Ecmascript 4 Language Specification

Editors:
Francis Cheng, Adobe
Jeff Dyer, Adobe

Contributors:
Brendan Eich, Mozilla
Dan Smith, Adobe
Edwin Smith, Adobe
Gary Grossman, Adobe
John Schneider, AgileDelta
Rok Yu, Microsoft
Waldemar Horwat, Google
Werner Sharp, Adobe

Purpose and status of this document

This document is a preliminary draft of Ecma-262 edition 4, the Ecmascript Programming
Language. It is functionally incomplete.

Revision Date: January 12, 2006

Contents

1 Tutorial IErOdUCHON ... 6
1.1 HEIIO WOTIA ..o 6
1.2 EXPI@SSIONS........viiiiiieicic s 6
1.3 Statements

14 VaTIADIES ..o
1.5 FUNCHIONS ..o
1.6 Classes

1.7 INEETLACES. ...
1.8 PACKAZES......coviiiiiiiiiii s
1.9 Namespaces...........ccccvuene

2 Design perspective

21 Compatibility with existing Programs...........ccccoiiiiiiiiiiiii s
2.2 Compatibility with existing object models....

2.3 Controlling the visibility of NAMESccccviiiiiiiiiiiii s
24 Choosing between reliability and flexibility ...
3 Execution Model

31 PATSING ...t
3.2 VOTIEYING .
3.3 Evaluating

3.4 Compile time coNStant eXPressSiONSccciiiiiiiiiiii s
3.5 Strict VETIfICAtIONcoviiiiiiiiiiii s
351 Type errors

352 ST @ITOIS ..oieieii e
4 Fundamental CONCEPLScooiiuiiiiiiiiiiiii s
41 Terminology

411 Bound Method ..o
B1.2 CLASS i
413

4714 Class Variableo
15 DELEGALE ...
41.6 FINAL .ot

Ecmascript 4 Language Specification 1 of 141 Adobe Systems, Inc..

41.7 FUNCHION ...ttt ettt e e e et e teesae e se e beesseesbeesseesbeessassaesssaseesssenseesseenseensensseanns

4.1.8 Function Closure

419 TISEATICE ... ettt et e e e at e e te e bt e ae e be e be e b e e b e e b e e rbeetbeeraeeta e reeesaebeebeenseenseenreanns
4.1.10 Instance method

4111 Instance variable

4112 Methodc.ccuvneee.

41.13 Object.......

4114 PrOPEILY oot
4115 PrOtOLYPE ..t
4.1.16 Sealed

4117 L0t ittt ettt ettt ettt ettt ettt et et e te et e et e ettert et e b e b e b e b e ebeebeereereeatent et et e beeteeteeteersessersersebeneareas
41.18 TTAIE ettt ettt et e e et e et eetaeeabeete e teeeae e be e be e bt eabeeabeerbeetbeesaeetaeareeeteeseeteenseenbeenreanns
4.2 Notation............

4.3 Abstract Data

43.1 ODJECES ..t

432 Names......

4.3.3 Slots......

434 Traits ...ccccoeevveeeeeieenens

435 Lexical @NVITONIMIENEc.ocieieieieiectectectecreete ettt ettt te e eteeteetsersersesseseseseeseeseeseeseessensensensassessens 17
4.3.6 REFEIEIICES ...ttt ettt ettt ettt et et e et e beeteeteeteetsessessessessenseseeseeseeseessessensensansasensens
4.3.7 Native classes

44 ADSITACE PTOCEAUTESoevvevviiititieteeteeteet ettt et et ettt et eaeea et e b e e beeseeseeteessessenseseeseeseessersessessensensesesens 19
441 REAAING......coiiiiiiiiiiiiii s 19
4.4.2 Writing

443 Calling................

444

445

44.6

447

4438 CONVEITING ..ottt ens
449 CRECKITNG....oviiiiii s
4410 Operating ...

5 Names.........cceeuneeee.

5.1 Definition names

5.2 Reference names.....

5.3 Name lookupc.c.c.....

53.1 Object references.....

53.2 LeXICAI TEIETEIICES ...ttt ettt ettt ettt et e veeteetsetsessess e b e beseebeeseeseessersensensensessensens
6

6.1

.11 OPEIALOT IS cueiuiieiiiiietieieete ettt ettt ettt et et e vt te e et et et e b e be et e et e eteereerserberb et e b e beebeereereereertensebenberenrens
6.1.2 OPETALOT @S.....oviiiiiiiiiiiic bbb
6.1.3 Operator to........

6.2 Type annotations............cccceeeeeiieeeicecene,

6.3 Run time versus compile time type

6.4 Untyped Versus typed PIrOPEILIESccceeieuiiririeiiieieieieieieieieiete ettt seaens
6.5 ODJECE LYPES ..ttt
6.6 Class types

6.7 INEETEACE EYPES . vviiiiicicieec et
6.8 Strict dialect and SEAtIC LYPESccooviiiriiiiii e
7 Variables.......c.ccoeeeeeieieieieeecreenenns

7.1 Variable modifiers

7.2 Variable types

8 FUNCHIONS ...ttt ettt et e et e e b e e abeetbeeaaeetaessaesseesbeesseesseesseeaseessesssasaeassansaesseenseensennseanes
8.1 FUNCHON MOITIETS ...ttt ettt ettt a et et v et et eteeabeasesseeseeseebeersessessessensensesesens
8.2 Function signatures....

8.3 FUNCHON ODJECES ..ot
9 CLASSES ..uveuvietieteeteete et ettt et et et e ete et e eteeseeteeaaeasese s e beeseessetsessessessessesse s e s e eseebeeseessensensens e b e beebeebeeteersersentenserebeteas
9.1 Class MOMITIETS ...eveevieeieveeeieiitectiet ettt ettt et et e et eeteeteeteereessese s e beebeeseeseeseessessenseseeseeseessersessessensessesesens

Ecmascript 4 Language Specification 2 of 141 Adobe Systems, Inc..

9.2 CLASS ODJECES ...ttt
9.21 Prototypes ..

9.2.2 TTATES oo
9.23 IMEENOMS ...t
9.24 Slots.............

9.2.5 Instances.....

9.2.6 Inheritance

9.2.7 SCOPES .ttt bbb b e
9.3 Class ProPerty attrIDULESc.ccoueuiiiirieieieieieieieieie ettt enene 43
9.3.1 Static attribute

9.3.2 Prototype attribULE.......c.cveieieiieiiciicicee et 44
933 Access control namespace attriDULEScccceueueiiieiiiiiiieieieiieeeeceeeee e 45
9.34 User defined namespace attributes

9.4 CLASS DOAY ..ttt
9.5 CIASS VATIADIES ..ottt
9.5.1 Static variables.........

9.5.2 Instance variables....

9.6 Class methods..........ccccuueeee.

9.6.1 CONSructor METNOASvoviiiiciii et
9.6.2 Static MENOAS ...ttt
9.6.3 Instance methods

9.6.4 ACCESSOT TNETNOAS ...ttt
9.6.5 Inheriting instance Methods ...
9.6.6 Bound methods.........cccceueunnee

10 Interfaces.......ccocoeuun. .

10.1 Interface types.........

10.2 Interface MEtROMSc.c.cuiiiiiiiiiieie et
10.2.1 Visibility of interface methods ...
10.2.2 Inheritance of interface methods

10.3 Interface eXamPle ..o
TT PACKAGESceviiiiitc s
111 Package namespace....

11.2 Package members.......

11.2.1 Package property attributes

11.3 Package import ..o,

11.3.1 Single name aliases......

11.4 Unnamed package.............

12 NAMESPACEScvcvviiereietetete ettt s ettt
121 INAMESPACE VAIUES.......coviiiiiiiii e
12.2 Namespaces as attributes....

12.3 Namespaces as qUALIIETScccciiiiiiiiii s
124 OPEN NAIMESPACESovviiiicieieieie ettt s e ea s
12.5 Namespace examples....

12.5.1 Access control.......

12.5.2 Version control

1253 Vocabulary CONEIOLcoiiiiiiiiiii s
13 LexXiCAl SEIUCIUTE «....ovviiiiieieiie ettt bbb enene
13.1 Lexical

13.2 SYIEACHIC ..o
14 EXPIESSIONSovvviiieteiietetee ettt
141 Identifiers....................

14.2 Primary expressions...............cccooeeue..

14.3 Reserved namespace expressions....

14.4 Parenthesized eXPreSSions ...
14.5 FUNCHON @XPI@SSION ...t
14.6 Object initialiser

14.7 ATTaY INTHATISET ..o
14.8 XML INTHALISETS. ...ttt bbb
14.9 SUPET @XPIESSIONL ...eviieiiiiiiiiicicci s

Ecmascript 4 Language Specification 3 of 141 Adobe Systems, Inc..

1410 Postfix EXPIeSSIONS.......ciuiiiiiiiiiiiiiiciiici s 77
1411 New expressions

1412 PrOPEITY QCCESSOTS.....cooviviiiveiveieieieie ettt ans
1413 QUETY OPEIALOTS.....cocicieiiieieieie ettt
1414 Call expressions..........

14.15 Unary expressions......

1416 Binary expressions

14.16.1 Multiplicative expressions

14.16.2 Additive @XPIeSSIONScccciiiiiiiiiiiii s
14.16.3 Shift expressions

14.16.4 Relational @XPIeSSIONS........c.ceuiiiiririiiiirieicieieieieete ettt bbbt enene
14.16.5 EqQUAality @XPIeSSIONS.......cocviuiiiiiiiiiiiicic s
14.16.6 Bitwise expressions

14.16.7 Logical expressions

1417 Conditional EXPIESSIONSc.cueueiiieiiirieieiiieieieieie ettt ettt bbb senene
1418 Non-assignment expressions.....

1419 Assignment expressions......

14.20 List expressions..................

14.21 TYPE @XPIOSSIONS ...vuvvvriiertetetete ettt ettt ettt ettt s st s sttt s ettt ans
15 SEALEIMENTS....coiuiiiiiiiiiii e
151 Empty statement

15.2 EXPression Statementcoueiiiiiiiiiiiiicicccc s
153 SUPET StATEIMENLovieiiiiiiiiiciccccc e
15.4 Block statement...........

15.5 Labeled statement

15.6 Conditional statements.....

15.6.1 IE SEAEIMENIE ...t nene
15.6.2 SWICH STATEIMEIIEc...viiiiiiciiicccccc et e nene
15.7 Iteration statements

15.7.1 D0o-While StAtEMENL.......cueuiviiiiiciiiiicicieiece e e
15.7.2 WHILE STALEIMENE. ..ottt nene
15.7.3 For statements

15.8 Continue statement....

159 Break statement

1510 With statement........

1511 Return statement

1512 Throw statement.....

1513 Try StateMeNt ...c.cocvoviiiiie e
L6 DIIECHIVES ..ttt a e
16.1 Attributes

16.2 IMPOTt dIT@CHIVE ...
16.3 INCIUAE QITECHIVE ...ttt e benne
16.4 Use directive........cccovvvvrrnnienncnnes

16.5 Default XML namespace directive

17 Definitions......cccoveverveverririeierneerene

171 Variable definition.........ccccecieiiiiiiiiiiiiceieecee ettt
17.2 FUNCHON dEfINItIONcuoiiiiiiiiiieiicicicieceete et benne
17.2.1 Function body

17.2.2 FUuNCtion SIGNAtUIec.covoviiiiiieiccce e
17.2.3 Parameter LIStc.cueuiiiueieieieieicicicieiee et bne
17.24 Result type

17.3 Class definition...........

17.3.1 Class attributes......

17.3.2 CLASS TAIIIE ...ttt bbb bbb bbb bbb bbb bbb bbb ne bbb nene
17.3.3 Class IMNETITATICEvveiiieiieicieieie et nene
17.34 Class block

17.4 Interface defiNItiONc.cueuiueuiiiiiieieicieiee e
17.4.1 Interface attribULEScceueueiiiiiiiiicceecc e
17.4.2 INETfACE MAIMIE ...t nene

Ecmascript 4 Language Specification 4 of 141 Adobe Systems, Inc..

17.4.3 INtErface INNEITEANICEc.ocuievieieieiectect ettt ettt et et ete s eas e b e ebesbeereereereeseessessensesensesseeseene 125
1744 Interface block
17.5 Package definitioncccociiiiiiiiiiii s
17.5.1 PacCKage NMAIMEcocviiiiiiiiiii e
17.6 Namespace definition...

17.7 Program definition........

18 Errors......ceecveeeeeen,

18.1 CLASS EITOTS . veuviveiveetieteeteeteeteeseeteeteeteete et et esseseeseeseessessessessessassasseeseesseseessessessensensesesseessensersessensensessesseeseens
18.2 TNEEITACE EITOTScvievievietieeetect ettt ettt ettt et eteeteetsersesebe b e eseeseeseessessessessesensesseessessersersensesessesseeseens
18.3 Package errors

18.4 INAMESPACE EITOTS......uiiiiiiiiiiiiiiit et saenes
19 INAEIVE ODJECES ..ttt ettt bbb bbb nene
19.1 Global object

19.2 ODJECE ODJECES. ...ttt b bbb nene
19.3 FUNCHON ODJECES ...ttt nene
19.4 Array objects

19.5 String objects
19.6 Boolean objects
19.7 INUMDET ODJECES ... s
19.8 Math object
19.9 Date objects

1910 EITOT ODJECES ..ot

20 Compatibility with the static Profile...........ccccooiiiiiiiiiiiiii s
20.1 Static types......ccoveevniiicniicine,

20.2 Ahead-of-time verification

21 Compatibility with Ecmascript 3rd edition

211 ‘this’ inside of nested fUNCHONcooiiiiiiiiii s
21.2 INO boXiNg Of PrIMIEIVESccviiiiiiiiiiiiii s
21.3 Assignment to ‘const’ is a run time exception

21.4 Class NAMES AT COMSEviuiuiiiiiiiiiiici s
21.5 Array ‘arguments’ ODJECE.........cciiiiiiiiiiiiiiic s

22 Compatibility with E4Xcccccviiiiiiiiiiicccce,

23 Compatibility with the Netscape proposal of the 4th edition............cccoeoivviiiiiniiiiii
23.1 Removed fEAtUIESs.cccoiiiiiiiiii s 136
23.1.1 ParenExpression as FieldName in ObjectInitialiser eXpressions...........c.cccoeeueveuerererererererererenenenens 136
23.1.2 ReSt @XPTESSIONS ...t 136
23.1.3 Annotated DIOCKScciiiiiiiiiiiiiii s 136
2314 Pragma dir€CtiVesccoviiiiiiiiiiic e 136
23.1.5 Built-in types other than int and Uint ... 136
23.1.6 Type Never ...

23.1.7 Local block scope....

23.2 Modified features............ccccccuu.

23.21 Instance property lookup.....

23.3 Added features

23.3.1 Interfaces

23.3.2 EAX o

24 OPENISSUES.......coiiiii ettt
241 Enum like construct

242 Class initialization OTeTcccciiiiiiiiiiiiii s

25 ReVISION HISTOTYcooviiiiieieiiccieeee et

Ecmascript 4 Language Specification 5 of 141 Adobe Systems, Inc..

1 Tutorial introduction

An Ecmascript program consists of zero or more package definitions followed by zero or more
directives, which includes non-package definitions and statements. Statements inside and outside
of package definitions are evaluated in order, independent of their nesting inside a package.

1.1 Hello world

The following sections show various ways to implement simple programs such as the familiar
‘hello, world” program in Ecmascript 4. Here is the simplest of all.

print (“hello, world”)

This is a single expression statement that calls a function named print with the argument that is a
literal string “hello, world”. An expression statement does nothing but execute an expression.

Comment: The print function is part of the Flash Player AP, and is available in the flash.util
package. To use this function, you must first import the flash.util.print function or the entire

flash.util package.

1.2 Expressions

Here are some examples of expressions:

x =1+ 2

x =y()

X =Vy..zZ

X = o.ns::id

Expressions evaluate to values.

* 1+2evaluatesto 3

* y () evaluates to the result of calling the function y with no arguments

* y..z evaluates to the set of all properties identified by z in the value of y and y’s descendants.
* o.ns::id evaluates to the value of property ‘ns::id’ of the value of ‘o’

1.3 Statements

Statements are executed in the order that they appear in a block. Some statements change control-
flow by abrupt completion (e.g. break and continue) or iteration (e.g. while and do).

for each (x in o) {
print (x)
}

1.4 Variables

var x = 10
const PI = 3.1415

Ecmascript 4 Language Specification 6 of 141 Adobe Systems, Inc..

Variables define properties whose values can change at runtime. They can be defined with either
the var keyword or the const keyword. A variable that is defined with the var keyword may be
assigned to by any code that can access it. A variable that is defined with the const keyword may
only be set by its initializer, or it’s class’s instance constructor if it is a instance variable.

1.5 Functions

function hello () {
print (“hello, world”)

}
hello ()

Functions define properties whose values can be called. Depending on where a function is
defined it results in a property whose value is a function closure or a method. A function closure
is a first class object that can be treated as a collection of properties or a callable object. A method
is tightly bound to the object that it is associated with. The this reference of a function is bound
to the base object of the call expression, or the global object if none is specified.

function hello() {

print (“hello, world”)

print (this) // this refers to global object
}
hello ()

A method is a function that is tightly bound to an object. A method can be extracted from its
instance, but unlike function closures the value of this always refers to the instance it is
extracted from.

1.6 Classes

class Greeter {
var saying = “hello, world”
function hello () {
print (saying)
}
}
var greeter : Greeter = new Greeter
greeter.hello ()

A class is an object that can be used as a constructor of instances that share the same type and
properties. Class definitions are used to define the fixed properties of a class object. Property
definitions that are marked with the static attribute become properties of the class object, and
those that are not become properties of instances of the class.

Class and instance properties are either slots or methods. A method is defined by a function
definition inside a class definition. A method has a definition (called a method trait) that is
shared among all instances of the same type. Unlike an ordinary function object, a method is
tightly bound to the object it is associated with. Whenever and however it gets invoked, the
meaning of the expression this is always the same. In fact, methods can be extracted from their
instance and treated as first class objects (called bound methods), much like function objects can
be. There is one important difference between a function closure and a bound method. With a
bound method the this reference gets bound into the object so that whenever it is invoked the
original this is used. With a function closure this is generic and will refer to any object the
function happens to be associated with when it is invoked.

Ecmascript 4 Language Specification 7 of 141 Adobe Systems, Inc..

Slots are defined by variable definitions inside a class definition. An instance variable has a
definition (called a slot trait) that is shared among all instances of the same type, but a unique
location in each object.

1.7 Interfaces

interface Greetings {
function hello ()
function goodmorning ()

}

class Greeter implements Greetings {
public function hello () {
print (“hello, world”)
}
public function goodmorning () {
print (Y“goodmorning, world”)
}
}
var greeter : Greetings = new Greeter ()
greeter.hello ()

An interface defines a contract between an instance and code that uses that instance. When a class
implements an interface, it is telling the world that it guarantees that it will provide the methods
declared in that interface. An implementing method must be declared public, in which case it
will implement all unimplemented interface methods with the same identifier.

1.8 Packages

package actors {
public class Greeter {
public function hello() {
print (“hello, world”)
}
}
}
import actors.Greeter
var greeter : Greeter = new Greeter
greeter.hello()

In this example, the import directive makes the class Greeter visible to the global code that
contains the import directive. Packages are useful for organizing frameworks (or toolkits, or
APIs) into sets of related definitions (e.g. classes, namespaces, interfaces, functions, variables).
Client code can import all or parts of a package to get access to the functionality it provides
without cluttering its global namespace with unneeded names. Packages in Ecmascript are very
similar to packages in Java and namespaces in C# and C++.

1.9 Namespaces

package actors {
public namespace English
public namespace French
public class BilingualGreeter {
English function hello () {
print ("hello, world")
}
French function hello () {
print ("bonjour, le monde")

Ecmascript 4 Language Specification 8 of 141 Adobe Systems, Inc..

// ? French speakers, correct me here

}
}
import actors.*
var greeter : BilingualGreeter = new BilingualGreeter

use namespace English // Make all identifiers in the English namespace
// visible

greeter.hello() // Invoke the English version

greeter.French::hello () // Invoke the French version

Namespaces are useful for controlling the visibility of a set of properties independent of the
major structure of the program. Packages, classes and interfaces, along with their implicitly
defined access control namespaces allow authors to control the visibility of names in parallel with
the organization of those packages, classes and interfaces. But it is sometimes necessary to control
the names independent of the lexical structure of a program. Examples of this include:

* making the public interface of a set of classes look different to different client modules
* evolving a class over time without changing the behavior of existing programs
* providing privileged access to a limited set of clients

Use packages to give or gain access to a set of features. Use namespaces to give or gain access to a
particular facet, version, or privilege independent of the structure of a program.

Ecmascript 4 Language Specification 9 of 141 Adobe Systems, Inc..

2 Design perspective

It is sometimes difficult to understand design decisions without understanding the perspective of
the designers. Here are the major viewpoints that have grounded the design changes introduced
ined. 4.

2.1 Compatibility with existing programs

Ecmascript was originally designed for and used by consumers of host objects models. Being one
of the most widely used programming languages, it is important that existing programs continue
to work as before in systems that are updated to support the new language definition.

Therefore, programs written for Ecmascript 3, compact profile, or E4X must behave the same in ed. 4

2.2 Compatibility with existing object models

Through 10 years of use Ecmascript has come under great pressure to also become a language for
creating object models. This is a natural consequence of the need for application and tool
developers to extend and override the functionality of the built-in objects provided by host
environments. A few examples include: HTML, Flash, Acrobat, and VoiceXML

These embeddings contain host objects with behaviors that can only be approximated with the
features of ed. 3, and even then in a way that is inefficient and fragile.

Therefore, make it possible to create object models such as the ed. 3 built-ins, HTML DOM and Ecmascript
APl in ed. 4. Moreover, make it natural to give these object models behavior like the existing object models,
as well as make them robust and efficient.

2.3 Controlling the visibility of names

It is a well known problem that naming conflicts arise when independently created libraries are
used by a single application. It is also common that the meaning of a name must be different for
different uses of a single component.

Therefore, minimize the occurrence of naming conflicts when independently created libraries are used by a
single application, and make it possible to resolve those conflicts when they do occur. Furthermore, make it
possible for users to select the meaning of names between versions and uses.

2.4 Choosing between reliability and flexibility

Whereas the original purpose of Ecmascript was to provide a scripting language for automating
web pages and other hosted applications where lenient runtime behavior is preferred and scripts
are small enough that performance is often not a concern, libraries written in Ecmascript can be
very large and complex, and be constrained by aggressive performance requirements. These
libraries are often created ahead of time using IDEs and stand-alone compilers. In this case
developers are willing to give up some flexibility to be guaranteed that certain kinds of errors
will not occur at runtime, and that their code will run as efficiently as possible.

Also, it is desirable when targeting low powered platforms to minimize the amount of processing
that must occur to execute programs on the client.

Ecmascript 4 Language Specification 10 of 141 Adobe Systems, Inc..

Therefore, allow developers to trade flexibility and compatibility for reliability and efficiency by choosing a
well defined subset of Ecmascript that can be compiled ahead-of-time for more aggressive compile-time
semantic analysis and optimization.

Ecmascript 4 Language Specification 11 of 141 Adobe Systems, Inc..

3 Execution Model

There are three phases of execution: parsing, verification and evaluation. Invalid programs will
terminate during one of these three phases, before the program runs to completion.

There are two dialects of the language described by this specification, one a subset of the other.
These languages differ only in that one has additional verification rules. The more permissive
language is called the standard dialect, and the more restrictive language is called the strict
dialect.

3.1 Parsing

The parsing phase translates the source code of a program into an internal format suitable for
verification. The syntax rules of the language are described using grammar productions
throughout this specification.

3.2 Verifying

The verification phase ensures that the program obeys the static semantics of the language. In the
standard dialect verification may be done anytime before a construct is first evaluated. In the
strict dialect verification must happen before any part of the program is evaluated.

The differences in the verification rules of the standard dialect and the strict dialect mean that
some programs that would verify in the standard language will not verify in the strict language.
However, all programs that verify in the strict language will verify and run with the same
behavior in the standard language.

3.3 Evaluating

The evaluation phase takes the parsed, verified program and evaluates it to produce side effects
in its host environment, and a final value. The semantics of evaluation are the same for both
dialects of the language.

3.4 Compile time constant expressions

A compile time constant expression is an expression whose value can be determined at compile
time (during verification), before any part of the program has been executed. Compile time
constant expressions consist of the following sub-expressions:

* Literals such as null, Number, Boolean and String literals
* References to properties whose values are compile-time constants
* Operators whose result can be computed at compile time

Expressions in certain contexts are required to be compile time constant expressions.
¢ type annotations
* inheritance clauses references
e attributes

* pragma arguments (e.g. use namespace 1s2)

Of these, inheritance clause references and attributes must not have forward references.

Ecmascript 4 Language Specification 12 of 141 Adobe Systems, Inc..

3.5 Strict verification

The goal of strict mode is reliability of new programs. The strict language is a subset of the
standard language by adding three kinds of constraints:

* Expressions have static types and type errors are verification errors
* Common programming errors are caught by additional verification rules
* Verification errors are reported ahead-of-time

3.5.1 Type errors

Here is an example of a program that is valid in the standard dialect but not valid in the strict
dialect,

class A {}

class B extends A {}

var a : A = new B

var b : B = a // type error, static type of ‘a’ is A,
// which is incompatible with B

In the standard dialect this program has no error, since type errors are runtime errors and the
runtime value of a is an instance of B, which is clearly a member of the type B.

