

Ecma International Rue du Rhône 114 CH-1204 Geneva T/F: +41 22 849 6000/01 www.ecma-international.org

 2006_09_21_TC39_TG1.doc 12/09/2017 10:06:00 For Ecma use only

Minutes of the: Ecma TC39-TG1

held in: Mountain View (Mozilla)

on: 21st September 2006

Attendees

• Jeff Dyer, Adobe Systems

• Steven Johnson, Adobe Systems

• Dan Smith, Adobe Systems

• Edwin Smith, Adobe Systems

• Michael O’Brien, Mbedthis

• Brendan Eich, Mozilla Foundation

• Graydon Hoare, Mozilla Foundation

• Dave Herman, Northeastern University

• Lars Hansen, Opera Software

• Iaian Lamb, Yahoo!

• Julien Lecomte, Yahoo!

Agenda

• eval

• yield

• proposals review

Notes

• eval
o resurrected_eval
o method on global object
o do we need eval(s, [oN, ..., o1])

▪ where o1 is the head of the replacement scope chain

• global self-name
o globals
o just a property name, can be bound by sandboxing code as it wishes

• yield
o should make yield e and let (h) e use the same nonterminal for e
o either: over-parenthesize
o or: non-terminal for e is AssignmentExpression
o resolved: use AssignmentExpression

• documentation comments
o lars: why not use a comment?
o doug’s proposal does not reflect as doc
o how does this relate to decorators?

Ecma/TC39-TG1/2006/037

http://www.ecma-international.org/
file:///C:/doku.php%3fid=proposals:proposals
file:///C:/doku.php%3fid=proposals:resurrected_eval
file:///C:/doku.php%3fid=proposals:globals

2

▪ need a unified proposal
▪ want real-world use-cases so we don’t miss anything that should be ES4

• dave/brendan shorter/more-compositional function expression forms

o let function f(args) { body }  let f(args) { body } OR let f(args) expr

• normative grammar issues
o we have resolved to eliminate reference types in the spec
o should we restrict optional reference types in the grammar? no
o should we make the spec’s normative grammar be LL(1) or LR(1)? yes
o jeff to take on formalizing the grammar, mob will help

proposals review

• type parameters
o class A.<T> extends T { ... } should not be allowed
o similar such questions may arise
o dave: C# type non-erasure vs. Java erasure

• builtin classes
o lacks intrinsic, jeff to update

• structural types and typing of initializers
o do we allow any TypeExpression after : in initialiser annotation? yes
o do we allow any Exprsssion after : in initialiser annotation? uhhh...

▪ dave:
▪ we want static type checker recognizing static constraint
▪ casts for dynamic constraints (less common)
▪ more common static constraint case should have lightweight syntax

▪ agreement on these two points:
▪ want {p: 42} : {p: int} where the annotated type is a TypeExpression
▪ want cast T (E)

▪ what about to?

▪ want x to T where grammatically T is TypeExpression

▪ confusion about foo().to(x) being backwards - should be from?

▪ entertain proposals in the wiki for nice dynamic-to/is API syntax
▪ resolved: want infix operator syntax for static case: TyExpr on right
▪ what about is?

▪ alternative is to match to and require static TyExpr on right

▪ allowing any Expr means structural types must be named to be used
▪ if we require TyExpr on right of is, we may break AS3 users

• is as to
o in good shape apart from wiki page title
o dave to update based on recent type system work and previous item

• nullability
o agreement on nullability by default
o discussion brought up need to:

▪ update the spec before re-exporting
▪ respond to es4-discuss list with pointers to new export

• numbers

file:///C:/doku.php%3fid=proposals:normative_grammar
file:///C:/doku.php%3fid=proposals:type_parameters
file:///C:/doku.php%3fid=proposals:builtin_classes
file:///C:/doku.php%3fid=proposals:structural_types_and_typing_of_initializers
file:///C:/doku.php%3fid=proposals:is_as_to
file:///C:/doku.php%3fid=proposals:nullability
file:///C:/doku.php%3fid=proposals:numbers

3

o in good shape now (see recent numbers)
o mob is doing int64 as extension; seems to fit

• strict and standard modes
o raised issues of spec language and completeness
o build on E3 or try to improve it w/ a significantly different metalang?
o take E3 metalang and clean it up a bit (a la ECMA-357)
o dave to try writing a few more accessible spec styles for some productions

• normative grammar
o see above

• intrinsic namespace
o in good shape, foundational

• type refinements
o move to deferred

proposals, continued

• enumerability

• switch type

• block expression

• proper tail calls

• type definitions

• syntax for type expressions – fix ? to be postfix

• namespace shadowing
o all good

• iterators and generators
o StopIteration is of type StopIterationClass

o intrinsic::iterator must become iterator::get or some such

• resurrected eval

• expression closures, still reviewing

• multiple compilation units - need to prove the two propositions

• security wrappers - does it do enough to be worth its cost?
o meaning: does enough? costs a lot?

