ECMAScript 4th Edition -- Predefined Types and Objects 1
|[Ecma/TC39/2008/057 |

1 Introduction

1 There are certain built-in objects available whenever an ECMAScript program begins execution. One, the global object, is in
the scope chain of the executing program. Others are accessible as initial properties of the global object.

2 ECMAScript execution environments may provide multiple global objects, each of which may be accessible from the others.
Whether each of these global objects has separate intial values for the initial properties described in this section, or whether
the values are shared, is implementation-defined.

3 Many built-in objects behave like functions: they can be invoked with arguments. Some of them furthermore are
constructors: they are classes intended for use with the new operator. For each built-in class, this specification describes the
arguments required by that class's constructor and properties of the Class object. For each built-in class, this specification
furthermore describes properties of the prototype object of that class and properties of specific object instances returned by a
new expression that constucts instances of that class.

COMPATIBILITY NOTE The 3rd Edition of this Standard did not provide classes, and all built-in objects provided as classes in 4th Edition were
previously provided as functions. The change from functions to classes is observable to programs that convert the built-in class objects to strings.

4 Built-in classes have four kinds of functions, collectively called methods: constructors, static methods, prototype methods,
and intrinsic instance methods. Non-class built-in objects may additionally hold non-method functions.

COMPATIBILITY NOTE The 3rd Edition of this standard provided only constructors and prototype methods. The new methods are not visible to 3rd
Edition code being executed by a 4th Edition implementation.

5 Unless otherwise specified in the description of a particular class, if a constructor, prototype method, or ordinary function
described in this section is given fewer arguments than the function is specified to require, the function shall behave exactly
as if it had been given sufficient additional arguments, each such argument being the undefined value.

6 Unless otherwise specified in the description of a particular class, if a constructor, prototype method, or ordinary function
described in this section is given more arguments than the function is specified to allow, the behaviour of the function is
undefined. In particular, an implementation is permitted (but not required) to throw a TypeError exception in this case.

IMPLEMENTATION NOTE Implementations that add additional capabilities to the set of built-in classes are encouraged to do so by adding new
functions and methods rather than adding new parameters to existing functions and methods.

7 Every built-in function, and every built-in class object with a meta: : invoke method, has the Function prototype object,
which is the initial value of the expression Function. prototype (Function.prototype)), as the value of its internal [
[Prototype]] property.

8 Every built-in class object that does not have a meta: : invoke method has the Object prototype object, which is the initial
value of the expression Object . prototype (Object.prototype|), as the value of its internal [[Prototype]] property.

9 Every built-in prototype object has the Object prototype object, which is the initial value of the expression
Object.prototype (Object.prototypel), as the value of its internal [[Prototype]] property, except the Object
prototype object itself.

10 None of the built-in functions described in this section shall implement the internal [[Construct]] method unless
otherwise specified in the description of a particular function. None of the built-in functions described in this section shall
initially have a prototype property unless otherwise specified in the description of a particular function. Every built-in
Function object described in this section--whether as a constructor, an ordinary function, or a method--has a length
property whose value is an integer. Unless otherwise specified, this value is equal to the largest number of named arguments
shown in the section headings for the function description, including optional parameters.

EXAMPLE The Function object that is the initial value of the S1icCe property of the String prototype object is described under the section heading

String.prototype.slice(start,end) whichshows the two named arguments start and end; therefore the value of the length
property of that Function object is 2.

11 The built-in objects and functions are defined in terms of ECMAScript packages, namespaces, classes, types, methods,
properties, and functions, with the help from a small number of implementation hooks.

NOTE Though the behavior and structure of built-in objects and functions is expressed in ECMAScript terms, implementations are not required to
implement them in ECMAScript, only to preserve the behavior as it is defined in this Standard.

12 Implementation hooks manifest themselves as functions in the magic namespace, as in the definition of the intrinsic
toString method on Object objects:

intrinsic function toString() : string
private::toString();

file://localhost/Work/es4/spec/library.html 07/11/08 11:45:54

patrick
Text Box
Ecma/TC39/2008/057

ECMAScript 4th Edition -- Predefined Types and Objects 2

13
14

15
16

17

18

19

All magic function definitions are collected in section [library-magic|.

The definitions of the built-in objects and functions also leave some room for the implementation to choose strategies for
certain auxiliary and primitive operations. These variation points manifest themselves as functions in the informative
namespace, as in the definition of the intrinsic global function hashcode:

intrinsic const function hashcode(o): uint {
switch type (o) {

case (x: String) { return informative::stringHash(string(x)) }
case (x: *) { return informative::objectHash(x) }

}
Informative methods and functions are defined non-operationally in the sections that make use of them.