3.5.2 Strict errors

The strict dialect adds various semantic errors to catch common programming mistakes that are
allowed in the standard dialect for the sake of compatibility and flexibility.

Strict mode only verification errors fall in these categories:

* function call signature matching

* duplicate definition conflicts

* unbound references

* dynamic addition of properties on sealed objects
* writing to const variables

* deleting fixed properties

* comparison expressions with incompatible types
* unfound packages

Ecmascript 4 Language Specification 13 of 141 Adobe Systems, Inc..

4 Fundamental Concepts

4.1 Terminology

This section defines terms used elsewhere in this specification.

4.1.1 Bound method

A bound method is a method that is extracted from the instance to which it is attached. This
typically occurs when a method is passed as an argument to a function. Such a method is
"bound" to the original instance in that the this reference continues to refer to that instance.

4.1.2 Class

Every class definition is represented by a special class object that stores information about the
class. Among the constituents of the class object are two type objects and a prototype object. One
type object stores information about the static properties of the class. The other traits object stores
information about the instance properties of the class and serves as the primary mechanism for
class inheritance. The prototype object is a special object that can be used to share state among all
instances of a class.

4.1.3 Class method

A class method, also called a static method, is a method that is attached to an entire class rather
than to an instance of a class. Class methods, unlike instance methods, can only be accessed
through the class, and cannot be accessed through a class instance.

4.1.4 Class variable

4.1.5 Delegate

Delegates are objects that can "stand in" for other objects during property name lookup. Every
object has a delegate, which is either of the same type as that object or of type Object. An instance
of a class is an example of an object that has a delegate of the same type. Class instances all share
the same delegate — the defining class's prototype object. A class's prototype object is a special
instance of that class that provides a mechanism for sharing state across all instances of a class.

At runtime, when a property is not found on a class instance, the delegate, which is the class
prototype object, is checked for that property. If the prototype object does not contain the
property, the process continues with the prototype object's delegate. A prototype object is an
example of an object that has a delegate of type Object. All class prototype objects share the same
delegate — a special static property of the Object class named Object.prototype.

4.1.6 Final
A class declared as final cannot be extended. A method declared as final cannot be overridden.

4.1.7 Function

A function is a callable object. A function can be either a function closure or a method depending
on how the function is defined.

4.1.8 Function Closure

A function closure is a function that is neither attached to another object nor defined as part of a
class. Function closures are first-class objects that can be treated as a collection of properties or as
callable objects. Contrast with methods, which are functions that are attached to an object or an
instance of a class.

Ecmascript 4 Language Specification 14 of 141 Adobe Systems, Inc..

4.1.9 Instance

4.1.10 Instance method

An instance method is a method defined without the static attribute. Instance methods attach
to a class instance instead of to the class as a whole.

4.1.11 Instance variable

4.1.12 Method

A method is a function that is attached to an object or an instance of a class. Contrast with
function closures, which are functions not attached to an object or an instance of a class.

4.1.13 Object
Every program visible value is an object. An object is a collection of properties.

4.1.14 Property

A property associates a name with a value or method. A method can be either a get or set
accessor or an ordinary method. Fixed properties cannot be redefined or deleted. Dynamic
properties are created at runtime and can be redefined and deleted. Internally, fixed properties
are expressed as traits. Dynamic properties are expressed as a map between names and values.

4.1.15 Prototype

A prototype object is a special class instance that is stored internally by a class object. It is an
object that becomes the implicit delegate shared by all instances of a particular class or function.
A class prototype is an instance of that class, while the prototype’s delegate is an instance of
Object.

4.1.16 Sealed

An object is sealed if properties cannot be added to it at runtime. By default, class definitions
create sealed class instances. To define a class that creates instances that are not sealed, use the
dynamic attribute when declaring the class.

4.1.17 Slot

A slot is a location inside an instance used to store the value of a variable property. A slot is
allocated for each variable declaration.

4.1.18 Trait

A trait is a fixed property shared by all instances of the same type. The collection of traits defines
the invariants of the object’s type. For this reason use the traits object to describe the type of an
object. Traits are declared in the definition of the class used to create an object.

class A
{
var x
function m() { }
function get y() { return 10 }
function set y(v) { }
}

Each member of this class definition causes a trait to be added to the traits object for instances of
A. When an instance is created by class A, the resulting object has the properties x, m and y,
implemented by traits for var x, function m, function get y and function set y.

Ecmascript 4 Language Specification 15 of 141 Adobe Systems, Inc..

Traits express the type of an instance. All traits are copied down to the derived traits objects. All
traits must be implemented. Interface members are abstract and so there traits must be
implemented in any class that inherits them.

4.2 Abstract Data

[this section is out of date]

Here is an informal description of the notation used in this chapter...

The definitions labeled struct, type and proc are for specification purposes only. None are
directly accessible to program code. The definitions labeled class are built-in objects that are
accessible to program code. However, built-in class definitions might have intrinsic properties

that are inaccessible to program code.

4.2.1 Objects

Every program visible value is an object. An object is a collection of properties.

struct Object {

delegate : Object
properties : Map<Name,Object>
type : Traits

slots : List<Object>

4.2.2 Names

struct Name {

namespace : Namespace

identifier : String

attr : Boolean
4.2.3 Slots

A slot is a location inside an instance used to store the value of a variable property. A slot is
allocated for each variable declaration.

slots : List<Object>

4.2.4 Traits

type Trait = {])))
constantTrait, SlotTrait, GetterTrait, SetterTrait, MethodTrait

struct ConstantTrait {

name : Name
type : Traits
value : Object
}
struct SlotTrait {
name : Name
type : Traits
) slotid : uint

Ecmascript 4 Language Specification 16 of 141 Adobe Systems, Inc..

struct GetterTrait {

name : Name
type : Traits
method : Method

}

struct SetterTrait {
name : Name
type : Traits
method : Method

}

struct MethodTrait {

name : Name
resulttype : Traits
paramtypes : List<Traits>
method : Method

4.2.5 Lexical environment

struct Environment {
scopes : List<Frame>

type Frame = { GlobalFrame, Class, Instance, WithFrame, Activation }

4.2.6 References

A Reference is an internal value used to express the evaluation of an expression that includes a
name. References can be unqualified or qualified by a namespace, involve multiple qualified
names (multiname), or target a specific object (dot or bracket reference). References resulting
from super expressions are limited to the super type of the object containing the current code.

struct ObjectReference {
base : Objectopt
multiname : List<Name>
Timit : Traits
attr : Boolean

}

struct LexicalReference {

env : Environment

multiname : List<Name>

Timit : Traits

attr : Boolean
type Reference = { ObjectReference, LexicalReference }
struct LimitedBase {

base : Object
Timit : Traits

4.2.7 Native classes

4.2.7.1 Object

An object has intrinsic traits to support call and construct expressions.

Ecmascript 4 Language Specification 17 of 141 Adobe Systems, Inc..

class Object
{

intrinsic const typeofString : String

intrinsic const sealed : Boolean

intrinsic const defaultValue : Object

intrinsic const defaultHint : String

intrinsic function hasProperty(name:Name) : Boolean

intrinsic function read(name:Name,limit:Type) : Object

intrinsic function write (name:Name,limit:Type,value:¥*,
expand:Boolean) : Boolean

intrinsic function expand (name:Name,value:*,
super:Boolean) : Boolean

intrinsic function delete (name:Name, super:Boolean) : Boolean

intrinsic function enumerate() : List

4.2.7.2 Function

A function has intrinsic traits to support call and construct expressions.

class Function extends Object

{
intrinsic
intrinsic
intrinsic

const environment : Framel[]
function call(this, ...args)
function construct(...args)

class BoundMethod extends Function

{
intrinsic
intrinsic
intrinsic

const boundThis : Object
function call(...args) : Object
function construct(...args) : Object

class PrototypeFunction extends Function

{

public var prototype : Object

4.2.7.3 Class

A class has intrinsic traits to support explicit conversion and construct expressions.

class Class extends Object

{
intrinsic
intrinsic
intrinsic
intrinsic
intrinsic

const environment : Framel[]

const super : Class

const itraits : Traits

function call(...args) : Object
function construct(...args) : Object

public const prototype : Object

4.2.7.4 Namespace

A namespace has intrinsic traits to support comparison with other namespaces.

Ecmascript 4 Language Specification 18 of 141 Adobe Systems, Inc..

class Namespace extends Object

{
public const name : String
public const prefix : String

4.3 Abstract Procedures

[this section is out of date]

The notation we use to describe abstract procedures is a pseudo-Ecmascript. A few differences
from real Ecmascript are: (1) missing keywords in definitions; (2) access to internal data
structures and intrinsic names; and (3) the use of non-existent values such as none.

4.3.1 Reading

procedure readReference(refOrObj : *) : Object
{
if(refOrObj is LexicalReference)
{
i=20
while(1 < env.size())

{

obj = env[i]
name = refOrObj.name
traits = obj.type
result = traits.intrinsic::read(obj,name,traits)
if(result != none)
{
break
}
i++

}
else
if(ref is ObjectReference)

{

obj = refOrObj.base

name = refOrObj.name

traits = refOrObj.limit

result = traits.intrinsic::read(obj,name,traits)
}
else

{
result = refOrObj

}

return result

4.3.2 Writing

procedure writeReference(refOrObj, value)

{

if(refOrObj is LexicalReference)

{

name = refOrObj.name
i=20
while(1 < env.size())

Ecmascript 4 Language Specification 19 of 141 Adobe Systems, Inc..

4.3.3

Ecmascript 4 Language Specification 20 of 141 Adobe Systems, Inc..

obj = env[i]
traits = obj.type

result = traits.intrinsic::write (obj,name,traits,value, false)

if(result == okay)
{

break
}
i++

if(result !'= okay)

// obj and traits are already set to the outer scope

result = traits.intrinsic::write(obj,name,traits,value, true)

}
else
if(ref is ObjectReference)

{

obj = refOrObj.base

name = refOrObj.name

traits = refOrObj.limit

result = traits.intrinsic::write(obj,name,traits,value, true)
}
if(result !'= okay)

throw new Reference (“unable to write to reference”)

Calling

// callReference allows the implementing type to limit the
// search for the callee to the fixed traits of this, or
// super, if necessary. E.g. class XML

procedure callReference(refOrObj:*, args:Array):*
{
if(refOrObj is LexicalReference)
{
name = refOrObj.name
i=20
while(1 < env.size())

{

obj = env[i]

traits = obj.type

fun = traits.intrinsic::read(obj,name,traits)
if(fun != none)

{
self = null
break

it++

}

else

if(refOrObj is ObjectReference)
{

obj
name

refOrObj.base
refOrObj.name

4.3.4

Ecmascript 4 Language Specification 21 of 141 Adobe Systems, Inc..

traits = refOrObj.limit
fun = traits.intrinsic::read(obj,name,traits)
self = obj
}
else
{
fun = refOrObj

self = null
}

// Do the call
if(fun != none)
{
result = fun.intrinsic::call(self,args)

}

return result

Constructing

/* constructReference allows the implementing type to limit the
search for the callee to the fixed traits of this, or
super, if necessary. E.g. class XML

*/

procedure constructReference(refOrObj:*, args:Array) : *
{
1if(refOrObj is LexicalReference)
{
name = refOrObj.name
i=0
while(1 < env.size())

{

obj = env[i]

traits = obj.type

fun = traits.intrinsic::read(obj,name,traits)
if(fun !'= none)

{
self = null
break

it++

}

else

if(refOrObj is ObjectReference)
{

obj = refOrObj.base
name = refOrObj.name
traits = refOrObj.limit
fun = traits.intrinsic::read(obj,name,traits)
self = obj
}
else
{
fun = refOrObj
self = null

}

// Do the call
if(fun != none)

{

result = fun.intrinsic::construct (args)

}

return result

4.3.5 Deleting

procedure deleteReference(refOrObj:*) : Boolean
{
if(refOrObj is LexicalReference)
{
result = true /* default result */
i=20
while(1 < env.size())

{

obj = env[i]
name = refOrObj.name
traits = obj.type
result = traits.intrinsic::delete (obj,name,traits)
if(result != none)
{
break
}
i++

}

else
if(ref is ObjectReference)

{

obj = refOrObj.base

name = refOrObj.name

traits = refOrObj.limit

result = traits.intrinsic::delete (obj,name,traits)
}
else

{
result = refOrObj

}

return result

4.3.6 Naming

procedure makeAttributeName (name:Name)
{

/* Set the attr flag of a name

*/
}

procedure isAttribute(name:Name)
{
/* Return the attr flag of name
*/
}

procedure makeMultiname (namespaces:Namespaces|[], str:String)
{
/* Create a set of qualified names from a string
and a set of qualifiers

*/

Ecmascript 4 Language Specification 22 of 141 Adobe Systems, Inc..

4.3.7 Typing

procedure typeOfString(obj:*) : String
{
/*
Return the ed. 3 typeof string
*/
}

procedure resultType(fun:Function)
{
/*
Return the result type of a function object

*/

procedure typeOfThis(frame:ParameterFrame)

{

/*
Return the type of this for a parameter frame
Instance methods have type of the instance
Function closures have a type of Object
All others throw an exception

*/

procedure hasThis(frame:ParameterFrame)

{

/*
Return true if the given parameter frame is a method
and has a bound this value

*/

}

procedure referenceType (base:0bject,name:Name, limit:Type,attr:Boolean)
{
/*

Return the type of the property referenced by the

specified parameters

*/

4.3.8 Converting

procedure toString(obj:*) : String

{

/*
This procedure implements the semantics described in
Ecma-262, section 9.8, ToString()

*/

proc toNumber (obj:*) : Number

{

/*
This procedure implements the semantics described in
Ecma-262, section 9.3, ToNumber ()

*/

Ecmascript 4 Language Specification 23 of 141 Adobe Systems, Inc..

}

procedure toInt(obj:*) : int

{
/*

This procedure implements the semantics described in

Ecma-262, section 9.5,

*/

procedure toUint (

{
/*

This procedure implements the semantics described in

Ecma-262, section 9.6,

*/

4.3.9 Checking

ToInt32 ()

obj:*) : uint

procedure isStrict ()

{
/*

If compiling as a strict dialect,

Otherwise return false

*/

procedure verifyType (

{

The rules for type checking are describe in section 6.5

If isStrict ()

Do nothing because type errors are runtime errors

/*
If
}
Else {
}
Return
*/

4.3.10 Operating

typel
type?2
typel

Throw

and typel is a subtype of Object {

is not a subtype of type2 and

is not a subtype of Boolean and

is not a subtype of Number or type2
is not a subtype of Number

a TypeError

procedure bitwiseNot (vl:*)

{
/*

This procedure implements the semantics described in

Ecma-262, section 11.4.8

*/

procedure multiply(vl:*,v2:%)

{

Ecmascript 4 Language Specification

typel:Type,

ToUint32 ()

24 of 141

return true

type2:Type

Adobe Systems, Inc..

/*
This procedure implements
Ecma-262, section 11.5.1

*/

proc divide(vl:*,v2:%*)
{
/*
This procedure implements
Ecma-262, section 11.5.2
*/
}

proc remainder (vl:*,v2:%*)
{
/*
This procedure implements
Ecma-262, section 11.5.3
*/

proc add(vl:*,v2:%)
{
/*
This procedure implements
Ecma-262, section 11.6.1
*/

proc subtract(vl:*,v2:%)
{
/*
This procedure implements
Ecma-262, section 11.6.2
*/

proc shiftLeft(vl:*,v2:%*)
{
/*
This procedure implements
Ecma-262, section 11.7.1
*/

proc shiftRight(vl:*,v2:%*)
{
/*
This procedure implements
Ecma-262, section 11.7.2
*/

proc shiftRightUnsigned(vl:*,v2:%)

{
/*

the

the

the

the

the

the

the

semantics

semantics

semantics

semantics

semantics

semantics

semantics

This procedure implements the semantics

Ecma-262, section 11.7.3
*/

proc lessThan(vl:*,v2:%)

Ecmascript 4 Language Specification

25 of 141

described

described

described

described

described

described

described

described

in

in

in

in

in

in

in

in

Adobe Systems, Inc..

/*
This procedure implements the semantics described in
Ecma-262, section 11.8.1

*/

proc lessThanOrEquals (vl:*,v2:%*)

{

/*
This procedure implements the semantics described in
Ecma-262, section 11.8.3

*/

proc hasProperty(vl:*,v2:¥*)

{

/*
This procedure implements the semantics described in
Ecma-262, section 11.8.7

*/

proc instanceof (vl:*,v2:%*)

{

/*
This procedure implements the semantics described in
Ecma-262, section 11.8.6

*/

proc asType(obj:*, type:Type) : type

{

/*

If obj implicitly converts to type,
Return obj implicitly converted to type
Else If type includes null
Return null
Else
Return obj explicitly converted to type

*/

proc isType(obj:*, type:Type) : Boolean

{

/*

If obj is in the value set of type
Return true
Return false
*/

proc equals(vl:*,v2:%*)

{

/*
This procedure implements the semantics described in
Ecma-262, section 11.9.1

*/

proc strictEquals (vl:*,v2:%)
{
/*

Ecmascript 4 Language Specification 26 of 141 Adobe Systems, Inc..

This procedure implements
Ecma-262, section 11.9.4
*/

proc bitwiseAnd(vl:*,v2:%)
{
/*
This procedure implements
Ecma-262, section 11.10
*/

proc bitwiseXor(vl:*,v2:%*)
{
/*
This procedure implements
Ecma-262, section 11.10
*/

proc bitwiseOr (vl:*,v2:%*)
{
/*
This procedure implements
Ecma-262, section 11.10
*/

proc logicalAnd(vl:*,v2:%)
{
/*
This procedure implements
Ecma-262, section 11.11
*/

proc logicalXor(vl:*,v2:%*)
{
/*
This procedure implements
Ecma-262, section 11.11
*/
}

proc logicalOr(vl:*,v2:%*)
{
/*
This procedure implements
Ecma-262, section 11.11
*/

Ecmascript 4 Language Specification

the

the

the

the

the

the

the

semantics

semantics

semantics

semantics

semantics

semantics

semantics

27 of 141

described

described

described

described

described

described

described

in

in

in

in

in

in

in

Adobe Systems, Inc..

5 Names

A name consists of a string and a namespace. Names are introduced into a particular scope by a
definition. Those definitions are referred to by names that result from expressions.

The qualified forms result in a single name consisting of the given qualifier and identifier. The
unqualified forms result in a set of names consisting of strings qualified by the open namespaces.

The visibility of an identifier is controlled by the set of open namespaces. The set of open
namespaces includes all of the implicitly opened namespaces and the user opened namespaces.
The implicitly opened namespaces are:

* Public namespace

* Internal namespace for the current package

* Private namespace for the current class

* Protected namespaces for the current class

* The user opened namespaces are controlled by the use namespace directives that are in
scope. For example,

namespace mx = “http://macromedia.com/mx”
use namespace (mx)
o.m()

In this example, the reference to o.m () will involve the names qualified by the namespace mx as
well as the implicitly opened namespaces: public, internal, etc.

The terms namespace and qualifier are used interchangeably when talking about qualified names.

5.1 Definition names

A name introduced by a definition might get its qualifier from one of various sources

* top-level definitions in a package have the package name as their qualifier

* top-level definitions outside of a package have the public namespace as their
qualifier

* interface members have the interface name as their qualifier

* dynamic property names have the public namespace as their qualifier

* definitions inside a class have the internal namespace of the current package as their
qualifier, unless a namespace attribute is specified

* adefinition with a namespace attribute has its corresponding namespace as its
qualifier

* adefinition with an access control attribute has the implicitly defined namespace for
that access specifier as its qualifier

It is an error to introduce a name with an identifier that has already been defined in an open
namespace in the same scope, but with a different qualifier.

5.2 Reference names

Ecmascript 4 Language Specification 28 of 141 Adobe Systems, Inc..

Reference names result from various forms of expressions. The two main distinctions in these
forms are whether the name is qualified or unqualified, and whether the identifier is a literal
identifier or an expression.

The following table shows the kinds of references that include qualified and unqualified, literal
and expression names.

| Literal Expression
Unqualified o.id, id ol[expr]
Qualified o0.g::id, g::id 0.g::[expr], q::[expr]

* A qualified or unqualified literal identifier is equivalent to the dynamic form with its
expression operand replaced by a string literal representing the literal identifier

* Anunqualified expression reference results in multiple names (called a multiname),
one for every open namespace combined with the string value of the expression expr

* A qualified expression reference results in a qualified name that consists of the value
of the qualifier g combined with the string value of the expression expr

[edit: show examples of multinames]

5.3 Name lookup

An expression involving a name results in an internal reference value used by certain operators
to perform actions. To describe name lookup we distinguish between two types of references:
those that include a base object (object references), and those that do not (lexical references.)

Looking up a reference involves determining its ultimate qualified name (in the case of
unqualified references) and its base object.

5.3.1 Object references

Object references result from expressions involving the dot or bracket operators. They may be
qualified or unqualified. The following table shows various forms of object references.

| Literal Expression
Unqualified | o.id olexpr]
Qualified o.qg::1id 0.9:: [expr]

We use the expression form of references to describe the name lookup semantics. However, every
literal name can be rewritten as an expression name by the following steps.

* If the expression is an unqualified literal name, then replace the dot operation o. id
with a bracket operations of the form o[*id’]

* Otherwise the expression is a qualified literal name, so replace the operand of the dot
operation with the dot operation o.q:: [‘id’]

5.3.1.1 Unqualified object references

ol[expr]

Ecmascript 4 Language Specification 29 of 141 Adobe Systems, Inc..

This is a reference to a property of the value of the expression o that has a name that matches one
of the names of the set of names (multiname) composed in the following way:

* Letid be the string value of the expression expr

* Letmbe an empty set of names

* For each namespace q in the set of open namespaces
o Let n be a name with the qualifier g and the identifier id
o Add n to the set of names m

¢ Returnm

The single name of a multiname reference r is determined by the following steps:

* Let t be the least derived type of x that contains at least one of the names in the
multiname set m of the reference r

* Letm’ be the intersection of the set of names m and the property names in t

* Let n be the set of names in the most derived type of x and in m’

* If nis empty, return the name in m that is qualified by the public namespace

e If n contains one name, then return that name

* Report an ambiguous reference error

The base object of this reference is the value of the expression o.

5.3.1.2 Qualified object references
0.g:: [expr]

This is a reference to a property inside the value of o that matches a single name. Because the
qualifier is explicit, the qualified name is straightforward to compute.

* Let ns be the value of the expression g
* Let id be the string value of the expression expr
* Return the qualified name consisting of the namespace ns and the identifier id

The base object of this reference is the value of the expression o.

5.3.2 Lexical references

q:: [expr]
q::id
id

Lexical references result from expressions involving a name but no base object. Whether a lexical
reference is qualified or unqualified, with a literal identifier or expression, it results in a search of
the scope chain of the lexical environment until either a match is found or the last scope is
searched.

The scope chain might include the following kinds of scopes:
* Codeinside a with statement will have a with frame as the inner most scope on the

scope chain
* Code inside a function definition will have an activation object on its scope chain

Ecmascript 4 Language Specification 30 of 141 Adobe Systems, Inc..

* Code inside an instance method will have the instance this object on its scope chain

* Code inside of a class definition, including in instance and static methods, will have
the class objects of its base classes and the current class on the scope chain. The inner
most class object corresponds to the most derived class, and the outermost class
object corresponds to the Object class

* Code everywhere has the global object as the outer most object on its scope chain

The base object of a lexical reference is computed by the following steps:

* Lets be the list of scopes enclosing the reference being evaluated

* Letn be the qualified name or set of qualified names that result from the operation
described in section 4.3.1.1

* Search the scopes in s starting from the innermost scope and continuing outwards
until a scope is found that contains a property that matches n, or all scopes have been
searched

* If a match is found, return the scope that contains the matching property

* Report a property not found error

Ecmascript 4 Language Specification 31 of 141 Adobe Systems, Inc..

6 Types

A type is a set of values. Expressions have known values at run time and properties have known
types at compile time (as well as run time.) The various types of Ecmascript 4 can be related
graphically as a type lattice where the edges of the lattice indicate subset relationships.

This drawing shows the relationships between the main built-in types of the language:

Object void

| | | | |
String user Number int uint

Boolean

Null

There are three fundamental program visible types (Null, Object and void). What makes these
types fundamental is that they their union includes all possible values in the language. Null
includes null, void includes undefined, and Object includes every other value. Null and void are
different because they do not have object like properties (e.g. toString, valueOf), and they both
have values that represent a missing value.

The type Null includes one value - the value that results of the primary expression null. The
value null is used to represent the idea “no value” in the context of an Object typed reference.

The type void includes one value - the value that is the initial value of the global property
undefined and the result of the unary expression void 0. The value undefined is used to
represent the idea “no property” or “no value” in the context of an untyped reference.

