[DeepCopy]] method is used to create and return a deep copy of this object, including its attributes, properties, namespaces 
and the attributes, properties and namespaces of all its descendants. The internal [[Parent]] property of the return value is set to 
null and the internal [[Parent]] property of each copied descendant is reset to its newly copied parent as appropriate. 
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Semantics 
 
When the [[DeepCopy]] method of an XML object x is called, the following steps are taken: 
 

1. Let y be a new XML object 
2. For each internal property [[p]] of x, except [[Parent]], [[Attributes]] and [[InScopeNamespaces]] 

a. Create a copy c of x.[[p]] and let the value of y.[[p]] be c 
3. For each ns ∈ x.[[InScopeNamespaces]] 

a. Let ns2 be a new Namespace created as if by calling the constructor new Namespace(ns.prefix, ns.uri) 
b. Let y.[[InScopeNamespaces]] = y.[[InScopeNamespaces]] ∪ ns2 

4. Let y.[[Parent]] = null 
5. For each attribute a ∈ x.[[Attributes]] 

a. Let b be the result of calling the [[DeepCopy]] method of a 
b. Let b.[[Parent]] = y 
c. Let y.[[Attributes]] = y.[[Attributes]] ∪ b 

6. For i = 0 to x.[[Length]]-1 
a. Let c be the result of calling the [[DeepCopy]] method of x[i] 
b. Let y[i] = c 
c. Let y[i].[[Parent]] = y 

7. Return y 
 
8.1.1 .7   [ [Descendants]]   (P)  
Overview 
 
The XML type adds the internal [[Descendants]] method to the internal properties defined by the Object type. The XML 
[[Descendants]] method is used to retrieve all the XML valued descendants of this XML object (i.e., children, grandchildren, 
great-grandchildren, etc.) with names matching the input variable P. The input variable P may be a numeric property name, an 
unqualified name for an XML attribute (distinguished from the name of XML elements by a leading “@” symbol) or a set of 
XML elements, a QName for a set of XML elements, an AttributeName for a set of XML attributes, the properties wildcard 
“*” or the attributes wildcard “@*”. When the input variable P is an unqualified XML element name, it identifies XML 
elements in the default namespace. When the input variable P is an unqualified XML attribute name, it identifies XML 
attributes in no namespace. 
 
Semantics 
 
When the [[Descendants]] method of an XML object x is called with property name P, the following steps are taken: 
 

1. Let n = ToXMLName(P) 
2. Let l be a new XMLList with l.[[TargetObject]] = null 
3. If Type(n) is AttributeName 

a. For each attribute a in x.[[Attribute]] 
i. If ((n.[[Name]].localName == "*") or (n.localName == a.[[Name]].localName)) 

and ((n.[[Name]].uri == undefined) or (n.[[Name]].uri  == a.[[Name]].uri )) 
1. Call the [[Append]] method of l with argument a 

4. For (k = 0 to x.[[Length]]-1) 
a. If ((n.localName == "*")  

   or ((x[k].[[Class]] == "element") and (x[k].[[Name]].localName == n.localName))) 
and  ((n.uri == undefined) or (n.uri  == x[k].[[Name]].uri))  

i. Call the [[Append]] method of l with argument x[k] 
b. Let dq be the resultsof calling the [[Descendants]] method of x[k] with argument P 
c. If dq.[[Length]] > 0, call the [[Append]] method of l with argument dq 

5. Return l 
 
8 .1 .1 .8  [[Filter]]   (E) 
Overview 
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The XML type adds the internal [[Filter]] method to the internal properties defined by the Object type. The XML [[Filter]] 
method is used to determine whether this XML object satisfies criteria specified by the input expression E. If this XML object 
satisfies the criteria specified by E, the [[Filter]] method returns an XMLList of size one containing this XML object. 
Otherwise, it returns an empty XMLList.  
 
Semantics 
 
When the [[Filter]] method of an XML object x is called with expression E, the following steps are taken: 
 

1. Add x to the front of the scope chain 
2. Let ref be the result of evaluting E using the augmented scope chain from step 1 
3. Let match = ToBoolean(GetValue(ref)) 
4. Remove x from the front of the scope chain 
5. Let l be a new XMLList with l.[[TargetObject]] = null 
6. If (match == true), call the [[Append]] method of l with argument x 
7. Return l 

 
8.1.1 .9   [ [Equals]]  (V) 
Overview 
 
The XML type adds the internal [[Equals]] method to the internal properties defined by the Object type. The XML [[Equals]] 
method is used to compare this XML value for XML content equality with another XML value V. The [[Equals]] operator 
returns true if V is a value of type XML considered equal to this XML value. Otherwise, it returns false. 
  
Semantics 
 
When the [[Equals]] method of an XML object x is called with value V, the following steps are taken: 
 

1. If Type(V) is not XML, return false 
2. If x.[[Class]] is not equal to V.[[Class]], return false 
3. if x.[[Name]] is not null 

a. If x.[[Name]].localName is not equal to V.[[Name]].localName, return false 
b. If x.[[Name]].uri is not equal to V.[[Name]].uri, return false 

4. If x.[[Attributes]] does not contain the same number of items as V.[[Attributes]], return false 
5. If x.[[Length]] is not equal to V.[[Length]], return false 
6. If x.[[Value]] is not equal to y[[Value]], return false 
7. For each attribute a in x.[[Attributes]] 

a. If V.[[Attributes]] does not contain an attribute b, such that b.[[Name]].localName == a.[[Name]].localName, 
b.[[Name]].uri  == a.[[Name]].uri  and b.[[Value]] == a.[[Value]], return false 

8. For i = 0 to x.[[Length]]-1 
a. Let r be the result of calling the [[Equals]] method of x[i] with argument V[i] 
b. If r == false, return false 

9. Return true 
 
8.1.1 .10  [[ResolveValue]]  (  )  
Overview 
 
The XML type adds the internal [[ResolveValue]] method to the internal properties defined by the Object type. The XML 
[[Resolve]] method returns this XML object. It is used by the XMLList [[ResolveValue]] method to support [[Put]] operations 
on empty XMLLists. 
  
Semantics 
 
When the [[ResolveValue]] method of an XML object x is called, the following step is taken: 
 

1. Return x 
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8.1.1 .11   [ [Insert]]  (P,  V) 
Overview 
 
The XML type adds the internal [[Insert]] method to the internal properties defined by the Object type. The XML [[Insert]] 
method is used to insert a value V at a specific position P. The input variable P must be a numeric property name. The input 
variable V may be a value of type XML, XMLList or any value that can be converted to a String with ToString(). 
 
Semantics 
 
When the [[Insert]] method of an XML object x is called with property name P and value V, the following steps are taken: 
 

2. If x.[[Class]] ∈ {"text", "comment", "processing-instruction", "attribute"}, return  
3. Let i = ToUint32(P) 
4. If (ToString(i) is not equal to P) throw a TypeError exception 
5. Let n = 1 
6. If Type(V) is XMLList, let n = V.[[Length]] 
7. If n == 0, Return 
8. For j = x.[[Length]]-1 downto i, rename property ToString(j) of x to ToString(j + n) 
9. Let x.[[Length]] = x.[[Length]] + n 
10. If Type(V) is XMLList 

a. For j = 0 to V.[[Length-1]], call the [[Replace]] method of x with arguments ToString(i + j) and V[j] 
11. Else 

a. Call the [[Replace]] method of x with arguments i and V 
12. Return 

 
 
8.1.1 .12  [[Replace]]  (P,  V) 
Overview 
 
The XML type adds the internal [[Replace]] method to the internal properties defined by the Object type. The XML 
[[Replace]] method may be used to replace the property at a specific position P with the value V. The input variable P must be 
a numeric property name. The input variable V may be a value of type XML, XMLList or any value that can be converted to a 
String with ToString(). 
 
Semantics 
 
When the [[Replace]] method of an XML object x is called with property name P and value V, the following steps are taken: 
 

1. If x.[[Class]] ∈ {"text", "comment", "processing-instruction", "attribute"}, return  
2. Let i = ToUint32(P) 
3. If (ToString(i) is not equal to P) throw a TypeError exception  
4. If i is greater than or equal to x.[[Length]],  

a. Let P  = ToString(x.[[Length]]) 
b. Let x.[[Length]] = x.[[Length]] + 1 

5. If Type(V) is XML and V.[[Class]] ∈ {"element", "comment", "processing-instruction", "text"}  
a. Let V.[[Parent]] = x  
b. Let x[P].[[Parent]] = null 
c. Let the value of property P of x be V 

Note: The E4X data model does not enforce the constraint: ∀ x ∈ XML : x.[[InScopeNamespaces]] ⊇ 
x.[[Parent]].[[InScopeNamespaces]]. However, implementations may at this point add namespaces from 
V.[[InScopeNamespaces]] to x or any ancestors of x. Likewise, implementations may at this point add 
namespaces from x to V or any descendents of V. 

6. Else if Type(V) is XMLList 
a. Call the [[Delete]] method of x with argument P 
b. Call the [[Insert]] method of x with arguments P and V 

7. Else 
a. Let s = ToString(V) 
b. Create a new XML object t with t.[[Class]] = "text", t.[[Parent]] = x and t.[[Value]] = s 
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c. Let x[P].[[Parent]] = null 
d. Let the value of property P of x be t 

8. Return 
 
8.1.1 .13  [[AddInScopeNamespace]]  (  N )  
Overview 
 
The XML type adds the internal [[AddInScopeNamespace]] method to the internal properties defined by the Object type. The 
XML [[AddInScopeNamespace]] method is used to add a new Namespace to the [[InScopeNamespaces]] of a given XML 
value. The input variable N is a value of type Namespace to be added to the [[InScopeNamespaces]] property of this XML 
object.  
 
Semantics 
 
When the [[AddInScopeNamespace]] method of an XML object x is called with a namespace N, the following steps are taken: 
 

1. If x.[[Class]] ∈ {"text", "comment", "processing-instruction", "attribute"}, return  
2. If N.prefix  == undefined 

a. Let match = null 
b. For each ns in x.[[InScopeNamespaces]] 

i. If ns.uri  == N.uri , let match = ns 
c. If match == null,  

i. Let x.[[InScopeNamespaces]] = x.[[InScopeNamespaces]] ∪ N 
3. else 

a. Let match be null 
b. For each ns in x.[[InScopeNamespaces]] 

i. If N.prefix == ns.prefix, let match = ns 
c. If match is not null and match.uri is not equal to N.uri, let match.prefix  = undefined 
d. Let x.[[InScopeNamespaces]] = x.[[InScopeNamespaces]] ∪ N 

4. Note: The E4X data model does not enforce the constraint: ∀ x ∈ XML : x.[[InScopeNamespaces]] ⊇ 
x.[[Parent]].[[InScopeNamespaces]]. However, implementations may at this point add N to the 
[[InScopeNamespaces]] property of any ancestors or descendents of x. 

5. Return 
 
8.2  The XMLList  Type 
The XMLList type is an ordered collection of properties. Each property of an XMLList value has a unique numeric property 
name P, such that ToString(ToUint32(P)) is equal to P and a value of type XML. Methods are associated with XMLList values 
using non-numeric property names.  
 
A value of type XMLList represents an XML document, XML fragment or an arbitrary collection of XML values (e.g., a query 
result).  
 
8.2.1  Internal  Properties  and Methods 
The XMLList type is logically derived from the Object type and inherits its internal properties. The following table 
summarises the internal properties the XMLList type adds to those defined by the Object type.  
 
Property Parameters Description 
[[Length]] None The number of properties contained in this XMLList object. 
[[TargetObject]] None The XML or XMLList object associated with this object that 

will be affected when items are inserted into this XMLList. 
[[TargetProperty]] None The name of a property that may be created in the 

[[TargetObject]] when objects are added to an empty 
XMLList. 

[[Append]] (Value) Appends a new property to the end of this XMLList object. 
[[DeepCopy]] ( ) Returns a deep copy of this XMLList object. 
[[Descendants]] (PropertyName) Returns an XMLList containing all the descendants of values 

of in this XMLList that have names matching propertyName. 
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[[Filter]] (Expression) Returns an XMLList containing the XML objects in this 
XMLList that satisfy the criteria specified by Expression. 

[[Equals]] (Value) Returns a Boolean value indicating whether this XMLList 
object has the same content as the given Value or this XMList 
object contains an object that compares equal to the given 
Value. 

[[ResolveValue]] ( ) Resolves the value of this XML value. If this XML value is 
not empty, it is returned. Otherwise, [[ResolveValue]] attempts 
to create an appropriate value. 

 
The value of the [[Length]] property is a non-negative Number. 
 
8.2.1 .1  [[Get]]  (P)  
Overview 
 
The XMLList type overrides the internal [[Get]] method defined by the Object type. The XMLList [[Get]] method is used to 
retrieve a specific property of this XMLList object by its numeric property name or to iterate over the XML valued properties 
of this XMLList object retrieving their XML attributes by name or their XML values by name. The input variable P may be a 
numeric property name, an unqualified name for an XML attribute (distinguished from the name of XML elements by a 
leading “@” symbol) or a set of XML elements, a QName for a set of XML elements, an AttributeName for a set of XML 
attributes, the properties wildcard “*” or the attributes wildcard “@*”. When the input variable P is an unqualified XML 
element name, it identifies XML elements in the default namespace. When the input variable P is an unqualified XML attribute 
name, it identifies XML attributes in no namespace. 
 
Note: Unlike the internal Object.[[Get]] method, the internal XMLList [[Get]] method is never used for retrieving methods 
associated with XMLList values. E4X modifies the ECMAScript method lookup semantics for XMLList values as described in 
section 10.2.2. 
 
Semantics 
 
When the [[Get]] method of an XMLList object x is called with property name P, the following steps are taken: 
 

1. If ToString(ToUint32(P)) == P 
a. Return the result of calling the Object.[[Get]] method with x as the this object and argument P 

2. Let l be a new XMLList with l.[[TargetObject]] = x and l.[[TargetProperty]] = P 
3. For i = 0 to x.[[Length]]-1,  

a. If x[i].[[Class]] == "element",  
i. Let gq be the result of calling the [[Get]] method of x[i] with argument P 

ii. If gq.[[Length]] > 0, call the [[Append]] method of l with argument gq 
4. Return l 

 
8.2.1 .2   [ [Put]]  (P,  V) 
Overview 
 
The XMLList type overrides the internal [[Put]] method defined by the Object type. The XMLList [[Put]] method is used to 
modify or replace an XML value within the XMLList and the context of its parent. In addition, when the XMLList contains a 
single property with an XML value, the [[Put]] method is used to modify, replace, and insert properties or XML attributes of 
that value by name. The input variable P identifies which portion of the XMLList and associated XML values will be affected 
and may be a numeric property name, an unqualified name for an XML attribute (distinguished from XML valued property 
names by a leading “@” symbol) or set of XML elements, a QName for a set of XML elements, an AttributeName for a set of 
XML attributes or the properties wildcard “*”. When the input variable P is an unqualified XML element name, it identifies 
XML elements in the default namespace. When the input variable P is an unqualified XML attribute name, it identifies XML 
attributes in no namespace. The input variable V may be a value of type XML, XMLList or any value that can be converted to 
a String with ToString(). 
 
Semantics 
 
When the [[Put]] method of an XMLList object x is called with property name P and value V, the following steps are taken: 
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1. Let i = ToUint32(P) 
2. If ToString(i) == P 

a. If x.[[TargetObject]] is not null 
i. Let r be the result of calling the [[ResolveValue]] method of x.[[TargetObject]]  

ii. If r == null, return 
b. Else let r = null 
c. If i is greater than or equal to x.[[Length]]  

i. If Type(r) is XMLList 
1. If r.[[Length]] is not equal to 1, return 
2. Else let r = r[0] 

ii. Create a new XML value y with y.[[Parent]] = r, y.[[Name]] = x.[[TargetProperty]], y.[[Attributes]] 
= {}, y.[[Length]] = 0 

iii. If Type(x.[[TargetProperty]]) is AttributeName 
1. Let attributeExists be the result of calling the [[Get]] method of r with argument 

y.[[Name]] 
2. if (attributeExists.[[Length]] > 0), return 
3. let y.[[Class]] = "attribute" 

iv. Else if x.[[TargetProperty]] == null or x.[[TargetProperty]].localName == "*" 
1. Let y.[[Name]] = null 
2. Let y.[[Class]] = "text" 

v. Else let y.[[Class]] = "element" 
vi. Let i = x.[[Length]] 

vii. If (y.[[Parent]] is not null and y.[[Class]] is not equal to "attribute") 
1. If (i > 0) 

a. Let j = 0 
b. While (j < y.[[Parent]].[[Length]]-1)  

  and (y.[[Parent]][j] is not the same object as x[i-1]) 
i. Let j = j + 1 

2. Else 
a. Let j = y.[[Parent]].[[Length]]-1 

3. Call the [[Insert]] method of y.[[Parent]] with arguments ToString(j+1) and y 
viii. Call the [[Append]] method of x with argument y 

d. If (Type(V) ∉ {XML, XMLList}) or (V.hasSimpleContent()== true), let V = ToString(V) 
e. If x[i].[[Class]] == "attribute" 

i. Call the [[Put]] method of x[i].[[Parent]] with arguments x[i].[[Name]] and V 
ii. Let attr be the result of calling [[Get]] on x[i].[[Parent]] with argument x[i].[Name] 

iii. Let x[i] = attr[0] 
f. Else if Type(V) is XMLList 

i. Create a shallow copy c of V 
ii. Let parent = x[i].[[Parent]] 

iii. If parent is not null 
1. Let q be the property of parent, such that parent[q] is the same object as x[i] 
2. Call the [[Put]] method of parent with arguments q and c 
3. For j = 0 to c.[[Length]]-1 

a. Let c[j] = parent[ToUint32(q)+j] 
iv. For j = x.[[Length]]-1 downto i, rename property j of x to ToString(j + c.[[Length]]) 
v. For j = 0 to c.[[Length]]-1, let x[i + j] = c[j] 

vi. Let x.[[Length]] = x.[[Length]] + c.[[Length]] 
g. Else if (Type(V) is XML) or (x[i].[[Class]] ∈ {"text", "comment", "processing-instruction"}) 

i. Let parent = x[i].[[Parent]] 
ii. If parent is not null 

1. Let q be the property of parent, such that parent[q] is the same object as x[i] 
2. Call the [[Put]] method of parent with arguments q and V 
3. Let V = parent[q] 

iii. Let x[i] = V 
h. Else 

i. Call the [[Put]] method of x[i] with arguments "*" and V 
3. Else if x.[[Length]] is less than or equal to 1 



-  22  -  

 

a. If x.[[Length]] == 0 
i. Let r be the result of calling the [[ResolveValue]] method of x 

ii. If (r == null) or (r.[[Length]] is not equal to 1), return 
iii. Call the [[Append]] method of x with argument r 

b. Call the [[Put]] method of x[0] with arguments P and V 
4. Return 

 
8.2.1 .3   [ [Delete]]  (P)  
Overview 
 
The XMLList type overrides the internal [[Delete]] method defined by the Object type. The XMLList [[Delete]] method is 
used to remove a specific property of the XMLList by its numeric property name or to iterate over the XML valued properties 
of the XMLList removing their XML attributes or elements by name. The input variable P may be a numeric property name, 
an unqualified name for an XML attribute (distinguished from the name of XML elements by a leading “@” symbol) or a set 
of XML elements, a QName for a set of XML elements, an AttributeName for a set of XML attributes, the properties wildcard 
“*” or the attributes wildcard “@*”. When the input variable P is an unqualified XML element name, it identifies XML 
elements in the default namespace. When the input variable P is an unqualified XML attribute name, it identifies XML 
attributes in no namespace. 
 
Semantics 
 
When the [[Delete]] method of an XMLList object x is called with property name P, the following steps are taken: 
 

1. Let i = ToUint32(P) 
2. If ToString(i) == P 

a. If i is greater than or equal to x.[[Length]], return true 
b. Else 

i. Let parent = x[i].[[Parent]] 
ii. If parent is not null 

1. If x[i].[[Class]] == "attribute" 
a. Call the [[Delete]] method of parent with argument x[i].[[Name]] 

2. Else 
a. Let q be the property of  parent, where parent[q] is the same object as x[i] 
b. Call the [[Delete]] method of parent with argument q 

iii. Remove the property with the name P from x 
iv. For each property q in x such that ToUint32(q) > i, rename q to ToString(ToUint32(q) – 1) 
v. Let x.[[Length]] = x.[[Length]] – 1 

c. Return true 
3. For each property q in x,  

a. If x[q].[[Class]] == "element" 
i. Call the [[Delete]] method of x[q] with argument P 

4. Return true 
 
8.2.1 .4  [[DefaultValue]]  (hint)  
Overview 
 
The XMLList type overrides the internal [[DefaultValue]] method defined by the Object type. The XMLList [[DefaultValue]] 
method returns a primitive value representing this XMLList object. Unlike, the Object [[DefaultValue]] method, the XMLList 
[[DefaultValue]] method always returns a string. The hint parameter is ignored. 
  
Semantics 
 
When the [[DefaultValue]] method of an XMLList object l is called with parameter hint, the following step is taken: 
 

1. Return ToString(l) 
 

8.2.1 .5   [ [HasProperty]]  (P)  
Overview 
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The XMLList type overrides the internal [[HasProperty]] method defined by the Object type. The XMLList [[HasProperty]] 
method is used to determine whether this XMLList object contains an XML element or attribute by its ordinal position or 
whether any of the objects contained in this XMLList object contains an XML element or attribute by its name. The input 
variable P may be a numeric property name, an unqualified name for an XML attribute (distinguished from the name of XML 
elements by a leading “@” symbol) or a set of XML elements, a QName for a set of XML elements, an AttributeName for a 
set of XML attributes, the properties wildcard “*” or the attributes wildcard “@*”. When the input variable P is an unqualified 
XML element name, it identifies XML elements in the default namespace. When the input variable P is an unqualified XML 
attribute name, it identifies XML attributes in no namespace. 
 
