Ecma/TC39/200804

Standard ECMA-262

3rd Edition - December 1999

ECMA

Standardizing Information and Communication Systems

ECMAScript Language
Specification

Phone: +41 22 849.60.00 - Fax: +41 22 849.60.01 - URL: http://www.ecma.ch - Internet: helpdesk@ecma.ch

Standard ECMA-262

3rd Edition - December 1999

ECMA

Standardizing Information and Communication Systems

ECMAScript Language
Specification

Phone: +41 22 849.60.00 - Fax: +41 22 849.60.01 - URL: http://www.ecma.ch - Internet: helpdesk@ecma.ch
IW Ecma-262.doc 12-09-17 13,10

Brief History

This ECMA Standard is based on several originating technologies, the most well known being JavaScript (Netscape) and
JScript (Microsoft). The language was invented by Brendan Eich at Netscape and first appeared in that company’s
Navigator 2.0 browser. It has appeared in all subsequent browsers from Netscape and in all browsers from Microsoft
starting with Internet Explorer 3.0.

The development of this Standard started in November 1996. The first edition of this ECMA Standard was adopted by
the ECMA General Assembly of June 1997.

That ECMA Standard was submitted to ISO/IEC JTC 1 for adoption under the fast-track procedure, and approved as
international standard 1SO/IEC 16262, in April 1998. The ECMA General Assembly of June 1998 approved the second
edition of ECMA-262 to keep it fully aligned with ISO/IEC 16262. Changes between the first and the second edition are
editorial in nature.

The current document defines the third edition of the Standard and includes powerful regular expressions, better string
handling, new control statements, try/catch exception handling, tighter definition of errors, formatting for numeric output
and minor changes in anticipation of forthcoming internationalisation facilities and future language growth.

Work on the language is not complete. The technical committee is working on significant enhancements, including
mechanisms for scripts to be created and used across the Internet, and tighter coordination with other standards bodies
such as groups within the World Wide Web Consortium and the Wireless Application Protocol Forum.

This Standard has been adopted as 3rd Edition of ECMA-262 by the ECMA General Assembly in December, 1999.

4

4.1
4.2

4.2.1
4.3

4.3.1
4.3.2
4.3.3
4.3.4
4.3.5
4.3.6
4.3.7
4.3.8
4.3.9
4.3.1
4.3.1
4.3.1
4.3.1
4.3.1
4.3.1
43.1
43.1
43.1
43.1
4.3.2
4.3.2
4.3.2
4.3.2

5
5.1

5.1.1
5.1.2
5.1.3
5.14
5.1.5

5.2

7.1
7.2
7.3

Scope
Conformance
References

Overview

Web Scripting
Language Overview

Objects

Definitions
Type
Primitive Value
Object
Constructor
Prototype
Native Object
Built-in Object
Host Object
Undefined Value

0 Undefined Type

1 Null Value

2 Null Type

3 Boolean Value

4 Boolean Type

5 Boolean Object

6 String Value

7 String Type

8 String Object

9 Number Value

0 Number Type
1 Number Object
2 Infinity

3 NaN

Notational Conventions
Syntactic and Lexical Grammars

Context-Free Grammars

The Lexical and RegExp Grammars
The Numeric String Grammar

The Syntactic Grammar

Grammar Notation

Algorithm Conventions
Source Text

Lexical Conventions

Unicode Format-Control Characters
White Space
Line Terminators

Table of contents

AUV UOORMNMRMAMARMRARRRRARARARARARARA A W NN B

© Nooocoo o o

10

10

11
11
12

7.4
7.5

7.5.1
7.5.2
7.5.3

7.6
7.7
7.8

7.8.1
7.8.2
7.8.3
7.8.4
7.8.5

7.9

7.9.1
7.9.2

8.1
8.2
8.3
8.4
8.5
8.6

8.6.1
8.6.2
8.7

8.7.1
8.7.2

8.8
8.9

9.1
9.2
9.3

9.3.1

9.4
9.5
9.6
9.7
9.8

9.8.1
9.9

10
10.1

10.1.
10.1.
10.1.
10.1.

Comments
Tokens

Reserved Words
Keywords
Future Reserved Words

Identifiers
Punctuators
Literals
Null Literals
Boolean Literals
Numeric Literals
String Literals
Regular Expression Literals
Automatic Semicolon Insertion

Rules of Automatic Semicolon Insertion
Examples of Automatic Semicolon Insertion

Types

The Undefined Type
The Null Type

The Boolean Type
The String Type
The Number Type
The Object Type

Property Attributes

Internal Properties and Methods
The Reference Type

GetValue (V)

PutValue (V, W)

The List Type
The Completion Type

Type Conversion

ToPrimitive
ToBoolean
ToNumber

ToNumber Applied to the String Type

Tolnteger

Tolnt32: (Signed 32 Bit Integer)
ToUint32: (Unsigned 32 Bit Integer)
ToUint16: (Unsigned 16 Bit Integer)
ToString

ToString Applied to the Number Type
ToObject

Execution Contexts
Definitions

1 Function Objects

2 Types of Executable Code

3 Variable Instantiation

4 Scope Chain and Identifier Resolution

12
13

13
13
14

14
15
15

15
16
16
18
20

21

21
22

23

23
23
24
24
24
25

25
25

28

28
29

29
29

29

29
30
30

30

33
33
34
34
34

35
36

36
36

36
36
37
37

10.1.5 Global Object
10.1.6 Activation Object
10.1.7 This

10.1.8 Arguments Object

10.2 Entering An Execution Context

10.2.1 Global Code
10.2.2 Eval Code
10.2.3 Function Code

11 Expressions
11.1 Primary Expressions

11.1.1 The this Keyword
11.1.2 Identifier Reference
11.1.3 Literal Reference
11.1.4 Array Initialiser

11.1.5 Object Initialiser
11.1.6 The Grouping Operator

11.2 Left-Hand-Side Expressions

11.2.1 Property Accessors
11.2.2 The new Operator
11.2.3 Function Calls
11.2.4 Argument Lists
11.2.5 Function Expressions

11.3 Postfix Expressions

11.3.1 Postfix Increment Operator
11.3.2 Postfix Decrement Operator

11.4 Unary Operators

11.4.1 The delete Operator
11.4.2 The void Operator

11.4.3 The typeof Operator
11.4.4 Prefix Increment Operator
11.4.5 Prefix Decrement Operator
11.4.6 Unary + Operator

11.4.7 Unary - Operator

11.4.8 Bitwise NOT Operator (~)
11.4.9 Logical NOT Operator (!)

11.5 Multiplicative Operators

11.5.1 Applying the * Operator

11.5.2 Applying the / Operator

11.5.3 Applying the %Operator
11.6 Additive Operators

11.6.1 The Addition operator (+)

11.6.2 The Subtraction Operator (-)

11.6.3 Applying the Additive Operators (+, -) to Numbers
11.7 Bitwise Shift Operators

11.7.1 The Left Shift Operator (<<)

11.7.2 The Signed Right Shift Operator (>>)

11.7.3 The Unsigned Right Shift Operator (>>>)
11.4 Relational Operators

11.8.1 The Less-than Operator (<)
11.8.2 The Greater-than Operator (>)

38
38
38
38

38

39
39
39

39
39

39
39
39
39
41
42

42

42
43
44
44
44

44

45
45

45

45
45
45
46
46
46
46
47
47

47

47
48
48
49

49
49
50
50

50
50
51
51
52
52

11.8.3
11.8.4
11.8.5
11.8.6
11.8.7

11.9

11.9.1
11.9.2
11.9.3
11.9.4
11.9.5
11.9.6

11.10

11.11
11.12
11.13

11.13.1

-iv -

The Less-than-or-equal Operator (<=)
The Greater-than-or-equal Operator (>=)

The Abstract Relational Comparison Algorithm

The instanceof operator
The in operator

Equality Operators

The Equals Operator (==

The Does-not-equals Operator (!=)

The Abstract Equality Comparison Algorithm
The Strict Equals Operator (===

The Strict Does-not-equal Operator (!==
The Strict Equality Comparison Algorithm

Binary Bitwise Operators

Binary Logical Operators
Conditional Operator (?:)
Assignment Operators

Simple Assignment (=)

11.13.2 Compound Assignment (op=)

11.14 Comma Operator (,)
12 Statements

12.1 Block

12.2 Variable statement

12.3 Empty Statement

12.4 Expression Statement

12.5 The if Statement

12.6 Iteration Statements
12.6.1 The do-while Statement
12.6.2 The while statement
12.6.3 The for Statement
12.6.4 The for -in Statement

12.7 The continue Statement

12.8 The break Statement

12.9 The return Statement

12.10 The with Statement

12.11 The switch Statement

12.12 Labelled Statements

12.13 The throw statement

12.14 The try statement

13 Function Definition

13.1 Definitions
13.1.1 Equated Grammar Productions
13.1.2 Joined Objects

13.2 Creating Function Objects
13.2.1 [[Call]]
13.2.2 [[Construct]]

14 Program

15 Native ECMAScript Objects

52
52
52
53
53

53

54
54
54
55
55
56

56

57
58
58

59
59

59

60

60
61
62
62
62
63

63
63
64
64

65
66
66
66
67
68
68
69

70
71

71
71

71
72

73
74

75

15.1

15.1.1
15.1.2
15.1.3
15.1.4
15.1.5

15.2

15.2.1
15.2.2
15.2.3
15.2.4
15.2.5

15.3

15.3.1
15.3.2
15.3.3
15.3.4
15.3.5

15.4

15.4.1
15.4.2
15.4.3
15.4.4
15.4.5

15.5

15.5.1
15.5.2
15.5.3
15.5.4
15.5.5

15.6

15.6.1
15.6.2
15.6.3
15.6.4
15.6.5

15.7

15.7.1
15.7.2
15.7.3
15.7.4
15.7.5

15.8

15.8.1
15.8.2

15.9

15.9.1
15.9.2
15.9.3
15.9.4
15.9.5
15.9.6

The Global Object

Value Properties of the Global Object
Function Properties of the Global Object
URI Handling Function Properties
Constructor Properties of the Global Object
Other Properties of the Global Object

Object Objects

The Object Constructor Called as a Function
The Object Constructor

Properties of the Object Constructor
Properties of the Object Prototype Object
Properties of Object Instances

Function Objects

The Function Constructor Called as a Function
The Function Constructor

Properties of the Function Constructor
Properties of the Function Prototype Object
Properties of Function Instances

Array Objects

The Array Constructor Called as a Function
The Array Constructor

Properties of the Array Constructor
Properties of the Array Prototype Object
Properties of Array Instances

String Objects

The String Constructor Called as a Function
The String Constructor

Properties of the String Constructor
Properties of the String Prototype Object
Properties of String Instances

Boolean Objects

The Boolean Constructor Called as a Function
The Boolean Constructor

Properties of the Boolean Constructor
Properties of the Boolean Prototype Object
Properties of Boolean Instances

Number Objects
The Number Constructor Called as a Function
The Number Constructor
Properties of the Number Constructor
Properties of the Number Prototype Object
Properties of Number Instances

The Math Object
Value Properties of the Math Object
Function Properties of the Math Object

Date Objects

Overview of Date Objects and Definitions of Internal Operators

The Date Constructor Called as a Function
The Date Constructor

Properties of the Date Constructor
Properties of the Date Prototype Object
Properties of Date Instances

75

76
76
7
82
82

82

82
83
83
83
84

84

84
85
85
86
86

87

87
87
88
88
96

97

97
97
97
98
105

106

106
106
106
106
107

107

107
107
107
108
111

111

111
112

117

117
121
121
122
123
129

- Vi -

15.10 RegExp (Regular Expression) Objects 129
15.10.1 Patterns 129
15.10.2 Pattern Semantics 131
15.10.3 The RegExp Constructor Called as a Function 143
15.10.4 The RegExp Constructor 143
15.10.5 Properties of the RegExp Constructor 143
15.10.6 Properties of the RegExp Prototype Object 144
15.10.7 Properties of RegExp Instances 145

15.11 Error Objects 145
15.11.1 The Error Constructor Called as a Function 145
15.11.2 The Error Constructor 145
15.11.3 Properties of the Error Constructor 146
15.11.4 Properties of the Error Prototype Object 146
15.11.5 Properties of Error Instances 146
15.11.6 Native Error Types Used in This Standard 146
15.11.7 NativeError Object Structure 147

16 Errors 149
Annex A - Grammar Summary 151

Annex B - Compatibility 168

Scope
This Standard defines the ECMAScript scripting language.

Conformance

A conforming implementation of ECMAScript must provide and support all the types, values, objects, properties,
functions, and program syntax and semantics described in this specification.

A conforming implementation of this International standard shall interpret characters in conformance with the
Unicode Standard, Version 2.1 or later, and ISO/IEC 10646-1 with either UCS-2 or UTF-16 as the adopted
encoding form, implementation level 3. If the adopted ISO/IEC 10646-1 subset is not otherwise specified, it is
presumed to be the BMP subset, collection 300. If the adopted encoding form is not otherwise specified, it
presumed to be the UTF-16 encoding form.

A conforming implementation of ECMAScript is permitted to provide additional types, values, objects,
properties, and functions beyond those described in this specification. In particular, a conforming implementation
of ECMAScript is permitted to provide properties not described in this specification, and values for those
properties, for objects that are described in this specification.

A conforming implementation of ECMAScript is permitted to support program and regular expression syntax not
described in this specification. In particular, a conforming implementation of ECMAScript is permitted to
support program syntax that makes use of the “future reserved words” listed in 7.5.3 of this specification.

References
ISO/IEC 9899:1996 Programming Languages — C, including amendment 1 and technical corrigenda 1 and 2.

ISO/IEC 10646-1:1993 Information Technology -- Universal Multiple-Octet Coded Character Set (UCS) plus its
amendments and corrigenda.

Unicode Inc. (1996), The Unicode Standard®, Version 2.0. ISBN: 0-201-48345-9, Addison-Wesley Publishing
Co., Menlo Park, California.

Unicode Inc. (1998), Unicode Technical Report #8: The Unicode Standard®, Version 2.1.
Unicode Inc. (1998), Unicode Technical Report #15: Unicode Normalization Forms.

ANSI/IEEE Std 754-1985: IEEE Standard for Binary Floating-Point Arithmetic. Institute of Electrical and
Electronic Engineers, New York (1985).

Overview
This section contains a non-normative overview of the ECMAScript language.

ECMAScript is an object-oriented programming language for performing computations and manipulating
computational objects within a host environment. ECMAScript as defined here is not intended to be
computationally self-sufficient; indeed, there are no provisions in this specification for input of external data or
output of computed results. Instead, it is expected that the computational environment of an ECMAScript
program will provide not only the objects and other facilities described in this specification but also certain
environment-specific host objects, whose description and behaviour are beyond the scope of this specification
except to indicate that they may provide certain properties that can be accessed and certain functions that can be
called from an ECMAScript program.

A scripting languageis a programming language that is used to manipulate, customise, and automate the
facilities of an existing system. In such systems, useful functionality is already available through a user interface,
and the scripting language is a mechanism for exposing that functionality to program control. In this way, the
existing system is said to provide a host environment of objects and facilities, which completes the capabilities of
the scripting language. A scripting language is intended for use by both professional and non-professional
programmers. To accommodate non-professional programmers, some aspects of the language may be somewhat
less strict.

4.1

4.2

ECMAScript was originally designed to be a Web scripting languaggeproviding a mechanism to enliven Web
pages in browsers and to perform server computation as part of a Web-based client-server architecture.
ECMAScript can provide core scripting capabilities for a variety of host environments, and therefore the core
scripting language is specified in this document apart from any particular host environment.

Some of the facilities of ECMAScript are similar to those used in other programming languages; in particular
Javad and Self, as described in:

il

Gosling, James, Bill Joy and Guy Steele. The Java® Language Specification. Addison Wesley Publishing
Co., 1996.

Ungar, David, and Smith, Randall B. Self: The Power of Simplicity. OOPSLA '87 Conference Proceedings,
pp. 227-241, Orlando, FL, October 1987.

Web Scripting

A web browser provides an ECMAScript host environment for client-side computation including, for instance,
objects that represent windows, menus, pop-ups, dialog boxes, text areas, anchors, frames, history, cookies,
and input/output. Further, the host environment provides a means to attach scripting code to events such as
change of focus, page and image loading, unloading, error and abort, selection, form submission, and mouse
actions. Scripting code appears within the HTML and the displayed page is a combination of user interface
elements and fixed and computed text and images. The scripting code is reactive to user interaction and there
is no need for a main program.

A web server provides a different host environment for server-side computation including objects representing
requests, clients, and files; and mechanisms to lock and share data. By using browser-side and server-side
scripting together, it is possible to distribute computation between the client and server while providing a
customised user interface for a Web-based application.

Each Web browser and server that supports ECMAScript supplies its own host environment, completing the
ECMAScript execution environment.

Language Overview

The following is an informal overview of ECMAScript—not all parts of the language are described. This
overview is not part of the standard proper.

ECMAScript is object-based: basic language and host facilities are provided by objects, and an ECMAScript
program is a cluster of communicating objects. An ECMAScript object is an unordered collection of
propertieseach with zero or more attributes that determine how each property can be used—for example,
when the ReadOnly attribute for a property is set to true, any attempt by executed ECMAScript code to
change the value of the property has no effect. Properties are containers that hold other objects, primitive
values or methods A primitive value is a member of one of the following built-in types: Undefined, Null,
Boolean Number, and String; an object is a member of the remaining built-in type Object; and a method is
a function associated with an object via a property.

ECMAScript defines a collection of built-in objectsthat round out the definition of ECMAScript entities.
These built-in objects include the Global object, the Object object, the Function object, the Array object, the
String object, the Booleanobject, the Number object, the Math object, the Date object, the RegExp object
and the Error objects Error, EvalError , RangeError, ReferenceError, SyntaxError, TypeError and
URIError .

ECMAScript also defines a set of built-in operatorsthat may not be, strictly speaking, functions or methods.
ECMAScript operators include various unary operations, multiplicative operators, additive operators, bitwise
shift operators, relational operators, equality operators, binary bitwise operators, binary logical operators,
assignment operators, and the comma operator.

ECMAScript syntax intentionally resembles Java syntax. ECMAScript syntax is relaxed to enable it to serve
as an easy-to-use scripting language. For example, a variable is not required to have its type declared nor are
types associated with properties, and defined functions are not required to have their declarations appear
textually before calls to them.

4.2.1 Objects

ECMAScript does not contain proper classes such as those in C++, Smalltalk, or Java, but rather, supports
constructorswhich create objects by executing code that allocates storage for the objects and initialises all
or part of them by assigning initial values to their properties. All constructors are objects, but not all
objects are constructors. Each constructor has a Prototype property that is used to implement prototype
based inheritanceand shared propertiesObjects are created by using constructors in new expressions; for
example, new String("A String") creates a new String object. Invoking a constructor without using
new has consequences that depend on the constructor. For example, String("A String") produces a
primitive string, not an object.

ECMAScript supports prototypebased inheritanceEvery constructor has an associated prototype, and

every object created by that constructor has an implicit reference to the prototype (called the o b j e c t ¢
prototypg associated with its constructor. Furthermore, a prototype may have a non-null implicit reference

to its prototype, and so on; this is called the prototype chainWhen a reference is made to a property in an

object, that reference is to the property of that name in the first object in the prototype chain that contains a
property of that name. In other words, first the object mentioned directly is examined for such a property; if

that object contains the named property, that is the property to which the reference refers; if that object does

not contain the named property, the prototype for that object is examined next; and so on.

In a class-based object-oriented language, in general, state is carried by instances, methods are carried by
classes, and inheritance is only of structure and behaviour. In ECMAScript, the state and methods are
carried by objects, and structure, behaviour, and state are all inherited.

All objects that do not directly contain a particular property that their prototype contains share that property
and its value. The following diagram illustrates this:

A b e .
R CE implicit prototype link
prototype " Cf >
P1 CFP1 explicit prototype link
P2
T
S Cfl """" sz Cf3 Cf4 H Cfs H
ql ql ql ql ql
q2 02 a2 q2 q2

CF is a constructor (and also an object). Five objects have been created by using new expressions: cfi, cfz,
cfs, cfs, and cfs. Each of these objects contains properties named g1 and g2. The dashed lines represent the
implicit prototype relationship; so, for example, cfs’s prototype is CF,. The constructor, CF, has two
properties itself, named P1 and P2, which are not visible to CF, cfy, cf,, cfs, cfs, or cfs. The property named
CFP1 in CF, is shared by cfy, cfy, cfs, cfs, and cfs (but not by CF), as are any properties found in CFp’s
implicit prototype chain that are not named g1, g2, or CFP1. Notice that there is no implicit prototype link
between CF and CF,.

Unlike class-based object languages, properties can be added to objects dynamically by assigning values to
them. That is, constructors are not required to name or assign values to all or any of the constructed object’s
properties. In the above diagram, one could add a new shared property for cfi, cfy, cfs, cfs, and cfs by
assigning a new value to the property in CFy.

4.3

4.3.1

4.3.2

4.3.3

4.3.4

4.3.5

4.3.6

4.3.7

4.3.8

4.3.9

4.3.10

4.3.11

4.3.12

4.3.13

4.3.14

Definitions
The following are informal definitions of key terms associated with ECMAScript.

Type

A typeis a set of data values.

Primitive Value

A primitive value is a member of one of the types Undefined, Null, Boolean Number, or String. A
primitive value is a datum that is represented directly at the lowest level of the language implementation.
Object

An objectis a member of the type Object. It is an unordered collection of properties each of which contains
a primitive value, object, or function. A function stored in a property of an object is called a method.
Constructor

A constructor is a Function object that creates and initialises objects. Each constructor has an associated
prototype object that is used to implement inheritance and shared properties.

Prototype

A prototypeis an object used to implement structure, state, and behaviour inheritance in ECMAScript.
When a constructor creates an object, that object implicitly references the constructor’s associated prototype
for the purpose of resolving property references. The constructor’s associated prototype can be referenced by
the program expression constructor .prototype , and properties added to an object’s prototype are
shared, through inheritance, by all objects sharing the prototype.

Native Object

A native objectis any object supplied by an ECMAScript implementation independent of the host
environment. Standard native objects are defined in this specification. Some native objects are built-in;
others may be constructed during the course of execution of an ECMAScript program.

Built-in Object

A built-in object is any object supplied by an ECMAScript implementation, independent of the host
environment, which is present at the start of the execution of an ECMAScript program. Standard built-in
objects are defined in this specification, and an ECMAScript implementation may specify and define others.
Every built-in object is a native object.

Host Object

A host objectis any object supplied by the host environment to complete the execution environment of
ECMAScript. Any object that is not native is a host object.

Undefined Value

The undefined valueis a primitive value used when a variable has not been assigned a value.

Undefined Type

The type Undefined has exactly one value, called undefined.

Null Value

The null value is a primitive value that represents the null, empty, or non-existent reference.

Null Type

The type Null has exactly one value, called null.

Boolean Value

A boolean valueis a member of the type Booleanand is one of two unique values, true and false

Boolean Type

The type Booleanrepresents a logical entity and consists of exactly two unique values. One is called true
and the other is called false.

4.3.15

4.3.16

4.3.17

4.3.18

4.3.19

4.3.20

4.3.21

4.3.22

4.3.23

Boolean Object

A Boolean objectis a member of the type Object and is an instance of the built-in Boolean object. That is,
a Boolean object is created by using the Boolean constructor in a new expression, supplying a boolean as
an argument. The resulting object has an implicit (unnamed) property that is the boolean. A Boolean object
can be coerced to a boolean value.

String Value

A string value is a member of the type String and is a finite ordered sequence of zero or more 16-bit
unsigned integer values.

NOTE

Although each value usually represents a singlebit@unit of UTF16 text, the language does not place
any restrictions or requirements on the values except that they b Li@signed integers.

String Type

The type String is the set of all string values.

String Object

A String objectis a member of the type Object and is an instance of the built-in String object. That is, a
String object is created by using the String constructor in a new expression, supplying a string as an
argument. The resulting object has an implicit (unnamed) property that is the string. A String object can be
coerced to a string value by calling the String constructor as a function (15.5.1).

Number Value

A number valueis a member of the type Number and is a direct representation of a number.

Number Type

The type Number is a set of values representing numbers. In ECMAScript, the set of values represents the
double-precision 64-bit format IEEE 754 values including the special “Not-a-Number” (NaN) values,
positive infinity, and negative infinity.

Number Object

A Number objectis a member of the type Object and is an instance of the built-in Number object. That is,
a Number object is created by using the Number constructor in a new expression, supplying a number as an
argument. The resulting object has an implicit (unnamed) property that is the number. A Number object can
be coerced to a number value by calling the Number constructor as a function (15.7.1).

Infinity

The primitive value Infinity represents the positive infinite number value. This value is a member of the
Number type.

NaN

The primitive value NaN represents the set of IEEE Standard “Not-a-Number” values. This value is a
member of the Number type.

5 Notational Conventions

5.1

51.1

5.1.2

5.1.3

5.1.4

Syntactic and Lexical Grammars

This section describes the context-free grammars used in this specification to define the lexical and syntactic
structure of an ECMAScript program.

Context-Free Grammars

A contextfree grammarconsists of a number of productions Each production has an abstract symbol
called a nonterminalas its left-hand side and a sequence of zero or more nonterminal and terminal
symbols as its right-hand side For each grammar, the terminal symbols are drawn from a specified
alphabet.

Starting from a sentence consisting of a single distinguished nonterminal, called the goal symbala given
context-free grammar specifies a language namely, the (perhaps infinite) set of possible sequences of
terminal symbols that can result from repeatedly replacing any nonterminal in the sequence with a right-
hand side of a production for which the nonterminal is the left-hand side.

The Lexical and RegExp Grammars

A lexical grammarfor ECMAScript is given in clause 7. This grammar has as its terminal symbols the
characters of the Unicode character set. It defines a set of productions, starting from the goal symbol
InputElementDivor InputElementRegExjphat describe how sequences of Unicode characters are translated
into a sequence of input elements.

Input elements other than white space and comments form the terminal symbols for the syntactic grammar
for ECMAScript and are called ECMAScript tokens These tokens are the reserved words, identifiers,
literals, and punctuators of the ECMAScript language. Moreover, line terminators, although not considered
to be tokens, also become part of the stream of input elements and guide the process of automatic semicolon
insertion (7.8.5). Simple white space and single-line comments are discarded and do not appear in the
stream of input elements for the syntactic grammar. A MultiLineCommen{that is, a comment of the form
“I* ...*] ” regardless of whether it spans more than one line) is likewise simply discarded if it contains no
line terminator; but if a MultiLineCommentontains one or more line terminators, then it is replaced by a
single line terminator, which becomes part of the stream of input elements for the syntactic grammar.

A RegExp grammafor ECMAScript is given in 15.10. This grammar also has as its terminal symbols the
characters of the Unicode character set. It defines a set of productions, starting from the goal symbol
Pattern that describe how sequences of Unicode characters are translated into regular expression patterns.

13 ”»

Productions of the lexical and RegExp grammars are distinguished by having two colons “:: as
separating punctuation. The lexical and RegExp grammars share some productions.

The Numeric String Grammar

A second grammar is used for translating strings into numeric values. This grammar is similar to the part of
the lexical grammar having to do with numeric literals and has as its terminal symbols the characters of the
Unicode character set. This grammar appears in 9.3.1.

Productions of the numeric string grammar are distinguished by having three colons “::: ” as punctuation.

The Syntactic Grammar

The syntactic grammarfor ECMAScript is given in clauses 11, 12, 13 and 14. This grammar has
ECMAScript tokens defined by the lexical grammar as its terminal symbols (5.1.2). It defines a set of
productions, starting from the goal symbol Program that describe how sequences of tokens can form
syntactically correct ECMAScript programs.

When a stream of Unicode characters is to be parsed as an ECMAScript program, it is first converted to a
stream of input elements by repeated application of the lexical grammar; this stream of input elements is
then parsed by a single application of the syntax grammar. The program is syntactically in error if the
tokens in the stream of input elements cannot be parsed as a single instance of the goal nonterminal
Program with no tokens left over.

[T

Productions of the syntactic grammar are distinguished by having just one colon “: ” as punctuation.

The syntactic grammar as presented in sections 0, 0, 0 and 0 is actually not a complete account of which
token sequences are accepted as correct ECMAScript programs. Certain additional token sequences are also
accepted, namely, those that would be described by the grammar if only semicolons were added to the
sequence in certain places (such as before line terminator characters). Furthermore, certain token sequences
that are described by the grammar are not considered acceptable if a terminator character appears in certain
“awkward” places.

5.1.5 Grammar Notation

Terminal symbols of the lexical and string grammars, and some of the terminal symbols of the syntactic
grammar, are shown in fixed width font, both in the productions of the grammars and throughout this
specification whenever the text directly refers to such a terminal symbol. These are to appear in a program
exactly as written. All nonterminal characters specified in this way are to be understood as the appropriate
Unicode character from the ASCII range, as opposed to any similar-looking characters from other Unicode
ranges.
Nonterminal symbols are shown in italic type. The definition of a nonterminal is introduced by the name of
the nonterminal being defined followed by one or more colons. (The number of colons indicates to which
grammar the production belongs.) One or more alternative right-hand sides for the nonterminal then follow
on succeeding lines. For example, the syntactic definition:

WithStatemert
with (Expressiorn) Statement
states that the nonterminal WithStatementepresents the token with , followed by a left parenthesis token,
followed by an Expressionfollowed by a right parenthesis token, followed by a StatementThe occurrences
of Expressiorand Statemenare themselves nonterminals. As another example, the syntactic definition:

ArgumentList
A ssignmentExpression
ArgumentList, AssignmentExpression
states that an ArgumentListmay represent either a single AssignmentExpressioor an ArgumentList
followed by a comma, followed by an AssignmentExpressioithis definition of ArgumentListis recursive
that is, it is defined in terms of itself. The result is that an ArgumentListmay contain any positive number
of arguments, separated by commas, where each argument expression is an AssignmentExpressioiuch
recursive definitions of nonterminals are common.
The subscripted suffix “opt’, which may appear after a terminal or nonterminal, indicates an optional
symbol The alternative containing the optional symbol actually specifies two right-hand sides, one that
omits the optional element and one that includes it. This means that:

V ariable Declaration:
Identifier Initialiser,,,
is a convenient abbreviation for:

V ariable Declaration:
Identifier
Identifier Initialiser
and that:

IterationStatemertt
for (ExpressionNoly,, ; Expression,, ; Expression,,) Statement
is a convenient abbreviation for:

IterationStatement
for (; Expression,, ; Expression,,) Statement
for (ExpressionNoln; Expression,, ; Expression,,) Statement
which in turn is an abbreviation for:

IterationStatement

for (;; Expression,) Statement

for (; Expression; Expression,,) Statement
for (ExpressionNoln;; Expression,) Statement
for (ExpressionNoln; Expression; Expression,) Statement

which in turn is an abbreviation for:

IterationStatement
for (;;) Statement
for (;; Expression) Statement
for (; Expression;) Statement
for (; Expression; Expression) Statement

for (ExpressionNoln ;) Statement

for (ExpressionNoln; Expression) Statement

for (ExpressionNoln Expression;) Statement

for (ExpressionNoln Expression; Expression) Statement

so the nonterminal IterationStatemenactually has eight alternative right-hand sides.

If the phrase “[empty]” appears as the right-hand side of a production, it indicates that the production's right-
hand side contains no terminals or nonterminals.

If the phrase “[lookahead T sef” appears in the right-hand side of a production, it indicates that the production
may not be used if the immediately following input terminal is a member of the given set The setcan be
written as a list of terminals enclosed in curly braces. For convenience, the set can also be written as a
nonterminal, in which case it represents the set of all terminals to which that nonterminal could expand. For
example, given the definitions

DecimalDigit:: one of
0123456789

DecimalDigits::
DecimaDigit
DecimalDigits DecimalDigit

the definition

LookaheadExample
N [ookahead 1 11, 3.5, 7, 91] DecimalDigits
DecimalDigit Naokshead 1 Zezmallizt)

matches either the letter n followed by one or more decimal digits the first of which is even, or a decimal
digit not followed by another decimal digit.

If the phrase “[no LineTerminator here]” appears in the right-hand side of a production of the syntactic
grammar, it indicates that the production is a restricted productionit may not be used if a LineTerminator
occurs in the input stream at the indicated position. For example, the production:

ReturnStatement
return oo ZineZaminatorhere] EXpPression,;

indicates that the production may not be used if a LineTerminatoroccurs in the program between the
return token and the Expression

Unless the presence of a LineTerminatoris forbidden by a restricted production, any number of occurrences
of LineTerminatormay appear between any two consecutive tokens in the stream of input elements without
affecting the syntactic acceptability of the program.

When the words “one of’ follow the colon(s) in a grammar definition, they signify that each of the terminal
symbols on the following line or lines is an alternative definition. For example, the lexical grammar for
ECMAScript contains the production:

NonZeroDigit:: one of
123456789

which is merely a convenient abbreviation for:

NonZeroDigit:: one of

OCoO~NOOOUIA~,WNE

When an alternative in a production of the lexical grammar or the numeric string grammar appears to be a
multi-character token, it represents the sequence of characters that would make up such a token.

The right-hand side of a production may specify that certain expansions are not permitted by using the
phrase “but not” and then indicating the expansions to be excluded. For example, the production:

Identifier :
IdentifierNamebut not ReservedW ord

means that the nonterminal Identifier may be replaced by any sequence of characters that could replace
IdentifierNameprovided that the same sequence of characters could not replace ReservedWord

Finally, a few nonterminal symbols are described by a descriptive phrase in roman type in cases where it
would be impractical to list all the alternatives:

SourceCharacter.
any Unicode character

Algorithm Conventions

The specification often uses a numbered list to specify steps in an algorithm. These algorithms are used to
clarify semantics. In practice, there may be more efficient algorithms available to implement a given feature.

When an algorithm is to produce a value as a result, the directive “return X” is used to indicate that the result
of the algorithm is the value of x and that the algorithm should terminate. The notation Result(n) is used as
shorthand for “the result of step N”. Type(X) is used as shorthand for “the type of X”.

Mathematical operations such as addition, subtraction, negation, multiplication, division, and the
mathematical functions defined later in this section should always be understood as computing exact
mathematical results on mathematical real numbers, which do not include infinities and do not include a
negative zero that is distinguished from positive zero. Algorithms in this standard that model floating-point
arithmetic include explicit steps, where necessary, to handle infinities and signed zero and to perform
rounding. If a mathematical operation or function is applied to a floating-point number, it should be
understood as being applied to the exact mathematical value represented by that floating-point number; such a
floating-point number must be finite, and if it is +0 or - O then the corresponding mathematical value is simply
0.

The mathematical function abs(x) yields the absolute value of x, which is - x if x is negative (less than zero)
and otherwise is x itself.

The mathematical function sign(x) yields 1 if x is positive and - 1 if x is negative. The sign function is not
used in this standard for cases when X is zero.

The notation “x modulo y” (y must be finite and nonzero) computes a value k of the same sign as y (or zero)
such that abs(k) < abs(y) and x- k = g 3 y for some integer q.

The mathematical function floor(x) yields the largest integer (closest to positive infinity) that is not larger than
X.

NOTE

- 10 -

floor(x) = x- (x modulo 1).

If an algorithm is defined to “throw an exception”, execution of the algorithm is terminated and no result is
returned. The calling algorithms are also terminated, until an algorithm step is reached that explicitly deals
with the exception, using terminology such as “If an exception was thrown...”. Once such an algorithm step
has been encountered the exception is no longer considered to have occurred.

Source Text

ECMAScript source text is represented as a sequence of characters in the Unicode character encoding, version
2.1 or later, using the UTF-16 transformation format. The text is expected to have been normalised to Unicode
Normalised Form C (canonical composition), as described in Unicode Technical Report #15. Conforming
ECMAScript implementations are not required to perform any normalisation of text, or behave as though they
were performing normalisation of text, themselves.

SourceCharacter
any Unicode character

ECMAScript source text can contain any of the Unicode characters. All Unicode white space characters are
treated as white space, and all Unicode line/paragraph separators are treated as line separators. Non-Latin
Unicode characters are allowed in identifiers, string literals, regular expression literals and comments.

Throughout the rest of this document, the phrase “code point” and the word “character” will be used to refer to a
16-bit unsigned value used to represent a single 16-bit unit of UTF-16 text. The phrase “Unicode character” will
be used to refer to the abstract linguistic or typographical unit represented by a single Unicode scalar value
(which may be longer than 16 bits and thus may be represented by more than one code point). This only refers to
entities represented by single Unicode scalar values: the components of a combining character sequence are still
individual “Unicode characters,” even though a user might think of the whole sequence as a single character.

In string literals, regular expression literals and identifiers, any character (code point) may also be expressed as a
Unicode escape sequence consisting of six characters, namely \ u plus four hexadecimal digits. Within a
comment, such an escape sequence is effectively ignored as part of the comment. Within a string literal or
regular expression literal, the Unicode escape sequence contributes one character to the value of the literal.
Within an identifier, the escape sequence contributes one character to the identifier.

NOTE 1
Al t hough this document sometimes refers to a #fAtrans:H
the 16bit unsigned mteger that is the UTH6 encoding of that character, there is actually no transformation

because a Acharactero within a 0fsbitunsigrpdvalues actually

NOTE 2

ECMAScript differs from the Java programming language inlt@ékaviour of Unicode escape sequences. In a
Java program, if the Unicode escape sequena@00A, for example, occurs within a singlme comment, it

is interpreted as a line terminator (Unicode characf0A is line feed) and therefore the next characier

not part of the comment. Similarly, if the Unicode escape sequar@@0A occurs within a string literal in a
Java program, it is likewise interpreted as a line terminator, which is not allowed within a string d&itered

must write\ n instead of\ uOOO A to cause a line feed to be part of the string value of a string literal. In an
ECMAScript program, a Unicode escape sequence occurring within a comment is never interpreted and
therefore cannot contribute to termination of the comment. Similarly, a deri@scape sequence occurring
within a string literal in an ECMAScript program always contributes a character to the string value of the
literal and is never interpreted as a line terminator or as a quote mark that might terminate the string literal.

Lexical Conventions

The source text of an ECMAScript program is first converted into a sequence of input elements, which are either
tokens, line terminators, comments, or white space. The source text is scanned from left to right, repeatedly
taking the longest possible sequence of characters as the next input element.

-11 -

There are two goal symbols for the lexical grammar. The InputElementDivsymbol is used in those syntactic
grammar contexts where a division (/) or division-assignment (/=) operator is permitted. The
InputElementRegExgymbol is used in other syntactic grammar contexts.

Note that contexts exist in the syntactic grammar where both a division and a RegularExpressionLiterahre
permitted by the syntactic grammar; however, since the lexical grammar uses the InputElementDiwgoal symbol
in such cases, the opening slash is not recognised as starting a regular expression literal in such a context. As a
workaround, one may enclose the regular expression literal in parentheses.

Syntax
InputElementDiv:
White$ace
LineTerminator
Comment
Token
DivPunctuator
InputElementRegExp
WhiteSpace
LineTerminator
Comment
Token
RegularExpressionLiteral
7.1 Unicode Format-Control Characters
The Unicode format-control characters (i.e., the characters in category “Cf” in the Unicode Character
Database such as LEFT-TO-RIGHT MARK Or RIGHT-TO-LEFT MARK) are control codes used to control the
formatting of a range of text in the absence of higher-level protocols for this (such as mark-up languages). It is
useful to allow these in source text to facilitate editing and display.
The format control characters can occur anywhere in the source text of an ECMAScript program. These
characters are removed from the source text before applying the lexical grammar. Since these characters are
removed before processing string and regular expression literals, one must use a. Unicode escape sequence
(see 7.6) to include a Unicode format-control character inside a string or regular expression literal.
7.2 White Space

Syntax

White space characters are used to improve source text readability and to separate tokens (indivisible lexical
units) from each other, but are otherwise insignificant. White space may occur between any two tokens, and
may occur within strings (where they are considered significant characters forming part of the literal string
value), but cannot appear within any other kind of token.

The following characters are considered to be white space:

Code Point Value Name Formal Name
\ u0009 Tab <TAB>
\ u000B Vertical Tab <VT>
\ u000C Form Feed <FF>
\ u0020 Space <SP>
\ UOOAO No-break space <NBSP>
Other category Zs' ' Any other Unicode <USP>
‘ space separator

-12 -

WhiteSpace:
<TAB>
VT>
<FF>
<SP>
<NBSP>
<USP>

7.3

Line Terminators

Like white space characters, line terminator characters are used to improve source text readability and to
separate tokens (indivisible lexical units) from each other. However, unlike white space characters, line
terminators have some influence over the behaviour of the syntactic grammar. In general, line terminators may
occur between any two tokens, but there are a few places where they are forbidden by the syntactic grammar.
A line terminator cannot occur within any token, not even a string. Line terminators also affect the process of
automatic semicolon insertion (7.8.5).

The following characters are considered to be line terminators:

Code Point Value Name Formal Name
\ uOOOA Line Feed <LF>
\ u0d00D Carriage Return <CR>
\ u2028 Line separator <LS>
\ u2029 Paragraph separator <PS>
Syntax
LineTerminator:
<lF>
<CR>
<LS>
PS>
7.4 Comments
Description
Comments can be either single or multi-line. Multi-line comments cannot nest.
Because a single-line comment can contain any character except a LineTerminatorcharacter, and because of
the general rule that a token is always as long as possible, a single-line comment always consists of all
characters from the // marker to the end of the line. However, the LineTerminatorat the end of the line is not
considered to be part of the single-line comment; it is recognised separately by the lexical grammar and
becomes part of the stream of input elements for the syntactic grammar. This point is very important, because
it implies that the presence or absence of single-line comments does not affect the process of automatic
semicolon insertion (7.9).
Comments behave like white space and are discarded except that, if a MultiLineCommentcontains a line
terminator character, then the entire comment is considered to be a LineTerminatorfor purposes of parsing by
the syntactic grammar.
Syntax
Comment:

MultiLineComment
SingleLineComment

MultiLineComment:
/* MultiLineCommentCharg,*/

- 13 -

MultiLineCommentChars
MultiLine N otA sterisk Char MultiLineCommentChars
* PostA steriskCommentChass

PostA steriskCommentChars
MultiLineN otForwardSlash@ sterisk Char MultiLineCommentChars
* PostA steriskCommentChass

MultiLineNotA steriskChar:
SourceCharactelput not asterisk*

MultiLineNotForwardSlashOrA sterisk Char
SourceCharactelut not forward-slash/ or asterisk*

SingleLineComment
/I SindeLineCommentChags

SingleLineCommentChars
SingleLineCommentChar SingleLineCommentChars

SingleLineCommentChar
SourceCharactebut not LineTerminator

7.5 Tokens

Syntax

Token::
ReservedWord
Identifier
Punctuator
NumericLiteral
StringL.iteral

7.5.1 Reserved Words
Description

Reserved words cannot be used as identifiers.

Syntax

ReservedWord
Keyword
FutureReservedWord
NullLiteral
BooleanLiteral

7.5.2 Keywords
The following tokens are ECMAScript keywords and may not be used as identifiers in ECMAScript

programs.

Syntax

Keyword:: one of
break else new var
case finally return void
catch for switch while
continue function this with
default if throw
delete in try

do instanceof typeof

- 14 -

7.5.3 Future Reserved Words
The following words are used as keywords in proposed extensions and are therefore reserved to allow for
the possibility of future adoption of those extensions.
Syntax
FutureReservedWord one of
abstract enum int short
boolean export interface static
byte extends long super
char fin al native synchronized
class float package throws
const goto private transient
debugger implements protected volatile
double import public
7.6 Identifiers
Description
Identifiers are interpreted according to the grammar given in Section 5.16 of the upcoming version 3.0 of the
Unicode standard, with some small modifications. This grammar is based on both normative and informative
character categories specified by the Unicode standard. The characters in the specified categories in version
2.1 of the Unicode standard must be treated as in those categories by all conforming ECMAScript
implementations; however, conforming ECMAScript implementations may allow additional legal identifier
characters based on the category assignment from later versions of Unicode.
This standard specifies one departure from the grammar given in the Unicode standard: The dollar sign ($)
and the underscore (_) are permitted anywhere in an identifier. The dollar sign is intended for use only in
mechanically generated code.
Unicode escape sequences are also permitted in identifiers, where they contribute a single character to the
identifier, as computed by the CV of the UnicodeEscapeSequendgee 7.8.4). The \ preceding the
UnicodeEscapeSequendees not contribute a character to the identifier. A UnicodeEscapeSequenceannot
be used to put a character into an identifier that would otherwise be illegal. In other words, if a \
UnicodeEscapeSequensequence were replaced by its UnicodeEscapeSequens€V, the result must still
be a valid Identifier that has the exact same sequence of characters as the original Identifier.
Two identifiers that are canonically equivalent according to the Unicode standard are notequal unless they are
represented by the exact same sequence of code points (in other words, conforming ECMAScript
implementations are only required to do bitwise comparison on identifiers). The intent is that the incoming
source text has been converted to normalised form C before it reaches the compiler.
Syntax
Identifier::
IdenifierNamebut not ReservedW ord
IdentifierName:
IdentifierStart
IdentifierName IdentifierPart
IdentifierStart::
UnicodeL etter
$

\ UnicodeEscapeSequence

- 15 -

IdentifierPart::
IdentifierStart
UnicodeCombiningMark
UnicodeDigit
UnicodeConnectorPunctuation
\ UnicodeEscapeSequence

UnicodeLetter
any character in the Unicode categoriddppercase letter (LU)'* Lowercase letter (L1),’* Titlecase letter (Lt),’
‘ Modifier letter (Lm} ,” Other letter (LO),’or* Letter number (NI).’

UnicodeCombiningMark
any character ithe Unicode categoriéNon-spacing mark (Mn) or* Combining spacing mark (Mc)’

UnicodeDigit
any character in the Unicode categoBecimal number (Nd)’

UnicodeConnectorPunctuation
any character in the Unicode catego§onnector punctuation (Pc)

UnicodeEscapeSequence
see 7.8.4.

HexDigit:: one of
0123456789abcdefABCDEF

7.7 Punctuators

Syntax
Punctuator.: one of

y , < > <=
>= == 1= === ==
+ - * % ++ -
<< >> >>> & | A
! ~ && I ?
= += -= *= %= <<=
>>= >>>= &= |= A=

DivPunctuator.: one of
/ /=

7.8 Literals
Syntax

Literal ::
NullLiteral
BooleanLiteral
NumericLiteral
StringLiteral

7.8.1 Null Literals

Syntax

NullLiteral ::
null

- 16 -

Semantics
The value of the null literal null is the sole value of the Null type, namely null.
7.8.2 Boolean Literals
Syntax

BooleanLiterat:
true
false

Semantics

The value of the Boolean literal true is a value of the Boolean type, namely true.

The value of the Boolean literal false is a value of the Boolean type, namely false
7.8.3 Numeric Literals

Syntax

NumericLiteral:
DecimallLiteral
HexIntegerLiteral

DecimallLiteral::
DecimalintegerLiteral DecimalDigits,, ExponentPar,,
. DecimalDigits ExponentPayt
DecimalintegerLiteral ExponentPayt

DecimalintegerLiteral ::
0
NonZeroDigit DecimalDigits,

DecimalDigits::
DecimalDigit
DecimalDigits DecimalDigit

DecimalDigit:: one of
0123456789

NonZeroDigit:: one of
123456789

ExponentPart:
Exponentindicator Signedinteger

Expmentindicator.: one of
e E

Signedinteger.
DecimalDigits
+ DecimalDigits
- DecimalDigits

HexIntegerLiterat:
0x HexDigit
0X HexDigit
HexIntegerLiteral HexDigit

The source character immediately following a NumericLiteral must not be an IdentifierStart or
DecimalDigit

NOTE

-17 -

For example:
3in
is an error and not the two input elemetandin.

Semantics

A numeric literal stands for a value of the Number type. This value is determined in two steps: first, a
mathematical value (MV) is derived from the literal; second, this mathematical value is rounded as
described below.

1 The MV ofNumericLiteral:: DecimalLiteralis the MV ofDecimalLiteral

1 The MV ofNumericLiteral:: HexIntegerLiterals the MV ofHexIntegerLiteral

1 The MV ofDecimallLiteral:: DecimalintegrLiteral. is the MV ofDecimalintegerLiteral
1

The MV of DecimalLiteral:: DecimalintegerLiteral. DecimalDigitsis the MV of DecimalintegerLiteral
plus (the MV ofDecimalDigitstimes 10, wheren is the number of charactersiecimalDigits.