While the need for two types that represent the idea of “no value” seems strange to programmers
familiar with statically typed object oriented languages, in this language the distinction is useful
for representing the absence of a property or the absence of a value of an untyped property
versus the absence of a typed property. Here is an example,

dynamic class A {

var x : String

var y

}

var a : A = new A

print (a.x) // null
print(a.y) // undefined
print (a.z) // undefined
a.y = 10

a.z = 20

print(a.y) // 10

print (a.z) // 20

When dealing with dynamic instances, there is little difference between a property that doesn’t
exist and a property with no type and no value. But there is a difference between a property that
has a type and one that doesn’t. This is one of the reasons for the existence of both types Null and

void.

Ecmascript 4 Language Specification

32 of 141 Adobe Systems, Inc..

Note: In Ecmascript ed. 3 program visible values where instances of one of six unrelated types (Undefined,
Null, Boolean, Number, String and Object). Conversions were provided to translate a value from one type
to another. Ed. 4 provides the same conversions between the primitive types (void/Undefined, Null,
Boolean, String, Number, int and uint)

6.1 Type operators

The language includes three type operators that enable programs to test and manipulate values
in terms of a type. These type operators are ‘is’, “as’ and ‘to’. Each of these operators has a
corresponding type annotation that constrains the value of a property according to the meaning

of the operation.

6.1.1 Operator is

The is operator appears in expressions of the form:
v is T

The is operator checks to see if the value on the left hand side is a member of the type on the
right hand side. For user defined types and most built-in types, is returns true if the value is an
instance of a class that is or derives from the type on the right hand side, otherwise it returns
false. For built-in numeric types the result cannot be determined by the class of the value. The
implementation must check the actual value to see if it is included in the value set of the type.

The following table shows the results of using various values and types with the is operator:

Value String Number int uint Boolean Object
{3 false false false false false true
"string" true false false false false true
"10" true false false false false true
null false false false false false false
undefined | false false false false false false
true false false false false true true
false false false false false true true
0 false true true true false true
1 false true true true false true
-1 false true true false false true
1.23 false true false false false true
-1.23 false true false false false true
NaN false true false false false true

6.1.2 Operator as

The as operator appears in expressions of the form:

v as T

The purpose of the as operator is to guarantee that a value is of certain type, and if not indicate
so by returning the value null.

Ecmascript 4 Language Specification 33 of 141 Adobe Systems, Inc..

Note: It is common usage to assign the result of an as expression to a property with the same type
in that expression. If the destination type does not include null, the assignment will convert null
to the default value of that destination type (e.g. false for as Boolean and 0 for as Number). This
results in loss of information about whether the original value is included in that type. Programs
that need to distinguish between when a value is the default value and an incompatible value,
must assign the result to a property of type Object, check for null, and then downcast to the
ultimate destination type.

The steps used to evaluate the as operator are:

* Letv be the value of the left operand
* Let T be the value of the right operand
* If Tis not of type Type
o Throw a TypeError
* IfvisoftypeT
o Return the value v
* Else
o Return the value null

6.1.3 Operator to

The to operator appears in expressions of the form:

v to T

The to operator converts the value of the right side to a value of the type on the left side.

Implicit conversions occur when a value is assigned to a property, passed as an argument to a
function, or returned from a function.

When the destination type is a user defined type T, the user definition of the to operator as in,

class T

{

function to T(v) { ..}

}

If a user defined type does not specify the to operator, then a system default is provided. The
default to checks for

class T

{

function to T (v)

{
if(v 1is T) return v
else if(v is Null) return null
else throw new TypeError ()

When the destination type is a primitive type, the to operator is described by the corresponding
abstract procedure (e.g. toString() and toNumber().) The following table shows some results:

Ecmascript 4 Language Specification 34 of 141 Adobe Systems, Inc..

Value String Number int uint Boolean Object
{3 “[object Object]” NaN 0 0 true {3
"string" "string" NaN 0 0 true "string"
"10" "10" 10 10 10 true "10"
null Null 0 0 0 false null
undefined | Null NaN 0 0 false null
true "true" 1 1 1 true true
false "false" 0 0 0 false false

0 ”0” 0 0 0 false 0

1 17 1 1 1 true 1

-1 ”-1” -1 -1 2E+32-1 true -1

1.23 "1.23" 1.23 1 1 true 1.23
-1.23 "-1.23" -1.23 -1 2E+32-1 true -1.23
NaN "NaN" NaN 0 0 false NaN

6.2 Type annotations

Type operators are useful for testing invariants of values before they are used or stored. It is
natural then to apply the meaning of the type operators to type annotations on variables to
specify type related constraints for the values of those variables. Thus for every assignment of the
value x to the variable v the various type annotations have the following meanings,

var v is T means if(x is T) v = x; else throw new TypeError
var v as T means v = x as T
var v to T means v = x to T

[Compatiblity note: previous proposals of this standard included the *: T’ syntax to have the same meaning
as the current ‘to T’ annotation.]

6.3 Run time versus compile time type

We sometimes refer to a class or interface that helps to define the structure of a value as the
value’s type. What we really mean is that that value is a member of that class or interface type.
This distinction is subtle but important. Since a value might belong to any number of unrelated
types to say that it is of a particular type is misleading.

In dynamically typed languages expressions don’t have types; they have values whose types may
change each time the expression is evaluated.

Statically typed languages make the important simplification of associated a type with every
expression, even if it is a very general one, when it is compiled. In this way the suitability of an
expression can be checked against its use before it is ever actually run. The cost of this added
reliability is the loss of flexibility that comes from not having to think about the types of values.

function £(o : Object) {
var x : Number

X = 0 // Allowed in the standard dialect

£(10) // No problem, x gets set to 10

Ecmascript 4 Language Specification 35 of 141 Adobe Systems, Inc..

Other places where the differences between dynamic and static type checking can be seen are
property access, and method invocation.

function £(o : Object) {

0.9()
return o.x

}

Whereas in a static type system, the binding for a method call or property read, would need to be
known at compile-time, the standard dialect always defers that checking until runtime.

The strict dialect has a hybrid type system. Normally static type rules are used to check the
compatibility of an expression with its destination type but there are a few special cases. For
example, when an expression on the right side of an assignment expression consists of a reference
to an property with no type, name lookup is deferred to run time. When an object reference has a
base object that is an instance of a dynamic class, the reference is checked at runtime. These
dynamic typing features are useful when strict dialect programs are interoperating with dynamic
features such as XML objects.

6.4 Untyped versus typed properties

A property without a type annotation or with the wildcard annotation * (as in, var x : *)is
said to be untyped. Writing to an untyped property will always succeed since an untyped
property can hold any value. Expressions that read from an untyped property are said to be
untyped expressions. Assignment from an untyped expression may or may not succeed at
runtime depending on whether its value can be implicitly converted to the destination type.
Nevertheless, in the strict dialect assignments from untyped expressions are always type checked
at runtime as in the standard dialect.

Use untyped properties when you want to store the result of an untyped expression or
undefined as one of the values, or when you want to defer type checking to runtime.

6.5 Object types

All program visible types other than void and Null derive from type Object. This means that all
values (except undefined and null) have properties that can be accessed by object references
without the need to be wrapped in an object as they were in Ecmascript ed. 3.

6.6 Class types

A class refers to a type or a value depending on its use.

class A

{

static var x

var y C prototype constructor P
} prototype var z A
var a : A // A means type A
a = new A // A means value A

Ecmascript 4 Language Specification 36 of 141 Adobe B nc..
traits
O.

The value is a class object that has the form shown in the drawing above. The class object is Ca.
When used as a type it evaluates to its instance traits (Ta). When used in a new expression the
class serves as a factory object with a special method that creates a new instance (Oa), which
contains an internal delegate property pointing to the class object’s prototype (P) and an internal
traits property pointing to the class object’s instance traits (Ta).

6.7 Interface types

An interface name can only be used where a type is expected.

interface I{}
var x : I // I means type I
X = new I // Error, I is not a value

6.8 Strict dialect and static types

In the strict dialect both expressions and properties have types. To be used to compute the value
of a property, the expression must have a static type that is compatible with the type of the
property. One way to think about static types of expressions and values is that the static type is a
conservative approximation of the set of values that will result from that expression.

While the type operators (is, as and to) are runtime operators, their corresponding annotations
(except for as) enforce compile time constraints.

var v is T means if(X is a subset of T) accept; else reject
var v as T means accept

var v to T means if(X is a subset of the input type
of the to operator of T) accept; else reject

There are three special cases where static type rules are ignored, possibly allowing runtime errors
to occur:

* coercions from an untyped expression to any type
* coercions from any type to type Boolean
* coercions between different numeric types

An explicit cast to a user defined type is only useful in the strict dialect. This is because the effect
of an explicit cast is to defer type checking until runtime, which is already the case in the
standard dialect. This is not necessarily the case for built-in types that have special conversion
behavior.

Ecmascript 4 Language Specification 37 of 141 Adobe Systems, Inc..

7 Variables

A variable defines a slot with a name and a type.

A variable declared with the const rather than the var keyword, is read-only outside of the
variable’s intialiser if it is not an instance variable, and outside of the instance constructor if it is
an instance variable. It is a verifier error to assign to a const variable outside of its writable
region.

Variables exist in the following objects:

* global object, inside and outside of a package
* class objects

* instance objects

* activation objects

7.1 Variable modifiers

When allowed by the context of the definition, the following attributes modify a variable
definition.

* Access control namespaces
* User defined namespaces

* static

° prototype

Access control and visibility control namespaces specify the namespace part of the variables
name.

The static attribute may only be used inside a class definition and causes the variable to become
a trait of the class object rather than the instance object.

The prototype attribute may only be used inside a class definition and causes the variable to be
added to the class’s prototype object and a get and set accessor to be added to the instance traits
of the class. The purpose of the accessor methods is to simulate the behavior of accessing
prototype properties in Ecmascript 3.

7.2 Variable types

All variables have a type. A type annotation on a variable definition limits the set of values that
can be stored in that variable. If no type is specified, the implied type is Object. A type annotation
must be a compile-time constant expression that evaluates to a class or interface value. The actual
value used to represent the type of the variable is the instance traits of the referenced class or
interface.

When a value is assigned to a variable an implicit conversion to the variables type is performed
on the value. A type error occurs if there is no implicit conversion of that value to the variable's
type. In the strict dialect such errors are verification errors, in the standard dialect type errors are
runtime errors.

Ecmascript 4 Language Specification 38 of 141 Adobe Systems, Inc..

8 Functions

A function is a callable object. In general functions consist of a block of code, a set of traits, and a
list of scopes. Instance methods are functions that also consist of a receiver object that this
references are bound to.

8.1 Function modifiers

When allowed by the context of the definition, the following attributes modify a variable
definition.

* Access control namespaces
* User defined namespaces

* static

* final

® override

. native

Access control and visibility control namespaces specify the namespace part of the function
name.

The static attribute may only be used inside a class definition and causes the function to
become a trait of the class object rather than the instance object.

The final attribute may only be used on a non-static function definition inside a class. A
function modified by final cannot be overridden.

The override attribute may only be used on a non-static function definition inside a class. A
function modified by override will override a method with the same name and signature as a
non-final method of a base class.

The native attribute may be used to indicate that that the function is implemented in an
implementation defined way. The compiler should generate native stubs for functions that have
this attribute.

8.2 Function signatures

A function signature includes the number and types of its parameters and its result type. Like
variable type annotations, the types of a function signature affect the implicit conversion of
argument and return values when calling to and returning from a function. Function signatures
are also used to match inherited methods to methods in a derived class.

8.3 Function objects

Global and nested functions can be used as constructors in instantiation expressions. For
example,

function A() { this.x = 10 }
var o = new A
print (o.x) // traces 10

Ecmascript 4 Language Specification 39 of 141 Adobe Systems, Inc..

Function objects have a property named prototype whose value is used to initialize the intrinsic
delegate property of the objects it creates. The prototype property has a default value of a new
instance of the class Object. Building on the example above,

function A() { this.x = 10 }

function B() {}

B.prototype = new A

var o = new B

print (o0.x) // traces 10

The value of o is an instance of B which delegates to an instance of 2 which has a property named
x with value of 10.

Constructor methods inside of a class are also used to create objects. But unlike constructor
functions, constructor methods create objects with a set of fixed properties (traits) associated with
its class, and a delegate that is also an instance of its class.

class A {

var x

function A() { this.x = 10 }
}

var o = new A
print (o.x) // traces 10

There are some subtle differences between this example and the one involving a function
constructor above:

* xis a fixed property of each instance of A rather than a dynamic property

* A.prototype is an instance of A rather than an instance of Object

* The expression A(expr) does not call the function A defined in class A. It results in an
explicit conversion of the value of expr to the type A

Class methods are functions that are defined with the attribute static inside of a class definition.
A class method cannot be used as a constructor and does not define this. Class methods are in the
scope of the class object they are defined in.

Instance methods are functions that are defined without the static attribute and inside a class
definition. Instance methods are associated with an instance of the class they are defined in.
Instance methods can override or implement inherited class or interface methods, and always
have a value bound to this.

The value of this in an instance method is the value of the instance the method is belongs to.
When an instance method is extracted from an object, a bound method is created to bind the
value of this to that host object. Assignment of the bound method to a property of another object
does not affect the binding of this. For example,

class A {

var x
function A() { this.x = 10 }
function m() { print(this.x) }

}

var a = new A()

var o = { x : 20 }

o.m = a.m

o.m() // traces 10

Ecmascript 4 Language Specification 40 of 141 Adobe Systems, Inc..

9 Classes

A class is a type, a constructor of objects of that type, and a singleton object for sharing state and
behavior. It is used as a constructor to create like instances. It is used as a type to constrain the
value of properties. It is used as a singleton object to contain shared properties.

Classes are introduced with class definitions. A class definition can directly extend one other
class definition and implement multiple interface definitions. The language does not support the

concept of abstract classes and so a class must implement every interface method it inherits.

9.1 Class modifiers

Class definitions may be modified by these attributes

dynamic Allow properties to be added to instances at runtime
final Must not be extended by another class

internal Visible to references inside the current package (default)
public Visible to references everywhere

The default modifiers for a class definition are internal, non-dynamic, and non-final.

9.2 Class objects

T Class.prototype Object prototype
cA

delegate delegate

C prototype constructor P
type A A

traits.

T.

Class objects have the basic structure shown in this drawing. The drawing illustrates the shape of
the class object that results from this simple class definition,

class A {}

9.2.1 Prototypes

Every object has a prototype object that it is used to match references at runtime. This prototype
is called the delegate of the object. Delegation is a simple way to add shared properties to a group
of related objects at runtime.

Prototype objects are always instances of the dynamic class Object and therefore can always be
extended by the addition of dynamic properties. Unlike with function closures which have a
prototype property that is a variable and can be reset to another object, classes have a prototype
that is read-only and so always points to the same object.

Ecmascript 4 Language Specification 41 of 141 Adobe Systems, Inc..

9.2.2 Traits

Properties of a class definition are represented as traits of the class object and its instances. Think
of a trait as a fixed property that is shared by all instances of a type. Class objects (Ca) are special
in that they are a single instance with an internal type with a corresponding set of traits (Tca).
The internal type of a class object describes the static properties of the class definition. The
instance traits (Ta) are shared by all instances created by the class object. They correspond to the
instance properties of the class definition.

class A

{
static var x
var y

}

In this example, the definition for x contributes a trait to the class traits (Tca), and the definition
of y contributes a trait to the instance traits (Ta).

9.2.3 Methods

Each function definition inside of a class definition results in a method inside the resulting class
object or its instances. There are two special methods that are implicitly defined for each class: a
class initializer; and an instance initializer. Code outside of a function definition gets placed in
the class initializer, which is called when the class object is created. Instance variable initializers
are placed in the instance initializer method, which is called when an instance of the class is
created and before the user defined constructor is executed.

9.2.4 Slots

Traits introduced by variable definitions describe a property that holds a value unique to each
instance. Therefore, each object has a fixed array of slots that store those values, one for each
variable trait. This is true of class objects as well as instance objects.

9.2.5 Instances

All instances (Oa) created by a class object (Ca) will be given a traits (Ta) and delegate (Pa) object,
as represented in this drawing

prototype constructor P
A A

traits

delegate

traits
A

9.2.6 Inheritance

Ecmascript 4 Language Specification 42 of 141 Adobe Systems, Inc..

Each class inherits the instance traits of its base class. These traits are effectively copied down to
the instance traits of the derived class. Classes that don’t declare an explicit base class inherit the
built-in Object class.

A class may also inherit the instance traits of one or more interfaces. Interface traits are abstract
and so must be implemented by any class that inherits them.

Unlike in some other object oriented languages (e.g. Java), static properties of the base class are
not inherited, but they are in scope in the static and instance methods of the derived class.

9.2.7 Scopes

Static properties are in scope of bodies of static and instance methods of the same class. Instance
properties are in scope of the bodies of the instance methods. Instance properties shadow static
properties with the same name. Static properties of base classes are in scope of static and instance

methods of a

clas

{
}

class.

s A

static var ax

class B extends A

{

}

static var bx

class C extends B

{

var
o =
o.m(

Scopes:

mx
ix
cx
bx
ax

gx

A A A e

static var cx

var ix

function m()

{

var mx
gx =

ax
bx
cx

mx =

gx
new C

)

ey e ey eyl eyl g

10
20
30
40
50

- activation scope
- instance scope

- static
- static
- static
- global

scope C
scope B
scope A
scope

9.3 Class property attributes

Class properties may be modified by the following attributes

static

Defines a property of the class object

Ecmascript 4 Language Specification 43 of 141

Adobe Systems, Inc..

private Visible to references inside the current class

internal (default) Visible to references inside the current package

Visible to references inside instances of the current class and derived
protected classes
public Visible to references everywhere

AttributeExpression

Namespace value is the qualifier for the name of the definition

It is a syntax error to use any other attribute on a class property, unless otherwise specified in the
section describing the specific type of property.

9.3.1 Static attribute

The static attribute means the current definition defines a property of the class object.

9.3.2 Prototype attribute

The prototype attribute enables the addition of a fixed property to the prototype object. It can be
used only on variable definitions. Prototype properties are accessible through the prototype
object or through instances that delegate to that prototype. As in Ecmascript 3, assigning to a
prototype property of an instance will set a property of the same name in the instance. Prototype

properties must not be declared with a namespace like other class properties.

A prototype variable can be created using the prototype attribute:

class A

{

}

prototype var x : int = 10

Internally, the prototype variable x would be implemented as follows:

class A {

}

The following example illustrates the behavior of the prototype variable x.

private namespace prototype ns
prototype ns var x : int
prototype ns var x is set : Boolean
public function get x()
{
if (prototype ns::x is set)
{
return prototype ns::x
}
else
{
return intrinsic::delegate.x
}
}

public function set x(v)
{
prototype ns::x = v
prototype ns::x is set = true
}
prototype.x = 10

Ecmascript 4 Language Specification 44 of 141

Adobe Systems, Inc..

var al = new A

var a2 = new A

print (al.x) // traces 10, shared initial value
print (a2.x) // traces 10, shared initial value
A.prototype.x = 20

print (al.x) // traces 20, shared assigned value
print (a2.x) // traces 20, shared assigned value
a2.x = 30

print (al.x) // traces 20, shared assigned value
print (a2.x) // traces 30, individual assigned value

To create a prototype function, you must assign an anonymous function to a prototype variable.

class A

{
prototype var f = function() { print(“A.f”) } // allowed
// prototype function g() { print(“A.g”) } // not allowed

A prototype function has on its scope chain the class object of its class, but no instance. Think of
prototype functions as function closures on the class prototype. Internally, the prototype variable
f would be implemented as follows:

class A
{
private namespace prototype ns
prototype ns var f : Function
prototype ns var f is set : Boolean
public function get £f()
{
if (prototype ns::f is set)
{
return prototype ns::f

}

else

{
return prototype.f

}
}

public function set f(v)

{
prototype ns::f = v
prototype ns::f is set = true

}

prototype.f = function() { return "A.f" }

9.3.3 Access control namespace attributes

Each access control attribute (private, internal, protected, and public) refers to a namespace value
with a unique, private namespace name. Access control is provided by the fact that code outside
of the attribute's access domain has no way to refer to that namespace value.

9.3.4 User defined namespace attributes

The value of an attribute expression that evaluates to a compile-time constant namespace is used
as the qualifier of the definition's name.

Ecmascript 4 Language Specification 45 of 141 Adobe Systems, Inc..

namespace ns
class A

{

ns var Xx

}

In this example the name of the definition of x is qualified by the namespace ns

* only one namespace attribute may be used per definition
* namespace attributes may not be used with an access control attribute

9.4 Class body

A class body may contain variable definitions, namespace definitions, function definitions, and
statements.

class A

{

static var x

static function f() {}
var y
function g () {}

print (“class loaded”)

* Definitions result in class or instance traits depending on whether the static
attribute occurs in their definition

* Statements and initializers of static variables are added to the static initializer
method of the class. The static initializer is called once, when the class is defined at
runtime. The static initializer can be used to initialize variables of the class object and
to invoke methods that are external to the current class

* Initializers of instance variables are added to the instance initializer method

* The scope chain of methods contained by the class body includes the class object, the
base class objects (from most derived the least derived), and the global object.

Note: it is not an error to define a class and instance property with the same name. e.g.

class A {
static var x
var x

}

It is not an error to define a class property with the same name as a visible class property in a
base class. e.g.

class A {
static var x

}

class B extends A {
static var x

}

Ecmascript 4 Language Specification 46 of 141 Adobe Systems, Inc..

9.5 Class variables

Class variables are defined using the var or const keywords.

class A

{
var x
const k = 10

The meaning of var, const follow from the general meaning described elsewhere in this
specification.

var May be written to multiple times
const May be written to only once

const variable properties can be written to only once. The compiler uses a specific data flow
analysis to determine if a const variable has been written to at the point of an assignment to that
variable. Informally the effect of this algorithm can be seen in the following error cases

* Itis an error to assign to a const instance or static variable in a statement that is
outside of the instance or static initializer, respectively

* Itisan error to assign to a const variable more than once in a sequence of statements
with no control flow branches

* Itis an error to assign to a const variable in more than one parallel control flow
branch if the branch conditions are not compile-time constant expressions, or if the
value of those branch conditions allow for one or more of those branches to be
executed more than once.

The default value of a class or instance variable is the value of undefined coerced to the type of
the variable.

9.5.1 Static variables

Variables declared with the static attribute add a slot trait to the class traits and a slot to the
class object. Because there is only one class object per class, there is also only one slot per static
variable. Static variables, like static methods, are not inherited, but are accessible from within the
body of the class definition and through an explicit reference to the defining class’s name. Static
variables are in scope for all static and instance methods of the defining class and classes that
inherit the defining class.

Static const variables must either have an initializer or be definitely unassigned before being set
in the static initializer method.

Note: unlike in Java and C#, static variables are not inherited by derived classes and so can not be
referenced through derived class objects.

9.5.2 Instance variables

Variables declared without the static attribute add a slot trait to the instance traits of the class
and a slot to each instance of the class. Instance variables are always final and must not be
overridden or hidden by a derived class.

Ecmascript 4 Language Specification 47 of 141 Adobe Systems, Inc..

As with all class properties, the default qualifier for the variable is the internal namespace.
Other qualifiers can be specified by other namespace attributes. Both instance and class variables
are implicitly final. Any attempt to hide or override one in a derived class will result in a
verification error.

9.6 Class methods

A method is a function associated with a specific object. Unlike a function closure, a method is
not a value and cannot be used apart from the instance to which it is bound. The value of this
inside a method is always the base object used to refer to the method, and always has the type of
the class that implements the method, or subclasses of that class.

9.6.1 Constructor methods

A function declared with the same identifier as the class it is defined in adds a constructor
method to the class object. The constructor is called when a new instance of that class is created.
A constructor may refer to the instance variables of the class that defines it.

class A

{
function A() {}

}

A constructor is public by default and may be defined with the public namespace or with no
namespace attribute. If no constructor is defined by a class definition, a default constructor is
defined implicitly. No more than one constructor can be defined for a class.

[Rationale: making a constructor always public reinforces the user model of classes, like functions, as
constructors. While other languages allow constructors methods to be made inaccessible to keep outside
code from creating instances, this use case was not deemed important enough to complicate the language
design. It is a compatible change to allow explicit access control namespace attributes in a later edition.]

If the body of a constructor contains a SuperStatement, that statement must occur before the first
reference to this or super, and before any return or throw statement. If a call to the super
constructor is not explicit, one will be inserted before the first statement in the constructor body.

* Itis a syntax error to call the super constructor more than once

* Itis a syntax error to specify a return statement with an expression

* Itis a syntax error to specify a result type of a constructor

Note: that there is no way to directly call the constructor of an indirect base class is intentional. This might
lead to brittle or insecure programs.

9.6.2 Static methods

Functions declared with the static attribute add a method trait to the class object traits. Static
variables are in scope of a static method.

It is an error for the this or super expression to appear in the body of a static method.

Unlike in Java and C#, static methods are not inherited by derived classes and so can not be
referenced through derived class objects.

Ecmascript 4 Language Specification 48 of 141 Adobe Systems, Inc..

9.6.3 Instance methods

Functions declared without the static attribute add a method trait to the instance traits of a class
object. Static and instance variables are in scope of an instance method. The value of this inside
an instance method is the instance the method is bound to.

class A
{
function m() { return this }
}
var a = new A
print (a==a.m()) // print true, this is the object ‘m’ is called on

In addition to the attributes defined for all class properties, the following attributes may be used
on instance methods

final May not be overridden
override Must override an inherited method

The attribute override helps to avoid unintentional overriding of base class methods. It is a
verifier error to use the override attribute on a function definition that does not override an
inherited method. It is a verifier error to override an inherited method that is declared final. It is
an error to define a method without the override attribute if the name matches the name of an
inherited method.