Semantics 
 
When the [[HasProperty]] method of an XMLList object x is called with property name P, the following steps are taken: 
 

1. If ToString(ToUint32(P)) == P 
a. Return (ToUint32(P) < x.[[Length]]) 

2. For i = 0 to x.[[Length]]-1  
a. If x[i].[[Class]] == "element" and the result of calling the [[HasProperty]] method of x[i] with argument P 

== true, return  true 
3. Return false 

 
8.2.1 .6   [ [Append]]  (V) 
Overview 
 
The XMLList type adds the internal [[Append]] method to the internal properties defined by the Object type. The XMLList 
[[Append]] method is used to append zero or more values specified by V to the end of the XMLList. The input variable V may 
be a value of type XMLList or XML. 
 
Semantics 
 
When the [[Append]] method of an XMLList object x is called with value V, the following steps are taken: 
 

1. Let i = x.[[Length]] 
2. Let n = 1 
3. If Type(V) is XMLList,  

a. Let x.[[TargetObject]] = V.[[TargetObject]] 
b. Let x.[[TargetProperty]] = V.[[TargetProperty]] 
c. Let n = V.[[Length]] 
d. If n == 0, Return 
e. For j = 0 to V.[[Length-1]], let x[i + j] = V[j] 

4. Else  [Note: Type(V) is XML] 
a. Let x.[[TargetObject]] = V.[[Parent]] 
b. If V.[[Class]] == "processing-instruction", let x.[[TargetProperty]] = null 
c. Else let x.[[TargetProperty]] = V.[[Name]] 
d. Let the value of property i of x be V 

5. Let x.[[Length]] = x.[[Length]] + n 
6. Return 

 
8.2.1 .7  [[DeepCopy]]  (  )  
Overview 
 
The XMLList type adds the internal [[DeepCopy]] method to the internal properties defined by the Object type. The XMLList 
[[DeepCopy]] method is used to create and return a copy of this XMLList object containing deep copies of all its properties. 
  
Semantics 
 
When the [[DeepCopy]] method of an XMLList object x is called the following steps are taken: 
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1. Let l be a new XMLList object 
2. Copy all internal properties of x to l 
3. For i = 0 to x.[[Length]]-1 

a. Let l[i] be the result of calling the [[DeepCopy]] method of x[i] 
4. Return l 

 
8.2.1 .8   [ [Descendants]]   (P)  
Overview 
 
The XMLList type adds the internal [[Descendants]] method to the internal properties defined by the Object type. The 
XMLList [[Descendants]] method may be used to retrieve all the XML valued descendants of the properties in this XMLList 
(i.e., children, grandchildren, great-grandchildren, etc.) with names matching the input variable P. The input variable P may be 
a numeric property name, an unqualified name for an XML attribute (distinguished from the name of XML elements by a 
leading “@” symbol) or a set of XML elements, a QName for a set of XML elements, an AttributeName for a set of XML 
attributes, the properties wildcard “*” or the attributes wildcard “@*”. When the input variable P is an unqualified XML 
element name, it identifies XML elements in the default namespace. When the input variable P is an unqualified XML attribute 
name, it identifies XML attributes in no namespace. 
  
Semantics 
 
When the [[Descendents]] method of an XML object x is called with property name P, the following steps are taken: 
 

1. Let l be a new XMLList with l.[[TargetObject]] = null 
2. For each property q in x 

a. If (x[q].[[Class]] == "element") 
i. Let dq be the result of calling the [[Descendants]] method of x[q] with argument P 

ii. If dq.[[Length]] > 0, call the [[Append]] method of l with argument dq 
3. Return l 

 
8.2.1 .9  [[Filter]]   (E) 
Overview 
 
The XMLList type adds the internal [[Filter]] method to the internal properties defined by the Object type. The XMLList 
[[Filter]] method is used to identify the XML objects in this XMLList that satisfy criteria specified by the input expression E. 
This method returns an XMLList containing all of the XML object in this XMLList that satisfy the criteria specified by E.  
 
Semantics 
 
When the [[Filter]] method of an XMLList object l is called with expression E, the following steps are taken: 
 

1. Let r be a new XMLList with l.[[TargetObject]] = null 
2. For i = 0 to l.[[Length]]-1 

a. Let m be the result of calling the [[Filter]] method of x[i] with argument E 
b. If m.[[Length]] > 0, call the [[Append]] method of r with argument m 

3. Return r 
 
8.2.1 .10   [ [Equals]]  (V) 
Overview 
 
The XMLList type adds the internal [[Equals]] method to the internal properties defined by the Object type. The XMLList 
[[Equals]] method is used to compare this XMLList object for content equality with another XMLList value V or determine 
whether this XMLList object contains an object that compares equal to V. The [[Equals]] operator returns true if this XMLList 
value is considered equal to V or contains an object considered equal to V. Otherwise, it returns false. The input variable V may 
be a value of type XMLList, XML or any value that can be converted to a String with ToString(). 
  
Semantics 
 
When the [[Equals]] method of an XML object x is called with value V, the following steps are taken: 
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1. If V == undefined and x.[[Length]] == 0, return true 
2. If Type(V) is XMLList 

a. If V.[[Length]] == 1, call the [[Equals]] method of x with argument V[0] and return the result 
b. If x.[[Length]] == 1, call the [[Equals]] method of V with argument x[0] and return the result 
c. If x.[[Length]] is not equal to V.[[Length]], return false 
d. For i = 0 to x.[[Length]] 

i. If the result of the comparison x[i] == V[i] is false, return false 
e. Return true 

3. For i = 0 to x.[[Length]]-1 
a. If the result of the comparison x[i] == V is true, return true 

4. Return false 
 
8.2.1 .11  [[ResolveValue]]  (  )  
Overview 
 
The XMLList type adds the internal [[ResolveValue]] method to the internal properties defined by the Object type. The 
XMLList [[ResolveValue]] method is used to resolve the value of empty XMLLists. If this XMLList object is not empty, the 
[[ResolveValue]] method will return it. If this XMLList is empty, the [[ResolveValue]] method will attempt to create it based 
on the [[TargetObject]] and [[TargetProperty]] properties. If the XMLList cannot be created, [[ResolveValue]] returns null. 
  
Semantics 
 
When the [[ResolveValue]] method of an XMLList object x is called, the following steps are taken: 
 

1. If x.[[Length]] > 0, return x 
2. Else 

a. If (x.[[TargetObject]] == null) or (type(x.[[TargetProperty]]) is AttributeName)  
or (x.[[TargetProperty]] == null) or (x.[[TargetProperty]].localName == "*") 

i. Return null 
b. Let base be the result of calling the [[ResolveValue]] method of x.[[TargetObject]] recursively 
c. If base == null, return null 
d. Let target be the result of calling [[Get]] on base with argument x.[[TargetProperty]] 
e. If (target.[[Length]] == 0) 

i. If (Type(base) is XMLList) and (base.[[Length]] > 1), return null 
ii. Call [[Put]] on base with arguments x.[[TargetProperty]] and the empty string 

iii. Let target be the result of calling [[Get]] on base with argument x.[[TargetProperty]] 
f. Return target 

 
8.3  The AttributeName Type 
The internal AttributeName type is not a language data type. It is defined by this specification purely for expository purposes. 
An implementation of E4X must behave as if it produced and operated upon AttributeNames in the manner described here. 
However, a value of type AttributeName is used only as an intermediate result of expression evaluation and cannot be stored 
as the value of a variable or property. 
 
The AttributeName type specifies the name of an XML attribute. A value of type AttributeName may be specified using an 
AttributeIdentifier. If the name of the attribute is not specified as a QualifiedIdentifier, the uri property of the associated 
QName will be the empty string representing no namespace.  
 
8.3.1  Internal  Properties  
The following table summarises the internal properties of the AttributeName type.  
 
Property Parameters Description 
[[Name]] None The name of the attribute 
 
The value of the [[Name]] property is a value of type QName. 
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9 Type Conversion 
E4X extends the automatic type conversion operators defined in ECMAScript. Note: as in ECMAScript Edition 3, these type 
conversion functions are internal and are not directly accessible by users. They occur as needed in E4X algorithms and are 
described here to aid specification of type conversion semantics. In addition, ToString and ToXMLString are exposed 
indirectly to the E4X user via the built-in methods toString() and toXMLString() defined in sections 12.4.4.36, 12.4.4.37, 
12.5.4.18 and 12.5.4.19. 
 
9.1  ToString 
E4X extends the behaviour of the ToString operator by specifying its behaviour for the following types. 
 
Input Type Result 
XML Return the XML value as a string as defined in section 9.1.1. 
XMLList Return the XMLList value as a string as defined in section 9.1.2. 
 
9.1 .1  ToString  Appl ied  to  the  XML Type  
Overview 
 
Given an XML value x, the operator ToString converts x to a string s. If a value of type XML has simple content (i.e., contains 
no elements), it represents a primitive value and ToString returns the String contents of the XML value, omitting the start tag, 
attributes, namespace declarations and end tag. Otherwise, ToString returns an XML encoded string representing the entire 
XML value, including the start tag, attributes, namespace declarations and the end tag.  
 
Combined with ToString’s treatment of XMLLists (see section 9.1.2), this behaviour allows E4X programmers to access the 
values of XML leaf nodes in much the same way they access the values of object properties. For example, given a variable 
named order assigned to the following XML value: 
 
<order> 
 <customer> 

<firstname>John</firstname> 
  <lastname>Doe</lastname> 
 </customer> 
 <item> 
  <description>Big Screen Television</description> 
  <price>1299.99</price> 
  <quantity>1</quantity> 
 </item> 
</order> 
 
the E4X programmer can access individual values of the XML value like this: 
 
// Construct the full customer name 
var name = order.customer.firstname + " " + order.customer.lastname; 
 
// Calculate the total price 
var total = order.item.price * order.item.quantity; 
  
E4X does not require the programmer to explicitly select the text nodes associated with each leaf element or explicitly select 
the first element of each XMLList return value. For cases where this is not the desired behaviour, the ToXMLString operator is 
provided (see section 9.2). Note: in the example above, the String valued properties associated with the XML values 
order.item.price and order.item.quantity are implicitly converted to type Number prior to performing the multiply operation. 
 
For XML values with [[Class]] set to “attribute” or “text”, ToString simply returns their value as a string. 
 



-  27  -  

 

Semantics 
 
Given an XML value x, ToString takes the following steps: 
 

1. If x.[[Class]] ∈ {"attribute", "text"}, return x.[[Value]] 
2. If x.hasSimpleContent() == true 

a. Let s be the empty string 
b. For i = 0 to x.[[Length]]-1, 

i. If x[i].[[Class]] ∉ {"comment", "processing-instruction"} 
1. Let s be the result of concatenating s and ToString(x[i]) 

c. Return s 
3. Else  

a. Return ToXMLString(x) 
 
9.1 .2  ToString  Appl ied  to  the  XMLList  Type  
Overview 
 
The operator ToString converts an XMLList value l to a string s. The return value is the string representation of each item in 
the XMLList concatenated together in order.  
 
Note that the result of calling ToString on a list of size one is identical to the result of calling ToString on the single item 
contained in the XMLList. This treatment intentionally blurs the distinction between a single XML value and an XMLList 
containing only one value to simplify the programmer’s task. It allows E4X programmers to access the value of an XMLList 
containing only a single primitive value in much the same way they access object properties.  
 
Semantics 
 
Given an XMLList value l, ToString performs the following steps: 
 

1. If l.hasSimpleContent() == true 
a. Let s be the empty string 
b. For i = 0 to l.[[Length]]-1,  

i. If x[i].[[Class]] ∉ {"comment", "processing-instruction"} 
1. Let s be the result of concatenating s and ToString(l[i]) 

c. Return s 
2. Else 

a. Return ToXMLString(x) 
 
9.2  ToXMLString (  input argument,  [AncestorNamespaces] ,  [IndentLevel]  )  
E4X adds the conversion operator ToXMLString to ECMAScript. ToXMLString is a variant of ToString used to convert its 
argument to an XML encoded string.  Unlike ToString, it always includes the start tag, attributes, namespace declarations and 
end tag associated with an XML element, regardless of content. This is useful in cases where the default ToString behaviour is 
not desired. The semantics of ToXMLString are specified by the following table. 
 
Input Type Result 
Undefined Throw a TypeError exception. 
Null Throw a TypeError exception. 
Boolean Return ToString(input argument) 
Number Return ToString(input argument) 
String Return EscapeElementValue(input argument) 
XML Create an XML encoded string value based on the content of the XML value as 

specified in section 9.2.1. 
XMLList Create an XML encoded string value by calling ToXMLString on each 

property of the XMLList in order passing the optional argument 
AncestorNamespaces and concatenating the results to form a single string. 

Object Apply the following steps: 
1. Let p be the result of calling ToPrimitive(input argument, hint String) 
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2. Let s be the result of calling ToString(p) 
3. Return EscapeElementValue(s) 

 
9.2 .1  ToXMLString Appl ied  to  the  XML Type  
Semantics 
 
Given an XML value x and an optional argument AncestorNamespaces and an optional argument IndentLevel, ToXMLString 
converts it to an XML encoded string s by taking the following steps: 
 

1. Let s be the empty string 
2. If IndentLevel was not provided, Let IndentLevel = 0 
3. If (XML.prettyPrinting == true) 

a. For i = 0 to IndentLevel-1, let s be the result of concatenating s and the space <SP> character 
4. If x.[[Class]] == "text",  

a. If (XML.prettyPrinting == true) 
i. Let v be the result of removing all the leading and trailing whitespace characters from x.[[Value]] 

ii. Return EscapeElementValue(v) 
b. Else 

i. Return EscapeElementValue(x.[[Value]]) 
5. If x.[[Class]] == "attribute", return EscapeAttributeValue(x.[[Value]]) 
6. If x.[[Class]] == "comment", return the result of concatenating the string "<!--", x.[[Value]] and the string "-->" 
7. If x.[[Class]] == "processing-instruction", return the result of concatenating the string "<?", x.[[Name]].localName, 

the space <SP> character, x.[[Value]] and the string "?>" 
8. If AncestorNamespaces was not provided, let AncestorNamespaces = { } 
9. Let namespaceDeclarations = { }  
10. For each ns in x.[[InScopeNamespaces]] 

a. If there is no ans ∈ [[AncestorNamespaces]], such that ans.uri == ns.uri and ans.prefix == ns.prefix 
i. Let namespaceDeclarations = namespaceDeclarations ∪ ns 

Note: implementations may also exclude unused namespace declarations from 
namespaceDeclarations 

11. Let namespace be the result of calling [[GetNamespace]] on x.[[Name]] with argument (AncestorNamespaces ∪ 
namespaceDeclarations) 

12. If (namespace.prefix == undefined), 
a. Let namespace.prefix be an arbitrary implementation defined namespace prefix, such that there is no ns2 ∈ 

(AncestorNamespaces ∪ namespaceDeclarations) with namespace.prefix == ns2.prefix 
b. If there is no ns2 ∈ (AncestorNamespaces ∪ namespaceDeclarations), such that ns2.uri == namespace.uri 

and ns2.prefix == namespace.prefix,  
i. Call [[AddInScopeNamespace]] on x with argument namespace 

ii. Let namespaceDeclarations = namespaceDeclarations ∪ namespace 
13. Let s be the result of concatenating s  and the string "<" 
14. If namespace.prefix is not the empty string, 

a. Let s be the result of concatenating s, namespace.prefix and the string ":" 
15. Let s be the result of concatenating s and x.[[Name]].localName 
16. Let attrAndNamespaces = x.[[Attributes]] ∪ namespaceDeclarations 
17. For each an in attrAndNamespaces 

a. Let s be the result of concatenating s and the space <SP> character 
b. If Type(an) is XML and an.[[Class]] == "attribute" 

i. Let ans be the result of calling [[GetNamspace]] on a.[[Name]] with argument AncestorNamespaces 
ii. If (ans.prefix == undefined), 

1. Let ans.prefix be an arbitrary implementation defined namespace prefix, such that there is 
no ns2 ∈ (AncestorNamespaces ∪ namespaceDeclarations) with ans.prefix == ns2.prefix 

2. If there is no ns2 ∈ (AncestorNamespaces ∪ namespaceDeclarations), such that ns2.uri == 
ans.uri and ns2.prefix == ans.prefix 

a. Call [[AddInScopeNamespace]] on x with argument ans 
b. Let namespaceDeclarations = namespaceDeclarations ∪ ans 

iii. If ans.prefix is not the empty string 
1. Let s be the result of concatenating s, namespace.prefix and the string ":" 

iv. Let s be the result of concatenating s and a.[[Name]].localName 
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c. Else 
i. Let s be the result fo concatenating s and the string "xmlns" 

ii. If (an.prefix == undefined), 
1. Let an.prefix be an arbitrary implementation defined namespace prefix, such that there is 

no ns2 ∈ (AncestorNamespaces ∪ namespaceDeclarations) with an.prefix == ns2.prefix 
iii. If an.prefix  is not the empty string 

1. Let s be the result of concatenating s, the string ":" and an.prefix  
d. Let s be the result of concatenating s, the string "=" and a double-quote character (i.e. Unicode codepoint 

\u0022) 
e. If an.[[Class]] == "attribute" 

i. Let s be the result fo concatenating s and an.[[Value]] 
f. Else 

i. Let s be the result of concatenating s and an.uri  
g. Let s be the result of concatenating s and a double-quote character (i.e. Unicode codepoint \u0022) 

18. If x.[[Length]] == 0 
a. Let s be the result of concatenating s and "/>" 
b. If (XML.prettyPrinting == true), let s be the result of concatenating s and a LineTerminator 
c. Return s 

19. Let s be the result of concatenating s and the string ">" 
20. Let indentChildren = ((x.[[Length]] > 1) or (x.[[Length]] == 1 and x[0].[[Class]] is not equal to "text")) 
21. If (XML.prettyPrintiing == true and indentChildren == true) 

a. Let s be the result of concatenating s anda LineTerminator 
b. Let nextIndentLevel = IndentLevel + XML.PrettyIndent. 

22. Else  
a. Let nextIndentLevel = 0 

23. For i = 0 to x.[[Length]]-1 
a. Let child = ToXMLString (x[i], (AncestorNamespaces ∪ namespaceDeclarations), nextIndentLevel) 
b. Let s be the result of concatenating s and child 

24. If (XML.prettyPrinting == true and indentChildren == true),  
a. Let s be the result of concatenating s and a LineTerminator 
b. For i = 0 to IndentLevel, let s be the result of concatenating s and a space <SP> character 

25. Let s be the result of concatenating s and the string "</" 
26. If namespace.prefix is not the empty string 

a. Let s be the result of concatenating s, namespace.prefix and the string ":" 
27. Let s be the result of concatenating s, x.[[Name]].localName and the string ">" 
28. If (XML.prettyPrinting == true), let s be the result of concatenating s and a LineTerminator 
29. Return s 

 
Note: implementations may also preserve insignificant whitespace (e.g., inside and between element tags) and attribute quoting 
conventions in ToXMLString(). 
 
Given a String value s, the operator EscapeElementValue performs the following steps: 
  

1. Let r be the empty string 
2. For each character c in s 

a. If (c == "<"), let r be the result of concatenating r and the string"&lt;" 
b. Else if (c == ">"), let r be the result of concatenating r and the string "&gt;" 
c. Else if (c == "&"), let r be the result of concatenating r and the string "&amp;" 
d. Else, let r be the result of concatenating r and c 

3. Return r 
 
Given a string value s, the operator EscapeAttributeValue performs the following steps: 
 

1. Let r be the empty string 
2. For each character c in s 

a. If (c is a double quote character (i.e., ")). let r be the result of concatenating r and the string "&quot;" 
b. Else if (c == "<") let r be the result of concatenating r and the string "&lt;" 
c. Else if (c == "&") let r be the result of concatenating r and the string "&amp;" 
d. Else if (c == \u000A) let r be the result of concatenating r and the string "&#xA;" 
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e. Else if (c == \u000D) let r be the result of concatenating r and the string "&#xD;" 
f. Else if (c == \u0009) let r be the result of concatenating r and the string "&#x9;" 
g. Else let r be the result of concatenating r and c 

3. Return r 
 
9.3  ToXML 
E4X adds the operator ToXML to ECMAScript. ToXML converts its argument to a value of type XML according to the 
following table: 
 
Input Type Result 
Undefined Throw a TypeError exception. 
Null Throw a TypeError exception. 
Boolean Convert the input argument to a string using ToString then convert the 

result to XML as specified in section 9.3.1. 
Number Convert the input argument to a string using ToString then convert the 

result to XML as specified in section 9.3.1. 
String Create an XML object from the String as specified below in section 9.3.1. 
XML Return the input argument (no conversion). 
XMLList 
 

If the XMLList contains only one property and the type of that property is 
XML, return that property. Otherwise, throw a TypeError exception. 

Object If the [[Class]] property of the input argument is "String", "Number" or 
"Boolean", convert the input argument to a string using ToString then 
convert the result to XML as specified in section 9.3.1. Otherwise, throw a 
TypeError exception. 

W3C XML Information Item Create an XML value from a W3C XML Information Item as specified 
below in section 9.3.2. 

