

Ecma International Rue du Rhône 114 CH-1204 Geneva T/F: +41 22 849 6000/01 www.ecma-international.org

 FC 2006_03_16_TC39_TG1.doc 12/09/2017 10:00:00 For Ecma use only

Minutes of the: Ecma TC39-TG1

held in: Redmond (Microsoft)

on: 21st April 2006

Attendees

• Jeff Dyer, Adobe Systems

• Rok Yu, Microsoft

• Brendan Eich, Mozilla Foundation

• Graydon Hoare, Mozilla Foundation

• Dave Herman, Northeastern University

• Lars Thomas Hansen, Opera Software

On phone:

• Francis Cheng, Adobe Systems

• Pratap Lakshman, Microsoft

• Blake Kaplan, Mozilla Foundation

• Cormac Flanagan, UC Santa Cruz

Agenda

• date literal syntax

• type system

• type parameters

Discussion

• Dave: packages are only compile time?

 package p { }

 var p = {x:3}

 // now an x is added p somehow (how?):

 import q

 // what does this mean?

 p.x

• namespaces and packages

 namespace N; // makes a compile-time const N = new Namespace(unique)

 package p { } // makes a compile-time const package name (could be dotted)

• the names are disjoint, so you could have namespace N and package N { }

• Dave: good namespace use cases?

Ecma/TC39-TG1/2006/020

http://www.ecma-international.org/

2

• Jeff: cross-cutting AS3::Object, etc. for early binding

• Brendan: 1) MOP::iterator; 2) builtin::hashcode

• Property id is pair (namespace, string), call it N::S for short

 I ::= N::S

 E ::= ... | E1[E2::E3] | E1.E2::E3

• General idea is to have some E known at compile time. The pragma use namespace N requires N to
be a compile-time expression.

• Do we need run-time namespaces? They come in through eval and E4X anyway. eval can’t open a
namespace in its caller.

• Doug Crockford’s call for typeof [] == “array”, but is should help avoid that

• What about code that hacks String = Array? Editions 1-3 allow this, but specify “original
String.prototype value” be used for automatic constructions, leading to incoherence. Can we make
the standard class constructors {RO,DD} in the global object?

• More namespaces

• open namespace priority based on explicit before implicit open

• or using two scopes/objects (package or scripts or prototypes)

• Lars has a clarification issue: should explicitly opened ns shadow implicit

• Doug Crockford’s call for unreserved words in object literal ids and to right of dot

• counterexample in light of automatic semicolon insertion:

 foo = "hi". if (bar()) ...

• is this different because |if| is already reserved? wish to avoid degrading error reporting

• If we can avoid more than one or two tokens of lookahead, and the rules are clear and simple
enough, then yes

• More namespaces

• AS3 makes different files have different implicitly open internal scopes

 package p {

 var x = 20

 }

 public var x = 10 // public required if this is in a different file

 {

 import p.x

 print(x) // want 10, but we get 20 if p is in a different file

 }

• builtin classes

• Discussion about prototype – does it allow static shadowing checking? yes and type checking, if the
type annotation

file:///C:/doku.php%3fid=proposals:builtin_classes

3

• Only if DontDelete is included

• Dynamic prototype defeats static shadowing and type checking. So dynamic doesn’t make sense as
a declaration qualifier, and we should avoid it, even though that incompatibly would make ES3 builtin
prototype properties DontDelete. We think we can get away with this change.

• Still need dynamic for class, but only for class.

• Lars proposes

 deletable / fixed

 writable / readonly

 enumerable / nonenumerable

• But if we boot dynamic from member qualifiers, we have

 const

 prototype

 static

• and the combinations, we think, make sense now (Graydon is gleefully editing the table to remove
dynamic static).

• Type system for initialisers. Idea #1 (link to it here) seems best.

• Dave: lacking a single default value for non-nullable user-defined types, runtime error to refer to a
member var before it has been set.