The prototype attribute allows the addition of a fixed property to the prototype object, but not to
the instance. Instance methods defined with the prototype attribute have function values that are
compatible with Ecmascript edition 3 prototype functions.

class A

{

prototype var f = function() { return this }

}

var a = new A

dynamic class B {}

var b = new B

b.f = a.f

b.f() // traces “[object B]”

The instance of B becomes the value of this.

9.6.4 Accessor methods

A method defined with the get or set keyword, adds a get or set method trait to the instance or
static traits of the defining class object. Accessor methods are called when the name of the
accessor is used in a reference that reads or writes the value of that name.

class A
{

private var x

function get x() { return x }
function set x(v) { x = v }

}

var a = new A

a.x = 10 // calls set accessor of A

print (a.x) // traces 10, calls get accessor of A

Ecmascript 4 Language Specification 49 of 141 Adobe Systems, Inc..

Accessor methods are very similar in definition to regular methods. The differences are expressed
by the following error conditions,

* Get methods must specify no parameters

* Set methods must specify just one parameter

* Get methods must return a value

* Set methods have a result type void by default

* Set methods must not specify a result type other than void

* Get methods must not specify the result type void

* If both a get and set method is defined with the same name, the parameter type of
the set method and the result type of the get method must match

Note: accessors may only be defined at the top level of a class. They must not be nested inside
another method, or defined outside of a class.

9.6.5 Inheriting instance methods

Instance methods are inherited by copying their instance traits down to the instance traits of the
derived class.

9.6.5.1 Overriding instance methods

Methods inherited from a class may be overridden in the derived class if the overriding method
is given the override attribute and if its name, number and type of parameters, and return type
match exactly. It is an error to attempt to override a method with a method that has the same
name, but does not have the same number of parameters or parameters of different types or
different return type.

9.6.5.2 Implementing interface methods

Methods inherited from an interface must be implemented by a method with a name and
signature that matches the inherited method. Interface methods are implemented by an instance
method declared with the public attribute.

A method that has the public attribute implements all inherited interface methods with a
matching identifier.

interface I

{

function m()

}

interface J

{

function m()

}

class A implements I,J

{
public function m() { print(“A.m”) }

}

Ecmascript 4 Language Specification 50 of 141 Adobe Systems, Inc..

In this example, the definition of m in class A satisfies both interfaces I and J.
9.6.6 Bound methods
Although a method is not a value by itself, it can be converted to a first class value called a bound

method, through extraction. A bound method maintains the binding between a method and its
instance. The user visible type of a bound method is Function.

class A
{
function m() { return this }
}
var a = new A
var mc : Function = a.m // create a bound method from m and a
print (a==mc()) // print true, mc remembers its this

Ecmascript 4 Language Specification 51 of 141 Adobe Systems, Inc..

10 Interfaces

Interfaces provide a way for programs to express contracts between the producers and
consumers of objects. These contracts are type safe, easy to understand and efficient to
implement. Programs should not have to pay a significant performance penalty for using
interfaces.

An interface is a type whose methods must be defined by every class that claims to implement it.
Multiple interfaces can be inherited by another interface through the extends clause, or by a class
through the implements clause. Instances of a class that implements an interface belong to the
type represented by the interface. Interface definitions must only contain function definitions,
which may include get and set methods.

Interface methods are not public by default, but are added to the public namespace by the
implementing method definition.

10.1 Interface types

An interface definition introduces a type into the current scope. The interface type is described by
a set of abstract method traits and a list of interfaces that it extends. This set of abstract traits must
be fully implemented by any class that inherits the interface.

An interface name refers to the interface type when it is used in a type annotation or an
inheritance clause of a class or interface definition.

interface I {}

class A implements I {} // I refers to type I

var X : I = new A // In each of these uses too
print(x is I)

var y : I = x as I

When a reference is bound to an interface at compile-time, the value of that reference is always
the compile-time interface value, even if the interface definition would be shadowed by another
property at runtime. For example,

interface T {}
class A implements T {}
class B {}

function f() {
var T = B
var x = new A
print(x is T) // T refers to interface T, not var T, traces true

}

In this example, T in the is expression refers to the outer interface T, not the inner var T.
10.2 Interface methods

Classes that implement an interface method must use the public attribute to implement all
interface methods that have the same identifier name.

interface I

{

function £ ()

Ecmascript 4 Language Specification 52 of 141 Adobe Systems, Inc..

}

interface J

{

function g()

}

class A implements I

{
public function £ ()

{}
public function g() {}

}

This example shows a class that implements two inherited interfaces with public qualified
methods.

10.2.1 Visibility of interface methods

Interface methods are visible when referenced through a property of the corresponding interface
type, or through a reference to the implementing class or subclass.

var a : A = new A

a.f() // okay, f is visible through an A as {public}::f
a.g() // okay, f is visible through an A as {public}::g
var 1 : I = Db

i.£() // okay, f is still visible through an I as {I}::f
i.g9/() // error, g is not visible through an I as {I}::g

References through an object with an interface type are multinames that contain only the names
qualified by the interface namespace and its super interface namespaces. This means that the
names in the open namespaces (including public) will not be visible through a reference with an
interface typed base object. The motivation for this behavior is to express the idea of the interface
as a contract between the producer and consumer of an object, with the contract specified by the
names in the interface namespace alone.

If the compile-time type of the base object is not an interface type, an unqualified reference will
use the currently open namespaces (which includes public) to create a multiname in the normal
way. Again, ambiguous references can be explicitly qualified with the interface name to avoid
conflicts.

10.2.2 Inheritance of interface methods

The rules for implementing an inherited interface method are the same as the rules for overriding
an inherited class method. Specifically, the name of the method, number and type of the
parameters, and return type must match exactly.

It is a verification error if a class implements an interface method with a method whose name
matches, but the parameter count or types, or return type do not match. It is a verifier error if a

class inherits an interface method that it does not implement.

10.3 Interface example

Here is an example of how interfaces are defined and used.

interface T

{

function £ ()

Ecmascript 4 Language Specification 53 of 141 Adobe Systems, Inc..

}

interface U

{
function £ ()
function g()

}

interface V extends T,U
{
function h{()

}

class A implements V

{
public function f () {} // implements {T,U}::f
public function g () {} // implements {U}::qg
public function h() {} // implements {V}::h

var a : A = new A

var t ¢« T = a

var u : U = a

var v : V = a

t.f() // {T}::f referenced, T::f matched

u.g() // {U}::g referenced, U::g matched

v.f() // {T,U,V}::f referenced, {T,U}::f matched
v.g() // {T,U0,V}::g referenced, U::g matched

v.h() // {T,U,V}::h referenced, V::h matched

a.f() // {public,..}::f referenced, public::f matched
var o = a

o.f() // {public,..}::f referenced, public::f matched

A few highlights of this example are:

* Animplementing class must use public as an attribute to make the method implement
all interface methods with a matching identifier

* The static type of the base object of a reference controls which interface names are open
in that reference if that type is an interface type

Ecmascript 4 Language Specification 54 of 141 Adobe Systems, Inc..

11 Packages

A package definition introduces a top-level namespace, suitable for organizing collections of type
definitions into APlIs.

Unlike ordinary namespaces (hereafter referred to simply as namespaces), a package is a pure
compile-time construct. A package directive qualifies the names of properties defined inside of it
at compile-time; references to a package’s member definitions are given fully qualified names at
compile-time.

package mx.core

{
class UIObject extends

{
}

}

In this example, the fully qualified name for UIObject is mx.core.UIObject. An unqualified
reference to utobject will be fully-qualified as mx . core.UIObject by the compiler.

Package definitions may be discontinuous; the definition of a package may be spread over
multiple package definitions, possibly in multiple source files.

The semantics of loading packages is outside of the language definition. The compiler and virtual
machine will have access to the package definitions in files that have been loaded by the
embedding tool or runtime.

[Compatibility note: In the Netscape proposal, packages are sealed values that could contain
types and values, and could be dynamically loaded. This is problematic for large libraries
because the author has no way to incrementally load a library. The current design does not have

this restriction.]

11.1 Package namespace

The namespace name (the string used for equality comparision) of a package is the sequence of
characters of its name. For example, the package in:

package mx.core {

}
is given the namespace name “mx.core”.
A package names are used to:
* qualify the names of top-level definitions in a package

* qualify the names of references to those definitions
import names into other packages.

Ecmascript 4 Language Specification 55 of 141 Adobe Systems, Inc..

package acme.core

{

public class Widget { } // qualifies Widget
}
import acme.core.* // make visible all names in acme.core
var widget : acme.core.Widget // distinguishes a reference to Widget

Packages exist only at compile-time. The static existence of packages allows us to give them
certain properties that would not be possible if they could be manipulated at runtime. In
particular,

* package names may have embedded dots
* fully qualified package references may and must be expressed using the dot operator rather
than the usual :: syntax for qualified names

But because there is no runtime value for a package name, packages cannot be aliased or
otherwise used in an expression that uses a runtime value.

When encountered in a valid context by the compiler, the meaning of a package name becomes
fixed; any interpretation at runtime is no longer possible.

For this reason, a package name always shadows locally defined names, independent of the
scope chain, when that package name is used on the left hand side of a dot operator.

package p
{

public var x = 10
}
import p.x
function £ ()
{
var p = { x : 20 }
print (p.x) // traces 10

}
£0

[Rationale: the alternative is to avoid such conflict by making it an error to define any name that
has an identifier that matches the identifier of the lhs of the left most dot of a package name.]

Errors:

* itis a strict error to import a package that cannot be found
* itis a strict error to reference a package property that cannot be found in an imported
package

11.2 Package members

Definitions with the public attribute inside of a package definition are implicitly qualified by the
package namespace. Every kind of definition except for package definitions may appear directly
inside a package definition, including variable, function, namespace, class, and interface
definitions.

Ecmascript 4 Language Specification 56 of 141 Adobe Systems, Inc..

11.2.1 Package property attributes

The visibility of a name defined inside of a package is controlled by the attributes that appear in
that definition. Allowed attributes include,

public Qualified by the package namespace
internal Qualified by the internal namespace for the current package [default]

It is a syntax error for more than one of these attributes to appear in a definition.

11.3 Package import

The names of package members are made visible inside an external scope with an import
directive. For example,

import mx.core.*

makes all public names defined in the package mx.core visible inside any scope that contains this
directive. Individual names can be imported using an import directive with the fully qualified
name to be imported. For example,

import mx.core.Image

has the effect of making the class mx.core.Image, but no other names defined inside package
mx.core, visible to an unqualified reference.

References to package members are fully qualified using the dot operator. When the meaning of a
simple name is ambiguous, a fully qualified name can be used to indicate the intended binding.
For example,

import mx.core.*
import player.core.*

new Image // error, mx.core.Image or player.core.Image?
new player.core.Image // okay

[Java compatibility note: unlike in Java, an import directive is required to introduce a package
name to a program even when fully qualified names are used. This is to decouple the language

semantics of dot expressions from the host dependent behavior of introducing package names to
a program. E.g.

print(x.y.z)
Here, is x.y a package name or a reference to y inside of an object referred to by x?
Given the dynamic nature of the language and the diversity of host environments, we chose to
require the programmer to specify through an import statement which packages he intends to

use.]

Visibility of package members outside of a package is controlled by access control namespaces.
The default namespace of a package member is package internal. For example,

package acme.core

{

Ecmascript 4 Language Specification 57 of 141 Adobe Systems, Inc..

public class Widget { }
class WidgetImpl {} // default namespace is internal

}

import acme.core.*
new WidgetImpl // error, cannot find WidgetImpl
new Widget // okay, pubic names are always visible

In this example, class WidgetImpl is in the internal package namespace for package acme. core.
This namespace is always open inside of any definition of package acme.core, and never open or
accessible outside of a definition of acme. core.

11.3.1 Single name aliases

A name alias can be provided for single name import directive to avoid ambiguity of unqualified
references. E.g.

package acme.core

{
public class Widget { }

}

package mx.core

{
public class Widget { }

}

import AcmeWidget = acme.core.Widget
import MxWidget = mx.core.Widget

new AcmeWidget

new MxWidget

When an alias is specified, the original fully qualified name can be used to refer to the imported
definition. It is also possible to use the original unqualified name as long as the resulting
reference is not ambiguous.

11.4 Unnamed package

The unnamed package is defined by a package definition with no name specified. E.g.

package
{
}

The unnamed package is implicitly imported by all other packages and global code outside of
any package. This makes it convenient for casual sharing of definitions between programs by
making public definitions in the unnamed package always visible.

Ecmascript 4 Language Specification 58 of 141 Adobe Systems, Inc..

12 Namespaces

Namespaces are used to qualify names. E4X introduced the idea of explicitly qualifying names to
reference properties of an XML object. XML namespaces allow markup with various meanings,
but potentially conflicting names, to be intermixed in a single use. Packages in Ecmascript 4
provide such a capability. XML namespaces also allow names to be individually qualified to
create sub- vocabularies relating to concerns secondary to the main purpose of the markup.
Namespaces in Ecmascript 4 provide this capability; that is, controlling the visibility of names
independent of the structure of the program. This is useful for giving trusted code special access
privileges, and for distinguishing the meaning of a name between versions and uses.

12.1 Namespace values

Namespace definitions introduce a constant fixed property of type Namespace into the defining
scope. The property is initialized to an implicit or explicit value. Regardless of how it is
initialized, a namespace value consists of a namespace name used for equality comparison.

The following example shows the definition of several namespaces,

namespace N1
namespace N2 N1
namespace N3 = ‘http://www.ecma-international.org/namespace’

N1 is given an anonymous namespace name. N2 is an alias of N1. N3 is given a namespace with the
namespace name of ‘http://www.ecma-international.org/namespace’. When created by a
namespace definition, the prefix of a namespace is initialized to the value undefined.

The set of attributes that may be used on a namespace definition is the same as the set that can be
used on a variable definition.

12.2 Namespaces as attributes

When used as an attribute of a definition, a namespace specifies the namespace qualifier of that
definitions name. E.g.

namespace N1

namespace N2

Nl var x : int = 10

N2 var x : String = “hello”

Here, two distinct variables are defined--one with the qualified name N1: : x and the other with
the qualified name N2 : : x. Referencing code can refer to one or the other of these names by
explicitly qualifying references to x or by adding one or the other namespace to the set of open

namespaces.

It is an error to use a user defined namespace as an attribute except in the top-level of a class
definition.

12.3 Namespaces as qualifiers

References to a name qualified by a namespace can be explicitly qualified by that namespace. E.g.

namespace N1

Ecmascript 4 Language Specification 59 of 141 Adobe Systems, Inc..

namespace N2
Nl var x : int = 10
N2 var x : String = “hello”

print (N1::x)

In this case the qualification is necessary because an unqualified reference to x would not match
any visible definition of x, and therefore result in a runtime exception.

12.4 Open namespaces

The set of open namespaces determines the visibility of unqualified references. If the qualifier of
a name is not in the set of open namespaces it will not be visible to an unqualified reference.
Namespaces are added to the list of open namespaces by the use namespace directive. Building
on the previous example,

namespace N1

namespace N2

Nl var x : int = 10

N2 var x : String = “hello”
use namespace N1

print(x) // print 10

Here the namespace N1 is added to the set of open namespaces. The unqualified reference to x
matches any name that has the identifier x and qualified by one of the open namespaces, in this
case N1::x.

It is a runtime error for more than one name to match an unqualified reference.

The set of open namespaces includes any namespace that is explicitly used in that block or an
outer nested block, as well as the public, internal, protected, and private namespaces that are
implicitly open in various contexts.

Bindings of explicitly used namespaces are preferred over names in the public namespace. This
allows a public name to be given an open user defined namespace without making unqualified
references ambiguous. E.g.

namespace N1
Nl var x : int = 10

public var x : String = “hello”
use namespace N1
print (x) // okay, matches Nl::x, even though public::x is also visible

12.5 Namespace examples

12.5.1 Access control

class A {
private namespace Key
private var friends = [B]
function beMyFriend(suitor) {
for each(friend in friends)
{
if(suitor is friend) return Key

}

return null

Ecmascript 4 Language Specification 60 of 141 Adobe Systems, Inc..

Key function makeMyDay ()
{
print (“making my day”)
}
}

class B {
function befriendAnA (a:A) {
var key : Namespace = a.beMyFriend(this)
if(key !'= null)
{
a.key::makeMyDay ()

}

12.5.2 Version control

package p {

public namespace V2

public class A {
public function m() {}
V2 function m() {}

}
}

import p.vl
import p.v2
import p.A

// version 1

class B extends A

{

public function m() {}

}
// version 2

class B extends A

{
public function m() {}
V2 function m() {}

}

use namespace p.V2 // open p.V2, prefer it over public
var a : A = new B
a.m()

12.5.3 Vocabulary control

Namespace definitions allow multiple vocabularies to be defined in a single class. This is a kind
of polymorphism that is independent of the class abstraction. It is useful when you have common
functionality that has a more than one public interface. You could use subclasses to express the
overridden behavior, but if there is more than one vocabulary that needs to be mixed in, the
number of combinations quickly explodes.

Ecmascript 4 Language Specification 61 of 141 Adobe Systems, Inc..

package p {

public namespace French
public namespace Vegan

public class Person
public function
French function
public function
Vegan function

}

}

import p.*

{

sayIt ()
sayIt ()
eatIt ()
eatIt ()

var person = new Person()

{

use namespace French
use namespace Vegan
// speak French
// eat vegan

person.saylt()
person.eatIt ()

person.saylt()
person.eatIt ()

Ecmascript 4 Language Specification

{ /* say
{ /* say
{ /* eat
{ /* eat

it in
it in
steak
vegan

// speak English
// eat meat

62 of 141

English */ }
French */ }
*/)

*/

Adobe Systems, Inc..

13 Lexical Structure

13.1 Lexical

Lexical keywords are removed from the available program namespace during scanning. It is a
syntax error to use any of these names except as indicated by the grammar. Syntactic keywords
appear to the lexical scanner as identifier tokens, but are given special meaning in certain
contexts by the parser.

Keywords:

as break case catch class const continue default delete do else extends
false finally for function if implements import in instanceof interface
internal is native new null package private protected public return super
switch this throw to true try typeof use var void while with

Identifiers that are syntactic keywords:
each get set namespace include dynamic final native override static

13.2 Syntactic

Identifiers with special meaning (become keywords) in certain syntactic contexts:
In a for-each-in statement between the ‘for” token and the ‘(" token:
each
In a function definition between the “function” token and an identifier token:
get set
As the first word of a directive:
namespace include

In an attribute list or wherever an attribute list can be used:

dynamic final native override static

It is a syntax error to use a syntactic keyword in a context where it is treated as a keyword. E.g,

namespace = “hello”
namespace ()

In these cases the grammar requires an identifier after the ‘namespace’ keyword.

[Rationale:

Ecmascript 4 Language Specification 63 of 141 Adobe Systems, Inc..

Traditionally identifiers with special meaning have been set aside for exclusive use by the
implementation. This simplifies the implementation, allows for more precise error reporting and
makes the language simpler. Taken literally, this policy dictates that a language reserves all
identifiers with special meaning anywhere in the language. The problem with this approach is
that it breaks programs written for a version of the language that did not reserve those keywords,
and takes commonly used names out of the set of available identifiers.

A case in point is the identifier ‘namespace’. ‘namespace’ is a method name in E4X and a
definition label in Ecmascript 4. Making it a reserved word in Ecmascript 4 would force the
renaming of the E4X method to a less pleasing name. And because this change is incompatible
with E4X it will force E4X to be revised incompatibly, breaking any program that uses the XML
namespace method.

There are two alternatives to this traditional approach that are less disruptive to existing and
future programs include:

* giving new keywords funny names (e.g. __namespace).
* limiting the context in which new keywords have special meaning

Aesthetically the first option is a non-starter, leaving us with only the second option when
compatibility is important. And because we are designing a language to be useful in
environments with different compatibility requirements, we must choose the most compatible
rule. Tool chains that favor simplicity over compatibility should provide code hinting and
compiler errors or warnings to help users avoid naming pitfalls.

End Rationale]

Ecmascript 4 Language Specification 64 of 141 Adobe Systems, Inc..

14 Expressions

14.1 Identifiers

Identifiers may be either simple identifiers or qualified identifiers. Qualified identifiers result in a
single name consisting of a namespace and a string. The string is specified by an expression or a

literal identifier. The namespace is specified by an expression that precedes the

: : punctuator.

Simple identifiers result in one or more names that consist of the identifier string and each of the
namespaces open in the scope of the expression. The resulting name value(s) are used to

construct a Reference value specified by a larger expression.

Syntax

Identifier
Identifier
dynamic
each
get
include
namespace
prototype
set
static

Propertyldentifier

Identifier

*

Qualifier
Propertyldentifier
ReservedNamespace

SimpleQualifiedldentifier
Propertyldentifier
Qualifier :: Propertyldentifier
Qualifier :: Brackets

ExpressionQualifiedldentifier
ParenExpression :: Propertyldentifier
ParenExpression :: Brackets

NonAttributeQualifiedldentifier
SimpleQualifiedldentifier
ExpressionQualifiedldentifier

Qualifiedldentifier
@ Brackets
@ NonAttributeQualifiedldentifier
NonAttributeQualifiedldentifier

Ecmascript 4 Language Specification 65 of 141

Adobe Systems, Inc..

Expressions of the form

SimpleQualifiedldentifier : Qualifier :: Propertyldentifier

SimpleQualifiedldentifier : ParenExpression :: Propertyldentifier

are syntactically rewritten as

SimpleQualifiedldentifier : Qualifier :: Brackets
SimpleQualifiedldentifier : ParenExpression:: Brackets

respectively, where the expression between Brackets is a string literal with the same sequence of

characters as the Propertyldentifier.
Verification

Identifier : Identifier
Identifier : each
Identifier : get
Identifier : include
Identifier : namespace
Identifier : set

* Return the type String

Propertyldentifier : Identifier

Qualifier : Propertyldentifier

Qualifier : ReservedNamespace
SimpleQualifiedldentifier : Propertyldentifier

* Return the result of verifying the non-terminal symbol on right side of the production

SimpleQualifiedldentifier : Qualifier :: Propertyldentifier

* Let qual be the result of verifying Qualifier
* Call verifyType(qual, Namespace)
* Return the type Name

SimpleQualifiedldentifier : Qualifier :: Brackets

* Let qual be the result of verifying Qualifier
* Call verifyType(qual, Namespace)
* Let expr be the result of verifying Brackets
* If expris of type Name

o Throw a VerifierError exception
* Return the type Name

ExpressionQualifiedldentifier : ParenExpression :: Propertyldentifier

* Let qual be the result of verifying ParenExpression
* Call verifyType(qual, Namespace)
* Return the type Name

ExpressionQualifiedldentifier : ParenExpression :: Brackets
* Let qual be the result of verifying ParenExpression

* Call verifyType(qual, Namespace)

Ecmascript 4 Language Specification 66 of 141

Adobe Systems, Inc..

* Let expr be the result of verifying Brackets
* If expris of type Name

o Throw a VerifyError exception
* Return the type Name

NonAttributeQualifier : SimpleQualifiedldentifier
NonAttributeQualifier : ExpressionQualifiedldentifier

* Return the result of verifying the non-terminal symbol on right side of the production
Qualifiedldentifier : @ Brackets

* Verify Brackets
* Return the type Name

Qualifiedldentifier : @ NonAttributeQualifiedldentifier
Qualifiedldentifier : NonAttributeQualifiedldentifier

* Verify NonAttributeQualifiedldentiifer
* Return the type Name

Evaluation

Identifier : Identifier
Identifier : each
Identifier : get
Identifier : include
Identifier : namespace
Identifier : set

* Return a new String value consisting of the sequence of characters of the token on the right
side of the production

Propertyldentifier : Identifier

* Return the result of evaluating Identifier

Propertyldentifier : *

* Return the new instance String(“*”)

Qualifier : Propertyldentifier

Qualifier : ReservedNamespace

SimpleQualifiedldentifier : Propertyldentifier

* Return the result of evaluating the non-terminal symbol on right side of the production

SimpleQualifiedldentifier : Qualifier :: Propertyldentifier

* Let qual be the result of evaluating Qualifier
* Let str be the result of evaluating Propertyldentifier
* Return the new instance Name(qual,str,false)

SimpleQualifiedldentifier : Qualifier :: Brackets
* Let qual be the result of evaluating Qualifier

* Let expr be the result of evaluating Brackets

Ecmascript 4 Language Specification 67 of 141 Adobe Systems, Inc..