 
9.3 .1  ToXML Appl ied  to  the  Str ing  Type  
Overview 
 
When ToXML is applied to a string type, it converts it to XML by parsing the string as XML. Prior to conversion, string 
arithmetic can be used to construct portions of the XML value without regard for XML constraints such as well-formedness. 
For example, consider the following. 
 
var John = "<employee><name>John</name><age>25</age></employee>"; 
var Sue ="<employee><name>Sue</name><age>32</age></employee>"; 
var tagName = "employees"; 
var employees = new XML("<" + tagName +">" + John + Sue + "</" + tagName +">"); 
 
Semantics 
 
Given a String value s, ToXML converts the string to an XML value using the following steps: 
 

1. Let defaultNamespace = GetDefaultNamespace() 
2. Let parentString be the result of concatenating the strings "<parent xmlns=', defaultNamespace, "'>", s and 

"</parent>" 
3. Parse parentString as a W3C Element Information Item e and if the parse fails, throw a SyntaxError exception 
4. Let x = ToXML(e) 
5. If x.[[Length]] == 0 

a. Return a new XML value t with t.[[Class]] = "text", t.[[Parent]] = null and t.[[Value]] = the empty string 
6. else if x.[[Length]] == 1 

a. Let x[0].[[Parent]] == null 
b. Return x[0] 

7. else throw a SyntaxError exception 
 
Note: the use of a W3C XML Information Item is purely illustrative. A W3C XML Information Item is not required to perform 
this type conversion and implementations may use any mechanism that provides the same semantics. 
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9.3 .2  ToXML Appl ied  to  a  W3C XML Information I tem 
Overview 
 
When ToXML is applied to an implementation of a XML Information Item conforming to the XML Information Set 
specification, it maps the E4X data model onto the given information item such that E4X operators may be used to query, 
navigate and manipulate the given information item.  
 
Implementations may expose this functionality directly to a user via the XML constructor; however, this is not required for 
conformance with E4X. For example, E4X might be deployed to facilitate manipulating the document object in a web browser 
as follows: 

 
function createTable() { 
 var doc = XML(document);    // create an E4X wrapper for the document 
 var mytablebody = doc..body.TABLE.TBODY;  
 

for(j=0;j<2;j++) { 
 mytablebody.TR[j] = "";   // append an empty table row 

for(i=0;i<2;i++)    // append a cell with some content 
mytablebody.TR[j].TD[i] = "cell is row " + j + ", column " + i; 

} 
 doc..body.TABLE.@border = 2;   // set the border attribute of the table 
} 
 
Instead of writing the equivalent DOM code below. 
 
function createTable () { 

var mybody=document.getElementsByTagName("body").item(0); 
mytable = document.createElement("TABLE"); 
mytablebody = document.createElement("TBODY"); 
for(j=0;j<2;j++) { 

mycurrent_row=document.createElement("TR"); 
for(i=0;i<2;i++) { 

mycurrent_cell=document.createElement("TD"); 
 currenttext=document.createTextNode("cell is row "+j+", column "+i); 

   mycurrent_cell.appendChild(currenttext); 
   mycurrent_row.appendChild(mycurrent_cell); 
  } 
  mytablebody.appendChild(mycurrent_row); 
 } 
 mytable.appendChild(mytablebody); 
 mybody.appendChild(mytable); 
 mytable.setAttribute("border","2"); 
} 
 
Semantics 
 
A W3C Information Item i is mapped onto an XML type x as follows: 
 

1. Map x.[[Parent]] to null 
2. If i is a character information item 

a. Map x.[[Class]] to "text" 
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b. Map x.[[Value]] to the largest contiguous sequence of character information items that have the same parent 
starting with i and continuing forward in document order. Map each character of the string x.[[Value]] to the 
corresponding [character code] property of each character information item in the sequence. 

c. If (XML.ignoreWhitespace == true) and (each character in x.[[Value]] is a Whitespace), return null 
d. Else return x 

3. if i is a comment information item  
a. If XML.ignoreComments == true, return null 
b. Map x.[[Class]] to "comment" 
c. Map x.[[Value]] to the [content] property of i 
d. Return x 

4. If i is a processing instruction information item 
a. If XML.ignoreProcessingInstructions == true, return null 
b. Map x.[[Class]] to "processing-instruction" 
c. Map x.[[Name]] to the [target] property of i 
d. Map x.[[Value]] to the [content] property of i 
e. Return x 

5. If i is an attribute information item 
a. Map x.[[Class]] to "attribute" 
b. Map x.[[Name]].localName to the [local name] property of i 
c. Map x.[[Name]].uri to the [namespace name] property of i 

Note: implementations may also map x.[[Name]].[[Prefix]] to the [prefix] property of i. 
d. Map x.[[Value]] to the [normalized value] property of i 
e. Return x 

6. If i is an element information item 
a. Map x.[[Class]] to "element" 
b. Map x.[[Name]].localName to the [local name] property of i 
c. Map x.[[Name]].uri to the [namespace name] property of i 

Note: implementations may also map x.[[Name]].[[Prefix]] to the [prefix] property of i. 
d. For each attribute information item a in the [attributes] property of i 

i. Map a member attr of x.[[Attributes]] to the result of calling ToXML(a) 
ii. Map attr.[[Parent]] to x 

e. Note: The E4X data model does not enforce the constraint: ∀ x ∈ XML : x.[[InScopeNamespaces]] ⊇ 
x.[[Parent]].[[InScopeNamespaces]]. However, implementations may at this point map members of 
x.[[InScopeNamespaces]] to members of x.[[Parent]].[[InScopeNamespaces]]. 

f. For each attribute information item a in the [namespace attributes] property of i 
i. Map a member ns of x.[[InScopeNamespaces]] to a as follows: 

1. if the [local name] property of a is "xmlns" 
a. Map ns.prefix to the empty string 

2. else  
a. Map ns.prefix to the [local name] property of a 

3. Map ns.uri to the [normalized value] property of a 
g. Let j = 0 
h. Let xmlChild = 0 
i. Let numItemChildren be the number of information items in the [children] property of i 
j. While (j < numItemChildren) 

i. Let item be the jth information item in the [children] property of i 
ii. Let c = ToXML(item) 

iii. If c is not null 
1. Map x[xmlChild] to c 
2. Map x[xmlChild].[[Parent]] to x 
3. if c.[[Class]] == "text" 

a. Let j = j + c.[[Value]].length - 1 
4. Let xmlChild = xmlChild + 1 

iv. Let j = j + 1 
k. Map x.[[Length]] to xmlChild 
l. Return x 

7. if i is a document information item 
a. Return the result of calling ToXML on the [document element] property of i 

8. if i is an unexpanded entity reference information item 
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a. Throw a ReferenceError exception 
9. Return null 

Note: ToXML ignores document type declaration information items 
 
9.4  ToXMLList  
E4X adds the operator ToXMLList to ECMAScript. ToXMLList converts its argument to a value of type XMLList according 
to the following table: 
 
Input Type Result 
Undefined Throw a TypeError exception. 
Null Throw a TypeError exception. 
Boolean Convert the input argument to a string using ToString then convert the 

result to XMLList as specified in section 9.4.1. 
Number Convert the input argument to a string using ToString then convert the 

result to XMLList as specified in section 9.4.1. 
String Create an XMLList object from the String as specified below in section 

9.4.1. 
XML Create an XMLList object l with l.[[Length]] = 1 and l[0] = the input 

argument. 
XMLList Return the input argument (no conversion). 
Object If the [[Class]] property of the input argument is "String", "Number" or 

"Boolean", convert the input argument to a string using ToString then 
convert the result to XML as specified in section 9.3.1. Otherwise, throw a 
TypeError exception. 

 
9.4 .1  ToXMLList  Appl ied  to  the  Str ing  Type  
Overview 
 
When ToXMLList is applied to a string type, it converts the string type to an XMLList by parsing the string as an XML 
fragment. Prior to conversion, string arithmetic can be used to construct portions of the XMLList value. For example, 
  
var John = "<employee><name>John</name><age>25</age></employee>"; 
var Sue ="<employee><name>Sue</name><age>32</age></employee>"; 
var l = new XMLList(John + Sue); 
 
Semantics 
 
Given a String value s, ToXMLList converts it to an XMLList using the following steps: 
 

1. Let defaultNamespace = GetDefaultNamespace() 
2. Let parentString be the result of concatenating the strings "<parent xmlns=', defaultNamespace, "'>", s and 

"</parent>";  
3. Parse parentString as a W3C Element Information Item e 
4. If the parse fails, throw a SyntaxError exception 
5. Let x = ToXML(e) 
6. Let l be a new XMLList with l.[[TargetObject]] = null 
7. For i = 0 to x.[[Length]]-1 

a. Let x[i].[[Parent]] = null 
b. Call the [[Append]] method of l with argument x[i] 

8. Return l 
 
Note: the use of a W3C XML Information Item is purely illustrative. A W3C XML Information Item is not required to perform 
this type conversion and implementations may use any mechanism that provides the same semantics. 
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9.5  ToAttributeName 
E4X adds the operator ToAttributeName to ECMAScript. ToAttributeName converts its argument to a value of type 
AttributeName according to the following table: 
 
Input Type Result 
Undefined Throw a TypeError exception. 
Null Throw a TypeError exception. 
Boolean Throw a TypeError exception. 
Number Throw a TypeError exception. 
String Create an AttributeName from the String as specified below in section 9.5.1 
XML Convert the input argument to a string using ToString then convert the result to 

an AttributeName as specified in section 9.5.1. 
XMLList Convert the input argument to a string using ToString then convert the result to 

an AttributeName as specified in section 9.5.1. 
Object If the input argument is a QName object (i.e., its internal [[Class]] property is 

"QName"), return a new AttributeName with its [[Name]] property set to the 
input argument. Otherwise, convert the input argument to a string using 
ToString then convert the result to an AttributeName as specified in section 
9.5.1. 

AttributeName Return the input argument (no conversion). 
 
9.5 .1  ToAttr ibuteName Appl ied  to  the  Str ing  Type  
 
Given a string s, the ToAttributeName conversion function returns an AttributeName a. The [[Name]] property of a is set to a 
new QName q with its local name set to the given string and its URI set to the empty string representing no namespace. 
 
Semantics 
 
Given a String value s, ToAttributeName converts it to an AttributeName using the following steps: 
 

1. Let ns be a new Namespace created as if by calling the constructor new Namespace() 
2. Let q be a new QName created as if by calling the constructor new QName(ns, s)  
3. Return a new AttributeName a with a.[[Name]] = q 

 
9.6  ToXMLName 
E4X adds the operator ToXMLName to ECMAScript. ToXMLName is an internal operator that converts its argument to a 
value of type AttributeName or a QName object according to the following table: 
 
Input Type Result 
Undefined Throw a TypeError exception. 
Null Throw a TypeError exception. 
Boolean Throw a TypeError exception. 
Number Throw a TypeError exception. 
String Create a QName object or AttributeName from the String as specified below in 

section 9.6.1. 
XML Convert the input argument to a string using ToString then convert the result to 

a QName object or AttributeName as specified in section 9.6.1. 
XMLList Convert the input argument to a string using ToString then convert the result to 

a QName object or AttributeName as specified in section 9.6.1. 
Object If the input argument is a QName object (i.e., its [[Class]] property is 

"QName"), return the input argument. Otherwise, convert the input argument 
to a string using ToString then convert the result to a QName object or 
AttributeName as specified in section 9.6.1. 

AttributeName Return the input argument (no conversion). 
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9.6 .1  ToXMLName Appl ied  to  the  Str ing  Type  
 
Given a string s, the ToXMLName conversion function returns a QName object or AttributeName. If the first character of s is 
"@", ToXMLString creates an AttributeName using the ToAttributeName operator. Otherwise, it creates a QName object 
using the QName constructor. 
 
Semantics 
 
Given a String value s, ToXMLName operator converts it to a QName object or AttributeName using the following steps: 
 

1. If the first character of s is "@" 
a. Let name = s.substring(1, s.length) 
b. Return ToAttributeName(name) 

2. Else 
a. Return a QName object created as if by calling the constructor new QName(s) 
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10 Expressions 

10.1  Primary Expressions 
Syntax 
 
E4X extends the primary expressions defined by ECMAScript with the following production: 
 
 PrimaryExpression : 
  PropertyIdentifier 
  XMLInitialiser 
  XMLListInitialiser 
 
 PropertyIdentifier : 
  AttributeIdentifier 
  QualifiedIdentifier 
  WildcardIdentifier 
 
Semantics 
 
The production PrimaryExpression : PropertyIdentifier is evaluated as follows: 
 

1. Return the result of evaluating PropertyIdentifier 
 
The production PropertyIdentifier : AttributeIdentifier is evaluated as follows: 
 

2. Let name be the result of evaluating AttributeIdentifier 
3. While (true) 

a. If there are no more objects on the scope chain, 
i. Return undefined 

b. Let o be the next object on the scope chain. 
c. If Type(o) ∈ {XML, XMLList} 

i. Let hasProp be the result of calling the [[HasProperty]] method of o, passing name as the property 
ii. If hasProp == true 

1. Return a value of type Reference whose base object is o and whose property name is name 
 
The productions PropertyIdentifier : QualifiedIdentifier, and PropertyIdentifier : WildcardIdentifier are evaluated exactly the 
same manner except AttributeIdentifier is replaced by QualifiedIdentifier and WildcardIdentifier in step 1. 

10.1 .1  Attr ibute  Ident i f iers  
Syntax 
 
E4X extends ECMAScript by adding attribute identifiers. The syntax of an attribute identifier is specified by the following 
production: 
 
 AttributeIdentifier : 
  @ PropertySelector 
  @ QualifiedIdentfier 
  @ [ Expression ] 
 
 PropertySelector : 
  Identifier 
  WildcardIdentifier 
 
Overview 
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An AttributeIdentifier is used to identify the name of an XML attribute. It evaluates to a value of type AttributeName. The 
preceding “@” character distinguishes a XML attribute from a XML element with the same name. This AttributeIdentifier 
syntax was chosen for consistency with the familiar XPath syntax.  
 
Semantics 
 
The production AttributeIdentifier : @ PropertySelector is evaluated as follows: 
 

1. Let name be a string value containing the same sequence of characters as in the PropertySelector 
2. Return ToAttributeName(name) 

 
The production AttributeIdentifier : @ QualifiedIdentifier is evaluated as follows: 
 

1. Let q be the result of evaluating QualifiedIdentifier 
2. Return ToAttributeName(q) 

 
The production AttributeIdentifier : @ [ Expression ] is evaluated as follows: 
 

1. Let e be the result of evaluating Expression 
2. Return ToAttributeName(GetValue(e)) 

10.1 .2  Quali f ied  Ident i f iers  
Syntax 
 
E4X extends ECMAScript by adding qualified identifiers. The syntax for qualified identifiers was chosen for consistency with 
future versions of ECMAScript and is specified by the following productions: 
 

QualfiedIdentifier : 
  PropertySelector :: PropertySelector 
  PropertySelector :: [ Expression ] 
 
Overview 
 
QualifiedIdentifiers are used to identify values defined within a specific namespace. They may be used to access, manipulate 
and create namespace qualified XML element and attribute names. For example,  
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// Create a SOAP message  
var message = <soap:Envelope xmlns:soap="http://schemas.xmlsoap.org/soap/envelope/" 

soap:encodingStyle="http://schemas.xmlsoap.org/soap/encoding/"> 
  <soap:Body> 
   <m:GetLastTradePrice xmlns:m="http://mycompany.com/stocks"> 
    <symbol>DIS</symbol> 
   </m:GetLastTradePrice> 
  </soap:Body> 
</soap:Envelope> 
 
// declare the SOAP and stocks namespaces 
var soap = new Namespace("http://schemas.xmlsoap.org/soap/envelope/"); 
var stock = new Namespace ("http://mycompany.com/stocks"); 
 
// extract the soap encoding style and body from the soap message 
var encodingStyle = message.@soap::encodingStyle; 
var body = message.soap::Body; 
 
// change the stock symbol 
message.soap::Body.stock::GetLastTradePrice.symbol = "MYCO"; 
 
Semantics 
 
A QualifiedIdentifier evaluates to a QName object. The production QualifiedIdentifier : PropertySelector :: PropertySelector 
is evaluated as follows: 
  

1. Let ns be the result of evaluating the first PropertySelector 
2. Let localName be a string value containing the same sequence of characters as in the second PropertySelector 
3. Return a new QName created as if by calling the constructor new QName(GetValue(ns), localName) 

 
The production QualifiedIdentifier : PropertySelector :: [ Expression ] is evaluated as follows: 
  

1. Let ns be the result of evaluating PropertySelector 
2. Let e be the result of evaluating Expression 
3. Return a new QName created as if by calling the constructor new QName(GetValue(ns), GetValue(e)) 

10.1 .3  Wildcard Ident i f iers  
Syntax 
 
E4X extends ECMAScript by adding a wildcard identifier. The syntax of the wildcard identifier is specified by the following 
production: 
 
 WildcardIdentifier : 
  * 
Overview 
 
The WildcardIdentifier is used to identify any name. It may be used for matching namespaces, properties of XML values or 
XML attributes. The wildcard identifier evaluates to undefined, the value used to indicate that the namespace URI of a 
QName matches any namespace URI. 
 
Semantics 
 
The production WildcardIdentifier : * is evaluated as follows: 
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1. Return undefined 
 

10 .1 .4  XML Init ia l i ser  
Overview 
 
An XML initialiser is an expression describing the initialization of an XML object, written in a form of a literal. It may specify 
an XML element, an XML comment, an XML PI, or a CDATA section using ordinary XML syntax. For XML elements, it 
provides the name, XML attributes and XML properties of an XML value. 
 
The syntactic grammar for XML initialisers processes input elements produced by the lexical grammar goal symbols  
InputElementXMLTag and InputElementXMLContent. These input elements are described in section 7.2.  
 
Below are some examples of XML initialisers.  
 
// an XML value representing a person with a name and age 
var person = <person><name>John</name><age>25</age></person>; 
 
// a variable containing an XML value representing two employees 
var e = <employees> 

<employee id="1"><name>Joe</name><age>20</age></employee> 
<employee id="2"><name>Sue</name><age>30</age></employee> 

</employees>; 
 
Expressions may be used to compute parts of an XML initialiser. Expressions are delimited by curly braces and may appear 
inside tags or element content. Inside a tag, expressions may be used to compute a tag name, attribute name, or attribute value. 
Inside an element, expressions may be used to compute element content. For example,   
 
for (i = 0; i < 10; i++) 

e[i] = <employee id={i}>    // compute id value 
<name>{names[i].toUpperCase()}</name> // compute name value 
<age>{ages[i]}</age>    // compute age value 

                   </employee>; 
 
Each expression is evaluated and replaced by its value prior to parsing the literal XML value. For example the following 
expression, 
 
var tagname = "name"; 
var attributename = "id"; 
var attributevalue = 5; 
var content = "Fred"; 
 
var x = <{tagname} {attributename}={attributevalue}>{content}</{tagname}>; 
 
would assign the following XML value to the variable x. 
 
<name id="5">Fred</name> 
 
Syntax 
 
 XMLInitialiser : 

XMLMarkup 
XMLElement 
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 XMLElement : 
  < XMLTagContent /> 
  < XMLTagContent > XMLElementContentopt </ XMLTagContent > 
 
 XMLTagContent : 
  XMLTagCharacters XMLTagContentopt 
  { Expression } XMLTagContentopt 
  = WhiteSpaceopt { Expression } XMLTagContentopt 
 
 XMLElementContent : 
  XMLMarkup XMLElementContentopt 
  XMLText XMLElementContentopt 
  { Expression } XMLElementContentopt 
 
Semantics 
 
The production XMLInitialiser : XMLMarkup is evaluated as follows: 
 

1. Let markup be a string literal containing the same sequence of characters as XMLMarkup 
2. Return a new XML object created as if by calling the XML constructor with argument markup (section 12.4.2) 

 
The production XMLInitialiser : XMLElement is evaluated as follows: 
 

3. Let element be a the result of evaluating XMLElement 
4. Return a new XML object created as if by calling the XML constructor with argument element (section 12.4.2) 

 
The production XMLElement : < XMLTagContent /> is evaluated as follows: 
 

1. Let content be the result of evaluating XMLTagContent 
2. Return the result of concatenating the string value "<", followed by content, followed by the string value "/>" 

 
The production XMLElement : < XMLTagContent > XMLElementContentopt </ XMLTagContent > is evaluated as follows: 
 

1. Let startTag be the result of evaluating the first XMLTagContent 
2. Let content be the result of evaluating XMLElementContent; if not present, use the empty string 
3. Let endTag be the result of evaluating the second XMLTagContent 
4. Return the result of concatenating the string value "<", followed by startTag, followed by the string value ">", 

followed by content, followed by the string value "</", followed by endTag, followed by the string value ">"  
 
The production XMLTagContent : XMLTagCharacters XMLTagContentopt is evaluated as follows: 
 

1. Let tagChars be a string literal containing the same sequence of characters as XMLTagCharacters 
2. Let tagContent be the result of evaluating XMLTagContent; if not present, use the empty string 
3. Return the result of concatenating tagChars followed by tagContent 

 
The production XMLTagContent : { Expression } XMLTagContentopt is evaluated as follows: 
 

1. Let expRef be the result of evaluating Expression 
2. Let expression = GetValue(expRef) 
3. Let tagContent be the result of  evaluating XMLTagContent; if not present, use the empty string 
4. Return the result of concatenating ToString(expression), followed by tagContent 

  
The production XMLTagContent : = WhiteSpaceopt { Expression } XMLTagContentopt is evaluated as follows: 
 

1. Let expRef be the result of evaluating Expression 
2. Let expression = GetValue(expRef) 
3. Let attributeValue be the result of evaluating EscapeAttributeValue(ToString(expression)) 
4. Let tagContent be the result of evaluating XMLTagContent; if not present, use the empty string 
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5. Return the result of concatenating equals "=" followed by double-quote ", followed by attributeValue, followed by 
double-quote ", followed by tagContent 

 
The production XMLElementContent : XMLMarkup XMLElementContentopt is evaluated as follows: 
 

1. Let markup be the result of evaluating XMLMarkup 
2. Let content be the result of evaluating XMLElementContent; if not present, use the empty string 
3. Return the result of concatenating markup followed by content 

 
The production XMLElementContent : XMLElement XMLElementContentopt is evaluated as follows: 
 

1. Let element be the result of evaluating XMLMarkup 
2. Let content be the result of evaluating XMLElementContent; if not present, use the empty string 
3. Return the result of concatenating element followed by content 

 
The production XMLElementContent : XMLText XMLElementContentopt is evaluated as follows: 
 

1. Let text be a string literal containing the same sequence of characters as XMLText 
2. Let content be the result of evaluating XMLElementContent; if not present, use the empty string  
3. Return the result of concatenating text, followed content.  