• New proposal to capture heterogenous array type:

o Array[[int]] is array of zero or more ints.

o Array[[int, String, *]] is array of two or more elements, the first

an int, the second a String, and any at index 2 or greater of top type.

• Rok objects, arguing that Arrays should be typed homogeneously.

• Dave raises non-nullability: are holes in sparse arrays undefined or null?

• You can have a homogenous array of ints, but if it is sparse the holes can’t have a value in the type’s
value set.

• Do we need tuples? Arrays can be used like tuples but you don’t get length constancy and length
checking. Examples:

 Array[[int, int, int]] <: Array[[*]]

 Array[[int]] is a subtype of Object[[#:int, length:uint]]

• Using more concise notation where # is 0..(2^32-1):

 [int] <: {#:int, length:uint}

• Rationalize Array and other objects as Records. What about structural vs. nominal typing?

• Discussion of bang again – var i : int = foo() where foo returns * is ok. Another example: if (foo()) ...
is ok, var b : Boolean = foo(); if (b) ... is too, but some people want the latter to be an error. Lars
points out that a correct re-factoring would be var b : * = foo(); if (b)

• Destructuring review: still wondering if there is a less backward-looking form of object destructuring.

4

21 April 2006

* Move weekly teleconference to Wednesday 10:00-12:00 Pacific. * Lars asks about Opera hosting June face-to-face?

Sentiment favors keeping Opera-hosted meeting in July.

Agenda

• More type stuff.

• enum come-back?

• Michael’s operators proposal.

Discussion

Lars presents results for structural typing of initialisers vs. named types.

Controversy: implicit vs. explicit contextual type narrowing in initialisers.

Three options:

• Must use : contextually after {f: 37}

• Must use : T for some record type

• In contexts where type of left-hand side is known, contextually is implicit

• Lars: evil, because E3 vs. E4 mixtures change incompatibly from E3 only
o General agreement after some discussion
o Type inference in general, at scale, requires static typing

• Can let and var use initialiser context implicitly?

o Perhaps, but we don’t implicitly type x as int in var x = 42

• Record types can be supertypes of classes
o How much type-checking pain is this in default dynamic language?
o Lack of inference leads back to nominal typing

Talk evolved through discussion of the necessity of structural typing for many poorly advocated “duck typing” use-

cases, a review of switch class, and a grand unification of structural types as follows:

type U = (A, B, C) // Sum of A, B, and C

type R = {p:int, q:String} // Object with at least p and q of given types

type A = [int,,String,*] // Array of int, *, String, and 0 or more *

type F = function(int):int // Function mapping int to int with this:*

These can be composed. They’re finite by outlawing type T = (int, T) or more obscure recursion across

packages.

Lars writing this up at type system.

Would we benefit from (type T) as a unary expression (parenthesized for clarity)? We are deprecating typeof

with a bug fix for null.

Constructor restrictions against this mutation: they are not allowed to call methods, just statics and global functions; not

allowed to pass this or super anywhere. Dave is updating nullability. Jeff will vet Flex SDK against this if possible.

Michael’s operators stuff, hashed out with counter-proposal and agreement on public static (slightly magic) functions.

file:///C:/doku.php%3fid=proposals:operators
file:///C:/doku.php%3fid=proposals:switch_class
file:///C:/doku.php%3fid=clarification:type_system
file:///C:/doku.php%3fid=proposals:typeof
file:///C:/doku.php%3fid=proposals:nullability
file:///C:/doku.php%3fid=proposals:operators

5

Unicode spec: Lars suggests specify both UCS-2 and UTF-16 indexing, and let the browser implementation choose.

The market will sort.

Brendan solicits a JScript.NET compatible enum proposal (see bottom of switch class for msdn2.microsoft.com doc

link).

Bugfixing the spec: get the wrong bits removed, link to proposals where spec gaps remain that we are not ready to fill.

file:///C:/doku.php%3fid=proposals:switch_class