• issue with instrinsic::global
o is it bound to the caller’s global in the “sandbox” (sic) object passed to the resurrected eval?

lars said yes earlier, brendan said no; revised answer is no.

• catchalls, hashcodes, operators, destructuring
o All good
o Note to self:

 for ([k] in o) => SyntaxError

 for ([k,v,u] in o) => SyntaxError

 for ([k,,,] in o) => ok

 for ([k,,] in o) => ok

file:///C:/doku.php%3fid=discussion:numbers
file:///C:/doku.php%3fid=proposals:strict_and_standard_modes
file:///C:/doku.php%3fid=proposals:normative_grammar
file:///C:/doku.php%3fid=proposals:intrinsic_namespace
file:///C:/doku.php%3fid=proposals:type_refinements
file:///C:/doku.php%3fid=proposals:namespace_shadowing
file:///C:/doku.php%3fid=proposals:iterators_and_generators

4

 for ([k,v] in o) => ok

• bug fixes
o brendan: remove eval bug fixes, it has its own page

o brendan: generic statics for Array and String should be split out
o jeff: escaped newlines in string literals ok

• decimal
o graydon: pragma syntax update
o otherwise looks good

• typeof
o update to leave typeof null === ‘‘object’’

o update to change typeof class === ‘‘object’’

o BUT: typeof String === ‘‘function’’ for backward compat

o informative words expressing regret

day two

• syntax for pragmas
o ok

• reserved words
o should we do as js1.7 and allow function delete? no
o should we allow reserved identifiers after ::? yes

• update unicode
o ok (discussion around clarity of implementation choice, how choice is one way or the other

for all inputs, depending on input).
o resolved: format conrol chars are not stripped from source input, therefore are preserved in

string and regexp literals

• extend_regexps
o Updated to note per yesterday’s discussion that typeof /re/ === “object”.
o Also adopting the IE quirk that Opera and Mozilla do: /[/]/ matches “/”.
o This means that #... line comments in /very-long/x regexps must balance [].

• slice_syntax
o Brendan to clean up, move most to discussion, present minimal proposal
o Iain: why not define a range generator function?
o Discussion about +, <, == etc. for Array – put them in a new namespace that
o new code can use: use namespace operators.

• triple quotes
o still good

• documentation
o move to reflection library
o use javadoc style comments (precedent: asdoc tool from adobe)

• globals
o singularize intrinsic::globals

file:///C:/doku.php%3fid=proposals:decimal
file:///C:/doku.php%3fid=proposals:typeof
file:///C:/doku.php%3fid=proposals:syntax_for_pragmas
file:///C:/doku.php%3fid=proposals:reserved_words
file:///C:/doku.php%3fid=proposals:update_unicode
file:///C:/doku.php%3fid=proposals:extend_regexps
file:///C:/doku.php%3fid=proposals:slice_syntax
file:///C:/doku.php%3fid=proposals:triple_quotes
file:///C:/doku.php%3fid=proposals:documentation
file:///C:/doku.php%3fid=proposals:globals

5

• date and time
o all good but nanotime:

▪ discussion about accuracy needs – want delta-t for benchmarking, really
▪ so don’t need nanoseconds, or want to impose them on all impls
▪ ptw’s tick/tickScale proposal from es4-discuss considered too hardware-ish

▪ not good if tickScale isn’t constant; if constant, it may have to be too large a
number of nanoseconds in order for tick to be cheaply computed

o dave: social psych reaction time research
o lars/graydon: use nanoseconds since creation of Date object: d.nanoAge()

o nanoAge to be drafted

• json encoding and decoding
o Array.prototype.toJSONString
o Object.prototype.toJSONString
o String.prototype.parseJSON
o String.prototype.trim (free-riding on JSON here)

• the module perplex – packages don’t solve naming and loading issues

• stack inspection
o good

• meta objects
o lars/dave: namespace() and name() should be in ClassType not Type

▪ ditto for supertypes() and subtypes() (rename to super/subClasses())
o dave: use iterators instead of arrays
o dave: note to use [T] instead of no-longer-proposed Array.<T>
o dave: should reflect public methods and fields, structural fields, etc.
o InterfaceType? sure; InterfaceType.implementedBy()

• expression closures
o good, clean up discussion

• multiple compilation units
o needs exact and complete list of differences between models

• security wrappers
o graydon and brendan: come up with use cases

• iain: version reflection? object detection and try-eval rule

• brendan: dict syntax for null-proto object initialisers

• TODO:
o brendan: slice
o iain: json encoding and decoding, trim
o lars: documentation
o graydon: date and time
o graydon and brendan: security wrappers

file:///C:/doku.php%3fid=proposals:date_and_time
file:///C:/doku.php%3fid=proposals:json_encoding_and_decoding
file:///C:/doku.php%3fid=proposals:stack_inspection
file:///C:/doku.php%3fid=proposals:meta_objects
file:///C:/doku.php%3fid=proposals:expression_closures
file:///C:/doku.php%3fid=clarification:multiple_compilation_units
file:///C:/doku.php%3fid=proposals:security_wrappers