1 The MV of DecimalLiteral:: DecimalintegerLiteral. ExponentPartis the MV of DecimalintegerLiteral
times 10, wheree is the MV ofExponentPart

1 The MV of DecimalLiteral :: DecimalintegerLiteral. DecimalDigits ExponentParis (the MV of
DecimalintegerLiteralplus (the MV of DecimalDigits times 107) times 16, wheren is the number of
characters ilDecimalDigits ande is the MV ofExponentPatt

1 The MV of DecimalLiteral::. DecimalDigitsis the MV ofDecimalDigitstimes 107 wheren is the number
of characters iDecimalDigits.

1 The MV ofDecimallLiteral::;. DecimalDigits ExponentPais the MV ofDecimalDigitstimes 16 %, wheren
is the number of charactershrecimalDigis ande is the MV ofExponentPart

1 The MV ofDecimallLiteral:;: DecimallntegerLiterals the MV of DecimalintegerLiteral

1 The MV of DecimalLiteral:: DecimalintegerLiteral ExponentPag the MV ofDecimalintegerLiteratimes
10 wheree is the MV ofExponentPart

1 The MV ofDecimalintegerLiteral: 0O is 0.

1 The MV of DecimalintegerLiteral: NonZerd®igit DecimalDigitsis (the MV of NonZeroDigittimes 10)
plus the MV ofDecimalDigits wheren is the number of charactershecimalDigits

1 The MV ofDecimalDigits:: DecimalDigitis the MV ofDecimalDigit

The MV of DecimalDigits:: DecimalDigitsDecimdDigit is (the MV ofDecimalDigitstimes 10) plus the MV
of DecimalDigit

The MV ofExponentPart: Exponentindicator Signedintegisrthe MV ofSignedinteger
The MV ofSignedinteger. DecimalDigitsis the MV ofDecimalDigits

The MV ofSignedinteger. + DecimalDigitsis the MV ofDecimalDigits

The MV ofSignedinteger. - DecimalDigitsis the negative of the MV ddecimalDigits
The MV ofDecimalDigit:: O or of HexDigit:: O is 0.

The MV ofDecimalDigit:: 1 or ofNonZeroDigit:: 1 or of HexDigit:: 1 is 1.

The MV ofDecimalDigit:: 2 or ofNonZeroDigit:: 2 or of HexDigit:: 2 is 2.

The MV ofDecimalDigit:: 3 or of NonZeroDigit:: 3 or of HexDigit:: 3 is 3.

The MV ofDecimalDigit:: 4 or ofNonZeroDigit:: 4 or of HexDigit:: 4 is 4.

The MV ofDecimalDigit :: 5 or ofNonZeroDigit:: 5 or of HexDigit:: 5 is 5.

The MV ofDecimalDigit:: 6 or of NonZeroDigit:: 6 or of HexDigit:: 6 is 6.

The MV ofDecimalDigit:: 7 or ofNonZeroDigit:: 7 or of HexDigit:: 7 is 7.

The MV ofDecimalDigit:: 8 or of NorZeroDigit:: 8 or of HexDigit:: 8 is 8.

The MV ofDecimalDigit:: 9 or of NonZeroDigit:: 9 or of HexDigit:: 9 is 9.

The MV ofHexDigit:: a or of HexDigit:: Ais 10.

The MV ofHexDigit:: b or ofHexDigit:: Bis 11.

The MV ofHexDigit:: ¢ or ofHexDuit :: Cis 12.

The MV ofHexDigit:: d or of HexDigit:: Dis 13.

The MV ofHexDigit:: e or ofHexDigit:: Eis 14.

=

=4 =4 -8 —& 8 4 -8 _9 -2 _9 _92 _9 -9 _92 -9 -2 -9 -2 -9

7.8.4

Syntax

StringLiteral::

- 18 -

The MV ofHexDigit:: f or of HexDigit:: F is 15.
The MV ofHexIntegerLiterat: Ox HexDigitis the MV ofHexDigit
The MV ofHexIntegerliteral :: 0X HexDigitis the MV ofHexDigit

The MV ofHexIntegerLiterat: HexIntegerLiteraHexDigitis (the MV ofHexIntegerLiteratimes 16) plus
the MV ofHexDigit

= —a —a -

Once the exact MV for a numeric literal has been determined, it is then rounded to a value of the Number
type. If the MV is 0, then the rounded value is +0; otherwise, the rounded value must be the number value
for the MV (in the sense defined in 8.5), unless the literal is a DecimalLiteraland the literal has more than
20 significant digits, in which case the number value may be either the number value for the MV of a literal
produced by replacing each significant digit after the 20th with a O digit or the number value for the MV of
a literal produced by replacing each significant digit after the 20th with a O digit and then incrementing the
literal at the 20th significant digit position. A digit is significantif it is not part of an ExponentPartand

9 itisnotO;or
9 there is a nonzero digit to its left and there is a nonzero digit, not in the ExponentPartto its right.

String Literals

A string literal is zero or more characters enclosed in single or double quotes. Each character may be
represented by an escape sequence.

" DoubleStringCharacters,"

SingleStngCharacters,, '

DoubleStringCharacters
DoubleStringCharacter Double StringCharactgfs

SingleStringCharacters
SingleStringCharacter SingleStringCharacters

DoubleStringCharacter
SourceCharactelput not doublequote” or backslash or LineTaminator
\ EscapeSequence

SingleStringCharacter
SourceCharactelut not single-quote’ or backslash or LineTerminator
\ EscapeSequence

EscapeSequence
CharacterEscapeSequence
O fookahead T Zemmallict
HexEscapeSequence
UnicodeEscapeSequence

CharmacterEscapeSequence
SingleEscapeCharacter
NonEscapeCharacter

SingleEscapeCharacter one of

\' bfnrtyv

NonEscapeCharacter
SourceCharactebut not EscapeCharactesr Line T erminator

- 19 -

EscapeCharacter
SingleEscapeCharacter
DecimalDigit

X
u

HexEscapeSequence
x HexDigit HexDigit

UnicodeEscapeSequence
u HexDigit HexDigit HexDigit HexDigit

The definitions of the nonterminal HexDigit is given in section 7.8.3. SourceCharactelis described in
sections 2 and 6.

A string literal stands for a value of the String type. The string value (SV) of the literal is described in
terms of character values (CV) contributed by the various parts of the string literal. As part of this process,
some characters within the string literal are interpreted as having a mathematical value (MV), as described
below or in section 7.8.3.

1

= —a —a -

=

= =4 —4a —a —a 2

The SV ofStringLiteral:: ™ is the empty character sequence.

The SV ofStringLiteral:: " is the empty character sequence.

The SV ofStringLiteral:: " DoubleStringCharacters is the SV ofDouble StringCharacters
The SV ofStringLiteral:: ' SingleStringCharacters is the SV ofSingleStringCharacters

The SV ofDoubleStringCharacters: DoubleStringCharacteis a sequence of one character, the CV of
Double StringCharacter

The SV of DoubleStringCharacters. DoubleStringCharacteDoubleStringCharacteris a sequence of the
CV of DoubleStringCharacteiollowed by all the characters in the SVduble StringCharacteris order.

The SV of SingleStringCharacters: SingleStringCharacteis a sequence of one character, the CV of
SingleStringCharacter

The SV ofSingleStringCharacters SingleStringCharacte®ingleStringCharacters a sequence of the CV of
SingleStringCharactebllowed by all the characters in the SVSihgle StringCh@ctersin order.

The CV of DoubleStringCharacter:: SourceCharacterbut not doublequote " or backslash\ or
LineTerminatoiis theSourceCharactecharacter itself.

The CV ofDoubleStringCharacter \ EscapeSequendgthe CV of theEscapeSequence

The CV/ of SingleStringCharacter:: SourceCharacterbut not singlequote * or backslash\ or
LineTerminatoiis theSourceCharactecharacter itself.

The CV ofSingleStringCharacter \ EscapeSequendgthe CV of theEscapeSequence

The CV ofEscapeSequenceCharacterEscapeSequenisehe CV of theCharacterEscapeSequence
The CV ofEscapeSequence0 flockahead | Zezmalizis @ <NUL> character (Unicode value 0000).
The CV ofEscapeSequenceHexEscapeSequeniethe CV of theHexEscapeSequence

The CV d EscapeSequenceUnicodeEscapeSequenisghe CV of theUnicodeEscapeSequence

The CV ofCharacterEscapeSequenceSingleEscapeCharactés the character whose code point value is
determined by th&ingleEscapeCharactaccording to the following tadi

Escape Sequence Code Point Value Name Symbol

\b \ u0008 backspace <BS>
\t \ u0009 horizontal tab <HT>
\n \ uOOOA line feed (new line) <LF>
\v \ u000B vertical tab <VT>

- 20 -

\ f \ u0d0oC form feed <FF>
\r \ u000D carriage return <CR>
\ " \ u0022 double quote "
\' \ u0027 single quote '
\\ \ u005C backslash \

1 The CV ofCharacterEscapeSequenceNonEscapeCharactés the CV of theNonEscapeCharacter

1 The CV of NonEscapeCharacter SourceCharactebut not EscapeCharacteor LineTerminatoris the
SourceCharactecharacter itself.

1 The CV ofHexEscapeSequencex HexDigit HexDigitis the character whose code point value is (16 times
the MV of the firstHexDigif) plus the MV of the seconidexDigit

1 The CV ofUnicodeEscapeSequenceu HexDigit HexDigit HexDigit HexDigit is the character whose code
point value is (4096 (that is, J@&imes the MV of the firsHexDigit) plus (256 (that is, Bptimes the MV of
the secondHexDigit) plus (16 times the MV of the thitdexDigif) plus the MV of the fourtlidexDigit

NOTE

A 'LineTerminator' character cannot appear in a string literal, even if preceded by a bacKslaEhe
correct way to cause a line terminator character to be part of the string value of a string literal is to use
an escape sequence such\asor \ uOOOA.

7.85 Regular Expression Literals

A regular expression literal is an input element that is converted to a RegExp object (section 15.10) when it
is scanned. The object is created before evaluation of the containing program or function begins. Evaluation
of the literal produces a reference to that object; it does not create a new object. Two regular expression
literals in a program evaluate to regular expression objects that never compare as === to each other even if
the two literals' contents are identical. A RegExp object may also be created at runtime by new RegExp
(section 15.10.4) or calling the RegExp constructor as a function (section 15.10.3).

The productions below describe the syntax for a regular expression literal and are used by the input element
scanner to find the end of the regular expression literal. The strings of characters comprising the
RegularExpressionBodyand the RegularExpressionFlagsare passed uninterpreted to the regular
expression constructor, which interprets them according to its own, more stringent grammar. An
implementation may extend the regular expression constructor's grammar, but it should not extend the
RegularExpressionBodynd RegularExpressionFlaggroductions or the productions used by these
productions.

Syntax

RegularExpressnLiteral ::
| RegularExpressionBody RegularExpressionFlags

RegularExpressionBody
RegularExpressionFirstChar RegularExpressionChars

RegularExpressionChars

[eranty]
RegularExpressionChars RegularExpressionChar

RegularExpressionFirstChar
NonTermimtor but not* or\ or/
BackslashSequence

RegularExpressionChar
NonTerminatobut not\ or/
BackslashSequence

-21 -

BackslashSequence
\ NonTerminator

NonTerminator:
SourceCharactelput not LineTerminator

RegularExpressionFlags
[emnty]) -
RegularExpredgenFlags IdentifierPart

7.9

7.9.1

NOTE
Regular expression literals may not be empty; instead of representing an empty regular expressic
literal, the characters// start a singleline comment. To specify an empty regular expression, use
1(?)]

Semantics

A regular expression literal stands for a value of the Object type. This value is determined in two steps:
first, the characters comprising the regular expression's RegularExpressionBody and
RegularExpressionFlaggroduction expansions are collected uninterpreted into two strings Pattern and
Flags, respectively. Then the new RegExp constructor is called with two arguments Pattern and Flags and
the result becomes the value of the RegularExpressionLiterallf the call to new RegExp generates an
error, an implementation may, at its discretion, either report the error immediately while scanning the
program, or it may defer the error until the regular expression literal is evaluated in the course of program
execution.

Automatic Semicolon Insertion

Certain ECMAScript statements (empty statement, variable statement, expression statement, do-while
statement, continue statement, break statement, return statement, and throw statement) must be
terminated with semicolons. Such semicolons may always appear explicitly in the source text. For
convenience, however, such semicolons may be omitted from the source text in certain situations. These
situations are described by saying that semicolons are automatically inserted into the source code token stream
in those situations.

Rules of Automatic Semicolon Insertion

1 When, as the program is parsed from left to right, a token (called the offending tokehis encountered
that is not allowed by any production of the grammar, then a semicolon is automatically inserted before
the offending token if one or more of the following conditions is true:

1. The offending token is separated from the previous token by at least one LineTerminator
2. The offending token is } .

1 When, as the program is parsed from left to right, the end of the input stream of tokens is encountered
and the parser is unable to parse the input token stream as a single complete ECMAScript Program
then a semicolon is automatically inserted at the end of the input stream.

1 When, as the program is parsed from left to right, a token is encountered that is allowed by some
production of the grammar, but the production is a restricted productiorand the token would be the
first token for a terminal or nonterminal immediately following the annotation “[no LineTerminatorhere]”
within the restricted production (and therefore such a token is called a restricted token), and the
restricted token is separated from the previous token by at least one LineTerminator then a semicolon
is automatically inserted before the restricted token.

However, there is an additional overriding condition on the preceding rules: a semicolon is never inserted
automatically if the semicolon would then be parsed as an empty statement or if that semicolon would
become one of the two semicolons in the header of a for statement (section 12.6.3).

NOTE
These are the only restricted productions in the grammar:

7.9.2

-22 -

PostlixExpressron:
LeftHandSideExpression [ng LineTirminaornere] ++
LeftHandSideFExpression na LineTerminaorhere] --

ContinueStatement:
continue [no ZmeTirminstorherel ldentilier,,,

BreakStatement:
break v ZmeZammatornerel Identifiery,,

PeturnStatement:
return o ZmeTkrmmnatorhere] EXDICSSION gy,

ThrowStatement:
throw [vo ZineZamimnatorherel Expression,

The practical effect of these restricted productions is as follows:

1 Whena ++ or -- token is encountered where the parser would treat it as a postfix operator, and at least
one LineTerminatoroccurred between the preceding token and the ++ or -- token, then a semicolon is
automatically inserted before the ++ or -- token.

1 When a continue , break , return , or throw token is encountered and a LineTerminatoris
encountered before the next token, a semicolon is automatically inserted after the continue , break ,
return , or throw token.

The resulting practical advice to ECMAScript programmers is:

1 A postfix ++ or -- operator should appear on the same line as its operand.

1 An Expressionin a return or throw statement should start on the same line as the return or
throw token.

1 A label in a break or continue statement should be on the same line as the break or continue
token.

Examples of Automatic Semicolon Insertion

The source

{12}3
is not a valid sentence in the ECMAScript grammar, even with the automatic semicolon insertion rules. In
contrast, the source

{1

2}3

is also not a valid ECMAScript sentence, but is transformed by automatic semicolon insertion into the
following:

{

2313,
which is a valid ECMAScript sentence.
The source

for(a; b

)

is not a valid ECMAScript sentence and is not altered by automatic semicolon insertion because the
semicolon is needed for the header of a for statement. Automatic semicolon insertion never inserts one of
the two semicolons in the header of a for statement.

The source

8.1

8.2

-23-

return
a+b
is transformed by automatic semicolon insertion into the following:
return;
a+b;

NOTE
The expressiom + b is not treated as a value to be returned by teaurn statement, because a
‘LineTerminator' separates it from the tokexturn
The source

a=b

++C
is transformed by automatic semicolon insertion into the following:

a=b;

++C;

NOTE
The tokent++ is not treated as a postfix operator applying to the variabjdecause a 'LineTerminator
occurs betweeb and ++.
The source
if (a>b)
elsec=d

is not a valid ECMAScript sentence and is not altered by automatic semicolon insertion before the else
token, even though no production of the grammar applies at that point, because an automatically inserted
semicolon would then be parsed as an empty statement.

The source
a=b+c
(d+ e).print()
is not transformed by automatic semicolon insertion, because the parenthesised expression that begins the
second line can be interpreted as an argument list for a function call:
a=b +c(d + e).print()
In the circumstance that an assignment statement must begin with a left parenthesis, it is a good idea for

the programmer to provide an explicit semicolon at the end of the preceding statement rather than to rely on
automatic semicolon insertion.

Types

A value is an entity that takes on one of nine types. There are nine types (Undefined, Null, Boolean, String,
Number, Object, Reference, List, and Completion). Values of type Reference, List, and Completion are used only
as intermediate results of expression evaluation and cannot be stored as properties of objects.

The Undefined Type

The Undefined type has exactly one value, called undefined. Any variable that has not been assigned a value

has the value undefined.

The Null Type

The Null type has exactly one value, called null.

8.3

8.4

8.5

-24 -

The Boolean Type
The Boolean type represents a logical entity having two values, called true and false.

The String Type

The String type is the set of all finite ordered sequences of zero or more 16-bit unsigned integer values
(“elements”). The String type is generally used to represent textual data in a running ECMAScript program, in
which case each element in the string is treated as a code point value (see section 6). Each element is regarded
as occupying a position within the sequence. These positions are indexed with nonnegative integers. The first
element (if any) is at position 0, the next element (if any) at position 1, and so on. The length of a string is the
number of elements (i.e., 16-bit values) within it. The empty string has length zero and therefore contains no
elements.

When a string contains actual textual data, each element is considered to be a single UTF-16 unit. Whether or
not this is the actual storage format of a String, the characters within a String are numbered as though they
were represented using UTF-16. All operations on Strings (except as otherwise stated) treat them as sequences
of undifferentiated 16-bit unsigned integers; they do not ensure the resulting string is in normalised form, nor
do they ensure language-sensitive results.

NOTE

The rationale behind these decisions was to keep the implementation of Strings as simple and high
performing as possible. The intent is that textual data coming into the execution environment from outside
(e.g., user input, text read from a file or reeed over the network, etc.) be converted to Unicode
Normalised Form C before the running program sees it. Usually this would occur at the same time incoming
text is converted from its original character encoding to Unicode (and would impose no additional
overhead). Since it is recommended that ECMAScript source code be in Normalised Form C, string literals
are guaranteed to be normalised (if source text is guaranteed to be normalised), as long as they do not
contain any Unicode escape sequences.

The Number Type

The Number type has exactly 18437736874454810627 (that is, 2%4- 253+3) values, representing the double-
precision 64-bit format IEEE 754 values as specified in the IEEE Standard for Binary Floating-Point
Arithmetic, except that the 9007199254740990 (that is, 253- 2) distinct “Not-a-Number” values of the IEEE
Standard are represented in ECMAScript as a single special NaN value. (Note that the NaN value is produced
by the program expression NaN assuming that the globally defined variable NaN has not been altered by
program execution.) In some implementations, external code might be able to detect a difference between
various Non-a-Number values, but such behaviour is implementation-dependent; to ECMAScript code, all
NaN values are indistinguishable from each other.

There are two other special values, called positive Infinity and negative Infinity. For brevity, these values are
also referred to for expository purposes by the symbols +& and - &, respectively. (Note that these two infinite

number values are produced by the program expressions +Infinity (or simply Infinity) and -
Infinity , assuming that the globally defined variable Infinity has not been altered by program
execution.)

The other 18437736874454810624 (that is, 2%- 25%) values are called the finite numbers. Half of these are
positive numbers and half are negative numbers; for every finite positive number there is a corresponding
negative number having the same magnitude.

Note that there is both a positive zeroand a negative zero For brevity, these values are also referred to for
expository purposes by the symbols +0 and - O, respectively. (Note that these two zero number values are
produced by the program expressions +0 (or simply 0) and - 0.)

The 18437736874454810622 (that is, 254- 2%3- 2) finite nonzero values are of two kinds:
18428729675200069632 (that is, 2%4- 25%) of them are normalised, having the form
s3 ms3 2°

where sis +1 or - 1, mis a positive integer less than 2°° but not less than 252, and e is an integer ranging from
- 1074 to 971, inclusive.

- 25 -

The remaining 9007199254740990 (that is, 2°3- 2) values are denormalised, having the form
s3 m3 2°
where sis +1 or - 1, mis a positive integer less than 252, and e is - 1074.

Note that all the positive and negative integers whose magnitude is no greater than 25 are representable in the
Number type (indeed, the integer 0 has two representations, +0 and - 0).

A finite number has an odd significandif it is nonzero and the integer m used to express it (in one of the two
forms shown above) is odd. Otherwise, it has an even significand

In this specification, the phrase “the number value for Xx” where X represents an exact nonzero real
mathematical quantity (which might even be an irrational number such as p) means a number value chosen in
the following manner. Consider the set of all finite values of the Number type, with - O removed and with two
additional values added to it that are not representable in the Number type, namely 21924 (which is +1 3 2533
2°71) and - 21024 (which is - 1 3 2% 3 2%71), Choose the member of this set that is closest in value to x. If two
values of the set are equally close, then the one with an even significand is chosen; for this purpose, the two
extra values 21924 and - 21924 are considered to have even significands. Finally, if 21924 was chosen, replace it
with +o; if - 21924 was chosen, replace it with - o ; if +0 was chosen, replace it with - 0 if and only if x is less
than zero; any other chosen value is used unchanged. The result is the number value for x. (This procedure
corresponds exactly to the behaviour of the IEEE 754 “round to nearest” mode.)

Some ECMAScript operators deal only with integers in the range - 23! through 23!- 1, inclusive, or in the
range 0 through 2%2- 1, inclusive. These operators accept any value of the Number type but first convert each
such value to one of 2%2 integer values. See the descriptions of the ToInt32 and ToUint32 operators in sections
0 and 0, respectively.

8.6 The Object Type
An Object is an unordered collection of properties. Each property consists of a name, a value and a set of
attributes.
8.6.1 Property Attributes
A property can have zero or more attributes from the following set:
Attribute Description
ReadOnly The property is a readnly property. Attempts by ECMAScript code to write
the property will be ignored. (Note, however, that in some cases the valu
property with the ReadOnly attribute may change over time because of g
taken by the host environment; therefoiReadnly does not meahconstant
and unchangind)
DontEnum The property is not to be enumerated ligra-in enumeration (section 12.6.4)
DontDelete Attempts to delete the property wil be ignored. See the description g
delete operator in section 11.4
Internal Internal properties have no name and are not directly accessible via the p
accessor operators. How these properties are accessed is impleme
specific. How and when some of these properties are used is specified
language sgcification.
8.6.2 Internal Properties and Methods

Internal properties and methods are not part of the language. They are defined by this specification purely
for expository purposes. An implementation of ECMAScript must behave as if it produced and operated
upon internal properties in the manner described here. For the purposes of this document, the names of
internal properties are enclosed in double square brackets [[]]. When an algorithm uses an internal property
of an object and the object does not implement the indicated internal property, a TypeError exception is
thrown.

- 26 -

There are two types of access for normal (non-internal) properties: getand put, corresponding to retrieval
and assignment, respectively.

Native ECMAScript objects have an internal property called [[Prototype]]. The value of this property is
either null or an object and is used for implementing inheritance. Properties of the [[Prototype]] object are
visible as properties of the child object for the purposes of get access, but not for put access.

The following table summarises the internal properties used by this specification. The description indicates
their behaviour for native ECMAScript objects. Host objects may implement these internal methods with
any implementation-dependent behaviour, or it may be that a host object implements only some internal
methods and not others.

Property Parameters Description

[[Prototypel]] none The prototype of this object.

[[Class]] none A string value indicating the kind of this object.

[[Value]] nore Internal state information associated with this object

[[Get]] (PropertyNamég Returns the value of the property.

[[Put]] (PropertyNameV alue) Sets the specified property\talue

[[CanPut]] (PropertyNamég Returns a boolean value indicating whetlaef[Put]]
operation withPropertyNamewill succeed.

[[HasProperty]] | (PropertyNamég Returns a boolean value indicating whether the ob
already has a member with the given name.

[[Delete]] (PropertyNamég Removes the specified property from the object.

[[DefaultValue]] | (Hint) Returns a default value for the object, which shoulg
a primitive value (not an object or reference).

[[Construct]] a list of argument value| Constructs an object. Invoked via thew operator.

provided by the caller Objects thaimplement this internal method are call

constructors

[[Call a list of argument value| Executes code associated with the object. Invokec

provided by the caller a function call expression. Objects that implement

internal method are callddnctions

[[HasInstance]] | (Valug Returns a boolean value indicating whethéalue
delegates behaviour to this object. Of the na
ECMAScript objects, only Function objects impleme
[[HasInstancel]].

[[Scope]] none A scope chain that defines the envire@mhin which a
Function object is executed.

[[Match]] (String IndeX) Tests for a regular expression match and returr
MatchResult value (see section 15.10.2.1).

Every object (including host objects) must implement the [[Prototype]] and [[Class]] properties and the
[[Get]], [[Put]], [[CanPut]], [[HasProperty]], [[Delete]], and [[DefaultValue]] methods. (Note, however, that
the [[DefaultValue]] method may, for some objects, simply throw a TypeError exception.)

The value of the [[Prototype]] property must be either an object or null, and every [[Prototype]] chain must
have finite length (that is, starting from any object, recursively accessing the [[Prototype]] property must
eventually lead to a null value). Whether or not a native object can have a host object as its [[Prototype]]
depends on the implementation.

The value of the [[Class]] property is defined by this specification for every kind of built-in object. The
value of the [[Class]] property of a host object may be any value, even a value used by a built-in object for
its [[Class]] property. The value of a [[Class]] property is used internally to distinguish different kinds of
built-in objects. Note that this specification does not provide any means for a program to access that value
except through Object.prototype.toString (see 15.2.4.2).

For native objects the [[Get]], [[Put]], [[CanPut]], [[HasProperty]], [[Delete]] and [[DefaultValue]] methods
behave as described in described in 8.6.2.1, 8.6.2.2, 8.6.2.3, 8.6.2.4, 8.6.2.5 and 8.6.2.6, respectively,
except that Array objects have a slightly different implementation of the [[Put]] method (see 15.4.5.1). Host
objects may implement these methods in any manner unless specified otherwise; for example, one

27 -

possibility is that [[Get]] and [[Put]] for a particular host object indeed fetch and store property values but
[[HasProperty]] always generates false.

In the following algorithm descriptions, assume O is a native ECMAScript object and P is a string.

8.6.2.1 [[Get]] (P)
When the [[Get]] method of O is called with property name P, the following steps are taken:

If O doesn’t have a property with name P, go to step 4.

Get the value of the property.

Return Result(2).

If the [[Prototype]] of O is null, return undefined.

Call the [[Get]] method of [[Prototype]] with property name P.
Return Result(5).

ok whE

8.6.2.2 [[Put]] (P, V)
When the [[Put]] method of O is called with property P and value V, the following steps are taken:

Call the [[CanPut]] method of O with name P.

If Result(1) is false, return.

If O doesn’t have a property with name P, go to step 6.

Set the value of the property to V. The attributes of the property are not changed.
Return.

Create a property with name P, set its value to V and give it empty attributes.
Return.

Nogok~wdpE

Note, however, that if O is an Array object, it has a more elaborate [[Put]] method (15.4.5.1).

8.6.2.3 [[CanPut]] (P)
The [[CanPut]] method is used only by the [[Put]] method.

When the [[CanPut]] method of O is called with property P, the following steps are taken:

If O doesn’t have a property with name P, go to step 4.

If the property has the ReadOnly attribute, return false.

Return true.

If the [[Prototype]] of O is null, return true.

Call the [[CanPut]] method of [[Prototype]] of O with property name P.
Return Result(5).

@k whE

8.6.2.4 [[HasProperty]] (P)
When the [[HasProperty]] method of O is called with property name P, the following steps are taken:

1. If O has a property with name P, return true.

2. If the [[Prototype]] of O is null, return false.

3. Call the [[HasProperty]] method of [[Prototype]] with property name P.
4. Return Result(3).

8.6.2.5 [[Delete]] (P)
When the [[Delete]] method of O is called with property name P, the following steps are taken:

1. 1f O doesn’t have a property with name P, return true.
2. If the property has the DontDelete attribute, return false.
3. Remove the property with name P from O.

4. Return true.

8.6.2.6 [[DefaultValue]] (hint)
When the [[DefaultValue]] method of O is called with hint String, the following steps are taken:

1. Call the [[Get]] method of object O with argument "toStrin g".

8.7

8.7.1

-28 -

If Result(1) is not an object, go to step 5.

Call the [[Call]] method of Result(1), with O as the this value and an empty argument list.
If Result(3) is a primitive value, return Result(3).

Call the [[Get]] method of object O with argument "valueOf ".

If Result(5) is not an object, go to step 9.

Call the [[Call]] method of Result(5), with O as the this value and an empty argument list.
If Result(7) is a primitive value, return Result(7).

Throw a TypeError exception.

©CONOO WD

When the [[DefaultValue]] method of O is called with hint Number, the following steps are taken:

Call the [[Get]] method of object O with argument "valueOf"

If Result(1) is not an object, go to step 5.

Call the [[Call]] method of Result(1), with O as the this value and an empty argument list.
If Result(3) is a primitive value, return Result(3).

Call the [[Get]] method of object O with argument "toString"

If Result(5) is not an object, go to step 9.

Call the [[Call]] method of Result(5), with O as the this value and an empty argument list.
If Result(7) is a primitive value, return Result(7).

Throw a TypeError exception.

CoNok~wWNE

When the [[DefaultValue]] method of O is called with no hint, then it behaves as if the hint were
Number, unless O is a Date object (see 15.9), in which case it behaves as if the hint were String.

The above specification of [[DefaultValue]] for native objects can return only primitive values. If a host
object implements its own [[DefaultValue]] method, it must ensure that its [[DefaultValue]] method can
return only primitive values.

The Reference Type

The internal Reference type is not a language data typeis defined by this specification purely for
expository purposes. An implementation of ECMAScript must behave as if it produced and operated upon
references in the manner described here. However, a value of type Referenceis used only as an intermediate
result of expression evaluation and cannot be stored as the value of a variable or property.

The Reference type is used to explain the behaviour of such operators as delete , typeof , and the
assignment operators. For example, the left-hand operand of an assignment is expected to produce a reference.
The behaviour of assignment could, instead, be explained entirely in terms of a case analysis on the syntactic
form of the left-hand operand of an assignment operator, but for one difficulty: function calls are permitted to
return references. This possibility is admitted purely for the sake of host objects. No built-in ECMAScript
function defined by this specification returns a reference and there is no provision for a user-defined function
to return a reference. (Another reason not to use a syntactic case analysis is that it would be lengthy and
awkward, affecting many parts of the specification.)

Another use of the Reference type is to explain the determination of the this value for a function call.

A Referenceis a reference to a property of an object. A Reference consists of two components, the base
objectand the property name.

The following abstract operations are used in this specification to access the components of references:

1 GetBase(V). Returns the base object component of the reference V.
1 GetPropertyName(V). Returns the property name component of the reference V.

The following abstract operations are used in this specification to operate on references:

GetValue (V)

1. If Type(V) is not Reference, return V.

2. Call GetBase(V).

3. If Result(2) is null, throw a ReferenceError exception.

4. Call the [[Get]] method of Result(2), passing GetPropertyName(V) for the property name.

8.7.2

8.8

8.9

-29 -

5. Return Result(4).

PutValue (V, W)

1. If Type(V) is not Reference, throw a ReferenceError exception.

2. Call GetBase(V).

3. If Result(2) is null, go to step 6.

4. Call the [[Put]] method of Result(2), passing GetPropertyName(V) for the property name and W for the
value.

5. Return.

6. Call the [[Put]] method for the global object, passing GetPropertyName(V) for the property name and W
for the value.

7. Return.

The List Type

The internal List type is not a language data typk is defined by this specification purely for expository
purposes. An implementation of ECMAScript must behave as if it produced and operated upon List values in
the manner described here. However, a value of the List type is used only as an intermediate result of
expression evaluation and cannot be stored as the value of a variable or property.

The List type is used to explain the evaluation of argument lists (see 11.2.4) in new expressions and in
function calls. Values of the List type are simply ordered sequences of values. These sequences may be of any
length.

The Completion Type

The internal Completion type is not a language data tygeis defined by this specification purely for
expository purposes. An implementation of ECMAScript must behave as if it produced and operated upon
Completion values in the manner described here. However, a value of the Completion type is used only as an
intermediate result of statement evaluation and cannot be stored as the value of a variable or property.

The Completion type is used to explain the behaviour of statements (break , continue , return and
throw) that perform nonlocal transfers of control. Values of the Completion type are triples of the form (type
value target), where typeis one of normal, break, continue, return, or throw, valueis any ECMAScript
value or empty, and targetis any ECMAScript identifier or empty.

The term “abrupt completion” refers to any completion with a type other than normal.

Type Conversion

The ECMAScript runtime system performs automatic type conversion as needed. To clarify the semantics of
certain constructs it is useful to define a set of conversion operators. These operators are not a part of the

language; they are defined here to aid the specification of the semantics of the language. The conversion

operators are polymorphic; that is, they can accept a value of any standard type, but not of type Reference, List,
or Completion (the internal types).

9.1

ToPrimitive

The operator ToPrimitive takes a Value argument and an optional argument PreferredType The operator
ToPrimitive converts its value argument to a non-Object type. If an object is capable of converting to more
than one primitive type, it may use the optional hint PreferredTypeto favour that type. Conversion occurs
according to the following table:

- 30 -

Input Type Result

Undefined The result equals the input argument (no conversion).

Null The result equals the input argument (no conversion).

Boolean The result equals the input argument (no conversion).

Number The result equals the input argument (no conversion).

String The result equals the input argument (no conversion).

Object Return a default value for the Object. The default value of an object is retriey
calling the internal [[DefaultValue]] method of the object, passing the optiona
PreferredType The behdiour of the [[DefaultValue]] method is defined by th
specification for all native ECMAScript objects (8.6.2.6).

9.2 ToBoolean
The operator ToBoolean converts its argument to a value of type Boolean according to the following table:

Input Type Result

Undefined false

Null false

Boolean The result equals the input argument (no conversion).

Number The result idalse if the argument is-0, - 0, or NaN; otherwise the result true.

String The result idalse if the argument is the empty string (iteidgh is zero); otherwise
the result igrue.

Object true

9.3 ToNumber
The operator ToNumber converts its argument to a value of type Number according to the following table:

Input Type Result

Undefined NaN

Null +0

Boolean The result isl if the argunent istrue. The result is+0 if the argument ifalse.

Number The result equals the input argument (no conversion).

String See grammar and note below.

Object Apply the following steps:
1. Call ToPrimitive(input argument, hint Number).
2. Call ToNumber(Resul)).
3. Return Result(2).

9.3.1 ToNumber Applied to the String Type

ToNumber applied to strings applies the following grammar to the input string. If the grammar cannot

interpret the string as an expansion of StringNumericLiteralthen the result of ToONumber is NaN.

StringNumericLiteral::
StrWhiteSpacg,
StrWhiteSpacg, StrNumericL iteral StiW hite Spage

StrwhiteSpace:

StrwWhiteSpaceChar StrwW hiteSpaee

- 31 -

StrWhiteSpaceChar.
<TAB>
<SP>
NBSP>
<FF>
VT>
<CR>
1P
<S>
PS>
<USpP>

StrNumericLiterat::
StrDecimalLiteral
HexIntegerLiteral

StrDecimalLiteral::
StrUnsignedDecimallLiteral
+ StrUnsignedDecimalLiteral
- StrUnsignedDecimalLiteral

StrUnsignedDecimalL iteral:
Infinity
DecimalDigits. DecimalDigits,,.[ExponentPar,,
. DecimalDigits ExponentPay,
DecimalDigits ExponentPagt,

DecimalDigits:::
DecimalDigit
DecimalDigits DecimalDigit

DecimalDigit::: one of
0123456789

ExponentPart::
Exponentindicator Signedinteger

Exponentindicator:: one of
e E

Signedinteger:
DecimalDyits
+ DecimalDigits
- DecimalDigits

HexIntegerLiteral:
0x HexDigit
0X HexDigit
HexIntegerLiteral HexDigit

HexDigit::: one of
0123456789abcdefABCDETF

Some differences should be noted between the syntax of a StringNumericLiteraland a NumericLiteral(see
7.8.3):

1 A StringNumericLiteraimay be preceded and/or followed by white space and/or line terminators.
1 A StringNumericLiterakhat is decimal may have any number of leading O digits.

1 A StringNumericLiterakhat is decimal may be preceded by + or - to indicate its sign.

1 A StringNumericLiterakhat is empty or contains only white space is converted to +0.

-32-

The conversion of a string to a number value is similar overall to the determination of the number value for
a numeric literal (see 7.8.3), but some of the details are different, so the process for converting a string
numeric literal to a value of Number type is given here in full. This value is determined in two steps: first, a
mathematical value (MV) is derived from the string numeric literal; second, this mathematical value is
rounded as described below.

1 The MV of StringNumericLiteral:: [empty] is O.

1 The MV of StringNumericLiteral:: StrWhiteSpacés 0.

1 The MV of StringNumericLiteral::: StrWhiteSpacg: StrNumeicLiteral StrWhiteSpacg: is the MV

of StrNumericLitera) no matter whether white space is present or not.

The MV of StrNumericLiteral::: StrDecimalLiteralis the MV of StrDecimalLiteral.

The MV of StrNumericLiteral::: HexIntegerLiteralis the MV of HexIntegerLiteral

The MV of StrDecimalLiteral ::: StrUnsignedDecimalLiteral is the MV of

StrUnsignedDecimalLiteral

1 The MV of StrDecimalLiteral:: + StrUnsignedDecimallLiteral is the MV of
StrUnsignedDecimalLiteral

i The MV of StrDecimallLiteral:: - StrUnsigredDecimalLiteral is the negative of the MV of
StrUnsignedDecimalLiteral(Note that if the MV of StrUnsignedDecimalLiterais 0, the negative of
this MV is also 0. The rounding rule described below handles the conversion of this sign less
mathematical zero to a floating-point +0 or - O as appropriate.)

1 The MV of StrUnsignedDecimalLiteral: Infinity is 101909 (3 value so large that it will round to
+a).

1 The MV of StrUnsignedDecimalLiteral: DecimalDigits is the MV of DecimalDigits

1 The MV of StrUnsignedDeimalLiteral::: DecimalDigits DecimalDigits is the MV of the first
DecimalDigits plus (the MV of the second DecimalDigits times 10" "), where n is the number of
characters in the second DecimalDigit.

1 The MV of StrtUnsignedDecimalLiteral DecimalDigits ExponentPartis the MV of DecimalDigitstimes
104 wheree is the MV ofExponentPart

1 The MV ofStrUnsignedDecimalLiteral DecimalDigits DecimalDigits ExponentPait (the MV of the first

DecimalDigits plus (the MV of the seconBecimalDigitstimes 104) times 16, wheren is the number of
characters in the secoiecimalDigis ande is the MV ofExponentPart

1 The MV of StrtUnsignedDecimallLiteral. DecimalDigitsis the MV ofDecimalDigitstimes 104 wheren is
the number of charactersecimalDigits.

1 The MV of StrUnsignedDecimalLiteral. DecimalDigits ExponentPais the MV of DecimalDigits times
107 2 wheren is the number of charactersiecimalDigis ande is the MV ofExponentPart
1 The MV ofStrUnsignedDecimalLiteral DecimalDigitsis the MV of DecimalDigits

1 The MV ofStrUnsignedDecimalLiteral DecimalDigitsExponentParis the MV ofDecimalDigitstimes 10,
wheree is the MV ofExponentPart

1 The MV ofDecimalDigits::: DecimalDigitis the MV ofDecimalDigit

= —a —a

1 The MV of DecimalDigits::: DecimalDigits DecimalDigitis (the MV ofDecimalDigitstimes 10) plus the MV
of DecimalDigit

1 The MV ofExponentPart:: Exponentindicator Signedintegisrthe MV ofSignedinteger

1 The MV ofSignedinteger.: DecimalDigitsis the MV ofDecimalDigits

1 The MV of Signedinteger.: + DecimalDigitsis the MV ofDecimalDigits

1 The MV ofSignedinteger: - DecimalDigitsis the negative of the MV d@ecimalDigits

1 The MV ofDecimalDigit::: 0 or of HexDigit::: 0 is 0.

1 The MV ofDecimalDigit::: 1 or ofHexDigit::: 1is 1.

1 The MV ofDecimalDigit::: 2 or of HexDigit::: 2 is 2.

1 The MV ofDecimalDigit::: 3 or of HexDigit::: 3 is 3.

1 The MV ofDecimalDigit::: 4 or of HexDigit::: 4 is 4.

1 The MV ofDecimalDigit::: 5 or ofHexDigit::: 5 is 5.

1 The MV ofDecimalDigit::: 6 or of HexDigit::: 6 is 6.

1 The MV ofDecimalDigit::: 7 or of HexDigit::: 7 is 7.

9.4

9.5

- 33 -

The MV ofDecimalDigit::: 8 or of HexDigit::: 8 is 8.

The MV ofDecimalDigit::: 9 or of HexDigit::: 9 is 9.

The MV ofHexDigit::: a or of HexDigit::: Ais 10.

The MV of HexDigit::: b or ofHexDigit::: Bis 11.

The MV ofHexDigit::: ¢ or ofHexDigit::: Cis 12.

The MV ofHexDigit::: d or of HexDigit::: Dis 13.

The MV ofHexDigit::: e or ofHexDigit::: Eis 14.

The MV ofHexDigit::: f or ofHexDigit::: Fis 15.

The MV ofHexIntegerLiterat:: Ox HexDigitis the MV ofHexDigit
The MV ofHexIntegerLiterat:: 0X HexDigitis the MV ofHexDigit

The MV ofHexIntegerLiteral:: HexIntegerLiteraHexDigitis (the MV ofHexIntegerLiteratimes 16) plus
the MV ofHexDigit

=4 =4 —48 & 8 & _a _a _a _9a -2

Once the exact MV for a string numeric literal has been determined, it is then rounded to a value of the
Number type. If the MV is 0, then the rounded value is +0 unless the first non white space character in the
string numeric literal is ‘-, in which case the rounded value is - 0. Otherwise, the rounded value must be
the number value for the MV (in the sense defined in 8.5), unless the literal includes a
StrUnsignedDecimalLiteraind the literal has more than 20 significant digits, in which case the number
value may be either the number value for the MV of a literal produced by replacing each significant digit
after the 20th with a O digit or the number value for the MV of a literal produced by replacing each
significant digit after the 20th with a 0 digit and then incrementing the literal at the 20th digit position. A
digit is significantif it is not part of an ExponentParand

9 itisnotO; or
9 there is a nonzero digit to its left and there is a nonzero digit, not in the ExponentPartto its right.

Tolnteger
The operator Tolnteger converts its argument to an integral numeric value. This operator functions as follows:

Call ToNumber on the input argument.

If Result(1) is NaN, return +0.

If Result(1) is +0, - O, +&, or - &, return Result(1).
Compute sign(Result(1)) * floor(abs(Result(1))).
Return Result(4).

Tolnt32: (Signed 32 Bit Integer)

The operator Tolnt32 converts its argument to one of 232 integer values in the range - 2% through 23!- 1,
inclusive. This operator functions as follows:

aorwbdE

Call ToNumber on the input argument.

If Result(1) is NaN, +0, - 0, +&, or - o, return +0.

Compute sign(Result(1)) * floor(abs(Result(1))).

Compute Result(3) modulo 2%?; that is, a finite integer value k of Number type with positive sign and less
than 2% in magnitude such the mathematical difference of Result(3) and k is mathematically an integer
multiple of 232,

5. If Result(4) is greater than or equal to 23, return Result(4)- 232, otherwise return Result(4).

PO PR

NOTE
Given the above definition of Tolnt32:

The Tolnt32 peration is idempotent: if applied to a result that it produced, the second application leaves that value
unchanged.

Tolnt32(ToUint32(x)) is equal to Tolnt32(x) for all values of x. (It is to preserve this latter property ¢hand - 2 are
mapped to +0.)

Tolnt32 maps 0 to +0.

9.6

9.7

9.8

- 34 -

ToUint32: (Unsigned 32 Bit Integer)

The operator ToUint32 converts its argument to one of 232 integer values in the range O through 232-1,
inclusive. This operator functions as follows:

1. Call ToNumber on the input argument.

2. If Result(l) is NaN, +0, - 0, +a, or - o, return +0.

3. Compute sign(Result(1)) * floor(abs(Result(1))).

4. Compute Result(3) modulo 2%; that is, a finite integer value k of Number type with positive sign and less
than 232 in magnitude such the mathematical difference of Result(3) and k is mathematically an integer
multiple of 232,

5. Return Result(4).

NOTE
Given the above definition of ToUInt32:

Step 5 is the only difference between ToUint32 and Tolnt32.

The ToUint32 operation is idempotent: if applied to a result th@roduced, the second application leaves that value
unchanged.

ToUint32(Tolnt32(x)) is equal to ToUint32(x) for all values of x. (It is to preserve this latter property thahd - o
are mapped to +0.)

ToUint32 maps 0 to +0.

ToUint16: (Unsigned 16 Bt Integer)

The operator ToUint16 converts its argument to one of 2'® integer values in the range O through 2%6-1,
inclusive. This operator functions as follows:

1. Call ToNumber on the input argument.

2. IfResult(l) is NaN, +0, -0, +a, or - &, return +0.

3. Compute sign(Result(1)) * floor(abs(Result(1))).

4. Compute Result(3) modulo 21; that is, a finite integer value k of Number type with positive sign and less
than 26 in magnitude such the mathematical difference of Result(3) and k is mathematically an integer
multiple of 216,

5. Return Result(4).

NOTE
Given the above definition of ToUint16:

The substitution of % for 2°2in step 4 is the only difference between ToUint32 and ToUint16.
ToUint16 maps 0 to +0.

ToString
The operator ToString converts its argument to a value of type String according to the following table:

- 35 -

Input Type Result
Undefined "undefined"
Null "null
Boolean If the argument isrue , then the result igrue”
If the argument ifalse, then the result ialse”
Number See note below.
Stiing Return the input argument (no conversion)
Object Apply the following steps:
Call ToPrimitive(input argument, hint String).
Call ToString(Result(1)).
Return Result(2).

9.8.1

ToString Applied to the Number Type
The operator ToString converts a number m to string format as follows:

If mis NaN, return the string "NaN" .

If mis +0 or - O, return the string "0" .

If mis less than zero, return the string concatenation of the string " - " and ToString(- m).

If mis infinity, return the string "Infinity"

Otherwise, let n, k, and s be integers such that k2 1, 10! ¢ s < 10, the number value for s3 10" ¥ is

m, and k is as small as possible. Note that k is the number of digits in the decimal representation of s,

that s is not divisible by 10, and that the least significant digit of s is not necessarily uniquely

determined by these criteria.

6. Ifk¢ n¢ 21, return the string consisting of the k digits of the decimal representation of s (in order, with
no leading zeroes), followed by n-k occurrences of the character ‘0°.

7. If0 < n ¢ 21, return the string consisting of the most significant n digits of the decimal representation of
s, followed by a decimal point ‘. °, followed by the remaining k- n digits of the decimal representation of
S.

8. If-6 <n ¢ 0, return the string consisting of the character ‘0’, followed by a decimal point ‘. °, followed
by - n occurrences of the character ‘0’, followed by the k digits of the decimal representation of s.

9. Otherwise, if k = 1, return the string consisting of the single digit of s, followed by lowercase character
‘e’, followed by a plus sign ‘+’ or minus sign ‘- > according to whether n- 1 is positive or negative,
followed by the decimal representation of the integer abs(n- 1) (with no leading zeros).

10.Return the string consisting of the most significant digit of the decimal representation of s, followed by

a decimal point .’, folloarwed by the remaining k- 1 digits of the decimal representation of s, followed

by the lowercase character ‘e’, followed by a plus sign ‘+’ or minus sign ‘-’ according to whether n- 1

is positive or negative, followed by the decimal representation of the integer abs(n- 1) (with no leading

Zeros).

S

NOTE
The following observations may be useful as guidelines for implementations, but are not part of the normativ
requirements of this Standard:

If x is any number value other tha®, then ToNumber(ToString(x)) is exactly the same number value as x.
The least significant digit of s is not always uniquely determined by the requirements listed in step 5.

For implementationghat provide more accurate conversions than required by the rules above, it is recommendec
that the following alternative version of step 5 be used as a guideline:

Otherwise, let n, k, and s be integers such thétlk 10“* ¢ s < 10}, the number valueof s 3 10¥is m, and k is

as small as possible. If there are multiple possibilities for s, choose the value of s for whigh-§is closest in
value to m. If there are two such possible values of s, choose the one that is even. Note that k iseh®fnum
digits in the decimal representation of s and that s is not divisible by 10.

