

Ecma International Rue du Rhône 114 CH-1204 Geneva T/F: +41 22 849 6000/01 www.ecma-international.org

 FC Document2 12/09/2017 09:40:00 For Ecma use only

Minutes of the: Ecma TC39-TG1

held in: Phone Conference

on: 24th February 2006

Attendees

• Brendan Eich, Mozilla Foundation

• Dave Herman, Northeastern

• Graydon Hoare, Mozilla Foundation

• Rok Yu, Microsoft

• Ed Smith, Adobe Systems

Agenda

• Introductions, Maciej?

• Go through proposals. Make sure each proposal has an owner.

• Split proposals out as necessary, e.g. syntax invented for builtin classes.

• Review recent changes on the wiki.

Notes

• Brendan to collect small fixes to Edition 3 under clarification issues.

• Dave wonders whether we are going to defer blame and better exception annotation to contracts.
Need a proposal that is not deferred.

• This leads to: want a fresh proposal for static vs. dynamic modes. Graydon added.

• Unicode issues, non-BMP code points being indexed and counted. Contentious.
o rok points out that concatenating invalid surrogate pairs doesn’t throw now, would throw in

proposal.

• Catch-alls look ok, but should be possible only on dynamic classes. Ed observes that subclass

members override wildcards. Wildcard should apply only when the name lookup would otherwise fail.

• Decimal – IEEE754r looking up! Still fighty. We can do a sane decimal in any event, but need to
stare down operators.

• hashcodes – want a global hashcode function, deferring value indexing.

o rok points out that E4X and catchalls both allow property names to be non-string values.
o We don’t want just one Hash or Dictionary class. More motivation for type parameters.

• Block expressions
o Can these be translated to the core language without let? No (consider looping over a let-

block).

• Standard library issues
o Debug helpers, specifically a way to get a stack trace for the exception’s construction site.

▪ Dave points out that TCO and other optimizations motivate not overspecifying the
content of the trace.

▪ Ed points out that throw-site stack trace is also sometimes useful. Sometimes want
both construct and throw sites, throw and re-throw, general logging of stacks, etc.
This leads to:

Ecma/TC39-TG1/2006/012

http://www.ecma-international.org/
file:///C:/doku.php%3fid=proposals:proposals
file:///C:/doku.php%3fid=proposals:builtin_classes
http://wiki.mozilla.org/ECMA/wiki/doku.php?do=recent&id=
file:///C:/doku.php%3fid=proposals:proposals
file:///C:/doku.php%3fid=proposals:contracts
file:///C:/doku.php%3fid=proposals:update_unicode
file:///C:/doku.php%3fid=proposals:catchalls
file:///C:/doku.php%3fid=proposals:decimal
file:///C:/doku.php%3fid=proposals:hashcodes
file:///C:/doku.php%3fid=proposals:catchalls
file:///C:/doku.php%3fid=proposals:type_parameters
file:///C:/doku.php%3fid=proposals:block_expressions
file:///C:/doku.php%3fid=proposals:debug_helpers

2

▪ Graydon and a bunch of us want general reflection of the stack. Errors thrown by the
runtime would compute this.

o Date and time issues:
▪ Locale can-of-worms.
▪ Property-based beats method-based year, month, etc. access.
▪ Resolution, etc.

o String formatting choices:
▪ Leave out, defer to the emergent standard library ecology? Then lose type system

tie-in opportunites.
▪ .NET vs. MSCOM vs. Java vs. others leaves no single obvious choice of what to

imitate.
▪ OCaml, other precedents? Roll-our-own function-combinatorial typed formatting?

Too inconvenient.
▪ Ed points out that strings imply localization, more worms.

• Foundational issues
o drop traits still sounds good, but:

▪ Ed points out that [[Prototype]] (Edition 3), aka __proto__, is of type Object.

▪ Vtables? Horrors. Ed to write as addendum to drop traits.
o is as to is ok, but nullability issues remain.

▪ AS3 has nullable Object and String, non-nullable Boolean, Number, and

String.

▪ C# nullability motivated by database integration. Might be relevant motivation for
ES4.

▪ Given nullable-by-definition Object, want anti-nullability notation of some sort, to

rule out null using the type system (statically if possible).
▪ Nullable types are just a (possibly very important, worth special syntax, etc.) special

case of sum types.
▪ Dave to sweat nullability.

o type parameters seems in good shape, gives typed arrays (yay).
o meta objects

▪ Does it raise type soundness issues? Not really, just the usual java.lang.reflect
thing: type safety requires downcasts.

▪ Ed notices that java.lang.reflect adds runtime costs. Graydon: could be optional.
▪ Dave: optionality good to reduce costs, increase optimization opportunities when

doing without reflection.
▪ Reflective MOP should not be in Edition 4 Compact Profile.

o builtin classes
▪ Invented syntax – how does prototype map to Graydon’s drop traits proposal,

e.g.?
▪ Open issues – need everyone to read and study Ed’s proposal. Particular attention

to class Class.

• Dave to propose TCO (yay!!)
o [jodyer] sorry i missed the meeting. what is TCO?
o [dherman] TCO is Tail Call Optimization, whereby evaluation of the last expression in a

given context, e.g. the operand of a return, should not take extra stack space. Also

sometimes known as “proper tail recursion,” though it’s about evaluation of anything in tail
position, not just recursive function calls. I sometimes use the name “proper tail calls,”
because it suggests a) that it’s not just about recursive calls, and b) that it’s a correctness
criterion, not just an optimization.

file:///C:/doku.php%3fid=proposals:date_and_time
file:///C:/doku.php%3fid=discussion:string_formatting
file:///C:/doku.php%3fid=clarification:drop_traits
file:///C:/doku.php%3fid=clarification:drop_traits
file:///C:/doku.php%3fid=proposals:is_as_to
file:///C:/doku.php%3fid=proposals:switch_class
file:///C:/doku.php%3fid=proposals:type_parameters
file:///C:/doku.php%3fid=proposals:meta_objects
file:///C:/doku.php%3fid=proposals:builtin_classes
file:///C:/doku.php%3fid=clarification:drop_traits
http://en.wikipedia.org/wiki/TCO