The definitions of the built-in objects and functions also make use of internal helper functions and properties, written in
ECMAScript. These helper functions and properties are not available to user programs and are included in this Standard for
expository purposes, as they help to define the semantics of the functions that make use of them. Helper functions and
properties manifest themselves as definitions in the helper namespace, as in the definition of the global encodeURI
function:

intrinsic const function encodeURI(uri: string): string
encode(uri, uriReserved + uriUnescaped + "#")

Helper functions and properties are defined where they are first used, but are sometimes referenced from multiple sections in
this Standard.

Unless noted otherwise in the description of a particular class or function, the behavior of built-in objects is unaffected by
definitions or assignments performed by the user program.

NOTE In effect, the intrinsic namespace is open for all built-in code, and this namespace takes precedence over the public namespace.

In some cases the built-in functions construct new error objects that are then thrown as exceptions. For purposes of
documentation an informative string is passed to the constructors of the error objects. These strings are never to be
considered normative.

2 Assumptions and notational conveniences

(This section will be removed eventually.)

The following assumptions are made throughout the description of the builtins. I believe they are correct for the language,
but they need to be specified / cleaned up elsewhere; some of the descriptions here need to be merged into the foregoing
sections.

2.1 Classes

Classes are reified as singleton class objects C which behave like ECMAScript objects in all respects. We do not assume here
that these class objects are instances of yet other classes; they can be assumed just to exist. Class objects have some set of
fixtures (always including the prototype property) and a [[Prototype]] chain, at a minimum.

The Function prototype object is on the [[Prototype]] chain of every class object, whether native or user defined.
This was true for all constuctor functions in ES3; it does not seem reasonable to be incompatible for native objects in ES4,
and it does not seem reasonable to have a special case for native objects in ES4 (though that would be possible).

Consequence: It will be assumed that the Function prototype object is on the prototype chain of every callable class
object, and this will not be described explicitly for each object, unlike 3rd Edition.

2.2 Prototype chains

Every class object C has a constant C . prototype fixture property, with fixed type Object. Unless specified otherwise,
C.prototype references an object PC that appears to be an instance of C except for the value of PC. [[Prototype]],
which is normally a reference to B. prototype where B is the base class of C. (Thus the prototype hierarchy mirrors the
class hierarchy, and inheritance of prototype properties mirrors the inheritance of class properties.)

Consequence: It will be assumed that every class object has a prototype property and that that property will reference the
prototype object for that class, which is always described separately. The fact that there is a prototype property will not
be described explicitly for each object, unlike 3rd Edition.

Every [[Prototype]] property of an object O of class described by class object C, unless specified otherwise, is
initialized from the value of C . prototype.

file://localhost/Work/es4/spec/library.html 07/11/08 11:45:54

ECMAScript 4th Edition -- Predefined Types and Objects

4

file://localhost/Work/es4/spec/library.html

Consequence: The structure of the prototype chain is elided from the description of the native classes except where it
diverges from the standard behavior.

2.3 Constant-initialized properties

Several properties on both class objects and prototype objects are initialized by references to constants, for example 1length
properties on class objects and constructor properties on prototype objects. These properties are trivially described in
the synopsis and normally do not get a separate section in the body of the class description.

As far as constructor is concerned, it is a standard feature of the prototype object and its initial value is always the class
object, so it does not have to be described either. So it isn't.

2.4 Special cases

This is a list of all the special cases I'm aware of in the sections following.

e Object.prototype.[[Prototype]] is null

e Math.[[Prototype]] does not have a constructor

e Math is an instance of a class that is not constructable through the meta-objects system

o double.prototype === Number.prototype and double.[[Prototype]] === Number.[[Prototype]]

e decimal.prototype === Number.prototype and decimal.[[Prototype]] === Number.[[Prototype]]
e string.prototype === String.prototype and string.[[Prototype]] === String.[[Prototype]]

e boolean.prototype === Boolean.prototype and boolean.[[Prototype]] === Boolean.[[Prototype]]

3 The Global Object

The global object is an instance of an implementation-dependent class. In particular, the name of this class and the contents
of the class's prototype object are implementation-dependent.

The class describing the global object does not have an accessible constructor function; it is not possible to use the global
object as a constructor with the new operator.

