
Mozilla Extensions to ECMAScript, 3rd Edition
Prepared by Allen Wirfs-Brock based upon Mozilla online doucmentation

 August 2007

Feature

1st

JavaScript

Version

Other

Implementations Explanation Notes

Function.prototype.name

property

? ? ReadOnly property that provides the name of a

function (or empty string if the function is

anonymous)

Doug Crockford wants to add this to

"ES3.1" along with a property that

provides the names of the formal

parameters

String HTML wrapper

methods: anchor, big, blink,

bold,fixed,fontcolor,

fontsize,italics,link,small,

strike,sub,sub

1.0 ? Wrappers strings with various HTML tags Predates ECMAScript but not

included in the standard. Essentially

legacy functions that nobody thinks

should be standardized.

Object.prototype toSource

method

1.3 ? Generates a crude string serialization of an object Predates ECMAScript 3 but not

included in the standard

Conditional function

definition

1.5 Named function expressions are dynamically

bound to the corresponding variable in the

surrounding scope when execute

JScript treats them as Function

Declarations instead of function

expressions. Neither conforms to

ECMA-262. JavaScript contends that

Jsript's behavior is a bug

multiple catch clauses 1.5 ? try { }

catch (e if e =="InvalidNameException) {

 /* handler for invalid name exception */ }

catch (e) {

 /* default changle */ }

Feature

1st

JavaScript

Version

Other

Implementations Explanation Notes

getter/setter properties 1.5 Safari 3

Opera 9.5

property access may be implemented via user

defined methods

works for both . and [] access.

Property enumeration, existence,

deletion. Treat getter/setter pairs as

a single property

getters/setters definition

syntax in object literals

1.5 Safari 3

Opera 9.5

syntax for defining properties in object initializers

{_x: 0,

 get x() {return this._x;} ,

 set x(arg) {this._x=arg}}

__defineGetter__

__defineSetter__

1.5 Safari 3

Opera 9.5

methods for dynamically adding getter/setter

methods for an object:

var d = Date.prototype;

d.__defineGetter__("year",

 function() { return this.getFullYear(); });

 d.__defineSetter__("year",

 function(y) { this.setFullYear(y); });

const definitions 1.5 ? define a constant binding. Like var but not

assignable or redeclarable:

const g = 5;

g = 10; /* does not change the value of g*/

Array indexOf 1.6 ? find first occurance of a value "Array extras" see

http://www.webreference.com/pro

gramming/javascript/ncz/column4/i

ndex.html

Many third party libraries add these

functions to Array.prototype

Feature

1st

JavaScript

Version

Other

Implementations Explanation Notes

Array lastIndexOf 1.6 ? find last occurance of a value "Array extras"

Array every() 1.6 ? evaluate a function on every element in an array,

but stop when the function does not return true

"Array extras"

Array filter() 1.6 ? collect (into a new array) all the elements of an

array that satisfy a predicate function

"Array extras"

Array forEach() 1.6 ? evaluate a function on every element of an array "Array extras"

Array map() 1.6 ? collect (In a new array) the results of evaluating a

function on every element of an array

"Array extras"

Array some() 1.6 ? evaluate a function on every element on an array,

but stop when the function returns true

"Array extras"

Feature

1st

JavaScript

Version

Other

Implementations Explanation Notes

Array/String generic

methods

1.6 ? Many array and string functions can be be applied

to any "array like" object by passing the object as

the first argument

Mozilla's documentation isn't

explicit about the exact set of

functions but

http://www.snailshell.de/blog/archi

ves/2005/10/entry_9.html says:

Array:

concat, every, filter, forEach,

indexOf, join, lastIndexOf, map,

pop, push, reverse, shift, slice,

some, sort, splice, unshift

String:

charAt, charCodeAt, concat,

indexOf, lastIndexOf,

localeCompare, match, quote,

replace, search, slice, split, substr,

substring, toLocaleLowerCase,

toLocaleUpperCase, toLowerCase,

toUpperCase

for each in statement 1.6 ? iterate over the values of an object's properties

for each (x in obj) , …-

derived from E4X

partial E4X support 1.6 ? Can't find any Mozilla

documentation about what is

actually there

Feature

1st

JavaScript

Version

Other

Implementations Explanation Notes

iterators 1.7 ? Iterator() global function,

__iteratator__ property convention,

StopIteration exception,

iterators are generators,

for in/for each in statements use iterators

generators/yield statement 1.7 ? Co-routine like functions with embeded yield

statements:

Function intGen(begin, end) {

 for (var I = begin; i<=end; ++i) yield I; }

array comprehensions 1.7 ? array initializers using iterators and conditionals:

var evens = [I for (I in range(0.20) if (even(i))]

Similar to Python comprehensions

Actual syntax not documented

let statement 1.7 ? define a code block with local variables

let (x=1, y=2) , … -

let expressions 1.7 ? define a single expression code block with local

variables

let definitions 1.7 ? define individual local variables within a code

block

,… let x =1, y=2;…;let z;…-

let definition in for

statement

1.7 ? use let to define control variables scoped to a

single for loop:

for (let i=0; i<10; i++) ,…-

destructuring assignment 1.7 ? assignment can be used to destructure an array

or object into multiple local variables:

var first, second, third;

[first,second,third] = [1,2,3];

It's also useful for functions that want to return

multple values:

function f() {return [a ,b]};

[x,y] = f();

very little actual documentation for

destructuring assignment features

Feature

1st

JavaScript

Version

Other

Implementations Explanation Notes

destructuring var 1.7 ? destructuring assignment can be used as an

initializer in var/let definitions:

var [first,second,third]= ["a","b","c"]

destructuring for 1.7 ? destructuring assignment can be used to define

the iteration variable(s) of a for statement:

for (let *key,value+ in obj) ,…-

expression closure

shorthand

1.8 none function expressions whose body is a single

return statement can be abbreviated such as:

function (x) x + 1

instead of

function (x) {return x+1;}

JavaScript 1.8 not yet final, see

http://ejohn.org/blog/javascript-18-

progress/

generator expressions

1.8

none define single generators using array

comprehension-like syntax

Array reduce()

1.8

none evaluate a function on every element of an array

and accumulate the result values

"More Array Extras"

Array reducedRight() 1.8 none like reduce but in reverse order "More Array Extras"

