cecma

Minutes of the:

held in:
on:
Attendees

Meeting time 10am PDT.
On phone:

Francis Cheng, Adobe Systems

Jeff Dyer, Adobe Systems

Gary Grossman, Adobe Systems

Ed Smith, Adobe Systems

Pratap Lakshman, Microsoft

Brendan Eich, Mozilla Foundation
Graydon Hoare, Mozilla Foundation
Blake Kaplan, Mozilla Foundation
Dave Herman, Northeastern University
Lars Thomas Hansen, Opera Software
Cormac Flanagan, UC Santa Cruz

Agenda
Note new meeting day of week for phone conferences.

package semantics
multiple compilation units
formal type system

other hot topics

Discussion

e package semantics

Ecma/TC39-TG1/2006/022

Ecma TC39-TG1

Phone conference

39 May 2006

o packages declare two namespaces, p.g#public and p.g#internal
o import p.qisinpartlike use namespace p.g#public
o expression starting p.q.x is rewritten to p.g#public::x

= even within package p.q, p.g.x is rewritten, so x must be public

= internal::x or just x would work unless ambiguity requires full path

e multiple compilation units

o Dave: what if you have package p.q with an x use but no x def; now add x to p.q after the

compiler dealt with the first x use

= Jeff: package compilation ends at verification or loading
= Dave: so packages do involve separate compilation units

Ecma International Rue du Rhoéne 114 CH-1204 Geneva

FC 2006_03_16_TC39_TGl.doc 12/09/2017 10:00:00

T/F: +41 22 849 6000/01

www.ecma-international.org

For Ecma use only

http://www.ecma-international.org/
file:///C:/doku.php%3fid=clarification:package_semantics
file:///C:/doku.php%3fid=clarification:multiple_compilation_units
file:///C:/doku.php%3fid=clarification:formal_type_system
file:///C:/doku.php%3fid=clarification:package_semantics
file:///C:/doku.php%3fid=clarification:multiple_compilation_units

secma

= Lars: see multiple compilation units for browser constraints
= Ed: AS3 ignores redefinition
= two programs define utilities, pgm1 has A&B, pgm2 has B&C
= they load in the same runtime, in that order
= AS3 assumes first B is same as second B
= Brendan: browsers and ES1-3 of course have writeable function bindings
= 5o last one wins
= can we do better than last-wins for global functions or first-wins for classes
and packages?
= Ed: hard to share common utility packages without getting too fine-grained
= Dave: what are use-cases for splitting up packages into multiple pieces?
= Jeff: Java examples to avoid overlarge files
= Dave: easy to unify that case at load time
= Ed: package with hash table and tree
= pgml uses hash table
= pgm2 uses tree
= Dave: why are those in the same package? Ok, pick a better example
= Ed: explored a signature checksum scheme to verify Bs don’t conflict
= Ed: another example: graphing components for charting
= also accessibility addons to the charting package
= want accessibility stuff in a separate compilation unit
= Brendan: first one wins is going to be hard to beat
= Ed: Java does that within a classloader
= Lars: anyone-wins is going to break on the web
= Brendan: yeah, many <script src® cases are like #include, some
are more like block-scoped import
= Ed: Flash has application domains outside the AS3 language
= you can create a sub-domain to isolate effects
= lookups start with super-domain then go to sub-domain
= Pratap: CLR2 has app domains too
= Gary: Flash took inspiration from that, similar
= Dave: shadowing is not mutability
= Brendan: browsers name modules by URI, so no subversion via shadowing
= Ed: packages are namespaces are URIs, so do tie into security and http
caching
= Graydon: content hashing better than relying on DNS

e formal type system questions
o String to Boolean
= no controversy on if, while, for, &&, ||, ! converting
»= varx: Boolean = “hi’
= Jeff: that converts in AS3 in bang or tilde
= compatibility requires this without type annotations
= Brendan: could be stricter
= Jeff: refactoring hazard
= Cormac: tradeoff between type-checking and convenience/migration
o Return from constructors
= Brendan: ES1-3 allow function constructor to return a different object
= Ed: class constructor functions cannot return expr; at all
= but class ctors can return; to bail early
= Brendan: different from rule in functions
= Dave: how does type system talk about type of constructor?
= so could allow constructors to have Void return type
= and they could even contain return void O or whatever
Jeff: in AS3, function f():void{...} means ... cannot return expr;
= Dave: type Void means can’t return a value

file:///C:/doku.php%3fid=clarification:multiple_compilation_units
file:///C:/doku.php%3fid=clarification:formal_type_system

secma

= Brendan: then need type Undefined too
= Dave: need to review proper tail calls in light of this
= Ed: try this:
= Void is type, has value undefined
= f():void implies extra syntax restriction against return expr;
= but otherwise doesn’t affect type-checking, proper tail calls, etc.
= Dave: concerned about need to name Undefined or Null in unions, etc.
= Brendan, Ed: need special restriction on return expr; for
= constructors
= setters
= generators
o with discussion
= Using annotations and structural types, one can finally state the precise type of the
object named in the with head
= let declarations in body of with work as elsewhere
= Apart from these orthogonal goods, can we reform with, or banish it?
= use strictcouldbanishittoa { use dynamic; ... } block
= does this really help? migration vs. new code, why do people use with?
o Global object unknowns
= Brendan: which prototype proposes immutable String, etc.
* intrinsic::StringVs. String wouldn’t differ if we adopt that proposal
" s.intrinsic::charAt (i) would be different from s.charat (i) for backward
compatibility, to support AOP-ish hacking

class String {

intrinsic function charAt(i:uint) :String {...}
prototype function charAt(i:*):String {...}

e intrinsic proposal
o Use intrinsic instead of something like As3 or Es4 for early binding.

file:///C:/doku.php%3fid=proposals:proper_tail_calls
file:///C:/doku.php%3fid=clarification:which_prototype
file:///C:/doku.php%3fid=proposals:intrinsic_namespace