The class describing the global object does not have a meta: : invoke method; it is not possible to call the global object as
a function.

3.1 Synopsis
The global object contains the following properties, functions, types, and class definitions.
namespace __ ES4

__ES4__ namespace intrinsic = ..
__ES4 namespace iterator = ..
__ES4__ namespace reflect = ..
__ES4__ namespace meta = ..

class Object ..
class Function ..
class Array ..

class String ..
class Boolean ..
class Number ..
class Date ..

class RegEXp ..
class Error ..

class EvalError ..
class RangeError ..
class ReferenceError ..
class SyntaxError ..
class TypeError ..
class URIError ..

__ES4__ class string ..
__ES4 class boolean
__ES4 class double ..
__ES4__ class decimal ..
__ES4 class Name ..
__ES4 class Namespace ..
__ES4__ class Map.<K,V> ..
__ES4_ class Vector.<T> ..

07/11/08 11:45:54

ECMAScript 4th Edition -- Predefined Types and Objects 4

__ES4__ type EnumerableId = ..
__ES4 type AnyNumber = ..
__ES4 type AnyString = ..
__ES4 type AnyBoolean = ..
__ES4 type Callable = ..

intrinsic const function eval(s: string) ..

intrinsic const function parselInt(s: string, r: double=0): AnyNumber ..
intrinsic const function parseFloat(s: string): AnyNumber ..
intrinsic const function isNaN(n: AnyNumber): boolean ..
intrinsic const function isFinite(n: AnyNumber): boolean ..
intrinsic const function isIntrinsic(n: AnyNumber): boolean ..
intrinsic const function isInt(n: AnyNumber): boolean ..
intrinsic const function isUint(n: AnyNumber): boolean ..
intrinsic const function toInt(n: AnyNumber): double ..

intrinsic const function toUint(n: AnyNumber): double ..
intrinsic const function decodeURI(s: string): string ..
intrinsic const function decodeURIComponent(s: string): string ..
intrinsic const function encodeURI(s: string): string ..
intrinsic const function encodeURIComponent(s: string): string ..
intrinsic const function hashcode(x): double ..

function eval(x) ..

function parseInt(s, r=undefined)

function parseFloat(s) ..

function isNaN(x) ..

function isFinite(x)

function decodeURI (x)

function decodeURIComponent (x) ..

function encodeURI (x)

function encodeURIComponent (X) ..

__ES4 function isInt(n: AnyNumber): boolean ..
__ES4 function isUint(n: AnyNumber): boolean ..
__ES4 function toInt(n: AnyNumber): double ..
__ES4__ function toUint(n: AnyNumber): double ..

const NaN: double = ..

const Infinity: double = ..
const undefined: undefined = ..
const Math: helper::MathType = ..

const _ ECMASCRIPT VERSION : double = ..
__ES4__ const global = ..

3.2 Namespace Properties on the Global Object

COMPATIBILITY NOTE The namespace properties are all new in the 4th Edition of this Standard.

3.2.1 __ES4

1 Thenamespace __ES4 is used to tag all names introduced in the global object in the 4th Edition of this Standard, except
fortwo: _ ES4__ and __ ECMASCRIPT VERSION__ .

2 Thenamespace __ES4__is automatically opened by the implementation for code that is to be treated as 4th Edition code,
but not for code that is to be treated as 3rd Edition code.

COMPATIBILITY NOTE The risk of polluting the name space for 3rd Edition code with new names is deemed too great to always open the ___
ES4 name space.

3 The means by which an implementation determines whether to treat code according to 3rd Edition or 4th Edition is outside
the scope of this Standard.

NOTE This standard makes recommendations for how mime types should be used to tag script content in a web browser. (See .)

3.2.2 intrinsic

1 The namespace intrinsic is used to tag pre-defined types, properties, and methods.

2 The namespace intrinsic is reserved by the language. Except in the case where a method tagged intrinsic overrides
an intrinsic method inherited from a pre-defined class, it is an error for user code to introduce new bindings in the
intrinsic namespace.

3 The bindings in the intrinsic namespace are always constant fixtures.

NOTE A fixture is a binding that is not deletable and which takes precedence over dynamic names during lexical name lookup.

file://localhost/Work/es4/spec/library.html 07/11/08 11:45:54

ECMAScript 4th Edition -- Predefined Types and Objects 5

3.2.3 reflect

1 The namespace reflect is used to tag pre-defined interfaces in the reflection subsystem.

2 The namespace reflect is reserved by the language. It is an error for user code to introduce new bindings in the
reflect namespace.