 
The production XMLElementContent : { Expression } XMLElementContentopt is evaluated as follows: 
 

1. Let expRef be the result of evaluating Expression 
2. Let expression = GetValue(expRef) 
3. If Type(expression) ∈ {XML, XMLList},  

a. Let value be the result of calling ToXMLString(expression) 
4. Else  

a. Let value be the result of calling EscapeElementValue(ToString(expression)) 
5. Let content be the result of evaluating XMLElementContent; if not present, use the empty string 
6. Return the result of concatenating value followed by content 

10.1 .5  XMLList  In i t ia l i ser  
Overview 
 
An XMLList initialiser is an expression describing the initialization of an XMLList object written in a form resembling a 
literal. It describes an ordered list of XML properties using an anonymous XML element syntax.  XMLList initialisers begin 
with the character sequence“<>” and end with the character sequence “</>”. 
 
The syntactic grammar for XML initialisers processes input elements produced by the lexical grammar goal symbols  
InputElementXMLTag and InputElementXMLContent. These input elements are described in section 7.2.  
 
Below are some examples of XMLList Initialisers, 
 
var docfrag = <><name>Phil</name><age>35</age><hobby>skiing</hobby></>; 
 
var emplist =  <> 

<employee id="0" ><name>Jim</name><age>25</age></employee> 
<employee id="1" ><name>Joe</name><age>20</age></employee> 
<employee id="2" ><name>Sue</name><age>30</age></employee> 
</>; 

 
Syntax 
 

XMLListInitialiser : 
  < > XMLElementContent </ > 
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Semantics 
 
The production XMLList : < > XMLElementContentopt </ > is evaluated as follows: 
 

1. Let content be the result of evaluating XMLElementContent; if not specified use the empty string 
2. Return a new XMLList object created as if by calling the XMLList constructor with argument content 

10.2  Left-Hand-Side Expressions 
E4X extends the left-hand-side expressions defined in ECMAScript with the following productions: 
 

MemberExpression : 
MemberExpression . PropertyIdentifier 
MemberExpression .. Identifier 
MemberExpression .. PropertyIdentfier 
MemberExpression . ( Expression ) 

 
 CallExpression : 
  CallExpression . PropertyIdentifier 
  CallExpression .. Identifier 
  CallExpression .. PropertyIdentifier 
  CallExpression . ( Expression ) 
 
In addition, E4X defines new semantics for existing left-hand-side expressions applied to values of type XML and XMLList. 

10.2 .1  Property  Accessors  
Syntax 
 
E4X reuses and extends ECMAScript’s property accessor syntax for accessing properties and XML attributes within values of 
type XML and XMLList. XML properties may be accessed by name, using either the dot notation: 
 
 MemberExpression . Identifier 

MemberExpression . PropertyIdentifier 
 CallExpression . Identifier 
 CallExpression . PropertyIdentifier 
 
or the bracket notation: 
 

MemberExpression [ Expression ] 
CallExpression [ Expression ] 

 
Overview 
 
When MemberExpression or CallExpression evaluate to a XML value, the property accessor uses the XML [[Get]] method to 
determine the result. If the bracket notation is used with a numeric identifier, the XML [[Get]] method simply returns the 
property of the left operand with a property-name matching the numeric identifier. Otherwise, the XML [[Get]] method 
examines the XML properties and XML attributes of the left operand and returns an XMLList containing the ones with names 
that match its right operand in order. For example, 
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var order = <order id = "123456" timestamp="Mon Mar 10 2003 16:03:25 GMT-0800 (PST)"> 
  <customer> 

<firstname>John</firstname> 
   <lastname>Doe</lastname> 
  </customer> 
  <item> 
   <description>Big Screen Television</description> 
   <price>1299.99</price> 
   <quantity>1</quantity> 
  </item> 
        </order>; 
 
var customer = order.customer; // get the customer element from the order 
var id = order.@id;   // get the id attribute from the order 
var secondChild = order[1];  // get the second child element from the order by numeric index 
var orderChildren = order.*;  // get all the child elements from the order element 
var orderAttributes = order.@*; // get all the attributes from the order element 
 
When MemberExpression or CallExpression evaluate to an XMLList, the property accessor uses the XMLList [[Get]] method 
to determine the result. If the bracket notation is used with a numeric identifier, the XMLList [[Get]] method simply returns the 
property of the left operand with a property-name matching the numeric identifier. Otherwise, the XMLList [[Get]] method 
applies the property accessor operation to each XML value in the list and returns a new XMLList containing the results in 
order. For example, 

 
var order = <order> 
  <customer> 

<firstname>John</firstname> 
   <lastname>Doe</lastname> 
  </customer> 
  <item id = "3456"> 
   <description>Big Screen Television</description> 
   <price>1299.99</price> 
   <quantity>1</quantity> 
  </item> 
  <item id = "56789"> 
   <description>DVD Player</description> 
   <price>399.99</price> 
   <quantity>1</quantity> 
  </item> 
        </order>; 
 
var descriptions = order.item.description; // get the list of all item descriptions 
var itemIds = order.item.@id;   // get the list of all item id attributes 
var secondItem = order.item[1];  // get second item by numeric index 
var itemChildren = order.item.*;  // get the list of all child elements in all item elements 
 
In the first property accessor statement above, the expression “order.item” examines the XML properties of the XML value 
bound to “order” and returns an XMLList containing the two named “item”. The expression “order.item.description” then 
examines the XML properties of each item in the resulting XMLList and returns an XMLList containing the two XML values 
named “description”. 
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When MemberExpression or CallExpression do not evaluate to a value of type XML or XMLList and the right hand side of the 
expression is an Identifier, the property accessor performs according to the semantics specified in ECMAScript Edition 3. 
However, if MemberExpression or CallExpression do not evaluate to a value of type XML or XMLList and the right hand side 
of the expression is a PropertyIdentifier, the property accessor throws a TypeError exception. 
 
Semantics 
 
As in ECMAScript Edition 3, the behaviour of the production: 
 

MemberExpression : MemberExpression . Identifier  
 

is identical to the behaviour of the production: 
 
 MemberExpression : MemberExpression [ <identifier-string> ] 
 
and similarly, the behaviour of the production: 
 
 CallExpression : CallExpression . Identifier  
 
is identical to the behaviour of the production: 
 
 CallExpression : CallExpression [ <identifier-string> ] 
 
where <identifier-string> is a string literal containing the same sequence of characters as the Identifier. 
 
The production MemberExpression : MemberExpression [ Expression ] is evaluated as follows: 
 

1. Let oRef be the result of evaluating MemberExpression 
2. Let o = ToObject(GetValue(oRef)) 
3. Let pRef be the result of evaluating Expression 
4. Let p = GetValue(pRef) 
5. If (Type(o) ∈ {XML, XMLList}) 

a. Return a value of type Reference whose base object is o and whose property name is ToXMLName(p) 
6. Else 

a. If (Type(p) is Object and p.[[Class]] == "QName") 
i. Throw a TypeError exception 

b. Return a value of type Reference whose base object is o and whose property name is ToString(p) 
 
The production CallExpression : CallExpression [ Expression ] is evaluated in exactly the same manner, except the contained 
CallExpression is evaluated in step 1. 
 
The production MemberExpression : MemberExpression . PropertyIdentifier behaves exactly as the production 
MemberExpression : MemberExpression [ Expression ], where Expression is a PropertyIdentifier. Similarly, the production 
CallExpression : CallExpression . PropertyIdentifier behaves exactly as the production CallExpression : CallExpression [ 
Expression ], where Expression is a PropertyIdentifier. 

10.2 .2  Funct ion Cal ls  
Syntax 
 
E4X reuses ECMAScript’s function call syntax for invoking methods on values of type XML and XMLList. The ECMAScript 
syntax for function calls is described by the following productions: 
 
 CallExpression : 

MemberExpression Arguments 
 
 Arguments : 
  ( ) 
  ( ArgumentList ) 
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 ArgumentList : 
  AssignmentExpression 
  ArgumentList , AssignmentExpression 
 
Overview 
 
Unlike values of type Object, values of type XML and XMLList store and retrieve properties separately from methods so that 
XML method names do not clash with XML property names. For example,  
 
var rectangle = <rectangle> 
 <x>50</x> 
 <y>75</y> 
 <length>20</length> 
 <width>30</width> 
</rectangle>; 
 
var numChildren = rectangle.length(); // returns 4 – number of children in <rectangle> 
var rectangleLength = rectangle.length; // returns 20 – content of <length> element 
 
rectangle.length = 50;    // change the length element of the rectangle 
 
To accomplish this, E4X modifies the semantics of the call expression to invoke the operation CallMethod.  
 
When the operation GetMethod is called with a single parameter r, it first checks to see if r is a Reference. If it is not, it 
attempts to call r as a function. However, if r is a Reference, it extracts the base and property-name from the Reference r. 
Then, GetMethod calls the Object [[Get]] method to retrieve the property of the base object with the given property-name. 
Note: The XML and XMLList [[Get]] method is never called for method lookup.  
 
If no such property exists and base is an XMLList of size 1, GetMethod delegates the method invocation to the single property 
it contains. This treatment intentionally blurs the distinction between atomic objects and XMLLists of size 1. 
 
If no such property exists and base is an XML value containing no XML valued children (i.e., an attribute, leaf node or 
element with simple content), GetMethod attempts to delegate the method lookup to the string value contained in the leaf node. 
This treatment allows users to perform operations directly on the value of a leaf node without having to explicitly select it. For 
example, 
 
var shipto= <shipto> 
 <name>Fred Jones</name> 
 <street>123 Foobar Ave.</street> 
 <citystatezip>Redmond, WA, 98008</citystatezip> 
</shipto> 
 
var upperName = shipto.name.toUpperCase(); // calls String.toUpperCase on value of text node 
var citystatezip = shipto.citystatezip.split(", "); // calls String.split() on text node to parse address 
var state = citystatezip[1];    // line into individual city, state and zip values 
var zip = citystatezip[2]; 
  
Semantics 
 
The production CallExpression : MemberExpression Arguments is evaluated as follows: 
 

1. Let r be the result of evaluating MemberExpression 
2. Let args be the result of evaluating Arguments, produceing an internal list of argument values 
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3. Return the result of calling the operation CallMethod(r, args) 
 

Given a Reference r and a list of arguments args, the operation CallMethod performs the following steps: 
 

1. Let f = r 
2. Let base = null 
3. If Type(r) is Reference 

a. Let base = GetBase(r) 
b. If base == null, throw a ReferenceException 
c. Let P = GetPropertyName(r) 
d. Let f be the result of calling the Object.[[Get]] method with base as the this object and argument P 
e. If f == undefined and Type(base) is XMLList and base.[[Length]] == 1  

i. Let r0 be a new Reference with base-object = base[0] and property-name = P 
ii. Return the result of calling CallMethod(r0, args) 

f. If f == undefined and Type(base) is XML and base.hasSimpleContent () == true  
i. Let r0 be a new Reference with base-object = ToObject(ToString(base)) and property-name = P 

ii. Return the result of calling CallMethod(r0, args) 
4. If Type(f) is not an Object, throw a TypeError exception 
5. If f does not implement the internal [[Call]] method, throw a TypeError exception 
6. If base is an activation object, base = null 
7. Return the result of calling the [[Call]] method of f providing base as the this value and the list args as the argument 

values 

10.2 .3  XML Descendant  Accessor  
Syntax 
 
E4X extends ECMAScript by adding a descendant accessor. The following productions describe the syntax of the descendant 
accessor: 
 

MemberExpression :  
MemberExpression .. Identifier  

 
 CallExpression : 
  CallExpression .. Identifier 

 
Overview 
 
When the MemberExpression or CallExpression evaluate to an XML value or an XMLList, the descendant accessor examines 
all of the descendant XML properties (i.e., children, grand children, great-grandchildren, etc) of its left operand and returns an 
XMLList containing those with names that match its right operand in order. 
 
The descendant operator provides the expressive power of XPath’s descendant operator (i.e., “//”) within the context of a 
modern programming language. For example, 
 
var e = <employees> 

<employee id="1"><name>Joe</name><age>20</age></employee> 
<employee id="2"><name>Sue</name><age>30</age></employee> 

      </employees>; 
 
var names = e..name;  // get all the names in e 
 
Semantics 
 
The production MemberExpression : MemberExpression .. Identifier is evaluated as follows: 
 

1. Let ref be the result of evaluating MemberExpression 
2. Let x = GetValue(ref) 
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3. If Type(x) ∉ {XML, XMLList}, throw a TypeError exception 
4. Let P be a string value containing the same sequence of characters as Identifier 
5. Return the result of calling the [[Descendants]] method of x with argument P 

 
The production CallExpression : CallExpression .. Identifier is evaluated in exactly the same manner, except that the contained 
CallExpression is evaluated in step 1. 

10.2 .4  XML Fi l ter ing  Predicate  Operator  
Syntax 
 
E4X extends ECMAScript by adding a filtering predicate operator. The following productions describe the syntax of the 
filtering predicate operator: 
 
 MemberExpression :  

MemberExpression . ( Expression ) 
 
 CallExpression : 
  CallExpression . ( Expression ) 
 
Overview 
 
When the left operand is an XML value, the filtering predicate adds the left operand to the front of the scope chain of the 
current execution context, evaluates the Expression with the augmented scope chain, converts the result to a Boolean value, 
then restores the scope chain. If the result is true, the filtering predicate returns an XMLList containing the left operand. 
Otherwise it returns an empty XMLList. 
 
When the left operand is an XMLList, the filtering predicate is applied to each XML property in the XMLList in order using 
the XML value as the left operand and the Expression as the right operand. It concatenates the results and returns them as a 
single XMLList containing all the XML properties for which the result was true. For example, 
 
var john = e.employee.(name == "John");   // employees with name John 
var twoemployees = e.employee.(@id == 0 || @id == 1);  // employees with id's 0 & 1 
var emp = e.employee.(@id == 1).name;   // name of employee with id 1 
 
The effect of the filtering predicate is similar to SQL’s WHERE clause or XPath’s filtering predicates. 
 
In essence, the statement: 
 
// get the two employees with ids 0 and 1 using a predicate 
var twoEmployees = e..employee.(@id == 0 || @id == 1); 
 
is semantically equivalent to the following: 
  
// get the two employees with the ids 0 and 1 using a for loop 
var i = 0; 
var twoEmployees = new XMLList(); 
for (var p in e..employee) { 
 if (p.@id == 0 || p.@id == 1) { 
  twoEmployees[i++] = p; 
 } 
} 
  
Semantics 
 
The production MemberExpression : MemberExpression . ( Expression ) is evaluated as follows:: 
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1. Let ref be the result of evaluating MemberExpression 
2. Let x = GetValue(ref) 
3. If Type(x) ∉ {XML, XMLList}, throw a TypeError exception 
4. Return the result of calling the [[Filter]] method of x with argument Expression 
 

The production CallExpression : CallExpression . ( Expression ) is evaluated in exactly the same manner, except that the 
contained CallExpression is evaluated in step 1. 

10.3  Unary Operators 

10 .3 .1  The Delete  Operator  (Non-normative)  
This section is provided to describe the effects of the XML [[Delete]] operators on the delete operator. E4X does not define 
any extensions to the syntax or semantics of the ECMAScript delete operator beyond those specified by the XML and 
XMLList [[Delete]] operators. 
 
Syntax 
 
E4X reuses the ECMAScript delete operator for deleting XML properties and XML attributes from XML values and 
XMLLists. The syntax of the delete operator is described by the following production: 
 
 UnaryExpression :  

delete UnaryExpression 
 
Overview 
  
When UnaryExpression evaluates to a Reference r with a base object of type XML, the delete operator removes the XML 
attributes or properties specified by the property name of r from the base object. When UnaryExpression evaluates to a 
Reference r with a base object of type XMLList, the delete operator removes the XML values specified by the property name 
of r from the base object and the associated XML object. For example, 
 
delete order.customer.address; // delete the customer address 
delete order.customer.@id;  // delete the customer ID 
delete order.item.price[0];  // delete the first item price 
delete order.item;   // delete all the items 
 
Semantics 
 
E4X extends the semantics of the delete operator by providing more elaborate [[Delete]] methods used when UnaryExpression 
evaluates to a value of type XML or XMLList (see sections 8.1.1.3 and 8.2.1.3 respectively). 

10.3.2  The typeof  Operator 
Syntax 
 
E4X reuses the syntax of the ECMAScript’s typeof operator for determining the types of XML and XMLList values. The 
ECMAScript syntax for the typeof operator is described by the following production: 
 
 UnaryExpression : 
  typeof UnaryExpression 
 
Overview 
 
E4X extends the semantics of the ECMAScript typeof operator for determining the types of XML and XMLList values. When 
UnaryExpression evaluates to a value of type XML, the typeof operator returns the string "xml". When UnaryExpression 
evaluates to a value of type XMLList, the typeof operator returns the string "xmllist". 
 
Semantics 
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The production UnaryExpression : typeof UnaryExpression is evaluated as follows: 
 

1. Let u be the result of evaluating UnaryExpression 
2. If Type(u) is Reference and GetBase(u) is null, return "undefined" 
3. Return a string determined by Type(GetValue(u)) according to the following table: 

 
Type Result 
Undefined "undefined" 
Null "object" 
Boolean "boolean" 
Number "number" 
String "string" 
XML "xml" 
XMLList "xmllist" 
Object (native and 
doesn't implement 
[[Call]]) 

"object" 

Object (native and 
implements [[Call]] 

"function" 

 

10.4  Additive Operators 
Syntax 
 
E4X reuses the syntax of the ECMAScript addition operator for concatenating two values of type XML or XMLList. The 
ECMAScript syntax for the addition operator is described by the following production: 
 
 AdditiveExpression :  

AdditiveExpression + MultiplicativeExpression 

10.4.1  The Addit ion Operator (  +  )  
Overview 
 
E4X extends the semantics of the ECMAScript addition operator to perform either string concatenation, XML and XMLList 
concatenation or numeric addition depending on its arguments. 
 
When both AdditiveExpression and MultiplicativeExpression evaluate to either an XML value or an XMLList, the addition 
operator starts by creating a new, empty XMLList as the return value. If the left operand is an XML value, it is added to the 
return value. If the left operand is an XMLList, each XML property of the XMLList is added to the return value in order. 
Likewise, if the right operand is an XML value, it is added to the return value. Otherwise, if it is an XMLList each XML 
property of the XMLList is added to the return value in order. 
 
For example, 
 
// create an XMLList containing the elements <name>, <age> and <hobby> 
var employeedata = <name>Fred</name> + <age>28</age> + <hobby>skiing</hobby>; 
 
// create an XMLList containing three item elements extracted from the order element 
var myitems = order.item[0] + order.item[2] + order.item[3]; 
 
// create a new XMLList containing all the items in the order plus one new one 
var newitems = order.item + <item><description>new item</description></item>; 
 
Note: Using the addition operator with operands of type XML and XMLList always results in an XMLList. When numeric 
addition of XML values is desired, the operands must be explicitly coerced to Numbers. This may be accomplished by using 
the unary “+” operator or the Number conversion function. For example, 
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// add the prices of the first and third items in the order (coersion with unary +) 
var totalPrice = +order.item[0].price + +order.item[2].price 
 
// add the prices of the second and fourth items in the order (coersion using Number conversion function) 
var totalPrice = Number(order.item[1].price) + Number(order.item[3].price) 
 
Likewise, when string concatenation of XML values is desired, at least one of the operands must be explicitly coerced to a 
String. This may be accomplished by concatenating them to the empty string ("") or using the String conversion function. For 
example, 
 
// concatenate the street and the city of the customer's address (coersion with the empty string) 
var streetcity = "" + order.customer.address.street + order.customer.address.city; 
 
// concatenate the state and the zip of the customer's address (coersion using String conversion function) 
var statezip = String(order.customer.address.state) + order.customer.address.zip; 
 
Semantics 
The production AdditiveExpression : AdditiveExpression + MultiplicativeExpression is evaluated as follows: 
 

1. Let a be the result of evalutating AdditiveExpression 
2. Let left = GetValue(a) 
3. Let m be the result of evaluating MultiplicativeExpression 
4. Let right = GetValue(m) 
5. If (Type(left) ∈ {XML, XMLList}) and (Type(right)  ∈ {XML, XMLList}) 

a. Let l be a new XMLList 
b. Call the [[Append]] method of l with argument x 
c. Call the [[Append]] method of l with argument y 
d. Return l 

6. Let pLeft = ToPrimitive(left) 
7. Let pRight = ToPrimitive(right) 
8. If Type(pLeft) is String or Type(pRight) is String 

a. Return the result of concatenating ToString(pLeft) and ToString(pRight) 
9. Else 

a. Apply the addition operation to ToNumber(pLeft) and ToNumber(pRight) and return the result. See 
ECMAScript Edition 3, section 11.6.3 for details.  

10.5  Equality  Operators 

10 .5 .1  The Abstract  Equal i ty  Comparison Algori thm 
Overview 
 
E4X extends the abstract equality comparison algorithm defined by ECMAScript to enable equality comparisons involving 
QName and Namespace objects and the types XML and XMLList. 
 
