
__
Draft June 20, 2007 Page 1 of 10

JScript Conditional Compilation

-- Draft –
June 20, 2007

Pratap Lakshman

Microsoft Corporation

This draft provides a complete description of JScript’s Conditional Compilation
Functionality. There are still be a few semantic subtleties to document or correct. The
Grammar in Section 7 still needs significant work to make it correct and to properly
integrate it with the complete language grammar.

1 Introduction ... 2
2 Conditional compilation statements .. 2

2.1 @cc_on statement ... 3
2.2 @set statement .. 3
2.3 @if statement .. 4
2.4 Conditional compilation variables .. 4

3 Activating conditional compilation ... 5
4 Making code available only to JScript .. 6
5 Introducing an alternate code path .. 7
6 Multiway branching .. 8
7 Grammar ... 9
8 Revision history .. 10

__
Draft June 20, 2007 Page 2 of 10

1 Introduction
Conditional compilation allows conditionally incorporating source text into a program
depending on the status of various symbols or constant values in the program. It is not a
separate pre-processing step; instead, it is done as part of the lexing and parsing of script
text. Conditional compilation statements are identified by the lexer and conditionally
incorporated into the source stream for parsing. This facility has been available in JScript
since IE4.

2 Conditional compilation statements
Syntactically, conditional compilation statements may occur anywhere in source text.
However, if they occur within comments they must lexically follow the character pattern
that starts a comment. i.e. they must immediately follow the /* or // character with no
whitespace in-between.

The parser activates conditional compilation when it encounters a @cc_on statement, the
@if statement, or the @set statement. Once activated it is in effect for all subsequently
parsed source text, including source text from subsequent script blocks, or even from
script includes.

A set of pre-declared conditional compilation variables (§2.4) is made available when
conditional compilation is enabled. New conditional compilation variables can be
declared using the @set command. Conditional compilation variables are generally used
in conditional compilation statements, but can be referenced anywhere in JScript code,
including eval. When such variables are referenced at a particular point in the source
text, conditional compilation must have been explicitly enabled at a point in the source
text that has already been parsed. For e.g. the following code snippet will cause an error
while parsing:

// error! Need to explicitly enable conditional compilation before
// referencing the var.
document.write(@_jscript_version);

The following code snippet will cause a parse error too:
// error! Need to explicitly enable conditional compilation before
// referencing the var. The parser will not peek into the literal!
var s = "@cc_on";
document.write(@_jscript_version);

Note that conditional compilation variables will not be substituted within string literals
either. The following code snippet will print the string “@_jscript_version” instead of the
value of that pre-defined variable:

@cc_on;
document.write("@_jscript_version"); // no substitution within literals

__
Draft June 20, 2007 Page 3 of 10

2.1 @cc_on statement
The @cc_on statement activates conditional compilation in the scripting engine. It also
enables the capability to use conditional compilation statements within comments.

Example:

@cc_on

Conditional compilation is enabled for all subsequently parsed source text - such source
text could come from subsequent script blocks, or even from script includes.

2.2 @set statement
The @set statement declares a conditional compilation variable. It takes the following
syntactic form:

@set @vname = expression

Where,
vname

A valid JScript variable name

expression

an optional unary operator followed by a numeric value or the primitive Boolean
values true and false, or a conditional compilation variable, or a parenthesized
expression.

The following operators are supported in parenthesized expressions:

! ~
* / %
+ -
<< >> >>>
< <= > >=
== != === !==
& ^ |
&& | |

Example:
@set @foo = 11
@set @bar = (@foo * 10)
@set @foobar = @_jscript_version

If a variable is referenced before it has been defined, its value is NaN.

Conditional compilation variables are generally used in conditional compilation
statements, but can be referenced anywhere in JScript code, including eval.

Variables declared using the @set statement are added to the global scope.

__
Draft June 20, 2007 Page 4 of 10

2.3 @if statement
The @if statement conditionally incorporates a group of statements, depending on the
value of an expression. It takes the following syntactic form:

@if (condition1) text1opt
[@elif (condition2) text2opt]
[@else text3opt]
@end

Where,
condition1

An expression that can be coerced into a Boolean expression.

text1

Optional. Text to be parsed if condition1 is true.

condition2

An expression that can be coerced into a Boolean expression.

text2

Optional. Text to be parsed if condition1 is false and condition2 is true.

text3

Optional. Text to be parsed if both condition1 and condition2 are false.