* If expris of type Name
o Throw a TypeError exception
* Let str be the result of calling String(expr)
* Let name be the instance Name(qual,str,false)
¢ Return name

ExpressionQualifiedldentifier : ParenExpression :: Propertyldentifier

* Let qual be the result of evaluating ParenExpression
* Let str be the result of evaluating Propertyldentifier
* Return the new instance Name(qual,str,false)

ExpressionQualifiedldentifier : ParenExpression :: Brackets

* Let qual be the result of evaluating ParenExpression
* Let expr be the result of evaluating Brackets
* If expris of type Name
o Throw a TypeError exception
* Let str be the result of calling String(expr)
* Let name be the instance Name(qual,str,false)
¢ Return name

NonAttributeQualifier : SimpleQualifiedldentifier
NonAttributeQualifier : ExpressionQualifiedldentifier

* Return the result of evaluating the non-terminal symbol on right side of the production
Qualifiedldentifier : @ Brackets

* Let expr be the result of evaluating Brackets
* If expris of type Name
o Let name be the set consisting of expr
* Else
o Let str be the result of calling String(expr)
o Let namespaces be the result of calling openNamespaces(ctx)
o Let name be the result of makeMultiname(namespaces,str)
* Call makeAttributeName(name)
¢ Return name

Qualifiedldentifier : @ NonAttributeQualifiedldentifier

* Let name be the result of evaluating NonAttributeQualifiedldentifier
* Call makeAttributeName (name)
¢ Return name

Qualifiedldentifier : NonAttributeQualifiedldentifier

* Let name be the result of evaluating NonAttributeQualifiedldentifier
¢ Return name

14.2 Primary expressions

Syntax

Ecmascript 4 Language Specification 68 of 141 Adobe Systems, Inc..

PrimaryExpression
null
true
false
Number
String
this
RegularExpression
Qualifiedldentifier
XMLlInitializer
ReservedNamespace
ParenListExpression
Arraylnitialiser
Objectlnitialiser

FunctionExpression

A PrimaryExpression can be used wherever a FullPostfixExpression or a FullNewSubExpression can
be used. This includes object creation, property access, and function invocation expressions.

Verification
PrimaryExpression : null

* Return the type Null

PrimaryExpression : true
PrimaryExpression : false

* Return the type Boolean

PrimaryExpression : Number

* Return the type Number

PrimaryExpression : String

* Return the type String

PrimaryExpression : RegularExpression

* Return the type RegExp

PrimaryExpression : Qualifiedldentifier

* Return the result of verifying Qualifiedldentifier

PrimaryExpression : XMLlInitialiser
PrimaryExpression : ReservedNamespace
PrimaryExpression : ParenListExpression
PrimaryExpression : ArrayInitialiser
PrimaryExpression : Objectlnitialiser
PrimaryExpression : FunctionExpression

* Return the result of verifying the non-terminal symbol on the right side of the production

Ecmascript 4 Language Specification 69 of 141 Adobe Systems, Inc..

PrimaryExpression : this

* Let frame be the immediately enclosing ParameterFrame
* If frame is none

o Throw a VerifyError
* Return the result of typeOfThis(frame)

Evaluation

PrimaryExpression : null

* Return the value null

PrimaryExpression : true

* Return the value true

PrimaryExpression : false

* Return the value false

PrimaryExpression : Number

* Return the Number value produced by lexical analysis of Number
PrimaryExpression : String

* Return the String value produced by lexical analysis of String
PrimaryExpression : this

* Let frame be the immediately enclosing ParameterFrame
* Return the value of this associated with frame

PrimaryExpression : RegularExpression

* Return the RegExp result of evaluating the expression produced by lexical analysis of
RegularExpression

PrimaryExpression : Qualifiedldentifier

* Let name be the result of evaluating QualifiedIdentifier
* Let ref be an instance Reference(null,name,null)
* Return ref

14.3 Reserved namespace expressions
Syntax

ReservedNamespace
public
private
protected
internal

Ecmascript 4 Language Specification 70 of 141 Adobe Systems, Inc..

Verification
ReservedNamespace : public
* Return the value of type Namespace

ReservedNamespace : private
ReservedNamespace : protected

* If ReservedNamespace is not enclosed in a ClassDefinition
o Throw a VerifyError
* Return the value of type Namespace

ReservedNamespace : internal

* If ReservedNamespace is not enclosed in a PackageDefinition
o Throw a VerifyError
* Return the value of type Namespace

Evaluation

ReservedNamespace : public

* Return the public namespace

ReservedNamespace : private

* Return the private namespace of the enclosing class
ReservedNamespace : protected

* Return the protected namespace of the enclosing class
ReservedNamespace : internal

* Return the internal namespace of the enclosing package

14.4 Parenthesized expressions
Syntax

ParenExpression

allowln)

(AssignmentExpression

ParenListExpression
ParenExpression

allowln allowin)

(ListExpression , AssignmentExpression

Verification
allowin)

ParenExpression : (AssignmentExpression

* Return the result of verifying AssignmentExpression

Ecmascript 4 Language Specification 71 of 141

Adobe Systems, Inc..

allowin allowln)

ParenListExpression : (ListExpression , AssignmentExpression

* Verify ListExpression
* Return the result of verifying AssignmentExpression

Evaluation

ParenExpression : (AssignmentExpression® ")

* Return the result of evaluating AssignmentExpression

allowin allowln)

ParenListExpression : (ListExpression , AssignmentExpression

* Evaluate ListExpression
* Let ref be the result of evaluating AssignmentExpression
* Return the result of readReference(ref)

14.5 Function expression
Syntax

FunctionExpression
function FunctionCommon
function Identifier FunctionCommon

Verification

FunctionExpression : function FunctionCommon
FunctionExpression : function Identifier FunctionCommon

* Return the result of verifying FunctionCommon
Evaluation

FunctionExpression : function FunctionCommon

* Return the result of evaluating FunctionCommon
FunctionExpression : function Identifier FunctionCommon

* Let obj be a new instance of Object

* Push obj onto the scope chain

* Let fun be the result of evaluating FunctionCommon
* Let id be the result of evaluating Identifier

* Add a property to obj with the name id and the value fun that is not writable and not deletable

* Pop obj from the scope chain
* Return fun

14.6 Obiject initialiser
Syntax

Objectlnitialiser
{ FieldList }

Ecmascript 4 Language Specification 72 of 141

Adobe Systems, Inc..

FieldList
«empty»
NonemptyFieldList

NonemptyFieldList
LiteralField
LiteralField , NonemptyFieldList

LiteralField
FieldName : AssignmentExpression

allowin

FieldName
NonAttributeQualifiedldentifier
String
Number

Verification

Objectlnitialiser : { FieldList }

* Return the result of verifying FieldList
FieldList : empty

* Do nothing

FieldList : NonemptyFieldList

* Verify NonemptyFieldList

NonemptyFieldList : LiteralField

* Verity LiteralField

NonemptyFieldList : LiteralField , NonemptyFieldList

* Verity LiteralField
* Verify NonemptyFieldList

LiteralField : FieldName : AssignmentExpression

* Verify FieldName
* Verify AssignmentExpression

FieldName : NonAttributeQualifiedldentifier
* Verify NonAttributeQualifiedldentifier

FieldName : String
FieldName : Number

* Do nothing

Evaluation

Ecmascript 4 Language Specification 73 of 141

Adobe Systems, Inc..

Objectlnitialiser : { FieldList }

* Let obj be the result of creating a new Object instance
* Return the result of evaluating FieldList with argument obj

FieldList : empty

* Return the value of the argument obj

FieldList : NonemptyFieldList

* Evaluate NonemptyFieldList with argument obj
NonemptyFieldList : LiteralField

* Evaluate LiferalField with argument obj
NonemptyFieldList : LiteralField , NonemptyFieldList

* Evaluate LiteralField with argument obj
* Evaluate NonemptyFieldList with argument obj

LiteralField : FieldName : AssignmentExpression

* Let name be the result of evaluating FieldName

* Let ref be the result of evaluating AssignmentExpression
* Let val be the value of referenceRead(ref)

* Call objectWrite(obj,name,val)

FieldName : NonAttributeQualifiedldentifier

* Return the result of evaluating NonAttributeQualifiedldentifier
FieldName : String

* Return the value of String

FieldName : Number

* Let num be the value of Number
* Return the result of calling String(num)

14.7 Array initialiser

An array initialiser is an expression describing the initialisation of an Array object, written in a
form of a literal. It is a list of zero or more expressions, each of which represents an array element,
enclosed in square brackets. The elements need not be literals; they are evaluated each time the
array initialiser is evaluated.

Array elements may be elided at the beginning, middle or end of the element list. Whenever a
comma in the element list is not preceded by an AssignmentExpression (i.e., a comma at the

beginning or after another comma), the missing array element contributes to the length of the
Array and increases the index of subsequent elements. Elided array elements are not defined.

Ecmascript 4 Language Specification 74 of 141 Adobe Systems, Inc..

Syntax

Arraylnitialiser
[ElementList]

ElementList
«empty»
LiteralElement
, ElementList
LiteralElement , ElementList

LiteralElement

allowin

AssignmentExpression

Verification

An Arraylnitialiser is verified by verifying all non-terminals on the right hand side of each
production. The result of verifying an Arraylnitialiser is the type Array.

Evaluation
Arraylnitialiser expressions are evaluated as described in Ecma-262 edition 3.

14.8 XML initialisers

An XML initialiser is an expression describing the initialisation of an XML object, written in a
form of a literal. It may specify an XML element, an XML comment, an XML PI, or a CDATA
section using ordinary XML syntax. For XML elements, it provides the name, attributes and
properties of an XML object.

Syntax

XMLInitialiser
XMLMarkup
XMLElement
< > XMLElementContent </ >

XMLElementContent
XMLMarkup XMLElementContent,
XMLText XMLElementContentqy
XMLElement XMLElementContent,p
{ Expression } XMLElementContent,p

XMLElement
< XMLTagContent XMLWhitespaceqp/>
< XMLTagContent XMLWhitespace,,> XMLElementContent </ XMLTagName XMLWhitespaceyp:>

XMLTagContent
XMLTagName XMLAttributes

XMLTagName
{ Expression }

Ecmascript 4 Language Specification 75 of 141 Adobe Systems, Inc..

XMLName

XMLAttributes
XMLWhitespace { Expression }
XMLAttribute XMLAttributes
Empty

XMLAttribute
XMLWhitespace XMLName XMLWhitespace,, = XMLWhitespace,: { Expression }
XMLWhitespace XMLName XMLWhitespace,,: = XMLWhitespace,,: XMLAttributeValue

XMLElementContent
{ Expression } XMLElementContent
XMLMarkup XMLElementContent
XMLText XMLElementContent
XMLElement XMLElementContent
Empty

Verification

An XMLlInitialiser is verified by verifying all non-terminals on the right hand side of each
production. The result of verifying an XMLlInitialiser is the type XML.

Evaluation
XMLlInitialiser expressions are evaluated as described in Ecma-357: Ecmascript for XML.

14.9 Super expression

SuperExpression limits the binding of a reference to a property of the base class of the current
method. The value of the operand must be an instance of the current class. If Arguments is
specified, its value is used as the base object of the limited reference. If no Arquments is specified,
the value of this is used as the base object.

Syntax

SuperExpression
super
super Arguments

SuperExpression may be used before a PropertyOperator in either a FullPostfixExpression or a
FullNewSubexpression.

super.f(a,b,c)
super (o) .f(a,b,c)

Verification

SuperExpression : super
SuperExpression : super Arguments

* Let frame be the immediately enclosing ParameterFrame
* If frame is none

Ecmascript 4 Language Specification 76 of 141 Adobe Systems, Inc..

o Throw a VerificationError
* Let fype be the result of typeOfThis(frame)
* Let limit be type.super
* If Argquments is specified and not empty
o Let obj be the result verifying Arguments
o Call verifyType(obj,limit)
* Return the type limit

Evaluation

SuperExpression : super
SuperExpression : super Arguments

* Let frame be the immediately enclosing ParameterFrame
* Let this be the value of frame.this
* Let fype be the value of this.type
* Let limit be type.super
* If Arguments is empty or not specified
o Let obj be the value of this
* Else
o Let obj be the result of evaluating Arguments
o If obj.type is not a subtype of limit, then throw a TypeError
* Let obj be a new instance LimitedBase(obj,limit)

Compeatibility
ActionScript 2.0 supports only the first form of SuperExpression.
super.f(a,b,c)
This is equivalent in ActionScript 2.0 to
this.constructor.prototype. proto .f.apply(this,arguments);

This differs from the Ecmascript 4 depending on the value of this, and whether the value of
constructor, prototoype or __proto__ has been modified.

The second form of SuperExpression is included for the sake of future compatibility and
completeness.

14.10 Postfix Expressions
Syntax
PostfixExpression

FullPostfixExpression
ShortNewExpression

A PostfixExpression may be used in a UnaryExpression, before ++ or -- in another
PostfixExpression on the left hand side of an AssignmentExpression, or as a ForInBinding.

FullPostfixExpression

Ecmascript 4 Language Specification 77 of 141 Adobe Systems, Inc..

PrimaryExpression

FullNewExpression
FullPostfixExpression PropertyOperator
SuperExpression PropertyOperator
FullPostfixExpression Arguments
FullPostfixExpression QueryOperator
PostfixExpression [no line break] ++
PostfixExpression [no line break] --

A FullPostfixExpression may be used as a PostfixExpression, or before a PropertyOperator or an

Arguments in another FullPostfixExpression.
Verification

FullPostfixExpression : PrimaryExpression
FullPostfixExpression : FullNewExpression

* Return the result of verifying the right hand side of the production

FullPostfixExpression : FullPostfixExpression PropertyOperator

* Let base be the result of verifying FullPostfixExpression
* Let name be result of verifying PropertyOperator
* Return the result of referenceType(base,name,null,false)

FullPostfixExpression : SuperExpression PropertyOperator

* Let base be the result of verifying SuperExpression
* Let name be result of verifying PropertyOperator
* Return the result of referenceType(base.this,name,base.limit,false)

FullPostfixExpression : FullPostfixExpression Arguments

* Let fun be the result of verifying FullPostfixExpression
* Letargs be the result of verifying Arquments
e If isStrict()
o Call verifyType(fun,Function)
o Let types be the value fun.types
o If args.length is not equal to types.length, throw a VerifyError exception
o For each type in args, call verifyType(args|i], typesli])
* Return the result of resultType(fun)

FullPostfixExpression : FullPostfixExpression QueryOperator

* Let fype be the result of verifying FullPostfixExpression
* Return the result of verifying QueryOperator passing the argument type

FullPostfixExpression : PostfixExpression [no line break] ++
FullPostfixExpression : PostfixExpression [no line break] --

* Let fype be the result of verifying PostfixExpression

* Call verifyType(type, Number)
* Return type Number

Ecmascript 4 Language Specification 78 of 141

Adobe Systems, Inc..

Evaluation

FullPostfixExpression : PrimaryExpression

* Return the result of evaluating PrimaryExpression
FullPostfixExpression : FullNewExpression

* Return the result of evaluating FullNewExpression
FullPostfixExpression : FullPostfixExpression PropertyOperator

* Let ref be the result of evaluating FullPostfixExpression

* Let base be the result of readReference(ref)

* Let name be the result of evaluating PropertyOperator

* Return the new instance Reference(base,name,null,false)

FullPostfixExpression : SuperExpression PropertyOperator

* Let limited be the result of evaluating SuperExpression
* Return the new instance Reference(limited.this,name,limited.type, false)

FullPostfixExpression : FullPostfixExpression QueryOperator

* Let ref be the result of evaluating FullPostfixExpression
* Let obj be the result of readReference(ref)
* Return the result of evaluating QueryOperator passing the argument obj

FullPostfixExpression : FullPostfixExpression Arguments

* Let ref be the result of evaluating FullPostfixExpression
* Let args be the result of evaluating Arguments
* Return the result of callReference(ref,args)

FullPostfixExpression : PostfixExpression [no line break] ++

* Let ref be the result of evaluating PostfixExpression

* Let val be the result of readReference(ref)

* Let numl be the result of Number(val)

* Let num?2 be the result of evaluating the expression numl +1
* Call writeReference(ref,num2)

¢ Return numl

FullPostfixExpression : PostfixExpression [no line break] —

* Let ref be the result of evaluating PostfixExpression

* Let val be the result of readReference(ref)

* Let numl be the result of Number(val)

* Let num?2 be the result of evaluating the expression num1 - 1
* Call writeReference(ref,num2)

¢ Return numl

14.11 New expressions

Ecmascript 4 Language Specification 79 of 141

Adobe Systems, Inc..

A new expression results in the invocation of the intrinsic construct method of the value
computed by the expression that follows the new keyword. Arguments, if specified, are passed to
the construct method. If no arguments are specified, the parentheses may be omitted.

Syntax

FullNewExpression
new FullNewSubexpression Arguments

A FullNewExpression may be used as a FullPostfixExpression, or as a FullNewSubexpression.

FullNewSubexpression
PrimaryExpression
FullNewExpression
FullNewSubexpression PropertyOperator
SuperExpression PropertyOperator

A FullNewSubexpression may be used between the new keyword and the Arguments in a
FullNewExpression, before a PropertyOperator in another FullNewSubexpression, or as a
ShortNewSubexpression.

ShortNewExpression
new ShortNewSubexpression

A ShortNewExpression may be used as a PostfixExpression, or as a ShortNewSubexpression
(that is, after the new keyword in another ShortNewExpression.)

ShortNewSubexpression
FullNewSubexpression
ShortNewExpression

A ShortNewSubexpression may be used after the new keyword in a ShortNewExpression.
Verification
FullNewExpression : new FullNewSubexpression Arguments

* Let fun be the result of verifying FullNewSubexpression
* Letargs be the result of evaluating Arguments
e If isStrict()
o Call verifyType(fun,Function)
o Let types be the value fun.types
o If args.length is not equal to types.length, throw a VerifyError exception
o For each type in args, call verifyType(args|i], types]i])
* Return the result of calling resultType(fun,new)

FullNewSubxpression : PrimaryExpression
FullNewSubxpression : FullNewExpression

* Return the result of verifying the non-terminal symbol on the right side of the production

FullNewSubxpression : FullNewSubexpression PropertyOperator

Ecmascript 4 Language Specification 80 of 141 Adobe Systems, Inc..

* Let base be the result of verifying FullNewSubexpression
* Let name be the result of evaluating PropertyOperator
* Return the result of calling propertyType(base,name,null,false)

FullNewSubxpression : SuperExpression PropertyOperator

* Let limited be the result of evaluating SuperExpression
* Let name be the result of evaluating PropertyOperator
* Return the result of calling propertyType (limited.this,name,limited.type, false)

ShorNewExpression : new ShortNewSubexpression

* Let ref be the result of verifying ShortNewSubexpression
* Return the result of calling resultType(fun,new)

ShorNewSubexpression : FullNewSubexpression
ShorNewSubexpression : ShortNewExpression

* Return the result of verifying the non-terminal symbol on the right side of the production
Evaluation
FullNewExpression : new FullNewSubexpression Arguments

* Let ref be the result of evaluating FullNewSubexpression
* Letargs be the result of evaluating Arquments
* Return the result of constructReference(ref,args)

FullNewSubxpression : PrimaryExpression

* Return the result of evaluating PrimaryExpression
FullNewSubxpression : FullNewExpression

* Return the result of evaluating FullNewExpression
FullNewSubxpression : FullNewSubexpression PropertyOperator

* Let ref be the result of evaluating FullNewSubexpression
* Let base be the result of readReference(ref)

* Let name be the result of evaluating PropertyOperator

* Return the new instance Reference(base,name,null,false)

FullNewSubxpression : SuperExpression PropertyOperator

* Let limited be the result of evaluating SuperExpression
* Return the new instance Reference(limited.this,name,limited.type)

ShorNewExpression : new ShortNewSubexpression

* Let ref be the result of evaluating ShortNewSubexpression
* Return the result of constructReference(ref,null)

ShorNewSubexpression : FullNewSubexpression

Ecmascript 4 Language Specification 81 of 141 Adobe Systems, Inc..

* Return the result of evaluating FullNewSubexpression
ShorNewSubexpression : ShortNewExpression
* Return the result of evaluating ShortNewExpression

14.12 Property accessors
Syntax

PropertyOperator
. Qualifiedldentifier
Brackets

Brackets

allowln]

[ListExpression
Verification
PropertyOperator : . Qualifiedldentifier
* Return the result of verifying Qualifiedldentifier
PropertyOperator : Brackets
* Return the result of verifying Brackets
Brackets : [ListExpression]

* Verify ListExpression
* Return the type Name

Evaluation

PropertyOperator : . Qualifiedldentifier

* Return the result of evaluating Qualifiedldentifier
PropertyOperator : Brackets

* Return the result of evaluating Brackets

Brackets : [ListExpression]

* Let val be the result of evaluating ListExpression
* If val is of type Name
o Let name be the set of names consisting of val
* Else
o Let str be the result of calling String(val)
o Let namespaces be the result of calling openNamespaces(ctx)
o Let name be the value of makeMultiname(namespaces,str)
¢ Return name

Ecmascript 4 Language Specification 82 of 141 Adobe Systems, Inc..

14.13 Query operators
Syntax

QueryOperator
.. Qualifiedldentifier

a\lowln)

. (ListExpression
Verification
QueryOperator : .. Qualifiedldentifier

* Let fype be a named argument to this verifier
* Call verifyType(type,XML)

* Verify Qualifiedldentifier

* Return type XMLList

QueryOperator: . (ListExpression)

* Let fype be a named argument to this verifier
* Call verifyType(type,XML)

* Verify ListExpression

* Return type XMLList

Evaluation
QueryOperator expressions are evaluated as described in Ecma-357 (E4X)

14.14 Call expressions
Syntax

Arguments

0

(ListExpression

allowln)

ArgumentList'
AssignmentExpression
ArgumentList' , AssignmentExpression:

Verification
Arguments : ()

* Return an empty array of types

Arguments : (ArgumentList)
* Let argTypes be an empty array of types

* Verify ArqumentList passing the argument argTypes
* Return argTypes

Ecmascript 4 Language Specification 83 of 141

Adobe Systems, Inc..

ArgumentList : AssignmentExpression

* LetargTypes be a named argument to this verifier
* Let fype be the result of verifying AssignmentExpression
* Call push(argTypes ,type)

ArgumentList : ArgumentList , AssignmentExpression

* Letargs be the result of evaluating ArgumentList with argument argTypes
* Let fype be the result of evaluating AssignmentExpression
* Call push(argTypes ,type)

Evaluation
Arguments : ()

* Return an empty Array

Arguments : (ArgumentList)

* Letargs be an empty Array
* Evaluate ArqumentList passing the argument args

ArgumentList : AssignmentExpression

* Let val be the result of evaluating AssignmentExpression
* Call push(args,val)
¢ Return

ArgumentList : ArgumentList , AssignmentExpression

* Evaluate ArqumentList passing the argument args

* Let val be the result of evaluating AssignmentExpression
* Call push(args,val)

¢ Return

14.15 Unary expressions
Syntax

UnaryExpression
PostfixExpression
delete PostfixExpression
void UnaryExpression
typeof UnaryExpression
++ PostfixExpression
-- PostfixExpression
+ UnaryExpression

UnaryExpression

NegatedMinLong
~ UnaryExpression
I UnaryExpression

Ecmascript 4 Language Specification 84 of 141

Adobe Systems, Inc..

A UnaryExpression may be used where ever a MultiplicativeExpression may be used, and in
another UnaryExpression after the void or typeof keywords or after the +, -, ~, and !

punctuators.

Verification

UnaryExpression : PostfixExpression

* Return the result of verifying PostfixExpression
UnaryExpression : delete PostfixExpression

* Verify PostfixExpression
* Return the type Boolean

UnaryExpression : void UnaryExpression

* Verify UnaryExpression
* Return the type void

UnaryExpression : typeof UnaryExpression

* Verify UnaryExpression
* Return the type String

UnaryExpression : ++ PostfixExpression
UnaryExpression : -- PostfixExpression
UnaryExpression : + PostfixExpression
UnaryExpression : - PostfixExpression

* Let fype be the result of verifying PostfixExpression
* Call verifyType(type,int)

* Return the type Number

UnaryExpression : - NegatedMinLong

* Return the type Number

UnaryExpression : ~ UnaryExpression

* Let fype be the result of verifying UnaryExpression
* Call verifyType(type,int)

* Return the type int

UnaryExpression : | UnaryExpression

* Let fype be the result of verifying UnaryExpression
* Call verifyType(type,Boolean)
* Return the type Boolean

Evaluation

UnaryExpression : PostfixExpression

* Return the result of evaluating PostfixExpression

Ecmascript 4 Language Specification 85 of 141

Adobe Systems, Inc..

UnaryExpression : delete PostfixExpression

* Let ref be the result of evaluating PostfixExpression
* If refis of type Reference

o Return the result of calling deleteReference(ref)
* Else

o Return true

UnaryExpression : void UnaryExpression

* Let ref be the result of evaluating UnaryExpression
* Call readReference(ref)
* Return undefined

UnaryExpression : typeof UnaryExpression

* Let ref be the result of evaluating UnaryExpression
* If refis a Reference and ref.base is null
o Let val be the value undefined
* Else
o Let val be the result of readReference(ref)
* Return the result of typeOfString(val)

UnaryExpression : ++ PostfixExpression

* Let ref be the result of evaluating PostfixExpression
* Let val be the result of readReference(ref)

* Let numl be the result of Number(val)

* Let num2 be the result of calling add(num1,1)

* Call writeReference(ref,num2)

¢ Return num?2

UnaryExpression : -- PostfixExpression

* Let ref be the result of evaluating PostfixExpression

* Let val be the result of readReference(ref)

* Let numl be the result of Number(val)

* Let num2 be the result of evaluating the expression subtract(numi,1)
* Call writeReference(ref,num2)

¢ Return num?2

UnaryExpression : + PostfixExpression

* Let ref be the result of evaluating PostfixExpression
* Let val be the result of readReference(ref)
* Return the result of calling Number(val)

UnaryExpression : - PostfixExpression

* Let ref be the result of evaluating PostfixExpression

* Let val be the result of readReference(ref)

* Let num be the result of Number(val)

e If num == NaN, then return NaN

* Return the result of the expression multiply(-1,num)

Ecmascript 4 Language Specification 86 of 141

Adobe Systems, Inc..