Semantics 
 
The comparison x == y, where x and y are values, produces true or false. This comparison is performed using the following 
steps: 
 

1. If Type(x) is XMLList, call the [[Equals]] method of x with argument y and return the result 
2. If Type(y) is XMLList, call the [[Equals]] method of y with argument x and return the result 
3. If Type(x) is the same as Type(y) 

a. If Type(x) is XML 
i. If (x.hasSimpleContent() == true) and (y.hasSimpleContent() == true) 

1. return the result of the comparison ToString(x) == ToString(y) 
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ii. Else return the result of calling the [[Equals]] method of x with argument y 
b. If Type(x) is Object and x.[[Class]] == "QName" 

i. If the result of the comparison x.uri == y.uri is true and the result of the comparison x.localName 
== y.localName is true, return true. Otherwise, return false. 

c. If Type(x) is Object and x.[[Class]] == "Namespace", return the results of the comparison x.uri == y.uri  
d. If Type(x) is undefined, return true. 
e. If Type(x) is null, return true. 
f. If Type(x) is Number 

i. If x is NaN, return false. 
ii. If y is NaN, return false. 

iii. If x is the same number value as y, return true. 
iv. If x is +0 and y is -0, return true. 
v. If x is -0 and y is +0, return true. 

vi. Return false. 
g. If Type(x) is String, then return true if x and y are exactly the same sequence of characters (same length and 

same characters in corresponding positions). Otherwise, return false. 
h. If Type(x) is boolean, return true if x and y are both true or both false. Otherwise, return false. 
i. Return true if x and y refer to the same object or if they refer to objects joined to each other (ECMAScript 

Edition 3 Section 13.1.2). Otherwise, return false. 
4. If (Type(x) is XML and x.hasSimpleContent() == true) or (Type(y) is XML and y.hasSimpleContent() == true) 

a. Return the result of the comparison ToString(x) == ToString(y) 
5. If x is null and y is undefined, return true. 
6. If x is undefined and y is null, return true. 
7. If Type(x) is Number and Type(y) is String, return the result of the comparison x == ToNumber(y). 
8. If Type(x) is String and Type(y) is Number, return the result of the comparison ToNumber(x) == y. 
9. If Type(x) is Boolean, return the result of the comparison ToNumber(x) == y. 
10. If Type(y) is Boolean, return the result of the comparison x == ToNumber(y). 
11. If Type(x) is either String or Number and Type(y) is Object, return the result of the comparison x == ToPrimitive(y). 
12. If Type(x) is Object and Type(y) is either String or Number, return the result of the comparison ToPrimitive(x) == y. 
13. Return false. 

10.6  Assignment Operators 

10 .6 .1  XML Ass ignment  Operator  (Non-normative)  
This section is provided to describe the effects of the XML [[Put]] operator on the assignment operator. E4X does not define 
any extensions to the syntax or semantics of the ECMAScript assignment operator beyond those specified by the XML and 
XMLList [[Put]] operators. 
 
Syntax 
 
E4X reuses the ECMAScript assignment operator to modify, replace and insert properties and XMLAttributes in an XML 
value. The ECMAScript syntax for the assignment operator is described by the following production: 
 

AssignmentExpression :  
LeftHandSideExpression = AssignmentExpression 

 
Overview 
 
The assignment operator begins by evaluating the LeftHandSideExpression, which resolves to a reference r consisting of a base 
object parent and a property-name. If parent is an XML value, the assignment operator performs the steps described in section 
(see section 10.6.2 for the steps performed if parent is an XMLList).  
 
If the property-name begins with the character “@”, the XML assignment operator creates or modifies an XML attribute in the 
parent. If the named XML attribute already exists, the assignment operator modifies its value, otherwise it creates a new XML 
attribute with the given name and value. If AssignmentExpression evaluates to an XMLList, the value of the named attribute 
will be a space separated list of values (i.e., an XML attribute list) constructed by converting each value in the XMLList to a 
string and concatenating the results separated by spaces. If the AssignmentExpression does not evaluate to an XMLList, the 
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value of the named attribute will be derived by evaluating the AssignmentExpression and calling ToString on the result. For 
example, 
 
order.item[1].@id = 123;   // change the value of the id attribute on the second item 
order.item[1].@newattr = "new value"; // add a new attribute to the second item 
order.@allids = order.item.@id;  // construct an attribute list containing all the ids in this order 
 
If the property-name is an array index, the XML assignment operator replaces an existing property or appends a new property 
to an XML value according to the property’s ordinal position within the XML value (i.e., its numeric property name). If a 
property already exists at the given location, the assignment operator replaces it, otherwise it appends a new property to the 
end of the parent. If the AssignmentExpression evaluates to an XML value, the assignment operator replaces the value of the 
property at the given position with a deep copy of the given XML value. If the AssignmentExpression evaluates to an 
XMLList, the assignment operator replaces the value of the property at the given position with a deep copy of each item in the 
XMLList in order, effectively deleting the original property and inserting the contents of the XMLList in its place. If the 
AssignmentExpression does not evaluate to a value of type XML or XMLList, the assignment operator calls ToString on the 
given value and replaces the property at the given position with the result. For example, 
  
// replace the first child of the order element with an XML value 
order[0] = <customer>   
 <name>Fred</name> 
 <address> … </address> 
</customer>; 
 
// replace the second child of the order element with a list of items 
order[1] = <item> item one </item>  
 +   <item> item two </item> 
 +   <item> item three </item>; 
 
// replace the third child or the order with a text node 
order[2] = "A text node";  
 
// append a new item to the end of the order 
order[order.length] = <item> new item </item>; 
 
If the property-name does not begin with “@” and is not an array index, the XML assignment operator replaces, modifies or 
appends one or more XML values in the parent by XML name. If only one XML valued property exists with the given name 
and the AssignmentExpression evaluates to an XML value or XMLList, the assignment operator replaces the identified XML 
value with the given value. If there are no XML properties with the given name, a new XML property with the given name and 
value is appended to the end of the parent. If more than one XML valued property exists with the given name and the 
AssignmentExpression evaluates to an XML value or XMLList, the assignment operator replaces the first XML property with a 
matching name with the given value and deletes the remaining XML properties with the given name, essentially replacing all 
the XML valued properties with the given name with the given value. If the AssignmentExpression does not evaluate to a XML 
value or XMLList, the assignment operator calls ToString on the given value and replaces the properties (i.e., the content) of 
the appropriate XML value (as opposed to replacing the XML value itself). This provides a simple, intuitive syntax for setting 
the value of a named XML property to a primitive value. For example,  
 
item.price = 99.95;   // change the price of the item 
item.description = "Mobile Phone"; // change the description of the item 
 
Semantics 
 
E4X extends the semantics of the assignment operator by providing more elaborate [[Put]] methods used when 
MemberExpression evaluates to a value of type XML or XMLList (see sections 8.1.1.2 and 8.2.1.2 respectively).  
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10.6 .2  XMLList  Ass ignment  Operator  (Non-normative)  
This section is provided to describe the effects of the XMLList [[Put]] operator on the assignment operator. E4X does not 
define any extensions to the syntax or semantics of the ECMAScript assignment operator beyond those provided by the XML 
and XMLList [[Put]] operators. 
 
Syntax 
 
E4X reuses the ECMAScript assignment operator to replace or append values to XMLLists and their associated XML values. 
The ECMAScript syntax for the assignment operator is described by the following production: 
 

AssignmentExpression :  
LeftHandSideExpression = AssignmentExpression 

 
Overview 
 
The assignment operator begins by evaluating the LeftHandSideExpression, which resolves to a reference r consisting of a base 
object parent and a property-name. If parent is an XMLList, the assignment operator performs the steps described in this 
section (see section  10.6.1 for the steps performed with parent is an XML value).  
 
If the property-name is not an array index, the XMLList assignment operator checks to see if this XMLList object contains 
only 1 item and that item is of type XML. If so, the XMLList assignment operator delegates its behaviour to the [[Put]] method 
of the XML object it contains (see section 8.1.1.2). Otherwise, it throws a TypeError exception. This treatment intentionally 
blurs the distinction between a single XML value and an XMLList containing only one XML value. For example, 
 
// set the name of the only customer in the order to Fred Jones 
order.customer.name = "Fred Jones"; 
 
// replace all the hobbies for the only customer in the order 
order.customer.hobby = "shopping"; 
 
// attempt to set the sale date of the item. Throw an exception if more than 1 item exists. 
order.item.saledate = "05-07-2002"; 
 
// replace all the employee's hobbies with their new favorite pastime 
emps.employee.(@id == 3).hobby = "working"; 
 
In the first statement above, the expression “order.customer” returns an XMLList containing only one XML item. The 
expression “order.customer.name” implicitly converts this XMLList to an XML value and assigns the value “Fred Jones” to 
that value. 
 
If the property-name is an array index, the assignment operator replaces the property identified by property-name in the 
XMLList or appends a new property if none exists with that property-name. In addition, if the property identified is an XML 
value with a non-null parent, the XML value is also replaced in the context of its parent.  If the AssignmentExpression 
evaluates to an XML value, the assignment operator replaces the value of the property identified by property-name with a deep 
copy of the given XML value. If the AssignmentExpression evaluates to an XMLList, the assignment operator replaces the 
value of the property identified by property-name with a deep copy of each item in the XMLList in order, effectively deleting 
the original property and inserting the contents of the XMLList in its place. If the AssignmentExpression does not evaluate to a 
value of type XML or XMLList, the assignment operator calls ToString on the given value and replaces the property at the 
given position with the result. Here are some examples, 
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// replace the first employee with George 
e.employee[0] = <employee><name>George</name><age>27</age></employee>; 
 
// add a new employee to the end of the employee list 
e.employee[e.employee.length] = <employee><name>Frank</name></employee>; 
 
Semantics 
 
E4X extends the semantics of the assignment operator by providing more elaborate [[Put]] methods used when 
MemberExpression evaluates to a value of type XML or XMLList (see sections 8.1.1.2 and 8.2.1.2 respectively).  

10.6 .3  Compound Ass ignment  (op=)  (Non-normative)  
This section is provided to describe the effects of the XML and XMLList [[Get]] and [[Put]] operators on the compound 
assignment operator. E4X does not define any extensions to the syntax or semantics of the ECMAScript compound assignment 
operator beyond those provided by the XML and XMLList [[Get]] and [[Put]] operators. 
 
Syntax 
 
E4X benefits from the compound assignment operator “+=” without requiring additional ECMAScript extensions. The syntax 
of the compound assignment “+=” is described by the following production: 
 
 AssignmentExpression :  

LeftHandSideExpression += AssignmentExpression 
 
Overview 
 
When the left operand is an XML value, the “+=” operator has the effect of inserting one or more XML elements specified by 
the right operand just after the ordinal position of the left operand within its parent. For example, 
 
var e = <employees> 

<employee id="1"><name>Joe</name><age>20</age></employee> 
<employee id="2"><name>Sue</name><age>30</age></employee> 

      </employees>; 
 
// insert employee 3 and 4 after the first employee 
e.employee[0] += <employee id="3"><name>Fred</name></employee> + 
       <employee id="4"><name>Carol</name></employee>; 
 
Following the expressions above, the variable “e” would contain the XML value: 
 
<employees> 

<employee id="1"><name>Joe</name><age>20</age></employee> 
<employee id="3"><name>Fred</name></employee> 
<employee id="4"><name>Carol</name></employee> 
<employee id="2"><name>Sue</name><age>30</age></employee> 

</employees>; 
 
When the left operand is an XMLList, the “+=” operator has the effect of appending one or more values specified by the right 
operand to the XMLList. If the last item in the XMLList is an XML value with a non-null parent, the “+=” operator also 
appends the items to the XML value referred to by parent just after the position of the last item in the XMLList. For example, 
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var e = <employees> 
<employee id="1"><name>Joe</name><age>20</age></employee> 
<employee id="2"><name>Sue</name><age>30</age></employee> 

      </employees>; 
 
// append employees 3 and 4 to the end of the employee list 
e.employee += <employee id="3"><name>Fred</name></employee> + 
   <employee id="4"><name>Carol</name></employee>; 
 
Following the expressions above, the variable “e” would contain the XML value: 
 
<employees> 

<employee id="1"><name>Joe</name><age>20</age></employee> 
<employee id="2"><name>Sue</name><age>30</age></employee> 
<employee id="3"><name>Fred</name></employee> 
<employee id="4"><name>Carol</name></employee> 

</employees>; 
 
Semantics 
 
E4X extends the semantics of the compound assignment operator by providing more elaborate [[Get]] and [[Put]] methods 
used when MemberExpression evaluates to a value of type XML or XMLList (see sections 8.1.1.1, 8.1.1.2, 8.2.1.1 and 8.2.1.2 
respectively).  



-  56  -  

 

11 Statements 
E4X extends the statements provided in ECMAScript with the following production: 
 

Statement : 
  DefaultXMLNamespaceStatement 

11.1  Default  XML Namespace Statement 
Syntax 
 
E4X extends ECMAScript by adding a default xml namespace statement. The following production describes the syntax of the 
default xml namespace statement: 
 
 DefaultXMLNamespaceStatement : 
  default xml namespace = Expression 
 
Overview 
 
The default xml namespace statement sets the value of the internal property [[DefaultNamespace]] of the variable object 
associated with the current execution context (see section 10 of ECMAScript Edition 3). If the variable object associated with 
the current execution context does not have an internal property [[DefaultNamespace]], the default xml namespace statement 
creates one. If the default xml namespace statement occurs inside a FunctionDeclaration, the default xml namespace is defined 
with function-local scope in that function. Otherwise, the default xml namespace is defined with global scope. Initially, the 
default xml namespace of the global scope is set to no namespace (section 12.1.1.1). 
 
When the default xml namespace statement is executed, it evaluates the Expression, converts the result to a String s, creates a 
new Namespace object n as if by calling the constructor n = new Namespace("", s), and sets the default XML namespace 
associated with the current execution context to n. Unqualified XML element names following the default xml namespace 
declaration in the current scope will be associated with the default xml namespace specified by Expression. For example, 
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// declare some namespaces and a default namespace for the current scope  
var soap = new Namespace("http://schemas.xmlsoap.org/soap/envelope/"); 
var stock = new Namespace("http://mycompany.com/stocks"); 
default xml namespace = soap;    // alternately, may specify full URI 
 
// Create an XML initializer in the default (i.e., soap) namespace 
var message = <Envelope xmlns:soap="http://schemas.xmlsoap.org/soap/envelope/" 

soap:encodingStyle="http://schemas.xmlsoap.org/soap/encoding/"> 
  <Body> 
   <m:GetLastTradePrice xmlns:m="http://mycompany.com/stocks"> 
    <symbol>DIS</symbol> 
   </m:GetLastTradePrice> 
  </Body> 
</Envelope> 
 
 
// extract the soap encoding style using a QualifiedIdentifier (unqualified attributes are in no namespace) 
var encodingStyle = message.@soap::encodingStyle; 
 
//extract the body from the soap message using the default namespace 
var body = message.Body; 
 
// change the stock symbol using the default namespace and qualified names 
message.Body.stock::GetLastTradePrice.stock:symbol = "MYCO"; 
 
Semantics 
 
The production DefaultXMLNamespaceStatement : default xml namespace = Expression is evaluated as follows: 
 

1. Let uriRef be the result of evaluating Expression 
2. Let uriString  = ToString(GetValue(uriRef)) 
3. Let namespace be a new Namespace Object, created as if by calling the constructor new Namespace("", uriString) 
4. Let varObj be the variable object associated with the current execution context (see section 10.1.3 of ECMAScript 

Edition 3)  
5. Let varObj.[[DefaultNamespace]] = namespace 

 
The value of the default xml namespace is obtained using the internal operator GetDefaultNamespace. When the internal 
GetDefaultNamespace method is called, the following steps are taken: 
 

1. While (there are more objects on the scope chain) 
a. Let o be the next object on the scope chain 
b. If o has the internal property [[DefaultNamespace]], return o.[[DefaultNamespace]] 

11.2  The for-in Statement 
Syntax 
 
E4X extends the semantics of the ECMAScript for-in statements for iterating through the properties of values of type XML 
and XMLList. The syntax of the for-in statements is specified by the following productions: 
 
 IterationStatement :  

for ( LeftHandSideExpression in Expression ) Statement 
for ( var VariableDeclarationNoLn in Expression ) Statement 
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Overview 
 
When the value of Expression evaluates to a value of type XML or XMLList, the for-in statements iterate through each 
property in the resulting value in order. For each property, the for-in operators assign the value of the property to the variable 
identified by LeftHandSideExpression or VariableDeclarationNoLn and evaluate the Statement. For example: 
 
// print all the employee names 
for (var n in e..name) { 
 print ("Employee name: " + n); 
} 
 
// print each child of the first item 
for (var child in order.item[0]) { 
 print("item child: " + child); 
} 
 
In the first for-in statement above, the expression “e..name” returns an XMLList containing all of the descendant XML 
properties of the XML value “e” with the name “name”. The for-in statement iterates through the list in order. For each XML 
property in the list, it assigns the value of the XML property to the variable “n” and executes the code nested in curly braces. 
Similarly, in the second for-in statement above, the expression “order.item[0]” returns the first XML value named “item” from 
the XML value named “order”. The for-in statement iterates through each property of the XML value in order assigning the 
value of the XML property to the variable “child” and executing the code nested in curly braces. 
 
Note: The for-in operators behave differently for values of type XML and XMLList than they do for native ECMAScript 
objects. With native ECMAScript objects, for-in assigns the loop variable over the domain of the array. However with values 
of type XML or XMLList, for-in assigns the loop variable over the range of the array.  
 
Semantics 
 
The production IterationStatement : for ( LeftHandSideExpression in Expression ) Statement is evaluated as follows: 
 

1. Let ref be the result of evaluating Expression 
2. Let e = GetValue(ref) 
3. if Type(e) ∈ {XML, XMLList} 

a. Let l be a shallow copy of e 
4. else 

a. Let l = ToObject(e) 
5. Let V = empty 
6. While (l has more properties) 

a. Let p be the next property of l (see notes below) 
b. If p does not have the DontEnum attribute 

i. Let i be the result of evaluating LeftHandSideExpression 
ii. If Type(l) ∈ {XML, XMLList} 

1. Let value be the value of property p 
2. PutValue(i, value) 

iii. Else 
1. Let name be the name of property p 
2. PutValue(i, name) 

iv. Let s be the result of evaluating Statement 
v. If s.value is not empty, let V = s.value 

vi. If s.type is break and s.target is in the current label set, return (normal, V, empty) 
vii. If (s.type is not continue) or (s.target is not in the current label set) 

1. If s is an abrupt completion, return s 
7. Return (normal, V,  empty) 

 
The production IterationStatement : for ( var VariableDeclarationNoLn in Expression ) Statement is evaluated as follows: 
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1. Let varRef be the result of evaluating VariableDeclarationNoLn 
2. Let ref be the result of evaluating Expression 
3. Let e = GetValue(ref) 
4. if Type(e) ∈ {XML, XMLList} 

a. Let l be a shallow copy of e 
5. else 

a. Let l = ToObject(e) 
6. Let V = empty 
7. While (l has more properties) 

a. Let p be the next property of l (see notes below) 
b. If p does not have the DontEnum attribute 

i. Let i be the result of evaluating varRef as if it were an identifier (See section 11.1.2 of ECMAScript 
Edition 3) 

ii. If Type(l) ∈ {XML, XMLList} 
1. Let value be the value of property p 
2. PutValue(i, value) 

iii. Else 
1. Let name be the name of property p 
2. PutValue(i, name) 

iv. Let s be the result of evaluating Statement 
v. If s.value is not empty, let V = s.value 

vi. If s.type is break and s.target is in the current label set, return (normal, V, empty) 
vii. If (s.type is not continue) or (s.target is not in the current label set) 

1. If s is an abrupt completion, return s 
8. Return (normal, V,  empty) 

 
When e does not evaluate to a value of type XML or XMLList, the mechanics of enumerating the properties (steps 6 and 6a in 
the first algorithm, steps 7 and 7a in the second) is implementation dependent. The order of enumeration is defined by the 
object. Properties of the object being enumerated may be deleted during enumeration. If a property that has not yet been visited 
during enumeration is deleted, then it will not be visited. If new properties are added to the object being enumerated during 
enumeration, the newly added properties are not guaranteed to be visited in the active enumeration. Enumerating the properties 
of an object includes enumerating properties of its prototype and the prototype of the prototype, and so on, recursively; but a 
property of a prototype is not enumerated if it is "shadowed" because some previous object in the prototype chain has a 
property with the same name. 
 
When e evaluates to a value of type XML or XMLList, properties are enumerated in document order (steps 6 and 6a in the first 
algorithm and steps 7 and 7a in the second algorithm). Properties of the object e may be deleted, added or moved during 
enumeration. However, because the algorithms construct a copy of the properties of e prior to enumeration (step 3a in the first 
algorithm and 4a in the second algorithm), each property that is in e prior to enumeration will be visited once and only once 
regardless of mutations that occur to e during enumeration. 
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12 Native E4X Objects 
E4X adds two native objects to ECMAScript, the native XML object and the native XMLList object. In addition, E4X adds 
new properties to the global object. 

12.1  The Global  Object  

12 .1 .1  Internal  Propert ies  of  the  Global  Object  
E4X extends ECMAScript by adding the following internal properties to the global object. 

12.1 .1 .1  [ [DefaultNamespace]]  
Overview 
 
Initially, the global object has an internal property [[DefaultNamespace]] with its value set to a Namespace object representing 
no namespace, created as if by calling the Namespace constructor with no arguments. Consequently, unless otherwise specified 
using the default xml namespace statement (see section 11.1), unqualified names used to specify properties of XML objects 
will match XML properties in no namespace. 

12.1 .2  Funct ion Propert ies  of  the  Global  Object  
E4X extends ECMAScript by adding the following function properties to the global object. 

12.1 .2 .1  i sXMLName (  va lue  )  
Overview 
 
The isXMLName function examines the given value and determines whether it is a valid XML name that can be used as an 
XML element or attribute name. If so, it returns true, otherwise it returns false. 
 
Semantics 
 
When the isXMLName function is called with one parameter value, the following steps are taken: 
 

1. Let q be a new QName created as if by calling the constructor new QName (value) and if a TypeError exception is 
thrown, return false 

2. If q.localName does not match the production NCName, return false 
3. Return true  

 
 Where the production NCName is defined in Section 2 of the Namespaces in XML specification.  

