‘ e c ma Ecma/TC39-TG1/2006/037

Minutes of the: Ecma TC39-TG1
held in: Mountain View (Mozilla)
on: 215t September 2006

Attendees

Jeff Dyer, Adobe Systems

Steven Johnson, Adobe Systems
Dan Smith, Adobe Systems

Edwin Smith, Adobe Systems
Michael O’Brien, Mbedthis
Brendan Eich, Mozilla Foundation
Graydon Hoare, Mozilla Foundation
Dave Herman, Northeastern University
Lars Hansen, Opera Software

laian Lamb, Yahoo!

Julien Lecomte, Yahoo!

Agenda
e eval
e vyield

e proposals review
Notes

e eval
o resurrected eval
o method on global object
o do we need eval(s, [oN, ..., 01])
= where ol is the head of the replacement scope chain

e global self-name

o globals
o just a property name, can be bound by sandboxing code as it wishes

e yield
o should make yield e and let (h) e use the same nonterminal for e
o either: over-parenthesize
o or: non-terminal for e is AssignmentExpression
o resolved: use AssignmentExpression

e documentation comments
o lars: why not use a comment?
o doug’s proposal does not reflect as doc
o how does this relate to decorators?

Ecma International Rue du Rhoéne 114 CH-1204 Geneva T/F: +41 22 849 6000/01 www.ecma-international.org

2006_09_21_TC39_TG1l.doc 12/09/2017 10:06:00 For Ecma use only


http://www.ecma-international.org/
file:///C:/doku.php%3fid=proposals:proposals
file:///C:/doku.php%3fid=proposals:resurrected_eval
file:///C:/doku.php%3fid=proposals:globals

R
¥ - /

= need a unified proposal
= want real-world use-cases so we don’t miss anything that should be ES4

dave/brendan shorter/more-compositional function expression forms
o let function f(args) { body } ® let f(args) { body } OR let f(args) expr

normative grammar issues

we have resolved to eliminate reference types in the spec

should we restrict optional reference types in the grammar? no

should we make the spec’s normative grammar be LL(1) or LR(1)? yes
jeff to take on formalizing the grammar, mob will help

o 0 O O

proposals review

type parameters
o class A.<T>extends T{ ... } should not be allowed
o similar such questions may arise
o dave: C# type non-erasure vs. Java erasure

builtin classes
o lacks intrinsic, jeff to update

structural types and typing of initializers
o do we allow any TypeExpression after : in initialiser annotation? yes
o do we allow any Exprsssion after : in initialiser annotation? uhhh...
= dave:
= we want static type checker recognizing static constraint
= casts for dynamic constraints (less common)
= more common static constraint case should have lightweight syntax
= agreement on these two points:
= want {p: 42} : {p: int} where the annotated type is a TypeExpression
= wantcast T (E)
= what about to?
= wantx to T where grammatically T is TypeExpression
= confusion about foo () .to (x) being backwards - should be from?
= entertain proposals in the wiki for nice dynamic-to/is API syntax
= resolved: want infix operator syntax for static case: TyExpr on right
= what about is?
= alternative is to match to and require static TyExpr on right
= allowing any Expr means structural types must be named to be used
= if we require TYEXpr on right of is, we may break AS3 users

is as to
o ingood shape apart from wiki page title
o dave to update based on recent type system work and previous item

nullability
o agreement on nullability by default

o discussion brought up need to:
= update the spec before re-exporting
= respond to es4-discuss list with pointers to new export

numbers


file:///C:/doku.php%3fid=proposals:normative_grammar
file:///C:/doku.php%3fid=proposals:type_parameters
file:///C:/doku.php%3fid=proposals:builtin_classes
file:///C:/doku.php%3fid=proposals:structural_types_and_typing_of_initializers
file:///C:/doku.php%3fid=proposals:is_as_to
file:///C:/doku.php%3fid=proposals:nullability
file:///C:/doku.php%3fid=proposals:numbers

secma

o ingood shape now (see recent numbers)
o mob is doing int64 as extension; seems to fit

e strict and standard modes
o raised issues of spec language and completeness
o build on E3 or try to improve it w/ a significantly different metalang?
o take E3 metalang and clean it up a bit (a la ECMA-357)
o dave to try writing a few more accessible spec styles for some productions

e normative grammar
o see above

e intrinsic namespace
o ingood shape, foundational

e type refinements
o move to deferred

proposals, continued

enumerability
switch type
block expression
proper tail calls
type definitions
syntax for type expressions — fix ? to be postfix
namespace shadowing
o allgood

e iterators and generators
o Stoplterationisoftype StopIterationClass
o intrinsic::iterator mustbecome iterator::get or some such

e resurrected eval

e expression closures, still reviewing
e multiple compilation units - need to prove the two propositions
e security wrappers - does it do enough to be worth its cost?

o meaning: does enough? costs a lot?

e issue with instrinsic::global

o s it bound to the caller’'s global in the “sandbox” (sic) object passed to the resurrected eval?

