‘ e c ma Ecma/TC39-TG1/2006/020

Minutes of the: Ecma TC39-TG1
held in: Redmond (Microsoft)
on: 215 April 2006

Attendees

Jeff Dyer, Adobe Systems

Rok Yu, Microsoft

Brendan Eich, Mozilla Foundation
Graydon Hoare, Mozilla Foundation
Dave Herman, Northeastern University
Lars Thomas Hansen, Opera Software

On phone:
e Francis Cheng, Adobe Systems
e Pratap Lakshman, Microsoft
e Blake Kaplan, Mozilla Foundation
e Cormac Flanagan, UC Santa Cruz

Agenda

e date literal syntax
e type system
e type parameters

Discussion

e Dave: packages are only compile time?

package p { }

var p = {x:3}

// now an x is added p somehow (how?):
import g

// what does this mean-?

p.x

e namespaces and packages

namespace N; // makes a compile-time const N = new Namespace (unique)
package p { } // makes a compile-time const package name (could be dotted)

e the names are disjoint, so you could have namespace N and package N {}

e Dave: good namespace use cases?

Ecma International Rue du Rhoéne 114 CH-1204 Geneva T/F: +41 22 849 6000/01 www.ecma-international.org

FC 2006_03_16_TC39_TGl.doc 12/09/2017 10:00:00 For Ecma use only

http://www.ecma-international.org/

secma

o Jeff: cross-cutting AS3::0Object, etc. for early binding
e Brendan: 1) MOP::iterator; 2) builtin::hashcode

e Property id is pair (namespace, string), call it N::S for short

I ::= N::S
E ::= ... | E1[E2::E3] | E1.E2::E3

e General idea is to have some E known at compile time. The pragma use namespace N requires N to
be a compile-time expression.

e Do we need run-time namespaces? They come in through eval and E4X anyway. eval can’t open a
namespace in its caller.

e Doug Crockford’s call for typeof [] == “array”, but is should help avoid that

e What about code that hacks String = Array? Editions 1-3 allow this, but specify “original
String.prototype value” be used for automatic constructions, leading to incoherence. Can we make
the standard class constructors {RO,DD} in the global object?

e More namespaces
e open namespace priority based on explicit before implicit open
e Or using two scopes/objects (package or scripts or prototypes)

e Lars has a clarification issue: should explicitly opened ns shadow implicit

¢ Doug Crockford’s call for unreserved words in object literal ids and to right of dot

e counterexample in light of automatic semicolon insertion:

foo = "hi". if (bar())

e s this different because |[if| is already reserved? wish to avoid degrading error reporting

e If we can avoid more than one or two tokens of lookahead, and the rules are clear and simple
enough, then yes

e More namespaces

e AS3 makes different files have different implicitly open internal scopes

package p {
var x = 20

}
public var x = 10 // public required if this is in a different file

{

import p.x

print (x) // want 10, but we get 20 if p is in a different file
}

e builtin classes

e Discussion about prototype — does it allow static shadowing checking? yes and type checking, if the
type annotation

file:///C:/doku.php%3fid=proposals:builtin_classes

secma

Only if DontDelete is included

Dynamic prototype defeats static shadowing and type checking. So dynamic doesn’t make sense as
a declaration qualifier, and we should avoid it, even though that incompatibly would make ES3 builtin
prototype properties DontDelete. We think we can get away with this change.

Still need dynamic for class, but only for class.

Lars proposes

deletable / fixed
writable / readonly
enumerable / nonenumerable

But if we boot dynamic from member qualifiers, we have

const
prototype
static

and the combinations, we think, make sense now (Graydon is gleefully editing the table to remove
dynamic static).

Type system for initialisers. Idea #1 (link to it here) seems best.

Dave: lacking a single default value for non-nullable user-defined types, runtime error to refer to a
member var before it has been set.

New proposal to capture heterogenous array type:
o Array[[int]] is array of zero or more ints.

o Array[[int, String, *]] isarray of two or more elements, the first

an int, the second a String, and any at index 2 or greater of top type.

Rok objects, arguing that Arrays should be typed homogeneously.
Dave raises non-nullability: are holes in sparse arrays undefined or null?

You can have a homogenous array of ints, but if it is sparse the holes can’t have a value in the type’s
value set.

Do we need tuples? Arrays can be used like tuples but you don’t get length constancy and length
checking. Examples:

Array[[int, int, int]] <: Array[[*]]
Array[[int]] is a subtype of Object[[#:int, length:uint]]

Using more concise notation where # is 0..(2"32-1):

[int] <: {#:int, length:uint}

Rationalize Array and other objects as Records. What about structural vs. nominal typing?

Discussion of bang again — var i : int = foo() where foo returns * is ok. Another example: if (foo()) ...
is ok, var b : Boolean = foo(); if (b) ... is too, but some people want the latter to be an error. Lars
points out that a correct re-factoring would be var b : * = foo(); if (b)

Destructuring review: still wondering if there is a less backward-looking form of object destructuring.

oecna

21 April 2006

* Move weekly teleconference to Wednesday 10:00-12:00 Pacific. * Lars asks about Opera hosting June face-to-face?
Sentiment favors keeping Opera-hosted meeting in July.

Agenda

e More type stuff.
e enum come-back?

e Michael's operators proposal.
Discussion
Lars presents results for structural typing of initialisers vs. named types.
Controversy: implicit vs. explicit contextual type narrowing in initialisers.
Three options:

e Mustuse : contextually after {f: 37}
e Mustuse : T for some record type
e In contexts where type of left-hand side is known, contextually is implicit
e Lars: evil, because E3 vs. E4 mixtures change incompatibly from E3 only
o General agreement after some discussion
o Type inference in general, at scale, requires static typing
e Can let and var use initialiser context implicitly?
o Perhaps, but we don’t implicitly type x as int in var x = 42
e Record types can be supertypes of classes
o How much type-checking pain is this in default dynamic language?
o Lack of inference leads back to nominal typing

Talk evolved through discussion of the necessity of structural typing for many poorly advocated “duck typing” use-
cases, a review of switch class, and a grand unification of structural types as follows:

type U = (A, B, C) // Sum of A, B, and C

type R = {p:int, g:String} // Object with at least p and g of given types
type A = [int,,String, *] // Array of int, *, String, and 0 or more *
type F = function (int) :int // Function mapping int to int with this:*
These can be composed. They’re finite by outlawing type T = (int, T) or more obscure recursion across
packages.

Lars writing this up at type system.

Would we benefit from (type T) as aunary expression (parenthesized for clarity)? We are deprecating typeof
with a bug fix for null.

Constructor restrictions against this mutation: they are not allowed to call methods, just statics and global functions; not
allowed to pass this or super anywhere. Dave is updating nullability. Jeff will vet Flex SDK against this if possible.

Michael’s operators stuff, hashed out with counter-proposal and agreement on public static (slightly magic) functions.

file:///C:/doku.php%3fid=proposals:operators
file:///C:/doku.php%3fid=proposals:switch_class
file:///C:/doku.php%3fid=clarification:type_system
file:///C:/doku.php%3fid=proposals:typeof
file:///C:/doku.php%3fid=proposals:nullability
file:///C:/doku.php%3fid=proposals:operators

secma

Unicode spec: Lars suggests specify both UCS-2 and UTF-16 indexing, and let the browser implementation choose.
The market will sort.

Brendan solicits a JScript. NET compatible enum proposal (see bottom of switch class for msdn2.microsoft.com doc
link).

Bugfixing the spec: get the wrong bits removed, link to proposals where spec gaps remain that we are not ready to fill.

file:///C:/doku.php%3fid=proposals:switch_class