12.1 .3  Constructor  Propert ies  of  the  Global  Object  
E4X extends ECMAScript by adding the following constructor properties to ECMAScript. 

12.1 .3 .1  Namespace  (  .  .  .  )  
See section 12.2.1 and 12.2. 

12.1 .3 .2  QName (  .  .  .  )  
See section 12.3.1 and 12.3.2. 

12.1 .3 .3  XML (  .  .  .  )  
See sections 12.4.1 and 12.4.2. 

12.1 .3 .4  XMLList  (  .  .  .  )  
See section 12.5.1 and 1. 
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12.2  Namespace Objects  
Namespace objects represent XML namespaces and provide an association between a namespace prefix and a Unique 
Resource Identifier (URI). The prefix is either the undefined value or a string value that may be used to reference the 
namespace within the lexical representation of an XML value. When an XML value containing a namespace with an 
undefined prefix is converted to a string, the implementation will automatically generate a prefix. The URI is a string value 
used to uniquely identify the namespace.  

12.2 .1  The Namespace  Contructor  Cal led  as  a  Funct ion  
Syntax 
 
 Namespace ( ) 
 Namespace ( uriValue ) 
 Namespace ( prefixValue , uriValue ) 
 
Overview 
 
If the Namespace constructor is called as a function with exactly one argument that is a Namespace object, the argument is 
returned unchanged. Otherwise, a new Namespace object is created and returned as if the same arguments were passed to the 
object creation expression new Namespace ( … ). See section 12.2.2. 
 
Semantics 
 
When Namespace is called as a function with a no arguments, one argument uriValue, or two arguments prefixValue and 
uriValue, the following steps are taken: 
 

1. If (prefixValue is not specified and Type(uriValue) is Namespace), return uriValue 
2. Create and return a new Namespace object exactly as if the Namespace constructor had been called with the same 

arguments (section 12.2.2). 

12.2 .2  The Namespace  Constructor  
Syntax 
 
 new Namespace ( ) 
 new Namespace ( uriValue ) 
 new Namespace ( prefixValue, uriValue ) 
 
Overview 
 
When Namespace is called as part of a new expression, it is a constructor and creates a new Namespace object.  
 
The [[Prototype]] property of the newly constructed object is set to the original Namespace prototype object, the one that is the 
initial value of Namespace.prototype (section 12.2.3.1). The [[Class]] property of the newly constructed object is set to 
“Namespace”. 
 
When no arguments are specified, the namespace uri and the prefix are set to the empty string. A namespace with uri set to the 
empty string represents no namespace. No namespace is used in XML values to explicitly specify that a name is not inside a 
namespace and may never be associated with a prefix other than the empty string. 
 
When only the uriValue argument is specified and uriValue is a Namespace object, a copy of the uriValue is returned. When 
only the uriValue is specified and it is the empty string, the prefix is set to the empty string. In all other cases where only the 
uriValue is specified, the namespace prefix is set to the undefined value.  
 
When the prefixValue argument is specified and set to the empty string, the Namespace is called a default namespace. Default 
namespaces are used in XML values to implicitly specify the namespace of qualified names that do not specify a qualifier.  
 
Semantics 
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When the Namespace constructor is called with a no arguments, one argument uriValue or two arguments prefixValue and 
uriValue, the following steps are taken: 
 

1. Create a new Namespace object n 
2. If (prefixValue is not specified and uriValue is not specified) 

a. Let n.prefix be the empty string 
b. Let n.uri be the empty string 

3. Else if (prefixValue is not specified) 
a. If (uriValue is undefined), throw a TypeError exception 
b. If (Type(uriValue) is Namespace) 

i. Let n.prefix = uriValue.prefix 
ii. Let n.uri = uriValue.uri 

c. Else 
i. Let n.uri = ToString(uriValue) 

ii. If (n.uri is the empty string), let n.prefix be the empty string 
iii. Else n.prefix = undefined 

4. Else 
a. If (uriValue is undefined), throw a TypeError exception 
b. Let n.uri = ToString(uriValue) 
c. If (n.uri is the empty string) 

i. If (prefixValue is undefined or ToString(prefixValue) is the empty string) 
1. Let n.prefix be the empty string 

ii. Else throw a TypeError exception 
d. Else if (prefixValue is undefined), let n.prefix = undefined 
e. Else if (isXMLName(prefixValue) == false 

i. Let n.prefix = undefined 
f. Else let n.prefix = ToString(prefixValue) 

5. Return n 

12.2 .3  Propert ies  of  the  Namespace  Constructor  
The value of the internal [[Prototype]] property of the Namespace constructor is the Function prototype object. 
 
Besides the internal properties and the length property (whose value is 2), the Namespace constructor has the following 
properties. 

12.2 .3 .1  Namespace .prototype  
The initial value of the Namespace.prototype property is the Namespace prototype object (section 12.2.4). 
 
This property has the attributes { DontEnum, DontDelete, ReadOnly }. 

12.2 .4  Propert ies  of  the  Namespace  Prototype  Object  (Bui l t - in  Methods)  
The Namespace prototype object is itself a Namespace object (its [[Class]] is “Namespace”) with its uri and prefix properties 
set to the empty string. 
 
The value of the internal [[Prototype]] property of the Namespace prototype object is the Object prototype object (section 
15.2.3.1 of ECMAScript Edition 3). 

12.2 .4 .1  Namespace .prototype .constructor  
The initial value of the Namespace.prototype.constructor is the built-in Namespace constructor. 

12.2 .4 .2  Namespace .prototype . toStr ing()  
Overview 
 
The toString() method returns a string representation of this Namespace object. 
 
Semantics 
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When the toString method of a Namespace object n is called with no arguments, the following step is taken: 
 

1. Return n.uri 

12.2 .5  Propert ies  of  Namespace  Instances  
Namespace instances inherit properties from the Namespace prototype object and also have a prefix property and a uri 
property. 

12.2 .5 .1  pref ix  
The value of the prefix property is either the undefined value or a string value. When the value of the prefix property is the 
empty string, the Namespace is called a default namespace. Default namespaces are used in XML values to determine the 
namespace of names that do not specify a qualifier. 
 
This property has the attributes { DontDelete, ReadOnly } 

12.2 .5 .2  uri  
The value of the uri property is a string value. When the value of the uri property is the empty string, the Namespace 
represents the unnamed namespace. The unnamed namespace is used in XML values to explicitly specify that a name is not 
inside a namespace. 
 
This property has the attributes { DontDelete, ReadOnly } 

12.3  QName Objects  
The QName type is used to represent qualified names of XML elements and attributes. The QName type specifies a namespace 
URI and a local name. The local name must be a value of type string. The namespace URI must be a value of type string or 
undefined. When the namespace URI is undefined, this qualified name matches any namespace. In addition, implementations 
may include an internal [[Prefix]] property that is not directly visible to E4X users. The internal [[Prefix]] property may be 
used to preserve the prefix of the Namespace associated with the QName. If no namespace prefix was specified for the 
associated Namespace, the [[Prefix]] property may be undefined. 
 
A value of type QName may be specified using a QualfiedIdentifier. If the QName of an XML element is specified without 
identifying a namespace (i.e., as an unqualified identifier), the uri property of the associated QName will be the current in-
scope default namespace (section 11.1). If the QName of an XML attribute is specified without identifying a namespace, the 
uri property of the associated QName will be the null string representing no namespace.  

12.3 .1  The QName Contructor  Cal led  as  a  Funct ion  
Syntax 
 
 QName ( Name ) 
 QName ( Namespace , Name ) 
 
Overview 
 
When QName is called as a function rather than as a constructor, it creates and initializes a new QName object. Thus the 
function call QName ( … ) is equivalent to the object creation expression new QName ( … ) with the same arguments. See 
section 12.3.2. 
 
Semantics 
 
When the QName function is called the following step is taken. 
 

1. Create and return a new QName object exactly as if the QName constructor had been called with the same arguments 
(section 12.3.2). 

12.3 .2  The QName Constructor  
Syntax 
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 new QName ( Name ) 
 new QName ( Namespace , Name ) 
 
Overview 
 
When QName is called as part of a new expression, it is a constructor and creates a new QName object.  
 
The [[Prototype]] property of the newly constructed object is set to the original QName prototype object, the one that is the 
initial value of QName.prototype (section 12.3.3.1). The [[Class]] property of the newly constructed object is set to “QName”. 
  
Name may be a QName or a String. If Name is a QName, the localName of the newly created QName will be equal to the 
localName of Name. If Name is a QName and Namespace is not specified, the QName constructor returns a copy of the given 
Name. 
 
When both the Namespace and Name arguments are specified, the localName property of the newly created object is set 
according to the given Name and the uri property of the newly created object is set according to the Namespace argument. If 
the Namespace argument is a Namespace, the uri property of the newly created object is set to the uri property of the 
Namespace object. If the Namespace property is undefined, the uri property of the newly created object will be undefined, 
meaning it will match names in any namespace.. 
  
Semantics 
 
When the QName constructor is called with a one argument Name or two arguments Namespace and Name the following steps 
are taken: 
 

2. If (Type(Name) is Object and Name.[[Class]] == "QName") 
a. If (Namespace is not specified), return a copy of Name 
b. Else let Name = Name.localName 

3. Let Name = ToString(Name) 
4. If (Namespace is null or not specified) 

a. If Name = "*" 
i. Let Namespace = undefined 

b. Else 
i. Let Namespace = GetDefaultNamespace() 

5. Let q be a new QName with q.localName = Name 
6. If Namespace == undefined 

a. Let q.uri = undefined 
Note: implementations that preserve prefixes in qualified names may also set q.[[Prefix]] to undefined 

7. Else  
a. Let Namespace be a new Namespace created as if by calling the constructor new Namespace(Namespace) 
b. Let q.uri = Namespace.uri 

Note: implementations that preserve prefixes in qualified names may also set q.[[Prefix]] to 
Namespace.prefix 

8. Return q 

12.3 .3  Propert ies  of  the  QName Constructor  
The value of the internal [[Prototype]] property of the QName constructor is the Function prototype object. 
 
Besides the internal properties and the length property (whose value is 2), the QName constructor has the following properties. 

12.3 .3 .1  QName.prototype  
The initial value of the QName.prototype property is the QName prototype object (section 12.3.4). 
 
This property has the attributes { DontEnum, DontDelete, ReadOnly }. 

12.3 .4  Propert ies  of  the  QName Prototype Object  
The QName prototype object is itself a QName object (its [[Class]] is “QName”) with its uri and localName properties set to 
the empty string. 
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The value of the internal [[Prototype]] property of the QName prototype object is the Object prototype object (section 15.2.3.1 
of ECMAScript Edition 3). 

12.3 .4 .1  QName.prototype .constructor  
The initial value of the QName.prototype.constructor is the built-in QName constructor. 

12.3 .4 .2  QName.prototype . toStr ing()  
Overview 
 
The toString method returns a string representation of this QName object.  
 
Semantics 
 
When the toString method of a QName object n is called with no arguments, the following steps are taken: 
 

1. Let s be the empty string 
2. If n.uri is not the empty string  

a. If n.uri == undefined, let s be the string "*::" 
b. Else let s be the result of concatenating n.uri and the string "::" 

3. Let s be the result of concatenating s and n.localName 
4. Return s 

12.3 .5  Propert ies  of  QName Instances  
QName instances inherit properties from the QName prototype object and also have a uri property, a localName property and 
an optional internal [[Prefix]] property that may be used by implementations that preserve prefixes in qualified names. 

12.3 .5 .1  localName 
The value of the localName property is a value of type string. When the value of the localName property is “*” it represents a 
wildcard that matches any name. 
 
This property shall have the attributes { DontDelete, ReadOnly } 

12.3 .5 .2  uri  
The value of the uri property is a value of type string identifying the namespace of this QName. When the value of the uri 
property is the empty string, this QName is said to be in no namespace. No namespace is used in XML values to explicitly 
specify that a name is not inside a namespace. 
 
This property shall have the attributes { DontDelete, ReadOnly } 

12.3 .5 .3  [ [Pref ix] ]  
The [[Prefix]] property is an optional internal property that is not directly visible to users. It may be used by implementations 
that preserve prefixes in qualified names. The value of the [[Prefix]] property is a value of type string or undefined. If the 
[[Prefix]] property is undefined, the prefix associated with this QName is unknown.  
 
This property shall have the attributes { DontDelete, ReadOnly, DontEnum } 

12.3 .5 .4  [ [GetNamespace]]  (  [  InScopeNamespaces  ]  )  
Overview 
 
The [[GetNamespace]] method is an internal method that returns a Namespace object with a URI matching the URI of this 
QName. InScopeNamespaces is an optional parameter. If InScopeNamespaces is unspecified, it is set to the empty set. If one or 
more Namespaces exists in InScopeNamespaces with a URI matching the URI of this QName, one of the matching 
Namespaces will be returned. If no such namespace exists in InScopeNamespaces, [[GetNamespace]] creates and returns a new 
Namespace with a URI matching that of this QName. For implementations that preserve prefixes in QNames, 
[[GetNamespace]] may return a Namespace that also has a matching prefix. The input variable InScopeNamespaces is a set of 
Namespace objects. 
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Semantics 
 
When the [[GetNamespace]] method of a QName q is called with no arguments or one argument InScopeNamespaces, the 
following steps are taken: 
 

1. If InScopeNamespaces was not specified, let InScopeNamespaces = { } 
2. Find a Namespace ns in InScopeNamespaces, such that ns.uri == q.uri. If more than one such Namespace ns exists, 

the implementation may choose one of the matching Namespaces arbitrarily. 
Note: implementations that preserve prefixes in qualified names may additionally constrain ns, such that ns.prefix == 
q.[[Prefix]] 

3. If no such a namespace ns exists 
a. Let ns be a new namespace created as if by calling the constructor new Namespace(q.uri)  

Note: implementations that preserve prefixes and qualified names may create the new namespaces as if by 
calling the constructor Namespace(q.[[Prefix]], q.uri) 

4. return ns 

12.3 .5 .5  [ [SetNamespace]]  (  Namespace  )  
Overview 
 
The [[SetNamespace]] method is an internal method that sets the URI of this QName according to the URI of the given 
Namespace. For implementations that preserve prefixes in QNames, it may also set the namespace prefix of this QName 
according to the given Namespace. The input variable Namespace may be a value of type Namespace. 
  
Semantics 
 
When the [[SetNamespace]] method of a QName q is called with namespace Namespace, the following steps are taken: 
 

1. If Namespace.uri == undefined 
a. Let q.uri be the empty string 

Note: implementations that preserve prefixes in qualified names may set q.[[Prefix]] to undefined 
2. Else 

a. Let q.uri = Namespace.uri 
Note: implementations that preserve prefixes in qualified names may set q.[[Prefix]] to Namespaces.prefix 

12.4  XML Objects  

12 .4 .1  The XML Contructor  Cal led  as  a  Funct ion  
Syntax 
 
 XML ( [ value ] ) 
 
Overview 
 
When XML is called as a function rather than as a constructor, it performs a type conversion. If no argument is provided, the 
XML function returns an XML value representing an empty text node. 
 
Semantics 
 
When the XML function is called with no arguments or with one argument value, the following step is taken. 
 

1. If value is null, undefined or not supplied, let value be the empty string 
2. Return ToXML(value) 

Note: The ToXML operator is defined for implementations of the W3C information set. Implementations may expose 
this functionality to users via the XML constructor; however, this is not required. See section 9.3.2 for additional 
information. 
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12.4 .2  The XML Constructor  
Syntax 
 
 new XML ( [ value ] ) 
 
Overview 
 
When XML is called as part of a new expression, it is a constructor and may create a new XML object. When the XMLList 
constructor is called with no arguments, it returns an XML value representing an empty text node. 
 
Semantics 
 
When the XML constructor is called with no arguments or a single argument value, the following steps are taken: 
 

1. If value is null, undefined or not supplied, let value be the empty string 
2. Let x = ToXML(value) 

Note: The ToXML operator is defined for implementations of the W3C information set. Implementations may expose 
this functionality to users via the XML constructor; however, this is not required. See section 9.3.2 for additional 
information. 

3. If Type(value) ∈ {XML, XMLList, W3C XML Information Item} 
a. Return the result of calling the [[DeepCopy]] method of x 

4. Return x 

12.4 .3  Propert ies  of  the  XML Constructor  
The value of the internal [[Prototype]] property of the XML constructor is the Function prototype object. 
 
Besides the internal properties and the length property (whose value is 1), the XML constructor has the following properties: 

12.4 .3 .1  XML.prototype  
The initial value of the XML.prototype property is the XML prototype object (section 12.4.3.7). 
 
This property has the attributes { DontEnum, DontDelete, ReadOnly }. 

12.4 .3 .2  XML.ignoreComments  
The initial value of the ignoreComments property is true. If ignoreComments is true, XML comments are ignored when 
constructing new XML values. This property has the attributes { DontEnum, DontDelete}. 

12.4 .3 .3  XML.ignoreProcess ingInstruct ions  
The initial value of the ignoreProcessingInstructions property is true. If ignoreProcessingInstructions is true, XML processing 
instructions are ignored when constructing new XML values. This property has the attributes { DontEnum, DontDelete }. 

12.4 .3 .4  XML.ignoreWhitespace  
The initial value of the ignoreWhitespace property is true. If ignoreWhiltespace is true, insignificant whitespace characters are 
ignored when processing constructing new XML values. When elements tags and/or embedded expressions are separated only 
by whitespace characters, those whitespace characters are defined to be insignificant. Whitespace characters are defined to be 
space (\u0020), carriage return (\u000D), line feed (\u000A) and tab (\u0009). This property has the attributes { DontEnum, 
DontDelete }. 

12.4 .3 .5  XML.prettyPrint ing  
The initial value of the prettyPrinting property is true. If prettyPrinting is true, the ToString and ToXMLString operators will 
normalize whitespace characters between certain tags to achieve a uniform and aesthetic appearance. This property has the 
attributes { DontEnum, DontDelete }. 

12.4 .3 .6  XML.prettyIndent  
The initial value of the prettyIndent property is 2. If the prettyPrinting property of the XML constructor is true, the ToString 
and ToXMLString operators will normalize whitespace characters between certain tags to achieve a uniform and aesthetic 
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appearance. Certain child nodes will be indented relative to their parent node by the number of spaces specified by 
prettyIndent. This property has the attributes { DontEnum, DontDelete }. 

12.4 .3 .7  XML.sett ings  (  )  
Overview 
 
The settings method is a convenience method for managing the collection of global XML settings stored as properties of the 
XML constructor (sections 12.4.3.2 through 12.4.3.6). It returns an object containing the properties of the XML constructor 
used for storing XML settings. This object may later be passed as an argument to the setSettings method to restore the 
associated settings. For example, 
  
// Create a general purpose function that may need to save and restore XML settings 
function getXMLCommentsFromString(xmlString) { 
 // save previous XML settings and make sure comments are not ignored 
 var settings = XML.settings(); 
 XML.ignoreComments = false; 
 
 var comments = XML(xmlString).comment(); 
 
 // restore settings and return result 
 XML.setSettings(settings); 
 return comments; 
} 
 
Semantics 
 
When the settings method of the XML constructor is called, the following steps are taken: 
 

1. Let s be a new Object created as if by calling the constructor new Object() 
2. Let s.ignoreComments = XML.ignoreComments 
3. Let s.ignoreProcessingInstructions = XML.ignoreProcessingInstructions 
4. Let s.ignoreWhitespace = XML.ignoreWhitespace 
5. Let s.prettyPrinting = XML.prettyPrinting 
6. Let s.prettyIndent = XML.prettyIndent 
7. Return s 

12.4 .3 .8  XML.setSett ings  (  [  Sett ings  ]  )  
The setSettings method is a convenience method for managing the collection of global XML settings stored as properties of the 
XML constructor (sections 12.4.3.2 through 12.4.3.6). It may be used to restore a collection of XML settings captured earlier 
using the associated settings method. When called with a single argument settings, the setSettings method copies the properties 
of the XML constructor used for storing XML settings from the settings object. When called with no arguments, the setSettings 
method restores the default XML settings. 
 
Semantics 
 
When the setSettings method of the XML constructor is called with no arguments or with a single argument settings, the 
following steps are taken: 
 

1. If settingsis null, undefined or not provided 
a. Let XML.ignoreComments = true 
b. Let XML.ignoreProcessingInstructions = true 
c. Let XML.ignoreWhitespace = true 
d. Let XML.prettyPrinting = true 
e. Let XML.prettyIndent = 2 

2. else if Type(settings) is Object 
a. If Type(settings.ignoreComments) is Boolean, 
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i. Let XML.ignoreComments = settings.ignoreComments 
b. If Type(settings.ignoreProcessingInstructions) is Boolean 

i. Let XML.ignoreProcessingInstructions = settings.ignoreProcessingInstructions 
c. If Type(settings.ignoreWhitespace) is Boolean 

i. Let XML.ignoreWhitespace = settings.ignoreWhitespace 
d. If Type(settings.prettyPrinting) is Boolean  

i. Let XML.prettyPrinting = settings.prettyPrinting 
e. If Type(settings.prettyIndent) is Number 

i. Let XML.prettyIndent = settings.prettyIndent 
3. Return 

12.4 .3 .9  XML.defaultSett ings  (  )  
The defaultSettings method is a convenience method for managing the collection of global XML settings stored as properties 
of the XML constructor (sections 12.4.3.2 through 12.4.3.6). It may be used to obtain an object containing the default XML 
settings. This object may be inspected to determine the default settings or be passed as an argument to the setSettings method 
to restore the default XML settings. 
  