- 36 -

Implementors of ECMAScript may find useful the paper and code written by David M. Gay for-tohtgimal
conversion of floatingpoint numbers:

Gay, David M. Correctly Rended BinaryDecimal and DecimaBinary Conversions. Numerical Analysis
Manuscript 9010. AT&T Bell Laboratories (Murray Hill, New Jersey). November 30, 1990. Available as

http://cm.bell - labs.com/cm/cs/doc/90/4 -10.ps.gz . Associated code available as
http:/ /cm.bell - labs.com/netlib/fp/dtoa.c.gz andashttp://cm.bell -
labs.com/netlib/fp/g_fmt.c.gz and may also be found at the variouwstlib mirror sites.
9.9 ToObject
The operator ToObject converts its argument to a value of type Object according to the following table:

Input Type Result

Undefined Throw aTypeEnor exception.

Null Throw aTypeEnor exception.

Boolean Create a new Boolean object whose [[value]] property is set to the value

boolean. See 15.6 for a description of Boolean objects.

Number Create a new Number object whose [[value]] property is set to the value

number. See 15.7 for a description of Number objects.

String Create a new String object whose [[value]] property is set to the value of the
See 15.5 for a description 8fring objects.
Object The result is the input argument (no conversion).

10 Execution Contexts

When control is transferred to ECMAScript executable code, control is entering an execution contextActive
execution contexts logically form a stack. The top execution context on this logical stack is the running execution

context.
10.1 Definitions
10.1.1 Function Objects

10.1.2

There are two types of Function objects:

1

Program functions are defined in source text by a FunctionDeclarationor created dynamically either by
using a FunctionExpressiomwr by using the built-in Function object as a constructor.

Internal functions are built-in objects of the language, such as parselnt and Math.exp . An
implementation may also provide implementation-dependent internal functions that are not described in
this specification. These functions do not contain executable code defined by the ECMAScript grammar,
so they are excluded from this discussion of execution contexts.

Types of Executable Code
There are three types of ECMAScript executable code:

1

Global codeis source text that is treated as an ECMAScript Program The global code of a particular
Programdoes not include any source text that is parsed as part of a FunctionBody

Eval codeis the source text supplied to the built-in eval function. More precisely, if the parameter to
the built-in eval function is a string, it is treated as an ECMAScript Program The eval code for a
particular invocation of eval is the global code portion of the string parameter.

Function codeis source text that is parsed as part of a FunctionBody The function codeof a particular
FunctionBodydoes not include any source text that is parsed as part of a nested FunctionBody Function
codealso denotes the source text supplied when using the built-in Function object as a constructor.
More precisely, the last parameter provided to the Function constructor is converted to a string and
treated as the FunctionBody If more than one parameter is provided to the Function constructor, all
parameters except the last one are converted to strings and concatenated together, separated by commas.

10.1.3

101.4

- 37 -

The resulting string is interpreted as the FormalParameterLisfor the FunctionBodydefined by the last
parameter. The function codefor a particular instantiation of a Function does not include any source
text that is parsed as part of a nested FunctionBody

Variable Instantiation

Every execution context has associated with it a variable object. Variables and functions declared in the
source text are added as properties of the variable object. For function code, parameters are added as
properties of the variable object.

Which object is used as the variable object and what attributes are used for the properties depends on the
type of code, but the remainder of the behaviour is generic. On entering an execution context, the properties
are bound to the variable object in the following order:

9 For function code: for each formal parameter, as defined in the FormalParameterListcreate a property
of the variable object whose name is the ldentifier and whose attributes are determined by the type of
code. The values of the parameters are supplied by the caller as arguments to [[Call]]. If the caller
supplies fewer parameter values than there are formal parameters, the extra formal parameters have
value undefined. If two or more formal parameters share the same name, hence the same property, the
corresponding property is given the value that was supplied for the last parameter with this name. If the
value of this last parameter was not supplied by the caller, the value of the corresponding property is
undefined.

9 For each FunctionDeclarationin the code, in source text order, create a property of the variable object
whose name is the Identifier in the FunctionDeclaration whose value is the result returned by creating
a Function object as described in 13, and whose attributes are determined by the type of code. If the
variable object already has a property with this name, replace its value and attributes. Semantically, this
step must follow the creation of FormalParameterLisproperties.

9 For each VariableDeclarationor VariableDeclarationNolnin the code, create a property of the variable
object whose name is the Identifier in the VariableDeclarationor VariableDeclarationNoln whose
value is undefined and whose attributes are determined by the type of code. If there is already a
property of the variable object with the name of a declared variable, the value of the property and its
attributes are not changed. Semantically, this step must follow the creation of the FormalParameterList
and FunctionDeclarationproperties. In particular, if a declared variable has the same name as a
declared function or formal parameter, the variable declaration does not disturb the existing property.

Scope Chain and Identifier Resolution

Every execution context has associated with it a scope chain. A scope chain is a list of objects that are
searched when evaluating an ldentifier. When control enters an execution context, a scope chain is created
and populated with an initial set of objects, depending on the type of code. During execution within an
execution context, the scope chain of the execution context is affected only by with statements (see 12.10)
and catch clauses (see 12.14).

During execution, the syntactic production PrimaryExpression Identifier is evaluated using the following
algorithm:

1. Get the next object in the scope chain. If there isn't one, go to step 5.

2. Call the [[HasProperty]] method of Result(1), passing the Identifier as the property.

3. If Result(2) is true, return a value of type Reference whose base object is Result(1) and whose property
name is the Identifier.

4. Gotostep 1.

5. Return a value of type Reference whose base object is null and whose property name is the Identifier.

The result of evaluating an identifier is always a value of type Reference with its member name component
equal to the identifier string.

10.1.5

10.1.6

10.1.7

10.1.8

10.2

- 38 -

Global Object

There is a unique global object(15.1), which is created before control enters any execution context. Initially
the global object has the following properties:

1 Built-in objects such as Math, String, Date, parselnt, etc. These have attributes { DontEnum }.

9 Additional host defined properties. This may include a property whose value is the global object itself;
for example, in the HTML document object model the window property of the global object is the
global object itself.

As control enters execution contexts, and as ECMAScript code is executed, additional properties may be
added to the global object and the initial properties may be changed.

Activation Object

When control enters an execution context for function code, an object called the activation object is created
and associated with the execution context. The activation object is initialised with a property with name
arguments and attributes { DontDelete }. The initial value of this property is the arguments object
described below.

The activation object is then used as the variable object for the purposes of variable instantiation.

The activation object is purely a specification mechanism. It is impossible for an ECMAScript program to
access the activation object. It can access members of the activation object, but not the activation object
itself. When the call operation is applied to a Reference value whose base object is an activation object,
null is used as the this value of the call.

This
There is a this value associated with every active execution context. The this value depends on the caller

and the type of code being executed and is determined when control enters the execution context. The this
value associated with an execution context is immutable.

Arguments Object

When control enters an execution context for function code, an arguments object is created and initialised
as follows:

9 The value of the internal [[Prototype]] property of the arguments object is the original Object prototype
object, the one that is the initial value of Object.prototype (see 15.2.3.1).

9 A property is created with name callee and property attributes { DontEnum }. The initial value of
this property is the Function object being executed. This allows anonymous functions to be recursive.

9 A property is created with name length and property attributes { DontEnum }. The initial value of
this property is the number of actual parameter values supplied by the caller.

1 For each non-negative integer, arg, less than the value of the length property, a property is created
with name ToString(arg) and property attributes { DontEnum }. The initial value of this property is the
value of the corresponding actual parameter supplied by the caller. The first actual parameter value
corresponds to arg = 0, the second to arg = 1, and so on. In the case when arg is less than the number
of formal parameters for the Function object, this property shares its value with the corresponding
property of the activation object. This means that changing this property changes the corresponding
property of the activation object and vice versa.

Entering An Execution Context

Every function and constructor call enters a new execution context, even if a function is calling itself
recursively. Every return exits an execution context. A thrown exception, if not caught, may also exit one or
more execution contexts.

When control enters an execution context, the scope chain is created and initialised, variable instantiation is
performed, and the this value is determined.

The initialisation of the scope chain, variable instantiation, and the determination of the this value depend on
the type of code being entered.

-39 -

10.2.1 Global Code

f
f

1

The scope chain is created and initialised to contain the global object and no others.

Variable instantiation is performed using the global object as the variable object and using property
attributes { DontDelete }.

The this value is the global object.

10.2.2 Eval Code

When control enters an execution context for eval code, the previous active execution context, referred to as
the calling contextis used to determine the scope chain, the variable object, and the this value. If there is

no

calling context, then initialising the scope chain, variable instantiation, and determination of the this

value are performed just as for global code.

1

f

The scope chain is initialised to contain the same objects, in the same order, as the calling context's
scope chain. This includes objects added to the calling context's scope chain by with statements and
catch clauses.

Variable instantiation is performed using the calling context's variable object and using empty property
attributes.

The this value is the same as the this value of the calling context.

10.2.3 Function Code

1

1

1

The scope chain is initialised to contain the activation object followed by the objects in the scope chain
stored in the [[Scope]] property of the Function object.

Variable instantiation is performed using the activation object as the variable object and using property
attributes { DontDelete }.

The caller provides the this value. If the this value provided by the caller is not an object (including the
case where it is null), then the this value is the global object.

11 Expressions
11.1 Primary Expressions

Syntax

PrimaryExpression

this
Identifier
Literal

ArrayLiteral
ObjectLiteral
(Expression

11.1.1 Thethis Keyword
The this keyword evaluates to the this value of the execution context.

11.1.2 Identifier Reference

An Identifier is evaluated using the scoping rules stated in 10.1.4. The result of evaluating an Identifier is
always a value of type Reference.

11.1.3 Literal Reference
A Literal is evaluated as described in 7.8.

11.1.4 Array Initialiser

An array initialiser is an expression describing the initialisation of an Array object, written in a form of a
literal. It is a list of zero or more expressions, each of which represents an array element, enclosed in square
brackets. The elements need not be literals; they are evaluated each time the array initialiser is evaluated.

- 40 -

Array elements may be elided at the beginning, middle or end of the element list. Whenever a comma in the
element list is not preceded by an AssignmentBxression(i.e., a comma at the beginning or after another
comma), the missing array element contributes to the length of the Array and increases the index of
subsequent elements. Elided array elements are not defined.

Syntax

ArrayLiteral :
[Elision,]
[ElementList]
[ElementList Elision,,,]

ElementList
Elision,.» A ssignmentExpression
ElementList Elision,,: A ssignmentExpression

Elision:
Elision,
Semantics

The production ArrayLiteral : [Elisionopt] is evaluated as follows:

1. Create a new array as if by the expression new Array()

2. Evaluate Elision; if not present, use the numeric value zero.

3. Call the [[Put]] method of Result(1) with arguments " length " and Result(2).
4. Return Result(1).

The production ArraylLiteral: [ElementList] is evaluated as follows:

1. Evaluate ElementList
2. Return Result(1).

The production ArrayLiteral : [ElementList, Elisionope] is evaluated as follows:

Evaluate ElementList

Evaluate Elision; if not present, use the numeric value zero.

Call the [[Get]] method of Result(1) with argument " length .

Call the [[Put]] method of Result(1) with arguments " length " and (Result(2)+Result(3)).
Return Result(1).

abkrwnE

The production ElementList Elision,,: AssignmentExpressiois evaluated as follows:

Create a new array as if by the expression new Array()

Evaluate Elision; if not present, use the numeric value zero.

Evaluate AssignmentExpression

Call GetValue(Result(3)).

Call the [[Put]] method of Result(1) with arguments Result(2) and Result(4).
Return Result(1)

ecarwhE

The production ElementList: ElementList Elisiony,,: AssignmentExpressiois evaluated as follows:

Evaluate ElementList

Evaluate Elision; if not present, use the numeric value zero.

Evaluate AssignmentExpression

Call GetValue(Result(3)).

Call the [[Get]] method of Result(1) with argument " length

Call the [[Put]] method of Result(1) with arguments (Result(2)+Result(5)) and Result(4).
Return Result(1)

NooakwbdpE

11.1.5

Syntax

- 41 -

The production Elision: , is evaluatedas follows:

1. Return the numeric value 1.

The production Elision: Elision, is evaluated as follows:

1. Evaluate Elision.
2. Return (Result(1)+1).

Object Initialiser

An object initialiser is an expression describing the initialisation of an Object, written in a form resembling
a literal. It is a list of zero or more pairs of property names and associated values, enclosed in curly braces.
The values need not be literals; they are evaluated each time the object initialiser is evaluated.

ObjectLiteral:

{}

{ PropertyNameAndV alueLis}

PropertyNameAndV alueL ist
PropertyName AssignmentExpression
PropertyNameAndV alueList PropertyName AssignmentExpression

PropertyName
Identifier
StringLiteral
NumericLiteral

Semantics
The production ObjectLiteral: { } isevaluated as follows:

1. Create a new object as if by the expression new Object()
2. Return Result(1).

The production ObjectLiteral: { PropertyNameAndValueLi$t is evaluated as follows:

1. Evaluate PropertyNameAndValueList
2. Return Result(1);

The production
PropertyNameAndValueList PropertyName AssignmentExpressi
is evaluated as follows:

Create a new object as if by the expression new Object()

Evaluate PropertyName

Evaluate AssignmentExpression

Call GetValue(Result(3)).

Call the [[Put]] method of Result(1) with arguments Result(2) and Result(4).
Return Result(1).

oA~ wN R

The production
PropertyNameAndValueList PropertyNameAndValueListPropertyName AssignmentExpression
is evaluated as follows:

Evaluate PropertyNameAndValuelList

Evaluate PropertyName

Evaluate AssignmentExpression

Call GetValue(Result(3)).

Call the [[Put]] method of Result(1) with arguments Result(2) and Result(4).

o whE

42 -

6. Return Result(1).

The production PropertyName Identifier is evaluated as follows:

1. Form a string literal containing the same sequence of characters as the Identifier.
2. Return Result(1).

The production PropertyName StringLiteral is evaluated as follows:

1. Return the value of the StringLiteral

The production PropertyName NumericLiteral is evaluated as follows:

1. Form the value of the NumericLiteral
2. Return ToString(Result(1)).

11.1.6 The Grouping Operator
The production PrimaryExpression (Expression) is evaluated as follows:
1. Evaluate ExpressionThis may be of type Reference.
2. Return Result(1).
NOTE
This algorithm does not apply GetValue to Result(1). The principal ntativéor this is so that operators
such asdelete andtypeof may be applied to parenthesised expressions.
11.2 Left-Hand-Side Expressions
Syntax
MemberExpression
PrimaryExpression
FunctionExpression

MemberExpressioh Expressior]
MemberExpression Idertifier
new MemberExpressiomPArguments

NewExpression

MemberExpression
new NewEXxpression

CallExpression

MemberExpressiorArguments
CallExpression Arguments
CallExpressior] Expression
CallExpression Identifier

Arguments

()

(ArgumentList)

ArgumentList:

AssignmentExpression
ArgumentList AssignmentExpression

LeftHandSideExpressian

NewExpression
CallExpression

11.2.1

Property Accessors
Properties are accessed by name, using either the dot notation:

- 43 -

MemberExpression Identifier
CallExpression Identifier
or the bracket notation:
MemberExpressioh Expressior]
CallExpressiorf Expressiori
The dot notation is explained by the following syntactic conversion:
MemberExpression Identifier

is identical in its behaviour to
MemberExpressioph <identifier-string>]

and similarly

CallExpression Identifier

is identical in its behaviour to
CallExpressior] <dentifier-string>]

where <identifier-string> is a string literal containing the same sequence of characters as the Identifier.
The production MemberExpression MemberExpressiop Expressior] is evaluated as follows:

Evaluate MemberExpressian

Call GetValue(Result(1)).

Evaluate Expression

Call GetValue(Result(3)).

Call ToObject(Result(2)).

Call ToString(Result(4)).

Return a value of type Reference whose base object is Result(5) and whose property name is Result(6).

NooA~whE

The production CallExpression: CallExpression Expression is evaluated in exactly the same manner,
except that the contained CallExpressioris evaluated in step 1.

11.2.2 The new Operator
The production NewExpression new NewExpressiolis evaluated as follows:

Evaluate NewExpression

Call GetValue(Result(1)).

If Type(Result(2)) is not Object, throw a TypeError exception.

If Result(2) does not implement the internal [[Construct]] method, throw a TypeError exception.
Call the [[Construct]] method on Result(2), providing no arguments (that is, an empty list of
arguments).

6. Return Result(5).

SARE IR o

The production MemberExpressionnew MemberExpression Argumeritsevaluated as follows:

Evaluate MemberExpressian

Call GetValue(Result(1)).

Evaluate Argumentsproducing an internal list of argument values (11.2.4).

If Type(Result(2)) is not Object, throw a TypeError exception.

If Result(2) does not implement the internal [[Construct]] method, throw a TypeError exception.
Call the [[Construct]] method on Result(2), providing the list Result(3) as the argument values.
Return Result(6).

NogohkwheE

- 44 -

11.2.3 Function Calls
The production CallExpression MemberExpressioArgumentss evaluated as follows:
1. Evaluate MemberExpression
2. Evaluate Argumentsproducing an internal list of argument values (see 11.2.4).
3. Call GetValue(Result(1)).
4. If Type(Result(3)) is not Object, throw a TypeError exception.
5. If Result(3) does not implement the internal [[Call]] method, throw a TypeError exception.
6. If Type(Result(1)) is Reference, Result(6) is GetBase(Result(1)). Otherwise, Result(6) is null.
7. If Result(6) is an activation object, Result(7) is null. Otherwise, Result(7) is the same as Result(6).
8. Call the [[Call]] method on Result(3), providing Result(7) as the this value and providing the list

Result(2) as the argument values.

9. Return Result(8).
The production CallExpression: CallExpression Argumentsis evaluated in exactly the same manner,
except that the contained CallExpressiornis evaluated in step 1.
NOTE
Result(8) will never be of type Reference if Result(3) is a native ECMAScript object. Whether calling a
host object can return a value of type Reference is implementdéipandent.

11.2.4 Argument Lists
The evaluation of an argument list produces an internal list of values (see 8.8).
The production Arguments () is evaluated as follows:
1. Return an empty internal list of values.
The production Arguments (ArgumentList) is evaluated as follows:
1. Evaluate ArgumentList
2. Return Result(1).
The production ArgumentList AssignmentExpressiois evaluated as follows:
1. Evaluate AssignmentExpression
2. Call GetValue(Result(1)).
3. Return an internal list whose sole item is Result(2).
The production ArgumentList ArgumentList, AssignmentExmssion is evaluated as follows:
1. Evaluate ArgumentList
2. Evaluate AssignmentExpression
3. Call GetValue(Result(2)).
4. Return an internal list whose length is one greater than the length of Result(1) and whose items are the

items of Result(1), in order, followed at the end by Result(3), which is the last item of the new list.

11.2.5 Function Expressions
The production MemberExpressionFunctionExpressiotis evaluated as follows:
1. Evaluate FunctionExpression
2. Return Result(1).

11.3 Postfix Expressions
Syntax
PostfikExpression
LeftHandSideExpression

LeftHandSideExpressiomg Zme7zmimnatorhere] ++
LeftHandSideExpressiomg Zims7aminatorherel --

- 45 -

11.3.1 Postfix Increment Operator

The production PostfixExpression LeftHandSideExpressiorno LineTerminatorhere] ++ is evaluated as
follows:

Evaluate LeftHandSideExpression

Call GetValue(Result(1)).

Call ToNumber(Result(2)).

Add the value 1 to Result(3), using the same rules as for the + operator (see 11.6.3).
Call PutValue(Result(1), Result(4)).

Return Result(3).

ogakhwbdPE

11.3.2 Postfix Decrement Operator

The production PostfixExpression LeftHandSideExpressiomno LineTerminatorhere] -- is evaluated as
follows:

Evaluate LeftHandSideExpression

Call GetValue(Result(1)).

Call ToNumber(Result(2)).

Subtract the value 1 from Result(3), using the same rules as for the - operator (11.6.3).
Call PutValue(Result(1), Result(4)).

Return Result(3).

o hkwhE

11.4 Unary Operators
Syntax

UnaryExpression
PostfixExpression
delete UnaryExpression
void UnaryExpression
typeof UnaryExpression
++ UnaryExpression
-- UnaryExpression
+ UnaryExpression
- UnaryExpression
~ UnaryExpression
I UnaryExpression

11.4.1 The delete Operator
The production UnaryExpression delete UnaryExpressions evaluated as follows:

Evaluate UnaryExpression

If Type(Result(1)) is not Reference, return true.

Call GetBase(Result(1)).

Call GetPropertyName(Result(1)).

Call the [[Delete]] method on Result(3), providing Result(4) as the property name to delete.
Return Result(5).

ook wWN R

11.4.2 Thevoid Operator
The production UnaryExpression void UnaryExpressions evaluated as follows:

1. Evaluate UnaryExpression
2. Call GetValue(Result(1)).
3. Return undefined.

11.4.3 Thetypeof Operator
The production UnaryExpression typeof UnaryExpressioris evaluated as follows:

1. Evaluate UnaryExpression

- 46 -

2. If Type(Result(1)) is not Reference, go to step 4.
3. If GetBase(Result(1)) is null, return "undefined"”
4. Call GetValue(Result(1)).
5. Return a string determined by Type(Result(4)) according to the following table:
Type Result
Undefined "undefined"
Null "object"
Boolean "boolean”
Number "number”
String "string"

Object (native ang "object"
doesn’t

[[Calll])

Object (native ang "function”
implements [[Call]])

Object (host) Implementatiordependent

11.4.4 Prefix Increment Operator
The production UnaryExpression: ++ UnaryExpressions evaluated as follows:

Evaluate UnaryExpression

Call GetValue(Result(1)).

Call ToNumber(Result(2)).

Add the value 1 to Result(3), using the same rules as for the + operator (see 11.6.3).
Call PutValue(Result(1), Result(4)).

Return Result(4).

e kkwpPE

11.4.5 Prefix Decrement Operator
The production UnaryExpression -- UnaryExpressions evaluated as follows:

Evaluate UnaryExpression

Call GetValue(Result(1)).

Call ToNumber(Result(2)).

Subtract the value 1 from Result(3), using the same rules as for the - operator (see 11.6.3).
Call PutValue(Result(1), Result(4)).

Return Result(4).

ocabkwpE

11.4.6 Unary + Operator
The unary + operator converts its operand to Number type.

The production UnaryExpression + UnaryExpressiorns evaluated as follows:

1. Evaluate UnaryExpression
2. Call GetValue(Result(1)).
3. Call ToNumber(Result(2)).
4. Return Result(3).

11.4.7 Unary - Operator

The unary - operator converts its operand to Number type and then negates it. Note that negating +0
produces - 0, and negating - O produces +0.

The production UnaryExpression - UnaryExpressiorns evaluated as follows:

1. Evaluate UnaryExpression
2. Call GetValue(Result(1)).

oo~ w

- 47 -

Call ToNumber(Result(2)).

If Result(3) is NaN, return NaN.

Negate Result(3); that is, compute a number with the same magnitude but opposite sign.
Return Result(5).

11.4.8 Bitwise NOT Operator (~)
The production UnaryExpression ~ UnaryExpressions evaluated as follows:

agrwbdE

Evaluate UnaryExpression

Call GetValue(Result(1)).

Call ToInt32(Result(2)).

Apply bitwise complement to Result(3). The result is a signed 32-bit integer.
Return Result(4).

11.4.9 Logical NOT Operator (!)
The production UnaryExpression ! UnaryExpressions evaluated as follows:

SUER I

Evaluate UnaryExpression
Call GetValue(Result(1)).

Call ToBoolean(Result(2)).

If Result(3) is true, return false.
Return true.

11.5 Multiplicative Operators

Syntax

Multiplicative Expression
UnaryExpression
Multiplicative Expressiori UnaryExpression
Multiplicative Expressiot UnaryExpression
Multiplicative Expressio#oUnaryExpression

Semantics

The production MultiplicativeExpression MultiplicativeExpression @ UnaryExpressiomhere @ stands for
one of the operators in the above definitions, is evaluated as follows:

1.

Noohkwd

8.

Evaluate MultiplicativeExpression

Call GetValue(Result(1)).

Evaluate UnaryExpression

Call GetValue(Result(3)).

Call ToNumber(Result(2)).

Call ToNumber(Result(4)).

Apply the specified operation (*, /, or %) to Result(5) and Result(6). See the notes below (11.5.1,
11.5.2, 11.5.3).

Return Result(7).

11.5.1 Applying the * Operator

The * operator performs multiplication, producing the product of its operands. Multiplication is
commutative. Multiplication is not always associative in ECMAScript, because of finite precision.

The result of a floating-point multiplication is governed by the rules of IEEE 754 double-precision
arithmetic:

f
f

1

If either operand is NaN, the result is NaN.

The sign of the result is positive if both operands have the same sign, negative if the operands have
different signs.

Multiplication of an infinity by a zero results in NaN.

11.5.2

11.5.3

- 48 -

9 Multiplication of an infinity by an infinity results in an infinity. The sign is determined by the rule
already stated above.

1 Multiplication of an infinity by a finite non-zero value results in a signed infinity. The sign is
determined by the rule already stated above.

1 In the remaining cases, where neither an infinity or NaN is involved, the product is computed and
rounded to the nearest representable value using IEEE 754 round-to-nearest mode. If the magnitude is
too large to represent, the result is then an infinity of appropriate sign. If the magnitude is too small to
represent, the result is then a zero of appropriate sign. The ECMAScript language requires support of
gradual underflow as defined by IEEE 754.

Applying the / Operator

The / operator performs division, producing the quotient of its operands. The left operand is the dividend
and the right operand is the divisor. ECMAScript does not perform integer division. The operands and
result of all division operations are double-precision floating-point numbers. The result of division is
determined by the specification of IEEE 754 arithmetic:

9 If either operand is NaN, the result is NaN.

9 The sign of the result is positive if both operands have the same sign, negative if the operands have
different signs.

9 Division of an infinity by an infinity results in NaN.

9 Division of an infinity by a zero results in an infinity. The sign is determined by the rule already stated
above.

9 Division of an infinity by a non-zero finite value results in a signed infinity. The sign is determined by
the rule already stated above.

9 Division of a finite value by an infinity results in zero. The sign is determined by the rule already stated
above.

9 Division of a zero by a zero results in NaN; division of zero by any other finite value results in zero,
with the sign determined by the rule already stated above.

9 Division of a non-zero finite value by a zero results in a signed infinity. The sign is determined by the
rule already stated above.

1 In the remaining cases, where neither an infinity, nor a zero, nor NaN is involved, the quotient is
computed and rounded to the nearest representable value using IEEE 754 round-to-nearest mode. If the
magnitude is too large to represent, the operation overflows; the result is then an infinity of appropriate
sign. If the magnitude is too small to represent, the operation underflows and the result is a zero of the
appropriate sign. The ECMAScript language requires support of gradual underflow as defined by IEEE
754,

Applying the %Operator
The % operator yields the remainder of its operands from an implied division; the left operand is the
dividend and the right operand is the divisor.

NOTE
In C and C++, the remainder operator accepts only integral operands; in EGVIAS it also accepts
floating-point operands.

The result of a floating-point remainder operation as computed by the % operator is not the same as the
“remainder” operation defined by IEEE 754. The IEEE 754 “remainder” operation computes the remainder
from a rounding division, not a truncating division, and so its behaviour is not analogous to that of the
usual integer remainder operator. Instead the ECMAScript language defines %on floating-point operations
to behave in a manner analogous to that of the Java integer remainder operator; this may be compared with
the C library function fmod.

The result of a ECMAScript floating-point remainder operation is determined by the rules of IEEE
arithmetic:

9 If either operand is NaN, the result is NaN.

- 49 -

The sign of the result equals the sign of the dividend.

If the dividend is an infinity, or the divisor is a zero, or both, the result is NaN.

If the dividend is finite and the divisor is an infinity, the result equals the dividend.

If the dividend is a zero and the divisor is finite, the result is the same as the dividend.

In the remaining cases, where neither an infinity, nor a zero, nor NaN is involved, the floating-point
remainder r from a dividend n and a divisor d is defined by the mathematical relation r = n - (d * q)
where g is an integer that is negative only if n/d is negative and positive only if n/d is positive, and
whose magnitude is as large as possible without exceeding the magnitude of the true mathematical
quotient of n and d.

= =4 —a —a -9

11.6 Additive Operators
Syntax

AdditiveExpression
Multiplicative Expression
AdditiveExpressior Multiplicative Expression
AdditiveExpression Multiplicative Expression

11.6.1 The Addition operator (+)
The addition operator either performs string concatenation or numeric addition.

The production AdditiveExpression: AdditiveExpression+ MultiplicativeExpressionis evaluated as
follows:

Evaluate AdditiveExpression

Call GetValue(Result(1)).

Evaluate MultiplicativeExpression

Call GetValue(Result(3)).

Call ToPrimitive(Result(2)).

Call ToPrimitive(Result(4)).

If Type(Result(5)) is String or Type(Result(6)) is String, go to step 12. (Note that this step differs from
step 3 in the comparison algorithm for the relational operators, by using or instead of and)
8. Call ToNumber(Result(5)).

9. Call ToNumber(Result(6)).

10. Apply the addition operation to Result(8) and Result(9). See the note below (11.6.3).

11. Return Result(10).

12. Call ToString(Result(5)).

13. Call ToString(Result(6)).

14. Concatenate Result(12) followed by Result(13).

15. Return Result(14).

Nooahk~wdkE

NOTE

No hint is provided in the calls to ToPrimitive in steps 5 and 6. All native ECMAScript objects excep
Date objects handle the absence of a hint as if the hint Number were given; Date objects handle tl
absence of a hint as if the hint String were given. Hog¢ads may handle the absence of a hint in some
other manner.

11.6.2 The Subtraction Operator (-)

The production AdditiveExpression: AdditiveExpression- MultiplicativeExpressionis evaluated as
follows:

Evaluate AdditiveExpression

Call GetValue(Result(1)).

Evaluate MultiplicativeExpression
Call GetValue(Result(3)).

Call ToNumber(Result(2)).

Call ToNumber(Result(4)).

ok whE

- 50 -

7. Apply the subtraction operation to Result(5) and Result(6). See the note below (11.6.3).
8. Return Result(7).

11.6.3 Applying the Additive Operators (+, -) to Numbers

The + operator performs addition when applied to two operands of numeric type, producing the sum of the
operands. The - operator performs subtraction, producing the difference of two numeric operands.

Addition is a commutative operation, but not always associative.
The result of an addition is determined using the rules of IEEE 754 double-precision arithmetic:

If either operand is NaN, the result is NaN.

The sum of two infinities of opposite sign is NaN.

The sum of two infinities of the same sign is the infinity of that sign.
The sum of an infinity and a finite value is equal to the infinite operand.

The sum of two negative zeros is - 0. The sum of two positive zeros, or of two zeros of opposite sign, is
+0.

The sum of a zero and a nonzero finite value is equal to the nonzero operand.

The sum of two nonzero finite values of the same magnitude and opposite sign is +0.

1 In the remaining cases, where neither an infinity, nor a zero, nor NaN is involved, and the operands
have the same sign or have different magnitudes, the sum is computed and rounded to the nearest
representable value using IEEE 754 round-to-nearest mode. If the magnitude is too large to represent,
the operation overflows and the result is then an infinity of appropriate sign. The ECMAScript language
requires support of gradual underflow as defined by IEEE 754.

= =4 —a —a -9

= =

The - operator performs subtraction when applied to two operands of numeric type, producing the
difference of its operands; the left operand is the minuend and the right operand is the subtrahend. Given
numeric operands a and b, it is always the case that ai b produces the same result as a+(1 b) .

11.7 Bitwise Shift Operators

Syntax

ShiftExpression
AdditiveExpression
ShiftExpressior< AdditiveExpression
ShiftExpressin >> A dditive Expression
ShiftExpressior>> Additive Expression

11.7.1 The Left Shift Operator (<<)
Performs a bitwise left shift operation on the left operand by the amount specified by the right operand.

The production ShiftExpression ShiftExpressior< AdditiveExpressiolis evaluated as follows:

Evaluate ShiftExpression

Call GetValue(Result(1)).

Evaluate AdditiveExpression

Call GetValue(Result(3)).

Call Tolnt32(Result(2)).

Call ToUint32(Result(4)).

Mask out all but the least significant 5 bits of Result(6), that is, compute Result(6) & Ox1F.
Left shift Result(5) by Result(7) bits. The result is a signed 32 bit integer.

Return Result(8).

CoNoOkkWDE

11.7.2 The Signed Right Shift Operator (>>)

Performs a sign-filling bitwise right shift operation on the left operand by the amount specified by the right
operand.

The production ShiftExpression ShiftExpressiorr> AdditiveExpressiolis evaluated as follows:

NGOk~ wNE

9.

-51 -

Evaluate ShiftExpression

Call GetValue(Result(1)).

Evaluate AdditiveExpression

Call GetValue(Result(3)).

Call ToInt32(Result(2)).

Call ToUint32(Result(4)).

Mask out all but the least significant 5 bits of Result(6), that is, compute Result(6) & Ox1F.

Perform sign-extending right shift of Result(5) by Result(7) bits. The most significant bit is propagated.
The result is a signed 32 bit integer.

Return Result(8).

11.7.3 The Unsigned Right Shift Operator (>>>)

Performs a zero-filling bitwise right shift operation on the left operand by the amount specified by the right
operand.

The production ShiftExpression ShiftExpressior>>> AdditiveExpressions evaluated as follows:

ONoaR~wWNE

9.

Evaluate ShiftExpression

Call GetValue(Result(1)).

Evaluate AdditiveExpression

Call GetValue(Result(3)).

Call ToUint32(Result(2)).

Call ToUint32(Result(4)).

Mask out all but the least significant 5 bits of Result(6), that is, compute Result(6) & Ox1F.
Perform zero-filling right shift of Result(5) by Result(7) bits. Vacated bits are filled with zero. The
result is an unsigned 32 bit integer.

Return Result(8).

11.4 Relational Operators

Syntax

RdationalExpression
ShiftExpression
RelationalExpressior ShiftExpression
RelationalExpression ShiftExpression
RelationalExpressior= ShiftExpression
RelationalExpressior= ShiftExpression
RelationalExpressiomstanceof ShiftExpression
RelationalExppessionin ShiftExpression

RelationalExpressionNoln
ShiftExpression
RelationalExpressionNolq ShiftExpression
RelationalExpressionNoln ShiftExpression
RelationalExpressionNolxa= ShiftExpression
RelationalExpressionNoln= ShiftExpression
RelationalEyressionNolrinstanceof ShiftExpression

NOTE
The 'Noln' variants are needed to avoid confusing itheoperator in a relational expression with the
operator in afor statement.

Semantics

The result of evaluating a relational operator is always of type Boolean, reflecting whether the relationship
named by the operator holds between its two operands.

11.8.1

11.8.2

11.8.3

11.8.4

11.8.5

-52 -

The RelationalExpressionNolproductions are evaluated in the same manner as the RelationalExpression
productions except that the contained RelationalExpressioNoln is evaluated instead of the contained
RelationalExpression

The Lessthan Operator (<)
The production RelationalExpression RelationalExpressior ShiftExpressions evaluated as follows:

Evaluate RelationalExpression

Call GetValue(Result(1)).

Evaluate ShiftExpression

Call GetValue(Result(3)).

Perform the comparison Result(2) < Result(4). (see 11.8.5)

If Result(5) is undefined, return false. Otherwise, return Result(5).

ocakwhE

The Greater-than Operator (>)
The production RelationalExpresion: RelationalExpressiom ShiftExpressions evaluated as follows:

Evaluate RelationalExpression

Call GetValue(Result(1)).

Evaluate ShiftExpression

Call GetValue(Result(3)).

Perform the comparison Result(4) < Result(2). (see 11.8.5).

If Result(5) is undefined, return false Otherwise, return Result(5).

@Ok whE

The Lessthan-or-equal Operator (<=)
The production RelationalExpression RelationalExpressior= ShiftExpressions evaluated as follows:

Evaluate RelationalExpression

Call GetValue(Result(1)).

Evaluate ShiftExpression

Call GetValue(Result(3)).

Perform the comparison Result(4) < Result(2). (see 11.8.5).

If Result(5) is true or undefined, return false. Otherwise, return true.

eoakwhE

The Greater-than-or-equal Operator (>=)
The production ReltionalExpression RelationalExpressior= ShiftExpressions evaluated as follows:

Evaluate RelationalExpression

Call GetValue(Result(1)).

Evaluate ShiftExpression

Call GetValue(Result(3)).

Perform the comparison Result(2) < Result(4). (see 11.8.5).

If Result(5) is true or undefined, return false. Otherwise, return true.

ek wbdE

The Abstract Relational Comparison Algorithm

The comparison x <y, where x and y are values, produces true, false, or undefined (which indicates that at
least one operand is NaN). Such a comparison is performed as follows:

1. Call ToPrimitive(x, hint Number).

2. Call ToPrimitive(y, hint Number).

3. If Type(Result(1)) is String and Type(Result(2)) is String, go to step 16. (Note that this step differs from
step 7 in the algorithm for the addition operator + in using andinstead of or.)

Call ToNumber(Result(1)).

Call ToNumber(Result(2)).

If Result(4) is NaN, return undefined.

If Result(5) is NaN, return undefined.

If Result(4) and Result(5) are the same number value, return false.

©ONo oA

11.8.6

11.8.7

11.9
Syntax

- 53 -

9. If Result(4) is +0 and Result(5) is - O, return false.

10. If Result(4) is - 0 and Result(5) is +0, return false.

11. If Result(4) is +o, return false

12. If Result(5) is +&, return true.

13. If Result(5) is - &, return false

14. If Result(4) is - &, return true.

15.If the mathematical value of Result(4) is less than the mathematical value of Result(5)—note that these
mathematical values are both finite and not both zero—return true. Otherwise, return false.

16.1f Result(2) is a prefix of Result(1), return false (A string value p is a prefix of string value q if q can
be the result of concatenating p and some other string r. Note that any string is a prefix of itself, because
r may be the empty string.)

17. If Result() is a prefix of Result(2), return true.

18. Let k be the smallest nonnegative integer such that the character at position k within Result(1) is
different from the character at position k within Result(2). (There must be such a k, for neither string is
a prefix of the other.)

19. Let m be the integer that is the code point value for the character at position k within Result(1).

20. Let n be the integer that is the code point value for the character at position k within Result(2).

21. If m< n, return true. Otherwise, return false

NOTE

The comparison of strings uses a simple lexicographic ordering guesees of code point value values.
There is no attempt to use the more complex, semantically oriented definitions of character or strin
equality and collating order defined in the Unicode specification. Therefore strings that are canonically
equal accoréhg to the Unicode standard could test as unequal. In effect this algorithm assumes that bot
strings are already in normalised form.

The instanceof operator

The production RelationalExpressionRelationalExpressionnstanceof ShiftExpressionis evaluated
as follows:

Evaluate RelationalExpression

Call GetValue(Result(1)).

Evaluate ShiftExpression

Call GetValue(Result(3)).

If Result(4) is not an object, throw a TypeError exception.

If Result(4) does not have a [[HasInstance]] method, throw a TypeErr or exception.
Call the [[HaslInstance]] method of Result(4) with parameter Result(2).

Return Result(7).

NGOk~ E

The in operator
The production RelationalExpression RelationalExpressiom ShiftExpressions evaluated as follows:

Evaluate RelationalExpressin.

Call GetValue(Result(1)).

Evaluate ShiftExpression

Call GetValue(Result(3)).

If Result(4) is not an object, throw a TypeError exception.

Call ToString(Result(2)).

Call the [[HasProperty]] method of Result(4) with parameter Result(6).
Return Result(7).

NN E

Equality Operators

- 54 -

EqualityExpression
RelationalExpression
EqualityExpressior= RelationalExpression
EqualityExpressiot= RelationalExpression
EqualityExpressior== RelationalExpression
EqualityExpressiot== RelationalExpression

EqualityExpressionNoln
RelationalExpressionNoln
EqualityExpressionNolr= RelationalExpressionNoln
EqualityExpressionNolhk= RelationalExpressionNoln
EqualityExpressionNolr== RelationalExpressionNoln
EqualityExpressionNoli== RelationalExpressionNoln

Semantics

The result of evaluating an equality operator is always of type Boolean, reflecting whether the relationship
named by the operator holds between its two operands.

The EqualityExpressionNolmproductions are evaluated in the same manner as the EqualityExpession
productions except that the contained EqualityExpressionNolmand RelationalExpressionNolare evaluated
instead of the contained EqualityExpressiorand RelationalExpressiarrespectively.

11.9.1 The Equals Operator (==
The production EqualityExpession: EqualityExpressiorr= RelationalExpressiois evaluated as follows:

Evaluate EqualityExpression

Call GetValue(Result(1)).

Evaluate RelationalExpression

Call GetValue(Result(3)).

Perform the comparison Result(4) == Result(2). (see 11.9.3).
Return Result(5).

ek wbdE

11.9.2 The Doesnot-equals Operator (!=)
The production EqualityExpression EqualityExpression= RelationalExpressiois evaluated as follows:

Evaluate EqualityExpression

Call GetValue(Result(1)).

Evaluate RelationalExpression

Call GetValue(Result(3)).

Perform the comparison Result(4) == Result(2). (see 11.9.3).
If Result(5) is true, return false. Otherwise, return true.

ok wbdE

11.9.3 The Abstract Equality Comparison Algorithm

The comparison x ==y, where x and y are values, produces true or false. Such a comparison is performed
as follows:

If Type(x) is different from Type(y), go to step 14.

If Type(x) is Undefined, return true.

If Type(x) is Null, return true.

If Type(x) is not Number, go to step 11.

If x is NaN, return false.

If y is NaN, return false.

If x is the same number value as y, return true.

If xis +Oand yis - O, return true.

If x is - 0 and y is +0, return true.

0. Return false.

1.1f Type(x) is String, then return true if x and y are exactly the same sequence of characters (same length
and same characters in corresponding positions). Otherwise, return false.

HBOoOoNooO kWD E

11.9.4

11.9.5

- 55 -

12. If Type(x) is Boolean, return true if x and y are both true or both false. Otherwise, return false.
13.Return true if x and y refer to the same object or if they refer to objects joined to each other (see 13.1.2).
Otherwise, return false.
14. If x is null and y is undefined, return true.
15. If x is undefined and y is null, return true.
16. If Type(x) is Number and Type(y) is String,
return the result of the comparison x == ToNumber(y).
17.1f Type(X) is String and Type(y) is Number,
return the result of the comparison ToNumber(x) ==y.
18. If Type(x) is Boolean, return the result of the comparison ToNumber(x) ==y.
19. If Type(y) is Boolean, return the result of the comparison x == ToNumber(y).
20.1f Type(x) is either String or Number and Type(y) is Object,
return the result of the comparison x == ToPrimitive(y).
21.1f Type(x) is Object and Type(y) is either String or Number,
return the result of the comparison ToPrimitive(x) ==y.
22. Return false.

NOTE
Given the above defition of equality:

String comparison can be forced BY:+ a==""+0b

Numeric comparison can be forced tay:- 0 == - 0.

Boolean comparison can be forced bg:== b

The equality operators maintain the following invariants:

A'!= Bis equivalenttd(A ==B).

A == Bis equivalent tdB == A, except in the order of evaluation AfandB.

The equality operator is not always transitive. For example, there might be two distinct String objects
each representing the same string value; each String objegldwie considered equal to the string value
by the== operator, but the two String objects would not be equal to each other.

Comparison of strings uses a simple equality test on sequences of code point value values. There is
attempt to use the more colap, semantically oriented definitions of character or string equality and
collating order defined in the Unicode 2.0 specification. Therefore strings that are canonically equal
according to the Unicode standard could test as unequal. In effect this tdgoassumes that both
strings are already in normalised form.

The Strict Equals Operator (===

The production EqualityExpression: EqualityExpression=== RelationalExpressionis evaluated as
follows:

Evaluate EqualityExpression

Call GetValue(Result(1)).

Evaluate RelationalExpression

Call GetValue(Result(3)).

Perform the comparison Result(4) === Result(2). (See below.)
Return Result(5).

oA~ wWNE

The Strict Doesnot-equal Operator (!==)

The production EqualityExpression: EqualityExpression!== RehtionalExpressionis evaluated as
follows:

1. Evaluate EqualityExpression
2. Call GetValue(Result(1)).

3. Evaluate RelationalExpression
4. Call GetValue(Result(3)).

- 56 -

5. Perform the comparison Result(4) === Result(2). (See below.)
6. If Result(b) is true, return false. Otherwise, return true.

11.9.6 The Strict Equality Comparison Algorithm

The comparison x ===y, where x and y are values, produces true or false. Such a comparison is performed
as follows:

If Type(X) is different from Type(y), return false.

If Type(x) is Undefined, return true.

If Type(x) is Null, return true.

If Type(x) is not Number, go to step 11.

If x is NaN, return false.

If y is NaN, return false.

If x is the same number value as y, return true.

If xis +0 and y is - O, return true.

. Ifxis-0andyis +0, return true.

0. Return false.

1.1f Type(x) is String, then return true if x and y are exactly the same sequence of characters (same length
and same characters in corresponding positions); otherwise, return false.

12. If Type(x) is Boolean, return true if x and y are both true or both false; otherwise, return false.
13.Return true if x and y refer to the same object or if they refer to objects joined to each other (see 13.1.2).
Otherwise, return false.

HRBO®woONOOGO RO E

11.10 Binary Bitwise Operators

Syntax

Bitwise ANDEXxpression
EqualtyExpression
Bitwise ANDExpressio& EqualityExpression

Bitwise ANDExpressionNoIn
EqualityExpressionNoln
Bitwise ANDEXxpressionNol& EqualityExpressionNoln

Bitwise X ORExpression
Bitwise ANDExpression
Bitwise X ORExpressioh Bitwise A NDEXxpression

Bitwise XORExmssionNolrn
BitwiseA NDExpressionNoln
Bitwise X ORExpressionNomhBitwise AN DExpressionNoln

Bitwise ORExpression
Bitwise X ORExpression
Bitwise ORExpressioh Bitwise XORExpression

Bitwise ORExpressionNotn
Bitwise X ORExpressionNoln
Bitwise ORExpressionNoln Bitwise X ORExpressionNoln

Semantics

The production A : A @ B where @ is one of the bitwise operators in the productions above, is evaluated as
follows:

1. Evaluate A.
2. Call GetValue(Result(1)).
3. Evaluate B.
4. Call GetValue(Result(3)).

-57 -

Call TolInt32(Result(2)).

Call Tolnt32(Result(4)).

Apply the bitwise operator @ to Result(5) and Result(6). The result is a signed 32 bit integer.
Return Result(7).

® N o

11.11 Binary Logical Operators
Syntax

LogicalANDExpression
Bitwise ORExpression
LogicalA NDExpressiok&& Bitwise ORExpressn

LogicalA NDExpressionNoln
Bitwise ORExpressionNoln
LogicalA NDExpressionNol&& Bitwise ORExpressionNoln

LogicalORExpression
LogicalA NDExpression
LogicalORExpressiol] LogicalA NDExpression

LogicalORExpressionNoin
LogicalANDExpressionNoln
LogicalORExpessionNolr|| LogicalANDExpressionNoln

Semantics

The production LogicalANDExpression LogicalANDExpression&& BitwiseORExpressiotis evaluated as
follows:

Evaluate LogicalANDEXxpression
Call GetValue(Result(1)).

Call ToBoolean(Result(2)).

If Result(3) is false, return Result(2).
Evaluate BitwiseORExpression
Call GetValue(Result(5)).

Return Result(6).

NooakrwbdE

The production LogicalORExpression LogicalORExpressiorj| LogicalANDExpressionis evaluated as
follows:

Evaluate Logical ORExpression
Call GetValue(Result(1)).

Call ToBoolean(Result(2)).

If Result(3) is true, return Result(2).
Evaluate LogicalANDEXxpression
Call GetValue(Result(5)).

Return Result(6).

NogakwpbdE

The LogicalANDExpressionNolrend LogicalORExpressionNolmproductions are evaluated in the same
manner as the LogicalANDExpressionand LogicalORExpressiorproductions except that the contained
LogicalANDExpressionNoln BitwiseORExpressionNolnand LogicalORExpressionNolnare evaluated
instead of the contained LogicalANDExpression BitwiseORExpressionand LogicalOREXpression
respectively.

NOTE
The value produced by && or || operator is not necessarily of type Boolean. The value produced will
always be the value of one of the two operand expressions.

- 58 -

11.12 Conditional Operator (?:)

Syntax

ConditionalExpression
LogicalORExpression
LogicalORExpressior? A ssignmentExpressionA ssignmentExpression

ConditionalExpressionNoln
LogicalORExpressionNoln
LogicalORExpressionNolr? A ssignmentExpressionA ssignmentExpressionNoln

Semantics

The production ConditionalExpresi®n : Logical ORExpressiof? AssignmentExpressian
AssignmentExpresside evaluated as follows:

Evaluate LogicalORExpression

Call GetValue(Result(1)).

