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e package semantics
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o packages declare two namespaces, p.g#public and p.g#internal
o import p.qisinpartlike use namespace p.g#public
o expression starting p.q.x is rewritten to p.g#public::x

= even within package p.q, p.g.x is rewritten, so x must be public

= internal::x or just x would work unless ambiguity requires full path

e multiple compilation units

o Dave: what if you have package p.q with an x use but no x def; now add x to p.q after the

compiler dealt with the first x use

= Jeff: package compilation ends at verification or loading
= Dave: so packages do involve separate compilation units
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= Lars: see multiple compilation units for browser constraints
= Ed: AS3 ignores redefinition
= two programs define utilities, pgm1 has A&B, pgm2 has B&C
= they load in the same runtime, in that order
= AS3 assumes first B is same as second B
= Brendan: browsers and ES1-3 of course have writeable function bindings
= 5o last one wins
= can we do better than last-wins for global functions or first-wins for classes
and packages?
= Ed: hard to share common utility packages without getting too fine-grained
= Dave: what are use-cases for splitting up packages into multiple pieces?
= Jeff: Java examples to avoid overlarge files
= Dave: easy to unify that case at load time
= Ed: package with hash table and tree
= pgml uses hash table
=  pgm2 uses tree
= Dave: why are those in the same package? Ok, pick a better example
= Ed: explored a signature checksum scheme to verify Bs don’t conflict
= Ed: another example: graphing components for charting
= also accessibility addons to the charting package
= want accessibility stuff in a separate compilation unit
= Brendan: first one wins is going to be hard to beat
= Ed: Java does that within a classloader
= Lars: anyone-wins is going to break on the web
= Brendan: yeah, many <script src® cases are like #include, some
are more like block-scoped import
= Ed: Flash has application domains outside the AS3 language
= you can create a sub-domain to isolate effects
= lookups start with super-domain then go to sub-domain
= Pratap: CLR2 has app domains too
= Gary: Flash took inspiration from that, similar
= Dave: shadowing is not mutability
= Brendan: browsers name modules by URI, so no subversion via shadowing
= Ed: packages are namespaces are URIs, so do tie into security and http
caching
= Graydon: content hashing better than relying on DNS

e formal type system questions
o String to Boolean
= no controversy on if, while, for, &&, ||, ! converting
»= varx: Boolean = “hi’
= Jeff: that converts in AS3 in bang or tilde
= compatibility requires this without type annotations
= Brendan: could be stricter
= Jeff: refactoring hazard
= Cormac: tradeoff between type-checking and convenience/migration
o Return from constructors
= Brendan: ES1-3 allow function constructor to return a different object
= Ed: class constructor functions cannot return expr; at all
= but class ctors can return; to bail early
= Brendan: different from rule in functions
= Dave: how does type system talk about type of constructor?
= so could allow constructors to have Void return type
= and they could even contain return void O or whatever
Jeff: in AS3, function f():void{...} means ... cannot return expr;
= Dave: type Void means can’t return a value
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= Brendan: then need type Undefined too
= Dave: need to review proper tail calls in light of this
= Ed: try this:
= Void is type, has value undefined
= f():void implies extra syntax restriction against return expr;
= but otherwise doesn’t affect type-checking, proper tail calls, etc.
= Dave: concerned about need to name Undefined or Null in unions, etc.
= Brendan, Ed: need special restriction on return expr; for
= constructors
= setters
= generators
o with discussion
= Using annotations and structural types, one can finally state the precise type of the
object named in the with head
= let declarations in body of with work as elsewhere
= Apart from these orthogonal goods, can we reform with, or banish it?
= use strictcouldbanishittoa { use dynamic; ... } block
= does this really help? migration vs. new code, why do people use with?
o Global object unknowns
= Brendan: which prototype proposes immutable String, etc.
* intrinsic::StringVs. String wouldn’t differ if we adopt that proposal
" s.intrinsic::charAt (i) would be different from s.charat (i) for backward
compatibility, to support AOP-ish hacking

class String {

intrinsic function charAt(i:uint) :String {...}
prototype function charAt(i:*):String {...}

e intrinsic proposal
o Use intrinsic instead of something like As3 or Es4 for early binding.
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