

Ecma International Rue du Rhône 114 CH-1204 Geneva T/F: +41 22 849 6000/01 www.ecma-international.org

 FC 2006_03_16_TC39_TG1.doc 12/09/2017 10:00:00 For Ecma use only

Minutes of the: Ecma TC39-TG1

held in: Phone conference

on: 3rd May 2006

Attendees

Meeting time 10am PDT.

On phone:

• Francis Cheng, Adobe Systems

• Jeff Dyer, Adobe Systems

• Gary Grossman, Adobe Systems

• Ed Smith, Adobe Systems

• Pratap Lakshman, Microsoft

• Brendan Eich, Mozilla Foundation

• Graydon Hoare, Mozilla Foundation

• Blake Kaplan, Mozilla Foundation

• Dave Herman, Northeastern University

• Lars Thomas Hansen, Opera Software

• Cormac Flanagan, UC Santa Cruz

Agenda

Note new meeting day of week for phone conferences.

• package semantics

• multiple compilation units

• formal type system

• other hot topics

Discussion

• package semantics
o packages declare two namespaces, p.q#public and p.q#internal
o import p.q is in part like use namespace p.q#public

o expression starting p.q.x is rewritten to p.q#public::x
▪ even within package p.q, p.q.x is rewritten, so x must be public
▪ internal::x or just x would work unless ambiguity requires full path

• multiple compilation units
o Dave: what if you have package p.q with an x use but no x def; now add x to p.q after the

compiler dealt with the first x use
▪ Jeff: package compilation ends at verification or loading
▪ Dave: so packages do involve separate compilation units

Ecma/TC39-TG1/2006/022

http://www.ecma-international.org/
file:///C:/doku.php%3fid=clarification:package_semantics
file:///C:/doku.php%3fid=clarification:multiple_compilation_units
file:///C:/doku.php%3fid=clarification:formal_type_system
file:///C:/doku.php%3fid=clarification:package_semantics
file:///C:/doku.php%3fid=clarification:multiple_compilation_units

2

▪ Lars: see multiple compilation units for browser constraints
▪ Ed: AS3 ignores redefinition

▪ two programs define utilities, pgm1 has A&B, pgm2 has B&C
▪ they load in the same runtime, in that order
▪ AS3 assumes first B is same as second B

▪ Brendan: browsers and ES1-3 of course have writeable function bindings
▪ so last one wins
▪ can we do better than last-wins for global functions or first-wins for classes

and packages?
▪ Ed: hard to share common utility packages without getting too fine-grained
▪ Dave: what are use-cases for splitting up packages into multiple pieces?

▪ Jeff: Java examples to avoid overlarge files
▪ Dave: easy to unify that case at load time
▪ Ed: package with hash table and tree

▪ pgm1 uses hash table
▪ pgm2 uses tree

▪ Dave: why are those in the same package? Ok, pick a better example
▪ Ed: explored a signature checksum scheme to verify Bs don’t conflict
▪ Ed: another example: graphing components for charting

▪ also accessibility addons to the charting package
▪ want accessibility stuff in a separate compilation unit

▪ Brendan: first one wins is going to be hard to beat
▪ Ed: Java does that within a classloader
▪ Lars: anyone-wins is going to break on the web

▪ Brendan: yeah, many <script src cases are like #include, some

are more like block-scoped import
▪ Ed: Flash has application domains outside the AS3 language

▪ you can create a sub-domain to isolate effects
▪ lookups start with super-domain then go to sub-domain

▪ Pratap: CLR2 has app domains too
▪ Gary: Flash took inspiration from that, similar
▪ Dave: shadowing is not mutability
▪ Brendan: browsers name modules by URI, so no subversion via shadowing
▪ Ed: packages are namespaces are URIs, so do tie into security and http

caching
▪ Graydon: content hashing better than relying on DNS

• formal type system questions
o String to Boolean

▪ no controversy on if, while, for, &&, ||, ! converting
▪ var x : Boolean = “hi”
▪ Jeff: that converts in AS3 in bang or tilde

▪ compatibility requires this without type annotations
▪ Brendan: could be stricter
▪ Jeff: refactoring hazard
▪ Cormac: tradeoff between type-checking and convenience/migration

o Return from constructors
▪ Brendan: ES1-3 allow function constructor to return a different object
▪ Ed: class constructor functions cannot return expr; at all

▪ but class ctors can return; to bail early
▪ Brendan: different from rule in functions
▪ Dave: how does type system talk about type of constructor?

▪ so could allow constructors to have Void return type
▪ and they could even contain return void 0 or whatever

▪ Jeff: in AS3, function f():void{...} means ... cannot return expr;
▪ Dave: type Void means can’t return a value

file:///C:/doku.php%3fid=clarification:multiple_compilation_units
file:///C:/doku.php%3fid=clarification:formal_type_system

3

▪ Brendan: then need type Undefined too
▪ Dave: need to review proper tail calls in light of this
▪ Ed: try this:

▪ Void is type, has value undefined
▪ f():void implies extra syntax restriction against return expr;
▪ but otherwise doesn’t affect type-checking, proper tail calls, etc.

▪ Dave: concerned about need to name Undefined or Null in unions, etc.
▪ Brendan, Ed: need special restriction on return expr; for

▪ constructors
▪ setters
▪ generators

o with discussion

▪ Using annotations and structural types, one can finally state the precise type of the
object named in the with head

▪ let declarations in body of with work as elsewhere

▪ Apart from these orthogonal goods, can we reform with, or banish it?

▪ use strict could banish it to a { use dynamic; ... } block

▪ does this really help? migration vs. new code, why do people use with?
o Global object unknowns

▪ Brendan: which prototype proposes immutable String, etc.

▪ intrinsic::String vs. String wouldn’t differ if we adopt that proposal

▪ s.intrinsic::charAt(i) would be different from s.charAt(i) for backward

compatibility, to support AOP-ish hacking

 class String {

 . . .

 intrinsic function charAt(i:uint):String {...}

 prototype function charAt(i:*):String {...}

 }

• intrinsic proposal

o Use intrinsic instead of something like AS3 or ES4 for early binding.

file:///C:/doku.php%3fid=proposals:proper_tail_calls
file:///C:/doku.php%3fid=clarification:which_prototype
file:///C:/doku.php%3fid=proposals:intrinsic_namespace