Call ToBoolean(Result(2)).

If Result(3) is false, go to step 8.

Evaluate the first AssignmentExpression
Call GetValue(Result(5)).

Return Result(6).

Evaluate the second AssignmentExpression
Call GetValue(Result(8)).

0. Return Result(9).

HOoo~Noohkwh ke

The ConditionalExpressionNolproduction is evaluated in the same manner as the ConditionalExpression
production except that the contained LogicalORExpressionNoln AssignmentExpression and
AssignmentExpressionNolnare evaluated instead of the contained LogicalORExpression first
AssignmentExpressiaamd second AssignmentExpressiorespectively.

NOTE

The grammar for a ConditialExpression in ECMAScript is a little bit different from that in C and Java,
which each allow the second subexpression to be an Expression but restrict the third expression to be a
ConditionalExpression. The motivation for this difference in ECMAScriptoisallow an assignment
expression to be governed by either arm of a conditional and to eliminate the confusing and fairly useless
case of a comma expression as the centre expression.

11.13 Assignment Operators

Syntax

AssignmentExpression
ConditionalEx pession
LeftHandSideExpression A ssignmentOperator A ssignmentExpression

AssignmentExpressionNoin
ConditionalExpressionNoln
LeftHandSideExpression A ssignmentOperator A ssignmentExpressionNoln

AssignmentOperatorone of
= *= /= %= += -= <<= >>= >>>= &= A= =

Semantics

The AssignmentExpressionNoproductions are evaluated in the same manner as the AssignmentExpression
productions except that the contained ConditionalExpressionNoln and AssignmentExpressionNark
evaluated instead of the contained ConditioralExpressiorand AssignmentExpressiorespectively.

- 59 -

11.13.1 Simple Assignment (=)

The production AssignmentExpressianLeftHandSideExpression AssignmentExpressias evaluated as
follows:

Evaluate LeftHandSideExpression
Evaluate AssignmentExpression
Call GetValue(Result(2)).

Call PutValue(Result(1), Result(3)).
Return Result(3).

aRrwdE

11.13.2 Compound Assignment (op=)

The production AssignmentExpressionLeftHandSideExpression @ AssignmentExpressionvhere @
represents one of the operators indicated above, is evaluated as follows:

Evaluate LeftHandSideExpression

Call GetValue(Result(1)).

Evaluate AssignmentExpression

Call GetValue(Result(3)).

Apply operator @ to Result(2) and Result(4).
Call PutValue(Result(1), Result(5)).

Return Result(5).

Nook~wbhE

11.14 Comma Operator (,)
Syntax

Expression
AssignmentExpression
Expression AssignmentExpression

ExpressionNoln
AssignmentExpressionNoln
ExpressionNoln AssignmentExpressionNoln

Semantics
The production Expression Expression AssignmentExpressids evaluated as follows:

Evaluate Expression

Call GetValue(Result(1)).
Evaluate AssignmentExpression
Call GetValue(Result(3)).

Return Result(4).

IS

The ExpressionNolrproduction is evaluated in the same manner as the Expressiomproduction except that the
contained ExpressionNolrand AssignmentExpressionNoéme evaluated instead of the contained Expression
and AssignmentExpressiprespectively.

12 Statements

Syntax

Statement
Block

V ariable Statement
EmptyStatement
ExpressionStatement
IfStatement
IterationStaterent
ContinueStatement
BreakStatement
ReturnStatement
WithStatement
LabelledStatement
SwitchStatement
ThrowStatement
TryStatement

Semantics

A Statementan be part of a LabelledStatementvhich itself can be part of a LabelledStatementnd so on. The
labels introduced this way are collectively referred to as the “current label set” when describing the semantics of
individual statements. A LabelledStatemeritas no semantic meaning other than the introduction of a label to a
label set The label set of an IterationStatementor a SwitchStatemeninitially contains the single element
empty. The label set of any other statement is initially empty.

12.1 Block

Syntax
Block:

{ StatementList,}

StatementList

Statement
StatementList Statement

Semantics

- 60 -

The production Block: { } is evaluated as follows:

1.

The production Block: { StatementLis} is evaluated as follows:

1.
2.

The production StatementList Statements evaluated as follows:

1.
2.

3.

The production StatementList StatementList Statemeistevaluated as follows:

Pown

Return (normal, empty, empty).

Evaluate StatementList

Return Result(1).

Evaluate Statement

If an exception was thrown, return (throw, V, empty) where V is the exception. (Execution now proceeds
as if no exception were thrown.)

Return Result(1).

Evaluate StaementList

If Result(1) is an abrupt completion, return Result(1).

Evaluate Statement

If an exception was thrown, return (throw, V, empty) where V is the exception. (Execution now proceeds
as if no exception were thrown.)

- 61 -

5. If Result(3).value is empty, let V = Result(1).value, otherwise let V = Result(3).value.
6. Return (Result(3).type, V, Result(3).target).
12.2 Variable statement
Syntax

V ariable Statement
var V ariableDeclarationList

V ariable DeclarationList
V ariable Declaration
V ariableDeclarationList V ariable Declaration

V ariable DeclarationListNoln
V ariable DeclarationNoln
V ariableDeclarationListNoln V ariableDeclarationNoln

V ariable Declaration:
Identifier Initialiser,,,

V ariable DeclarationNoln
Identifier InitialiserNoln,,.

Initialiser :
= AssignmatExpression

InitialiserNoln :
= AssignmentExpressionNoln

Description

If the variable statement occurs inside a FunctionDeclaration the variables are defined with function-local
scope in that function, as described in s10.1.3. Otherwise, they are defined with global scope (that is, they are
created as members of the global object, as described in 10.1.3) using property attributes { DontDelete }.
Variables are created when the execution scope is entered. A Block does not define a new execution scope.
Only Program and FunctionDeclarationproduce a new scope. Variables are initialised to undefined when
created. A variable with an Initialiser is assigned the value of its AssignmentExpressiomvhen the
VariableStatemernit executed, not when the variable is created.

Semantics
The production VariableStatementvar VariableDeclarationList is evaluated as follows:

1. Evaluate VariableDeclarationList
2. Return (normal, empty, empty).

The production VariableDeclarationList VariableDeclarationis evaluated as follows:

1. Evaluate VariableDeclaration

The production VariableDeclarationList: VariableDeclarationList, VariableDeclarationis evaluated as
follows:

1. Evaluate VariableDeclarationList
2. Evaluate VariableDeclaration

The production VariableDeclaration: Identifier is evaluated as follows:

1. Return a string value containing the same sequence of characters as in the Identifier.

The production VariableDeclaration: Identifier Initialiser is evaluated as follows:

- 62 -

Evaluate Identifier as described in 11.1.2.

Evaluate Initialiser.

Call GetValue(Result(2)).

Call PutValue(Result(1), Result(3)).

Return a string value containing the same sequence of characters as in the Identifier.

aokrwbhpE

The production Initialiser : = AssignmentExpressids evaluated as follows:

1. Evaluate AssignmentExpregm.
2. Return Result(1).

The VariableDeclarationListNolnVariableDeclarationNolrand InitialiserNoln productions are evaluated in
the same manner as the VariableDeclarationList VariableDeclarationand Initialiser productions except that
the contained VariableDeclarationListNoln VariableDeclarationNoln InitialiserNoln and
AssignmentExpressionNolnare evaluated instead of the contained VariableDeclarationList
VariableDeclaration Initialiser and AssignmentExpressiorespectively.

12.3 Empty Statement
Syntax
EmptyStatement
Semantics
The production EmptyStatement; is evaluated as follows:
1. Return (normal, empty, empty).
12.4 Expression Statement
Syntax
ExpressionStatement

Nookahead T {{, function 11 Expression

Note that an ExpressionStatemerdannot start with an opening curly brace because that might make it
ambiguous with a Block Also, an ExpressionStatememannot start with the function keyword because
that might make it ambiguous with a FunctionDeclaration

Semantics
The production Expressionfatement [lookahead T {{, function }1 Expression is evaluated as follows:

1. Evaluate Expression
2. Call GetValue(Result(1)).
3. Return (normal, Result(2), empty).

12.5 Theif Statement
Syntax
IfStatement

if (Expressior) Statementelse Statement
if (Expresion) Statement

Each else for which the choice of associated if is ambiguous shall be associated with the nearest possible if
that would otherwise have no corresponding else .

Semantics

The production IfStatement if (Expression) Statemenelse Statemenis evaluated as follows:

- 63 -

Evaluate Expression

Call GetValue(Result(1)).

Call ToBoolean(Result(2)).

If Result(3) is false, go to step 7.
Evaluate the first Statement
Return Result(5).

Evaluate the second Statement
Return Result(7).

Nk wdE

The production IfStaement if (Expression) Statements evaluated as follows:

Evaluate Expression

Call GetValue(Result(1)).

Call ToBoolean(Result(2)).

If Result(3) is false, return (normal, empty, empty).
Evaluate Statement

Return Result(5).

ek wbdpE

12.6 Iteration Statements

An iteration statement consists of a header (which consists of a keyword and a parenthesised control
construct) and a body(which consists of a Statement

Syntax

IterationStatement
do Statementwhile (Expression;
while (Expressior) Statement
for (ExpressionNoln,; Expression,; Expression,) Statement
for (var VariableDeclarationListNoln Expression,,; Expression,) Statement
for (LeftHandSideExpressidn Expressior) Statement
for (var VariableDeclarationNolrin Expressior) Statement

126.1 The do-while Statement
The production do Statementhile (Expression); is evaluated as follows:

Let V = empty.

Evaluate Statement

If Result(2).value is not empty, let V = Result(2).value.

If Result(2).type is continue and Result(2).target is in the current label set, go to step 7.
If Result(2).type is break and Result(2).target is in the current label set, return (normal, V, empty).
If Result(2) is an abrupt completion, return Result(2).

Evaluate Expression

Call GetValue(Result(7)).

. Call ToBoolean(Result(8)).

10. If Result(9) is true, go to step 2.

11. Return (normal, V, empty);

CoOoNO~WNRE

12.6.2 The while statement
The production IterationStatement while (Expression) Statements evaluated as follows:

Let V = empty.

Evaluate Expressia.

Call GetValue(Result(2)).

Call ToBoolean(Result(3)).

If Result(4) is false, return (normal, V, empty).

Evaluate Statement

If Result(6).value is not empty, let V = Result(6).value.

If Result(6).type is continue and Result(6).target is in the current label set, go to 2.

©®No AWM R

- 64 -

9. If Result(6).type is break and Result(6).target is in the current label set, return (normal, V, empty).
10. If Result(6) is an abrupt completion, return Result(6).
11. Go to step 2.

12.6.3 The for Statement

The production IterationStatement for (ExpressionNolsy ; EXpressiogg ; Expressiogy) Statement
is evaluated as follows:

If the first Expressionis not present, go to step 4.

Evaluate ExpressionNoln

Call GetValue(Result(2)). (This value is not used.)

Let V = empty.

If the first Expressionis not present, go to step 10.

Evaluate the first Expressio.

Call GetValue(Result(6)).

Call ToBoolean(Result(7)).

9. If Result(8) is false, go to step 19.

10. Evaluate Statement

11. If Result(10).value is not empty, let V = Result(10).value

12. If Result(10).type is break and Result(10).target is in the current label set, go to step 19.
13. If Result(10).type is continue and Result(10).target is in the current label set, go to step 15.
14. If Result(10) is an abrupt completion, return Result(10).

15. If the second Expressions not present, go to step 5.

16. Evaluate the second Expressia.

17. Call GetValue(Result(16). (This value is not used.)

18. Go to step 5.

19. Return (normal, V, empty).

N REWDN PR

The production IterationStatement: for (var VariableDeclarationListNoln; Expressiopy ;
Expressiogy) Statements evaluated as follows:

Evaluate VariableDeclarationListNoln

Let V = empty.

If the first Expressions not present, go to step 8.

Evaluate the first Expression

Call GetValue(Result(4)).

Call ToBoolean(Result(5)).

If Result(6) is false, go to step 14.

Evaluate Statement

9. If Result(8).value is not empty, let V = Result(8).value.

10. If Result(8).type is break and Result(8).target is in the current label set, go to step 17.
11. If Result(8).type is continue and Result(8).target is in the current label set, go to step 13.
12. If Result(8) is an abrupt completion, return Result(8).

13. If the second Expressions not present, go to step 3.

14. Evaluate the second Expression

15. Call GetValue(Result(14)). (This value is not used.)

16. Go to step 3.

17. Return (normal, V, empty).

NSOk WD

12.6.4 The for -in Statement

The production IterationStatement for (LeftHandSideExpressioin Expression) Statementis
evaluated as follows:

1. Evaluate the Expression
2. Call GetValue(Result(1)).
3. Call ToObject(Result(2)).
4. LetV =empty.

- 65 -

5. Get the name of the next property of Result(3) that doesn’t have the DontEnum attribute. If there is no
such property, go to step 14.

6. Evaluate the LeftHandSideExpressiopit may be evaluated repeatedly).

7. Call PutValue(Result(6), Result(5)).

8. Evaluate Statement

9. If Result(8).value is not empty, let V = Result(8).value.

10. If Result(8).type is break and Result(8).target is in the current label set, go to step 14.

11. If Result(8).type is continue and Result(8).target is in the current label set, go to step 5.

12. If Result(8) is an abrupt completion, return Result(8).

13. Go to step 5.

14. Return (normal, V, empty).

The production IterationStatement for (var VariableDeclarationNolnin Expression) Statementis
evaluated as follows:

Evaluate VariableDeclarationNoln

Evaluate Expression

Call GetValue(Result(2)).

Call ToObject(Result(3)).

Let V = empty.

Get the name of the next property of Result(4) that doesn’t have the DontEnum attribute. If there is no
such property, go to step 15.

Evaluate Result(1) as if it were an Identifier; see 0 (yes, it may be evaluated repeatedly).
Call PutValue(Result(7), Result(6)).

9. Evaluate Statement

10.If Result(9).value is not empty, let V = Result(9).value.

11.1f Result(9).type is break and Result(9).target is in the current label set, go to step 15.
12.1f Result(9).type is continue and Result(9).target is in the current label set, go to step 6.
13.1f Result(8) is an abrupt completion, return Result(8).

14.Go to step 6.

15.Return (normal, V, empty).

ICUEE N

© N

The mechanics of enumerating the properties (step 5 in the first algorithm, step 6 in the second) is
implementation dependent. The order of enumeration is defined by the object. Properties of the object being
enumerated may be deleted during enumeration. If a property that has not yet been visited during
enumeration is deleted, then it will not be visited. If new properties are added to the object being
enumerated during enumeration, the newly added properties are not guaranteed to be visited in the active
enumeration.

Enumerating the properties of an object includes enumerating properties of its prototype, and the prototype
of the prototype, and so on, recursively; but a property of a prototype is not enumerated if it is “shadowed”
because some previous object in the prototype chain has a property with the same name.

12.7 The continue Statement

Syntax

ContinueStatement
continue [na LineZaminatoherel ldentifier,,;

Semantics

A program is considered syntactically incorrect if either of the following are true:

1

The program contains a continue statement without the optional Identifier, which is not nested,
directly or indirectly (but not crossing function boundaries), within an IterationStatement

The program contains a continue statement with the optional Identifier, where Identifier does not
appear in the label set of an enclosing (but not crossing function boundaries) IterationStatement

- 66 -

A ContinueStatementithout an ldentifier is evaluated as follows:

1. Return (continue, empty, empty).

A ContinueStatementith the optional Identifier is evaluated as follows:

1. Return (continue, empty, Identifier).

12.8 The break Statement

Syntax

BreakStatement
break [no ZimeTzmmstorherel ldentifiers,,;

Semantics
A program is considered syntactically incorrect if either of the following are true:

1 The program contains a break statement without the optional Identifier, which is not nested, directly or
indirectly (but not crossing function boundaries), within an IterationStatemendr a SwitchStatement

1 The program contains a break statement with the optional Identifier, where Identifier does not appear in
the label set of an enclosing (but not crossing function boundaries) Statement
A BreakStatemenwithout an Identifier is evaluated as follows:

1. Return (break, empty, empty).

A BreakStatemenwith an Identifier is evaluated as follows:

1. Return (break, empty, ldentifier).

12.9 Thereturn Statement

Syntax
ReturnStatement
return no ZmeTammatorhere]l EXPression,;
Semantics

An ECMAScript program is considered syntactically incorrect if it contains a return statement that is not
within a FunctionBody A retu rn statement causes a function to cease execution and return a value to the
caller. If Expressionis omitted, the return value is undefined. Otherwise, the return value is the value of
Expression

The production ReturnStatementreturn [no LineTerminatorhere] EXpressiopy:; is evaluated as:

1. If the Expressions not present, return (return, undefined, empty).
2. Evaluate Expression

3. Call GetValue(Result(2)).

4. Return (return, Result(3), empty).

12.10 The with Statement
Syntax
WithStatement
with (Expression) Statement
Description

The with statement adds a computed object to the front of the scope chain of the current execution context,
then executes a statement with this augmented scope chain, then restores the scope chain.

- 67 -

Semantics
The production WithStatenent: with (Expression) Statements evaluated as follows:

Evaluate Expression

Call GetValue(Result(1)).

Call ToObject(Result(2)).

Add Result(3) to the front of the scope chain.

Evaluate Statementising the augmented scope chain from step 4.

Let C be Result(5). If an exception was thrown in step 5, let C be (throw, V, empty), where V is the
exception. (Execution now proceeds as if no exception were thrown.)

Remove Result(3) from the front of the scope chain.

8. Return C.

ok wpdE

~

NOTE
No matter how control leaveshé embedded 'Statement’, whether normally or by some form of abrupt
completion or exception, the scope chain is always restored to its former state.

12.11 The switch Statement

Syntax

SwitchStatement
switch (Expressior) CaseBlock

CaseBlock
{ CaseClauss,}
{ CaseClauseg,DefaultClause CaseClausgg

CaseClauses
CaseClause
CaseClauses CaseClause

CaseClause
case Expression StatementList,

DefaultClause
default : StatementList,

Semantics
The production SwitchStatementswitch (Expressim) CaseBlockis evaluated as follows:

1. Evaluate Expression

2. Call GetValue(Result(1)).

3. Evaluate CaseBlockpassing it Result(2) as a parameter.

4. If Result(3).type is break and Result(3).target is in the current label set, return (normal, Result(3).value,
empty).

5. Return Result(3).

The production CaseBlock { CaseClauses DefaultClause CaseClauses given an input parameter, input,
and is evaluated as follows:

Let A be the list of CaseClausetems in the first CaseClausedn source text order.

For the next CaseClauseén A, evaluate CaseClauself there is no such CaseClausggo to step 7.
If inputis not equal to Result(2), as defined by the !==operator, go to step 2.

Evaluate the StatementLisof this CaseClause

If Result(4) is an abrupt completion then return Result(4).

Go to step 13.

Let B be the list of CaseClausétems in the second CaseClausesdn source text order.

For the next CaseClauseén B, evaluate CaseClauself there is no such CaseClausggo to step 15.

Nk wWNME

- 68 -

9. Ifinputis not equal to Result(8), as defined by the == operator, go to step 8.

10. Evaluate the StatementListf this CaseClause

11. If Result(10) is an abrupt completion then return Result(10)

12. Go to step 18.

13. For the next CaseClausein A, evaluate the StatementListof this CaseClause If there is no such
CaseClausggo to step 15.

14. If Result(13) is an abrupt completion then return Result(13).

15. Execute the StatementLisof DefaultClause

16. If Result(15) is an abrupt completion then return Result(15)

17. Let B be the list of CaseClauseatems in the second CaseClausesin source text order.

18. For the next CaseClausein B, evaluate the StatementListof this CaseClause If there is no such
CaseClausgreturn (normal, empty, empty).

19. If Result(18) is an abrupt completion then return Result(18).

20. Go to step 18.

The production CaseClause case Expression StatementList:is evaluated as follows:

1. Evaluate Expression
2. Call GetValue(Result(1)).
3. Return Result(2).

NOTE

Evaluating CaseClause does not execute the associated StatementList. It simply evaluates the Expression
and returns the value, which the CaseBlock algorithm uses to determine which StatementList to start
executing.

12.12 Labelled Statements
Syntax
LabelledStatement
Identifier: Statement
Semantics

A Statementmay be prefixed by a label. Labelled statements are only used in conjunction with labelled
break and continue statements. ECMAScript has no goto statement.

An ECMAScript program is considered syntactically incorrect if it contains a LabelledStatementhat is
enclosed by a LabelledStatemenwith the same Identifier as label. This does not apply to labels appearing
within the body of a FunctionDeclarationthat is nested, directly or indirectly, within a labelled statement.

The production Identifier : Statements evaluated by adding Identifier to the label set of Statemenand then
evaluating Statementlf the LabelledStatemernitself has a non-empty label set, these labels are also added to
the label set of Statemenbefore evaluating it. If the result of evaluating Statemenis (break, V, L) where L is
equal to Identifier, the production results in (normal, V, empty).

Prior to the evaluation of a LabelledStatementhe contained Statemenis regarded as possessing an empty
label set, except if it is an IterationStatemenoér a SwitchStatementn which case it is regarded as possessing
a label set consisting of the single element, empty.

12.13 The throw statement

Syntax

ThrowStatement
throw [no ZmeTaminatzmerel EXpression ;

Semantics

The production ThrowStatementthrow [no LineTerminatorhere] Expresion; is evaluated as:

- 69 -

1. Evaluate Expression
2. Call GetValue(Result(1)).
3. Return (throw, Result(2), empty).

12.14 Thetry statement

Syntax

TryStatement
try Block Catch
try Block Finally
try Block Catch Finally

Catch:
catch (ldentifier) Block

Finally :
fin ally Block

Description

The try statement encloses a block of code in which an exceptional condition can occur, such as a runtime
error or a throw statement. The catch clause provides the exception-handling code. When a catch clause
catches an exception, its Identifier is bound to that exception.

Semantics
The production TryStatement try Block Catchis evaluated as follows:

1. Evaluate Block

2. If Result(1).type is not throw, return Result(1).
3. Evaluate Catchwith parameter Result(1).

4. Return Result(3).

The production TryStatement try BlockFinally is evaluated as follows:

1. Evaluate Block

2. Evaluate Finally.

3. If Result(2) .typeis normal, return Result(1).
4. Return Result(2).

The production TryStatement try Block CatchFinally is evaluated as follows:

Evaluate Block.

Let C = Result(1).

If Result(1).type is not throw, go to step 6.
Evaluate Catchwith parameter Result(1).

If Result(4).type is not normal, Let C = Result(4).
Evaluate Finally.

If Result(6).type is normal, return C.

Return Result(6).

Nk~ WNE

The production Catch: catch (ldentifier) Blockis evaluated as follows:

1. Let C be the parameter that has been passed to this production.

2. Create a new object as if by the expression new Object()

3. Create a property in the object Result(2). The property's name is Identifier, value is C.value, and
attributes are { DontDelete }.

4. Add Result(2) to the front of the scope chain.

5. Evaluate Block

6. Remove Result(2) from the front of the scope chain.

- 70 -

7. Return Result(5).
The production Finally : finally Blockis evaluated as follows:

1. Evaluate Block
2. Return Result(1).

13 Function Definition

Syntax

FunctionDeclaration
function Identifier(FormalParameterList,) { FunctionBody}

FunctionExpression
function Identifier,,,(FormalParameterList,) { FunctionBody}

FormalParameterList
Identifier
FormalParameterList |dentifier

FunctionBody:.
SourceElements

Semantics

The production FunctionDeclaration: function Identifier (FormalParameterList:) { FunctionBody} is
processed for function declarations as follows:

1. Create a new Function object as specified in 13.2 with parameters specified by FormalParameterListand
body specified by FunctionBody Pass in the scope chain of the running execution context as the Scope

2. Create a property of the current variable object (as specified in 10.1.3) with name Identifier and value
Result(1).

The production FunctionExpression function (FormalParameterList:) { FunctionBody} is evaluated
as follows:

1. Create a new Function object as specified in 13.2 with parameters specified by FormalParameterLisk: and
body specified by FunctionBody Pass in the scope chain of the running execution context as the Scope

2. Return Result(2).
The production FunctionExpression function Identifier (FormalParameterList:) { FunctionBody}
is evaluated as follows:

1. Create a new object as if by the expression new Object()

Add Result(1) to the front of the scope chain.

3. Create a new Function object as specified in 13.2 with parameters specified by FormalParameterList: and
body specified by FunctionBody Pass in the scope chain of the running execution context as the Scope

4. Create a property in the object Result(1). The property's name is Identifier, value is Result(3), and attributes
are { DontDelete, ReadOnly }.

5. Remove Result(1) from the front of the scope chain.

6. Return Result(3).

NOTE
The Identifier in a FunctionExpression can be referenced from inside the FunctionExpression's FunctionBody
to allow the function to call itself recursively. However, unlike in a FunctionDeclaration, the Identifier in a

FunctionExpression cannot be referenced from and does not affect the scope enclosing the
FunctionExpression.

N

The production FunctionBody. SourceElementss evaluated as follows:

1. Process SourceElementfor function declarations.

2.
3.

13.1

13.1.1

13.1.2

13.2

- 71 -

Evaluate SourceElements
Return Result(2).

Definitions
A couple of definitions are needed to describe the process of creating function objects:

Equated Grammar Productions

Two uses of the FunctionBodygrammar production are defined to be equatedwhen one of the following is
true:

1

Both uses obtained their FunctionBody from the same location in the source text of the same
ECMAScript program. This source text consists of global code and any contained function codes
according to the definitions in 10.1.2.

1 Both uses obtained their FunctionBodyfrom the same location in the source text of the same call to
eval (15.1.2.1). This source text consists of eval code and any contained function codes according to
the definitions in 10.1.2.

NOTE

Two uses of FunctionBody obtained from a call to Eunction

never equated. Also, two uses of FunctionBody obtained from two different calsalto are never
equated, even if those two callsewal were passed the same argument.

Joined Objects
When two or more Function objects are joined, they have the following special behaviours:

1 Any time a non-internal property of an object O is created or set, the corresponding property is
immediately also created or set with the same value and attributes in all objects joined with O.

1 Any time a non-internal property of an object O is deleted, the corresponding property is immediately
also deleted in all objects joined with O.

9 If objects O and P are joined, they compare as == and === to each other.

9 Joining is transitive and symmetric, so that if objects O and P are joined and objects P and Q are
joined, then objects O and Q are also automatically joined.

NOTE

Two or more objects joined to each other are effectively indistinguishable except that they may hay
ifferent internal propertiesThe only such internal property that may differ in this specification is

d

[[Scope]].

Joined objects are used as a tool for precise specification technique in this standard. They are not mee

to be used as a guideline to how Function objects are implementpdactice. Rather, in practice an

implementation may detect when the differences in the [[Scope]] properties of two or more joinec
Function objects are not externally observable and in those cases reuse the same Function object ratt
than making a sebf joined Function objects. This is a legal optimisation because this standard only

specifies observable behaviour of ECMAScript programs.

Creating Function Objects

Given an optional parameter list specified by FormalParameterLista body specified by FunctionBodyand a
scope chain specified by Scopea Function object is constructed as follows:

1.

ook wn

If there already exists an object E that was created by an earlier call to this section's algorithm, and if that
call to this section's algorithm was given a FunctionBodythat is equated to the FunctionBodygiven now,
then go to step 13. (If there is more than one object E satisfying these criteria, choose one at the
implementation's discretion.)

Create a new native ECMAScript object and let F be that object.

Set the [[Class]] property of F to "Function"

Set the [[Prototype]] property of F to the original Function prototype object as specified in 15.3.3.1.

Set the [[Call]] property of F as described in 13.2.1.

Set the [[Construct]] property of F as described in 13.2.2.

corstructor 15.3.1 and 15.3.2) are

72 -

~

Set the [[Scope]] property of F to a new scope chain (10.1.4) that contains the same objects as Scope

8. Setthelength property of F to the number of formal properties specified in FormalParameterListlf no
parameters are specified, set the length property of F to 0. This property is given attributes as specified
in 15.3.5.1.

9. Create a new object as would be constructed by the expression new Object()

10. Set the constructor property of Result(9) to F. This property is given attributes { DontEnum }.

11. Set the prototype property of F to Result(9). This property is given attributes as specified in 15.3.5.2.

12. Return F.

13. At the implementation's discretion, go to either step 2 or step 14.

14. Create a new native ECMAScript object joined to E and let F be that object. Copy all non-internal
properties and their attributes from E to F so that all non-internal properties are identical in E and F.

15. Set the [[Class]] property of F to "Function”

16. Set the [[Prototype]] property of F to the original Function prototype object as specified in 15.3.3.1.

17. Set the [[Call]] property of F as described in 13.2.1.

18. Set the [[Construct]] property of F as described in 13.2.2.

19. Set the [[Scope]] property of F to a new scope chain (10.1.4) that contains the same objects as Scope

20. Return F.

NOTE
A prototype property is automatically created for every function, to allow for the possibility that the
function will be used as a constructor.

Step 1 allows an implementation to optimise the common case of a function A that has a nested function B
whereB is not dependent on A. In this case the implementation is allowed to reuse the same object for B
instead of creating a new one every time A is called. Step 13 makes this optimisation optional; an
implementation that chooses not to implement it will getep 2.

For example, in the code

function A() {
function B(x) {return x*x;}
return B;

}

function C() {
return eval("(function (x) {return x*x;})");

var bl = A();

var b2 = A();

function b3(x) {return x*x;}
function b4(x) {return x*x;}
var b5 = C();

var b6 = C();

an implementation is allowed, but not required, to jbih andb2. In fact, it may makél andb2 the same

object because there is no way to detect the difference between their [[Scope]] properties. On the other
hand, an implementationust not joinb3 and b4 because their source codes are not equated (13.1.1). Also,
an implementation must not jobbb andb6 because they were produced by two different callsvia and
therefore their source codes are not equated.

In practice it's likely to be productive to join two Function objects only in the cases where an
implementation can prove that the differences between their [[Scope]] properties are not observable, so one
object can be reused. By following this policy, an implementation will @emépunter the vacuous case of an
object being joined with itself.

13.2.1 [[Call]]
When the [[Call]] property for a Function object F is called, the following steps are taken:

1. Establish a new execution context using F's FormalParameterListthe passed arguments list, and the
this value as described in 10.2.3.

13.2.2

oo~wdN

- 73 -

Evaluate F's FunctionBody

Exit the execution context established in step 1, restoring the previous execution context.
If Result(2).type is throw then throw Result(2).value.

If Result(2).type is return then return Result(2).value.

(Result(2).type must be normal.) Return undefined.

[[Construct]]
When the [[Construct]] property for a Function object F is called, the following steps are taken:

SAREl A

~

Create a new native ECMAScript object.

Set the [[Class]] property of Result(1) to "Object”

Get the value of the prototype property of the F.

If Result(3) is an object, set the [[Prototype]] property of Result(1) to Result(3).

If Result(3) is not an object, set the [[Prototype]] property of Result(1) to the original Object prototype
object as described in 15.2.3.1.

Invoke the [[Call]] property of F, providing Result(1) as the this value and providing the argument list
passed into [[Construct]] as the argument values.

If Type(Result(6)) is Object then return Result(6).

Return Result(1).

- 74 -

14 Program

Syntax

Program:
SourceElements

SourceElements
SourceElement
SourceElements SourceElement

SourceElement
Statement
FunctionDeclaration

Semantics
The production Program: SourceElementds evaluated as follows:

1. Process SourceElementfor function declarations.
2. Evaluate SourceElements
3. Return Result(2).

The production SourceElementsSourceElemenis processed for function declarations as follows:
1. Process SourceElemenfor function declarations.
The production SourceEéments SourceElemeris evaluated as follows:

1. Evaluate SourceElement
2. Return Result(1).

The production SourceElements SourceElements SourceElemdntprocessed for function declarations as
follows:

1. Process SourceElementfor function declarations.

2. Process SourceElemenfor function declarations.

The production SourceElementsSourceElements SourceEleméngvaluated as follows:

1. Evaluate SourceElements

2. If Result(1) is an abrupt completion, return Result(1)
3. Evaluate SourceElement

4. Return Result(3).

The production SourceElement Statements processed for function declarations by taking no action.
The production SourceElement Statements evaluated as follows:

1. Evaluate Statement
2. Return Result(1).

The production SourceElement FunctionDeclarationis processed for function declarations as follows:

1. Process FunctionDeclarationfor function declarations (see clause 13).

The production SourceElement FunctionDeclarationis evaluated as follows:

1. Return (normal, empty, empty).

- 75 -

15 Native ECMAScript Objects

There are certain built-in objects available whenever an ECMAScript program begins execution. One, the global
object, is in the scope chain of the executing program. Others are accessible as initial properties of the global
object.

Unless specified otherwise, the [[Class]] property of a built-in object is "Function” if that built-in object has
a [[Call]] property, or "Object" if that built-in object does not have a [[Call]] property.

Many built-in objects are functions: they can be invoked with arguments. Some of them furthermore are
constructors: they are functions intended for use with the new operator. For each built-in function, this
specification describes the arguments required by that function and properties of the Function object. For each
built-in constructor, this specification furthermore describes properties of the prototype object of that constructor
and properties of specific object instances returned by a new expression that invokes that constructor.

Unless otherwise specified in the description of a particular function, if a function or constructor described in this
section is given fewer arguments than the function is specified to require, the function or constructor shall behave
exactly as if it had been given sufficient additional arguments, each such argument being the undefined value.

Unless otherwise specified in the description of a particular function, if a function or constructor described in this
section is given more arguments than the function is specified to allow, the behaviour of the function or
constructor is undefined. In particular, an implementation is permitted (but not required) to throw a TypeError
exception in this case.

NOTE
Implementations that add additional capabilities to the set of fwifunctions are encouraged o so by
adding new functions rather than adding new parameters to existing functions.

Every built-in function and every built-in constructor has the Function prototype object, which is the initial value
of the expression Function.prototype (15.3.2.1), as the value of its internal [[Prototype]] property.

Every built-in prototype object has the Object prototype object, which is the initial value of the expression
Object.prototype (15.3.2.1), as the value of its internal [[Prototype]] property, except the Object prototype
object itself.

None of the built-in functions described in this section shall implement the internal [[Construct]] method unless
otherwise specified in the description of a particular function. None of the built-in functions described in this
section shall initially have a prototype property unless otherwise specified in the description of a particular
function. Every built-in Function object described in this section—whether as a constructor, an ordinary function,
or both—has a length property whose value is an integer. Unless otherwise specified, this value is equal to the
largest number of named arguments shown in the section headings for the function description, including
optional parameters.

NOTE

For example, the Function object thattlse initial value of theslice property of the String prototype object
is described wunder the section heading AString. p
arguments start and end; therefore the value oflémgth property of that Funddn object is2.

In every case, the length property of a built-in Function object described in this section has the attributes
{ ReadOnly, DontDelete, DontEnum } (and no others). Every other property described in this section has the
attribute { DontEnum } (and no others) unless otherwise specified.

15.1 The Global Object

The global object does not have a [[Construct]] property; it is not possible to use the global object as a
constructor with the new operator.

The global object does not have a [[Call]] property; it is not possible to invoke the global object as a function.

The values of the [[Prototype]] and [[Class]] properties of the global object are implementation-dependent.

15.1.1
15.1.1.1

15.1.1.2

15.1.1.3

15.1.2
15.1.2.1

15.1.2.2

- 76 -

Value Properties of the Global Object

NaN

The initial value of NaNis NaN (8.5). This property has the attributes { DontEnum, DontDelete}.
Infinity

The initial value of Infinity is +a (8.5). This property has the attributes { DontEnum, DontDelete}.

undefined

The initial value of undefined is undefined (8.1). This property has the attributes { DontEnum,
DontDelete}.

Function Properties of the Global Object

eval (x)
When the eval function is called with one argument x, the following steps are taken:

If X is not a string value, return x.

Parse x as a Program If the parse fails, throw a SyntaxError exception (but see also clause 16).
Evaluate the program from step 2.

If Result(3).type is normal and its completion value is a value V, then return the value V.

If Result(3).type is normal and its completion value is empty, then return the value undefined.
Result(3).type must be throw. Throw Result(3).value as an exception.

Sk wdE

If value of the eval property is used in any way other than a direct call (that is, other than by the
explicit use of its name as an Identifier which is the MemberExpressioim a CallExpressiol), or if the
eval property is assigned to, an EvalError exception may be thrown.

parselnt (string , radix)

The parselnt function produces an integer value dictated by interpretation of the contents of the string
argument according to the specified radix. Leading whitespace in the string is ignored. If radix is
undefined or 0, it is assumed to be 10 except when the number begins with the character pairs 0x or 0X,
in which case a radix of 16 is assumed. Any radix-16 number may also optionally begin with the
character pairs Ox or OX.

When the parselnt function is called, the following steps are taken:

1. Call ToString(string).

2. Let S be a newly created substring of Result(1) consisting of the first character that is not a
StrWwhiteSpaceChaand all characters following that character. (In other words, remove leading
white space.)

3. Letsignbe 1.

4. If Sis not empty and the first character of Sis a minus sign -, let signbe - 1.

5. If Sis not empty and the first character of Sis a plus sign + or a minus sign -, then remove the first
character from S,

6. Let R= Tolnt32(radix).

7. IfR=0, goto step 11.

8. IfR< 2or R> 36, then return NaN.

9. IfR=16, gotostep 13.

10. Go to step 14.

11. Let R=10.

12. If the length of S is at least 1 and the first character of Sis “0”, then at the implementation's
discretion either let R= 8 or leave R unchanged.

13. If the length of Sis at least 2 and the first two characters of Sare either “0x” or “0X”, then remove
the first two characters from Sand let R= 16.

14. If Scontains any character that is not a radix-R digit, then let Z be the substring of Sconsisting of all
characters before the first such character; otherwise, let Zbe S.

15. If Z is empty, return NaN.

15.1.2.3

15.1.2.4

15.1.2.5

15.1.3

- 77 -

16. Compute the mathematical integer value that is represented by Z in radix-R notation, using the
letters A-Z and a-z for digits with values 10 through 35. (However, if Ris 10 and Z contains more
than 20 significant digits, every significant digit after the 20th may be replaced by a 0 digit, at the
option of the implementation; and if R is not 2, 4, 8, 10, 16, or 32, then Result(16) may be an
implementation-dependent approximation to the mathematical integer value that is represented by Z
in radix-R notation.)

17. Compute the number value for Result(16).

18. Return sign3 Result(17).

NOTE

parseint may interpret only a leading portion of the string as an integer value; it ignores any
characters that cannot be interpreted as part of the notation of an integer, and no indication is give!
that any such characters were ignored.

When radix is 0 oundefinedand the string's number begins witt0adigit not followed by arx or X,
then the implementation may, at its discretion, interpret the number either as being octal or as bein
decimal. Inplementations are encouraged to interpret numbers in this case as being decimal.

parseFloat (string)

The parseFloat function produces a number value dictated by interpretation of the contents of the
string argument as a decimal literal.

When the parseFloat function is called, the following steps are taken:

1. Call ToString(string).

2. Compute a substring of Result(l) consisting of the leftmost character that is not a
StrwhiteSpaceChaand all characters to the right of that character.(In other words, remove leading
white space.)

3. If neither Result(2) nor any prefix of Result(2) satisfies the syntax of a StrDecimalLiteral(see 0),
return NaN.

4. Compute the longest prefix of Result(2), which might be Result(2) itself, which satisfies the syntax
of a StrDecimalLiteral

5. Return the number value for the MV of Result(4).

NOTE

parseFloat may interpret only a leading portion of the string as a number value; it ignores any
characters that cannot be interpreted as part of ml¢ation of an decimal literal, and no indication is
given that any such characters were ignored.

isNaN (number)

Applies ToNumber to its argument, then returns true if the result is NaN, and otherwise returns false.

isFinite (number)
Applies ToNumber to its argument, then returns false if the result is NaN, +a, or - &, and otherwise
returns true.

URI Handling Function Properties

Uniform Resource ldentifiers, or URIs, are strings that identify resources (e.g. web pages or files) and
transport protocols by which to access them (e.g. HTTP or FTP) on the Internet. The ECMAScript language
itself does not provide any support for using URIs except for functions that encode and decode URIs as
described in 15.1.3.1, 15.1.3.2, 15.1.3.3 and 15.1.3.4.

NOTE
Many implementations of ECMAScript provide additional functions and methods that manipulate wel
pages; these functions are beyond the scope of this standard.

A URI is composed of a sequence of components separated by component separators. The general form is:

Scheme: First / Second; Third ? Fourth

- 78 -

. 9 “/ 9 . 9
> > 1

where the italicised names represent components and the “: and “?” are reserved characters
used as separators. The encodeURI and decodeURI functions are intended to work with complete
URIs; they assume that any reserved characters in the URI are intended to have special meaning and so are
not encoded. The encodeURIComponent and decodeURIComponent functions are intended to work
with the individual component parts of a URI; they assume that any reserved characters represent text and
so must be encoded so that they are not interpreted as reserved characters when the component is part of a
complete URI.

The following lexical grammar specifies the form of encoded URIs.
uri i
uriCharacters,,

uriCharacters::
uriCharacter uriCharacters,,

uriCharacter::
uriReserved
uriUnescaped
uriEscaped

uriReserved:: one of
2@ &=+9,

uriUnescaped::
uriA Ipha
DecimalDigit
uriMark

uriEscaped::
%HexDigit HexDigit

uriA lpha::: one of
abcdefghijklmnopaq tu
ABCDEFGHIJKLMNOPQRSTUVWXYZ
uriMark ::: one of

=)

When a character to be included in a URI is not listed above or is not intended to have the special meaning
sometimes given to the reserved characters, that character must be encoded. The character is first
transformed into a sequence of octets using the UTF-8 transformation, with surrogate pairs first
transformed from their UCS-2 to UCS-4 encodings. (Note that for code points in the range [0,127] this
results in a single octet with the same value.) The resulting sequence of octets is then transformed into a
string with each octet represented by an escape sequence of the form “%xx ™.

The encoding and escaping process is described by the hidden function Encode taking two string arguments
string and unescapedSeThis function is defined for expository purpose only.

Compute the number of characters in string.

Let R be the empty string.

Let k be 0.

If k equals Result(1), return R

Let C be the character at position k within string.

If C is not in unescapedSego to step 9.

Let She a string containing only the character C.

Go to step 24.

If the code point value of C is not less than 0xDCOO0 and not greater than OXDFFF, throw a URIError
exception.

CoOoNORWNE

10.

11.
12.
13.
14.
15.
16.

17.
18.
19.

20.
21.
22.
23.
24.
25.
26.

- 79 -

If the code point value of C is less than 0xD800 or greater than OXDBFF, let V be the code point value
of C and go to step 16.

Increase k by 1.

If k equals Result(1), throw a URIError exception.

Get the code point value of the character at position k within string.

If Result(13) is less than 0xDCOO or greater than OXDFFF, throw a URIError exception.

Let V be (((the code point value of C) — 0xD800) * 0x400 + (Result(13) — 0xDCO00) + 0x10000).

Let Octetsbe the array of octets resulting by applying the UTF-8 transformation to V, and let L be the
array size.

Letj be 0.

Get the value at position j within Octets

Let S be a string containing three characters “%XY” where XY are two uppercase hexadecimal digits
encoding the value of Result(18).

Let R be a new string value computed by concatenating the previous value of Rand S,

Increase j by 1.

If j is equal to L, go to step 25.

Go to step 18.

Let R be a new string value computed by concatenating the previous value of Rand S,

Increase k by 1.

Go to step 4.

The unescaping and decoding process is described by the hidden function Decode taking two string
arguments string and reservedSefThis function is defined for expository purpose only.

©WOeNDOr~WNRE

23.
24.
25.
26.
27.
28.
29.

Compute the number of characters in string.

Let R be the empty string.

Let k be 0.

If k equals Result(1), return R.

Let C be the character at position k within string.

If Cis not ‘%’, go to step 40.

Let start be k.

If k + 2 is greater than or equal to Result(1), throw a URIError exception.

If the characters at position (k+1) and (k + 2) within string do not represent hexadecimal digits, throw
a URIError exception.

. Let B be the 8-bit value represented by the two hexadecimal digits at position (k + 1) and (k + 2).

. Increment k by 2.

. If the most significant bit in B is 0, let C be the character with code point value B and go to step 37.
. Let n be the smallest non-negative number such that (B << n) & 0x80 is equal to 0.

. If nequals 1 or nis greater than 4, throw a URIError exception.

. Let Octetsbe an array of 8-bit integers of size n.

. Put B into Octetsat position 0.

. Ifk+ (3 * (n—1)) is greater than or equal to Result(1), throw a URIError exception.

. Letj bel.

. If j equals n, go to step 29.

. Increment k by 1.

. If the character at position k is not ‘%’, throw a URIError exception.

. If the characters at position (k +1) and (k + 2) within string do not represent hexadecimal digits, throw

a URIError exception.

Let B be the 8-bit value represented by the two hexadecimal digits at position (k + 1) and (k + 2).

If the two most significant bits in B are not 10, throw a URIError exception.

Increment k by 2.

Put B into Octetsat position j.

Increment j by 1.

Go to step 19.

Let V be the value obtained by applying the UTF-8 transformation to Octets that is, from an array of
octets into a 32-bit value.

- 80 -

30. If Vis less than 0x10000, go to step 36.

31. If Vis greater than OX10FFFF, throw a URIError exception.

32. Let L be (((V - 0x10000) & 0x3FF) + 0xDCO00).

33. Let H be ((((V — 0x10000) >> 10) & 0x3FF) + 0xD800).

34. Let She the string containing the two characters with code point values H and L.
35. Go to step 41.

36. Let C be the character with code point value V.

37. If Cis not in reservedSeto to step 40.

38. Let She the substring of string from position startto position k included.

39. Gotostep 41.

40. Let She the string containing only the character C.

41. Let Rbe a new string value computed by concatenating the previous value of Rand S.
42. Increase k by 1.

43. Go to step 4.

NOTE 1
The syntax of Uniform Resare Identifiers is given in RFC2396.

NOTE 2

A formal description and implementation of UB8Fis given in the Unicode Standard, Version 2.0,
Appendix A.

In UTF8, characters are encoded using sequences of 1 to 6 octets. The only octet of a "sequence" of one
has the higheworder bit set to 0, the remaining 7 bits being used to encode the character value. In a
sequence of n octets, n>1, the initial octet has the n highéer bits set to 1, followed by a bit set to 0.

The remaining bits of that octet contaiitdbfrom the value of the character to be encoded. The following
octets all have the highesrder bit set to 1 and the following bit set to 0, leaving 6 bits in each to contain
bits from the character to be encoded. The possible-BERcodings of ECMAS@1i characters are:

Code Point Value Representation 1+’Octet 277Qctet 370Octet 4% Qctet
0x0000 - OxO007F 00000000 0zzzzzzz 0zzzzzzz
0x0080 - OxO7FF 00000 yyy yyzzzzzz 110yyyyy 10zzzzzz
0x0800 - OxDT7FF XXXXYYYY YYyzzz77Z 1110 xxxx 10yyyyyy 10zzzzzz
0xD800 - OxDBFF 110110 vV VWWWWWXX
followed by followed by 11110 uuu 10uuwwww | 10xxyyyy 10zzzzzz

0xDCOO0 i OxDFFF 110111 yy yyzzzzzz

0xD800 - OxDBFF
not followed by causes URIError
0xDCOO0 i OxDFFF

0xDCO00 i OxDFFF causes URIError
OXEOOO - OxFFFF XXXXYYYY YYyzzzz72 1110 xxxx 10yyyyyy 10zzzzzz
Where

uuuuu = vvw +1
to account for the addition of 0x10000 as in 3.7, Surrogates of the Unicode Standard version 2.0.

The range of code point values OxD8OXDFFF is used to encode surrogate pairs; theoee
transformation combines a UGS surrogate pair into a UCS representation and encodes the resulting
21-bit value in UTF8. Decoding reconstructs the surrogate pair.

15.1.31

15.1.3.2

15.1.3.3

15.1.3.4

-81 -

decodeURI (encodedURI)

The decodeURI function computes a new version of a URI in which each escape sequence and UTF-8
encoding of the sort that might be introduced by the encodeURI function is replaced with the character
that it represents. Escape sequences that could not have been introduced by encodeURI are not
replaced.

When the decodeURI function is called with one argument encodedUR]Ithe following steps are taken:

1. Call ToString(encodedURIL

2. LetreservedURISHdie a string containing one instance of each character valid in uriReservedlus
“#’7.

3. Call Decode(Result(1), reservedURSe)

4. Return Result(3).

NOTE
The character A#O 1 s not decoded from escape
character.

decodeURIComponent (encodedURIComponent)

The decodeURIComponent function computes a new version of a URI in which each escape
sequence and UTF-8 encoding of the sort that might be introduced by the encodeURIComponent
function is replaced with the character that it represents.