3.2.4 meta

1 The namespace meta is used to tag methods that participate in the language's protocols for invocation and property access.

2 The namespace meta is reserved by the language. Except in the case where a class definition uses it to tag (possibly static)
methods called invoke, get, set, has, or delete, itis an error for user code to introduce new bindings in the meta
namespace.

3.2.5 iterator
1 The namespace iterator is used for the iteration protocol, which is defined elsewhere. (See .)
NOTE Unlike the namespaces __ ES4__, intrinsic, reflect, andmeta, the namespace iterator is not reserved by the system.

3.3 Value Properties on the Global Object
3.3.1 __ECMASCRIPT_VERSION__

1 The value of the constant property ECMASCRIPT VERSION__ is an integer denoting the version of this Standard to
which the implementation conforms. For this 4th Edition of the Standard, the value of _ ECMASCRIPT VERSION__ is 4.

COMPATIBILITY NOTE This property is new in the 4th Edition of this Standard. It is one of two properties introduced in the 4th Edition of this
Standard that is not in the ES4 namespace. (The otheris _ ES4)

3.3.2 NaN

1 The value of the constant property NaN is NaN (see).

Implementation
const NaN : double = ..

COMPATIBILITY NOTE NaN was not constant in the 3rd Edition of this Standard.

3.3.3 Infinity
1 The value of Infinity is +o (see [infinity-value]).

Implementation
const Infinity : double = ..

COMPATIBILITY NOTE Infinity was not constant in the 3rd Edition of this Standard.

3.3.4 undefined
1 The value of undefined is undefined (see jundefined-value)).

Implementation
const undefined : undefined = ..

COMPATIBILITY NOTE undefined was not constant in the 3rd Edition of this Standard.

3.3.5 Math
1 The value of Math is the Math object (see [math-object]).

Implementation
const Math : helper::MathType = ..

COMPATIBILITY NOTE Math was not constant in the 3rd Edition of this Standard.

file://localhost/Work/es4/spec/library.html 07/11/08 11:45:54

ECMAScript 4th Edition -- Predefined Types and Objects 6

2 The helper type MathType (see [MathType)) is a structural record type that includes a property for every intrinsic method
and public constant property defined on the Math object.

NOTE The type of Math impacts strict mode type checking.

3.3.6 global

1 The value of global is the global object that contains the property global.

NOTE There may be multiple global objects in a program, and these objects may share values or immutable state: for example, their 1 SNaN properties
may hold the same function object. However, each global object has separate mutable state, and a separate value for the intrinsic global property.

Implementation
const global = ..

COMPATIBILITY NOTE global is new in the 4th Edition of this Standard.

3.4 Function Properties of the Global Object

3.4.1 eval

1 Itis likely that the description in this section needs to be broken up and scattered over several parts of the final specification,
but for the time being it's best if everything is centralized here. I've added more expository and background material than the
spec really ought to have; we'll clean this up by and by. --lars

3.4.1.1 Overview and background

1 The global object has properties named eval and intrinsic: :eval. Those properties initially hold the same value, a
function, and that function -- the eval function -- can be called in all the ways that any other function in the language can be
called. There are however some run-time restrictions (described below) on when those calls are valid.

2 In addition, there is an operator in the language that is also known under the names eval and intrinsic: :eval. The
eval operator has access to the lexical environment of its context; it can look up and introduce bindings in the environment
of its context.

3 Together, the eval function and the eval operator provide run-time evaluation functionality that (a) is compatible with the
functionality mandated for eval by the 3rd Edition and (b) handles all important known uses of eval on the web.

4 The 3rd Edition only mandates the equivalent of the operator form of the 4th Edition, yet it describes eval as a function that
has the ability to inspect and modify its caller's lexical environment. In practice, an implementation that supports only the
functionality mandated by the 3rd Edition will not support the web well, and as a consequence several implementations of
ECMAScript in web browsers provide eval as a true function that actually has the ability to inspect and modify its caller's
environment, no matter who the caller of eval is and regardless of the name under which eval has been called.

5 In other words, the 3rd Edition form of eval, implemented in full generality, makes it generally impossible to know if any
particular scope contains a binding for any particular name, since any function call in the scope may be a call to eval,
which may introduce new names in the scope.