UnaryExpression : - NegatedMinLong
* Return the Number value -2E63
UnaryExpression : ~ UnaryExpression

* Let ref be the result of evaluating UnaryExpression
* Let val be the result of readReference(ref)

Let int32 be the result of int(val)

* Return the result of bitwiseNot(int32)

UnaryExpression : | UnaryExpression

* Let ref be the result of evaluating UnaryExpression
* Let val be the result of readReference(ref)
* Let bool be the result of Boolean(val)
* If bool == true
o Return false
¢ Return true

14.16 Binary expressions

The binary expressions are left associative have relative precedence as specified in the grammar:
LogicalOrExpression has the lowest precedence and MultiplicativeExpression has the highest

precedence.

14.16.1 Multiplicative expressions
Syntax

MultiplicativeExpression
UnaryExpression
MultiplicativeExpression * UnaryExpression
MultiplicativeExpression / UnaryExpression
MultiplicativeExpression % UnaryExpression

Verification

MultiplicativeExpression : UnaryExpression

* Return the result of verifying UnaryExpression
MultiplicativeExpression : MultiplicativeExpression * UnaryExpression
MultiplicativeExpression: MultiplicativeExpression / UnaryExpression

MultiplicativeExpression: MultiplicativeExpression % UnaryExpression

* Let x be the result of evaluating MultiplicitiveExpression
* Call verifyType(x,Number)

* Lety be the result of evaluating UnaryExpression

* Call verifyType(y,Number)

* Return type Number

Evaluation

Ecmascript 4 Language Specification 87 of 141

Adobe Systems, Inc..

MultiplicativeExpression : UnaryExpression
* Return the result of evaluating UnaryExpression
MultiplicativeExpression : MultiplicativeExpression * UnaryExpression

* Let ref be the result of evaluating MultiplicitiveExpression
* Let x be the result of calling readReference(ref)

* Let ref be the result of evaluating UnaryExpression

* Lety be the result of readReference(ref)

* Return the result of calling multiply(x,y)

MultiplicativeExpression: MultiplicativeExpression / UnaryExpression

* Let ref be the result of evaluating MultiplicitiveExpression
* Let x be the result of calling readReference(ref)

* Let ref be the result of evaluating UnaryExpression

* Lety be the result of readReference(ref)

* Return the result of calling divide(x,y)

MultiplicativeExpression: MultiplicativeExpression % UnaryExpression

* Let ref be the result of evaluating MultiplicitiveExpression
* Let x be the result of calling readReference(ref)

* Let ref be the result of evaluating UnaryExpression

* Lety be the result of readReference(ref)

* Return the result of calling remainder(x,y)

14.16.2 Additive expressions
Syntax

AdditiveExpression
MultiplicativeExpression
AdditiveExpression + MultiplicativeExpression
AdditiveExpression — MultiplicativeExpression

Verification
AdditiveExpression: MultiplicativeExpression

* Return the result of evaluating MultiplicativeExpression

AdditiveExpression: MultiplicativeExpression + UnaryExpression

* Let x be the result of verifying MultiplicativeExpression
* Lety be the result of verifying UnaryExpression
¢ Return type *

AdditiveExpression: MultiplicativeExpression - UnaryExpression

* Let x be the result of verifying MultiplicativeExpression
* Call verifyType(x,Number)

Ecmascript 4 Language Specification 88 of 141

Adobe Systems, Inc..

* Lety be the result of verifying UnaryExpression
* Call verifyType(y,Number)
* Return type Number

Evaluation

AdditiveExpression: MultiplicativeExpression

* Return the result of evaluating MultiplicativeExpression

AdditiveExpression: MultiplicativeExpression + UnaryExpression

* Let ref be the result of evaluating MultiplicativeExpression

* Let x be the result of readReference(ref)

* Let ref be the result of evaluating UnaryExpression
* Lety be the result of readReference(ref)

* Return the result of plus(x,y)

AdditiveExpression: MultiplicativeExpression - UnaryExpression

* Let ref be the result of evaluating MultiplicativeExpression

* Let x be the result of readReference(ref)

* Let ref be the result of evaluating UnaryExpression
* Let y be the result of readReference(ref)

* Return the result of minus(x,y)

14.16.3 Shift expressions
Syntax

ShiftExpression
AdditiveExpression
ShiftExpression << AdditiveExpression
ShiftExpression >> AdditiveExpression
ShiftExpression >>> AdditiveExpression

Verification

ShiftExpression : AdditiveExpression

* Return the result of verifying AdditiveExpression

ShiftExpression : ShiftExpression << AdditiveExpression
ShiftExpression : ShiftExpression >> AdditiveExpression
ShiftExpression : ShiftExpression >>> AdditiveExpression

* Let x be the result of verifying ShiftExpression

* Call verifyType(x,Number)

* Lety be the result of verifying AdditiveExpression
* Call verifyType(y,Number)

* Return the type Number

Evaluation

Ecmascript 4 Language Specification 89 of 141

Adobe Systems, Inc..

ShiftExpression : AdditiveExpression

* Return the result of evaluating AdditiveExpression

ShiftExpression : ShiftExpression << AdditiveExpression

* Let ref be the result of evaluating ShiftExpression

* Let x be the result of readReference(ref)

* Let ref be the result of evaluating AdditiveExpression
* Lety be the result of readReference(ref)

* Return the result of shiftLeft(x,y)

ShiftExpression : ShiftExpression >> AdditiveExpression

* Let ref be the result of evaluating ShiftExpression

* Let x be the result of readReference(ref)

* Let ref be the result of evaluating AdditiveExpression
* Lety be the result of readReference(ref)

* Return the result of shiftRight(x,y)

ShiftExpression : ShiftExpression >>> AdditiveExpression

* Let ref be the result of evaluating ShiftExpression

* Let x be the result of readReference(ref)

* Let ref be the result of evaluating AdditiveExpression
* Let y be the result of readReference(ref)

* Return the result of shiftRightUnsigned(x,y)

14.16.4 Relational expressions

Syntax

allowln

RelationalExpression
ShiftExpression

allowln

RelationalExpression < ShiftExpression

allowln

RelationalExpression > ShiftExpression

allowln

RelationalExpression <= ShiftExpression

allowln

RelationalExpression >= ShiftExpression

allowln

RelationalExpression in ShiftExpression

allowln

RelationalExpression instanceof ShiftExpression

allowln

RelationalExpression is ShiftExpression

allowln

RelationalExpression as ShiftExpression

noln

RelationalExpression
ShiftExpression

RelationalExpression™" < ShiftExpression
RelationalExpression™" > ShiftExpression
RelationalExpression™" <= ShiftExpression
RelationalExpression™" >= ShiftExpression
RelationalExpression™" instanceof ShiftExpression
noln

RelationalExpression™ " is ShiftExpression

Ecmascript 4 Language Specification 90 of 141

Adobe Systems, Inc..

noln

RelationalExpression™ " as ShiftExpression

Verification
RelationalExpression : ShiftExpression

* Return the result of verifying ShiftExpression

RelationalExpression : RelationalExpression < ShiftExpression
RelationalExpression : RelationalExpression > ShiftExpression
RelationalExpression : RelationalExpression <= ShiftExpression
RelationalExpression : RelationalExpression >= ShiftExpression
RelationalExpression : RelationalExpression in ShiftExpression
RelationalExpression : RelationalExpression instanceof ShiftExpression

* Let x be the result of verifying Relational Expression
* Lety be the result of verifying ShiftExpression
* Return the type Boolean

RelationalExpression : RelationalExpression is ShiftExpression

* Verify Relational Expression

* Let fype be the result of verifying ShiftExpression
* Call verifyType(type, Type)

* Return the type Boolean

RelationalExpression : RelationalExpression as ShiftExpression

* Verify Relational Expression

* Let type be the result of verifying ShiftExpression
* Call verifyType(type, Type)

* Return the type

Evaluation

RelationalExpression : ShiftExpression

* Return the result of evaluating ShiftExpression

RelationalExpression : RelationalExpression < ShiftExpression

* Let ref be the result of evaluating Relational Expression
* Let x be the result of readReference(ref)

* Let ref be the result of evaluating ShiftExpression

* Lety be the result of readReference(ref)

* Return the result of lessThan(x,y)

RelationalExpression : RelationalExpression > ShiftExpression

* Let ref be the result of evaluating Relational Expression
* Let x be the result of readReference(ref)

* Let ref be the result of evaluating ShiftExpression

* Lety be the result of readReference(ref)

Ecmascript 4 Language Specification 91 of 141

Adobe Systems, Inc..

* Return the result of lessThan(y,x)

RelationalExpression : RelationalExpression <= ShiftExpression

* Let ref be the result of evaluating Relational Expression
* Let x be the result of readReference(ref)

* Let ref be the result of evaluating ShiftExpression

* Let y be the result of readReference(ref)

* Return the result of lessThanOrEquals(x,y)

RelationalExpression : RelationalExpression >= ShiftExpression

* Let ref be the result of evaluating Relational Expression
* Let x be the result of readReference(ref)

* Let ref be the result of evaluating ShiftExpression

* Let y be the result of readReference(ref)

* Return the result of lessThanOrEquals(y,x)

RelationalExpression : RelationalExpression in ShiftExpression

* Let ref be the result of evaluating Relational Expression
* Let x be the result of readReference(ref)

* Let ref be the result of evaluating ShiftExpression

* Let y be the result of readReference(ref)

* Return the result of hasProperty(x,y)

RelationalExpression : RelationalExpression instanceof ShiftExpression

* Let ref be the result of evaluating Relational Expression
* Let x be the result of readReference(ref)

* Let ref be the result of evaluating ShiftExpression

* Let y be the result of readReference(ref)

* Return the result of instanceof(x,y)

RelationalExpression : RelationalExpression is ShiftExpression

* Let ref be the result of evaluating Relational Expression
* Let x be the result of readReference(ref)

* Let ref be the result of evaluating ShiftExpression

* Lety be the result of readReference(ref)

* Return the result of isType(x,y)

RelationalExpression : RelationalExpression as ShiftExpression

* Let ref be the result of evaluating Relational Expression
* Let x be the result of readReference(ref)

* Let ref be the result of evaluating ShiftExpression

* Lety be the result of readReference(ref)

* Return the result of asType(x,y)

14.16.5 Equality expressions

Ecmascript 4 Language Specification 92 of 141

Adobe Systems, Inc..

Syntax

EqualityExpression:
RelationalExpression
EqualityExpression: == RelationalExpression:
EqualityExpression' = RelationalExpression:

EqualityExpression: === RelationalExpression:
EqualityExpression' !== RelationalExpression:
Verification

EqualityExpression : RelationalExpression

* Return the result of verifying Relational Expression

EqualityExpression : EqualityExpression == RelationalExpression
EqualityExpression : EqualityExpression != RelationalExpression
EqualityExpression : EqualityExpression === RelationalExpression
EqualityExpression : EqualityExpression !== RelationalExpression

* Let x be the result of verifying EqualityExpression

* Lety be the result of verifying Relational Expression

* If isStrict() and x is not a subtype of y and y is not a subtype of x
o If xis final or y is not an interface, then throw a type error
o Ifyisfinal or x is not an interface, then throw a type error

* Return type Boolean

Evaluation

EqualityExpression : RelationalExpression

* Return the result of evaluating Relational Expression
EqualityExpression : EqualityExpression == RelationalExpression

* Let ref be the result of evaluating EqualityExpression

* Let x be the result of readReference(ref)

* Let ref be the result of evaluating Relational Expression
* Lety be the result of readReference(ref)

* Return the result of equals(x,y)

EqualityExpression : EqualityExpression != RelationalExpression

* Let ref be the result of evaluating EqualityExpression

* Let x be the result of readReference(ref)

* Let ref be the result of evaluating Relational Expression
* Lety be the result of readReference(ref)

* Return the result of not equals(x,y)

EqualityExpression : EqualityExpression === RelationalExpression

* Let ref be the result of evaluating EqualityExpression
* Let x be the result of readReference(ref)
* Let ref be the result of evaluating Relational Expression

Ecmascript 4 Language Specification 93 of 141

Adobe Systems, Inc..

* Lety be the result of readReference(ref)
* Return the result of strictEquals(x,y)

EqualityExpression : EqualityExpression !== RelationalExpression

* Let ref be the result of evaluating EqualityExpression

* Let x be the result of readReference(ref)

* Let ref be the result of evaluating Relational Expression
* Lety be the result of readReference(ref)

* Return the result of not strictEquals(x,y)

14.16.6 Bitwise expressions
Syntax

BitwiseAndExpression:
EqualityExpression:
BitwiseAndExpressionr: & EqualityExpression:

BitwiseXorExpression:
BitwiseAndExpression:
BitwiseXorExpression: ~ BitwiseAndExpression:

BitwiseOrExpression:
BitwiseXorExpression:
BitwiseOrExpression: | BitwiseXorExpression:

Verification

BitwiseAndExpression : EqualityExpression

* Return the result of verifying EqualityExpression
BitwiseAndExpression : BitwiseAndExpressionr & EqualityExpression

* Let x be the result of evaluating BitwiseAndExpression
* Call verifyType(x,Number)

* Lety be the result of evaluating EqualityExpression

* Call verifyType(y,Number)

* Return the type Number

BitwiseXorExpression : BitwiseAndExpression

* Return the result of evaluating BitwiseAndExpression
BitwiseXorExpression : BitwiseXorExpression ~ BitwiseAndExpression

* Let x be the result of evaluating BitwiseXorExpression
* Call verifyType(x,Number)

* Let y be the result of evaluating BitwiseAndExpression
* Call verifyType(y,Number)

* Return the type Number

Ecmascript 4 Language Specification 94 of 141 Adobe Systems, Inc..

BitwiseOrExpression : BitwiseXorExpression

* Return the result of evaluating BitwiseXorExpression
BitwiseOrExpression : BitwiseOrExpression | BitwiseXorExpression

* Let x be the result of evaluating BitwiseOrExpression
* Call verifyType(x,Number)

* Let y be the result of evaluating BitwiseXorExpression
* Call verifyType(y,Number)

* Return the type Number

Evaluation

BitwiseAndExpression : EqualityExpression

* Return the result of evaluating EqualityExpression
BitwiseAndExpression : BitwiseAndExpressionr & EqualityExpression

* Let ref be the result of evaluating BitwiseAndExpression
* Let x be the result of readReference(ref)

* Let ref be the result of evaluating EqualityExpression

* Lety be the result of readReference(ref)

* Return the result of bitwiseAnd(x,y)

BitwiseXorExpression : BitwiseAndExpression

* Return the result of evaluating BitwiseAndExpression
BitwiseXorExpression : BitwiseXorExpression ~ BitwiseAndExpression

* Let ref be the result of evaluating BitwiseXorExpression
* Let x be the result of readReference(ref)

* Let ref be the result of evaluating BitwiseAndExpression
* Lety be the result of readReference(ref)

* Return the result of bitwiseXor(x,y)

BitwiseOrExpression : BitwiseXorExpression
* Return the result of evaluating BitwiseXorExpression
BitwiseOrExpression : BitwiseOrExpression | BitwiseXorExpression

* Let ref be the result of evaluating BitwiseOrExpression
* Let x be the result of readReference(ref)

* Let ref be the result of evaluating BitwiseXorExpression
* Lety be the result of readReference(ref)

* Return the result of bitwiseOr(x,y)

14.16.7 Logical expressions

Syntax

Ecmascript 4 Language Specification 95 of 141

Adobe Systems, Inc..

LogicalAndExpression:
BitwiseOrExpression:
LogicalAndExpression: && BitwiseOrExpression:

LogicalXorExpression:
LogicalAndExpression:
LogicalXorExpression' " LogicalAndExpression:

LogicalOrExpression:
LogicalXorExpression:
LogicalOrExpression: || LogicalXorExpression

Verification

LogicalAndExpression: BitwiseOrExpression

* Return the result of verifying BitwiseOrExpression
LogicalAndExpression: LogicalAndExpression && BitwiseOrExpression

* Let x be the result of evaluating Logical AndExpression
* Lety be the result of evaluating BitwiseOrExpression
* Return the type *

LogicalXorExpression : LogicalAndExpression
* Return the result of evaluating LogicalAndExpression
LogicalXorExpression : LogicalXorExpression ™ LogicalAndExpression

* Let x be the result of evaluating LogicalXorExpression
* Lety be the result of evaluating Logical AndExpression
* Return the type *

LogicalOrExpression : LogicalXorExpression
* Return the result of evaluating Logical XorExpression
LogicalOrExpression : LogicalOrExpression || LogicalXorExpression

* Let x be the result of evaluating LogicalOrExpression
* Lety be the result of evaluating LogicalXorExpression
* Return the type *

Evaluation

LogicalAndExpression: BitwiseOrExpression

* Return the result of evaluating BitwiseOrExpression
LogicalAndExpression: LogicalAndExpression && BitwiseOrExpression
* Let ref be the result of evaluating Logical AndExpression

* Let x be the result of readReference(ref)

Ecmascript 4 Language Specification 96 of 141

Adobe Systems, Inc..

* Let ref be the result of evaluating BitwiseOrExpression
* Lety be the result of readReference(ref)
* Return the result of logical And(x,y)

LogicalXorExpression : LogicalAndExpression

* Return the result of evaluating LogicalAndExpression
LogicalXorExpression : LogicalXorExpression ™ LogicalAndExpression

* Let ref be the result of evaluating Logical XorExpression
* Let x be the result of readReference(ref)

* Let ref be the result of evaluating Logical AndExpression
* Lety be the result of readReference(ref)

* Return the result of logicalXor(x,y)

LogicalOrExpression : LogicalXorExpression
* Return the result of evaluating Logical XorExpression
LogicalOrExpression : LogicalOrExpression || LogicalXorExpression

* Let ref be the result of evaluating Logical OrExpression
* Let x be the result of readReference(ref)

* Let ref be the result of evaluating LogicalXorExpression
* Let y be the result of readReference(ref)

* Return the result of logicalOr(x,y)

14.17 Conditional expressions
Syntax

ConditionalExpression:
LogicalOrExpression:
LogicalOrExpression: ? AssignmentExpression: : AssignmentExpression:

A ConditionalExpression may be used where ever an AssignmentExpression may be used.
y = true ? x = true : x = false

Verification

ConditionalExpression : LogicalOrExpression

* Return the result of verifying LogicalOrExpression

ConditionalExpression : LogicalOrExpression ? AssignmentExpression : AssignmentExpression

* Verify all non-terminal symbols on the right side of the production
¢ Return type *

Evaluation

ConditionalExpression : LogicalOrExpression

Ecmascript 4 Language Specification 97 of 141 Adobe Systems, Inc..

* Return the result of evaluating LogicalOrExpression

ConditionalExpression : LogicalOrExpression ? AssignmentExpression : AssignmentExpression

* Let ref be the result of evaluating Logical OrExpression
* Let val be the result of readReference(ref)
» If Boolean(val) is equal to true
o Return the result of evaluating the first AssignmentExpression
* Else
o Return the result of evaluating the second AssignmentExpression

14.18 Non-assignment expressions
Syntax

NonAssignmentExpression:
LogicalOrExpression:
LogicalOrExpression: ? NonAssignmentExpression' : NonAssignmentExpression:

A NonAssignmentExpression may be used where ever a TypeExpression may be used.
var x : hintString ? String : Number

Verification

NonAssignmentExpression : LogicalOrExpression

* Return the result of verifying LogicalOrExpression

ConditionalExpression : LogicalOrExpression ? AssignmentExpression : AssignmentExpression

* Verify all non-terminal symbols on the right side of the production
¢ Return type *

Evaluation

NonAssignmentExpression : LogicalOrExpression

* Return the result of evaluating LogicalOrExpression

NonAssignmentExpression : LogicalOrExpression ? AssignmentExpression : AssignmentExpression

* Let ref be the result of evaluating Logical OrExpression
* Let val be the result of readReference(ref)
» If Boolean(val) is equal to true
o Return the result of evaluating the first AssignmentExpression
* Else
o Return the result of evaluating the second AssignmentExpression

14.19 Assighment expressions

Syntax

Ecmascript 4 Language Specification 98 of 141 Adobe Systems, Inc..

AssignmentExpression
ConditionalExpression:
PostfixExpression = AssignmentExpression:
PostfixExpression CompoundAssignment AssignmentExpression:
PostfixExpression LogicalAssignment AssignmentExpression:

CompoundAssignment
*=
/=
%=

LogicalAssignment
&&=

AN=

1=
Verification

AssignmentExpression : PostfixExpression = AssignmentExpression
AssignmentExpression : PostfixExpression CompoundAssignment AssignmentExpression
AssignmentExpression : PostfixExpression LogicalAssignment AssignmentExpression

* Let Ihstype be the result of verifying PostfixExpression

* Let rhstype be the result of verifying AssignmentExpression
* Call verifyType(rhstype,lhstype)

* Return rhstype

Evaluation
AssignmentExpression : PostfixExpression = AssignmentExpression

* Let refl be the result of verifying PostfixExpression

* Let ref2 be the result of verifying AssignmentExpression
* Let val be the result of calling readReference(ref2)

* Call writeReference(ref1,val)

* Return val

AssignmentExpression : PostfixExpression CompoundAssignment AssignmentExpression
AssignmentExpression : PostfixExpression LogicalAssignment AssignmentExpression

* Let refl be the result of verifying PostfixExpression
* Let ref2 be the result of verifying AssignmentExpression
* Let vall be the result of calling readReference(refI)
* Letval2 be the result of calling readReference(ref2)

Ecmascript 4 Language Specification 99 of 141 Adobe Systems, Inc..

* Let val be the result of calling the operator method that corresponds to CompoundAssignment
or LogicalAssignment with arguments vall and val2

* Call writeReference(ref1,val)

* Return val

14.20 List expressions
Syntax

ListExpression:
AssignmentExpression
ListExpression: , AssignmentExpression:

ListExpression may be used as an ExpressionStatement, after the case keyword in a CaseLabel,
after the in keyword in a ForInStatement, as a Forlnitializer, as an OptionalExpression, after the
return keyword in a ReturnStatement, after the throw keyword in a ThrowStatement, in a
ParenthesizedListExpression, in a Brackets, or in an Arguments.

Verification

ListExpression : AssignmentExpression

* Return the result of verifying AssignmentExpression

ListExpression : ListExpression , AssignmentExpression

* Verify ListExpression
* Return the result of verifying AssignmentExpression

Evaluation
ListExpression : AssignmentExpression

* Let ref be the result of evaluating AssignmentExpression
* Return the result of readReference(ref)

ListExpression : ListExpression , AssignmentExpression

* Evaluate ListExpression
* Let ref be the result of evaluating AssignmentExpression
* Return the result of readReference(ref)

14.21 Type expressions
Syntax

TypeExpression:
NonAssignmentExpression

TypeExpression is used in a typed identifier definition, result type definition, and extends and
implements declarations of classes and interfaces.

var x : String

Ecmascript 4 Language Specification 100 of 141 Adobe Systems, Inc..

function f() : Number { return y }
class A extends B implements C, D {}

Verification

TypeExpression : AssignmentExpression

* If AssignmentExpression consists of the identifier *
o Return type *

* Return the result of verifying AssignmentExpression

Evaluation

TypeExpression : AssignmentExpression

* Let ref be the result of evaluating AssignmentExpression
* Let val be the result of readReference(ref)
» IfisType(val, Type) equals false
o Throw TypeError
* Return val

Ecmascript 4 Language Specification 101 of 141 Adobe Systems, Inc..

15 Statements

o = {abbrev, noShortlf, full}

Syntax

Statement-
SuperStatement Semicolon-
Block
IfStatement-
SwitchStatement
DoStatement Semicolon-
WhileStatement:
ForStatement:
WithStatement-
ContinueStatement Semicolon-
BreakStatement Semicolon-
ReturnStatement Semicolon-
ThrowStatement Semicolon-
TryStatement
ExpressionStatement Semicolon-
LabeledStatement-
DefaultXMLNamespaceStatement

Substatement-
EmptyStatement
Statement-
SimpleVariableDefinition Semicolon-

Substatements
«empty»

abbrev

SubstatementsPrefix Substatement

SubstatementsPrefix
«empty»

SubstatementsPrefix Substatement™"

abbrev

Semicolon
VirtualSemicolon
«empty»

Semicolon™S"

VirtualSemicolon
«empty»

Semicolon™"

i

VirtualSemicolon

Ecmascript 4 Language Specification 102 of 141

Adobe Systems, Inc..