When the decodeURIComponent function is called with one argument encodedURIComponenthe
following steps are taken:

1. Call ToString(encodedURIComponént

2. LetreservedURIComponentSad the empty string.

3. Call Decode(Result(1), reservedURIComponentJet
4. Return Result(3).

encodeURI (uri)

The encodeURI function computes a new version of a URI in which each instance of certain characters
is replaced by one, two or three escape sequences representing the UTF-8 encoding of the character.

When the encodeURI function is called with one argument uri, the following steps are taken:

1. Call ToString(uri).

2. LetunescapedURISé&E a string containing one instance of each character valid in uriReservednd
uriUnescapecplus “#”.

3. Call Encode(Result(1), unescapedURISket

4. Return Result(3).

NOTE
The character fA#0 i s not encode dotareseaal oraisescapecke
URI character.

encodeURIComponent (uriComponent)

The encodeURIComponent function computes a new version of a URI in which each instance of
certain characters is replaced by one, two or three escape sequences representing the UTF-8 encoding of
the character.

When the encodeURIComponent function is called with one argument uriComponentthe following
steps are taken:

1. Call ToString(uriComponenkt

2. LetunescapedURIComponentSeta string containing one instance of each character valid in
uriUnescaped

Call Encode(Result(1), unescapedURIComponentget

4. Return Result(3).

w

-82 -

15.1.4 Constructor Properties of the Global Object
15.1.4.1 Object(...)
See 15.2.1 and 15.2.2.

15.1.4.2 Function (.. .)
See 15.3.1 and 15.3.2.

15.1.4.3 Array(...)
See 15.4.1 and 15.4.2.

15.1.4.4 String (...)
See 15.5.1 and 15.5.2.

15.1.4.5 Boolean(...)
See 15.6.1 and 15.6.2.

15.1.4.6 Number (...)
See 15.7.1 and 15.7.2.

15.1.4.7 Date(...)
See 15.9.2.

15.1.4.8 RegExp(...)
See 15.10.3 and 15.10.4.

15.1.4.9 Error(...)
See 15.11.1 and 15.11.2.

15.1.4.10 EvalError (.. .)
See 15.11.6.1.

15.1.4.11 RangeError (.. .)
See 15.11.6.2.

15.1.4.12 ReferenceError (.. .)
See 15.11.6.3.

15.1.4.13 SyntaxError (.. .)
See 15.11.6.4.

15.1.4.14 TypeError (.. .)
See 15.11.6.5.

15.1.4.15 URIError (.. .)
See 15.11.6.6.

15.1.5 Other Properties of the Global Object
15.1.5.1 Math
See 15.8.

15.2 Object Objects
15.2.1 The Object Constructor Called as a Function
When Object is called as a function rather than as a constructor, it performs a type conversion.

15.2.1.1 Object ([value])
When the Object function is called with no arguments or with one argument value the following steps
are taken:

1. If valueis null, undefined or not supplied, create and return a new Object object exactly if the
object constructor had been called with the same arguments (15.2.2.1).

- 83 -

2. Return ToObject(value).

15.2.2 The Object Constructor
When Object is called as part of a new expression, it is a constructor that may create an object.

15.2.2.1

15.2.3

new Object ([value])

When the Object constructor is called with no arguments or with one argument value the following
steps are taken:

1. Ifvalueis not supplied, go to step 8.

If the type of valueis not Object, go to step 5.

If the valueis a native ECMAScript object, do not create a new object but simply return value
If the valueis a host object, then actions are taken and a result is returned in an implementation-
dependent manner that may depend on the host object.

If the type of valueis String, return ToObject(valué).

If the type of valueis Boolean, return ToObject(value).

If the type of valueis Number, return ToObject(value).

(The argument valuewas not supplied or its type was Null or Undefined.)

Create a new native ECMAScript object.

The [[Prototype]] property of the newly constructed object is set to the Object prototype object.
The [[Class]] property of the newly constructed object is set to "Object"”

The newly constructed object has no [[Value]] property.

Return the newly created native object.

o

©Noo

Properties of the Object Constructor
The value of the internal [[Prototype]] property of the Object constructor is the Function prototype object.

Besides the internal properties and the length property (whose value is 1), the Object constructor has the

following properties:

15.2.3.1

15.2.4

15.2.4.1

15.2.4.2

15.2.4.3

Object.prototype
The initial value of Object.prototype is the Object prototype object (15.2.4).

This property has the attributes { DontEnum, DontDelete, ReadOnly }.

Properties of the Object Prototype Object

The value of the internal [[Prototype]] property of the Object prototype object is null and the value of the
internal [[Class]] property is "Object"

Object.prototype.constructor
The initial value of Object.prototype.co nstructor is the built-in Object constructor.

Object.prototype.toString ()
When the toString method is called, the following steps are taken:
1. Get the [[Class]] property of this object.

2. Compute a string value by concatenating the three strings "[0 bject” , Result(1), and "]"
3. Return Result(2).

Object.prototype.toLocaleString ()

This function returns the result of calling toString()

NOTE 1

This function is provided to give all Objects a genddtocaleString interface, even though not
all may use it. Currently,Array , Number, and Date provide their own localeensitive
toLocaleString methods.

NOTE 2

-84 -

The first parameter to this function is likely to be used in a future version of this standard; it is
recommended that implementations do ue¢ this parameter position for anything else.

15.2.4.4 Object.prototype.valueOf ()
The valueOf method returns its this value. If the object is the result of calling the Object constructor
with a host object (15.2.2.1), it is implementation-defined whether valueOf returns its this value or
another value such as the host object originally passed to the constructor.

15.2.4.5 Object.prototype.hasOwnProperty (V)
When the hasOwnProperty method is called with argument V, the following steps are taken:

1. Let O be this object.

2. Call ToString(V).

3. If O doesn’t have a property with the name given by Result(2), return false.
4. Return true.

NOTE
Unlike [[HasProperty]] (8.6.2.4), this method does not consider objects in the prototype chain.

15.2.4.6 Object.prototype.isPrototypeOf (V)
When the isPrototypeOf method is called with argument V, the following steps are taken:

Let O be this object.

If V is not an object, return false.

Let V be the value of the [[Prototype]] property of V.

if Vis null, return false

If O and V refer to the same object or if they refer to objects joined to each other (13.1.2), return
true.

6. Go tostep 3.

agRrwbdE

15.2.4.7 Object.prototype.propertylsEnumerable (V)

When the propertylsEnumerable method is called with argument V, the following steps are taken:
1. Let O be this object.

2. Call ToString(V).

3. If O doesn’t have a property with the name given by Result(2), return false.

4. If the property has the DontEnum attribute, return false.

5. Return true.

NOTE
This method does not consider objects in the prototype chain.
15.25 Properties of Object Instances
Object instances have no special properties beyond those inherited from the Object prototype object.

15.3 Function Objects
15.3.1 The Function Constructor Called as a Function

When Function is called as a function rather than as a constructor, it creates and initialises a new
Function object. Thus the function call Function(é) is equivalent to the object creation expression new
Function(é) with the same arguments.

15.3.1.1 Function (pl, p2,é , pn, body)

When the Function function is called with some arguments p1, p2, ..., pn, body(where n might be 0,
that is, there are no “p” arguments, and where bodymight also not be provided), the following steps are
taken:

1. Create and return a new Function object as if the function constructor had been called with the same
arguments (15.3.2.1).

15.3.2

15.3.2.1

15.3.3

15.3.3.1

- 85 -

The Function Constructor

When Function is called as part of a new expression, it is a constructor: it initialises the newly created
object.

new Function (p1, p2,é , pn, body)

The last argument specifies the body (executable code) of a function; any preceding arguments specify
formal parameters.

When the Function constructor is called with some arguments p1, p2, ..., pn, body(where n might be
0, that is, there are no “p” arguments, and where bodymight also not be provided), the following steps
are taken:

Let P be the empty string.

If no arguments were given, let bodybe the empty string and go to step 13.

If one argument was given, let bodybe that argument and go to step 13.

Let Result(4) be the first argument.

Let P be ToString(Result(4)).

Let k be 2.

If k equals the number of arguments, let bodybe the k' argument and go to step 13.

Let Result(8) be the k™ argument.

Call ToString(Result(8)).

0. Let P be the result of concatenating the previous value of P, the string "," (a comma), and

Result(9).

11. Increase k by 1.

12. Gotostep 7.

13. Call ToString(body).

14. If Pis not parsable as a FormalParameterLisj, then throw a SyntaxError exception.

15. If bodyis not parsable as FunctionBodythen throw a SyntaxError exception.

16. Create a new Function object as specified in 13.2 with parameters specified by parsing P as a
FormalParameterLisfy: and body specified by parsing bodyas a FunctionBody Pass in a scope
chain consisting of the global object as the Scopeparameter.

17. Return Result(16).

RO®ONO O R~WNE

A prototype property is automatically created for every function, to provide for the possibility that the
function will be used as a constructor.

NOTE

It is permissible but not necessary to have one argument for eaclalfgamameter to be specified.

For example, all three of the following expressions produce the same result:
new Function("a", "b", "c", "return a+b+c")

new Function("a, b, ¢", "return a+b+c")
new Function("a,b", "c", "return a+b+c")

Properties of the Function Constructor

The value of the internal [[Prototype]] property of the Function constructor is the Function prototype object
(15.3.4).

Besides the internal properties and the length property (whose value is 1), the Function constructor has
the following properties:

Function.prototype
The initial value of Function.prototype is the Function prototype object (15.3.4).

This property has the attributes { DontEnum, DontDelete, ReadOnly }.

15.3.4

15.34.1

15.3.4.2

15.3.4.3

15.3.4.4

15.3.5

15.3.5.1

- 86 -

Properties of the Function Prototype Object

The Function prototype object is itself a Function object (its [[Class]] is "Function") that, when
invoked, accepts any arguments and returns undefined.

The value of the internal [[Prototype]] property of the Function prototype object is the Object prototype
object (15.3.2.1).

It is a function with an “empty body”; if it is invoked, it merely returns undefined.

The Function prototype object does not have a valueOf property of its own; however, it inherits the
valueOf property from the Object prototype Object.

Function.prototype.constructor
The initial value of Function.prototype.constructor is the built-in Function constructor.

Function.prototype.toString ()

An implementation-dependent representation of the function is returned. This representation has the
syntax of a FunctionDeclaration Note in particular that the use and placement of white space, line
terminators, and semicolons within the representation string is implementation-dependent.

The toString function is not generic; it throws a TypeError exception if its this value is not a
Function object. Therefore, it cannot be transferred to other kinds of objects for use as a method.

Function.prototype.apply (thisArg, argArray)

The apply method takes two arguments, thisArgand argArray, and performs a function call using the
[[Call]] property of the object. If the object does not have a [[Call]] property, a TypeError exception is
thrown.

If thisArg is null or undefined, the called function is passed the global object as the this value.
Otherwise, the called function is passed ToObject(thisArg) as the this value.

If argArray is null or undefined, the called function is passed no arguments. Otherwise, if argArray is
neither an array nor an arguments object (see 10.1.8), a TypeError exception is thrown. If argArray is
either an array or an arguments object, the function is passed the
(ToUint32(argArray.length)) arguments argArray[0], argArray[1], ...,
argArray[ToUint32(argArray.length)-1].

The length property of the apply method is 2.

Function. prototype.call (thisArg | , argl |

The call method takes one or more arguments, thisArgand (optionally) argl, arg2 etc, and performs a
function call using the [[Call]] property of the object. If the object does not have a [[Call]] property, a
TypeError exception is thrown. The called function is passed argl, arg?2, etc. as the arguments.

If thisArg is null or undefined, the called function is passed the global object as the this value.
Otherwise, the called function is passed ToObject(thisArg) as the this value.

The length property of the call method is 1.

Properties of Function Instances

In addition to the required internal properties, every function instance has a [[Call]] property, a
[[Construct]] property and a [[Scope]] property (see 8.6.2 and 13.2). The value of the [[Class]] property is
"Function” .

length

The value of the length property is usually an integer that indicates the “typical” number of arguments
expected by the function. However, the language permits the function to be invoked with some other
number of arguments. The behaviour of a function when invoked on a number of arguments other than
the number specified by its length property depends on the function. This property has the attributes
{ DontDelete, ReadOnly, DontEnum }.

- 87 -

15.3.5.2 prototype

The value of the prototype property is used to initialise the internal [[Prototype]] property of a newly
created object before the Function object is invoked as a constructor for that newly created object. This
property has the attribute { DontDelete }.

15.3.5.3 [[HaslInstance]] (V)

15.4

15.4.1

Assume F is a Function object.
When the [[HasInstance]] method of F is called with value V, the following steps are taken:

If V is not an object, return false.

Call the [[Get]] method of F with property name "prototype"

Let O be Result(2).

If O is not an object, throw a TypeError exception.

Let V be the value of the [[Prototype]] property of V.

If Vis null , return false

If O and V refer to the same object or if they refer to objects joined to each other (13.1.2), return
true.

8. Gotostep 5.

NogakrwhpE

Array Objects

Array objects give special treatment to a certain class of property names. A property name P (in the form of a
string value) is an array indexif and only if ToString(ToUint32(P)) is equal to P and ToUint32(P) is not equal
to 2%2- 1. Every Array object has a length property whose value is always a nonnegative integer less than
2% The value of the length property is numerically greater than the name of every property whose name is
an array index; whenever a property of an Array object is created or changed, other properties are adjusted as
necessary to maintain this invariant. Specifically, whenever a property is added whose name is an array index,
the length property is changed, if necessary, to be one more than the numeric value of that array index; and
whenever the length property is changed, every property whose name is an array index whose value is not
smaller than the new length is automatically deleted. This constraint applies only to properties of the Array
object itself and is unaffected by length or array index properties that may be inherited from its prototype.

The Array Constructor Called as a Function

When Array is called as a function rather than as a constructor, it creates and initialises a new Array
object. Thus the function call Array(€) is equivalent to the object creation expression new Array(€)
with the same arguments.

15.4.1.1 Array ([iteml][,item2[,€é 111])

15.4.2

When the Array function is called the following steps are taken:

1. Create and return a new Array object exactly as if the array constructor had been called with the
same arguments (15.4.2).

The Array Constructor
When Array is called as part of a new expression, it is a constructor: it initialises the newly created
object.

15.4.2.1 new Array ([itemO[,iteml[,é])] 1]

This description applies if and only if the Array constructor is given no arguments or at least two
arguments.

The [[Prototype]] property of the newly constructed object is set to the original Array prototype object,
the one that is the initial value of Array.prototype (15.4.3.1).

The [[Class]] property of the newly constructed object is set to "Array”

The length property of the newly constructed object is set to the number of arguments.

- 88 -

The O property of the newly constructed object is set to itemO (if supplied); the 1 property of the newly
constructed object is set to item1 (if supplied); and, in general, for as many arguments as there are, the k
property of the newly constructed object is set to argument k, where the first argument is considered to be
argument number 0.

15.4.2.2 new Array (len)

The [[Prototype]] property of the newly constructed object is set to the original Array prototype object,
the one that is the initial value of Array.prototype (15.4.3.1). The [[Class]] property of the newly
constructed object is set to "Array"

If the argument len is a Number and ToUint32(len) is equal to len, then the length property of the
newly constructed object is set to ToUint32(len). If the argument len is a Number and ToUint32(len) is
not equal to len, a RangeError exception is thrown.

If the argument len is not a Number, then the length property of the newly constructed object is set to
1 and the O property of the newly constructed object is set to len.

15.4.3 Properties of the Array Constructor
The value of the internal [[Prototype]] property of the Array constructor is the Function prototype object
(15.3.4).

Besides the internal properties and the length property (whose value is 1), the Array constructor has the
following properties:
15.4.3.1 Array.prototype
The initial value of Array.prototype is the Array prototype object (15.4.4).

This property has the attributes { DontEnum, DontDelete, ReadOnly }.

15.4.4 Properties of the Array Prototype Object
The value of the internal [[Prototype]] property of the Array prototype object is the Object prototype object
(15.2.3.1).

The Array prototype object is itself an array; its [[Class]] is "Array" , and it has a length property
(whose initial value is +0) and the special internal [[Put]] method described in 15.2.3.1.

In following descriptions of functions that are properties of the Array prototype object, the phrase “this
object” refers to the object that is the this value for the invocation of the function. It is permitted for the this
to be an object for which the value of the internal [[Class]] property is not "Array"

NOTE
The Array prototype object does not havevalueOf property of its own; however, it inherits the
valueOf property fom the Object prototype Object.

15.4.4.1 Array.prototype.constructor
The initial value of Array.prototype.constructor is the built-in Array constructor.

15.4.4.2 Array.prototype.toString ()

The result of calling this function is the same as if the built-in join method were invoked for this object
with no argument.

The toString function is not generic; it throws a TypeError exception if its this value is not an Array
object. Therefore, it cannot be transferred to other kinds of objects for use as a method.

15.4.4.3 Array.prototype.toLocaleString ()
The elements of the array are converted to strings using their toLocaleString methods, and these
strings are then concatenated, separated by occurrences of a separator string that has been derived in an
implementation-defined locale-specific way. The result of calling this function is intended to be
analogous to the result of toString , except that the result of this function is intended to be locale-
specific.

The result is calculated as follows:

-89 -

1. Call the [[Get]] method of this object with argument "length"

Call ToUint32(Result(1)).

Let separatorbe the list-separator string appropriate for the host environment’s current locale (this

is derived in an implementation-defined way).

Call ToString(separato).

If Result(2) is zero, return the empty string.

Call the [[Get]] method of this object with argument "0" .

If Result(6) is undefined or null, use the empty string; otherwise, call

ToObject(Result(6)).toLocaleString().

8. Let Rbe Result(7).

9. Letkbel.

10. If k equals Result(2), return R.

11. Let She a string value produced by concatenating R and Result(4).

12. Call the [[Get]] method of this object with argument ToString(k).

13. If Result(12) is undefined or null, use the empty string; otherwise, call
ToObject(Result(12)).toLocaleString().

14. Let Rbe a string value produced by concatenating Sand Result(13).

15. Increase k by 1.

16. Go to step 10.

wn

No ok

The toLocaleString function is not generic; it throws a TypeError exception if its this value is not
an Array object. Therefore, it cannot be transferred to other kinds of objects for use as a method.
NOTE

The first parameter to this function is likely to be used in a future version of this standard; it is
recommended that implementations do not use this parameter position for anything else.

15444 Array.prototype.concat ([iteml [, item2 [

When the concat method is called with zero or more arguments item1, item2, etc., it returns an array
containing the array elements of the object followed by the array elements of each argument in order.

The following steps are taken:

Let A be a new array created as if by the expression new Array()

Let n be 0.

Let E be this object.

If E is not an Array object, go to step 16.

Let k be 0.

Call the [[Get]] method of E with argument "length"

If k equals Result(6) go to step 19.

Call ToString(k).

If E has a property named by Result(8), go to step 10, but if E has no property named by Result(8),
go to step 13.

10. Call ToString(n).

11. Call the [[Get]] method of E with argument Result(8).

12. Call the [[Put]] method of A with arguments Result(10) and Result(11).
13. Increase n by 1.

14. Increase k by 1.

15. Gotostep 7.

16. Call ToString(n).

17. Call the [[Put]] method of A with arguments Result(16) and E.

18. Increase n by 1.

19. Get the next argument in the argument list; if there are no more arguments, go to step 22.
20. Let E be Result(19).

21. Goto step 4.

22. Call the [[Put]] method of A with arguments "length” and n.

23. Return A

CoOoNoOR~WDNE

15.4.4.5

15.4.4.6

15.4.4.7

-90 -

The length property of the concat method is 1.

NOTE

Theconcat function is intentionally generic; it does not require thatthss value be an Array object.
Therefore it can be transferred to other kinds of objects for use as a method. Whetkenthé
function can be applied successfully to a host object is implement@¢ipandent.

Array.prototype.join (separator)

The elements of the array are converted to strings, and these strings are then concatenated, separated by
occurrences of the separator If no separator is provided, a single comma is used as the separator.

The join method takes one argument, separator and performs the following steps:

Call the [[Get]] method of this object with argument "length"

Call ToUint32(Result(1)).

If separatoris undefined, let separatorbe the single-character string ","
Call ToString(separatol.

If Result(2) is zero, return the empty string.

Call the [[Get]] method of this object with argument "0" .

If Result(6) is undefined or null, use the empty string; otherwise, call ToString(Result(6)).
Let R be Result(7).

9. Letkbel.

10. If k equals Result(2), return R.

11. Let Sbe a string value produced by concatenating R and Result(4).

12. Call the [[Get]] method of this object with argument ToString(k).

13. If Result(12) is undefined or null, use the empty string; otherwise, call ToString(Result(12)).
14. Let Rbe a string value produced by concatenating Sand Result(13).

15. Increase k by 1.

16. Go to step 10.

Nk WNE

The length property of the join method is 1.

NOTE

Thejoin function is intentionally generic; it does not require thattiiés value be an Array object.
Therefore, it can be transferred to other kinds of olgefidr use as a method. Whether ftjoin
function can be applied successfully to a host object is implement@¢ipandent.

Array.prototype.pop ()
The last element of the array is removed from the array and returned.

Call the [[Get]] method of this object with argument " length .

Call ToUint32(Result(1)).

If Result(2) is not zero, go to step 6.

Call the [[Put]] method of this object with arguments " length " and Result(2).
Return undefined.

Call ToString(Result(2)-1).

Call the [[Get]] method of this object with argument Result(6).

Call the [[Delete]] method of this object with argument Result(6).

. Call the [[Put]] method of this object with arguments " length " and (Result(2)-1).
10. Return Result(7).

WoNo~WNE

NOTE

The pop function is intentionally generic; it does noequire that itsthis value be an Array object.
Therefore it can be transferred to other kinds of objects for use as a method. Whethep thaction
can be applied successfully to a host object is implementagpendent.

Array.prototype.push ([iteml | , item2 | , e 1 1]

The arguments are appended to the end of the array, in the order in which they appear. The new length of
the array is returned as the result of the call.

-91 -

When the push method is called with zero or more arguments item1,item2 etc., the following steps are

taken:

1. Call the [[Get]] method of this object with argument " length

2. Let n be the result of calling ToUint32(Result(1)).

3. Get the next argument in the argument list; if there are no more arguments, go to step 7.
4. Call the [[Put]] method of this object with arguments ToString(n) and Result(3).

5. Increase nby 1.

6. Goto step 3.

7. Call the [[Put]] method of this object with arguments " length " and n.

8. Returnn.

The length property of the push method is 1.

NOTE

The push function isintentionally generic; it does not require that itisis value be an Array object.
Therefore it can be transferred to other kinds of objects for use as a method. Whethmrsthe
function can be applied successfully to a host object is implement@d¢ipament.

15.4.4.8 Array.prototype.reverse ()

The elements of the array are rearranged so as to reverse their order. The object is returned as the result
of the call.

Call the [[Get]] method of this object with argument "length”

Call ToUint32(Result(1)).

Compute floor(Result(2)/2).

Let k be O.

If k equals Result(3), return this object.

Compute Result(2)- k- 1.

Call ToString(k).

Call ToString(Result(6)).

9. Call the [[Get]] method of this object with argument Result(7).

10. Call the [[Get]] method of this object with argument Result(8).

11. If this object does not have a property named by Result(8), go to step 19.

12. If this object does not have a property named by Result(7), go to step 16.

13. Call the [[Put]] method of this object with arguments Result(7) and Result(10).

14. Call the [[Put]] method of this object with arguments Result(8) and Result(9).

15. Go to step 25.

16. Call the [[Put]] method of this object with arguments Result(7) and Result(10).

17. Call the [[Delete]] method on this object, providing Result(8) as the name of the property to delete.
18. Go to step 25.

19. If this object does not have a property named by Result(7), go to step 23.

20. Call the [[Delete]] method on this object, providing Result(7) as the name of the property to delete..
21. Call the [[Put]] method of this object with arguments Result(8) and Result(9).

22. Go to step 25.

23. Call the [[Delete]] method on this object, providing Result(7) as the name of the property to delete.
24. Call the [[Delete]] method on this object, providing Result(8) as the name of the property to delete.
25. Increase k by 1.

26. Goto step 5.

NGO R~WNPRE

NOTE

Thereverse function is intentionally generic; it does not require that tkés value be an Array
object. Therefore, it can be transferred to other kinds of objects for use as a method. Whether tt
reverse function can be appdid successfully to a host object is implementatiependent.

15.4.4.9 Array.prototype.shift ()
The first element of the array is removed from the array and returned.

15.4.4.10

-92 -

Call the [[Get]] method of this object with argument " length .

Call ToUint32(Result(1)).

If Result(2) is not zero, go to step 6.

Call the [[Put]] method of this object with arguments " length " and Result(2).
Return undefined.

Call the [[Get]] method of this object with argument 0.

Let k be 1.

If k equals Result(2), go to step 18.

Call ToString(k).

Call ToString(k-1).

If this object has a property named by Result(9), go to step 12; but if this object has no property
named by Result(9), then go to step 15.

Call the [[Get]] method of this object with argument Result(9).

13. Call the [[Put]] method of this object with arguments Result(10) and Result(12).
14. Go to step 16.

15. Call the [[Delete]] method of this object with argument Result(10).

16. Increase k by 1.

17. Go to step 8.

18. Call the [[Delete]] method of this object with argument ToString(Result(2)-1).
19. Call the [[Put]] method of this object with arguments " length " and (Result(2)-1).
20. Return Result(6).

HBwoNoO RN PR

= o

[y
N

NOTE

Theshift function is intentionally generic; it does not require thatthss value be an Array object.
Therefore it can be transferred to other kinds of objefor use as a method. Whether thaft
function can be applied successfully to a host object is implement@¢ipandent.

Array.prototype.slice (start, end)

The slice method takes two arguments, startand end and returns an array containing the elements of
the array from element start up to, but not including, element end (or through the end of the array if end
is undefined). If startis negative, it is treated as (lengtht+start) where lengthis the length of the array. If
endis negative, it is treated as (lengthtend where lengthis the length of the array. The following steps
are taken:

Let A be a new array created as if by the expression new Array()
Call the [[Get]] method of this object with argument " length .
Call ToUint32(Result(2)).
Call Tolnteger(start).
If Result(4) is negative, use max((Result(3)+Result(4)),0); else use min(Result(4),Result(3)).
Let k be Result(5).
If endis undefined, use Result(3); else use Tolnteger(end.
If Result(7) is negative, use max((Result(3)+Result(7)),0); else use min(Result(7),Result(3)).
Let n be 0.
. If k is greater than or equal to Result(8), go to step 19.
. Call ToString(K).
. If this object has a property named by Result(11), go to step 13; but if this object has no property
named by Result(11), then go to step 16.
13. Call ToString(n).
14. Call the [[Get]] method of this object with argument Result(11).
15. Call the [[Put]] method of A with arguments Result(13) and Result(14).
16. Increase k by 1.
17. Increase n by 1.
18. Go to step 10.
19. Call the [[Put]] method of A with arguments "length " and n.
20. Return A.

Nk~ R

B P2 ©
NP O

15.4.4.11

- 903 -

The length property of the slice method is 2.

NOTE

Theslice function is intentionally generic; it does not require thatthss value be an Array object.
Therefore it can be transferred to other kinds of objects for use asthotheWhether theslice
function can be applied successfully to a host object is implementd¢ipandent.

Array.prototype.sort (comparefn)

The elements of this array are sorted. The sort is not necessarily stable (that is, elements that compare
equal do not necessarily remain in their original order). If comparefnis not undefined, it should be a
function that accepts two arguments x and y and returns a negative value if x <y, zero if x =y, ora
positive value if x > y.

If comparefnis not undefined and is not a consistent comparison function for the elements of this array
(see below), the behaviour of sort is implementation-defined. Let len be ToUint32(this.length). If
there exist integers i and j and an object P such that all of the conditions below are satisfied then the
behaviour of sort is implementation-defined:

fToci<len

fToc¢cj<len

1 this does not have a property with name ToString(i)

9 P is obtained by following one or more [[Prototype]] properties starting at this
1 P has a property with name ToString(j)

Otherwise the following steps are taken.

1. Call the [[Get]] method of this object with argument "length"

2. Call ToUint32(Result(1)).

3. Perform an implementation-dependent sequence of calls to the [[Get]] , [[Put]], and [[Delete]]
methods of this object and to SortCompare (described below), where the first argument for each call
to [[Get]], [[Put]], or [[Delete]] is a nonnegative integer less than Result(2) and where the arguments
for calls to SortCompare are results of previous calls to the [[Get]] method.

4. Return this object.

The returned object must have the following two properties.

1 There must be some mathematical permutation p of the nonnegative integers less than Result(2),
such that for every nonnegative integer j less than Result(2), if property old[j] existed, then
new[p(j)] is exactly the same value as old[j],. but if property old[j] did not exist, then
new[p(j)] does not exist.

1 Then for all nonnegative integers j and k, each less than Result(2), if SortCompare(j,k) < 0 (see
SortCompare below), then p(j) < p(k).

Here the notation old[] is used to refer to the hypothetical result of calling the [[Get]] method of this
object with argument j before this function is executed, and the notation new[]j] to refer to the
hypothetical result of calling the [[Get]] method of this object with argument j after this function has
been executed.

A function comparefnis a consistent comparison function for a set of values Sif all of the requirements
below are met for all values a, b, and ¢ (possibly the same value) in the set S: The notation a<cr b
means comparefifa,b) < 0; a=cer b means comparefifa,b) =0 (of either sign); and a>ce b means
comparefifa,b) > 0.

9 Calling comparefifa,b) always returns the same value v when given a specific pair of values a
and b as its two arguments. Furthermore, v has type Number, and v is not NaN. Note that this
implies that exactly one of a <ce b, a =ce b, and a >cr b will be true for a given pair of aand b.

1 a=cra (reflexivity)
9 Ifa=ce b, thenb=cea (symmetry)

15.4.4.12

-94 -

9 Ifa=ceband b=crc, then a=cr c (transitivity of =cf)
I Ifa<ceband b <cec, then a<cec (transitivity of <cg)
1 Ifa>ceband b>cr ¢, then a>cr ¢ (transitivity of >cf)

NOTE
The above conditions are necessary and sufficient to ensure that comptivefes the set S into
equivalence classes and that these equivalence classes are totally ordered.

When the SortCompare operator is called with two arguments j and k, the following steps are taken:

1. Call ToString(j).

2. Call ToString(k).

3. If this object does not have a property named by Result(1), and this object does not have a property
named by Result(2), return +0.

If this object does not have a property named by Result(1), return 1.
If this object does not have a property named by Result(2), return —1.
Call the [[Get]] method of this object with argument Result(1).
Call the [[Get]] method of this object with argument Result(2).

Let x be Result(6).

9. Lety be Result(7).

10. If x and y are both undefined, return +0.

11. If x is undefined, return 1.

12. If y is undefined, return - 1.

13. If the argument comparefnis undefined, go to step 16.

14. Call comparefrnwith arguments x and y.

15. Return Result(14).

16. Call ToString(x).

17. Call ToString(y).

18. If Result(16) < Result(17), return - 1.

19. If Result(16) > Result(17), return 1.

20. Return +0.

©No gk~

NOTE 1

Beause norexistent property values always compare greater thadefined property values, and
undefinedalways compares greater than any other value, undefined property values always sort to the
end of the result, followed by naxistent property values.

NOTE 2

Thesort function is intentionally generic; it does not require thattités value be an Array object.
Therefore, it can be transferred to other kinds of objects for use as a method. Whetlsartthe
function can be applied successfully to a hogeobis implementatioiependent.

Array. prototype.splice (start, del eteCount | ,

When the splice method is called with two or more arguments start, deleteCountand (optionally)
item1, item2 etc., the deleteCountlements of the array starting at array index start are replaced by the
arguments item1, item2 etc. The following steps are taken:

Let A be a new array created as if by the expression new Array()

Call the [[Get]] method of this object with argument " length

Call ToUint32(Result(2)).

Call Tolnteger(start).

If Result(4) is negative, use max((Result(3)+Result(4)),0); else use min(Result(4),Result(3)).
Compute min(max(Tolnteger(deleteCount0),Result(3)-Result(5)).

Let k be 0.

If k equals Result(6), go to step 16.

Call ToString(Result(5)+k).

©oNDARWNE

10.

11.
12.
13.
14.
15.
16.
17.
18.
19.
20.
21.
22.
23.
24,

25.
26.
27.
28.
29.
30.
31.
32.
33.
34.
35.
36.
37.
38.
39.
40.
41.

42.
43.
44,
45.
46.
47.
48.
49.

50.
51.
52.
58.

54.

- 95 -

If this object has a property named by Result(9), go to step 11; but if this object has no property
named by Result(9), then go to step 14.

Call ToString(k).

Call the [[Get]] method of this object with argument Result(9).

Call the [[Put]] method of A with arguments Result(11) and Result(12).
Increment k by 1.

Go to step 8.

Call the [[Put]] method of A with arguments " length " and Result(6).

Compute the number of additional arguments item1, item2 etc.

If Result(17) is equal to Result(6), go to step 48.

If Result(17) is greater than Result(6), go to step 37.

Let k be Result(5).

If k is equal to (Result(3)—Result(6)), go to step 31.

Call ToString(k+Result(6)).

Call ToString(k+Result(17)).

If this object has a property named by Result(22), go to step 25; but if this object has no property
named by Result(22), then go to step 28.

Call the [[Get]] method of this object with argument Result(22).

Call the [[Put]] method of this object with arguments Result(23) and Result(25).
Go to step 29.

Call the [[Delete]] method of this object with argument Result(23).

Increase k by 1.

Go to step 21.

Let k be Result(3).

If k is equal to (Result(3)—Result(6)+Result(17)), go to step 48.

Call ToString(k-1).

Call the [[Delete]] method of this object with argument Result(33).

Decrease k by 1.

Go to step 32.

Let k be (Result(3)-Result(6)).

If k is equal to Result(5), go to step 48.

Call ToString(k+Result(6)-1).

Call ToString(k+Result(17)-1)

If this object has a property named by Result(39), go to step 42; but if this object has no property
named by Result(39), then go to step 45.

Call the [[Get]] method of this object with argument Result(39).

Call the [[Put]] method of this object with arguments Result(40) and Result(42).
Go to step 46.

Call the [[Delete]] method of this object with argument Result(40).

Decrease k by 1.

Go to step 38.

Let k be Result(5).

Get the next argument in the part of the argument list that starts with item3; if there are no more
arguments, go to step 53.

Call the [[Put]] method of this object with arguments ToString(k) and Result(49).
Increase k by 1.

Go to step 49.

Call the [[Put]] method of this object with arguments " length " and (Result(3)—
Result(6)+Result(17)).

Return A.

The length property of the splice method is 2.
NOTE

- 96 -

Thespl ice function is intentionally generic; it does not require thatthss value be an Array object.
Therefore it can be transferred to other kinds of objects for use as a method. Whetketiche
function can be applied successfully to a host object dementatiordependent.

154413 Array. prototype.unshift ([iteml | , item2 |

The arguments are prepended to the start of the array, such that their order within the array is the same
as the order in which they appear in the argument list.

When the unshift method is called with zero or more arguments item1, item2etc., the following steps
are taken:

Call the [[Get]] method of this object with argument " length .

Call ToUint32(Result(1)).

Compute the number of arguments.

Let k be Result(2).

If k is zero, go to step 15.

Call ToString(k-1).

Call ToString(k+Result(3)-1).

If this object has a property named by Result(6), go to step 9; but if this object has no property

named by Result(6), then go to step 12.

9. Call the [[Get]] method of this object with argument Result(6).

10. Call the [[Put]] method of this object with arguments Result(7) and Result(9).

11. Goto step 13.

12. Call the [[Delete]] method of this object with argument Result(7).

13. Decrease k by 1.

14. Go to step 5.

15. Let k be 0.

16. Get the next argument in the part of the argument list that starts with itemZ; if there are no more
arguments, go to step 21.

17. Call ToString(k).

18. Call the [[Put]] method of this object with arguments Result(17) and Result(16).

19. Increase k by 1.

20. Go to step 16.

21. Call the [[Put]] method of this object with arguments " length " and (Result(2)+Result(3)).

22. Return (Result(2)+Result(3)).

Nk wN PR

The length property of the unshift method is 1.

NOTE

The unshift function is intentionally generic; it does not require that ik8s value be an Array
object. Theefore it can be transferred to other kinds of objects for use as a method. Whether the
unshift function can be applied successfully to a host object is implementdgipaendent.

15.4.5 Properties of Array Instances
Array instances inherit properties from the Array prototype object and also have the following properties.

15.4.5.1 [[Put]] (P, V)
Array objects use a variation of the [[Put]] method used for other native ECMAScript objects (8.6.2.2).

Assume A is an Array object and P is a string.
When the [[Put]] method of A is called with property P and value V, the following steps are taken:

Call the [[CanPut]] method of A with name P.

If Result(1) is false, return.

If A doesn’t have a property with name P, go to step 7.
If Pis "length" , goto step 12.

Set the value of property P of Ato V.

Go to step 8.

e kwhkE

15.4.5.2

- 97 -

7. Create a property with name P, set its value to V and give it empty attributes.

8. If Pis not an array index, return.

9. If ToUint32(P) is less than the value of the length property of A, then return.

10. Change (or set) the value of the length property of A to ToUint32(P)+1.

11. Return.

12. Compute ToUint32(V).

13. If Result(12) is not equal to ToNumber(V), throw a RangeError exception.

14. For every integer k that is less than the value of the length property of A but not less than
Result(12), if A itself has a property (not an inherited property) named ToString(k), then delete that
property.

15. Set the value of property P of A to Result(12).

16. Return.

length
The length property of this Array object is always numerically greater than the name of every property
whose name is an array index.

The length property has the attributes { DontEnum, DontDelete }.

15.5 String Objects

15.5.1

The String Constructor Called as a Function

When String is called as a function rather than as a constructor, it performs a type conversion.

15.5.1.1

15.5.2

15.5.2.1

15.5.3

15.5.3.1

15.5.3.2

String ([value])

Returns a string value (not a String object) computed by ToString(valué). If value is not supplied, the
empty string " is returned.

The String Constructor

When String is called as part of a new expression, it is a constructor: it initialises the newly created
object.

new String ([value])

The [[Prototype]] property of the newly constructed object is set to the original String prototype object,
the one that is the initial value of String.prototype (15.5.3.1).

The [[Class]] property of the newly constructed object is set to "String"

The [[Value]] property of the newly constructed object is set to ToString(valué), or to the empty string if
valueis not supplied.

Properties of the String Constructor
The value of the internal [[Prototype]] property of the String constructor is the Function prototype object
(15.3.4).

Besides the internal properties and the length property (whose value is 1), the String constructor has the
following properties:

String.prototype
The initial value of String.prototype is the String prototype object (15.5.4).

This property has the attributes { DontEnum, DontDelete, ReadOnly }.

String.fromCharCode ([charO[,charl[,é]])]1

Returns a string value containing as many characters as the number of arguments. Each argument
specifies one character of the resulting string, with the first argument specifying the first character, and
so on, from left to right. An argument is converted to a character by applying the operation ToUint16
(9.7) and regarding the resulting 16-bit integer as the code point value of a character. If no arguments are
supplied, the result is the empty string.

The length property of the fromCharCode function is 1.

15.5.4

15.5.4.1

15.5.4.2

15.5.4.3

15.5.4.4

15.5.4.5

-908 -

Properties of the String Prototype Object
The String prototype object is itself a String object (its [[Class]] is "String") whose value is an empty
string.

The value of the internal [[Prototype]] property of the String prototype object is the Object prototype object
(15.2.3.1).

String.prototype.constructor

The initial value of String.prototype.constructor is the built-in String constructor.

String.prototype.toString ()

Returns this string value. (Note that, for a String object, the toString ~ method happens to return the
same thing as the valueOf method.)

The toString function is not generic; it throws a TypeError exception if its this value is not a String
object. Therefore, it cannot be transferred to other kinds of objects for use as a method.

String.prototype.valueOf ()
Returns this string value.

The valueOf function is not generic; it throws a TypeError exception if its this value is not a String
object. Therefore, it cannot be transferred to other kinds of objects for use as a method.

String.prototype.charAt (pos)

Returns a string containing the character at position pos in the string resulting from converting this
object to a string. If there is no character at that position, the result is the empty string. The result is a
string value, not a String object.

If posis a value of Number type that is an integer, then the result of x.charAt(pos is equal to the
result of x.substring(pos postl).

When the charAt method is called with one argument pos the following steps are taken:

Call ToString, giving it the this value as its argument.

Call Tolnteger(pos.

Compute the number of characters in Result(1).

If Result(2) is less than 0 or is not less than Result(3), return the empty string.

Return a string of length 1, containing one character from Result(1), namely the character at position
Result(2), where the first (leftmost) character in Result(1) is considered to be at position 0, the next
one at position 1, and so on.

e

NOTE
ThecharAt function is intentionally gegric; it does not require that itthis value be a String object.
Therefore, it can be transferred to other kinds of objects for use as a method.

String.prototype.charCodeAt (pos)

Returns a number (a nonnegative integer less than 21°) representing the code point value of the character
at position posin the string resulting from converting this object to a string. If there is no character at
that position, the result is NaN.

When the charCodeAt method is called with one argument pos the following steps are taken:

Call ToString, giving it the this value as its argument.

Call Tolnteger(pos.

Compute the number of characters in Result(1).

If Result(2) is less than 0 or is not less than Result(3), return NaN.

Return a value of Number type, whose value is the code point value of the character at position
Result(2) in the string Result(1), where the first (leftmost) character in Result(1) is considered to be
at position 0, the next one at position 1, and so on.

e

NOTE

- 99 -

ThecharCodeAt function is intentionall generic; it does not require that ithis value be a String
object. Therefore it can be transferred to other kinds of objects for use as a method.

15546 String.prototype.concat ([stringl | , strincg

When the concat method is called with zero or more arguments string1, string2, etc., it returns a string
consisting of the characters of this object (converted to a string) followed by the characters of each of
stringl, string2, etc. (where each argument is converted to a string). The result is a string value, not a
String object. The following steps are taken:

1. Call ToString, giving it the this value as its argument.

Let R be Result(1).

Get the next argument in the argument list; if there are no more arguments, go to step 7.

Call ToString(Result(3)).

Let R be the string value consisting of the characters in the previous value of R followed by the
characters Result(4).

6. Goto step 3.

7. Return R

abrwn

The length property of the concat method is 1.

NOTE
Theconcat function is intentionally generic; itaks not require that itthis value be a String object.
Therefore it can be transferred to other kinds of objects for use as a method.

15.5.4.7 String.prototype.indexOf (searchString, position)

If searchStringappears as a substring of the result of converting this object to a string, at one or more
positions that are greater than or equal to position then the index of the smallest such position is
returned; otherwise, - 1 is returned. If positionis undefined, 0 is assumed, so as to search all of the

string.

The indexOf method takes two arguments, searchStringand position and performs the following
steps:

1. Call ToString, giving it the this value as its argument.

2. Call ToString(searchString,.

3. Call Tolnteger(position). (If positionis undefined, this step produces the value 0).

4. Compute the number of characters in Result(1).

5. Compute min(max(Result(3), 0), Result(4)).

6. Compute the number of characters in the string that is Result(2).

7. Compute the smallest possible integer k not smaller than Result(5) such that k+Result(6) is not

greater than Result(4), and for all nonnegative integers j less than Result(6), the character at position
k+j of Result(1) is the same as the character at position j of Result(2); but if there is no such integer
k, then compute the value - 1.

8. Return Result(7).

The length property of the indexOf method is 1.

NOTE
The indexOf function is intentionally generic; it does not require that ités value be a String
object. Therefore, it can be transferred to other kinds of objects for use as adneth

15.5.4.8 String.prototype.lastindexOf (searchString, position)

If searchStringappears as a substring of the result of converting this object to a string at one or more
positions that are smaller than or equal to position then the index of the greatest such position is
returned; otherwise, - 1 is returned. If positionis undefined, the length of the string value is assumed,
so as to search all of the string.

The lastindexOf method takes two arguments, searchStringand position and performs the
following steps:

- 100 -

Call ToString, giving it the this value as its argument.

Call ToString(searchString.

Call ToNumber(position). (If positionis undefined, this step produces the value NaN).

If Result(3) is NaN, use +a ; otherwise, call Tolnteger(Result(3)).

Compute the number of characters in Result(1).

Compute min(max(Result(4), 0), Result(5)).

Compute the number of characters in the string that is Result(2).

Compute the largest possible nonnegative integer k not larger than Result(6) such that k+Result(7) is
not greater than Result(5), and for all nonnegative integers j less than Result(7), the character at
position k+j of Result(1) is the same as the character at position j of Result(2); but if there is no such
integer k, then compute the value - 1.

9. Return Result(8).

Nk wNE

The length property of the lastindexOf method is 1.

NOTE
ThelastindexOf function is intentionally generic; it does not require thatthss value be a String
object. Therefore, it can be transferred to other kinds of objects for use as a method.

15.54.9 String.prototype.localeCompare (that)

When the localeCompare method is called with one argument that, it returns a number other than
NaN that represents the result of a locale-sensitive string comparison of this object (converted to a
string) with that (converted to a string). The two strings are compared in an implementation-defined
fashion. The result is intended to order strings in the sort order specified by the system default locale,
and will be negative, zero, or positive, depending on whether this comes before thatin the sort order, the
strings are equal, or this comes after that in the sort order, respectively.

The localeCompare method, if considered as a function of two arguments this and that, is a
consistent comparison function (as defined in 15.4.4.11) on the set of all strings. Furthermore,
localeCompare returns O or 10 when comparing two strings that are considered canonically
equivalent by the Unicode standard.

The actual return values are left implementation-defined to permit implementers to encode additional
information in the result value, but the function is required to define a total ordering on all strings and to
return O when comparing two strings that are considered canonically equivalent by the Unicode standard.

NOTE 1

The localeC ompare method itself is not directly suitable as an argument to
Array.prototype.sort because the latter requires a function of two arguments.

NOTE 2

This function is intended to rely on whatever languagasitive comparison functionality is available

to the ECMAScript environment from the host environment, and to compare according to the rules of
the host environment 6s current l ocal e. It i's str
are canonically equivalent according to the Unicode staddas identical (in other words, compare

the strings as if they had both been converted to Normalised Form C or D first). It is also
recommended that this function not honour Unicode compatibility equivalences or decompositions.

If no languagesensitive cmparison at all is available from the host environment, this function may
perform a bitwise comparison.

NOTE 3
The localeCompare function is intentionally generic; it does not require that tités value be a
String object. Therefore, it can be transferrdother kinds of objects for use as a method.

NOTE 4
The second parameter to this function is likely to be used in a future version of this standard; it is
recommended that implementations do not use this parameter position for anything else.

15.5.4.10

15.5.4.11

- 101 -

String.prototype.match (regexp)

If regexpis not an object whose [[Class]] property is "RegExp" , it is replaced with the result of the
expression new RegExp(regexp . Let string denote the result of converting the this value to a string.
Then do one of the following:

9 If regexpglobal is false Return the result obtained by invoking RegExp.prototype.exec
(see 15.10.6.2) on regexpwith string as parameter.

1 If regexpglobal is true: Set the regexplastindex property to 0 and invoke
RegExp.prototype.exec repeatedly until there is no match. If there is a match with an empty
string (in other words, if the value of regexplastindex is left unchanged), increment

regexplastindex by 1. Let n be the number of matches. The value returned is an array with the
length property set to n and properties 0 through n-1 corresponding to the first elements of the
results of all matching invocations of RegExp.prototype.exec

NOTE
Thematch function is intentionally generic; it does not require thattisés value be a String object
Therefore, it can be transferred to other kinds of objects for use as a method.

String.prototype.replace (searchValue, replaceValue)
Let string denote the result of converting the this value to a string.

If searchValueis a regular expression (an object whose [[Class]] property is "RegExp"), do the
following: If searchValueglobal is false, then search string for the first match of the regular expression
searchValuelf searchValugylobal is true, then search string for all matches of the regular expression
searchValue Do the search in the same manner as in String.prototype.match , including the
update of searchValudastindex . Let m be the number of left capturing parentheses in searchValue
(NCapturingParenss specified in 15.10.2.1).

If search/alueis not a regular expression, let searchStringoe ToString(searchValug and search string
for the first occurrence of searchStringLet m be 0.

If replaceValues a function, then for each matched substring, call the function with the following m + 3
arguments. Argument 1 is the substring that matched. If searchValuds a regular expression, the next m
arguments are all of the captures in the MatchResult (see 15.10.2.1). Argument m + 2 is the offset within
string where the match occurred, and argument m + 3 is string. The result is a string value derived from
the original input by replacing each matched substring with the corresponding return value of the
function call, converted to a string if need be.