6 Asanillustration, the following program prints "20" in Mozilla Firefox, even though casual inspection of the program would
lead one to conclude that the x referenced in the body of g is the constant binding in the outer scope:

const x = 10;
function g(f,s) {
f(s);
return Xx;

}

document.writeln(g(eval,"var x=20"));

7 In conclusion, the primary reason for splitting the definition of eval into function and operator forms in the 4th Edition is in
order to be able to control the extent to which eval can introduce new names in scopes, while at the same time remaining
compatible with existing programs.

8 The secondary reason for splitting the definition of eval into function and operator forms is that the behavior illustrated
above largely precludes some standard code generation strategies. A typical approach in lexically scoped languages is to
translate variable references at compile time to (rib,offset) pairs; at run-time, scope object number 7ib (where the innermost is
number zero) is fetched and property number offset is fetched out of it. That approach is only possible if the environment is
known at compile time. If there is a chance that eval can introduce new names into a scope at run-time then lookup in that
scope must always be by name; with an operator form of eval it is possible to know at compile time whether a scope may
be thus affected.

file://localhost/Work/es4/spec/library.html 07/11/08 11:45:54

ECMAScript 4th Edition -- Predefined Types and Objects 7

9

10

Several other features and clarifications have been incorporated into the 4th Edition in an attempt to constrain the effects of
eval. While the splitting of eval into an operator form and a function form makes it clearer when a non-global
environment might have new bindings introduced, it does not prevent such bindings from being introduced.

The additional features and clarifications are:

e If the version number passed as the second argument to eval is greater than 3, then the program being evaluated is
given a fresh variable object in which it can create bindings; as a consequence, no bindings can be introduced into
the caller's environment (except by assignment to non-existent global variables).

e eval is prevented from changing the DontDelete attribute on existing bindings when a binding form is evaluated.
e The operator form of eval is disallowed inside classes.
e The operator form of eval is disallowed in strict mode.

3.4.1.2 eval (program, version=...)

Description
The eval function and the eval operator (described fully below) are invoked on a program, which is a value of any type, and
a version, which is intended to be a nonnegative integer (defaulting to 3).

If the program is a string then it must represent valid source code according to the nonterminal Program (see),
with the proviso that the keyword set recognized during lexical analysis is determined by version, as follows. Convert
version to an integer as with the ToInt32 operation. If the converted value of version is 3 or less then the keyword set is the
set of reserved words in the 3rd Edition of this Standard (E262-3 section 7.5.2). Otherwise, if the converted value of version
is n then the keyword set is the set of reserved and contextually reserved words in the nth Edition of this Standard.

NOTE Program arguments to @val that use e.g. 1€t as an identifier will continue to work in a 4th Edition implementation (where 1@t is a keyword)
as long as no version is passed to @val, or the value of the version passed is 3 or less.

If the converted value of version is 4 or greater then the evaluation takes place in a fresh variable object.

NOTE In other words, @val will be unable to introduce bindings in its caller's variable object if version is 4 or greater.

COMPATIBILITY NOTE Unlike in the 3rd Edition of this Standard, @val is not allowed to change a property from being DontDelete to being
deletable. That restriction belongs in the section on adding bindings to the variable object (10.1.3 in 3rd Ed) and is only mentioned here for the time being.

Returns
If the program is a string then the result of compiling and evaluating program as a Program is returned. Otherwise, program
is returned unchanged.

Implementation
function eval(program, version=3) ..

3.4.1.3 The eval operator

There are two possible designs for the operator form. One is that an expression of the form eval (s) is always taken as the
operator form, regardless of the binding of eval in the context of the expression; the other is that an expression of that form
may be the operator form, and that it is the operator form only if the binding of eval is the original, global binding. Since
the former design would be incompatible with 3rd Edition, we use the latter.

It will always be lexically apparent when eval is possibly being used as an operator, but in the general case it is not possible
to determine until run-time whether it is actually being used as an operator.

NOTE For the intrinsic form of the operator it is possible to determine this at compile time, in the absence of the use of With in the enclosing context.

Description

The operator form is possibly being used in an expression E if E has the form of a CallExpression (including the parentheses
bracketing the arguments) and the MemberExpression that denotes the function to be called has the form of the unqualified
identifier eval or the qualified identifier intrinsic: :eval. That is, apart from any superflous parentheses, E has the
form M(P, ...).

If the possible use of the operator form of eval appears in any context inside a class, a SyntaxError is thrown.

If the possible use of the operator form of eval appears in any context inside block in which strict mode is in effect (even
inside a block that overrides strict mode by decreeing standard mode), a SyntaxError is thrown.