Semantics 
 
When the defaultSettings method of the XML constructor is called with no arguments, the following steps are taken: 
 

1. Let s be a new Object created as if by calling the constructor new Object() 
2. Let s.ignoreComments = true 
3. Let s.ignoreProcessingInstructions = true 
4. Let s.ignoreWhitespace = true 
5. Let s.prettyPrinting = true 
6. Let s.prettyIndent = 2 
7. Return s 

12.4 .4  Propert ies  of  the  XML Prototype Object  (Bui l t - in  Methods)  
Each value of type XML has a set of built-in methods available for performing common operations. These built-in methods are 
properties of the XML prototype object and are described in the following sections. 
 
The XML prototype object is itself an XML object (its [[Class]] property is "text") whose value is the empty string. 
 
The value of the internal [[Prototype]] property of the XML prototype object is the Object prototype object. (section 15.2.3.1 
of ECMAScript Edition 3). 

12.4 .4 .1  XML.prototype .constructor  
The initial value of the XML.prototype.constructor is the built-in XML constructor. 

12.4 .4 .2  XML.prototype .addNamespace  (  namespace  )  
Overview 
 
The addNamespace method adds a namespace declaration to the in scope namespaces for this XML object and returns this 
XML object. If the in scope namespaces for the XML object already contains a namespace with a prefix matching that of the 
given parameter, the prefix of the existing namespace is set to undefined. 
 
Semantics 
 
When the setNamespace method of an XML object x is called with one parameter namespace, the following step is taken: 
 

1. Let ns a Namespace constructed as if by calling the function Namespace(namespace) 
2. Call the [[AddInScopeNamespace]] method of x with parameter ns 
3. Return x 
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12.4 .4 .3  XML.prototype .appendChild  (  chi ld  )  
Overview 
 
The appendChild method appends a deep copy of the given child to the end of this XML object’s properties and returns this 
XML object. For example, 
 
var e = <employees> 
 <employee id="0" ><name>Jim</name><age>25</age></employee> 

<employee id="1" ><name>Joe</name><age>20</age></employee> 
      </employees>; 
 
// Add a new child element to the end of Jim's employee element 
e.employee.(name == "Jim").appendChild(<hobby>snorkeling</hobby>); 
 
Semantics 
 
When the appendChild method of an XML object x is called with one parameter child, the following steps are taken: 
 

1. Call the [[Put]] method of x with arguments x.[[Length]] and child 
2. Return x 

12.4 .4 .4  XML.prototype .attr ibute  (  a t tr ibuteName  )  
Overview 
 
The attribute method returns an XMLList containing zero or one XML attributes associated with this XML object that have the 
given attributeName. For example, 
 
// get the id of the employee named Jim 
e.employee.(name == "Jim").attribute("id"); 
 
Semantics 
 
When the attribute method of an XML object x is called with a parameter attributeName, the following steps are taken: 
 

1. Let name = ToAttributeName(attributeName) 
2. Return the result of calling the [[Get]] method of x with argument name 

12.4 .4 .5  XML.prototype .attr ibutes  (  )  
Overview 
 
The attributes method returns an XMLList containing the XML attributes of this object. For example,  
 
// print the attributes of an XML value 
function printAttributes(x) { 
 for (var a in x.attributes()) { 
  print("The attribute named " + a.name() + " has the value " + a); 
 } 
} 
 
Semantics 
 
When the attributes method of an XML object x is called, the following step is taken: 
 

1. Return the result of calling the [[Get]] method of x with argument ToAttributeName("*") 
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12.4 .4 .6  XML.prototype .chi ld  (  propertyName )  
Overview 
 
The child method returns the list of children in this XML object matching the given propertyName results. 
 
Semantics 
 
When the child method of an XML object x is called, it performs the following step: 
 

1. Return the result of calling the [[Get]] method of x with argument propertyName 

12.4 .4 .7  XML.prototype .chi ldIndex (  )  
Overview 
 
The childIndex method returns a Number representing the ordinal position of this XML object within the context of its parent. 
For example, 
 
// Get the ordinal index of the employee named Joe.  
var joeindex = e.employee.(name == "Joe").childIndex(); 
 
Semantics 
 
When the childIndex method of an XML object x is called, it performs the following steps: 
 

1. Let parent = x.[[Parent]] 
2. If (parent == null) or (x.[[Class]] == "attribute"), return NaN 
3. Let q be the property of parent, where parent[q] is the same object as x 
4. Return ToNumber(q) 

12.4 .4 .8  XML.prototype .chi ldren (  )  
Overview 
 
The children method returns an XMLList containing all the properties of this XML object in order. For example, 
 
// Get child elements of first employee: returns an XMLList containing: 
// <name>Jim</name>, <age>25</age> and <hobby>Snorkeling</hobby> 
var emps = e.employee[0].children(); 
 
Semantics 
 
When the children method of an XML object x is called, it performs the following step: 
 

1. Return the results of calling the [[Get]] method of x with argument "*" 

12.4 .4 .9  XML.prototype .comment  (  )  
Overview 
 
The comment method returns an XMLList containing the properties of this XML object that represent XML comments. 
 
Semantics 
 
When the comment method of an XML object x is called, it performs the following steps: 
 

1. Let l be a new XMLList with l.[[TargetObject]] = x and l.[[TargetProperty]] = null 
2. For i = 0 to x.[[Length]]-1 

a. If x[i].[[Class]] == "comment", call the [[Append]] method of l with argument x[i] 
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3. Return l 

12.4 .4 .10  XML.prototype .copy (  )  
Overview 
 
The copy method returns a deep copy of this XML object with the internal [[Parent]] property set to null. 
 
Semantics 
 
When the copy method is called on an XML object x, the following steps are taken: 
 

1. Return the result of calling the [[DeepCopy]] method of x 

12.4 .4 .11  XML.prototype .descendants  (  [  name ]  )  
Overview 
 
The descendants method returns all the XML valued descendants (children, grandchildren, great-grandchildren, etc.) of this 
XML object with the given name. If the name parameter is omitted, it returns all descendants of this XML object. 
 
Semantics 
 
When the descendants method is called on an XML object x with the optional parameter name, the following steps are taken: 
 

1. If name is not specified, let name = "*" 
2. Return the result of calling the [[Descendants]] method of x with argument name 

12.4 .4 .12  XML.prototype . inScopeNamespaces(  )  
Overview 
 
The inScopeNamespaces method returns an Array of Namespace objects representing the namespaces in scope for this XML 
object in the context of its parent. If the parent of this XML object is modified, the associated namespace declarations may 
change. 
 
Semantics 
 
When the inScopeNamespaces method is called on an XML object x, the following steps are taken: 
 

1. Let y = x 
2. Let inScopeNS = { } 
3. While (y is not null) 

a. For each ns in y.[[InScopeNamespaces]] 
i. If there exists no namespace n ∈ inScopeNS, such that n.prefix == ns.prefix 

1. Let inScopeNS = inScopeNS ∪ ns 
b. Let y = y.[[Parent]] 

4. Note: The E4X data model does not enforce the constraint: ∀ x ∈ XML : x.[[InScopeNamespaces]] ⊇ 
x.[[Parent]].[[InScopeNamespaces]]. However, implementations that do enforce this constraint may set inScopeNS = 
x.[[InScopeNamespaces]] instead of using the computation above.  

5. Let a be a new Array created as if by calling the constructor, new Array() 
6. Let i = 0 
7. For each ns ∈ inScopeNS 

a. Call the [[Put]] method of a with arguments ToString(i) and ns 
b. Let i = i + 1 

8. Return a 

12.4 .4 .13  XML.prototype . insertChi ldAfter  (  chi ld1  ,  ch i ld2)  
Overview 
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The insertChildAfter method inserts the given child2 after the given child1 in this XML object and returns this XML object. If 
child1 is null, the insertChildAfter method inserts child2 before all children of this XML object (i.e., after none of them). If 
child1 does not exist in this XML object, it throws a TypeError exception. 
 
Semantics 
 
When the insertChildAfter method is called on an XML object x with parameters child1 and child2, the following steps are 
taken: 
 

1. If x.[[Class]] ∈ {"text", "comment", "processing-instruction", "attribute"}, throw a TypeErrorexception 
2. If (child1 == null)  

a. Call the [[Insert]] method of x with arguments "0" and child2 
b. Return x 

3. Else if Type(child1) is XML 
a. For i = 0 to x.[[Length]]-1  

i. If x[i] is the same object as child1 
1. Call the [[insert]] method of x with arguments ToString(i + 1) and child2 
2. Return x 

4. Throw a TypeError exception 

12.4 .4 .14  XML.prototype . insertChi ldBefore  (  chi ld1  ,  ch i ld2  )  
Overview 
The insertChildBefore method inserts the given child2 before the given child1 in this XML object and returns this XML object. 
If child1 is null, the insertChildBefore method inserts child2 after all children in this XML object (i.e., before none of them). If 
child1 does not exist in this XML object, it throws a TypeError exception. 
 
Semantics 
 
When the insertChildBefore method is called on an XML object x with parameters child1 and child2, the following steps are 
taken: 
 

1. If x.[[Class]] ∈ {"text", "comment", "processing-instruction", "attribute"}, throw a TypeError exception 
2. If (child1 == null) 

a. Call the [[Insert]] method of x with arguments ToString(x.[[Length]]) and child2 
b. Return x 

3. Else if Type(child1) is XML 
a. For i = 0 to x.[[Length]]-1  

i. If x[i] is the same object as child1 
1. Call the [[insert]] method of x with arguments ToString(i) and child2 
2. Return x 

4. Throw a TypeError exception 

12.4 .4 .15  XML.prototype .hasOwnProperty  (  P  )  
Overview 
 
The hasOwnProperty method returns a Boolean value indicating whether this object has the property specified by P. For all 
XML objects except the XML prototype object, this is the same result returned by the internal method[[HasProperty]. For the 
XML prototype object, hasOwnProperty also examines the list of local properties to determine if there is a method property 
with the given name. 
 
Semantics 
 
When the hasOwnProperty method of an XML object x is called with parameter P, the following step is taken: 
 

1. If the result of calling the [[HasProperty]] method of this object with argument P is true, return true 
2. If x has a property with name ToString(P), return true 
3. Return false 
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12.4 .4 .16  XML.prototype .hasComplexContent(  )  
Overview 
 
The hasComplexContent method returns a Boolean value indicating whether this XML object contains complex content. An 
XML object is considered to contain complex content if it represents an XML element that has child elements. XML objects 
representing attributes, comments, processing instructions and text nodes do not have complex content. The existence of 
attributes, comments, processing instructions and text nodes within an XML value is not significant in determining if it has 
complex content. 
  
Semantics 
 
When the hasComplexContent method is called on an XML object x, the following steps are taken: 
 

1. If x.[[Class]] ∈ {"attribute", "comment", "processing-instruction", "text"}, return false 
2. For each property p in x 

a. If x[p].[[Class]] == "element", return true 
3. Return false 

12.4 .4 .17  XML.prototype .hasSimpleContent(  )  
Overview 
 
The hasSimpleContent method returns a Boolean value indicating whether this XML object contains simple content. An XML 
object is considered to contain simple content if it represents a text node, represents an attribute node or if it represents an 
XML element that has no child elements. XML objects representing comments and processing instructions do not have simple 
content. The existence of attributes, comments, processing instructions and text nodes within an XML value is not significant 
in determining if it has simple content. 
 
Semantics 
 
When the hasSimpleContent method is called on an XML object x, the following steps are taken: 
 

1. If x.[[Class]] ∈ {"comment", "processing-instruction"}, return false 
2. For each property p in x 

a. If x[p].[[Class]] == "element", return false 
3. Return true 

12.4 .4 .18  XML.prototype . length  (  )  
Overview 
 
The length method returns the number of properties in this XML object. For example,  
  
// print each child element of the first employee element stored in e 
for (var i = 0; i < e.employee[0].length(); i++) { 

print("Child element:" + e.employee[0][i]); 
} 
 
Semantics 
 
When the length method is called on an XML object x, the following step is taken: 
 

1. Return x.[[Length]] 

12.4 .4 .19  XML.prototype . localName (  )  
Overview 
The localName method returns the local name portion of the qualified name of this XML object. 
 
Semantics 
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When the localName method is called on an XML object x, the following step is taken: 
 

1. If x.[[Name]] == null, return null 
2. Return x.[[Name]].localName 

12.4 .4 .20  XML.prototype .name (  )  
Overview 
 
The name method returns the qualified name associated with this XML object. 
 
Semantics 
 
When the name method is called on an XML object x, the following step is taken: 
 

1. Return x.[[Name]] 

12.4 .4 .21  XML.prototype .namespace  (  [  pref ix  ]  )  
Overview 
 
If no prefix is specified, the namespace method returns the Namespace associated with the qualified name of this XML object.  
 
If a prefix is specified, the namespace method looks for a namespace in scope for this XML object with the given prefix and, if 
found, returns it. If no such namespace is found, the namespace method returns undefined. 
 
Semantics 
 
When the namespace method is called on an XML object x with zero arguments or one argument prefix, the following steps are 
taken: 
 

2. Let y = x 
3. Let inScopeNS = { } 
4. While (y is not null) 

a. For each ns in y.[[InScopeNamespaces]] 
i. If there exists no namespace n ∈ inScopeNS, such that n.prefix == ns.prefix 

1. Let inScopeNS = inScopeNS ∪ ns 
b. Let y = y.[[Parent]] 

5. Note: The E4X data model does not enforce the constraint: ∀ x ∈ XML : x.[[InScopeNamespaces]] ⊇ 
x.[[Parent]].[[InScopeNamespaces]]. However, implementations that do enforce this constraint may set inScopeNS = 
x.[[InScopeNamespaces]] instead of using the computation above.  

6. If prefix was not specified 
a. If x.[[Class]] ∈ {"text", "comment", "processing-instruction"}, return null  
b. Return the result of calling the [[GetNamespace]] method of x.[[Name]] with argument inScopeNS 

7. Else 
a. Let prefix = ToString(prefix) 
b. Find a Namespace ns ∈ inScopeNS, such that ns.prefix = prefix. If no such ns exists, let ns = undefined. 
c. Return ns 

12.4 .4 .22  XML.prototype .namespaceDeclarat ions  (  )  
Overview 
 
The namespaceDeclarations method returns an Array of Namespace objects representing the namespace declarations 
associated with this XML object in the context of its parent. If the parent of this XML object is modified, the associated 
namespace declarations may change. 
 
Semantics 
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When the namespaceDeclarations method is called on an XML object x, the following steps are taken: 
 

1. Let a be a new Array created as if by calling the constructor, new Array() 
2. If x.[[Class]] ∈ {"text", "comment", "processing-instruction", "attribute"}, return a  
3. Let y = x.[[Parent]] 
4. Let ancestorNS = { } 
5. While (y is not null) 

a. For each ns in y.[[InScopeNamespaces]] 
i. If there exists no namespace n ∈ ancestorNS, such that n.prefix == ns.prefix 

1. Let ancestorNS = ancestorNS ∪ ns 
b. Let y = y.[[Parent]] 

6. Note: The E4X data model does not enforce the constraint: ∀ x ∈ XML : x.[[InScopeNamespaces]] ⊇ 
x.[[Parent]].[[InScopeNamespaces]]. However, implementations that do enforce this constraint may set ancestorNS = 
x.[[Parent]].[[InScopeNamespaces]] instead of using the computation above.  

7. Let declaredNS = { } 
8. for each ns in x.[[InScopeNamespaces]] 

a. if there exists no namespace n ∈ ancestorNS, such that n.prefix == ns.prefix and n.uri == ns.uri 
i. Let declaredNS = declaredNS ∪ ns 

9. Let i = 0 
10. For each ns ∈ declaredNS 

a. Call the [[Put]] method of a with arguments ToString(i) and ns 
b. Let i = i + 1 

11. Return a 

12.4 .4 .23  XML.prototype .nodeKind (  )  
Overview 
 
The nodeKind method returns a string representing the [[Class]] of this XML object.  
 
Semantics 
 
When the nodeKind method is called on an XML object x, the following step is taken: 
 

1. Return x.[[Class]] 

12.4 .4 .24  XML.prototype .normal ize  (  )  
Overview 
 
The normalize method puts all text nodes in this and all descendant XML objects into a normal form by merging adjacent text 
nodes and eliminating empty text nodes. It returns this XML object. 
 
Semantics 
 
When the normalize method is called on an XML object x, the following steps are taken: 
 

1. Let i = 0 
2. While i < x.[[Length]] 

a. If x[i].[[Class]] == "element" 
i. Call the normalize method of x[i] 

ii. Let i = i + 1 
b. Else if x[i].[[Class]] == "text" 

i. While ((i+1) < x.[[Length]]) and (x[i + 1].[[Class]] == "text") 
1. Let x[i].[[Value]] be the result of concatenating x[i].[[Value]] and x[i + 1].[[Value]] 
2. Call the [[Delete]] method of x with argument ToString(i + 1) 

ii. If x[i].[[Value]].length == 0 
1. Call the [[Delete]] method of x with argument ToString(i) 

iii. Else   
1. Let i = i + 1 
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c. Else 
i. Let i = i + 1 

3. Return x 

12.4 .4 .25  XML.prototype .parent  (  )  
Overview 
 
The parent method returns the parent of this XML object. For example, 
 
// Get the parent element of the second name in "e". Returns <employee id="1" … 
var firstNameParent = e..name[1].parent() 
 
Semantics 
 
When the parent method is called on an XML object x, the following step is taken: 
 

1. Return x.[[Parent]] 

12.4 .4 .26  XML.prototype .process ingInstruct ion  (  [  name ]  )  
Overview 
 
When the processingInstruction method is called with one parameter name, it returns an XMLList containing all the children of 
this XML object that are processing-instructions with the given name. When the processingInstruction method is called with 
no parameters, it returns an XMLList containing all the children of this XML object that are processing-instructions regardless 
of their name. 
 
Semantics 
 
When the processingInstruction method is called on an XML object x with optional parameter name, the following steps are 
taken: 
 

1. If name is not specified, let name = "*" 
2. Let name = ToXMLName(name) 
3. Let l = a new XMLList with l.[[TargetObject]] = x and l.[[TargetProperty]] = null 
4. For i = 0 to x.[[Length]]-1 

a. If x[i].[[Class]] == "processing-instruction" 
i. If name.localName == "*" or name.localName == x[i].[[Name]].localName 

1. Call the [[Append]] method of l with argument x[i] 
5. Return l 

12.4 .4 .27  XML.prototype .prependChild  (  va lue  )  
Overview 
 
The prependChild method inserts a deep copy of the given child into this object prior to its existing XML properties and  
returns this XML object. For example, 
 
// Add a new child element to the front of John's employee element 
e.employee.(name == "John").prependChild(<prefix>Mr.</prefix>); 
 
Semantics 
 
When the prependChild method is called on an XML object x with parameter value, the following steps are taken: 
 

1. Call the [[Insert]] method of this object with arguments "0" and value 
2. Return x 



-  78  -  

 

12.4 .4 .28  XML.prototype .propertyIsEnumerable  (  P  )  
Overview 
 
The propertyIsEnumerable method returns a Boolean value indicating whether the property P is accessible via the XML 
[[Get]] method. All properties of XML objects accessible via the XML [[Get]] method are enumerable. 
 
Semantics 
 
When the propertyIsEnumerable method of an XML object x is called with parameter P, the following step is taken: 
 

1. Return the result of calling the [[HasProperty]] method of this object with argument P. 

12.4 .4 .29  XML.prototype .removeNamespace  (  namespace  )  
Overview 
 
The removeNamespace method removes the given namespace from the in scope namespaces of this object and all its 
descendents, then returns a copy of this XML object. The removeNamespaces method will not remove a namespace from an 
object where it is referenced by that object’s QName or the QNames of that object’s attributes. 
 
Semantics 
 
When the removeNamespace method is called on an XML object x with parameter namespace, the following steps are taken: 
 

2. If x.[[Class]] ∈ {"text", "comment", "processing-instruction", "attribute"}, return x 
3. Let ns be a Namespace object created as if by calling the function Namespace( namespace ) 
4. Let thisNS be the result of calling [[GetNamespace]] on x.[[Name]] with argument x.[[InScopeNamespaces]] 
5. If (thisNS == ns), return x 
6. For each attribute a ∈ x.[[Attributes]] 

a. Let aNS be the result of calling [[GetNamespace]] on a.[[Name]] with argument x.[[InScopeNamespaces]] 
b. If (aNS == ns), return x 

7. If ns.prefix == undefined 
a. If there exists a namespace n ∈ x.[[InScopeNamespaces]], such that n.uri == ns.uri, remove the namespace n 

from x.[[InScopeNamespace]] 
8. else 

a. If there exists a namespace n ∈ x.[[InScopeNamespaces]], such that n.uri == ns.uri and n.prefix == ns.prefix, 
remove the namespace n from x.[[InScopeNamespace]] 

9. For each property p of x 
a. If p.[[Class]] = "element", call the removeNamespace method of p with argument ns 

10. Note: The E4X data model does not enforce the constraint: ∀ x ∈ XML : x.[[InScopeNamespaces]] ⊇ 
x.[[Parent]].[[InScopeNamespaces]]. However, implementations may at this point remove namespace from the 
[[InScopeNamespaces]] property of any ancestors of x. provided namespace is not referenced by the associated 
ancestor's QName or the Qnames of the associated ancestor's attributes. 