Otherwise, let newstringdenote the result of converting replaceValueto a string. The result is a string
value derived from the original input string by replacing each matched substring with a string derived
from newstringby replacing characters in newstringby replacement text as specified in the following
table. These $ replacements are done left-to-right, and, once such a replacement is performed, the new
replacement text is not subject to further replacements. For example,
"$1,$2".replace(/(\ $(\d))/g, "$$1 -$1%$2") returns "$1 -$11,%1 -$22". A $ in
newsting that does not match any of the forms below is left as is.

Characters Replacement text

$$ $

$& The matched substring.

$0 The portion of string that precedes the matched substring.

$06 The portion of string that follows the matched substring.

$n The nth capture, where n is a single digit 1-9 and $n is not followed by a decimal
digit. If n¢ém and the nth capture is undefined, use the empty string instead. If n>m,
the result is implementation-defined.

15.5.4.12

15.5.4.13

15.5.4.14

- 102 -

$nn The nn™™ capture, where nnis a two-digit decimal number 01-99. If nném and the nnt"
capture is undefined, use the empty string instead. If nn>m, the result is
implementation-defined.

NOTE
The replace function is intentionally generic; it does not require that ik8s value be a String
object. Theefore, it can be transferred to other kinds of objects for use as a method.

String.prototype.search (regexp)

If regexpis not an object whose [[Class]] property is "RegExp" , it is replaced with the result of the
expression new RegEXxp(regexp . Let string denote the result of converting the this value to a string.

The value string is searched from its beginning for an occurrence of the regular expression pattern
regexp The result is a number indicating the offset within the string where the pattern matched, or -1 if
there was no match.

NOTE 1
This method ignores thastindex andglobal properties of regexp. THastindex property of
regexp is left unchanged.

NOTE 2
Thesearch function is intentionally generic; it does not require thattiss value be a String object.
Therefore, it can be transferred to other kinds of objects for use as a method.

String.prototype.slice (start, end)

The slice method takes two arguments, start and end and returns a substring of the result of
converting this object to a string, starting from character position startand running to, but not including,
character position end (or through the end of the string if endis undefined). If start is negative, it is
treated as (sourcelLengthstart) where sourceLengths the length of the string. If endis negative, it is
treated as (sourceLengtihend where sourceLengthis the length of the string. The result is a string
value, not a String object. The following steps are taken:

Call ToString, giving it the this value as its argument.

Compute the number of characters in Result(1).

Call Tolnteger(start).

If endis undefined, use Result(2); else use Tolnteger(end).

If Result(3) is negative, use max(Result(2)+Result(3),0); else use min(Result(3),Result(2)).

If Result(4) is negative, use max(Result(2)+Result(4),0); else use min(Result(4),Result(2)).
Compute max(Result(6)-Result(5),0).

Return a string containing Result(7) consecutive characters from Result(1) beginning with the
character at position Result(5).

NN PR

The length property of the slice method is 2.

NOTE
Theslice function is intentionally generic; it does not require thattiss value be a String object.
Therefore it can be transferred to other kinds of objects for use as a method.

String.prototype.split (separator, limit)

Returns an Array object into which substrings of the result of converting this object to a string have been
stored. The substrings are determined by searching from left to right for occurrences of separator these
occurrences are not part of any substring in the returned array, but serve to divide up the string value.
The value of separatormay be a string of any length or it may be a RegExp object (i.e., an object whose
[[Class]] property is "RegExp" ; see 15.10).

The value of separatormay be an empty string, an empty regular expression, or a regular expression that
can match an empty string. In this case, separatordoes not match the empty substring at the beginning
or end of the input string, nor does it match the empty substring at the end of the previous separator

- 103 -

match. (For example, if separatoris the empty string, the string is split up into individual characters; the
length of the result array equals the length of the string, and each substring contains one character.) If
separatoris a regular expression, only the first match at a given position of the this string is considered,
even if backtracking could yield a non-empty-substring match at that position. (For example,
"ab".split(/a*?/) evaluates to the array ["a","b"] , while "ab".spli t(/a*/) evaluates to
the array["","b"])

If the this object is (or converts to) the empty string, the result depends on whether separatorcan match
the empty string. If it can, the result array contains no elements. Otherwise, the result array contains one
element, which is the empty string.

If separatoris a regular expression that contains capturing parentheses, then each time separatoris
matched the results (including any undefined results) of the capturing parentheses are spliced into the
output array. (For example,

"Aboldand<CODE>coded</CODE>".split(/<(\ N?2(["<>]+)>)) evaluates to
the array ['A", undefined, "B", "bold", "/*, "B", "and", undefined,
"CODE", "coded", "/", "CODE", "])

If separatoris undefined, then the result array contains just one string, which is the this value
(converted to a string). If limit is not undefined, then the output array is truncated so that it contains no
more than limit elements.

When the split method is called, the following steps are taken:

Let S= ToString(th is).

Let A be a new array created as if by the expression new Array()

If limit is undefined, let lim = 232-1; else let lim = ToUint32(limit).

Let s be the number of characters in S.

Letp=0.

If separatoris a RegExp object (its [[Class]] is "RegExp"), let R = separator otherwise let R =

ToString(separato).

7. Iflim =0, return A.

8. If separatoris undefined, go to step 33.

9. Ifs=0, gotostep 31.

10. Letg=p.

11. If g = s, go to step 28.

12. Call SplitMatch(R, S, q) and let z be its MatchResult result.

13. If zis failure, go to step 26.

14. zmust be a State. Let e be Z's endIndexand let capbe Z's capturesarray.

15. If e=p, go to step 26.

16. Let T be a string value equal to the substring of Sconsisting of the characters at positions p
(inclusive) through g (exclusive).

17. Call the [[Put]] method of A with arguments A.length and T.

18. If A.length = lim, return A.

19. Letp=e.

20. Leti=0.

21. If i is equal to the number of elements in cap, go to step 10.

22. Leti =i+l

23. Call the [[Put]] method of A with arguments A.length and cap[i].

24. If Alen gth =Ilim, return A.

25. Go to step 21.

26. Let q=g+1.

27. Goto step 11.

28. Let T be a string value equal to the substring of Sconsisting of the characters at positions p
(inclusive) through s (exclusive).

29. Call the [[Put]] method of A with arguments A.length and T.

30. Return A

ok wnE

15.5.4.15

-104 -

31. Call SplitMatch(R, S, 0) and let z be its MatchResult result.
32. If zis not failure, return A.

33. Call the [[Put]] method of A with arguments " 0" and S.
34. Return A.

The internal helper function SplitMatchtakes three parameters, a string S, an integer ¢, and a string or
RegExp R, and performs the following in order to return a MatchResult (see 15.10.2.1):

1. If Ris a RegExp object (its [[Class]] is "RegExp"), go to step 8.

R must be a string. Let r be the number of characters in R.

Let s be the number of characters in S.

If g+r > sthen return the MatchResult failure.

If there exists an integer i between 0 (inclusive) and r (exclusive) such that the character at position
g+i of Sis different from the character at position i of R, then return failure.

6. Let cap be an empty array of captures (see 15.10.2.1).

7. Return the State (g+r, cap). (see 15.10.2.1)

8. Call the [[Match]] method of R giving it the arguments Sand g, and return the MatchResult result.

aRrwD

The length property of the split method is 2.

NOTE 1
Thesplit function is intentionally generic; it does not require thatti$s value be a String object.
Therefore, it can be transferred to other kinds of objects for use as a method.

NOTE 2
Thesplit method ignores the value of separatgobal for separators thadre RegExp objects.

String.prototype.substring (start, end)

The substring method takes two arguments, start and end and returns a substring of the result of
converting this object to a string, starting from character position startand running to, but not including,
character position end of the string (or through the end of the string is endis undefined). The result is a
string value, not a String object.

If either argument is NaN or negative, it is replaced with zero; if either argument is larger than the
length of the string, it is replaced with the length of the string.

If startis larger than end they are swapped.
The following steps are taken:

Call ToString, giving it the this value as its argument.

Compute the number of characters in Result(1).

Call Tolnteger(start).

If endis undefined, use Result(2); else use Tolnteger(end.

Compute min(max(Result(3), 0), Result(2)).

Compute min(max(Result(4), 0), Result(2)).

Compute min(Result(5), Result(6)).

Compute max(Result(5), Result(6)).

Return a string whose length is the difference between Result(8) and Result(7), containing
characters from Result(1), namely the characters with indices Result(7) through Result(8)- 1, in
ascending order.

CoNoO~wWNE

The length property of the substring method is 2.

NOTE
The substring function is intentionally generic; it does not require that titss value be a String
object. Therefore, it can be transferred to other kinds of objects for use as a method.

- 105 -

15.5.4.16 String.prototype.toLowerCase ()

If this object is not already a string, it is converted to a string. The characters in that string are converted
one by one to lower case. The result is a string value, not a String object.

The characters are converted one by one. The result of each conversion is the original character, unless
that character has a Unicode lowercase equivalent, in which case the lowercase equivalent is used
instead.

NOTE 1

The result should be derived according to the case mappings in the Unicode character database (t
explicitly includes not only thdJnicodeData.txt file, but also the SpecialCasings.txt file that
accompanies it in Unicode 2.1.8 and later).

NOTE 2
ThetoLowerCase function is intentionally generic; it does not require thattitss value be a String
object. Therefore, it can be transfed to other kinds of objects for use as a method.

15.5.4.17 String.prototype.toLocaleLowerCase ()
This function works exactly the same as toLowerCase except that its result is intended to yield the
correct result for the host environment’s current locale, rather than a locale-independent result. There
will only be a difference in the few cases (such as Turkish) where the rules for that language conflict
with the regular Unicode case mappings.

NOTE 1
ThetoLocaleLowerCase function is intentionally generidf does not require that itthis value be
a String object. Therefore, it can be transferred to other kinds of objects for use as a method.

NOTE 2
The first parameter to this function is likely to be used in a future version of this standard; it is
recomnended that implementations do not use this parameter position for anything else.

15.5.4.18 String.prototype.toUpperCase ()

This function behaves in exactly the same way as String.prototype.toLowerCase , except that
characters are mapped to their uppercaseequivalents as specified in the Unicode Character Database.
NOTE 1

Because botltoUpperCase andtoLowerCase have contexsensitive behaviour, the functions are
not symmetrical. In other words,toUpperCase().toLowerCase() is not necessarily equal to
s.toL owerCase()

NOTE 2

ThetoUpperCase function is intentionally generic; it does not require thatthss value be a String
object. Therefore, it can be transferred to other kinds of objects for use as a method.

15.5.4.19 String.prototype.toLocaleUpperCase ()

This function works exactly the same as toUpperCase except that its result is intended to yield the
correct result for the host environment’s current locale, rather than a locale-independent result. There
will only be a difference in the few cases (such as Turkish) where the rules for that language conflict
with the regular Unicode case mappings.

NOTE 1
ThetoLocaleUpperCase function is intentionally generic; it does not require thatthss value be
a String object. Therefore, it can be transferredtber kinds of objects for use as a method.

NOTE 2
The first parameter to this function is likely to be used in a future version of this standard; it is
recommended that implementations do not use this parameter position for anything else.

15.5.5 Properties of String Instances

String instances inherit properties from the String prototype object and also have a [[Value]] property and a
length property.

15551

- 106 -

The [[Value]] property is the string value represented by this String object.

length
The number of characters in the String value represented by this String object.

Once a String object is created, this property is unchanging. It has the attributes { DontEnum,
DontDelete, ReadOnly }.

15.6 Boolean Objects

15.6.1

15.6.1.1

15.6.2

15.6.2.1

15.6.3

15.63.1

15.6.4

The Boolean Constructor Called as a Fundbn
When Boolean is called as a function rather than as a constructor, it performs a type conversion.

Boolean (value)
Returns a boolean value (not a Boolean object) computed by ToBoolean(valug).

The Boolean Constructor
When Boolean is called as part of a new expression it is a constructor: it initialises the newly created
object.

new Boolean (value)

The [[Prototype]] property of the newly constructed object is set to the original Boolean prototype object,
the one that is the initial value of Boolean.prototype (15.6.3.1).

The [[Class]] property of the newly constructed Boolean object is set to "Boolean”

The [[\Value]] property of the newly constructed Boolean object is set to ToBoolean(valueg).

Properties of the Boolean Construtor
The value of the internal [[Prototype]] property of the Boolean constructor is the Function prototype object
(15.3.4).

Besides the internal properties and the length property (whose value is 1), the Boolean constructor has
the following property:

Boolean.prototype
The initial value of Boolean.prototype is the Boolean prototype object (15.6.4).

This property has the attributes { DontEnum, DontDelete, ReadOnly }.

Properties of the Boolean Prototype Object
The Boolean prototype object is itself a Boolean object (its [[Class]] is "Boolean") whose value is false

The value of the internal [[Prototype]] property of the Boolean prototype object is the Object prototype
object (15.2.3.1).

In following descriptions of functions that are properties of the Boolean prototype object, the phrase “this
Boolean object” refers to the object that is the this value for the invocation of the function; a TypeError
exception is thrown if the this value is not an object for which the value of the internal [[Class]] property is
"Boolean" . Also, the phrase “this boolean value” refers to the boolean value represented by this Boolean
object, that is, the value of the internal [[Value]] property of this Boolean object.

15.6.4.1 Boolean.prototype.constructor

The initial value of Boolean.prototype.constructor is the built-in Boolean constructor.
15.6.4.2 Boolean.prototype.toString ()

If this boolean value is true, then the string "true” is returned. Otherwise, this boolean value must be

false and the string "false" is returned.

The toString function is not generic; it throws a TypeError exception if its this value is not a
Boolean object. Therefore, it cannot be transferred to other kinds of objects for use as a method.

15.6.4.3

- 107 -

Boolean.prototype.valueOf ()
Returns this boolean value.

The valueOf function is not generic; it throws a TypeError exception if its this value is not a Boolean
object. Therefore, it cannot be transferred to other kinds of objects for use as a method.

15.6.5 Properties of Boolean Instances
Boolean instances have no special properties beyond those inherited from the Boolean prototype object.

15.7 Number Objects
15.7.1 The Number Constructor Called as a Function
When Number is called as a function rather than as a constructor, it performs a type conversion.

15.7.1.1

Number ([value])

Returns a number value (not a Number object) computed by ToNumber(value) if value was supplied,
else returns +0.

15.7.2 The Number Constructor
When Number is called as part of a new expression it is a constructor: it initialises the newly created
object.

15.7.2.1

15.7.3

new Number ([value])

The [[Prototype]] property of the newly constructed object is set to the original Number prototype object,
the one that is the initial value of Number.prototype (15.7.3.1).

The [[Class]] property of the newly constructed object is set to "Number" .

The [[Value]] property of the newly constructed object is set to ToNumber(value) if valuewas supplied,
else to +0.

Properties of the Number Constructor

The value of the internal [[Prototype]] property of the Number constructor is the Function prototype object
(15.3.4).

Besides the internal properties and the length property (whose value is 1), the Number constructor has

the following property:

15.7.3.1

15.7.3.2

15.7.3.3

15.7.3.4

15.7.3.5

Number.prototype
The initial value of Number.prototype is the Number prototype object (15.7.4).

This property has the attributes { DontEnum, DontDelete, ReadOnly }.

Number.MAX_VALUE
The value of Number.MAX_VALUE is the largest positive finite value of the number type, which is
approximately 1.7976931348623157 3 103,

This property has the attributes { DontEnum, DontDelete, ReadOnly }.

Number.MIN_VALUE
The value of Number.MIN_VALUE is the smallest positive value of the number type, which is
approximately 5 3 10-324,

This property has the attributes { DontEnum, DontDelete, ReadOnly }.

Number.NaN
The value of Number.NaN is NaN.

This property has the attributes { DontEnum, DontDelete, ReadOnly }.

Number.NEGATIVE_INFINITY
The value of Number.NEGATIVE_INFINITY is-#a.

15.7.3.6

15.7.4

15.7.4.1

15.7.4.2

15.7.4.3

15.7.4.4

15.7.4.5

- 108 -

This property has the attributes { DontEnum, DontDelete, ReadOnly }.

Number.POSITIVE_INFINITY
The value of Number.POSITIVE_INFINITY is +&,

This property has the attributes { DontEnum, DontDelete, ReadOnly }.

Properties of the NumberPrototype Object
The Number prototype object is itself a Number object (its [[Class]] is "Number") whose value is +0.

The value of the internal [[Prototype]] property of the Number prototype object is the Object prototype
object (15.2.3.1).

In following descriptions of functions that are properties of the Number prototype object, the phrase “this
Number object” refers to the object that is the this value for the invocation of the function; a TypeError
exception is thrown if the this value is not an object for which the value of the internal [[Class]] property is
"Number" . Also, the phrase “this number value” refers to the number value represented by this Number
object, that is, the value of the internal [[Value]] property of this Number object.

Number.prototype.constructor
The initial value of Number.prototype.constructor is the built-in Number constructor.

Number.prototype.toString (radix)

If radix is the number 10 or undefined, then this number value is given as an argument to the ToString
operator; the resulting string value is returned.

If radix is an integer from 2 to 36, but not 10, the result is a string, the choice of which is
implementation-dependent.

The toString function is not generic; it throws a TypeError exception if its this value is not a
Number object. Therefore, it cannot be transferred to other kinds of objects for use as a method.

Number.prototype.toLocaleString()
Produces a string value that represents the value of the Number formatted according to the conventions

of the host environment’s current locale. This function is implementation-dependent, and it is
permissible, but not encouraged, for it to return the same thing as toString

NOTE
The first parameter to this function is likely to be used in a future verefothis standard; it is
recommended that implementations do not use this parameter position for anything else.

Number.prototype.valueOf ()
Returns this number value.

The valueOf function is not generic; it throws a TypeError exception if its this value is not a Number
object. Therefore, it cannot be transferred to other kinds of objects for use as a method.

Number.prototype.toFixed (fractionDigits)

Return a string containing the number represented in fixed-point notation with fractionDigits digits after
the decimal point. If fractionDigits is undefined, 0 is assumed. Specifically, perform the following
steps:

Let f be Tolnteger(fractionDigits). (If fractionDigits is undefined, this step produces the value 0).
Iff <0 orf> 20, throw a RangeError exception.

Let x be this number value.

If x is NaN, return the string "NaN" .

Let s be the empty string.

Ifx2 0, gotostep 9.

Letshe " -".

Let x = —x.

If x 2 1024, let m = ToString(x) and go to step 20.

©CoNoakwD PR

15.7.4.6

- 109 -

10. Let n be an integer for which the exact mathematical value of n - 107 — x is as close to zero as
possible. If there are two such n, pick the larger n.

11. If n =0, let mbe the string "0" . Otherwise, let m be the string consisting of the digits of the
decimal representation of n (in order, with no leading zeroes).

12. Iff =0, go to step 20.

13. Let k be the number of characters in m.

14. If k> f, go to step 18.

15. Let z be the string consisting of f+1-k occurrences of the character ‘0.

16. Let m be the concatenation of strings zand m.

17. Letk=f+ 1.
18. Let a be the first k—f characters of m, and let b be the remaining f characters of m.
19. Let m be the concatenation of the three strings a, "." , and b.

20. Return the concatenation of the strings sand m.

The length property of the toFixed method is 1.

If the toFixed method is called with more than one argument, then the behaviour is undefined (see
clause 15).

An implementation is permitted to extend the behaviour of toFixed for values of fractionDigits less
than O or greater than 20. In this case toFixed would not necessarily throw RangeError for such
values.

NOTE

The output otoFixed may be more precise thanString for some values because toString only
prints enough significant digits to distinguish the number from adjacent number values. For example
(100000000000000012 8).toString() returns "1000000000000000100 while
(1000000000000000128).toFixed(0) returns"” 1000000000000000128

Number.prototype.toExponential (fractionDigits)

Return a string containing the number represented in exponential notation with one digit before the
significand's decimal point and fractionDigits digits after the significand's decimal point. If
fractionDigits is undefined, include as many significand digits as necessary to uniquely specify the
number (just like in ToString except that in this case the number is always output in exponential
notation). Specifically, perform the following steps:

Let x be this number value.

Let f be Tolnteger(fractionDigits).

If x is NaN, return the string "NaN" .

Let s be the empty string.

If x2 0, go to step 8.

Letsbe"-".

Let x = —x.

If x = +a, let m = "Infinity" and go to step 30.
If fractionDigits is undefined, go to step 14.

. Iff<0orf> 20, throw a RangeError exception.

. Ifx=0, go to step 16.

. Let eand n be integers such that 10" ¢ n < 107! and for which the exact mathematical value of n 3
10%" — x is as close to zero as possible. If there are two such sets of e and n, pick the e and n for
which n3 10%"is larger.

13. Go to step 20.

14. I1f x, 0, go to step 19.

15. Letf=0.

16. Let m be the string consisting of f+1 occurrences of the character ‘0’.

17. Lete=0.

18. Go to step 21.

NN PE

o ae)
NP O

- 110 -

19. Let e, n, and f be integers such that f 2 0, 10" ¢ n < 10™1, the number value for n 3 10%"is x, and f is
as small as possible. Note that the decimal representation of n has f+1 digits, n is not divisible by
10, and the least significant digit of n is not necessarily uniquely determined by these criteria.

20. Let m be the string consisting of the digits of the decimal representation of n (in order, with no
leading zeroes).

21. Iff =0, go to step 24.

22. Let a be the first character of m, and let b be the remaining f characters of m.

23. Let mbe the concatenation of the three strings a, "." , and b.

24. Ife=0,letc="+" andd="0" and go to step 29.

25. Ife>0, letc="+" and go to step 28.

26. Letc="-".

27. Lete=-e.

28. Let d be the string consisting of the digits of the decimal representation of e (in order, with no
leading zeroes).

29. Let m be the concatenation of the four strings m, "e" , ¢, and d.

30. Return the concatenation of the strings sand m.

The length property of the toExponential method is 1.

If the toExponential method is called with more than one argument, then the behaviour is undefined
(see clause 15).

An implementation is permitted to extend the behaviour of toExponential for values of
fractionDigits less than O or greater than 20. In this case toExponential would not necessarily
throw RangeError for such values.

NOTE

For implementations that provide more accurate conversions than required by the rules above, it is
recommended that the followingt@tnative version of step 19 be used as a guideline:

Let e, n, and f be integers such tha®, 10 ¢ n < 10", the number value for A 10°"is x, and f is as
small as possible. If there are multiple possibilities for n, choose the value of n fdr wkid0® is
closest in value to x. If there are two such possible values of n, choose the one that is even.

15.7.4.7 Number.prototype.toPrecision (precision)

Return a string containing the number represented either in exponential notation with one digit before the
significand's decimal point and precision-1 digits after the significand's decimal point or in fixed
notation with precision significant digits. If precision is undefined, call ToString (9.8.1) instead.
Specifically, perform the following steps:

=

Let x be this number value.

If precisionis undefined, return ToString(x).

Let p be Tolnteger(precision.

If x is NaN, return the string "NaN" .

Let s be the empty string.

Ifx2 0, gotostep 9.

Letshe"-".

Let x = —x.

If x = +o, let m = "Infinity" and go to step 30.

10. If p<1orp> 21, throw a RangeError exception.

11. If x, 0, go to step 15.

12. Let m be the string consisting of p occurrences of the character ‘0°.

13. Lete=0.

14. Go to step 18.

15. Let eand n be integers such that 107! ¢ n < 10P and for which the exact mathematical value of n 3
10%P*1 _ x is as close to zero as possible. If there are two such sets of e and n, pick the e and n for
which n3 10%P* is larger.

©CoOoNO WD

- 111 -

16. Let m be the string consisting of the digits of the decimal representation of n (in order, with no
leading zeroes).

17. Ife< -6 ore? p, goto step 22.

18. If e= p-1, go to step 30.

19. If e2 0, let m be the concatenation of the first e+1 characters of m, the character ¢. ’, and the
remaining p— (e+1) characters of mand go to step 30.

20. Let mbe the concatenation of the string "0." , —(e+1) occurrences of the character ‘0’, and the
string m.

21. Go to step 30.

22. Let a be the first character of m, and let b be the remaining p-1 characters of m.

23. Let mbe the concatenation of the three strings a, "." , and b.

24. Ife=0,letc="+" and d="0" and go to step 29.

25. Ife>0, letc="+" and go to step 28.

26. Letc="-".

27. Lete=-e

28. Let d be the string consisting of the digits of the decimal representation of e (in order, with no
leading zeroes).

29. Let mbe the concatenation of the four strings m, "e" , ¢, and d.

30. Return the concatenation of the strings sand m.

The length property of the toPrecision method is 1.

If the toPrecision method is called with more than one argument, then the behaviour is undefined
(see clause 15).

An implementation is permitted to extend the behaviour of toPrecision for values of precisionless
than 1 or greater than 21. In this case toPrecision would not necessarily throw RangeError for
such values.

15.7.5 Properties of Number Instances
Number instances have no special properties beyond those inherited from the Number prototype object.

15.8 The Math Object
The Math object is a single object that has some named properties, some of which are functions.

The value of the internal [[Prototype]] property of the Math object is the Object prototype object (15.2.3.1).
The value of the internal [[Class]] property of the Math object is "Math" .

The Math object does not have a [[Construct]] property; it is not possible to use the Math object as a
constructor with the new operator.

The Math object does not have a [[Call]] property; it is not possible to invoke the Math object as a function.

NOTE

I n this specification, the phrase Athe number val
15.8.1 Value Properties of the Math Object
15.8.1.1 E

The number value for e, the base of the natural logarithms, which is approximately
2.7182818284590452354.

This property has the attributes { DontEnum, DontDelete, ReadOnly }.

15.8.1.2 LN10
The number value for the natural logarithm of 10, which is approximately 2.302585092994046.

This property has the attributes { DontEnum, DontDelete, ReadOnly }.

15.8.1.3 LN2
The number value for the natural logarithm of 2, which is approximately 0.6931471805599453.

15.8.1.4

15.8.1.5

15.8.1.6

15.8.1.7

15.8.1.8

15.8.2

15.8.2.1

- 112 -

This property has the attributes { DontEnum, DontDelete, ReadOnly }.

LOG2E

The number value for the base-2 logarithm of e, the base of the natural logarithms; this value is
approximately 1.4426950408889634.

This property has the attributes { DontEnum, DontDelete, ReadOnly }.

?%T\'/Ealue oMath.LOG2E is approximately the reciprocal of the valueMé&th.LN2 .

LOG10E

The number value for the base-10 logarithm of e, the base of the natural logarithms; this value is
approximately 0.4342944819032518.

This property has the attributes { DontEnum, DontDelete, ReadOnly }.

?&T\I/Ealue oMath.LOG10E is approximately the reciprocal of the valueMath.LN10 .

Pl

The number value for p, the ratio of the circumference of a circle to its diameter, which is approximately
3.1415926535897932.

This property has the attributes { DontEnum, DontDelete, ReadOnly }.

SQRT1_2
The number value for the square root of 1/2, which is approximately 0.7071067811865476.

This property has the attributes { DontEnum, DontDelete, ReadOnly }.

NOTE
The value oMath.SQRT1_2 is approximately the reciprocal of the valueM&th.SQRT2.

SQRT2
The number value for the square root of 2, which is approximately 1.4142135623730951.

This property has the attributes { DontEnum, DontDelete, ReadOnly }.

Function Properties of the Math Object

Every function listed in this section applies the ToNumber operator to each of its arguments (in left-to-right
order if there is more than one) and then performs a computation on the resulting number value(s).

In the function descriptions below, the symbols NaN, -0, +0, -= and +o refer to the number values
described in 8.5.

NOTE

The behaviour of the functiomsos , asin , atan , atan2 , cos, exp, log , pow, sin , andsqgrt is not
precisely specified her except to require specific results for certain argument values that represent
boundary cases of interest. For other argument values, these functions are intended to compute
approximations to the results of familiar mathematical functions, but somedatitsl allowed in the
choice of approximation algorithms. The general intent is that an implementer should be able to use the
same mathematical library for ECMAScript on a given hardware platform that is available to C
programmers on that platform.

Althoughthe choice of algorithms is left to the implementation, it is recommended (but not specified by
this standard) that implementations use the approximation algorithms for IEEE 754 arithmetic contained
in fdlibom , the freely distributable mathematical libraryfrom Sun Microsystemsfdlibom -
comment@sunpro.eng.sun.com). This specification also requires specific results for certain
argument values that represent boundary cases of interest

abs (x)
Returns the absolute value of x; the result has the same magnitude as x but has positive sign.

mailto:Fdlibm-comment@sunpro.eng.sun.com
mailto:Fdlibm-comment@sunpro.eng.sun.com

15.8.2.2

15.8.2.3

15.8.2.4

15.8.2.5

- 113 -

9 If x is NaN, the result is NaN.
T Ifxis -0, the result is +0.
9 Ifxis-ga,theresultis +a.

acos (x)

Returns an implementation-dependent approximation to the arc cosine of x. The result is expressed in
radians and ranges from +0 to +p.

9 If xis NaN, the result is NaN.

9 If x is greater than 1, the result is NaN.
9 If xis less than - 1, the result is NaN.
I If xis exactly 1, the result is +0.

asin (x)
Returns an implementation-dependent approximation to the arc sine of x. The result is expressed in
radians and ranges from - p/2 to +p/2.

9 If x is NaN, the result is NaN.

9 If x is greater than 1, the result is NaN.
9 If xis less than —1, the result is NaN.
T If xis +0, the result is +0.

9 Ifxis -0, the result is - 0.

atan (x)

Returns an implementation-dependent approximation to the arc tangent of x. The result is expressed in
radians and ranges from - p/2 to +p/2.

1 If x is NaN, the result is NaN.

1 If xis +0, the result is +0.

T Ifxis -0, the result is - 0.

9 If xis +a, the result is an implementation-dependent approximation to +p/2.
9 If xis - =, the result is an implementation-dependent approximation to - p/2.

atan2 (y, x)

Returns an implementation-dependent approximation to the arc tangent of the quotient y/ x of the
arguments y and x, where the signs of y and x are used to determine the quadrant of the result. Note that
it is intentional and traditional for the two-argument arc tangent function that the argument named y be
first and the argument named x be second. The result is expressed in radians and ranges from - p to +p.

If either x or y is NaN, the result is NaN.

If y>0 and x is +0, the result is an implementation-dependent approximation to +p/2.
If y>0 and x is - 0, the result is an implementation-dependent approximation to +p/2.
If y is +0 and x>0, the result is +0.

If yis +0 and x is +0, the result is +0.

If y is +0 and x is - 0, the result is an implementation-dependent approximation to +p.
If y is +0 and x<O0, the result is an implementation-dependent approximation to +p.
If yis - 0 and x>0, the result is - 0.

If yis-0and x is +0, the result is - 0.

If yis-0and x is - 0, the result is an implementation-dependent approximation to - p.
If y is - 0 and x<0, the result is an implementation-dependent approximation to - p.

If y<0 and x is +0, the result is an implementation-dependent approximation to - p/2.
If y<0 and x is - 0, the result is an implementation-dependent approximation to - p/2.

=4 =4 -4 & -8 -8 4 8 -8 _a 9 -2 -2

15.8.2.6

15.8.2.7

15.8.2.8

15.8.2.9

- 114 -

If y>0 and y is finite and x is +a, the result is +0.

If y>0 and y is finite and x is - &, the result if an implementation-dependent approximation to +p.
If y<0 and y is finite and x is +a, the result is - 0.

If y<0 and y is finite and x is - &, the result is an implementation-dependent approximation to - p.
If y is +& and x is finite, the result is an implementation-dependent approximation to +p/2.

If yis - & and x is finite, the result is an implementation-dependent approximation to - p/2.

Ifyis +o and x is +&, the result is an implementation-dependent approximation to +p/4.

If yis +& and x is - &, the result is an implementation-dependent approximation to +3p/4.
Ifyis-o and xis +&a, the result is an implementation-dependent approximation to - p/4.
Ifyis-o and xis - o, the result is an implementation-dependent approximation to - 3p/4.

= -4 —4 —4a 8 —a & _9a a2 -2

ceil (x)

Returns the smallest (closest to - &) number value that is not less than x and is equal to a mathematical
integer. If x is already an integer, the result is x.

If x is NaN, the result is NaN.

If x is +0, the result is +0.

If xis - 0, the result is - 0.

If x is +a, the result is +a.

If xis - o, the result is - &,

If x is less than O but greater than - 1, the result is - 0.

=& -4 —a —a —a -9

The value of Math.ceil(x) is the same as the value of - Math.floor(-X) .

cos (x)

Returns an implementation-dependent approximation to the cosine of x. The argument is expressed in
radians.

9 If xis NaN, the result is NaN.

9 If xis +0, the result is 1.

9 If xis -0, theresultis 1.

I If xis +a, the result is NaN.

9 If xis -ga, the result is NaN.

exp (x)

Returns an implementation-dependent approximation to the exponential function of x (e raised to the
power of x, where e is the base of the natural logarithms).

I If x is NaN, the result is NaN.

9 If xis +0, the result is 1.

9 Ifxis -0, theresultis 1.

9 If xis +a, the result is +&a.

9 If xis - &, the result is +0.

floor (x)

Returns the greatest (closest to +&) number value that is not greater than x and is equal to a
mathematical integer. If x is already an integer, the result is x.

9 If xis NaN, the result is NaN.

9 Ifxis +0, the result is +0.

9 Ifxis -0, the result is - 0.

9 Ifxis +a, the result is +o .

15.8.2.10

15.8.2.11

15.82.12

15.8.2.13

- 115 -

9 Ifxis-&a,theresultis-o.
9 If x is greater than O but less than 1, the result is +0.

NOTE
The value oMath.floor(x) is the same as the value -oMath.ceil(-x) .

log (x)

Returns an implementation-dependent approximation to the natural logarithm of x.
9 If x is NaN, the result is NaN.

9 If xis less than 0, the result is NaN.

9 Ifxis +0or -0, the resultis - o,

I If xis 1, the result is +0.

9 If xis +a, the result is +o.

max ([wvalwuel [, wvalwue2 [, € 1 1 1)
Given zero or more arguments, calls ToNumber on each of the arguments and returns the largest of the
resulting values.

9 If no arguments are given, the result is - o,

9 If any value is NaN, the result is NaN.

9 The comparison of values to determine the largest value is done as in 11.8.5 except that +0 is
considered to be larger than - 0.

The length property of the max method is 2.

min ([valwuel [, wvalwue2 [, ¢é 1 1 1)
Given zero or more arguments, calls ToNumber on each of the arguments and returns the smallest of the
resulting values.

9 If no arguments are given, the result is +&a.

9 If any value is NaN, the result is NaN.

9 The comparison of values to determine the smallest value is done as in 11.8.5 except that +0 is
considered to be larger than - 0.

The length property of the min method is 2.

pow (X, y)

Returns an implementation-dependent approximation to the result of raising x to the power y.
If y is NaN, the result is NaN.

If y is +0, the result is 1, even if x is NaN.

Ifyis -0, the result is 1, even if x is NaN.

If x is NaN and y is nonzero, the result is NaN.

If abs(x)>1 and y is +1, the result is +a.

If abs(x)>1 and y is - &, the result is +0.

If abs(x)==1 and y is +&, the result is NaN.

If abs(x)==1 and y is - @, the result is NaN.

If abs(x)<1 and y is +&, the result is +0.

If abs(x)<1 and y is - &, the result is +&.,

If x is +& and y>0, the result is +a.

If x is +& and y<0, the result is +0.

If x is - @ and y>0 and y is an odd integer, the result is - o,

If x is - @ and y>0 and y is not an odd integer, the result is +o.

= =4 =4 48 -8 4 a8 8 _a -4 _4a _a - -9

15.8.2.14

15.8.2.15

15.8.2.16

15.8.2.17

- 116 -

9 Ifxis-o and y<0 and y is an odd integer, the result is - 0.

I Ifxis-© and y<0 and y is not an odd integer, the result is +0.

I If xis +0 and y>0, the result is +0.

9 If xis +0 and y<O0, the result is +a.

9 If xis-0andy>0andyis an odd integer, the result is - 0.

9 Ifxis-0andy>0andyis not an odd integer, the result is +0.

I If xis -0 and y<0 and y is an odd integer, the result is - & .

9 If xis - 0and y<0 and y is not an odd integer, the result is +o.

I 1f x<0 and x is finite and y is finite and y is not an integer, the result is NaN.
random ()

Returns a number value with positive sign, greater than or equal to 0 but less than 1, chosen randomly or
pseudo randomly with approximately uniform distribution over that range, using an implementation -
dependent algorithm or strategy. This function takes no arguments.

round (x)

Returns the number value that is closest to x and is equal to a mathematical integer. If two integer
number values are equally close to x, then the result is the number value that is closer to +a. If x is
already an integer, the result is x.

If x is NaN, the result is NaN.

If x is +0, the result is +0.

If x is - 0, the result is - 0.

If xis +ao, the result is +a .

If xis - o, the result is - &,

If x is greater than O but less than 0.5 , the result is +0.

If x is less than O but greater than or equal to - 0.5 , the result is - 0.

= =4 48 —a —a _—a -9

NOTE 1
Math.round(3.5) returns 4, but Math.rouni@.5) returnsi 3.

NOTE 2

The value oMath.round(x) is the same as the value Mfath.floor(x+0.5) , except whex is
-0 or is less tharD but greater than or equal te0.5 ; for these caseMath.round(x) returns -0,
but Math.floor(x+0.5) returns +0.

sin (x)

Returns an implementation-dependent approximation to the sine of x. The argument is expressed in
radians.

I If x is NaN, the result is NaN.

9 If xis +0, the result is +0.

9 If xis -0, theresultis -0.

9 If xis +o or - o, the result is NaN.

sqrt (x)

Returns an implementation-dependent approximation to the square root of x.
9 If x is NaN, the result is NaN.

9 If x less than 0, the result is NaN.

I If xis +0, the result is +0.

9 Ifxis -0, the resultis - 0.

9 If xis +o, the result is +a.

- 117 -

15.8.2.18 tan (x)

Returns an implementation-dependent approximation to the tangent of x. The argument is expressed in
radians.

1 If x is NaN, the result is NaN.

1 If xis +0, the result is +0.

9 Ifxis-0,theresultis-0.

9 If xis +o or - o, the result is NaN.

15.9 Date Objects

15.9.1

15.9.1.1

15.9.1.2

15.9.1.3

Overview of Date Objects and Definitions of Internal Operators
A Date object contains a number indicating a particular instant in time to within a millisecond. The number
may also be NaN, indicating that the Date object does not represent a specific instant of time.

The following sections define a number of functions for operating on time values. Note that, in every case,
if any argument to such a function is NaN, the result will be NaN.
Time Range

Time is measured in ECMAScript in milliseconds since 01 January, 1970 UTC. Leap seconds are
ignored. It is assumed that there are exactly 86,400,000 milliseconds per day. ECMAScript number
values can represent all integers from —9,007,199,254,740,991 to 9,007,199,254,740,991; this range
suffices to measure times to millisecond precision for any instant that is within approximately 285,616
years, either forward or backward, from 01 January, 1970 UTC.

The actual range of times supported by ECMAScript Date objects is slightly smaller: exactly —
100,000,000 days to 100,000,000 days measured relative to midnight at the beginning of 01 January,
1970 UTC. This gives a range of 8,640,000,000,000,000 milliseconds to either side of 01 January, 1970
UTC.

The exact moment of midnight at the beginning of 01 January, 1970 UTC is represented by the value +0.
Day Number and Time within Day
A given time value t belongs to day number

Day(t) = floor(t / msPerDay)

where the number of milliseconds per day is
msPerDay = 86400000

The remainder is called the time within the day:
TimeWithinDay¢) =t modulo msPerDay

Year Number

ECMAScript uses an extrapolated Gregorian system to map a day number to a year number and to
determine the month and date within that year. In this system, leap years are precisely those which are
(divisible by 4) and ((not divisible by 100) or (divisible by 400)). The number of days in year number y
is therefore defined by

DaysinYeary) =365 if y modulo 4), O
=366 if (f moduo 4) =0 and (y modulo 10Q)0

=365 if (modulo 100) = 0 and (y modulo 4000
=366 if (modulo 400) =0

All non-leap years have 365 days with the usual number of days per month and leap years have an extra
day in February. The day number of the first day of year y is given by:

DayFromYear(y) = 365 (y- 1970) + floor((y 1969)/4)- floor((y- 1901)/100) + floor((y1601)/400)

- 118 -

The time value of the start of a year is:

TimeFromYeary) = msPerDay DayFromYeary)

A time value determines a year by:

YearFomTimef) = the largest integer(closest to positive infinity) such that TimeFromY g t
The leap-year function is 1 for a time within a leap year and otherwise is zero:
InLeapYean) =0 if DaysIinYear(YearFromTim8j = 365
=1 if DaysinYear(YedrromTimgt)) = 366

15.9.1.4 Month Number

Months are identified by an integer in the range 0 to 11, inclusive. The mapping MonthFromTime(t)
from a time value t to a month number is defined by:

MonthFromTimef) =0 if 0 ¢ DayWithinYear() < 31
=1 if 31 ¢ DayWithinYear) < 59+InLeapYeat]
=2 if 59+InLeapYeat] ¢ DayWithinYear) < 90+InLeapYeat]
=3 if 90+InLeapYeat) ¢ DayWithinYear) < 120+InLeapYeat]
= if 120+InLeapYeat] ¢ DayWithinYear) < 151+InLeapYeat]
= if 151+InLeapYeat] ¢ DayWithinYear) < 181+InLeapYeat]
= if 181+InLeapYeat] ¢ DayWithinYear) < 212+InLeapYeat]
= if 212+InLeapYeat] ¢ DayWithinYear) < 243+InLeapYeat]
= if 243+InLeapYeat] ¢ DayWithinYear) < 273+IrLeapYear)
=9 if 273+InLeapYeat] ¢ DayWithinYear) < 304+InLeapYeat]
=10 ff 304+InLeapYealt] ¢ DayWithinYear {) < 334+InLeapYeat]
=11 ff 334+InLeapYealt ¢ DayWithinYear {) < 365+InLeapYeat]
where

DayWithinYearf) = Dayt)- DayFromYear(YearFromTime))

A month value of 0 specifies January; 1 specifies February; 2 specifies March; 3 specifies April,
4 specifies May; 5 specifies June; 6 specifies July; 7 specifies August; 8 specifies September; 9 specifies
October; 10 specifies November; and 11 specifies December. Note that MonthFromTime(0) = 0,
corresponding to Thursday, 01 January, 1970.

15.9.1.5 Date Number

A date number is identified by an integer in the range 1 through 31, inclusive. The mapping
DateFromTime(t) from a time value t to a month number is defined by:

DateFromTimet) = DayWithinYear{)+1 if MonthFromTime¢)=0
= DayWithinYearf)- 30 if MonthFromTime¢)=1
= DayWithinYearf)- 58- InLeapYean) if MonthFromTime¢)=2
= DayWithinYearf)- 89 InLeapYean) if MonthFromTime()=3
= DayWithinYearf)- 119 InLeapYear) if MonthFromTime()=4
= DayWithinYear{)- 150 InLeapYean) if MonthFromTime¢)=5
= DayWithinYearf)- 180 InLeapYean) if MonthFromTime¢)=6
= DayWithinYearf{)- 211- InLeapYean) if MonthFromTime¢)=7
= DayWithinYear()- 242- InLeapYean) if MonthFromTime¢)=8
= DayWithinYear{)- 272 InLeapYean) if MonthFromTime¢{)=9
= DayWithinYearf)- 303 InLeapYear) if MonthFromTime)=10
= DayWithinYearf)- 333 InLeapYean) if MonthFromTime¢{)=11

15.9.1.6 Week Day
The weekday for a particular time value t is defined as

WeekDayf) = (Dayf) + 4) modulo 7

15.9.1.8

15.9.1.9

15.9.1.9

15.9.1.10

- 119 -

A weekday value of 0 specifies Sunday; 1 specifies Monday; 2 specifies Tuesday; 3 specifies
Wednesday; 4 specifies Thursday; 5 specifies Friday; and 6 specifies Saturday. Note that WeekDay(0) =
4, corresponding to Thursday, 01 January, 1970.

Local Time Zone Adjustment

An implementation of ECMAScript is expected to determine the local time zone adjustment. The local
time zone adjustment is a value LocalTZA measured in milliseconds which when added to UTC
represents the local standard time. Daylight saving time is not reflected by LocalTZA. The value
Local TZA does not vary with time but depends only on the geographic location.

Daylight Saving Time Adjustment

An implementation of ECMAScript is expected to determine the daylight saving time algorithm. The
algorithm to determine the daylight saving time adjustment DaylightSavingTA(t), measured in
milliseconds, must depend only on four things:

(1) the time since the beginning of the year

t - TimeFromYear(YearFromTim#&j

(2) whether tis in a leap year

InLeapYean)
(3) the week day of the beginning of the year

WeekDay(TimeFromYear(YearFromTimp(
and (4) the geographic location.

The implementation of ECMAScript should not try to determine whether the exact time was subject to
daylight saving time, but just whether daylight saving time would have been in effect if the current
daylight saving time algorithm had been used at the time. This avoids complications such as taking into
account the years that the locale observed daylight saving time year round.

If the host environment provides functionality for determining daylight saving time, the implementation
of ECMAScript is free to map the year in question to an equivalent year (same leap-year-ness and same
starting week day for the year) for which the host environment provides daylight saving time
information. The only restriction is that all equivalent years should produce the same result.

Local Time
Conversion from UTC to local time is defined by

LocalTime() =t + LocalTZA + DaylightSaving T At

Conversion from local time to UTC is defined by

UTC(t) =t - LocalTZA - DaylightSavingTA{ - LocalTZA)
Note that UTC(LocalTime(t)) is not necessarily always equal to t.

Hours, Minutes, Second, and Milliseconds
The following functions are useful in decomposing time values:

HourFromTime(t) = floor(t / msPerHour) modulo HoursPerDay
MinFromTime(t) = floor(t / msPerMinute) modulo MinutesPerHour
SecFromTime(t) = floor(t / msPerSecond) modulo SecondsPerMinute
msFromTime(t) = t modulo msPerSecond

where

HoursPerDay = 24

15.9.1.11

15.9.1.12

15.91.13

15.9.1.14

-120 -

MinutesPerHour = 60

SecondsPerMinute = 60

msPerSecond = 1000

msPerMinute = msPerSecond 3 SecondsPerMinute = 60000
msPerHour = msPerMinute 3 MinutesPerHour = 3600000

MakeTime (hour, min, sec, ms)

The operator MakeTime calculates a number of milliseconds from its four arguments, which must be
ECMAScript number values. This operator functions as follows:

1. If houris not finite or minis not finite or secis not finite or msis not finite, return NaN.
Call Tolnteger(hour).

Call Tolnteger(min).

Call Tolnteger(seg.

Call Tolnteger(ms).

Compute Result(2) * msPerHour + Result(3) * msPerMinute + Result(4) * msPerSecond +
Result(5), performing the arithmetic according to IEEE 754 rules (that is, as if using the
ECMAScript operators * and +).

7. Return Result(6).

ook wnN

MakeDay (year, month, date)

The operator MakeDay calculates a number of days from its three arguments, which must be
ECMAScript number values. This operator functions as follows:

1. If yearis not finite or monthis not finite or dateis not finite, return NaN.

Call Tolnteger(yeat).

Call Tolnteger(month.

Call Tolnteger(date).

Compute Result(2) + floor(Result(3)/12).

Compute Result(3) modulo 12.

Find a value t such that YearFromTime(t) == Result(5) and MonthFromTime(t) == Result(6) and
DateFromTime(t) == 1; but if this is not possible (because some argument is out of range), return
NaN.

8. Compute Day(Result(7)) + Result(4) - 1.

9. Return Result(8).

Nookwn

MakeDate (day, time)

The operator MakeDate calculates a number of milliseconds from its two arguments, which must be
ECMAScript number values. This operator functions as follows:

1. If dayis not finite or timeis not finite, return NaN.
2. Compute day® msPerDay + time.
3. Return Result(2).

TimeClip (time)

The operator TimeClip calculates a number of milliseconds from its argument, which must be an
ECMAScript number value. This operator functions as follows:

1. Iftimeis not finite, return NaN.

2. If abs(Result(1)) > 8.64x 10*®, return NaN.

3. Return an implementation-dependent choice of either Tolnteger(Result(2)) or Tolnteger(Result(2)) +
(+0).
(Adding a positive zero converts - 0 to +0.)

NOTE

15.9.2

15.9.2.1

15.9.3

15.9.3.1

15.9.3.2

-121 -

The point of step 3 is that an implementation is permittetidce of internal representations of time
values, for example as a @4t signed integer or as a 6dit floating-point value. Depending on the
implementation, this internal representation may or may not distingusénd +0.

The Date Constructor Cdled as a Function

When Date is called as a function rather than as a constructor, it returns a string representing the current
time (UTC).