15.1 Empty statement
Syntax

EmptyStatement

Verification
EmptyStatment : ;
* Do nothing
Evaluation

* Return the value of named argument cv

15.2 Expression statement
Syntax

ExpressionStatement
[lookahead Y function, { }] ListExpression

allowin
Verification

ExpressionStatement : ListExpression

* Verify ListExpression

Evaluation

ExpressionStatement : ListExpression

* Let ref be the result of evaluating ListExpression
* Return the result of readReference(ref)

15.3 Super statement

A SuperStatement causes the constructor of the immediate base class to be called. If no
SuperStatement is specified, the default constructor of the base class is called. Unlike in Java, a
SuperStatement may be used anywhere in the body of the constructor before an instance
property is accessed. It is a compile error to use more than one SuperStatement in a constructor.

Syntax

SuperStatement
super Arguments

Ecmascript 4 Language Specification 103 of 141 Adobe Systems, Inc..

A SuperStatement may only be used inside a constructor. It is a syntax error to use a
SuperStatement anywhere else in a program.

class B extends A {
function B(x,vy,z) {
super (x, V)
// other constructor code here

}
Semantics
Compeatibility

In ActionScript 2.0 a SuperStatement may be used anywhere in a program, except in a static
method of a class. It is equivalent to the statement

this.constructor.prototype.constructor.apply(this,arguments)
If used in a class instance function it will call the class” constructor function using the current
value of this as the first argument. If used in global code, it will call the global object’s class’
super constructor.
In Ecmascript 4 a SuperStatement may only be used in an instance constructor. All other uses will

result in a syntax error. Also, if the numbetht sr and types of Arguments is not compatible with
Parameters of the super constructor, the result is a runtime error.

15.4 Block statement
Syntax
Block

{ Directives }

15.5 Labeled statement
Syntax

LabeledStatement-
Identifier : Substatement:

Verification
LabeledStatement : Substatement

* Let breakTargets be the current set of possible targets of BreakStatements
* Let farget be the sequence of characters of Identifier

* If target is a member of breakTargets, throw a SyntaxError

* Add target to breakTargets by calling breakTargets.push(target)

* Verify Substatement

Ecmascript 4 Language Specification 104 of 141 Adobe Systems, Inc..

Evaluation
LabeledStatement : Substatement
¢ Try

o Return the result of evaluating Substatement
* Catch exception x if x is of type Break

o Let label be a string value consisting of the same sequence of characters as Identifier

o If x.target equals label, then return x.value
o Throw x

Compeatibility

ActionScript 2.0 does not allow LabeledStatements. This is a compatible change to the language.

15.6 Conditional statements

15.6.1 If statement

Syntax

abbrev

IfStatement

abbrev

if ParenListExpression Substatement

noShortlf abbrev

if ParenListExpression Substatement else Substatement

IfStatement™"

if ParenListExpression Substatement™'

noShortlf full

if ParenListExpression Substatement else Substatement

IfStatement™S""

noShortlf noShortlf

if ParenListExpression Substatement else Substatement
Verification

IfStatement : if ParenListExpression Substatement
IfStatement : if ParenListExpression Substatement else Substatement

* Verify the non-terminal symbols other right side of the production
Evaluation
IfStatement : if ParenListExpression Substatement

* Let cv be a named argument passed to this evaluator
* Let ref be the result of evaluating ParenListExpression
* Let obj be the result of readReference(ref)
* If toBoolean(obj) has the value true

o Return the result of evaluating Substatement
¢ Return cv

IfStatement : if ParenListExpression Substatement; else Substatement,

Ecmascript 4 Language Specification 105 of 141

Adobe Systems, Inc..

* Let cv be a named argument passed to this evaluator
* Let ref be the result of evaluating ParenListExpression
* Let obj be the result of readReference(ref)
* If toBoolean(obj) has the value true
o Return the result of evaluating Substatement; passing the argument cv
* Return the result of evaluating Substatement2 passing the argument cv

15.6.2 Switch statement
Syntax

SwitchStatement
switch ParenListExpression { CaseElements }

CaseElements
«empty»
Caselabel

abbrev

Caselabel CaseElementsPrefix CaseElement

CaseElementsPrefix

«empty»

CaseElementsPrefix CaseElement™"

CaseElement:
Directive-
Caselabel

Caselabel

allowln

case ListExpression :
default :

Semantics
Switch statements have the same syntax and semantics as defined in Ecma-262 edition 3.
15.7 lteration statements

15.7.1 Do-while statement
Syntax

DoStatement

abbrev

do Substatement while ParenListExpression
Verification

DoStatement : do Substatement while ParenListExpression

* Let continueTargets be the current set of possible targets of continue targets
* Let breakTargets be the current set of possible targets of break targets

Ecmascript 4 Language Specification 106 of 141 Adobe Systems, Inc..

* Add the label default to continueTargets by calling continueTargets.push(default)
* Add the label default to breakTargets by calling breakTargets.push(default)

* Verify Substatement

* Verify ParenListExpression

Evaluation
DoStatement : do Substatement while ParenListExpression

* Let cv be a named argument passed to this evaluator

¢ Try
¢ Loop
o Try

= Let cv be the result of evaluating Substatement with argument cv

o Catch if exception x is of type Continue
= If x.]abel is a member of the current loop’s continueTargets, then cv = x.value
= Throw x

o Let ref be the result of evaluating ParenListExpression

o Let obj be the result of readReference(ref)

o If toBoolean(obyj) is not true, then return cv

* Catch if exception x is of type Break
o If x]abel equals default then return x.value
o Throw x

15.7.2 While statement
Syntax

WhileStatement-
While ParenListExpression Substatement:

Verification
WhileStatement : while ParenLIstExpression Substatement

* Let continueTargets be the current set of possible targets of continue targets

* Let breakTargets be the current set of possible targets of break targets

* Add the label default to continueTargets by calling continueTargets.push(default)
* Add the label default to breakTargets by calling breakTargets.push(default)

* Verify ParenListExpression

* Verify Substatement

Evaluation
DoStatement : do Substatement while ParenListExpression

* Let cv be a named argument passed to this evaluator

e Try

¢ Loop
o Let ref be the result of evaluating ParenListExpression
o Let obj be the result of readReference(ref)
o If toBoolean(obyj) is not true, then return cv

Ecmascript 4 Language Specification 107 of 141 Adobe Systems, Inc..

o Try
= Let cv be the result of evaluating Substatement with argument cv
o Catch if exception x is of type Continue

= If x.]abel is a member of the current loop’s continueTargets, then cv = x.value

= Throw x
* Catch if exception x is of type Break
o If x]abel equals default then return x.value
o Throw x

15.7.3 For statements
Syntax

ForStatement-
For (Forlnitializer ; OptionalExpression ; OptionalExpression) Substatement-

For (ForlnBinding in ListExpression®*") Substatement-

allown

For [no line break] each (ForInBinding in ListExpression) Substatement-

Forlnitializer
«empty»

noln

ListExpression

noln

VariableDefinition

ForlnBinding
PostfixExpression

noln

VariableDefinitionKind VariableBinding

OptionalExpression
allowin

ListExpression
«empty»

Semantics

For statements in edition 4 have the same syntax and semantics as defined in edition 3 and E4X

15.8 Continue statement
Syntax

ContinueStatement
Continue
continue [no line break] Identifier

Verification
ContinueStatement : continue

* Let continueTargets be the current set of possible continue targets
* If default is not a member of continueTargets, throw a SyntaxError

ContinueStatement : continue Identifier

Ecmascript 4 Language Specification 108 of 141

Adobe Systems, Inc..

* Let continueTargets be the current set of possible continue targets
* Let label be the sequence of characters of Identifier
* If label is not a member of continueTargets, throw a SyntaxError

Evaluation
ContinueStatement : continue

* Let cv be a named argument passed to this evaluator
* Throw the exception Continue(cv,default)

ContinueStatement : continue Identifier

* Let cv be a named argument passed to this evaluator
* Let label be the sequence of characters of Identifier
* Throw the exception Continue(cv,label)

Compeatibility
ActionScript 2.0 does not allow the second form of ContinueStatement. This is a compatible

change.

15.9 Break statement

Syntax

BreakStatement
break
break [no line break] Identifier

Verification
BreakStatement : break

* Let breakTargets be the current set of possible break targets
* If default is not a member of breakTargets, throw a SyntaxError

BreakStatement: break ldentifier

* Let breakTargets be the current set of possible continue targets
* Let label be the sequence of characters of Identifier
* If label is not a member of breakTargets, throw a SyntaxError

Evaluation
BreakStatement: break

* Let cv be a named argument passed to this evaluator
* Throw the exception Break(cv,default)

BreakStatement: break Identifier

Ecmascript 4 Language Specification 109 of 141 Adobe Systems, Inc..

* Let cv be a named argument passed to this evaluator

* Let label be the sequence of characters of Identifier
* Throw the exception Break(cv,label)

Compeatibility

ActionScript 2.0 does not allow the second form of BreakStatement. This is a compatible change.

15.10 With statement
Syntax

WithStatement-
with ParenListExpression Substatement:

Semantics

With statements have the same syntax and semantics as defined in Ecma-262 edition 3.

15.11 Return statement
Syntax

ReturnStatement
Return

allowin

return [no line break] ListExpression
Verification
ReturnStatement : return

* Let env be the lexical environment
* If env does not contain a parameter frame
o Throw a SyntaxError exception

ReturnStatement : return ListExpression

* Let env be the lexical environment
* If env does not contain a parameter frame
o Throw a SyntaxError exception
* Let frame be the enclosing parameter frame
* If frame does not allow a return value
o Throw a SyntaxError exception
* Verify ListExpression

Evaluation
BreakStatement: return

* Throw the exception Return(undefined)

Ecmascript 4 Language Specification 110 of 141

Adobe Systems, Inc..

BreakStatement: return ListExpression

* Let ref be the result of evaluating ListExpression
* Let obj be the result of readReference(ref)
* Throw the exception Return(oby)

15.12 Throw statement
Syntax

ThrowStatement

allowln

throw [no line break] ListExpression
Verification
ThrowStatement : throw ListExpression
* Verify ListExpression
Evaluation
ThrowStatement : throw ListExpression

* Let ref be the result of evaluating ListExpression
* Let obj be the result of readReference(ref)
* Throw the value obj

15.13 Try statement
Syntax

TryStatement
try Block CatchClauses
try Block CatchClausesOpt finally Block

CatchClausesOpt
«empty»
CatchClauses

CatchClauses
CatchClause
CatchClauses CatchClause

CatchClause
catch (Parameter) Block
Verification

TryStatement : try Block CatchClauses
TryStatement : try Block; CatchClausesOpt finally Block:
CatchClausesOpt : CatchClauses

Ecmascript 4 Language Specification 111 of 141

Adobe Systems, Inc..

CatchClauses : CatchClause
CatchClauses : CatchClauses CatchClause

* Verify each of the non-terminal symbols on the right side of the production
CatchClause : catch (Parameter) Block

* Let frame be an empty activation frame

* Letenv be a copy of the current environment with frame added
* Verify Parameter with the arguments env and frame

* Verify Block with the argument env

Evaluation
TryStatement : try Block CatchClauses

* Let cv be a named argument passed to this evaluator
¢ Try
o Let cv be the result of evaluating Block with argument cv
* Catch if exception x is of type Object (note: excludes Return, Break and Continue exceptions)
o Let val be the result evaluating CatchClauses
o If val is not none, then return val
o Throw x

TryStatement : try Block; CatchClausesOpt finally Block:

* Let cv be a named argument passed to this evaluator
e Try
o Let cv be the result of evaluating Block; with argument cv
* Catch if exception x is of type Object (note: excludes Return, Break and Continue exceptions)
o Try
= Let val be the result evaluating CatchClauses
= [If val is not none, then let e be have the value of x
= Else let e be none
o Catch if exception x
= Lete have the value of x
* Evaluate Block,
* If eis not equal to none, then throw e, else return val

CatchClausesOpt : empty
¢ Return none

CatchClausesOpt : CatchClauses

* Return the result of evaluating CatchClauses
CatchClauses : CatchClause

* Return the result of evaluating CatchClause
CatchClauses : CatchClauses CatchClause

* Let val be the result of evaluating CatchClauses

Ecmascript 4 Language Specification 112 of 141 Adobe Systems, Inc..

* Ifval is not equal to none, then return val

* Return the result of evaluating CatchClause

CatchClause : catch (Parameter) Block

* Letenv be a copy of the current lexical environment

* Let x be the named argument of this evaluator

* Let T be the type of Parameter
¢ Let name be the name of Parameter
* IfxisoftypeT

o Let scope be instance of the activation frame of CatchClause

o Add scope to the lexical environment env

o Call writeProperty(scope,name,x)
o Return the result of evaluating Block
¢ Return none

16 Directives

Syntax

Directive-
EmptyStatement
Statement-
AnnotatableDirective-
Attributes [no line break] AnnotatableDirective-
IncludeDirective Semicolon-
NamespaceDefinition Semicolon-
ImportDirective Semicolon-
UseDirective Semicolon-
DefaultXMLNamespaceDirective Semicolon-

AnnotatableDirective-

allowln

VariableDefinition Semicolon:
FunctionDefinition
ClassDefinition

InterfaceDefinition

Directives
«empty»

abbrev

DirectivesPrefix Directive

DirectivesPrefix

«empty»

DirectivesPrefix Directive™"

16.1 Attributes

Syntax

Ecmascript 4 Language Specification

113 of 141

Adobe Systems, Inc..

Attributes
Attribute
AttributeCombination

AttributeCombination
Attribute [no line break] Attributes

Attribute
AttributeExpression
ReservedNamespace

allowln]

[AssignmentExpression

AttributeExpression
Identifier
AttributeExpression PropertyOperator

An AttributeExpression may be used as an Attribute.

An Attribute of one kind or another may be used before any AnnotatableDirective.
AnnotatableDirectives include variable, function, class, interface definitions.

Here is a complete list of reserved attribute names:

public
private
internal
protected
override
final
dynamic
native
static

Semantics
The meaning of an Attribute depends on its compile-time value and its usage. See the description

of the definitions being modified by the attribute.

16.2 Import directive
Syntax

ImportDirective
import PackageName . *
import PackageName . Identifier
import Identifier = PackageName . Identifier

ImportDirective may be used where ever a Directive or AnnotatableDirective can be used.

import a.b.*
import a.b.x
import y = a.b.x

Ecmascript 4 Language Specification 114 of 141 Adobe Systems, Inc..

Semantics

An ImportDirective causes the simple and fully qualified names of one or more public definitions
of the specified package to be introduced into the current package. Simple names will be
shadowed by identical locally defined names. Ambiguous references to imported names result in
runtime errors.

The wildcard form (import a.b.*)imports all public names in a package. The single name form
(import a.b.x)imports only the specified name. The alias form of import directive (import y =
a.b.x) imports the name on the right hand side of the assignment expression and introduces the
identifier on the lefthand side as an alias for that name.

The mechanism for locating and loading imported packages is implementation defined.
Compeatibility

The ActionScript 2.0 behavior of raising an error if there are two classes with the name simple
name being imported is deprecated. Ecmascript 4 will import both classes, but references to the
shared simple class name will result a compile-time error. Such references must be
disambiguated by using a fully qualified class name.

The ActionScript 2.0 behavior of implicit import feature is also deprecated and will result in a

compile time error in Ecmascript 4. To work around such errors, an explicit import directive must
be added to the current package, which imports the referenced class.

16.3 Include directive
Syntax

IncludeDirective
include [no line break] String

An IncludeDirective may be used where ever a Directive may be used.

include “reusable.as”
Semantics

An IncludeDirective results at compile-time in the replacement of the text of the IncludeDirective
with the content of the stream specified by String.

Compeatibility

In ActionScript 2.0 the include keyword is spelled #include. This form is deprecated and results
in a compile warning in Ecmascript 4.

16.4 Use directive

Syntax

Ecmascript 4 Language Specification 115 of 141 Adobe Systems, Inc..

UseDirective

allowln

use namespace ListExpression

A UseDirective may be used where ever a Directive or AnnotatableDirective may be used. This
includes the top-level of a Program, PackageDefinition and ClassDefinition.

use namespace nsl, ns2
Semantics
A UseDirective causes the specified namespaces to be added to the open namespaces and
removed when the current block scope is exited. Each sub expression of ListExpression must have
a compile-time constant Namespace value.

Compeatibility

UseDirective is an extension to ActionScript 2.0.

16.5 Default XML namespace directive

Syntax

DefaultXMLNamespaceDirective
default [no line break] xml [no line break] namespace = NonAssignmentExpression:

Semantics
DefaultXMLNamespaceDirective sets the internal DefaultXMLNamespace property to the value of
NonAssignmentExpression. If a DefaultXMLNamespaceDirective appears in a function definition, the

default xml namespace associated with the corresponding function object in initially set to the
unnamed namespace.

17 Definitions

17.1 Variable definition

Syntax

VariableDefinitions
VariableDefinitionKind VariableBindingList:

VariableDefinitionKind
var
const

VariableBindingList:
VariableBinding
VariableBindingList: , VariableBinding

Ecmascript 4 Language Specification 116 of 141 Adobe Systems, Inc..

VariableBinding

Typedldentifier Variablelnitialisation

Variablelnitialisation:
«empty»
= Variablelnitialiser

Variablelnitialiser:
AssignmentExpression
AttributeCombination

Typedldentifier:
Identifier
Identifier : TypeExpression:

Typedldentifier may be used in a VariableBinding or Parameter definition.

var x : String = “initial String value of var x”
function plusOne(n : Number) { return n + 1 }
Semantics

Typedldentifer results at compile-time in a variable or parameter that is optionally typed. The
TypeExpression, if given, results at compile-time to a Type value. It is used to specify the set of
values that are compatible with the variable or parameter being declared.

A VariableDefinition may be modified by the following attributes

static adds property to the class object

prototype adds property to the prototype object

private accessible from within the current class

public accessible outside the current package

protected accessible from within an instance of the current class or a

derived classes

internal accessible from within the current package

Compeatibility

Typed identifier behavior differs between Ecmascript 4 and ActionScript 2.0 in two ways.
ActionScript 2.0 checks for type compatibility using compile-time types at compile-time, while
Ecmascript 4 checks for type compatibility using runtime types at runtime. The difference can be
seen in the following examples.

var s : String = o

function f£(s : String) {}

var o = 10

f (o) // OK in ActionScript 2.0, error in Ecmascript 4

In ActionScript 2.0 the variable o does not have an explicit compile-time type that can be
compared to the type String of the parameter s in the call to function f, so no error is reported. In
Ecmascript 4 the value of argument o is compared to the type of the parameter s at runtime,
resulting in an error.

Ecmascript 4 Language Specification 117 of 141 Adobe Systems, Inc..

class A {}

class B extends A { var x }

var a : A = new B

a.x = 20 // Error in ActionScript 2.0, OK in Ecmascript 4 (since
instance of B has an x property)

In ActionScript 2.0, the compiler uses A, the declared type of a, to conservatively check for valid

uses of a, excluding completely safe and reasonable uses of a. In Ecmascript 4 the compiler uses
the type of a to optimize its use, but does not report type errors. It leaves that task to the runtime.

17.2 Function definition
Syntax
FunctionDefinition
function FunctionName FunctionCommon
Semantics
A FunctionDefinition introduces a new name and binds that name to a new created function object
specified by FunctionCommon. The implementation of the function object depends on whether the

function is static or virtual as indicated by its context and attributes.

A FunctionDefinition may be modified by the following attributes

static adds property to the class object
prototype adds property to the prototype object
final adds non-overridable property to each instance
override overrides a method of the base class
private accessible from within the current class
public accessible outside the current package
protected accessible from within an instance of the current or a derived
classes
internal accessible from within the current package
native generates a native stub (implementation defined)
Syntax
FunctionName
Identifier

get [no line break] Identifier
set [no line break] Identifier

FunctionName is used inside a FunctionDefinition.

function f£() {}

function get x () { return impl.x }

function set x (x) { impl.x = x }
Semantics

Ecmascript 4 Language Specification 118 of 141 Adobe Systems, Inc..

FunctionName specifies at compile-time the name and kind of function being defined. A name
that includes a get or set modifier specifies that the function being defined is a property
accessor.

17.2.1 Function body

Syntax

FunctionCommon
FunctionSignature
FunctionSignature Block

Verification

FunctionCommon that is a FunctionSignature without a Block introduces an abstract method trait.
FunctionCommon with a FunctionSignature followed by a Block defines a concrete function. The
result of verifying a FunctionCommon node is the addition of a method trait to a set of traits
associated with an object at runtime.

Evaluation

During evaluation a FunctionCommon node is instantiated and activated. Function instantiation
is when a lexical environment is associated with a function object. This captured environment is
used to activate the function. Activation is when the function is called with a specific receiver

(this) and set of arguments.

17.2.2 Function signature
Syntax
FunctionSignature

() ResultType
(Parameters) ResultType

Semantics

The function signature defines the set of traits associated with the activation of a function object.

17.2.3 Parameter list

In the strict dialect the Arguments assigned to Parameters must have compatible number and
types. In the standard dialect the handling of arguments is the same as edition 3.

Syntax
Parameters
«empty»

NonemptyParameters

NonemptyParameters
Parameter

Ecmascript 4 Language Specification 119 of 141 Adobe Systems, Inc..

Parameter , NonemptyParameters
RestParameter

Parameter

allowln

Typedldentifier

allowln allowln

Typedldentifier = AssignmentExpression

RestParameter
Identifier
Verification
Parameters : empty
* Do nothing
Parameters : NonemptyParameters

* Verify NonemptyParameters

NonemptyParameters : Parameter

* Let frame be the named argument passed into this verifier
* Verify Parameter

* Let name be the name of Parameter

* Let type be the type of Parameter

* Call defineSlotTrait(frame,name,type,false)

NonemptyParameters : Parameter , NonemptyParameters

* Let frame be the named argument passed into this verifier
* Verify Parameter

* Verify NonemptyParameters with the argument frame

* Let name be the name of Parameter

* Let type be the type of Parameter

* Call defineSlotTrait(frame,name,type,false)

NonemptyParameters : RestParameter
* Verify RestParameter
Parameter : Typedldentifier

* Verify Typedldentifier

* Let name be the name of TypedIdentifier

* Let fype be the type of Typedldentifier

* Call defineSlotTrait(frame,name,type,undefined, false)

Parameter : Typedldentifier = AssignmentExpression

* Verify Typedldentifier
* Verify AssignmentExpression
* Let name be the name of TypedIdentifier

Ecmascript 4 Language Specification 120 of 141 Adobe Systems, Inc..

* Let fype be the type of Typedldentifier

* Let val be the value of AssignmentExpression

* If val is equal to none, then throw a VerifyError: must be a compile-time constant
* Call defineSlotTrait(frame,name,type,val false)

RestParameter : ...
* Do nothing
RestParameter : ... Identifier

* Let frame be a named argument passed into this verifier
* Verity Identifier

* Let name be the name of Identifier

* Call defineSlotTrait(frame,name,Array,false)

17.2.4 Result type
Syntax

ResultType
«empty»

allowln

: TypeExpression
ResultType may be used in a FunctionSignature.
function f(x) : Number { return x }
Semantics

ResultType guarantees the type of the value returned from a function. It is a verify error if the
return value does not implicitly convert to the ResultType of the function.

Compeatibility
The ActionScript 2.0 behavior of checking types only at compile-time is more permissive than in

Ecmascript 4. This will result in new runtime errors in cases such as calling the method shown
above with an argument of type String.

17.3 Class definition

Syntax

ClassDefinition
Class ClassName Inheritance Block

ClassDefinition may be used where ever an AnnotatableDirective may be used, which includes
where ever a Directive can be used and following a list of attributes, except inside of another
ClassDefinition or InterfaceDefinition.

class A extends B implements C {}

Ecmascript 4 Language Specification 121 of 141 Adobe Systems, Inc..

dynamic public final class D {}

17.3.1 Class attributes

Class definitions may be modified by these attributes

internal Visible to references inside the current package (default)
public Visible to references everywhere

final Prohibit extension by sub-classing

dynamic Allow the addition of dynamic properties

The default attributes for a class definition are internal, non-dynamic, and non-final.
Semantics

A class definition adds a new class name into the current scope.

class A {}

In this example, the class name A refers to a class object with the structure shown in the drawing
below:

I Class.prototype Object.prototype
CA

delegate delegate

C prototype constructor P
type A A

traits.

A class definition causes a class object and prototype instance to be created. The default delegate
of the instance prototype is the Object prototype. The default super class of the class object is the
Object class. Static members are added to the class object as fixed properties, and non-static
members are added to the instance prototype as fixed properties. The internal references (traits,
prototype, constructor, and delegate) between these objects are read-only.

17.3.2 Class name
Syntax

ClassName
Classldentifiers

Classldentifiers

Ecmascript 4 Language Specification 122 of 141 Adobe Systems, Inc..

Identifier
Classldentifiers . Identifier

ClassName can be used in ClassDefinition.
class A {}

Semantics
ClassName evaluates at compile-time to a type name.
Compeatibility

The form Classldentifiers : Classldentifiers . Identifier is deprecated. It is equivalent to declaring
the class name Identifier in the package Classldentifiers.

class P.A {} // deprecated

package P { // preferred
class A {}

}

17.3.3 Class inheritance

Syntax

Inheritance

«empty»

extends TypeExpression® """
implements TypeExpressionList

allowln

extends TypeExpression implements TypeExpressionList

TypeExpressionList

allowin

TypeExpression

allowln

TypeExpressionList , TypeExpression
Semantics
A ClassDefinition may extend another class definition and implement one or more interfaces. We
say that a class inherits the properties of its base class and the abstract methods of its interfaces.
When a class extends another class it is inherits the base class” instance properties, but not its
static properties. When a class implements one or more interfaces it is required to define each

inherited interface method.