lars said yes earlier, brendan said no; revised answer is no.

e catchalls, hashcodes, operators, destructuring
o Allgood
o Note to self:

for ([k] in o) => SyntaxError

for ([k,v,u] in o) => SyntaxError
for ([k,,,] in o) => ok

for ([k,,] in o) => ok


file:///C:/doku.php%3fid=discussion:numbers
file:///C:/doku.php%3fid=proposals:strict_and_standard_modes
file:///C:/doku.php%3fid=proposals:normative_grammar
file:///C:/doku.php%3fid=proposals:intrinsic_namespace
file:///C:/doku.php%3fid=proposals:type_refinements
file:///C:/doku.php%3fid=proposals:namespace_shadowing
file:///C:/doku.php%3fid=proposals:iterators_and_generators

secma

for ([k,v] in o) => ok

e bug fixes
o brendan: remove eval bug fixes, it has its own page
o brendan: generic statics for Array and String should be split out
o jeff: escaped newlines in string literals ok

e decimal
o graydon: pragma syntax update
o otherwise looks good

e typeof
o update to leave typeof null === ‘‘object’’
o update to change typeof class === ‘‘object’’
o BUT: typeof String === “‘functiorn'’ for backward compat
o informative words expressing regret
day two

e syntax for pragmas
o ok

e reserved words
o should we do as js1.7 and allow function delete? no
o should we allow reserved identifiers after ::? yes

e update unicode
o ok (discussion around clarity of implementation choice, how choice is one way or the other

for all inputs, depending on input).
o resolved: format conrol chars are not stripped from source input, therefore are preserved in
string and regexp literals

e extend regexps
o Updated to note per yesterday’s discussion that typeof /re/ === “object”.

o Also adopting the IE quirk that Opera and Mozilla do: /[/]/ matches “/”.
o This means that #... line comments in /very-long/x regexps must balance [].

e slice syntax
Brendan to clean up, move most to discussion, present minimal proposal

lain: why not define a range generator function?
Discussion about +, <, == etc. for Array — put them in a new namespace that
new code can use: use namespace operators.

o 0 0 O

e triple quotes
o still good

e documentation
o move to reflection library
o use javadoc style comments (precedent: asdoc tool from adobe)

alobals
o singularize intrinsic::globals


file:///C:/doku.php%3fid=proposals:decimal
file:///C:/doku.php%3fid=proposals:typeof
file:///C:/doku.php%3fid=proposals:syntax_for_pragmas
file:///C:/doku.php%3fid=proposals:reserved_words
file:///C:/doku.php%3fid=proposals:update_unicode
file:///C:/doku.php%3fid=proposals:extend_regexps
file:///C:/doku.php%3fid=proposals:slice_syntax
file:///C:/doku.php%3fid=proposals:triple_quotes
file:///C:/doku.php%3fid=proposals:documentation
file:///C:/doku.php%3fid=proposals:globals

Af:“n
secma

e date and time
o all good but nanotime:
= discussion about accuracy needs — want delta-t for benchmarking, really
= so don’t need nanoseconds, or want to impose them on all impls
= ptw’s tick/tickScale proposal from es4-discuss considered too hardware-ish
= not good if tickScale isn’'t constant; if constant, it may have to be too large a
number of hanoseconds in order for tick to be cheaply computed
o dave: social psych reaction time research
o lars/graydon: use nanoseconds since creation of Date object: d.nanoAge ()
o nanoAge to be drafted

e |son encoding and decoding
Array.prototype.toJSONString
Obiject.prototype.toJSONString
String.prototype.parseJSON
String.prototype.trim (free-riding on JSON here)

O O O O

e the module perplex — packages don’t solve naming and loading issues

e stack inspection
o good

e meta objects
o lars/dave: namespace() and name() should be in ClassType not Type

= ditto for supertypes() and subtypes() (rename to super/subClasses())
dave: use iterators instead of arrays
dave: note to use [T] instead of no-longer-proposed Array.<T>
dave: should reflect public methods and fields, structural fields, etc.
InterfaceType? sure; InterfaceType.implementedBy()

o 0O O O

e expression closures
o good, clean up discussion

e multiple compilation units
o needs exact and complete list of differences between models

e security wrappers
o graydon and brendan: come up with use cases

e iain: version reflection? object detection and try-eval rule
e brendan: dict syntax for null-proto object initialisers

e TODO:
o brendan: slice
o iain: json encoding and decoding, trim
o lars: documentation
o (graydon: date and time
o graydon and brendan: security wrappers


file:///C:/doku.php%3fid=proposals:date_and_time
file:///C:/doku.php%3fid=proposals:json_encoding_and_decoding
file:///C:/doku.php%3fid=proposals:stack_inspection
file:///C:/doku.php%3fid=proposals:meta_objects
file:///C:/doku.php%3fid=proposals:expression_closures
file:///C:/doku.php%3fid=clarification:multiple_compilation_units
file:///C:/doku.php%3fid=proposals:security_wrappers