NOTE
The function callDate(€) is not equivalent to the object creation expressiew Date(€) with the
same argumes.

Date ([year [, month [, date [, hours [, minutes [, seconds [, ms]1]1]11111)

All of the arguments are optional; any arguments supplied are accepted but are completely ignored. A
string is created and returned as if by the expression (ne w Date()).toString()

The Date Constructor
When Date is called as part of a new expression, it is a constructor: it initialises the newly created object.

new Date (year, month [, date [, hours [, minutes [, seconds [, ms]]1]11])

When Date is called with two to seven arguments, it computes the date from year, month and
(optionally) date hours minutes secondsand ms

The [[Prototype]] property of the newly constructed object is set to the original Date prototype object, the
one that is the initial value of Date.prototype (15.9.4.1).

The [[Class]] property of the newly constructed object is set to "Date"
The [[Value]] property of the newly constructed object is set as follows:

Call ToNumber(year).

Call ToNumber(month.

If dateis supplied use ToNumber(date); else use 1.

If hoursis supplied use ToNumber(hours); else use 0.

If minutesis supplied use ToNumber(minute$; else use 0.

If secondss supplied use ToNumber(second} else use 0.

If msis supplied use ToNumber(ms); else use 0.

If Result(1) is not NaN and 0 ¢ Tolnteger(Result(1)) ¢ 99, Result(8) is 1900+Tolnteger(Result(1));
otherwise, Result(8) is Result(1).

9. Compute MakeDay(Result(8), Result(2), Result(3)).

10. Compute MakeTime(Result(4), Result(5), Result(6), Result(7)).

11. Compute MakeDate(Result(9), Result(10)).

12. Set the [[Value]] property of the newly constructed object to TimeClip(UTC(Result(11))).

N~ wWNRE

new Date (value)

The [[Prototype]] property of the newly constructed object is set to the original Date prototype object, the
one that is the initial value of Date.prototype (15.9.4.1).

The [[Class]] property of the newly constructed object is set to "Date"
The [[Value]] property of the newly constructed object is set as follows:

Call ToPrimitive(value).

If Type(Result(1)) is String, then go to step 5.

Let V be ToNumber(Result(1)).

Set the [[Value]] property of the newly constructed object to TimeClip(V) and return.

Parse Result(1) as a date, in exactly the same manner as for the parse method (15.9.4.2); let V be
the time value for this date.

6. Goto step 4.

agkrwbdPE

15.9.3.3

15.9.4

159.4.1

15.9.4.2

15.9.4.3

-122 -

new Date ()

The [[Prototype]] property of the newly constructed object is set to the original Date prototype object, the
one that is the initial value of Date.prototype (15.9.4.1).

The [[Class]] property of the newly constructed object is set to "Date"
The [[VValue]] property of the newly constructed object is set to the current time (UTC).

Properties of the Date Constructor

The value of the internal [[Prototype]] property of the Date constructor is the Function prototype object
(15.3.4).

Besides the internal properties and the length property (whose value is 7), the Date constructor has the
following properties:

Date.prototype
The initial value of Date.prototype is the built-in Date prototype object (15.9.5).

This property has the attributes { DontEnum, DontDelete, ReadOnly }.

Date.parse (string)
The parse function applies the ToString operator to its argument and interprets the resulting string as a

date; it returns a number, the UTC time value corresponding to the date. The string may be interpreted as
a local time, a UTC time, or a time in some other time zone, depending on the contents of the string.

If x is any Date object whose milliseconds amount is zero within a particular implementation of
ECMAScript, then all of the following expressions should produce the same numeric value in that
implementation, if all the properties referenced have their initial values:

x.valueOf()
Date.parse(x.toString())
Date.parse(x.toUTCString())

However, the expression
Date.parse(x.toLocaleString())

is not required to produce the same number value as the preceding three expressions and, in general, the
value produced by Date.parse is implementation-dependent when given any string value that could
not be produced in that implementation by the toString or toUTCString method.

Date.UTC (year, month [, date [, hours [, minutes [, seconds [, ms]]]11)

When the UTC function is called with fewer than two arguments, the behaviour is implementation-
dependent. When the UTC function is called with two to seven arguments, it computes the date from
year, monthand (optionally) date hours minutes secondsind ms The following steps are taken:

Call ToNumber(year).

Call ToNumber(month.

If dateis supplied use ToNumber(date); else use 1.

If hoursis supplied use ToNumber(hours); else use 0.

If minutesis supplied use ToNumber(minute$; else use 0.

If secondsds supplied use ToNumber(second} else use O.

If msis supplied use ToNumber(ms); else use O.

If Result(1) is not NaN and O ¢ Tolnteger(Result(1)) ¢ 99, Result(8) is 1900+ Tolnteger(Result(1));
otherwise, Result(8) is Result(1).

9. Compute MakeDay(Result(8), Result(2), Result(3)).

10. Compute MakeTime(Result(4), Result(5), Result(6), Result(7)).
11. Return TimeClip(MakeDate(Result(9), Result(10))).

NN R

The length property of the UTCfunction is 7.

-123 -

NOTE
The UTC function differs from the Date constructor in two ways: it returns a time value as a humber
rather than creating a Date object, and it interprets the arguments in UTC raltfagr ds local time.

15.9.5 Properties of the Date Prototype Object
The Date prototype object is itself a Date object (its [[Class]] is "Date") whose value is NaN.

The value of the internal [[Prototype]] property of the Date prototype object is the Object prototype object
(15.2.3.1).

In following descriptions of functions that are properties of the Date prototype object, the phrase “this Date
object” refers to the object that is the this value for the invocation of the function. None of these functions
are generic; a TypeError exception is thrown if the this value is not an object for which the value of the
internal [[Class]] property is "Date" . Also, the phrase “this time value” refers to the number value for the
time represented by this Date object, that is, the value of the internal [[Value]] property of this Date object.

15.9.5.1 Date.prototype.constructor
The initial value of Date.prototype.constructor is the built-in Date constructor.

15.9.5.2 Date.prototype.toString ()

This function returns a string value. The contents of the string are implementation-dependent, but are
intended to represent the Date in the current time zone in a convenient, human-readable form.

NOTE
It is intended that for any Date valuk the result ofDate.prototype.parse(d.toString()
(15.9.4.2) is equal td.

15.9.5.3 Date.prototype.toDateString ()

This function returns a string value. The contents of the string are implementation-dependent, but are
intended to represent the “date” portion of the Date in the current time zone in a convenient, human-
readable form.

15.9.5.4 Date.prototype.toTimeString ()

This function returns a string value. The contents of the string are implementation-dependent, but are
intended to represent the “time” portion of the Date in the current time zone in a convenient, human-
readable form.

15.9.5.5 Date.prototype.toLocaleString ()

This function returns a string value. The contents of the string are implementation-dependent, but are
intended to represent the Date in the current time zone in a convenient, human-readable form that
corresponds to the conventions of the host environment’s current locale.

NOTE
The first parameter to this function is likely to be used in a future version of this standard; it is
recommended that implementations do not use thiarpater position for anything else.

15.9.5.6 Date.prototype.toLocaleDateString ()

This function returns a string value. The contents of the string are implementation-dependent, but are
intended to represent the “date” portion of the Date in the current time zone in a convenient, human-
readable form that corresponds to the conventions of the host environment’s current locale.

NOTE
The first parameter to this function is likely to be used in a future version of this standard; it is
recommended that implemeatibns do not use this parameter position for anything else.

15.9.5.7 Date.prototype.toLocaleTimeString ()

This function returns a string value. The contents of the string are implementation-dependent, but are
intended to represent the “time” portion of the Date in the current time zone in a convenient, human-
readable form that corresponds to the conventions of the host environment’s current locale.

NOTE

- 124 -

The first parameter to this function is likely to be used in a future version of this standard; it is
recommended that implementations do not use this parameter position for anything else.

15.9.5.8 Date.prototype.valueOf ()
The valueOf function returns a number, which is this time value.

15.9.5.9 Date.prototype.getTime ()

1. If the this value is not an object whose [[Class]] property is "Date" , throw a TypeError
exception.
2. Return this time value.

15.9.5.10 Date.prototype.getFullYear ()

1. Lett be this time value.
2. Iftis NaN, return NaN.
3. Return YearFromTime(LocalTime(t)).

15.9.5.11 Date.prototype.getUTCFullYear ()

1. Let t be this time value.
2. Iftis NaN, return NaN.
3. Return YearFromTime(t).

15.9.5.12 Date.prototype.getMonth ()

1. Lett be this time value.
2. Iftis NaN, return NaN.
3. Return MonthFromTime(LocalTime(t)).

15.9.5.13 Date.prototype.getUTCMonth ()

1. Let t be this time value.
2. Iftis NaN, return NaN.
3. Return MonthFromTime(t).

15.9.5.14 Date.prototype.getDate ()

1. Lett be this time value.
2. Iftis NaN, return NaN.
3. Return DateFromTime(Local Time(t)).

15.9.5.15 Date.prototype.getUTCDate ()

1. Lett be this time value.
2. Iftis NaN, return NaN.
3. Return DateFromTime(t).

15.9.5.16 Date.prototype.getDay ()

1. Lett be this time value.
2. Iftis NaN, return NaN.
3. Return WeekDay(Local Time(t)).

15.9.5.17 Date.prototype.getUTCDay ()

1. Let t be this time value.
2. Iftis NaN, return NaN.
3. Return WeekDay(t).

15.9.5.18 Date.prototype.getHours ()

1. Lett be this time value.
2. Iftis NaN, return NaN.
3. Return HourFromTime(LocalTime(t)).

- 125 -

15.9.5.19 Date.prototype.getUTCHours ()

1. Lett be this time value.
2. Iftis NaN, return NaN.
3. Return HourFromTime(t).

15.9.5.20 Date.prototype.getMinutes ()

1. Lett be this time value.
2. Iftis NaN, return NaN.
3. Return MinFromTime(LocalTime(t)).

15.9.5.21 Date.prototype.getUTCMinutes ()

1. Lett be this time value.
2. Iftis NaN, return NaN.
3. Return MinFromTime(t).

15.9.5.22 Date.prototype.getSeconds ()

1. Lett be this time value.
2. Iftis NaN, return NaN.
3. Return SecFromTime(LocalTime(t)).

15.9.5.23 Date.prototype.getUTCSeconds ()

1. Lett be this time value.
2. Iftis NaN, return NaN.
3. Return SecFromTime(t).

15.9.5.24 Date.prototype.getMilliseconds ()

1. Lett be this time value.
2. Iftis NaN, return NaN.
3. Return msFromTime(Local Time(t)).

15.9.5.25 Date.prototype.getUTCMilliseconds ()
1. Lett be this time value.

2. Iftis NaN, return NaN.
3. Return msFromTime(t).

15.9.5.26 Date.prototype.getTimezoneOffset ()
Returns the difference between local time and UTC time in minutes.

1. Lett be this time value.
2. Iftis NaN, return NaN.
3. Return (t - LocalTime(t)) / msPerMinute.

15.9.5.27 Date.prototype.setTime (time)

If the this value is not a Date object, throw a TypeError exception.
Call ToNumber(time).

Call TimeClip(Result(1)).

Set the [[Value]] property of the this value to Result(2).

Return the value of the [[Value]] property of the this value.

ARl A o

15.9.5.28 Date.prototype.setMilliseconds (ms)

Let t be the result of LocalTime(this time value).

Call ToNumber(ms).

Compute MakeTime(HourFromTime(t), MinFromTime(t), SecFromTime(t), Result(2)).
Compute UTC(MakeDate(Day(t), Result(3))).

Set the [[Value]] property of the this value to TimeClip(Result(4)).

gL

15.9.5.29

15.9.5.30

15.9.5.31

15.9.5.33

15.9.5.34

- 126 -

6. Return the value of the [[Value]] property of the this value.

Date.prototype.setUTCMilliseconds (ms)

1. Lett be this time value.

Call ToNumber(ms).

Compute MakeTime(HourFromTime(t), MinFromTime(t), SecFromTime(t), Result(2)).
Compute MakeDate(Day(t), Result(3)).

Set the [[Value]] property of the this value to TimeClip(Result(4)).

Return the value of the [[Value]] property of the this value.

ek wn

Date.prototype.setSeconds (sec [, ms])
If msis not specified, this behaves as if mswere specified with the value getMilliseconds().

Let t be the result of LocalTime(this time value).

Call ToNumber(seq.

If msis not specified, compute msFromTime(t); otherwise, call ToONumber(ms).
Compute MakeTime(HourFromTime(t), MinFromTime(t), Result(2), Result(3)).
Compute UTC(MakeDate(Day(t), Result(4))).

Set the [[Value]] property of the this value to TimeClip(Result(5)).

Return the value of the [[Value]] property of the this value.

Nook~kwhE

The length property of the setSeconds method is 2.

Date.prototype.setUTCSeconds e [, ms])
If msis not specified, this behaves as if mswere specified with the value getUTCMilliseconds().

Let t be this time value.

Call ToNumber(seg.

If msis not specified, compute msFromTime(t); otherwise, call ToNumber(ms).
Compute MakeTime(HourFromTime(t), MinFromTime(t), Result(2), Result(3)).
Compute MakeDate(Day(t), Result(4)).

Set the [[Value]] property of the this value to TimeClip(Result(5)).

Return the value of the [[Value]] property of the this value.

NoakwbhE

The length property of the setUTCSec onds method is 2.

Date.prototype.setMinutes (min [, sec [, ms]])
If secis not specified, this behaves as if secwere specified with the value getSeconds().

If msis not specified, this behaves as if mswere specified with the value getMilliseconds().

Let t be the result of LocalTime(this time value).

Call ToNumber(min).

If secis not specified, compute SecFromTime(t); otherwise, call ToNumber(seq.
If msis not specified, compute msFromTime(t); otherwise, call ToONumber(ms).
Compute MakeTime(HourFromTime(t), Result(2), Result(3), Result(4)).
Compute UTC(MakeDate(Day(t), Result(5))).

Set the [[Value]] property of the this value to TimeClip(Result(6)).

Return the value of the [[Value]] property of the this value.

NN R

The length property of the setMi nutes method is 3.

Date.prototype.setUTCMinutes (min [, sec [, ms]])
If secis not specified, this behaves as if secwere specified with the value getUTCSeconds().

If msis not specified, this behaves as if mswere specified with the value getUTCMilliseconds().

1. Lett be this time value.
2. Call ToNumber(min).

15.9.5.35

15.9.5.36

15.9.5.36

15.9.5.37

-127 -

If secis not specified, compute SecFromTime(t); otherwise, call ToNumber(seq.
If msis not specified, compute msFromTime(t); otherwise, call ToONumber(ms).
Compute MakeTime(HourFromTime(t), Result(2), Result(3), Result(4)).
Compute MakeDate(Day(t), Result(5)).

Set the [[Value]] property of the this value to TimeClip(Result(6)).

Return the value of the [[Value]] property of the this value.

©NoO AW

The length property of the setUTCMinutes method is 3.

Date.prototype.setHours (hour [, min[, sec [, ms]]])
If minis not specified, this behaves as if min were specified with the value getMinutes().

If secis not specified, this behaves as if secwere specified with the value getSeconds().
If msis not specified, this behaves as if mswere specified with the value getMilliseconds().

Let t be the result of LocalTime(this time value).

Call ToNumber(hour).

If minis not specified, compute MinFromTime(t); otherwise, call ToNumber(min).
If secis not specified, compute SecFromTime(t); otherwise, call ToNumber(seg.
If msis not specified, compute msFromTime(t); otherwise, call ToONumber(ms).
Compute MakeTime(Result(2), Result(3), Result(4), Result(5)).

Compute UTC(MakeDate(Day(t), Result(6))).

Set the [[Value]] property of the this value to TimeClip(Result(7)).

Return the value of the [[Value]] property of the this value.

NGO R~WNE

The length property of the setHours method is 4.

Date.prototype.setUTCHours (hour [, min [, sec[,ms]]])
If minis not specified, this behaves as if min were specified with the value getUTCMinutes().

If secis not specified, this behaves as if secwere specified with the value getUTCSeconds().
If msis not specified, this behaves as if mswere specified with the value getUTCMuilliseconds().

Let t be this time value.

Call ToNumber(hour).

If minis not specified, compute MinFromTime(t); otherwise, call ToNumber(min).
If secis not specified, compute SecFromTime(t); otherwise, call ToNumber(seq.
If msis not specified, compute msFromTime(t); otherwise, call ToONumber(ms).
Compute MakeTime(Result(2), Result(3), Result(4), Result(5)).

Compute MakeDate(Day(t), Result(6)).

Set the [[Value]] property of the this value to TimeClip(Result(7)).

Return the value of the [[Value]] property of the this value.

NGO R~WNE

The length property of the setUTCHours method is 4.

Date.prototype.setDate (date)

Let t be the result of Local Time(this time value).

Call ToNumber(date).

Compute MakeDay(YearFromTime(t), MonthFromTime(t), Result(2)).
Compute UTC(MakeDate(Result(3), TimeWithinDay(t))).

Set the [[Value]] property of the this value to TimeClip(Result(4)).
Return the value of the [[Value]] property of the this value.

ok wNE

Date.prototype.setUTCDate (date)

1. Lett be this time value.
2. Call ToNumber(date).
3. Compute MakeDay(YearFromTime(t), MonthFromTime(t), Result(2)).

-128 -

4. Compute MakeDate(Result(3), TimeWithinDay(t)).
5. Set the [[Value]] property of the this value to TimeClip(Result(4)).
6. Return the value of the [[Value]] property of the this value.

15.9.5.38 Date.prototype.setMonth (month [, date])
If dateis not specified, this behaves as if datewere specified with the value getDate().

Let t be the result of LocalTime(this time value).

Call ToNumber(month.

If dateis not specified, compute DateFromTime(t); otherwise, call ToNumber(date).
Compute MakeDay(YearFromTime(t), Result(2), Result(3)).

Compute UTC(MakeDate(Result(4), TimeWithinDay(t))).

Set the [[Value]] property of the this value to TimeClip(Result(5)).

Return the value of the [[Value]] property of the this value.

Noak~kwbpE

The length property of the setMonth method is 2.

15.9.5.39 Date.prototype.setUTCMonth (month [, date])
If dateis not specified, this behaves as if datewere specified with the value getUTCDate().

Let t be this time value.

Call ToNumber(month.

If dateis not specified, compute DateFromTime(t); otherwise, call ToNumber(date).
Compute MakeDay(YearFromTime(t), Result(2), Result(3)).

Compute MakeDate(Result(4), TimeWithinDay(t)).

Set the [[Value]] property of the this value to TimeClip(Result(5)).

Return the value of the [[Value]] property of the this value.

Nogak~kwbdpE

The length property of the setUTCMonth method is 2.

15.9.5.40 Date.prototype.setFullYear (year [, month [, date]])
If monthis not specified, this behaves as if monthwere specified with the value getMonth().

If dateis not specified, this behaves as if datewere specified with the value getDate().

Let t be the result of LocalTime(this time value); but if this time value is NaN, let t be +0.
Call ToNumber(year).

If monthis not specified, compute MonthFromTime(t); otherwise, call ToNumber(month.
If dateis not specified, compute DateFromTime(t); otherwise, call ToNumber(date).
Compute MakeDay(Result(2), Result(3), Result(4)).

Compute UTC(MakeDate(Result(5), TimeWithinDay(t))).

Set the [[Value]] property of the this value to TimeClip(Result(6)).

Return the value of the [[Value]] property of the this value.

i L A

The length property of the setFullYear method is 3.

15.9.5.41 Date.prototype.setUTCFullYear (year [, month [, date]])
If monthis not specified, this behaves as if monthwere specified with the value getUTCMonth().

If dateis not specified, this behaves as if datewere specified with the value getUTCDate().

Let t be this time value; but if this time value is NaN, let t be +0.

Call ToNumber(year).

If monthis not specified, compute MonthFromTime(t); otherwise, call ToNumber(month.
If dateis not specified, compute DateFromTime(t); otherwise, call ToNumber(date).
Compute MakeDay(Result(2), Result(3), Result(4)).

Compute MakeDate(Result(5), TimeWithinDay(t)).

Set the [[Value]] property of the this value to TimeClip(Result(6)).

Return the value of the [[Value]] property of the this value.

N~ E

-129 -

The length property of the setUTCFullYear method is 3.

15.9.5.42 Date.prototype.toUTCString ()
This function returns a string value. The contents of the string are implementation-dependent, but are
intended to represent the Date in a convenient, human-readable form in UTC.
15.9.6 Properties of Date Instances
Date instances have no special properties beyond those inherited from the Date prototype object.

15.10 RegExp (Regular Expression) Objects
A RegExp object contains a regular expression and the associated flags.

NOTE
The form and functionality of regular expressions is modelled afterregular expression facility in the
Perl 5 programming language.

15.10.1 Patterns

The RegExp constructor applies the following grammar to the input pattern string. An error occurs if the
grammar cannot interpret the string as an expansion of Pattern

Syntax

Pattem::
Disjunction

Disjunction::
Alternative
Altemative| Disjunction

Alterative::

[empty]
Altemative Term

Term::
Assertion
Atom
Atom Quantifier

Assertion:
N

— —

b
B
Quantifier::

QuantifierPrefix
QuantifierPrefix ?

QuantifierPrefix::
*

+

?

{ DecimalDigits}

{ DecimalDigits, }

{ DecimalDigits, DecimalDigits}

Atom::
PatternCharacter

\ AtomEscape
CharacterClass

(Disjunction)

(?: Disjunction)
(? = Disjunction)
(?! Disjunction)

PatternCharacter: SourceCharactelut not any of:

s w2 ()L}

AtomEscape
DecimalEscape
CharacterEscape
CharacterClassEscape

CharacterEscape
ControlEscape
¢ ControlLetter
HexEscapeSequence
UnicodeEscapeSequence
IdentityEscape

ControlEscape: one of
fnrtv

CortrolLetter:: one of
abcdefghijklm
ABCDEFGHIJK

IdentityEscape:

SourceCharactelut not IdentifierPart

DecimalEscape:
DecimalntegerLiteral [laokahead | Zagmallimt

CharacterClassEscape one of
dDsSwWwW

CharacterClass::

[Mookshead? {~11 ClassRanges]
[ClassRanges

ClassRanges:

[empty]
NonemptyClassRanges

NonemptyClassRanges
ClassAtom
ClassAtom Nonemy€lassRangesNoDash
ClassAtom- ClassAtom ClassRanges

NonemptyClassRangesNoDash
ClassAtom

nopgq
LMNOP

- 130 -

ClassAtomNoDash NonemptyClassRangesNoDash

ClassAtomNoDash ClassAtom ClassRanges

ClassAtom:

ClassAtomNoDash

- 131 -

ClassAtomNoDash
SourceCharacteibut not one of\ | -
\ ClassEscape

ClassEscape

DecimalEscape

b

CharacterEscape
CharacterClassEscape

15.10.2 Pattern Semantics

A regular expression pattern is converted into an internal function using the process described below. An
implementation is encouraged to use more efficient algorithms than the ones listed below, as long as the
results are the same.

15.10.2.1 Notation
The descriptions below use the following variables:

1

f
f

Input is the string being matched by the regular expression pattern. The notation input{n] means the
nth character of input, where n can range between 0 (inclusive) and InputLength(exclusive).

InputLengthis the number of characters in the Inputstring.

NCapturingParensds the total number of left capturing parentheses (i.e. the total number of times the
Atom:: (Disjunction) production is expanded) in the pattern. A left capturing parenthesis is any (
pattern character that is matched by the (terminal of the Atom:: (Disjunction) production.

IgnoreCasads the setting of the RegExp object's ignoreCase property.
Multiline is the setting of the RegExp object's multiline property.

Furthermore, the descriptions below use the following internal data structures:

f
1

A CharSetis a mathematical set of characters.

A Stateis an ordered pair (endIindex capture§ where endIindexis an integer and capturesis an
internal array of NCapturingParensvalues. States are used to represent partial match states in the
regular expression matching algorithms. The endIindexis one plus the index of the last input character
matched so far by the pattern, while capturesholds the results of capturing parentheses. The nth
element of capturesis either a string that represents the value obtained by the nth set of capturing
parentheses or undefined if the nth set of capturing parentheses hasn't been reached yet. Due to
backtracking, many states may be in use at any time during the matching process.

A MatchResulis either a State or the special token failure that indicates that the match failed.

A Continuationfunction is an internal closure (i.e. an internal function with some arguments already
bound to values) that takes one State argument and returns a MatchResult result. If an internal closure
references variables bound in the function that creates the closure, the closure uses the values that
these variables had at the time the closure was created. The continuation attempts to match the
remaining portion (specified by the closure's already-bound arguments) of the pattern against the input
string, starting at the intermediate state given by its State argument. If the match succeeds, the
continuation returns the final State that it reached; if the match fails, the continuation returns failure.

A Matcher function is an internal closure that takes two arguments -- a State and a Continuation --
and returns a MatchResult result. The matcher attempts to match a middle subpattern (specified by the
closure's already-bound arguments) of the pattern against the input string, starting at the intermediate
state given by its State argument. The Continuation argument should be a closure that matches the rest
of the pattern. After matching the subpattern of a pattern to obtain a new State, the matcher then calls
Continuation on that state to test if the rest of the pattern can match as well. If it can, the matcher
returns the state returned by the continuation; if not, the matcher may try different choices at its choice
points, repeatedly calling Continuation until it either succeeds or all possibilities have been exhausted.

An AssertionTestefunction is an internal closure that takes a State argument and returns a boolean
result. The assertion tester tests a specific condition (specified by the closure's already-bound

15.10.2.2

15.10.2.3

- 132 -

arguments) against the current place in the input string and returns true if the condition matched or
falseif not.

1 An EscapeValueis either a character or an integer. An EscapeValue is used to denote the
interpretation of a DecimalEscapescape sequence: a character ch means that the escape sequence is
interpreted as the character ch, while an integer n means that the escape sequence is interpreted as a
backreference to the nth set of capturing parentheses.

Pattern
The production Pattern:: Disjunctionevaluates as follows:

1. Evaluate Disjunctionto obtain a Matcher m.
2. Return an internal closure that takes two arguments, a string str and an integer index and performs
the following:

1. Let Inputbe the given string str. This variable will be used throughout the functions in 15.10.2.

2. Let InputLengthbe the length of Input This variable will be used throughout the functions in
15.10.2.

3. Let c be a Continuation that always returns its State argument as a successful MatchResult.

4. Let capbe an internal array of NCapturingParensindefined values, indexed 1 through
NCapturingParens

5. Let x be the State (index cap).

6. Call m(x, ¢) and return its result.

Informative comments: A Pattern evaluates ("compiles) to an internal function value.
RegExp.prototype.exec can then apply this function to a string and an offset within the string to
determine whether the pattern would match starting at exactly that offset within the string, and, if it does
match, what the values of the capturing parentheses would be. The algorithms in 15.10.2 are designed so
that compiling a pattern may throw a SyntaxError exception; on the other hand, once the pattern is
successfully compiled, applying its result function to find a match in a string cannot throw an exception
(except for any host-defined exceptions that can occur anywhere such as out-of-memory).

Disjunction
The production Disjunction:: Alternative evaluates by evaluating Alternativeto obtain a Matcher and
returning that Matcher.

The production Disjunction:: Alternative| Disjunctionevaluates as follows:

1. Evaluate Alternativeto obtain a Matcher m1

2. Evaluate Disjunctionto obtain a Matcher m2

3. Return an internal Matcher closure that takes two arguments, a State x and a Continuation c, and
performs the following:

1. Call mi(x, c) and let r be its result.
2. Ifrisn't failure, returnr.
3. Call m2(x, c) and return its result.

Informative comments: The | regular expression operator separates two alternatives. The pattern first
tries to match the left Alternative (followed by the sequel of the regular expression); if it fails, it tries to
match the right Disjunction (followed by the sequel of the regular expression). If the left Alternative the
right Disjunction and the sequel all have choice points, all choices in the sequel are tried before moving
on to the next choice in the left Alternative If choices in the left Alternative are exhausted, the right
Disjunction is tried instead of the left Alternative Any capturing parentheses inside a portion of the
pattern skipped by | produce undefined values instead of strings. Thus, for example,

/alab/.exec("abc")
returns the result "a" and not "ab" . Moreover,
/((a)l(ab))((c)|(bc))/.exec("abc")

returns the array

15.10.2.4

15.10.2.5

- 133 -

['abc", "a", "a", undefined, "bc", undefined, "bc"]
and not
['abc", "ab", undefined, "ab", "c", "c", undefined]

Alternative

The production Alternative :: [empty] evaluates by returning a Matcher that takes two arguments, a State
x and a Continuation c, and returns the result of calling c(x).

The production Alternative:: AlternativeTermevaluates as follows:

1. Evaluate Alternativeto obtain a Matcher m1

2. Evaluate Termto obtain a Matcher m2

3. Return an internal Matcher closure that takes two arguments, a State x and a Continuation c, and
performs the following:

1. Create a Continuation d that takes a State argument y and returns the result of calling m2(y, c).
2. Call m1(x, d) and return its result.

Informative comments: Consecutive Termstry to simultaneously match consecutive portions of the
input string. If the left Alternative the right Term and the sequel of the regular expression all have
choice points, all choices in the sequel are tried before moving on to the next choice in the right Term
and all choices in the right Termare tried before moving on to the next choice in the left Alternative

Term

The production Term :: Assertionevaluates by returning an internal Matcher closure that takes two
arguments, a State x and a Continuation c, and performs the following:

1. Evaluate Assertionto obtain an AssertionTester t.
2. Call t(x) and let r be the resulting boolean value.
3. Ifrisfalse return failure.

4. Call ¢(x) and return its result.

The production Term :: Atom evaluates by evaluating Atom to obtain a Matcher and returning that
Matcher.

The production Term:: AtomQuantifierevaluates as follows:

1. Evaluate Atomto obtain a Matcher m.

2. Evaluate Quanfifier to obtain the three results: an integer min, an integer (or @) max and boolean

greedy

If maxis finite and less than min, then throw a SyntaxError exception.

4. Let parenindexbe the number of left capturing parentheses in the entire regular expression that
occur to the left of this production expansion’'s Term This is the total number of times the Atom:: (
Disjunction) production is expanded prior to this production's Termplus the total number of Atom
. (Disjunction) productions enclosing this Term

5. Let parenCountoe the number of left capturing parentheses in the expansion of this production's
Atom This is the total number of Atom:: (Disjunction) productions enclosed by this production's
Atom

6. Return an internal Matcher closure that takes two arguments, a State x and a Continuation c, and
performs the following:

1. Call RepeatMatcher(m, min, max greedy X, ¢, parenindexparenCouny and return its result.

w

The internal helper function RepeatMatchettakes eight parameters, a Matcher m, an integer min, an
integer (or @) max a boolean greedy a State X, a Continuation c, an integer parenindexand an integer
parenCountand performs the following:

1. If maxis zero, then call c(x) and return its result.
2. Create an internal Continuation closure d that takes one State argument y and performs the
following:

-134 -

If minis zero and y's endIndexs equal to x's endIndexthen return failure.

If minis zero then let min2be zero; otherwise let min2 be min-1.

If maxis @, then let max2be o ; otherwise let max2be max-1.

Call RepeatMatcher(m, min2, max2 greedyy, ¢, parenindex parenCoun}and return its result.

3. Let capbe a fresh copy of x's capturesinternal array.
For every integer k that satisfies parenindex< k and k ¢ parenindexparenCountset capk] to
undefined.

Let e be x's endIndex

Let xr be the State (e, cap).

If minis not zero, then call m(xr, d) and return its result.
If greedyis true, then go to step 12.

9. Call c(x) and let z be its result.

10. If zis not failure, return z.

11. Call m(xr, d) and return its result.

12. Call m(xr, d) and let z be its result.

13. If zis not failure, return z.

14. Call c(x) and return its result.

el e =

e

®© N o

Informative comments: An Atomfollowed by a Quantifier is repeated the number of times specified by
the Quantifier. A quantifier can be non-greedy, in which case the Atom pattern is repeated as few times
as possible while still matching the sequel, or it can be greedy, in which case the Atom pattern is
repeated as many times as possible while still matching the sequel. The Atom pattern is repeated rather
than the input string that it matches, so different repetitions of the Atom can match different input
substrings.

If the Atomand the sequel of the regular expression all have choice points, the Atomis first matched as
many (or as few, if non-greedy) times as possible. All choices in the sequel are tried before moving on to
the next choice in the last repetition of Atom All choices in the last (n'") repetition of Atomare tried
before moving on to the next choice in the next-to-last (n-1)* repetition of Aton at which point it may
turn out that more or fewer repetitions of Atomare now possible; these are exhausted (again, starting
with either as few or as many as possible) before moving on to the next choice in the (n-1)* repetition of
Atomand so on.

Compare
lala - z]{2,4}/.exec("abcdefghi")
which returns "abcde" with
lala - z]{2,4}?/.exec("abcdefghi")
which returns "abc" .
Consider also
/(aalaabaac|balb|c)*/.exec("aabaac")
which, by the choice point ordering above, returns the array
['aaba", "ba"]
and not any of:
['aabaac"”, "aabaac"]
['aabaac"”, "c"]

The above ordering of choice points can be used to write a regular expression that calculates the greatest
common divisor of two numbers (represented in unary notation). The following example calculates the
gcd of 10 and 15:

"aaaaaaaaaa,aaaaaaaaaaaaaaa’.replace(/(a+) \ 1%\ 1+$/,"$1")

which returns the gcd in unary notation "aaaaa" .

15.10.2.6

- 135 -

Step 4 of the RepeatMatcherclears Atonis captures each time Atom is repeated. We can see its
behaviour in the regular expression

1(z)((a+)?(b+)?(c))*/.exec("zaacbbbcac")
which returns the array

['zaacbbbcac", "z", "ac", "a", undefined, "c"]
and not

['zaacbbbcac", "z", "ac", "a", "bbb", "c"]

because each iteration of the outermost * clears all captured strings contained in the quantified Atom
which in this case includes capture strings numbered 2, 3, and 4.

Step 1 of the RepeatMatcheés closure d states that, once the minimum number of repetitions has been
satisfied, any more expansions of Atom that match the empty string are not considered for further
repetitions. This prevents the regular expression engine from falling into an infinite loop on patterns such
as:

[(@*)*/.exec("b")
or the slightly more complicated:
/(@*)b \ 1+/.exec("baaaac")
which returns the array
b, "]
Assertion

The production Assertion:: ~ evaluates by returning an internal AssertionTester closure that takes a
State argument x and performs the following:

1. Let ebe x's endindex

2. If eis zero, return true.

3. If Multiline is false, return false.

4. If the character Inputfe-1] is one of the line terminator characters <LF>, <CR>, <LS>, or <PS>,
return true.

5. Return false.

The production Assertion:: $ evaluates by returning an internal AssertionTester closure that takes a
State argument x and performs the following:

1. Letebe x's endindex

2. If eis equal to InputLength return true.

3. If multiline is false, return false.

4. If the character Input[e] is one of the line terminator characters <LF>, <CR>, <LS>, or <PS>, return
true.

5. Return false

The production Assertion:: \ b evaluates by returning an internal AssertionTester closure that takes a
State argument x and performs the following:

Let e be x's endIndex

Call IswWordChafe-1) and let a be the boolean result.
Call IswWordChafe) and let b be the boolean result.
If ais true and b is false, return true.

If ais falseand b is true, return true.

Return false.

o0k wNE

The production Assertion:: \ B evaluates by returning an internal AssertionTester closure that takes a
State argument x and performs the following:

15.10.2.7

15.10.2.8

- 136 -

Let e be x's endndex

Call IsWordChafe-1) and let a be the boolean result.
Call IswWordChafe) and let b be the boolean result.

If a is true and b is false, return false.

If ais falseand b is true, return false.

Return true.

ok whE

The internal helper function IswordChartakes an integer parameter e and performs the following:

1. Ife==-1or e == InputLengthreturn false.
2. Let c be the character Input{e].
3. If cis one of the sixty-three characters in the table below, return true.

abcdef ghij kIl mnopgr st uvwxXxyz
ABCDEFGHI JKLMNOPQRSTUVWXY Z
012345672829

4. Return false

Quantifier

The production Quantifier:: QuantifierPrefixevaluates as follows:

1. Evaluate QuantifierPrefixto obtain the two results: an integer minand an integer (or @) max
2. Return the three results min, max and true.

The production Quantifier:: QuantifierPrefix ? evaluates as follows:

1. Evaluate QuantifierPrefixto obtain the two results: an integer min and an integer (or @) max
2. Return the three results min, max and false

The production QuantifierPrefix:: * evaluates by returning the two results 0 and @,

The production QuantifierPrefix:: + evaluates by returning the two results 1 and @.

The production QuantifierPrefix:: ? evaluates by returning the two results 0 and 1.

The production QuantifierPrefix:: { DecimalDigits } evaluates as follows:

1. Let i be the MV of DecimalDigits(see 7.8.3).
2. Return the two results i and i.

The production QuantifierPrefix:: { DecimalDigits ,} evaluates as follows:

1. Leti be the MV of DecimalDigits

2. Return the two results i and =

The production QuantifierPrefix:: { DecimalDigits , DecimalDigits } evaluates as follows:

1. Leti be the MV of the first DecimalDigits
2. Letj be the MV of the second DecimalDigits
3. Return the two results i and j.

Atom
The production Atom:: PatternCharactervaluates as follows:

1. Let chbe the character represented by PatternCharacter
2. Let Abe aone-element CharSet containing the character ch.
3. Call CharacterSetMatchéA, false) and return its Matcher result.

The production Atom:: . evaluates as follows:

- 137 -

1. Let Abe the set of all characters except the four line terminator characters <LF>, <CR>, <LS>, or
<PS>.
2. Call CharacterSetMatchéa, false) and return its Matcher result.

The production Atom:: \ AtomEscapeevaluates by evaluating AtomEscapeo obtain a Matcher and
returning that Matcher.

The production Atom:: CharacterClassvaluates as follows:

1. Evaluate CharacterClasgo obtain a CharSet A and a boolean invert
2. Call CharacterSetMatchgA, invert) and return its Matcher result.

The production Atom:: (Disjunction) evaluates as follows:

1. Evaluate Disjunctionto obtain a Matcher m.

2. Let parenindexbe the number of left capturing parentheses in the entire regular expression that
occur to the left of this production expansion's initial left parenthesis. This is the total number of
times the Atom:: (Disjunction) production is expanded prior to this production's Atomplus the
total number of Atom:: (Disjunction) productions enclosing this Atom

3. Return an internal Matcher closure that takes two arguments, a State x and a Continuation c, and
performs the following:

1. Create an internal Continuation closure d that takes one State argument y and performs the
following:

1. Let capbe a fresh copy of y's capturesinternal array.

2. Let xebe x's endindex

3. Letyebey's endindex

4. Let sbe a fresh string whose characters are the characters of Inputat positions xe (inclusive)
through ye (exclusive).

5. Set capparenindex1]tos.

6. Let z be the State (ye, cap).

7. Call c(2) and return its result.

2. Call m(x, d) and return its result.

The production Atom:: (?: Disjunction) evaluates by evaluating Disjunctionto obtain a Matcher
and returning that Matcher.

The production Atom:: (? = Disjunction) evaluates as follows:

1. Evaluate Disjunctionto obtain a Matcher m.
2. Return an internal Matcher closure that takes two arguments, a State x and a Continuation c, and
performs the following:

Let d be a Continuation that always returns its State argument as a successful MatchResult.
Call m(x, d) and let r be its result.

If r is failure, return failure.

Let y be r's State.

Let capbe y's capturesinternal array.

Let xebe x's endIndex

Let z be the State (xe cap).

Call c(2) and return its result.

NGO~ R

The production Atom:: (?! Disjunction) evaluates as follows:

1. Evaluate Disjunctionto obtain a Matcher m.
2. Return an internal Matcher closure that takes two arguments, a State x and a Continuation c, and
performs the following:

1. Let dbe a Continuation that always returns its State argument as a successful MatchResult.
2. Call m(x, d) and let r be its result.

- 138 -

3. Ifrisn't failure, return failure.
4. Call c(x) and return its result.

The internal helper function CharacterSetMatchetakes two arguments, a CharSet A and a boolean flag
invert, and performs the following:

1. Return an internal Matcher closure that takes two arguments, a State x and a Continuation c, and
performs the following:

Let e be x's endIndex

If e == InputLength return failure.

Let ¢ be the character Inputfe].

Let cc be the result of Canonicalizéc).

If invertis true, go to step 8.

If there does not exist a member a of set A such that Canonicaliz¢€a) == cc, then return failure.
Go to step 9.

If there exists a member a of set A such that Canonicaliz¢€a) == cc, then return failure.
. Let capbe Xx's capturesinternal array.

10. Lety be the State (e+1, cap).

11. Call c(y) and return its result.

©oNoOGOR~WNR

The internal helper function Canonicalizetakes a character parameter ch and performs the following:

1. IflgnoreCassdis false, return ch.

2. Let ube chconverted to upper case as if by calling String.prototype.toUpperCase on the
one-character string ch.

3. If udoes not consist of a single character, return ch.

4. Let cube u's character.

5. If ch's code point value is greater than or equal to decimal 128 and cu's code point value is less than
decimal 128, then return ch.

6. Return cu.

Informative comments: Parentheses of the form (Disjunction) serve both to group the components
of the Disjunctionpattern together and to save the result of the match. The result can be used either in a
backreference (\ followed by a nonzero decimal number), referenced in a replace string, or returned as
part of an array from the regular expression matching function. To inhibit the capturing behaviour of
parentheses, use the form (?: Disjunction) instead.

The form (?= Disjunction) specifies a zero-width positive lookahead. In order for it to succeed, the
pattern inside Disjunction must match at the current position, but the current position is not advanced
before matching the sequel. If Disjunction can match at the current position in several ways, only the
first one is tried. Unlike other regular expression operators, there is no backtracking into a (?= form
(this unusual behaviour is inherited from Perl). This only matters when the Disjunction contains
capturing parentheses and the sequel of the pattern contains backreferences to those captures.

For example,
[(?=(a+))/.exec("baaabac")
matches the empty string immediately after the first b and therefore returns the array:
[, "aaa"]
To illustrate the lack of backtracking into the lookahead, consider:
/(?=(a+))a*b \ 1/.exec("baaabac")
This expression returns
["aba”, "a"]

and not:

15.10.2.9

- 139 -

["aaaba", "a"]

The form (?! Disjunction) specifies a zero-width negative lookahead. In order for it to succeed, the
pattern inside Disjunctionmust fail to match at the current position. The current position is not advanced
before matching the sequel. Disjunction can contain capturing parentheses, but backreferences to them
only make sense from within Disjunction itself. Backreferences to these capturing parentheses from
elsewhere in the pattern always return undefined because the negative lookahead must fail for the
pattern to succeed. For example,

I(.*?)a(?!(at+)b \ 2¢) \ 2(.*)/.exec("baaabaac")

looks for an a not immediately followed by some positive number n of a's, a b, another n a's (specified
by the first \ 2) and a c¢. The second \ 2 is outside the negative lookahead, so it matches against
undefined and therefore always succeeds. The whole expression returns the array:

["baaabaac", "ba", undefined, "abaac"]

In case-insignificant matches all characters are implicitly converted to upper case immediately before
they are compared. However, if converting a character to upper case would expand that character into
more than one character (such as converting "B" (A uOODF) into "SS"), then the character is left as-is
instead. The character is also left as-is if it is not an ASCII character but converting it to upper case
would make it into an ASCII character. This prevents Unicode characters such as \ u0131 and \ u017F
from matching regular expressions such as /[a - z]/i , which are only intended to match ASCII letters.
Furthermore, if these conversions were allowed, then /[\ W]/i would match each of a, b, ..., h, but
noti ors.

AtomEscape
The production AtomEscape: DecimalEscapevaluates as follows:

Evaluate DecimalEscapeo obtain an EscapeValue E.

If E is not a character then go to step 6.

Let ch be E's character.

Let A be a one-element CharSet containing the character ch.

Call CharacterSetMatchégA, false) and return its Matcher result.

E must be an integer. Let n be that integer.

If n=0 or n>NCapturingParenghen throw a SyntaxError exception.

Return an internal Matcher closure that takes two arguments, a State x and a Continuation ¢, and
performs the following:

N kwNE

Let capbe x's capturesinternal array.

Let sbe cap[n].

If sis undefined, then call c(x) and return its result.

Let e be x's endIndex

Let len be s's length.

Let f be etlen.

If f>InputLength return failure.

If there exists an integer i between 0 (inclusive) and len (exclusive) such that Canonicalizég[i])
is not the same character as Canonicaliz€¢lnput [e+i]), then return failure.
9. Lety be the State (f, cap).

10. Call c(y) and return its result.

NG~ WN R

The production AtomEscape: CharacterEscapevaluates as follows:

1. Evaluate CharacterEscap¢o obtain a character ch.
2. Let Abe a one-element CharSet containing the character ch.
3. Call CharacterSetMatchéa, false) and return its Matcher result.

The production AtomEscape: CharacterClassEscapevaluates as follows:

1. Evaluate CharacterClassEscapt® obtain a CharSet A.
2. Call CharacterSetMatchéa, false) and return its Matcher result.

- 140 -

Informative comments: An escape sequence of the form \ followed by a nonzero decimal number n
matches the result of the nth set of capturing parentheses (see 15.10.2.11). It is an error if the regular
expression has fewer than n capturing parentheses. If the regular expression has n or more capturing
parentheses but the nth one is undefined because it hasn't captured anything, then the backreference
always succeeds.

15.10.2.10CharacterEscape
The production CharacterEscape: ControlEscapesvaluates by returning the character according to the

table below:
ControlEscape Unicode Value Name Symbol
t \ u0009 horizontal tab <HT>
n \ uOOOA ine feed (new line) <LF>
% \ u000B vertical tab <VT>
f \ uoooC form feed <FF>
r \ uod00D carriage return <CR>

The production CharacterEscape: ¢ ControlLetterevaluates as follows:

1. Let chbe the character represented by ControlLetter
2. Leti be ch's code point value.

3. Letj be the remainder of dividing i by 32.

4. Return the Unicode character numbered j.

The production CharacterEscape:: HexEscapeSequencevaluates by evaluating the CV of the
HexEscapeSequenésee 7.8.4) and returning its character result.

The production CharacterEscape: UnicodeEscapeSequene®aluates by evaluating the CV of the
UnicodeEscapeSequensee 7.8.4) and returning its character result.

The production CharacterEscape: ldentityEsapeevaluates by returning the character represented by
IdentityEscape
15.10.2.11DecimalEscape
The production DecimalEscape: DecimalintegerLiterallookahead T DecimalDigif evaluates as follows.
1. Leti be the MV of DecimalintegerLiteral

2. Ifiis zero, return the EscapeValue consisting of a <NUL> character (Unicode value 0000).
3. Return the EscapeValue consisting of the integer i.

The definition of “the MV of DecimallntegerLiteral is in 7.8.3.

Informative comments: If \ is followed by a decimal number n whose first digit is not O, then the
escape sequence is considered to be a backreference. It is an error if n is greater than the total number of
left capturing parentheses in the entire regular expression. \ O represents the NUL character and cannot
be followed by a decimal digit.

15.10.2.12CharacterClassEscape
The production CharacterClassEscape d evaluates by returning the ten-element set of characters
containing the characters O through 9 inclusive.

The production CharacterClassEscape D evaluates by returning the set of all characters not included
in the set returned by CharacterClassEscape d.

The production CharacterClassEscape s evaluates by returning the set of characters containing the
characters that are on the right-hand side of the WhiteSpacg7.2) or LineTerminator(7.3) productions.

The production CharacterClassEscape S evaluates by returning the set of all characters not included
in the set returned by CharacterClassEscape s.

- 141 -

The production CharacterClassEscape w evaluates by returning the set of characters containing the
sixty-three characters:

abcdef ghij kIl mnopgr st uvwxXxyz
ABCDEFGHI JKLMNOPQRSTUVWXYZ
01234567829

The production CharacterClassEscape Wevaluates by returning the set of all characters not included
in the set returned by CharacterClassEscape w.

15.10.2.13CharacterClass
The production CharacterClass:: [[lookahead T {*}] ClassRanges] evaluates by evaluating
ClassRangeto obtain a CharSet and returning that CharSet and the boolean false.

The production CharacterClass:: [ClassRanges] evaluates by evaluating ClassRangeto obtain
a CharSet and returning that CharSet and the boolean true.

15.10.2.14ClassRanges
The production ClassRanges:: [empty] evaluates by returning the empty CharSet.
The production ClassRanges:: NonemptyClassRangesaluates by evaluating NonemptyClassRanges
to obtain a CharSet and returning that CharSet.

15.10.2.15NonemptyClassRanges
The production NonempygClassRanges: ClassAtomevaluates by evaluating ClassAtomto obtain a
CharSet and returning that CharSet.