NOTE The purpose of these restriction is partly to avoid inconsistencies (in strict mode) and partly to signal that the use of the @val operator is
potentially harmful to program integrity.

FIXME A less restrictive, but probably equally safe, alternative would be to allow @val to be used inside a class provided that a version parameter was
being passed and its value was a constant known to be 4 or greater.

file://localhost/Work/es4/spec/library.html 07/11/08 11:45:54

ECMAScript 4th Edition -- Predefined Types and Objects 8

6 If the program operand to eval contains definitions for classes, interfaces, packages, namespaces, types, or units, then a
SyntaxError is thrown (even if the use of the eval operator is at the outer program's top level where these forms would
normally be allowed).

FIXME Should that be EvalError?

FIXME It seems it would not be entirely unreasonable to lift that restriction if the version is greater than 3, but it's unclear as yet what the problems
might be with e.g. allowing classes to have elaborate scope chains around them.
Returns

7 The eval operator returns an ECMAScript value.

Implementation
8 In the case that a possible use of the operator form is detected, M(P, ...) is evaluated as follows.

9 (The implementation of the eval operator is presented as pseudo-code because it is not expressible in ECMAScript.
Eventually, it may be presented as Standard ML code.)

look up M in the environment yielding the value V
if V is the pre-defined eval function and
the binding object O holding V is an ES global object and
the global object on the scope chain of V is O then
invoke eval as follows:
evaluate the P in order to yield argument value A
if there are no A values, then
return undefined
if the first A value is not a string, then
return the first A
if there is a second A then let K=int(A), else let K=3
evaluate the program denoted by the first A as follows:
if K <=3
the scope chain is the lexical chain in effect at
the point of invocation of M
the variable object is the innermost variable object in effect
(which is to say that it excludes binding objects
introduced for "let", "catch", named function expressions,
and "switch type")
else
the scope chain is the lexical chain in effect at the point of
invocation of M, extended by a new variable object W
the variable object is W
fi
the value of "this" is the global object O
the keyword set is determined by K
else
evaluate the P in order to yield a list of arguments A
invoke V as a function on the arguments A
fi

NOTE The requirement that the global object of V be O precludes sharing of @val functions among multiple global environments. It is possible that
that requirement is not actually needed for consistent operation.

3.4.1.4 The eval function

1 If the operator form is not detected syntactically then eval is either being called as a function under a different name or it is
being invoked as a method on an object. The implementation does not need to handle this case syntactically; it is handled as
a regular function call.

2 The following description applies to both the public eval function and the intrinsic eval function, both defined in the
global object.

Description
3 The global eval function evaluates its first argument as a program in the global scope of the eval function.

Returns

4 The global eval function returns the value computed by the program that is evaluated, or its first argument if the first
argument is not a string.

Implementation
5 The body of the pre-defined eval function V is evaluated in the context of a list of argument values A as follows.

6 (The implementation of the eval function is presented as pseudo-code because it is not expressible in ECMAScript.
Eventually, it may be presented as ECMAScript code with the addition of "magic" run-time system hooks.)

file://localhost/Work/es4/spec/library.html 07/11/08 11:45:54

ECMAScript 4th Edition -- Predefined Types and Objects 9

if the "this" object O is an ES global object and
the global object on the scope chain of V is O then
if there are no A values, then
return undefined
if the first A value is not a string, then
return the first A
if there is a second A then let K=int(A), else let K=3
evaluate the program denoted by the first A as follows:
if K<=3 then
the scope chain holds O only
the variable object is O
else
the scope chain holds O extended by a new variable object W
the variable object is W
fi
the value of "this" is O
the keyword set is determined by K
else
throw EvalError
fi

NOTE The requirement that the global object of V be O precludes sharing of @val functions among multiple global environments. It is possible that
that requirement is not actually needed for consistent operation.

3.4.1.5 Restrictions on the use of the eval property

1 If the global eval property is assigned to, an EvalError exception may be thrown.

3.4.2 intrinsic:parseint (s, r=...)

Description

1 The intrinsic parseInt function computes an integer value dictated by interpretation of the contents of the string argument
s according to the specified radix r (which defaults to zero). Leading whitespace in s is ignored. If r is zero, the radix is
assumed to be 10 except when the number begins with the character pairs Ox or 0X, in which case a radix of 16 is assumed.
Any radix-16 number may also optionally begin with the character pairs Ox or 0X.

Returns
2 The intrinsic parseInt function returns a number.