11. Return x 

12.4 .4 .30  XML.prototype .replace  (  propertyName ,  va lue  )  
Overview 
 
The replace method replaces the XML properties of this XML object specified by propertyName with value and returns this 
XML object. Unlike the assignment operator, the replace method does not give special treatment to cases where value contains 
simple content. It always replaces the specified properties with the given value. If this XML object contains no properties that 
match propertyName, the replace method returns without modifying this XML object. The propertyName parameter may be a 
numeric property name, an unqualified name for a set of XML elements, a qualified name for a set of XML elements or the 
properties wildcard “*”. When the propertyName parameter is an unqualified name, it identifies XML elements in the default 
namespace. The value parameter may be an XML value, XMLList value or any value that may be converted to a String with 
ToString(). For example, 
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// Replace the first employee record with an open staff requisition 
employees.replace(0, <requisition status="open"/>); 
 
// Replace all item elements in the order with a single empty item 
order.replace("item", <item/>); 
 
Semantics 
 
When the replace method is called on an XML object x with parameters propertyName and value, the following steps are 
taken: 
 

1. If x.[[Class]] ∈ {"text", "comment", "processing-instruction", "attribute"}, return x 
2. If Type(value) ∉ {XML, XMLList}, let c = ToString(value) 
3. Else let c be the result of calling the [[DeepCopy]] method of value 
4. If ToString(ToUint32(P)) == P 

a. Call the [[Replace]] method of x with arguments P and c and return x 
5. Let n  be a QName object created as if by calling the function QName(P) 
6. Let i = undefined 
7. For k = 0 to x.[[Length]]-1 

a. If ((n.localName == "*")  
   or ((x[k].[[Class]] == "element") and (x[k].[[Name]].localName==n.localName))) 
and ((n.uri == undefined) or (n.uri  == x[k].[[Name]].uri )) 

i. If (i == undefined), let i = k 
ii. Else call the [[Delete]] method of x with argument ToString(k) 

8. If i == undefined, return x 
9. Call the [[Replace]] method of x with arguments ToString(i) and c 
10. Return x 

12.4 .4 .31  XML.prototype .setInnerXML (  value  )  
Overview 
 
The setInnerXML method replaces the XML properties of this XML object with a new set of XML properties from value. 
value may be a single XML value or an XMLList. setInnerXML returns this XML value. For example, 
 
// Replace the entire contents of Jim's employee element 
e.employee.(name == "Jim").setInnerXML(<name>John</name> + <age>35</age>); 
 
Semantics 
 
When the setInnerXML method is called on an XML object x with parameter value, the following steps are taken: 
 

1. Call the [[Put]] method of x with arguments "*" and value 
2. Return x 

12.4 .4 .32  XML.prototype .setLocalName (  name  )  
Overview 
 
The setLocalName method replaces the local name this XML object with a string constructed from the given name.  
  
Semantics 
 
When the setLocalName method is called on an XML object x with parameter name, the following steps are taken: 
 

1. If x.[[Class]] ∈ {"text", "comment"}, return 
2. if (Type(name) is Object) and (name.[[Class]] == "QName") 

a. Let name = name.localName 
3. else  
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a. Let name = ToString(name) 
4. Let x.[[Name]].localName = name 

12.4 .4 .33  XML.prototype .setName (  name  )  
Overview 
 
The setName method replaces the name this XML object with a QName or AttributeName constructed from the given name.  
  
Semantics 
 
When the setName method is called on an XML object x with parameter name, the following steps are taken: 
 

1. If x.[[Class]] ∈ {"text", "comment"}, return 
2. if (Type(name) is Object) and (name.[[Class]] == "QName") and (name.uri == undefined) 

a. Let name = name.localName 
3. Let n be a new QName created if by calling the constructor new QName(name) 
4. if x.[[Class]] == "processing-instruction", let n.uri be the empty string 
5. Let x.[[Name]] = n 

12.4 .4 .34  XML.prototype .setNamespace  (  ns  )  
Overview 
 
The setNamespace method replaces the namespace associated with the name of this XML object with the given namespace. 
  
Semantics 
 
When the setNamespace method is called on an XML object x with parameter ns, the following step is taken: 
 

1. If x.[[Class]] ∈ {"text", "comment", "processing-instruction"}, return  
2. Let namespace be a new Namespace created as if by calling the constructor new Namespace(ns) 
3. Call [[SetNamespace]] on x.[[Name]] with argument namespace 

12.4 .4 .35  XML.prototype . text  (  )  
Overview 
 
The text method returns an XMLList containing all XML properties of this XML object that represent XML text nodes.  
 
Semantics 
 
When the text method of an XML object x is called, the following steps are taken: 
 

1. Let l be a new XMLList with l.[[TargetObject]] = x and l.[[TargetProperty]] = null 
2. For i = 0 to x.[[Length]]-1 

a. If x[i].[[Class]] == "text", Call the [[Append]] method of l with argument x[i] 
3. Return l 

12.4 .4 .36  XML.prototype . toStr ing  (  )  
Overview 
 
The toString method returns a string representation of this XML object per the ToString conversion operator described in 
section 9.1. 
 
Semantics 
 
When the toString method of an XML object x is called, the following step is taken: 
 

1. Return ToString(x) 
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12.4 .4 .37  XML.prototype . toXMLString  (  )  
Overview 
 
The toXMLString() method returns an XML encoded string representation of this XML object per the ToXMLString 
conversion operator described in section 9.2. Unlike the toString method, toXMLString provides no special treatment for XML 
values that contain only XML text nodes (i.e., primitive values). The toXMLString method always includes the start tag, 
attributes and end tag of the XML value regardless of its content. It is provided for cases when the default XML to string 
conversion rules are not desired. For example, 
 
var item = <item> 
 <description>Laptop Computer</description> 
 <price>2799.95</price> 
 <quantity>1</quantity> 
</item>; 
 
// returns "Description stored as <description>Laptop Computer</description" 
var logmsg = "Description stored as " + item.description.toXMLString(); 
 
// returns "Thank you for purchasing a Laptop Computer!" (with tags removed) 
var message = "Thank you for purchasing a " + item.description + "!"; 
 
Semantics 
 
When the toXMLString method of an XML object x is called, the following step is taken: 
 

1. Return ToXMLString(x) 
 

12.4 .4 .38  XML.prototype .valueOf (  )  
Overview 
 
The valueOf method returns this XML object.  
 
Semantics 
 
When the valueOf method of an XML object x is called, the following step is taken: 
 

1. Return x 

12.4.5  Properties  of  XML Instances  
XML instances have no special properties beyond those inherited from the XML prototype object. 

12.5  XMLList  Objects  

12 .5 .1  The XMLList  Constructor  Cal led  as  a  Funct ion  
Syntax 
 
 XMLList ( value ) 
 
Overview 
 
When XMLList is called as a function rather than as a constructor, it converts its argument to an XMLList object. When its 
argument is an XMLList, the input argument is returned without modification. 
 
Semantics 
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When XMLList is called as a function with parameter value, the following steps are taken: 
 

1. If value is null, undefined or not supplied, let value be the empty string 
2. Return ToXMLList(value) 

 

12.5 .2  The XMLList  Constructor  
Syntax 
 
 new XMLList ( [ value ] ) 
 
Overview 
 
When XMLList is called as part of a new expression, it is a constructor and creates a new XMLList object. When the XMLList 
constructor is called with no arguments, it returns an empty XMLList. When the XMLList constructor is called with a value of 
type XMLList, the XMLList constructor returns a shallow copy of the value. When the XMLList constructor is called with a 
non-XMLList value, it converts its input argument to an XMLList object. 
 
Semantics 
 
When the XMLList constructor is called with an optional parameter value, the following steps are taken: 
 

1. if value is null, undefined or not supplied, let value be the empty string 
2. If Type(value) is XMLList 

a. Let l be a new XMLList object with l.[[TargetObject]] = null 
b. Call the [[Append]] method of l with argument value 
c. Return l 

3. Else   
a. Return ToXMLList(value) 

12.5 .3  Propert ies  of  the  XMLList  Constructor  
The value of the internal [[Prototype]] property of the XMLList constructor is the Function prototype object. 
 
Besides the internal properties and the length property (whose value is 1), the XMLList constructor has the following 
properties: 

12.5 .3 .1  XMLList .prototype  
The initial value of the XMLList.prototype property is the XMLList prototype object (section 12.5.4). 
 
This property has the attributes { DontEnum, DontDelete, ReadOnly }. 

12.5 .4  Propert ies  of  the  XMLList  Prototype  Object  (Bui l t - in  Methods)  
Each value of type XMLList has a set of built-in methods available for performing common operations. These built-in methods 
are described in the following sections. 
 
The XMLList prototype object is itself an XMLList object (its [[Class]] property is "XMLList") whose value is the empty 
XMLList. 
 
The value of the internal [[Prototype]] property of the XMLList prototype object is the Object prototype object. (section 
15.2.3.1 of ECMAScript Edition 3). 
 
Note: To simplify the programmer’s task, E4X intentionally blurs the distinction between a single XML value and an XMLList 
containing only one value. To this end, E4X extends the ECMAScript function call semantics such that all methods available 
for values of type XML are also available for XMLLists of size one. See section 10.2.2 for more information. 
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12.5 .4 .1  XMLList .prototype .constructor  
The initial value of the XMLList prototype constructor is the built-in XMLList constructor. 

12.5 .4 .2  XMLList .prototype .attr ibute  (  a t tr ibuteName  )  
Overview 
 
The attribute method calls the attribute method of each XML valued property in this XMLList object passing attributeName as 
a parameter and returns an XMLList containing the results in order.  
 
Semantics 
 
When the attribute method is called on an XMLList object l with parameter attributeName, the following steps are taken: 
 

1. Let name = ToAttributeName(attributeName) 
2. Return the result of calling the [[Get]] method of l with argument name 

12.5 .4 .3  XMLList .prototype .attr ibutes  (  )  
Overview 
 
The attributes method calls the attributes() method of each XML valued property in this XMLList object and returns an 
XMLList containing the results in order.  
 
Semantics 
 
When the attributes method is called on an XMLList object l, the following step is taken: 
 

1. Return the result of calling the [[Get]] method of l with argument ToAttributeName("*") 

12.5 .4 .4  XMLList .prototype .chi ld  (  propertyName )  
Overview 
 
The child method calls the child() method of each XML valued property in this XMLList object and returns an XMLList 
containing the results in order. 
 
Semantics 
 
When the child method is called on an XMLList object l with parameter propertyName, the following step is taken: 
 

1. Return the result of calling the [[Get]] method of l with argument propertyName 

12.5 .4 .5  XMLList .prototype .chi ldren (  )  
Overview 
 
The children method calls the children() method of each XML valued property in this XMLList object and returns an XMLList 
containing the results concatenated in order. For example, 
 
// get all the children of all the items in the order 
var allitemchildren = order.item.children(); 
 
// get all grandchildren of the order that have the name price 
var  grandChildren = order.children().price; 
 
Semantics 
 
When the children method is called on an XMLList object l, the following step is taken: 
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1. Return the results of calling the [[Get]] method of l with argument "*" 

12.5 .4 .6  XMLList .prototype .comment  (  )  
Overview 
 
The comment method calls the comment method of each XML valued property in this XMLList object and returns an 
XMLList containing the results concatenated in order. 
 
Semantics 
 
When the comment method is called on an XMLList object l, the following steps are taken: 
 

1. Let m be a new XMLList with m.[[TargetObject]] = l 
2. For i = 0 to l.[[Length]]-1 

a. If l[i].[[Class]] == "element" 
i. Let r  = l[i].comment() 

ii. If r.[[Length]] > 0, call the [[Append]] method of m with argument r 
3. Return m 

12.5 .4 .7  XMLList .prototype .copy (  )  
Overview 
 
The copy method returns a deep copy of this XMLList object. 
 
Semantics 
 
When the copy method is called on an XMLList object l, the following step is taken: 
 

1. Return the result of calling the [[DeepCopy]] method of l 

12.5 .4 .8  XMLList .prototype .descendants  (  [  name ]  )  
The descendants method calls the descendants method of each XML valued property in this XMLList object with the optional 
parameter name (or the string "*" if name is omitted) and returns an XMLList containing the results concatenated in order. 
 
Semantics 
 
When the descendants method is called on an XMLList object l with optional parameter name, the following steps are taken: 
 

1. If name is not specified, name = "*" 
2. Returnt the result of calling the [[Descendants]] method of l with argument name 

12.5 .4 .9  XMLList .prototype .hasOwnProperty  (  P  )  
Overview 
 
The hasOwnProperty method returns a Boolean value indicating whether this object has the property specified by P. For all 
XMLList objects except the XMLList prototype object, this is the same result returned by the internal method[[HasProperty]. 
For the XMLList prototype object, hasOwnProperty also examines the list of local properties to determine if there is a method 
property with the given name. 
 
Semantics 
 
When the hasOwnProperty method of an XMLList object x is called with parameter P, the following step is taken: 
 

1. If the result of calling the [[HasProperty]] method of this object with argument P is true, return true 
2. If x has a property with name ToString(P), return true 
3. Return false 



-  85  -  

 

12.5 .4 .10  XMLList .prototype .hasComplexContent(  )  
Overview 
 
The hasComplexContent method returns a Boolean value indicating whether this XMLList object contains complex content. 
An XMLList object is considered to contain complex content if it is not empty, contains a single XML item with complex 
content or contains elements. 
 
Semantics 
 
When the hasComplexContent method is called on an XMLList object x, the following steps are taken: 
 

1. If x.[[Length]] == 0, return false 
2. If x.[[Length]] == 1, return x[0].hasComplexContent() 
3. For each property p in x 

a. If x[p].[[Class]] == "element", return true 
4. Return false 

12.5 .4 .11  XMLList .prototype .hasSimpleContent(  )  
Overview 
 
The hasSimpleContent method returns a Boolean value indicating whether this XMLList contains simple content. An XMLList 
object is considered to contain simple content if it is empty, contains a single XML item with simple content or contains no 
elements. 
  
Semantics 
 
When the hasSimpleContent method is called on an XMLList object x, the following steps are taken: 
 

1. If x.[[Length]] == 0, return true 
2. If x.[[Length]] == 1, return x[0].hasSimpleContent() 
3. For each property p  in x 

a. If x[p].[[Class]] == "element", return false  
4. Return true 

12.5 .4 .12  XMLList .prototype . length  (  )  
Overview 
 
The length method returns the number of properties in this XMLList object. For example,  
  
for (var i = 0; i < e..name.length(); i++) { 

print("Employee name:" + e..name[i]); 
} 
 
Semantics 
 
When the length method of an XMLList object l is called, the following step is taken: 
 

1. Return l.[[Length]] 

12.5 .4 .13  XMLList .prototype .normal ize  (  )  
Overview 
 
The normalize method puts all text nodes in this XMLList, all the XML objects it contains and the descendents of all the XML 
objects it contains into a normal form by merging adjacent text nodes and eliminating empty text nodes. It returns this 
XMLList object. 
 
Semantics 
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When the normalize method is called on an XMLList object l, the following steps are taken: 
 

1. Let i = 0 
2. While i < l.[[Length]] 

a. If l[i].[[Class]] == "element" 
i. Call the normalize method of l[i] 

ii. Let i = i + 1 
b. Else if l[i].[[Class]] == "text" 

i. While ((i+1) < l.[[Length]]) and (l[i + 1].[[Class]] == "text") 
1. Let l[i].[[Value]] be the result of concatenating l[i].[[Value]] and l[i + 1].[[Value]] 
2. Call the [[Delete]] method of l with argument ToString(i + 1) 

ii. If l[i].[[Value]].length == 0 
1. Call the [[Delete]] method of l with argument ToString(i) 

iii. Else   
1. Let i = i + 1 

c. Else 
i. Let i = i + 1 

3. Return l 

12.5 .4 .14  XMLList .prototype .parent  (  )  
Overview 
 
If all items in this XMLList object have the same parent, it is returned. Otherwise, the parent method returns undefined. 
 
Semantics 
 
When the parent method is called on an XMLList object l, the following steps are taken: 
 

1. If l.[[Length]] = 0, return undefined 
2. Let parent = l[0].[[Parent]] 
3. For i = 1 to l.[[Length]]-1, if l[i].[[Parent]] is not equal to parent, return undefined 
4. Return parent 

12.5 .4 .15  XMLList .prototype .process ingInstruct ion  (  [  name ]  )  
Overview 
 
The processingInstruction method calls the processingInstruction method of each XML valued property in this XMLList object 
passing the optional parameter name (or "*" if it is omitted) and returns an XMList containing the results in order. 
 
Semantics 
 
When the processingInstruction method is called on an XMLList object l with optional parameter name, the following steps are 
taken: 
 

1. If name is not specified, let name = "*" 
2. Let name = ToXmlName(name) 
3. Let m = a new XMLList with m.[[TargetObject]] = l 
4. For i = 0 to l.[[Length]]-1 

a. If l[i].[[Class]] == "element" 
i. Let r = l[i].processingInstruction(name) 

ii. If r.[[Length]] > 0, call the [[Append]] method of m with argument r 
5. Return m 

12.5 .4 .16  XMLList .prototype .propertyIsEnumerable  (  P  )  
Overview 
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The propertyIsEnumerable method returns a Boolean value indicating whether the property P is accessible via the XMLList 
[[Get]] method. All properties of XMLList objects accessible via the XMLList [[Get]] method are enumerable. 
 
Semantics 
 
When the propertyIsEnumerable method of an XMLList object x is called with parameter P, the following step is taken: 
 

1. Return the result of calling the [[HasProperty]] method of this object with argument P. 

12.5 .4 .17  XMLList .prototype . text  (  )  
Overview 
 
The text method calls the text method of each XML valued property contained in this XMLList object and returns an XMLList 
containing the results concatenated in order.  
 
Semantics 
 
When the text method is called on an XMLList object l, the following steps are taken: 
 

1. Let m be a new XMLList with m.[[TargetObject]] = l 
2. For i = 0 to l.[[Length]]-1 

a. If l[i].[[Class]] == "element" 
i. Let r = l[i].text() 

ii. If r.[[Length]] > 0, call the [[Append]] method of m with argument r 
3. Return m 

12.5 .4 .18  XMLList .prototype . toStr ing  (  )  
Overview 
 
The toString method returns a string representation of this XMLList object per the ToString conversion operator described in 
section 9.1.  
 
Semantics 
 
When the toString() method of an XMLList object l is called, the following step is taken: 
 

1. Return ToString(l) 

12.5 .4 .19  XMLList .prototype . toXMLString  (  )  
Overview 
 
The toXMLString() method returns an XML encoded string representation of this XMLList object per the ToXMLString 
conversion operator described in section 9.2. Unlike the toString method, toXMLString provides no special treatment for XML 
values that contain only XML text nodes (i.e., primitive values). The toXMLString method always calls toXMLString on each 
property contained within this XMLList object, concatenates the results in order and returns a single string. 
 
Semantics 
 
When the toXMLString() method of an XMLList object l is called, the following step is taken 
 

1. Return toXMLString(l) 

12.5 .4 .20  XMLList .prototype .valueOf (  )  
Overview 
 
The valueOf method returns this XMLList object.  
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Semantics 
 
When the valueOf method of an XMLList object l is called, the following step is taken: 
 

1. Return l 
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13 Errors 
E4X extends the list of errors implementations are not required to report as specified as follows: 

• An implementation may define behaviour other than throwing a TypeError exception for the ToXML function when 
it is called with an argument of type Object. 
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A  Optional Features (Non-normative) 
This section describes optional E4X features that are not required to be conformant with E4X, but may be provided by a 
conforming E4X implementation. Implementations that implement these features should conform to the associated 
specifications provided herein. 

A.1  XML Bui l t - in  Methods  
An E4X implementation may add the following methods to XML objects 

A.2.1  domNode(  )  
Overview 
The domNode method returns a W3C DOM Node representation of this XML Object. 
 
Semantics 
The semantics of the domNode method are implementation dependent 

A.2.2  domNodeList (  )  
Overview 
The domNodeList method returns a W3C DOM NodeList containing a single W3C DOM Node representation of this XML 
Object. 
 
Semantics 
The semantics of the domNodeList method are implementation dependent. 

A.2.3  xpath (  XPathExpress ion  )  
Overview 
 
The xpath method evaluates the XPathExpression in accordance with the W3C XPath Recommendation using this XML object 
as the context node. Before evaluating the XPathExpression, the xpath method sets the XPath context as follows. The context 
node is set to this XML object. The context position is set to 1. The context size is set to 1. The set of variable bindings is set to 
the empty set. The function library is set to the empty set. The set of namespaces is set according to the set of in scope 
namespaces on this XML object. If the XPathExpression evaluates to a node list, the xpath method returns the results as an 
XMList. Otherwise, the xpath method throws an ArgumentException. For example, 
 
// Use an xpath expression to get all the employees named John Smith 
var jim = e.xpath("//employee[name='John Smith']") 
 
Semantics 
When the xpath method of an XML object x is called with parameter XPathExpression it performs the following steps: 
 

1. Let e be the result of evaluating XPathExpression 
2. Let s = ToString(GetValue(XpathExpression)) 
3. Create an XPath context object representing the XML object x. This semantics of this step are implementation 

dependent.  
4. Let the XPath context position be 1 
5. Let the XPath context size be 1 
6. Let the XPath variable bindings be { } 
7. Let the XPath function library be { } 
8. Let the XPath namespaces be x.[[InScopeNamespaces]] 
9. Let r be the result of evaluating s in accordance with the W3C XPath Recommendation 
10. If r is an XPath node-set, convert it to an XMLList in an implementation dependent way and return it. 
11. Throw a TypeError exception 

A.2  XMLList  Bui l t - in  Methods  
An E4X implementation may add the following methods to XMLList objects 
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A.3.1  domNodeList (  )  
Overview 
The domNodeList method returns a W3C DOM NodeList representation of this XMLList Object. 
 
Semantics 
The semantics of the domNodeList method are implementation dependent. 

A.3.2  xpath (  XPathExpress ion )  
Overview 
 
The xpath method evaluates the XPathExpression for each XML property contained in this XMLList object and concatenates 
the results an XMLList containing the results concatenated in order. 
 
Semantics 
 
When the xpath method is called on an XMLList object l with parameter XPathExpression, the following steps are taken: 
 

1. Let m = a new XMLList with l.[[TargetObject]] = null 
2. For i = 0 to l.[[Length]]-1 

a. If Type(l[i]) is XML and l[i].[[Class]] == "element" 
i. Let r = l[i].xpath(XPathExpression) 

ii. If r.[[Length]] > 0, call the [[Append]] method of m with argument r 
3. Return m 
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