The production NonemptyClassRanges ClassAtom NonemptyClassRangesNoDasdvaluates as
follows:

1. Evaluate ClassAtomnto obtain a CharSet A.
2. Evaluate NonemptyClassRangesNoDatstobtain a CharSet B.
3. Return the union of CharSets A and B.

The production NonemptyClassRangesClassAtom- ClassAtonClassRangesvaluates as follows:

Evaluate the first ClassAtonto obtain a CharSet A.

Evaluate the second ClassAtomto obtain a CharSet B.
Evaluate ClassRange$o obtain a CharSet C.

Call CharacterRang@A, B) and let D be the resulting CharSet.
Return the union of CharSets D and C.

agkrwpdE

The internal helper function CharacterRangdakes two CharSet parameters A and B and performs the
following:

1. If Adoes not contain exactly one character or B does not contain exactly one character then throw a
SyntaxError exception.

Let a be the one character in CharSet A.

Let b be the one character in CharSet B.

Let i be the code point value of character a.

Let j be the code point value of character b.

If | > j then throw a SyntaxError exception.

Return the set containing all characters numbered i through j, inclusive.

Noahkwd

15.10.2.16NonemptyClassRangesNoDash
The production NonemptyClassRargNoDash:: ClassAtomevaluates by evaluating ClassAtomto
obtain a CharSet and returning that CharSet.

The production NonemptyClassRangesNoDash ClassAtomNoDashNonemptyClassRangesNoDash
evaluates as follows:

- 142 -

1. Evaluate ClassAtomNoDastp obtain a CharSet A.
2. Evaluate NonemptyClassRangesNoDastobtain a CharSet B.
3. Return the union of CharSets A and B.

The production NonemptyClassRangesNoDash ClassAtomNoDash - ClassAtom ClassRanges
evaluates as follows:

Evaluate ClassAtomNoDaslo obtain a CharSet A.

Evaluate ClassAtonto obtain a CharSet B.

Evaluate ClassRange$o obtain a CharSet C.

Call CharacterRang@, B) and let D be the resulting CharSet.
Return the union of CharSets D and C.

agkrwdE

Informative comments: ClassRangescan expand into single ClassAtomsand/or ranges of two
ClassAtomseparated by dashes. In the latter case the ClassRanges$ncludes all characters between the
first ClassAtomand the second ClassAtom inclusive; an error occurs if either ClassAtomdoes not
represent a single character (for example, if one is \ w) or if the first ClassAtom'scode point value is
greater than the second ClassAtom'sode point value.

Even if the pattern ignores case, the case of the two ends of a range is significant in determining which
characters belong to the range. Thus, for example, the pattern /[E - F]/i matches only the letters E, F,
e, and f, while the pattern /[E -f]/i matches all upper and lower-case ASCII letters as well as the
symbols [,\,],”, ,and .

A - character can be treated literally or it can denote a range. It is treated literally if it is the first or last
character of ClassRangesthe beginning or end limit of a range specification, or immediately follows a
range specification.

15.10.2.17ClassAtom
The production ClassAtom: - evaluates by returning the CharSet containing the one character - .
The production ClassAtom:: ClassAtomNoDashkvaluates by evaluating ClassAtomNoDasko obtain a
CharSet and returning that CharSet.

15.10.2.18ClassAtomNoDash
The production ClassAtomNoDash: SourceCharadar but not one of\] - evaluates by returning a
one-element CharSet containing the character represented by SourceCharacter

The production ClassAtomNoDash: \ ClassEscapevaluates by evaluating ClassEscapeo obtain a
CharSet and returning that CharSet.

15.10.2.19ClassEscape
The production ClassEscape: DecimalEscapevaluates as follows:
1. Evaluate DecimalEscapéo obtain an EscapeValue E.
If E is not a character then throw a SyntaxError exception.

2
3. Let chbe E's character.
4. Return the one-element CharSet containing the character ch.

The production ClassEscape: b evaluates by returning the CharSet containing the one character <BS>
(Unicode value 0008).

The production ClassEscape: CharacterEscapevaluates by evaluating CharacterEscapeo obtain a
character and returning a one-element CharSet containing that character.

The production ClassEscape: CharacterClassEscapevaluates by evaluating CharacterClassEscape
to obtain a CharSet and returning that CharSet.

Informative comments: A ClassAtomcan use any of the escape sequences that are allowed in the rest
of the regular expression except for \ b, \ B, and backreferences. Inside a CharacterClass\ b means the

- 143 -

backspace character, while \ B and backreferences raise errors. Using a backreference inside a
ClassAtom causes an error.
15.10.3 The RegExp Constructor Called as a Function
15.10.3.1 RegExp(pattern, flags)

If patternis an object R whose [[Class]] property is "RegExp" and flags is undefined, then return R
unchanged. Otherwise call the RegExp constructor (15.10.4.1), passing it the pattern and flags
arguments and return the object constructed by that constructor.

15.10.4 The RegExp Constructor

When RegExp is called as part of a new expression, it is a constructor: it initialises the newly created
object.

15.10.4.1 new RegExp(pattern, flags)

If patternis an object Rwhose [[Class]] property is "RegExp" and flagsis undefined, then let P be the
patternused to construct R and let F be the flags used to construct R. If patternis an object R whose
[[Class]] property is "RegExp" and flags is not undefined, then throw a TypeError exception.
Otherwise, let P be the empty string if patternis undefined and ToString(pattern) otherwise, and let F
be the empty string if flagsis undefined and ToString(flags) otherwise.

The global property of the newly constructed object is set to a Boolean value that is true if F contains
the character i g and false otherwise.

The ignoreCase property of the newly constructed object is set to a Boolean value that is true if F
contains the character i i and false otherwise.

The multiline property of the newly constructed object is set to a Boolean value that is true if F
contains the character i mand false otherwise.

If F contains any character other than i g ,0f i ,0or i m,0or if it contains the same one more than once,
then throw a SyntaxError exception.

If P's characters do not have the form Pattern,then throw a SyntaxError exception. Otherwise let the
newly constructed object have a [[Match]] property obtained by evaluating ("compiling”) Pattern Note
that evaluating Pattern may throw a SyntaxError exception. (Note: if patternis a StringLiteral the
usual escape sequence substitutions are performed before the string is processed by RegExp. If pattern
must contain an escape sequence to be recognised by RegEXxp, the “\ ” character must be escaped within
the StringLiteralto prevent its being removed when the contents of the StringLiteralare formed.)

The source property of the newly constructed object is set to an implementation-defined string value in
the form of a Patternbased on P.

The lastindex property of the newly constructed object is set to O.

The [[Prototype]] property of the newly constructed object is set to the original RegExp prototype object,
the one that is the initial value of RegExp.prototype

The [[Class]] property of the newly constructed object is set to "RegExp" .

15.10.5 Properties of the RegExp Constructor

The value of the internal [[Prototype]] property of the RegExp constructor is the Function prototype object
(15.3.4).

Besides the internal properties and the length property (whose value is 2), the RegExp constructor has
the following properties:

15.10.5.1 RegExp.prototype
The initial value of RegExp.prototype is the RegExp prototype object (15.10.6).

This property shall have the attributes { DontEnum, DontDelete, ReadOnly }.

- 144 -

15.10.6 Properties of the RegExp Prototype Object

The value of the internal [[Prototype]] property of the RegExp prototype object is the Object prototype. The
value of the internal [[Class]] property of the RegExp prototype object is "Object"

The RegExp prototype object does not have a valueOf property of its own; however, it inherits the
valueOf property from the Object prototype object.

In the following descriptions of functions that are properties of the RegExp prototype object, the phrase
“this RegExp object” refers to the object that is the this value for the invocation of the function; a
TypeError exception is thrown if the this value is not an object for which the value of the internal
[[Class]] property is "RegExp" .

15.10.6.1

15.10.6.2

15.10.6.3

15.10.6.4

RegExp.prototype.constructor
The initial value of RegExp.prototype.constructor is the built-in RegEXxp constructor.

RegExp.prototype.exec(string)

Performs a regular expression match of string against the regular expression and returns an Array object
containing the results of the match, or null if the string did not match

The string ToString(string) is searched for an occurrence of the regular expression pattern as follows:

Let Sbe the value of ToString(string).

Let lengthbe the length of S,

Let lastindexbe the value of the lastindex property.

Let i be the value of Tolnteger(lastindex.

If the global property is false leti = 0.

If I <0or | >lengththen set lastindex to 0 and return null

Call [[Match]], giving it the arguments Sand i. If [[Match]] returned failure, go to step 8; otherwise
let r be its State result and go to step 10.

8. Leti=i+l.

9. Gotostep 6.

10. Let e be r's endindexvalue.

11. If the global property is true, set lastindex toe.

12. Let n be the length of r's capturesarray. (This is the same value as 15.10.2.1's NCapturingPareng
13. Return a new array with the following properties:

NoopkwbdpE

9 The index property is set to the position of the matched substring within the complete string S.
9 Theinput propertyissetto S
9 Thelength property is setton+ 1.

9 The O property is set to the matched substring (i.e. the portion of Sbetween offset i inclusive and
offset e exclusive).

1 For each integer i such that 1 > 0 and | ¢ n, set the property named ToString(i) to the i*" element of
r's capturesarray.

RegExp.prototype.test(string)
Equivalent to the expression RegEXxp.prototype.exec(string) != null.

RegExp.prototype.toString()

Let src be a string in the form of a Patternrepresenting the current regular expression. src may or may
not be identical to the source property or to the source code supplied to the RegExp constructor;
however, if src were supplied to the RegExp constructor along with the current regular expression's
flags, the resulting regular expression must behave identically to the current regular expression.

toString returns a string value formed by concatenating the strings "/ ", src, and "/ " ; plus "g" if
the global property is true, "i " if the ignoreCase property is true, and " m' if the multiline
property is true.

NOTE

- 145 -

An implementation may choose to take advantage of src being allowed to be different from the sour
passed to the RegExp constructor to escape special characters in src. For example, in the regul
expression obtained fromew RegExp("/") , src could be, among other possibilities, or
"\ /" . The latter would permit the entire resul¥ (\ /") of thetoString call to have the form
RegularExpressionLiteral.
15.10.7 Properties of RegExp Instances
RegExp instances inherit properties from their [[Prototype]] object as specified above and also have the
following properties.

15.10.7.1 source
The value of the source property is string in the form of a Pattern representing the current regular
expression. This property shall have the attributes { DontDelete, ReadOnly, DontEnum }.

15.10.7.2 global
The value of the global property is a Boolean value indicating whether the flags contained the
character ii g .0This property shall have the attributes { DontDelete, ReadOnly, DontEnum }.

15.107.3 ignoreCase
The value of the ignoreCase property is a Boolean value indicating whether the flags contained the
character i i .0This property shall have the attributes { DontDelete, ReadOnly, DontEnum }.

15.10.7.4 multiline
The value of the multiline property is a Boolean value indicating whether the flags contained the
character i m.GThis property shall have the attributes { DontDelete, ReadOnly, DontEnum }.

15.10.7.5 lastindex

The value of the lastindex property is an integer that specifies the string position at which to start the
next match. This property shall have the attributes { DontDelete, DontEnum }.

15.11 Error Objects
Instances of Error objects are thrown as exceptions when runtime errors occur. The Error objects may also
serve as base objects for user-defined exception classes.

15.11.1 The Error Constructor Called as a Function

When Error is called as a function rather than as a constructor, it creates and initialises a new Error

object. Thus the function call Error(€) is equivalent to the object creation expression new Error(€)

with the same arguments.

15.11.1.1 Error (message)

The [[Prototype]] property of the newly constructed object is set to the original Error prototype object, the
one that is the initial value of Error.prototype (15.11.3.1).
The [[Class]] property of the newly constructed object is set to "Error"

If the argument messages not undefined, the message property of the newly constructed object is set
to ToString(message
15.11.2 The Error Constructor
When Error is called as part of a new expression, it is a constructor: it initialises the newly created
object.
15.11.2.1 new Error (message)

The [[Prototype]] property of the newly constructed object is set to the original Error prototype object, the
one that is the initial value of Error.prototype (15.11.3.2).
The [[Class]] property of the newly constructed Error object is set to "Error"

If the argument messagds not undefined, the message property of the newly constructed object is set
to ToString(message

- 146 -

15.11.3 Properties of the Error Constructor

The value of the internal [[Prototype]] property of the Error constructor is the Function prototype object
(15.3.4).

Besides the internal properties and the length property (whose value is 1), the Error constructor has the
following property:
15.11.3.1 Error.prototype
The initial value of Error.prototype is the Error prototype object (15.11.4).

This property has the attributes { DontEnum, DontDelete, ReadOnly }.
15.11.4 Properties of the Error Prototype Object
The Error prototype object is itself an Error object (its [[Class]] is "Error").

The value of the internal [[Prototype]] property of the Error prototype object is the Object prototype object
(15.2.3.1).

15.11.4.1 Error.prototype.constructor
The initial value of Error.prototype .constructor is the built-in Error constructor.

15.11.4.2 Error.prototype.name
The initial value of Error.prototype.name is" Error ".

15.11.4.3 Error.prototype.message
The initial value of Error.prototype.message is an implementation-defined string.

15.11.44 Error.prototype.toString ()
Returns an implementation defined string.

15.11.5 Properties of Error Instances
Error instances have no special properties beyond those inherited from the Error prototype object.

15.11.6 Native Error Types Used in This Standard
One of the NativeError objects below is thrown when a runtime error is detected. All of these objects share
the same structure, as described in 15.11.7.
15.11.6.1 EvalError
Indicates that the global function eval was used in a way that is incompatible with its definition. See
15.1.2.1.
15.11.6.2 RangeError
Indicates a numeric value has exceeded the allowable range. See 15.4.2.2, 15.4.5.1, 15.7.4.5, 15.7.4.6,
and 15.7.4.7.
15.11.6.3 ReferenceError
Indicate that an invalid reference value has been detected. See 8.7.1, and 8.7.2.

15.11.6.4 SyntaxError
Indicates that a parsing error has occurred. See 15.1.2.1, 15.3.2.1, 15.10.2.5, 15.10.2.9, 15.10.2.15,
15.10.2.19, and 15.10.4.1.

15.11.6.5 TypeError

Indicates the actual type of an operand is different than the expected type. See 8.6.2, 8.6.2.6, 9.9, 11.2.2,
11.2.3, 11.8.6, 11.8.7, 15.3.4.2, 15.3.4.3, 15.3.4.4, 15.3.5.3, 15.4.4.2, 15.4.4.3, 15.5.4.2, 155.4.3,
15.6.4, 15.6.4.2, 15.6.4.3, 15.7.4, 15.7.4.2, 15.7.4.4, 15.9.5, 15.9.5.9, 15.9.5.27, 15.10.4.1, and 15.10.6.

15.1.6.6 URIError

Indicates that one of the global URI handling functions was used in a way that is incompatible with its
definition. See 15.1.3.

- 147 -

15.11.7 NativeError Object Structure

When an ECMAScript implementation detects a runtime error, it throws an instance of one of the
NativeError objects defined in 15.11.6. Each of these objects has the structure described below, differing
only in the name used as the constructor name instead of NativeError, in the name property of the
prototype object, and in the implementation-defined message property of the prototype object.

For each error object, references to NativeError in the definition should be replaced with the appropriate
error object name from 15.11.6.

15.11.7.1

15.11.7.2

15.11.7.3

15.117.4

15.11.7.5

15.11.7.6

15.11.7.7

15.11.7.8

15.11.7.9

NativeError Constructors Called asFunctions

When a NativeError constructor is called as a function rather than as a constructor, it creates and
initialises a new object. A call of the object as a function is equivalent to calling it as a constructor with
the same arguments.

NativeError (message)

The [[Prototype]] property of the newly constructed object is set to the prototype object for this error
constructor. The [[Class]] property of the newly constructed object is set to " Error "

If the argument messages not undefined, the message property of the newly constructed object is set
to ToString(messagge

The NativeError Constructors

When a NativeError constructor is called as part of a new expression, it is a constructor: it initialises the
newly created object.

New NativeError (message)

The [[Prototype]] property of the newly constructed object is set to the prototype object for this
NativeErrorconstructor. The [[Class]] property of the newly constructed object is set to " Error "

If the argument messages not undefined, the message property of the newly constructed object is set
to ToString(message

Properties of the NativeError Constructors

The value of the internal [[Prototype]] property of a NativeError constructor is the Function prototype
object (15.3.4).

Besides the internal properties and the length property (whose value is 1), each NativeError
constructor has the following property:

NativeError.prototype

The initial value of NativeError.prototype is a NativeError prototype object (15.11.7.7). Each
NativeErrorconstructor has a separate prototype object.

This property has the attributes { DontEnum, DontDelete, ReadOnly }.

Properties of the NativeError Prototype Objects

Each NativeError prototype object is an Error object (its [[Class]] is " Error).

The value of the internal [[Prototype]] property of each NativeError prototype object is the Error
prototype object (15.11.4).

NativeError.prototype.constructor

The initial value of the constructor property of the prototype for a given NativeError constructor is
the NativeError constructor function itself (15.11.7).

NativeError.prototype.name

The initial value of the name property of the prototype for a given NativeError constructor is the name
of the constructor (the name used instead of NativeError).

- 148 -

15.11.7.10NativeError.prototype.message

The initial value of the message property of the prototype for a given NativeError constructor is an
implementation-defined string.

NOTE

The prototypes for the Nativekmr constructors do not themselves provides8&tring function, but
instances of errors will inherit it from the Error prototype object.

15.11.7.11Properties of NativeError Instances
NativeError instances have no special properties beyond those inherited from the Error prototype object.

16

- 149 -

Errors

An implementation should report runtime errors at the time the relevant language construct is evaluated. An
implementation may report syntax errors in the program at the time the program is read in, or it may, at its
option, defer reporting syntax errors until the relevant statement is reached. An implementation may report
syntax errors in eval code at the time eval is called, or it may, at its option, defer reporting syntax errors until
the relevant statement is reached.

An implementation may treat any instance of the following kinds of runtime errors as a syntax error and therefore
report it early:

9 Improper uses of return , break , and continue
9 Using the eval property other than via a direct call.
9 Errors in regular expression literals.

9 Attempts to call PutValue on a value that is not a reference (for example, executing the assignment statement
3=4).

An implementation shall not report other kinds of runtime errors early even if the compiler can prove that a
construct cannot execute without error under any circumstances. An implementation may issue an early warning
in such a case, but it should not report the error until the relevant construct is actually executed.

An implementation shall report all errors as specified, except for the following:

1 An implementation may extend program and regular expression syntax. To permit this, all operations (such as
calling eval , using a regular expression literal, or using the Function or RegExp constructor) that are
allowed to throw SyntaxError are permitted to exhibit implementation-defined behaviour instead of throwing
SyntaxError when they encounter an implementation-defined extension to the program or regular expression
syntax.

1 An implementation may provide additional types, values, objects, properties, and functions beyond those
described in this specification. This may cause constructs (such as looking up a variable in the global scope)
to have implementation-defined behaviour instead of throwing an error (such as ReferenceError).

1 An implementation is not required to detect EvalError. If it chooses not to detect EvalError, the
implementation must allow eval to be used indirectly and/or allow assignments to eval .

1 An implementation may define behaviour other than throwing RangeError for toFixed |,
toExponential , and toPrecision when the fractionDigits or precision argument is outside the
specified range.

- 150 -

A.1 Lexical Grammar

SourceCharacter.
any Unicode character

InputElementDiv:
WhiteSpace
LineTerminator
Comment
Token
DivPunctuator

InputElementRegExp
WhiteSpace
LineTerminator
Comment
Token
RegularExpressionLiteral

WhiteSpace
<TAB>
VVT>
<FF>
<SP>
<NBSP>
<UspP>

LineTerminator:
<1F>
<CR>
<S>
PS>

Comment:
MultiLineComment
SingleLineComment

MultiLineComment:

/* MultiLineCommentCharg,*/

MultiLineCommentChars

- 151 -

Annex A
(informative)

Grammar Summary

MultiLineN otA sterisk Char MultiLineCommentChars

* PostA steriskCommentChass

See clause 6

See clause 6

See clause 6

See 7.2

See 7.3

See 7.4

See 7.4

See 7.4

PostA $eriskCommentChars

MultiLine N otForwardSlashOrA sterisk Char MultiLineCommentChars

* PostA steriskCommentChass

MultiLineNotA steriskChar.

SourceCharacteput not asterisk*

MultiLineN otForwardSlashOrA steriskChar

SourceCheacterbut not forward-slash/ or asterisk*

SingleLineComment

/I SingleLineCommentChays

SingleLineCommentChars

- 152 -

SingleLineCommentChar SingleLineCommentChars

SingleLineCommentChar

SourceCharactebut not LineTermin&or

Token::
ReservedWord
Identifier
Punctuator
NumericLiteral
StringLiteral

ReservedWord
Keyword
FutureReservedWord
NullLiteral
BooleanLiteral

Keyword:: one of
break

case
catch
continue
default
delete
do

FutureReservedWord one of
abstract

boolean
byte

char

cla ss
const
debugger
double

else
finally

for
function

if

in
instanceof

enum
export
extends
final

float

goto
implements
import

new
return
swit ch
this
throw

try
typeof

int
interface
long
native
package
private
protected
public

var
void
while
with

short
static
super

See 7.4

See 7.4

See 7.4

See 7.4

See 7.4

See 7.4

See 7.5

See 7.5.1

See 7.5.2

See 7.5.3

synchronized

throws
transient
volatile

- 153 -

Identifier:: See 7.6
IdentifierNamebut not ReservedWord

IdentifierName: See 7.6
IdentifierStart
IdentifierName IdentifierPart

IdentifierStart : See 7.6
UnicodeLetter
$

UnicodeEscapeSequence

IdentifierPart:: See 7.6
IdentifierStart
UnicodeCombiningMark
UnicodeDigit
UnicodeConnectorPunctuation
UnicodeEscapeSequence

UnicodeL etter See 7.6
any character in the Unicode categoriddppercase letter (Lu),’* Lowercase letter (L1),’* Titlecase letter (Lt),’
* Modifier letter (Lm) ,” Other letter (LO),’or* Letter number (NI).’

UnicodeCombiningMark See 7.6
any character in the Unicode categofi®on-spacing mark (Mn) 6r* Combining spacingnark (Mc) '’

UnicodeDigit See 7.6
any character in the Unicode categoBecimal number (Nd)’

UnicodeConnectorPunctuation See 7.6
any character in the Unicode catego@onnector punctuation (Pc)

UnicodeEscapeSequence See 7.6
\ u HexDigit HexDigit HexDigi HexDigit

HexDigit:: one of See 7.6
0123456789 abcdefABCDEF
Punctuator.: one of See 7.7
{ } () []
y y < > <=
>= == 1= === ==
+ - * % ++ --
<< >> >>> & | N
! ~ && Il ?
- += .= *= %= <<=
>>= >>>= &= |= A=
{ } () []
DivPunctuator.: one of See 7.7

/ I=

- 154 -

Literal ::
NullLiteral
BooleanLiteral
NumericLiteral
StringLiteral

NullLiteral :
null

BooleanLiterat:
true
false

NumericLiteral:
DecimallLiteral
HexIntegerLiteral

DecimalLiteral:
DecimallntegerLiteral DecimalDigits,.ExponentPai,,
. DecimalDigits ExponentPayt
DecimalintegerLiteral ExponentPajt

DecimalintegerLiteral:
0
NonZeroDigit DecimalDigits,,

DecimalDigits ::
DecimalDigit
DecimalDigits DecimalDigit

DecimalDigit:: one of
0123456789

Exponentindicator. one of
e E

Signedinteger.
DecimalDigits
+ DecimalDigits
- DecimalDigits

HexIntegerLiterat:
0x HexDigit
0X HexDigit
HexIntegerLiteral HexDigit

StringLiteral::
" DoubleStringCharacters,"
' SingleStringCharacters '

See 7.8

See 7.8.1

See 7.8.2

See 7.8.3

See 7.8.3

See 7.8.3

See 7.8.3

See 7.8.3

See 7.8.3

See 7.8.3

See 7.8.3

See 7.8.4

- 155 -

DoubleStringCharacters
Double StringCharacter Double StringCharactgys

SingleStringCharaers ::
SingleStringCharacter SingleStringCharacters

DoubleStringCharacter
SourceCharactelbut not doublequote” or backslasi or LineTerminator
\ EscapeSequence

SingleStringCharacter
SourceCharactelbut not singke-quote’ or backslasih or LineTerminator
\ EscapeSequence

EscapeSequence
CharacterEscapeSequence
0 Nockahead T Zazmalliat
HexEscapeSequence
UnicodeEscapeSequence

CharacterEscapeSequence
SingleEscapeCharacter
NonEscapeChacter

SingleEscapeCharacter one of
" \' bfnrtyv

EscapeCharacter
SingleEscapeCharacter
DecimalDigit
X
u

HexEscapeSequence
x HexDigit HexDigit

UnicodeEscapeSequence
u HexDigit HexDigit He:Digit HexDigit

RegularExpressionLiteral
/ RegularExpressionBody RegularExpressionFlags

RegularExpressionBody
RegularExpressionFirstChar RegularExpressionChars

RegularExpressionChars

[empty]
RegularExpressionChaRegularExpressionChar

See 7.8.4

See 7.8.4

See 7.8.4

See 7.8.4

See 7.8.4

See 7.8.4

See 7.8.4

See 7.8.4

See 7.84

See 7.8.4

See 7.8.5

See 7.8.5

See 7.8.5

- 156 -

RegularExpressionFirstChar
NonTerminatobut not * or\ or/
BackslashSequence

RegularExpressionChar
NonTerminatobut not\ or/
BackslashSequence

BackslashSequence
\ NonTerminator

NonTermmator ::
SourceCharactebut not LineTerminator

RegularExpressionFlags
[empty]) -
RegularExpressionFlags IdentifierPart

A.2 Number Conversions

StringNumericLiteral::
StrwW hiteSpacg,
StrwW hiteSpacg, StrNumericLiteral Stidite Space,

StiWhiteSpace:
StiWhiteSpaceChar St'WhiteSpage

StrwWhiteSpaceChar.
<TAB>
<SP>
<NBSP>
<FF>
VVT>
<CR>
<{F>
<S>
PS>
<USP>

StrNumericLiterat::
StrDecimalLiteral
HexIntegerLiteral

StrDecimalLiteral:::
StrUnsignedDecimalLiteral
+ StrUnsignedDecimalLiteral
- StrUnsignedDecimalLiteral

StrUnsignedDecimallLiteral:
Infinity
DecimalDigits. DecimalDigits,.ExponentPar,,
. DecimalDigits ExponentPayt
DecimalDigits ExponentPag},

See 7.8.5

See 7.8.5

See 7.8.5

See 7.8.5

See 7.8.5

See 9.3.1

See 9.3.1

See 9.3.1

See 9.3.1

See 9.3.1

See 9.3.1

- 157 -

DecimalDigits::: See 9.3.1
DecimalDigit
DecimalDigits DecimalDigit

DecimalDigit::: one of See 9.3.1
0123456789

ExponentPart:: See 9.3.1
Exponentindicator Signedinteger

Exponentindicator:: one of See 9.3.1
e E

Signedinteger: See 9.3.1
DecimalDigits
+ DecimalDigits
- DecimalDigits

HexIntegerLiterat:: See 9.3.1
0x HexDigit
0X HexDigit
HexIntegerLiteral HexDigit

HexDigit::: one of See 9.3.1
0123456789abcdefABCDETF

A.3 EXxpressions
PrimaryExpression See 11.1
this
Identifier
Literal
ArrayLiteral
ObjectLiteral
(Expression

ArrayLiteral : See 11.1.4
[Elision,]
[ElementList]
[ElementList Elision,,]

ElementList See11.1.4
Elision,,» A ssignmentExpression
ElementList Elision,,. A ssignmentExpression

Elision: See 11.1.4

Elision,

- 158 -

ObjectLiteral: See 11.1.5

{}
{ PropertyNameAndV alueLis}

PropertyNameAndV alueList See 11.1.5
PropertyName A ssignmentExpression
PropertyNameAndV alueList PropertyName AssignmentExpressi

PropertyName See 11.1.5
Identifier
StringLiteral
NumericLiteral

MemberExpression See 11.2
PrimaryExpression
FunctionExpression
MemberExpressioh Expressior]
MemberExpression Identifier
new MemberExpressiomPArguments

NewExpression See 11.2
MemberExpression
new NewExpression

CallExpression See 11.2
MemberExpressiorArguments
CallExpression Arguments
CallExpressior] Expression
CallExpression Identifier

Arguments See 11.2

()
(ArgumentList)

ArgumentList See 11.2
AssignmentExpra®n
ArgumentList AssignmentExpression

LeftHandSideExpressian See 11.2
NewExpression
CallExpression

PostfixExpression See 11.3
LeftHandSideExpression

LeftHandSideExpressiomte Zime7zminatorhesl ++
LeftHandSide EXpressiortws Zimw7amimatorherel -

UnaryExpression
PostfixExpression
delete UnaryExpression
void UnaryExpression
typeof UnaryExpression
++ UnaryExpression
-- UnaryExpression
+ UnaryExpression
- UnaryExpression
~ UnaryExpression
I UnaryExpression

Multiplicative Expression
UnaryExpression
Multiplicative Expressiori UnaryExpression
Multiplicative Expressiot UnaryExpression
Multiplicative Expressio®UnaryExpression

AdditiveExpression
Multiplicative Expression
AdditiveExpressiofr Multiplicative Expression
AdditiveExpression Multiplicative Expression

ShiftExpression
AdditiveExpression
ShiftExpressior< AdditiveExpression
ShiftExpressiorr> A dditiveExpression
ShiftExpressiorr>> A dditive Expression

RelationalExpression
ShiftExpression
RelationalExpressior ShiftExpression
RelationalExpressionr ShiftExpression
RelationalExpressior= ShiftExpression
RelationalExpressior= ShiftExpression

- 159 -

RelationalExpressiomstanceof ShiftExpression

RelationalExpressiom ShiftExpression

RelationdExpressionNoln
ShiftExpression
RelationalExpressionNolq ShiftExpression
RelationalExpressionNoln ShiftExpression
RelationalExpressionNolg= ShiftExpression
RelationalExpressionNolrn= ShiftExpression

RelationalExpressionNolimstanceof ShitExpression

EqualityExpression
RelationalExpression
EqualityExpressior= RelationalExpression
EqualityExpressiot= RelationalExpression
EqualityExpressior== RelationalExpression
EqualityExpressiot== RelationalExpression

See 11.4

See 11.5

See 11.6

See 11.7

See 11.8

See 11.8

See 11.9

- 160 -

EqualityExpressinNoln:
RelationalExpressionNoln
EqualityExpressionNolr= RelationalExpressionNoln
EqualityExpressionNolh= RelationalExpressionNoln
EqualityExpressionNolr== RelationalExpressionNoln
EqualityExpressionNolk== RelationalExpressionNoln

Bitwise ANDEXxpression
EqualityExpression
Bitwise ANDEXxpressio& EqualityExpression

Bitwise ANDEXxpressionNoIn
EqualityExpressionNoln
Bitwise ANDEXxpressionNol& EqualityExpressionNoln

Bitwise XORExpression
Bitwise ANDEXxpression
Bitwise X ORExpressioh Bitwise A NDExpression

Bitwise X ORExpressionNotn
BitwiseA NDExpressionNoln
Bitwise X ORExpressionNomBitwise AN DExpressionNoln

Bitwise ORExpression
Bitwise X ORExpression
Bitwise ORExpressioh Bitwise XORExpression

Bitwise ORExpressionNoiln
BitwiseX ORExpressionNoln
BitwiseORExpressionNo|n Bitwise X ORExpressionNoln

LogicalA NDExpression
Bitwise ORExpression
LogicalA NDExpressio&& Bitwise ORExpression

LogicalANDExpressionNoln
Bitwise ORExpressionNoln
LogicalANDExpressionNol&& Bitwise ORExpressionNoln

LogicalORExpression
LogicalANDExpression
LogicalORExpressiol] LogicalA NDExpression

LogicalORExpressionNolIn
LogicalA NDExpressionNoln
LogicalORExpressionNoljpy LogicalA NDExpressionNolIn

ConditionalExpression
LogicalORExpression

LogicalORExpressior? A ssignmentExpressionA ssignmentExpression

See 11.9

See 11.10

See 11.10

See 11.10

See 11.10

See 11.10

See 11.10

See 11.11

See 11.11

See 11.11

See 11.11

See 11.12

- 161 -

ConditionalExpressionNoln See 11.12
LogicalORExpressionNoln
LogicalORExpressionNolr? A ssignmentExpressionNol A ssignmentExpressionNoln

AssignmentExpression See 11.13
ConditionalExpression
LeftHandSideExpression A ssignmentOperator A ssignmentExpression

AssignmentExpressionNaln See 11.13
ConditionalExpressionNoln
LeftHandSideExpression A ssignmentOperat@igrsnentExpressionNoln

AssignmentOperatorone of See 11.13
= *= /= 0= += .= <<= >>S= >>>= &= N= |:

Expression See 11.14
AssignmentExpression

Expression AssignmentExpression

ExpressionNoln See 11.14
AssignmentExpressionNoln
ExpressionNoln AssigymentExpressionNoln

A.4 Statements

Statement See clause 12
Block
V ariableStatement
EmptyStatement
ExpressionStatement
IfStatement
lterationStatement
ContinueStatement
BreakStatement
RetumnStatement
WithStatement
LabelledStatement
SwitchStatement
ThrowSatement
TryStatement

Block: See 12.1
{ StatementList}

StatementList See 12.1
Statement
StatementList Statement

V ariable Statement See 12.2
var V ariableDeclarationList

V ariable DeclarationList See 12.2
V ariable Declaration
V ariableDeclarationlist, V ariableDeclaration

- 162 -

V ariable DeclarationListNoln
V ariable DeclarationNoln
V ariableDeclarationListNoln V ariableDeclarationNoln

V ariable Declaration:
Identifier Initialiser,,,

V ariable DeclarationNoln
Identifier InitialiserNoln,,,

Initialiser :
= AssignmentExpression

InitialiserNoln :
= AssignmentExpressionNoln

EmptyStatement

ExpressionStatement
Nookahead T {{, function 11 Expression

IfStatement
if (Expressior) Statementelse Statement
if (Expressior) Statement

IterationStatement
do Statementwhile (Expression;
while (Expressior) Statement

for (ExpressionNoly,; Expression,; Expression,) Statement
for (var VarableDeclarationListNoln Expression,.; Expression,) Statement

for (LeftHandSideExpressidn Expressior) Statement

for (var VarableDeclarationNolrin Expressior) Statement

ContinueStatement
continue [na LineZammaoherel ldentifier,,,;

BreakStatement
break [no ZieZzminatorherel 1dentifier,,,;

ReturnStatement
return Ino LimeTammatorherel EXPression,;

WithStatement
with (Expressior) Statement

SwitchStatement
switch (Expressior) CaseBlock

See 12.2

See 12.2

See 12.2

See 12.2

See 12.2

See 12.3

See 12.4

See 12.5

See 12.6

See 12.7

See 12.8

See 12.9

See 12.10

See 12.11

CaseBlock :
{ CaseClauseg,}
{ CaseClauseg,DefaultClause CaseClausgg

CaseClauses
CaseClause
CaseClauses CaseClause

CaseClause
case Expression StatementList,

DefaultClause
default : StatementList,

LabelledStatement
Identifier: Statement

ThrowStatement
throw [no ZimeZaminaromerel EXpression ;

TryStatement
try Block Catch
try Block Finally
try Block Catch Finally

Catch:
catch (Identifier) Block

Finally :
finally Block

A.5 Functions and Programs
FunctionDeclaration

function Identifier(FormalParameterList,) { FunctionBody}

FunctionExpression

function Identifier,,,(FormalParameterLisi,) { FuncionBody}

FormalParameterList
Identifier
FormalParameterList Identifier

FunctionBody:.
SourceElements

Program:
SourceElements

- 163 -

See 12.11

See 12.11

See 12.11

See 12.11

See 12.12

See 12.13

See 12.14

See 12.14

See 12.14

See clause 13

See clause 13

See clause 13

See clause 13

See clause 14

- 164 -

SourceElements See clause 14
SourceElement
SourceElements SourceElement

SouceElement See clause 14
Statement
FunctionDeclaration

A.6 Universal Resource ldentifier Character Classes

uri See 15.1.3
uriCharacters,,

uriCharacters::: See 15.1.3
uriCharacter uriCharacters,,

uriCharacter::: See 15.1.3
uriReserved
uriUnescapd
uriEscaped

uriReserved:: one of See 15.1.3

I ?2 @& =+9%,

uriUnescaped:: See 15.1.3
uriAlpha
DecimalDigit
uriMark

uriEscaped:: See 15.1.3

%HexDigit HexDigit

uriAlpha::: one of See 15.1.3
abcdefghijklmn opgrstuvwxyz
ABCDEFGHIJKLMNOPQRSTUVWXYZ

uriMark ::: one of See 15.1.3

<= ()

A.7 Regular Expressions

Pattermn:: See 15.10.1
Disjunction

Disjunction:: See 15.10.1
Altemative

Alternative| Disjunction

Altemative:: See 15.10.1
[empty]
Altermative Term

Term::
Assertion
Atom
Atom Quantifier

Assertion:

— =& >

wo

Quantifier::
Quantifie rPrefix
QuantifierPrefix ?

QuantifierPrefix ::
*

+

?

{ DecimalDigits}

{ DecimalDigits, }

{ DecimalDigits, DecimalDigits}

Atom::
PatternCharacter

\ AtomEscape
CharacterClass

(Disjunction)

(?: Disjunction)
(? = Disjunction)
(?! Disjunction)

PatternChaacter:: SourceCharacteput not any of:

sV v 2 () [1{ Y

AtomEscape
DecimalEscape
CharacterEscape
CharacterClassEscape

CharacterEscape
ControlEscape
c ControlLetter
HexEscapeSequence
UnicodeEscapeSequence
IdentityEscape

ControlEscape: one of
fnrtyv

- 165 -

See 15.10.1

See 15.10.1

See 15.10.1

See 15.10.1

See 15.10.1

See 15.10.1

See 15.10.1

See 15.10.1

See 15.10.1

- 166 -

ControlLetter:: one of See 15.10.1
abcdefghijklmnopqgqrstuvwxyz
ABCDEFGHIJKLMNOPQRS TUVWXYZ

IdentityEscape: See 15.10.1

SourceCharactebut not IdentifierPart

DecimalEscape: _ See 15.10.1
DecimalintegerLiterallookshesd | Dazmalliat

CharacterClass:: See 15.10.1
[lookshead ("~} ClassRanges]
[~ ClassRanges

ClassRanges:: See 15.10.1
[empty]
NonemptyClassRanges

NonemptyClassRanges See 15.10.1
ClassAtom

ClassAtom NonemptyClassRangesNoDash
ClassAtom- ClassAtom ClassRanges

NonemptyClassRangesNoDash See 15.10.1
ClassAtom
ClassAtomNoDash NonemptyClassRat@eDash
ClassAtomNoDash ClassAtom ClassRanges

ClassAtont: See 15.10.1
ClassAtomNoDash
ClassAtomNoDash See 15.10.1

SourceCharacteibut not one of\] -
\ ClassEscape

ClassEscape See 15.10.1
DecimalEscape
b

CharacterEscape
CharacterClassEsqze

- 167 -

- 168 -

Annex B
(informative)

Compatibility

B.1 Additional Syntax

Past editions of ECMAScript have included additional syntax and semantics for specifying octal literals and
octal escape sequences. These have been removed from this edition of ECMAScript. This non-normative annex
presents uniform syntax and semantics for octal literals and octal escape sequences for compatibility with some
older ECMAScript programs.

B.1.1 Numeric Literals
The syntax and semantics of 7.8.3 can be extended as follows:

Syntax

NumericLiteral::
DecimallLiteral
HexIntegerLiteral
OctalintegerLiteral

OctalintegerlLiteral:
0 OctalDigit
OctalintegerLiteral OctalDigit

Semantics

9 The MV ofNumericLiteral:: OctallntegerLiterais the MV ofOctallntegerLiteral
1 The MV ofOctalDigit :: 0 is 0.
1 The MV ofOctalDigit:: 1is 1.
9 The MV ofOctalDigit:: 2 is 2.
1 The MV ofOctalDigit:: 3 is 3.
1 The MV ofOctalDigit:: 4 is 4.
9 The MV ofOctalDigit:: 5 is 5.
1 The MV ofOctalDigit:: 6 is 6.
1 The MV ofOctalDigit:: 7 is 7.
9 The MV ofOctalintegerLiteal :: 0 OctalDigit is the MV ofOctalDigit.
i The MV of OctalintegerLiteral:: OctalintegerLiteralOctalDigit is (the MV ofOctallntegerLiteraltimes 8) plus
the MV ofOctalDigit.
B.1.2 String Literals
The syntax and semantics of 7.8.4 can be extended as follows:

Syntax

EscapeSequence
CharacterEscapeSequence
OctalEscapeSequence
HexEscapeSequence
UnicodeEscapeSequence

- 169 -

OctalEscapeSequence

OctalDigit flaokahead T Demmalliat
ZeroToThree OctalDigiagkahead | DezmalZiat
FourT oSeven OctalDigit

ZeroToThree OctalDigit OctalDigit

ZeroToThree: one of

0123

FourToSevermn one of

B.2

4567

Semantics

9 The CV ofEscapeSequenceOctalEscapeSequendzthe CV of theDctalEscapeSequence

1 The CV ofOctalEscapeSequenceOctalDigit [lookahead 1 ZezmaiZiai 1S the character whose code point value is
the MV of theOctalDigit.

9 The CV ofOctalEscapeSequenceZeroToThre€OctalDigit [laokahead T Lezmailiat IS the character whose code
point value is (8 times the MV of tieroToThreg plus the MV of theDctalDigit.

1 The CV ofOctalEscapeSequenceFourT oSeverDctalDigit is the character whose code point value is (8 times
the MV of theFourT oSevenplus the MV of theDctalDigit.

1 The CV ofOctalEscapeSequenceZeroT oThreeOctalDigit OctalDigit is the charaer whose code point value
is (64 (that is, § times the MV of theZeroToThreg plus (8 times the MV of the fir€dctalDigit) plus the MV of
the secondctalDigit.

1 The MV ofZeroToThree: 0 is 0.
1 The MV ofZeroToThree: 1is 1.
9 The MV ofZeroToThree: 2 is 2.
1 The MV ofZeroToThree: 3 is 3.
1 The MV ofFourToSeven 4 is 4.
9 The MV of FourToSevermn 5is 5.
1 The MV ofFourToSeverm 6 is 6.
9 The MV ofFourToSeven 7 is 7.

Additional Properties

Some implementations of ECMAScript have included additional properties for some of the standard native
objects. This non-normative annex suggests uniform semantics for such properties without making the properties
or their semantics part of this standard.

B.2.1 escape (string)

The escape function is a property of the global object. It computes a new version of a string value in which
certain characters have been replaced by a hexadecimal escape sequence.

For those characters being replaced whose code point value is OXFF or less, a two-digit escape sequence of
the form %xx is used. For those characters being replaced whose code point value is greater than OxFF, a four-
digit escape sequence of the form %uwxxxis used

When the escape function is called with one argument string, the following steps are taken:

Call ToString(string).

Compute the number of characters in Result(1).

Let R be the empty string.

Let k be 0.

If k equals Result(2), return R.

Get the character (represented as a 16-bit unsigned integer) at position k within Result(1).

If Result(6) is one of the 69 nonblank characters

AABCDEFGHI JKLMNOPQRSTUVWXYZabcdefghij k| mno.p/qgor st
then go to step 13.

NookwbdPRk

- 170 -

8. If Result(6), is less than 256, go to step 11.

9. Let Shbe a string containing six characters fi %wxyz where wxyzare four hexadecimal digits encoding
the value of Result(6).

10. Go to step 14.

11. Let Sbe a string containing three characters i %y0 where xy are two hexadecimal digits encoding the
value of Result(6).

12. Go to step 14.

13. Let Sbe a string containing the single character Result(6).

14. Let Rbe a new string value computed by concatenating the previous value of Rand S.

15. Increase k by 1.

16. Go to step 5.

NOTE
The encoding is partly based on the encoding described in RFC1738, but the entire encoding specified in
this standard is described above without redjao the contents of RFC1738.

B.2.2 unescape (string)

The unescape function is a property of the global object. It computes a new version of a string value in
which each escape sequence of the sort that might be introduced by the escape function is replaced with the
character that it represents.

When the unescape function is called with one argument string, the following steps are taken:

1. Call ToString(string).

2. Compute the number of characters in Result(1).

3. Let Rbe the empty string.

4. LetkbeO.

5. If kequals Result(2), return R

6. Let c be the character at position k within Result(1).

7. Ifcis not % go to step 18.

8. If kis greater than Result(2)- 6, go to step 14.

9. If the character at position k+1 within Result(1) is not u, go to step 14.

10. If the four characters at positions k+2, k+3, k+4, and k+5 within Result(1) are not all hexadecimal digits,

go to step 14.

11. Let c be the character whose code point value is the integer represented by the four hexadecimal digits at
positions k+2, k+3, k+4, and k+5 within Result(1).

12. Increase k by 5.

13. Go to step 18.

14. If k is greater than Result(2)- 3, go to step 18.

15. If the two characters at positions k+1 and k+2 within Result(1) are not both hexadecimal digits, go to step
18.

16. Let c be the character whose code point value is the integer represented by two zeroes plus the two
hexadecimal digits at positions k+1 and k+2 within Result(1).

17. Increase k by 2.

18. Let Rbe a new string value computed by concatenating the previous value of Rand c.

19. Increase k by 1.

20. Go to step 5.

B.2.3 String.prototype.substr (start, length)

The substr method takes two arguments, startand length and returns a substring of the result of converting
this object to a string, starting from character position start and running for length characters (or through the
end of the string is length is undefined). If start is negative, it is treated as (sourceLengthstart) where
sourcelLengths the length of the string. The result is a string value, not a String object. The following steps
are taken:

1. Call ToString, giving it the this value as its argument.
2. Call Tolnteger(start).

- 171 -

If lengthis undefined, use +a ; otherwise call Tolnteger(length.

Compute the number of characters in Result(1).

If Result(2) is positive or zero, use Result(2); else use max(Result(4)+Result(2),0).

Compute min(max(Result(3),0), Result(4)-Result(5)).

If Result(6) ¢ 0, return the empty string “”.

Return a string containing Result(6) consecutive characters from Result(1) beginning with the character at
position Result(5).

©ONoOGOhW

The length property of the substr method is 2.

NOTE
The substr function is intentionally generic; it does not require that fkés value be a String object.
Therefore it can be transferred to other kinds of objects for use as a method.

B.2.4 Date.prototype.getYear ()

NOTE
The getFullYear method $ preferred for nearly al |l pur pose
probl em. o

When the getYear method is called with no arguments the following steps are taken:

1. Lett be this time value.
2. Iftis NaN, return NaN.
3. Return YearFromTime(LocalTime(t)) - 1900.

B.2.5 Date.prototype.setYear (year)

NOTE
The setFullYear met hod i s preferred for nearl vy al |l pu
probl em. o

When the setYearmethod is called with one argument yearthe following steps are taken:

1. Lett be the result of LocalTime(this time value); but if this time value is NaN, let t be +0.

Call ToNumber(yeatr).

If Result(2) is NaN, set the [[Value]] property of the this value to NaN and return NaN.

If Result(2) is not NaN and 0 ¢ Tolnteger(Result(2)) ¢ 99 then Result(4) is Tolnteger(Result(2)) + 1900.
Otherwise, Result(4) is Result(2).

Compute MakeDay(Result(4), MonthFromTime(t), DateFromTime(t)).

Compute UTC(MakeDate(Result(5), TimeWithinDay(t))).

Set the [[Value]] property of the this value to TimeClip(Result(6)).

Return the value of the [[Value]] property of the this value.

Pown

® N o

B.2.6 Date.prototype.toGMTString ()
NOTE
The propertytoUTCString is preferred. ThetoGMTString property is provided principally for
compatibility with old code. It is recommended that tteJTCStrin g property be used in new
ECMAScript code.

The Function object that is the initial value of Date.prototype.toGMTString is the same Function
object that is the initial value of Date.prototype.toUTCString

Free printed copies can be ordered from:

ECMA
114 Rue du Rhone
CH-1204 Geneva

Switzerland
Fax: +41 22 849.60.01
Internet: documents@ecma.ch

Files of this Standard can be freely downloaded from our ECMA web site (www.ecma.ch). This site gives full
information on ECMA, ECMA activities, ECMA Standards and Technical Reports.

http://www.ecma.ch)/

ECMA

114 Rue du Rht'ne
CH-1204 Geneva
Switzerland

See inside cover page for obtaining further soft or hard copies.