The TypeExpressions that occur in the extends and implements clauses must be compile-time
constant expressions without forward references.

17.3.4 Class block

Syntax

Ecmascript 4 Language Specification 123 of 141 Adobe Systems, Inc..

The body of a class definition is syntactically a Block. The class block must come immediately
after the ClassName or Inheritance constituents, if present. The class block must not contain a
ClassDefinition or InterfaceDefinition.

Semantics

Declarations modified by the static attribute contribute properties to the class object; declarations
without the static attribute contribute properties to the instance traits object. Statements that are
not declarations are evaluated normally when the class object is instantiated.

17.3.4.1 Variables

Attributes allowed in variable definitions in a class block are:

static Defines a property of the class object
private Visible to references inside the current class
internal Visible to references inside the current package
Visible to references inside an instance of the current class and derived
protected classes
prototype Defines a property of the class prototype object
public Visible to references everywhere
AttributeExpression Namespace value is the qualifier for the name of the definition

The default attributes for variable definitions are non-static and internal.

17.3.4.2 Methods

Attributes allowed in function definitions in a class block are:

static Defines a property of the class object
final Must not be overridden
override Must redefine an inherited non-final method
native Implementation defined
private Visible to references inside the current class
internal Visible to references inside the current package
Visible to references inside instances of the current class and derived
protected classes
public Visible to references everywhere
AttributeExpression Namespace value is the qualifier for the name of the definition

The default attributes for function definitions in a class are non-static, non-final , non-native
and internal.

Methods that implement interface methods must be instance methods defined with attributes
that include public. Interface methods may be overridden in a derived class as long as the

overriding method is also has the public attribute.

A constructor method is a method with the same name as the class it is defined in. It is a syntax
error for the constructor method to have a different namespace attribute than its class.

It is a verifier error for override to appear as an attribute of a class method that does not
override another method.

Ecmascript 4 Language Specification 124 of 141 Adobe Systems, Inc..

17.4 Interface definition

Syntax

InterfaceDefinition
interface ClassName ExtendsList Block

An InterfaceDefinition may be used where ever a Directive or AnnotatableDirective may be used,
which includes where ever a Directive can be used and following a list of attributes, except inside
of another ClassDefinition or InterfaceDefinition.

interface T { function m() }
Semantics
An InterfaceDefinition constrains the structure of any ClassDefinition that implements it. These
constraints are enforced when the ClassDefinition is being compiled. An InterfaceDefinition also
introduces a new type name into the current scope. When evaluated in a context that expects a
type value, a reference to that name results the type of all instances of all classes that implement
the interface.
Compeatibility
In ActionScript 2.0, user defined types only exist at compile-time. Therefore any use of an

interface name that cannot be enforced at compile-time will have no effect on the program. See
descriptions of ResultType and Typeldentifier.

17.4.1 Interface attributes

Interface definitions may be modified by these attributes

internal Visible to references inside the current package (default)

public Visible to references everywhere
The default modifiers for an interface definition are internal.

17.4.2 Interface name

The name of an interface definition has the syntax and semantics of a ClassName (section 16.3.1).

17.4.3 Interface inheritance

Syntax

ExtendsList
«empty»
extends TypeExpressionList

An ExtendsList may be used after the ClassName and before Block in an InterfaceDefinition.

interface U extends T { function n() }

Ecmascript 4 Language Specification 125 of 141 Adobe Systems, Inc..

Semantics

An ExtendsList specifies the interfaces that include instances of the current InterfaceDefinition in
their value set. It also specifies that the current InterfaceDefinition inherits the structure of each of
the interfaces named in the ExtendsList.

An interface definition must not introduce a method with a name that has the same identifier as
an inherited method.

An interface definition must not inherit itself directly or indirectly.

17.4.4 Interface block

The body of an interface definition is syntactically a Block, but must only contain
FunctionDefinitions with no Block and no attribute.

17.4.4.1 Interface methods

Interface methods must be defined with no attribute. An interface method is given the name that
has its interface as its qualifier and the identifier as the string.

Interface methods have the syntax of a FunctionDefinition without the Block of FunctionCommon.
Class methods that implement interface methods must match the name and signature, including
parameter count, types and result type, exactly. The name of the implementing method must
have a name that is qualified by the public namespace.

17.5 Package definition
Syntax

PackageDefinition
package PackageNameOpt Block

A PackageDefinition may be used in a Program before any Directive that is not a
PackageDefinition is used.

package p {
public class A {}
public interface I {}
}
package g {
public var x = 10
}
import p.*
import g.f
import y = g.x

class B extends A implements I {}

q.£()
print (x)

Semantics

Ecmascript 4 Language Specification 126 of 141 Adobe Systems, Inc..

A PackageDefinition introduces a new package name into the current scope. A package definition
causes the public members of that package to be qualified by the package name, and the internal
members of that package definition to be qualified by an anonymous namespace that is only
accessible to code inside the package.

The statements of a package body are executed in the global scope of the Program.
Compatibility

PackageDefinition is an extension to ActionScript 2.0. It is added to Ecmascript 4 to replace the
deprecated form of ClassDefinition that uses a ClassName qualified by a package name.

17.5.1 Package name
Syntax

PackageName
Identifier
PackageName . Identifier

17.6 Namespace definition
Syntax

NamespaceDefinition
namespace NamespaceBinding

NamespaceBinding
Identifier Namespacelnitialisation

Namespacelnitialisation
«empty»

allowin

= AssignmentExpression

A NamespaceDefinition may be used where ever a Directive or AnnotatableDirective may be
used. This includes the top-level of a Program, PackageDefinition and ClassDefinition.

namespace NS1
namespace NS2 NS1
namespace NS3 = “http://www.macromedia.com/flash/2005”

Semantics

A NamespaceDefinition introduces a new namespace constant into the current block scope and
assigns to it either an anonymous namespace value, or the value of the AssignmentExpression in
the Namespacelnitialisation implicitly coerced to type Namespace. The value of
Namespacelnitialisation must be a compile-time constant with a value of type String or type
Namespace.

NamespaceDefinitions can be annotated by an access specifier (private, internal, protected or
public), the static modifier inside a ClassDefinition.

Ecmascript 4 Language Specification 127 of 141 Adobe Systems, Inc..

17.7 Program definition

Syntax

Program
Directives
PackageDefinition Program

package P {
function f£() {}

}

package Q {
function f£() {}

0
0

O Yo

£
£

Ecmascript 4 Language Specification 128 of 141 Adobe Systems, Inc..

18 Errors

18.1

Class errors

The following errors may occur while parsing or verifying a class definition:

18.2

Defining a class with the name of another definition in the same scope

Defining a class that extends itself directly or indirectly

Defining a constructor with a namespace attribute that is different than the namespace
attribute of its class

Defining a constructor with a result type

Defining a constructor that calls its super constructor more than once

Defining a constructor that calls its super constructor accessing a non local property
Introducing a method or variable with the same name as an inherited method or variable
Overriding a variable

Overriding a final method

Overriding a method that is not defined in a base class

Overriding a method with a method that has a different number, types of parameters, or
result type

Interface errors

The following errors may occur while parsing or verifying an interface definition:

Defining an interface with the name of another definition in the same scope

Defining an interface that extends itself directly or indirectly

Defining an interface with a body that contain a definition or statement other than a
function definition with no block

Defining an interface method with the same identifier as an inherited interface method
Defining an interface method with a attribute

Package errors

It is a parser error to define a package inside a package

It is a parser error to use attributes on a package definition

It is a parser error to import a packages names into itself

It is a strict error to import the same name more than once into the same package

It is a strict error to import a package that cannot be found

It is a strict error to reference a package property that cannot be found in an imported
package

Namespace errors

It is a verifier error to use an expression that does not have a compile-time constant
namespace value in a use namespace directive

It is a verifier error to use an attribute expression that is not a compile-time constant
namespace value as an definition attribute

It is a verifier error to use a user defined namespace as an attribute except to define a
class or instance property

Ecmascript 4 Language Specification 129 of 141 Adobe Systems, Inc..

19 Native objects

The form and function of the native objects is the same as Ecmascript ed. 3 except that all

prototype properties are also implemented as class methods. Prototype properties that are
functions are implemented as regular methods. Prototype properties that are variables are
implemented as a pair of get and set methods that forward state to the prototype property.

19.1 Global object

Global object
NaN
Infinity
undefined
eval
parselnt
parseFloat
isNaN
isFinite
decodeURI
decodeURIComponent
encodeURI
encodeURIComponent

19.2 Obiject objects

Object object
Object
Object.prototype
Object.prototype.constructor
Object.prototype.toString
Object.prototype.toLocaleString
Object.prototype.valueOf
Object.prototype.hasOwnProperty
Object.prototype.isPrototypeOf
Object.prototype.propertylsEnumberable

19.3 Function objects

Function object
Function
Function.prototype
Function.prototype.constructor
Function.prototype.toString
Function.prototype.apply
Function.prototype.call
Function.length

Ecmascript 4 Language Specification

130 of 141

Adobe Systems, Inc..

Function.prototype

19.4 Array objects

Array object
Array
Array.prototype
Array.prototype.constructor
Array.prototype.toString
Array.prototype.toLocaleString
Array.prototype.concat
Array.prototype.join
Array.prototype.pop
Array.prototype.push
Array.prototype.reverse
Array.prototype.shift
Array.prototype.slice
Array.prototype.sort
Array.prototype.splice
Array.prototype.unshift
Array.[[Put]]
Array.length

19.5 String objects

String object
String
String.prototype
String.fromCharCode
String.prototype.constructor
String.prototype.toString
String.prototype.valueOf
String.prototype.charAt
String.prototype.charCodeAt
String.prototype.concat
String.prototype.indexOf
String.prototype.lastindexOf
String.prototype.localeCompare
String.prototype.match
String.prototype.replace
String.prototype.search
String.prototype.slice
String.prototype.split
String.prototype.substring
String.prototype.toLowerCase
String.prototype.toLocaleLowerCase
String.protoype.toUpperCase
String.protoype.toLocaleUpperCase

Ecmascript 4 Language Specification 131 of 141 Adobe Systems, Inc..

String.[[Value]]
String.length

19.6 Boolean objects

Boolean object
Boolean
Boolean.prototype
Boolean.prototype.constructor
Boolean.prototype.toString
Boolean.prototype.valueOf

19.7 Number objects

Number object
Number
Number.prototype
Number.MAX_VALUE
Number.MIN_VALUE
Number.NaN
Number.NEGATIVE_INFINITY
Number.POSITIVE_INFINITY
Number.protoype.constructor
Number.protoype.toString
Number.prototype.toLocaleString
Number.prototype.valueOf
Number.prototype.toFixed
Number.prototype.toExponential
Number.prototype.toPrecision

19.8 Math object

Math object
Math.E
Math.LN10
Math.LN2
Math.LOG2E
Math.LOG10E
Math.PI
Math.SQRT1_2
Math.SQRT2
Math.abs
Math.acos
Math.asin
Math.atan
Math.atan2
Math.ceil

Ecmascript 4 Language Specification 132 of 141 Adobe Systems, Inc..

Math.cos
Math.exp
Math.floor
Math.log
Math.max
Math.min
Math.pow
Math.random
Math.round
Math.sin
Math.sqrt
Math.tan

19.9 Date objects

Date object
Date
Date.protoype
Date.parse
Date.UTC
Date.prototype.constructor
Date.prototype.toString
Date.prototype.toDateString
Date.prototype.toTimeString
Date.prototype.toLocaleString
Date.prototype.toLocaleDateString
Date.prototype.toLocaletimeString
Date.prototype.valueOf
Date.prototype.getTime
Date.prototype.getFullYear
Date.prototype.getUTCFullYear
Date.prototype.getMonth
Date.prototype.getUTCMonth
Date.prototype.getDate
Date.prototype.getUTCDate
Date.prototype.getDay
Date.prototype.getUTCDay
Date.prototype.getHours
Date.prototype.getUTCHours
Date.prototype.getMinutes
Date.prototype.getUTCMinutes
Date.prototype.getSeconds
Date.prototype.getUTCSeconds
Date.prototype.getMilliseconds
Date.prototype.getUTCMilliseconds
Date.prototype.getTimezoneOffset
Date.prototype.setTime
Date.prototype.setMilliseconds
Date.prototype.setUTCMilliseconds

Ecmascript 4 Language Specification 133 of 141 Adobe Systems, Inc..

Date.prototype.setSeconds
Date.prototype.setUTCSeconds
Date.prototype.setMinutes
Date.prototype.setUTCMinutes
Date.prototype.setHours
Date.prototype.setUTCHours
Date.prototype.setDate
Date.prototype.setUTCDate
Date.prototype.setMonth
Date.prototype.setUTCMonth
Date.prototype.setFullYear
Date.prototype.setUTCFullYear
Date.prototype.toUTCString

19.10 Error objects

Error object

Error

Error.prototype
Error.prototype.constructor
Error.prototype.name
Error.prototype.message
Error.prototype.toString

Ecmascript 4 Language Specification

134 of 141

Adobe Systems, Inc..

20 Compatibility with the static profile

The static profile defines a dialect that is a subset of the 4t edition. It allows for the static
interpretation of type names and the reporting of verifier errors ahead-of-time.

20.1 Static types

20.2 Ahead-of-time verification

21 Compatibility with Ecmascript 3" edition

While we have made this edition as compatible as possible with the 3td edition of Ecmascript
(Ecmascript 3), there are certain behaviors for which there is no clear use case and keeping them
as-is would have been placed an unneeded heavy burden on the new features of the language. In
such cases, we have made small and calculated changes to allow the new definition to be simpler
and easier to use.

21.1 ‘this’ inside of nested function

In Ecmascript 3, when ‘this” appears in a nested function, it is bound to the global object if the
function is called lexically, without an explicit receiver object. In Ecmascript 4 “this” is bound to
the innermost nested “this” when the function is called lexically.

21.2 No boxing of primitives

In Ecmascript 3 primitive values (Boolean, Number, String) are boxed in Object values in various
contexts. In Ecmascript 4 primitives are permanently sealed Objects. Unlike boxed objects,
attempts to dynamically extend a sealed object results in a run time exception.

21.3 Assignment to ‘const’ is a run time exception

In Ecmascript 3 primitive assignment to read only properties failed silently. In Ecmascript 4 such
assignment causes a runtime error to be thrown.

21.4 Class names are const

In Ecmascript 3 constructor functions were writeable. In Ecmascript 4 we implement these
properties with class definitions, which are read only.

21.5 Array ‘arguments’ object

In Ecmascript 3 the function ‘arguments’ property is a generic Object. In Ecmascript 4
‘arguments’ is an Array.

22 Compatibility with E4X

While we have made this edition as compatible as possible with the E4X specification, there are
certain behaviors which are either bugs in the original specification of E4X or for which the
motivation to revise the behavior outweighs the motivation to keep it the same.

Ecmascript 4 Language Specification 135 of 141 Adobe Systems, Inc..

23 Compatibility with the Netscape proposal of the 4" edition

The current draft is based on the Netscape proposal dated June 23, 2003.

23.1 Removed features

The following language features have been removed.

23.1.1 ParenExpression as FieldName in Objectlnitialiser expressions
23.1.2 Rest expressions

23.1.3 Annotated blocks

23.1.4 Pragma directives

23.1.5 Built-in types other than int and uint

23.1.6 Type Never

23.1.7 Local block scope

23.2 Modified features

The following language features have been modified.
23.2.1 Instance property lookup

23.3 Added features

The following language features have been added.
23.3.1 Interfaces

23.3.2 E4X

Ecmascript 4 Language Specification 136 of 141

Adobe Systems, Inc..

24 Open Issues

Here are the issues that need to be discussed

24.1 Enum like construct

24.2 Class initialization order

¢ Whatisit?

25 Revision History

January 12, 2005

December 22, 2005

December 20, 2005

November 11, 2005

November 7, 2005

Ecmascript 4 Language Specification

Create Ecmascript proposal from ActionScript spec:

* Rename ActionScript 3.0 to Ecmascript 4

* Move Revision History from beginning of document to here
(25)

* (Clarify that const instance vars can initialized from instance
constructors (1.4)

* Included pragma arguments as one context in which
compile time constant expression is required (3.4

* Updated discussion on types to include the ‘to” operator and
‘to’, “as” and “is” annotations (6)

* Added syntactic keywords ‘dynamic’, “prototype” and
‘static” to the Identifier production (14.1)

* Removed ‘prototype” attribute from function definitions (8.1
and elsewhere)

Editorial changes:

* Fixed various typos.

* Revised prototype attribute section (9.3.2) to reflect
implementation change that allows only variables to have
the prototype attribute.

Editorial changes:

* Replace section 4 with a new Definitions section.

* Replaced "method closures" with "bound methods".

Bug fixes and clarifications. Changes include:

* (larified that prototype properties can have namespace
attributes (9.3.2)

* (Clarified that namespaces created by namespace definitions
have a prefix initialized to the value undefined

* Removed future reserved words that we don’t plan to use,
moved the other ones to the list of reserved words. Added a
rationale section to the discussion of keywords (13.2)

Various changes to align with recent Ecmascript 4 design

decisions and the direction Ecmascript 4 is moving. Changes

include:

* Replaced the spelling of type Void to void (throughout)

* Fixed the picture of the type lattice (6.3)

137 of 141 Adobe Systems, Inc..

October 25, 2005

October 19, 2005

Ecmascript 4 Language Specification

Made implicit conversion of undefined to String be null
rather than “undefined”, and undefined to Object be null
rather than an error (6.6.2)

Updated table of is results so that (null is String) and (null as
Object) result in false (6.7.1)

Revised the logic of the as operator to always return either
the original value or null; it never converts (6.7.2)

Clarified the meaning of the prototype attribute
(7.1,8.1,9.3.2,17.3.4)

Added ‘to” to the list of future reserved words to future
proof for the Ecmascript 4 operator to (13.1)

Added sections describing incompatibilities with Ecmascript
edition 3 (21)

Various feature revisions and bug fixes. Changes include:

Changed name of abstract procedure checkImplicit to
verifyType (throughout)

Replaced :Object with :* to mean notype or any value
(throughout)

Erased mention of the attribute explicit (throughout)
Updated definition of verifyType (4.3.9)

Added description of the hybrid nature of the strict type
system (6.1)

Added section describing the difference between untyped
and typed properties (6.2)

Renamed and updated description of fundamental types
(6.3)

Added example of the prototype attribute (6.4)

Fixed bugs in table of conversions of null (6.5.2)

Fixed bug in table of is predicate result for undefined (6.6.1)
Revised the meaning of ‘protected” to restrict access to
instances of a subclass, rather than all subclasses
(9.3,17.1,17.2,17.3.4.1,17.3.4.2)

Added description of prototype attribute (9.5.2,9.6.3)
Updated verification rules for equality expressions to throw
an error if the left and right side types do not have a non-
null value in common (14.16.5)

Added an error for the case where an access specifier of a

constructor does not match the access specifier of its class
(18.1)

Updates regarding types, compile time constant expressions,
type errors in the strict dialect. Changes include:

Added description of compile time constant expressions
(3.2.1)

Introduced a new root type (Value) to make null and
undefined non-object types. Properties without type
annotations are off type Value. Make Value (rather than
Object) the type from which down cast are legal (6.2)
Updated the description of type Object (6.3)

Added detail about what constitutes a type error in the strict
dialect (6.6.1)

Added section describing conversions from null and
undefined (6.6.3)

138 of 141 Adobe Systems, Inc..

October 10, 2005

September 30, 2005

September 27, 2005

September 21, 2005

September 20, 2005

September 1, 2005

August 26, 2005

August 24, 2005

Ecmascript 4 Language Specification

* Fixed leading caps in table (6.7.1)

* Make ‘as’ dependent on ‘is” rather than implicit conversion
(6.7.2)

* Added section to Open Issues calling out the need for
definition of class initialization order (24.4)

Definition of statements, variables and functions is ready for

review. Changes include:

* (Clarified that delegates have the same type as the instance or
of type Object (4.2.3)

* Added definition of internal conversion procedures (4.3.8)

* Fixed the description of the as operator (6.6.2)

* Added detail to description of variables (7.2,17.1)

* Added detail to description of functions (7.3,17.2)

* Added detail to description of statements (15)

* Added definition of default XML namespace directive (16.5)

Definition of expressions is final. Changes include:

* Added detail to abstract procedures for references (4.3)

Definition of expressions is ready for review. Changes include:

* Added abstract procedures for evaluating operator
expressions (4.3.9)

* Added prose to introduction of section on Names to clarify
open namespaces (5)

* Added verification and evaluation semantics of expressions
(14)

* Added syntax for is and as operators (14.16.4)

Definition of interfaces revised. Interface methods shall be

implemented by public methods only. Interface attributes shall

no longer be used on implementing method definitions. Changes
include:

* Remove mention of interface attributes (throughout)

Checkpoint update of expressions. Need to add detail about

verification errors in the strict dialect, and implementation of

stub method. Changes include:

* Added stubs to procedures (4.3)

* Added detail to semantics of expressions (14)

Checkpoint update. Changes include:

* Add detail regarding type conversions (6.5,6.6)

* Revised grammar to include E4X expressions and default
xml statements (14.1,14.7,14.11,15.7.3,16,16.5)

Definition of interfaces revised. Changes include:

* Change the meaning of public on class methods with no
other namespace attributes to mean implements all
unimplemented interface methods with a matching
identifier (1.7, 10,17.3.4.2, 174, and 18)

* Add detail to description of how interface methods are
implemented by classes (9.6.5)

* Add detail to how public as an attribute interacts with
interface methods (10.3)

* Clarify the visibility rules for interface methods when
viewed through an interface typed base object (10.3.1)

Definition of interfaces revised. Changes to sections 1.7, 10,

17.3.4.2,17.4, and 18.3 include:

139 of 141 Adobe Systems, Inc..

August 16, 2005

August 12, 2005

July 28, 2005

July 25, 2005

Ecmascript 4 Language Specification

* public is no longer allowed as an attribute of a function
definition in an interface definition

* Interface methods are no longer implicitly public

* All inherited interface methods must be implemented by a
method with the interface name as an attribute

* public may be used as an attribute on methods that
implement interface methods to make that method visible to
unqualified references

Definition of packages and namespaces is final. Changes include:

* Various minor bug fixes and formatting changes
(throughout)

* Revise the meaning of const (1.4,7)

* Subsumed the syntactic goal symbol Packageldentifiers into
PackageName (17.5.1)

* Add Package errors (18.3)

Definition of packages and namespaces is ready for review.

Changes include:

* Add description of our design perspective (2)

* Add description of Standard (~) and Strict (!) dialects (3)

* Make clear that a valid reference to an interface always
shadows any possible runtime value of that reference (10.1)

* Add definition of packages (11,17.5)

* Add definition of namespaces (12,17.6)

* Listreserved words (13.1) and special syntactic identifiers
(13.2)

* Add detail to syntax and semantics of import directives
(16.2)

* Add detail to syntax and semantics of use namespace
directives (16.4)

* Add section to list package and namespace related errors
(18.3,18.4)

Definition of interfaces is final. Changes include:

* Make use of super in static methods an error (8.6.2)

* Allow user defined namespaces as qualifier of interface
methods (9.3, 16.4.4.1)

* Fix bug in interface example (9.4)

* Update semantics of SuperExpression (13.2)

* Add section for class attributes (16.3.1)

* Make clear that it is an error to use override as an attribute
on a method that is implementing an interface method
(16.3.4.2)

* Add section for interface methods (16.4.4.1)

Definition of interfaces is ready for review. Changes include:

* Make use of super in static methods an error (8.6.2)

* Make definition of ‘get’ and “set’ functions other than as
methods an error (8.6.4)

* Make Function the user visible type of a method closure
(8.6.5)

* Add detail to definition of Interfaces (8, 16.4). Make it illegal
to use the ‘override’ attribute on methods that implement
interface methods

140 of 141 Adobe Systems, Inc..

July 21, 2005

July 18, 2005

July 15, 2005
May 27, 2004

Ecmascript 4 Language Specification

Make it an error for one interface to introduce a method
name with the same identifier as in inherited interface
(16.4.3)

Add sections for listing errors including class and interface
definition errors (17)

Definition of classes is final. Changes include:

Add detail on name lookup (4.3)

Add detail on the semantics of class bodies (8.4)

Add detail on the definition of constructors (8.6.1)

Make it an error to use this and super inside a static
method (8.6.2)

Specify that set accesssors have a void result type by default
(8.6.4)

Specify the default modifiers for classes and class properties
(8.1,16.3,16.3.3,16.3.4)

Add error conditions for class definitions (16.3.4)

Add uint to the list of native types we are supporting
(21.1.4)

Remove override from the list of features added (it was in
the NS ed. 4 proposal) (21.3.3 deleted)

Definition of classes is ready for review. Changes include:

static properties not inherited

nested classes and interfaces not allowed

true/false attributes no longer supported, may be added
back if we can reach agreement on functionality

explicit attribute from Netscape proposal added
Built-in prototype properties are given fixed properties on
the corresponding class

Class instance constructors are always public. Default
namespace is public if none is given.

Added description of classes
Baseline for Ecmascript 4 definition

141 of 141 Adobe Systems, Inc..