Implementation

intrinsic const function parselInt(s: string, r: double=0): AnyNumber {
let i;
for (i=0 ; i < s.length && isTrimmableSpace(s[i]) ; i++)

’
s = s.intrinsic::substring(i);

let sign = 1;

if (s.length >= 1 && s[0] == '=")
sign = -1;
if (s.length >= 1 && (s[0] == '=' || s[0] == '+'))

s = s.intrinsic::substring(l);

let maybe hexadecimal = false;
r = intrinsic::toInt(r);
if (r == 0) {

r = 10;

maybe hexadecimal = true;

}
else if (r == 16)
maybe hexadecimal = true;
else if (r < 2 || r > 36)
return NaN;

if (maybe hexadecimal &&
s.length >= 2 && s[0] == '0' && (s[l] == 'x' || s[1l] == 'X')) {
r 16;
s s.intrinsic::substring(2);

}

for (i=0 ; i < s.length && isDigitForRadix(s[i], r) ; it+)
s = é.intrinsic::substring(O,i);

if (s == "")

return NaN;

file://localhost/Work/es4/spec/library.html 07/11/08 11:45:54

ECMAScript 4th Edition -- Predefined Types and Objects

3

file://localhost/Work/es4/spec/library.html

return sign * numericValue(s, r);

}

The helper function isDigitForRadix(c, r) computes whether c is a valid digit for the radix r, see
[helper:isDigitForRadix|.

The helper function isTrimmableSpace (c) computes whether c is a space character that can be trimmed off the
beginning of the string, see |helper:isTrimmableSpace].

The informative function numericvValue (s, r) computesthe numeric value of a radix-r string s. If r is 10 and s
contains more than 20 significant digits, every significant digit after the 20th may be replaced by a O digit, at the option of the
implementation; and if r is not 2, 4, 8, 10, 16, or 32, then the returned value may be an implementation-dependent
approximation to the mathematical integer value that is represented by s in radix-r notation.

COMPATIBILITY NOTE In the 3rd Edition of this Standard, the parseInt function was allowed to, though not encouraged to, interpret a string
with a leading O but no leading 0X or 0X as a base-8 number if the radix was not supplied in the call or was supplied as zero. This is no longer allowed;
the function must interpret such a number as a base-10 number.

NOTE parseInt may interpret only a leading portion of the string as an integer value; it ignores any characters that cannot be interpreted as part of
the notation of an integer, and no indication is given that any such characters were ignored.

3.4.2.1 isDigitForRadix

helper function isDigitForRadix(c, r) {
c = c.intrinsic::toUpperCase();
if (¢ >= '0' && c <= '9")

return (c.intrinsic::charCodeAt(0) - '0O'.intrinsic::charCodeAt(0)) < r;
if (¢ >= 'A' && c <= 'Z")
return (c.intrinsic::charCodeAt(0) - 'A'.intrinsic::charCodeAt(0) + 10) < r;

return false;

3.4.3 parselnt (s, r=...)

Description
The parseInt function converts its first argument to string and its second argument to double, and then calls its
intrinsic counterpart.

Returns
The parseInt function returns a number.

Implementation

public function parselInt(s, r=0)
intrinsic::parseInt(string(s), double(r));

3.4.4 intrinsic::parseFloat (s)

Description

The intrinsic parseFloat function computes a number value dictated by interpretation of the contents of the string
argument s as a decimal literal.

Returns
The intrinsic parseFloat function returns a number.

Implementation
intrinsic const function parseFloat(s: string) {

}

NOTE parseFloat may interpret only a leading portion of s as a number value; it ignores any characters that cannot be interpreted as part of the
notation of an decimal literal, and no indication is given that any such characters were ignored.

3.4.5 parseFloat (s)

Description
The parseFloat function converts its argument to string, then calls its intrinsic counterpart.

Returns
The parseFloat function returns a number.

Implementation

10

07/11/08 11:45:54

ECMAScript 4th Edition -- Predefined Types and Objects 11

public function parseFloat(s)
intrinsic::parseFloat(string(s));

3.4.6 intrinsic:isNaN (n)

Description
1 The intrinsic isNaN function tests whether a numeric value #n is an IEEE not-a-number value.

Returns
2 The intrinsic isNaN function returns true if zn is NaN, and otherwise returns false.

Implementation

intrinsic const function isNaN(n: AnyNumber): boolean
(Y(n === n));

3.4.7 isNaN (x)

Description
1 The isNaN function converts its argument to a number, then calls its intrinsic counterpart.