Example:

if-else if-elif-else if-elif-elif-else
@set @val = 1;

// if-else
@if (@val == 1)
 document.write("x");
@else
 document.write("z");
@end

@set @val = 1;

// if-elif-else
@if (@val == 1)
 document.write("x");
@elif (@val == 2)
 document.write("y");
@else
 document.write("z");
@end

@set @val = 1;

// if-elif-elif-else
@if (@val == 1)
 document.write("x");
@elif (@val == 2)
 document.write("y");
@elif (@val == 3)
 document.write("e");
@else
 document.write("z");
@end

There can be 0 or more elif clauses. However, all elif clauses must come before the
else clause.

2.4 Conditional compilation variables
The following are pre-defined conditional compilation variables:

@_win32 Returns true if running on a Win32 system, else NaN.
@_win16 Returns true if running on a Win16 system, else NaN.
@_mac Returns true if running on a Mac, else NaN.

__
Draft June 20, 2007 Page 5 of 10

@_alpha Returns true if running on a DEC Alpha processor, else NaN.
@_x86 Returns true if running on an Intel processor, else NaN.
@_mc680x0 Returns true if running on a Motorola 680x0 processor, else

NaN.
@_PowerPC Returns true if running on a Motorola PowerPC processor, else

NaN.
@_jscript Always returns true.
@_jscript_build The build number of the JScript scripting engine.
@_jscript_version A number representing the JScript version number in

major.minor format.
IE4 supports JScript 3.x
IE5.x supports JScript 5.5 or less
IE6 supports JScript 5.6
IE7 supports JScript 5.7

Note that these are not read-only variables, and can be redeclared using the @set
statement.

3 Activating conditional compilation
Conditional compilation is activated by using the @cc_on statement or by directly using an
@if or @set statement. Here is an example of conditionally incorporating code based on
the value of a symbol (@trace). We will use this as a running example for the rest of this
document.

// file: ver1.html
<script>
@set @trace = 1;

function foo() {
 @if (@trace == 1)
 document.write("enter foo in JScript" +"
");
 @end

 document.write("function logic goes here" +"
");

 @if (@trace == 1)
 document.write("exit foo in JScript" +"
");
 @end
}

foo();
</script>

While this script may fail to compile on other browsers, it will compile fine on version 4
or later of IE; the final form of the script that gets executed is as follows:

<script>
function foo() {
 document.write("enter foo in JScript" +"
");

__
Draft June 20, 2007 Page 6 of 10

 document.write("function logic goes here" +"
");

 document.write("exit foo in JScript" +"
");
}

foo();
</script>

4 Making code available only to JScript
In order that it may run gracefully in other browsers that do not support these conditional
compilation extensions, conditional compilation statements must be put within
comments. Browsers that don’t understand condition compilation will simply eat away
the comments.

But how will JScript know to look into the comments, then? By looking for a specific
pattern in the comment. When JScript sees this pattern /*@ or //@, it will treat the
following lexeme as either a conditional compilation keyword (set, cc_on, if, elif,
else, end), or a conditional compilation variable as appropriate; the /* or the // will not
be considered as starting a comment. Similarly when JScript sees a @*/, the trailing */
will not be considered as ending a comment. The special handling of such patterns needs
to be explicitly turned ON using the @cc_on statement (which itself is embedded within
this pattern).

Here is our running example modified such that it compiles fine on a browser that does
not support conditional compilation (the differences from the earlier script are marked in
red):

// file: ver2.html
<script>
/*@cc_on @*/
/*@set @trace = 1; @*/

function foo() {
 /*@if (@trace == 1)
 document.write("enter foo in JScript" +"
");
 @end @*/

 document.write("function logic goes here" +"
");

 /*@if (@trace == 1)
 document.write("exit foo in JScript" +"
");
 @end @*/
}

foo();
</script>

The final form of the script that gets compiled by JScript is as follows:

<script>
function foo() {
 document.write("enter foo in JScript" +"
");

 document.write("function logic goes here" +"
");

__
Draft June 20, 2007 Page 7 of 10

 document.write("exit foo in JScript" +"
");
}

foo();
</script>

On other browsers, the script that gets compiled is as follows:

<script>
function foo() {

 document.write("function logic goes here");

}

foo();
</script>

Note that we could get the same result using C++ style comments (//):

<script>
//@cc_on
//@set @trace = 1;

function foo() {
 //@if (@trace == 1) document.write("enter foo in JScript" +"
"); @end

 document.write("function logic goes here" +"
");

 //@if (@trace == 1) document.write("exit foo in JScript" +"
"); @end
}

foo();
</script>

5 Introducing an alternate code path
The @if statement can be used to introduce non-JScript code paths too through the @else
clause. Here is our running example updated with a non-JScript code path added (the
differences from the earlier script are marked in red):

// file: ver3.html
<script>
/*@cc_on @*/
/*@set @trace = 1; @*/

function foo() {
 /*@if (@trace == 1)
 document.write("enter foo in JScript" +"
");
 /*@else @*/
 document.write("enter foo in non-JScript " +"
");
 /*@end @*/

 document.write("function logic goes here" +"
");

 /*@if (@trace == 1)
 document.write("exit foo in JScript" +"
");
 /*@else @*/
 document.write("exit foo in non-JScript" +"
");

__
Draft June 20, 2007 Page 8 of 10

 /*@end @*/
}

foo();
</script>

Notice that because we have a @else clause embedded between the @if and @end, we
have to suitably balance the /*@ and @*/.

The final script that gets compiled by JScript is the same as in the previous version:

<script>
function foo() {
 document.write("enter foo in JScript" +"
");

 document.write("function logic goes here" +"
");

 document.write("exit foo in JScript" +"
");
}

foo();
</script>

However, other browsers now end up compiling the following:

<script>
function foo() {
 document.write("enter foo in non-JScript" +"
");

 document.write("function logic goes here" +"
");

 document.write("exit foo in non-JScript" +"
");
}

foo();
</script>

To introduce alternate code paths we must use the /* */ style of comments (in order to
suitably hide/expose source text based on matching a /* with its suitable */).

6 Multiway branching
The @elif clause affords multi way branching. Here is our running example modified to
show a 3-way branch (the differences from the earlier script are marked in red):

//file: ver4.html
<script>
/*@cc_on @*/
/*@set @trace = 2; @*/

function foo() {
 /*@if (@trace == 1)
 document.write("enter foo in JScript" +"
");
 /*@elif (@trace == 2)
 document.write("enter foo in JScript via elif clause" +"
");
 /*@else @*/
 document.write("enter foo in non-JScript" +"
");
 /*@end @*/

__
Draft June 20, 2007 Page 9 of 10

 document.write("function logic goes here" +"
");

 /*@if (@trace == 1)
 document.write("exit foo in JScript" +"
");
 /*@elif (@trace == 2)
 document.write("exit foo in JScript via elif clause" +"
");
 /*@else @*/
 document.write("exit foo in non-JScript " +"
");
 /*@end @*/
}

foo();
</script>

Again, notice that because we have a @elif clause embedded, we have to suitably
balance the /*@ and @*/.

Now the final script that gets compiled in JScript is as follows:

<script>
function foo() {
 document.write("enter foo in JScript via elif clause" +"
");

 document.write("function logic goes here" +"
");

 document.write("exit foo in JScript via elif clause" +"
");
}

foo();
</script>

Other browsers end up compiling the same script as before:

<script>
function foo() {
 document.write("enter foo in non-JScript" +"
");

 document.write("function logic goes here" +"
");

 document.write("exit foo in non-JScript" +"
");
}

foo();
</script>

7 Grammar
(Note: text in red bold, is the actual lexeme we look for when parsing.).

ccProgram:
 ccSingleCmd

ccCmd:
 ccSingleCmd (; ccSingleCmd) *

ccSingleCmd:
 ccEnableCmd
 ccSetCmd
 ccIfCmd
 ccCmd

__
Draft June 20, 2007 Page 10 of 10

ccEnableCmd:
 @cc_on

ccSetCmd:
 @set ccDeclaration

ccDeclaration:
 ccSingleDeclaration

ccSingleDeclaration:
 ccIdentifier = ccExpression

ccExpression:
 ccPrimaryExpression
 ccPrimaryExpression ccOperator ccPrimaryExpression

ccPrimaryExpression:
 ccBooleanLiteral
 ccIntegerLiteral
 ccVname
 ccParenthesizedExpression

ccParenthesizedExpression:
 (ccExpression)

ccIfCmd:
 @if ccParenthesizedExpression ccSingleCommand @end
 @if ccParenthesizedExpression ccSingleCommand @else ccSingleCommand @end
 @if ccParenthesizedExpression ccSingleCommand ccElifGroup @else ccSingleCommand @end

ccElifgroup:
 @elif ccParenthesizedExpression ccSingleCommand
 /* empty */

ccVname:
 @ccIdentifier

ccBooleanValue:
 /* same as JScript primitive Boolean values true and false */

ccIntegerLiteral:
 /* same as JScript int literal */

ccIdentifier:
 /* same as JScript identifier */

ccOperator:
 /* same as Jscript operator */

8 Revision history
18 June 2007 pratapL Creation