Returns
2 The isNaN function returns true if x converted to a number is NaN, and otherwise returns false.

Implementation

public function isNaN(x)
intrinsic::isNaN(Number(x));

3.4.8 intrinsic:isFinite (n)

Description
1 The intrinsic isFinite function tests whether a numeric value # is finite (neither not-a-number nor an infinity).

Returns
2 The intrinsic isFinite function returns true if » is finite, and otherwise returns false.

Implementation

intrinsic const function isFinite(n: AnyNumber): boolean
(!intrinsic::isNaN(n) && n != -Infinity && n != Infinity);

3.4.9 isFinite (x)

Description
1 The isFinite function converts its argument to a number, then calls its intrinsic counterpart on the converted value.

Returns
2 The isFinite function returns true if x converted to a number is finite, and otherwise returns false.

Implementation

public function isFinite(x)
intrinsic::isFinite (Number(x));

3.4.10 intrinsic:isintegral (n)

Description
1 The intrinsic isIntegral function tests whether a numeric value 7 is integral (a finite integer).

Returns
2 The intrinsic isIntegral function returns true if # is integral, and otherwise returns false.

Implementation

intrinsic const function isIntegral(v:AnyNumber): boolean
intrinsic::isFinite(v) && Math.intrinsic::floor(v) == v;

3.4.11 isiIntegral (x)

Description

file://localhost/Work/es4/spec/library.html 07/11/08 11:45:54

ECMAScript 4th Edition -- Predefined Types and Objects 12

1 The isIntegral function converts its argument x to a number, then calls the intrinsic isIntegral function on the
converted value.

Returns
2 The isIntegral function returns true if x converted to a number is integral, and otherwise returns false.

Implementation

__ES4 function isIntegral(v)
intrinsic::isIntegral (Number(v));

3.4.12 intrinsic:isint (n)

Description

1 The intrinsic 1sInt function tests whether a numeric value n is an int value (a finite integer in the range 2311023111,
inclusive).

Returns
2 The intrinsic isInt function returns true if z is an int value, and otherwise returns false.

Implementation

intrinsic const function isInt(n:AnyNumber) : boolean
intrinsic::isIntegral(n) && n >= -0x7FFFFFFF && n <= O0x7FFFFFFF;

3.4.13 isint (x)

Description
1 The isInt function converts its argument x to a number, then calls the intrinsic isInt function on the converted value.

Returns
2 The isInt function returns true if x converted to a number is an int value, and otherwise returns false.

Implementation

__ES4 function isInt(x)
intrinsic::isInt (Number(x));

3.4.14 intrinsic:isUint (n)

Description

1 The intrinsic isUint function tests whether the numeric value 7 is a uint value (a finite integer in the range O to 2321,
inclusive).

Returns
2 The intrinsic 1sUint function returns true if n is a uint value, and otherwise returns false.

Implementation

intrinsic const function isUint(n:AnyNumber) : boolean
intrinsic::isIntegral(n) && n >= 0 && n <= OXFFFFFFFF;

3.4.15 isUint (x)

Description
1 The isUint function converts its argument x to a number, then calls the intrinsic 1sUint function on the converted value.

Returns
2 The isUint function returns true if x converted to a number is a uint value, and otherwise returns false.

Implementation

__ES4 function isUint(x)
intrinsic::isUint (Number(x));

3.4.16 intrinsic::tolnt (n)

Description
1 The intrinsic toInt function converts its argument # to an int value using the ToInt32 algorithm (see [ToInt32]).

Returns

file://localhost/Work/es4/spec/library.html 07/11/08 11:45:54

ECMAScript 4th Edition -- Predefined Types and Objects 13

2 The intrinsic toInt function returns an int value.

Implementation

intrinsic const function toInt(n:AnyNumber) : double
n | 0;

3.4.17 tolnt (x)

Description
1 The toInt function converts its argument x to a number, then calls the intrinsic toInt function on the converted value.

Returns
2 The toInt function returns an int value.

Implementation

__Es4 _ function toInt(x)
intrinsic::toInt(Number(x));

3.4.18 intrinsic::toUint (n)

Description

1 The intrinsic toUint function converts its argument n to a uint value using the ToUint32 algorithm (see [ToUint32)).

Returns
2 The intrinsic toUint function returns a uint value.

Implementation

intrinsic const function toUint(n:AnyNumber) : double
n >>> 0;

3.4.19 toUint (x)

Description
1 The toUint function converts its argument x to a number, then calls the intrinsic toUint function on the converted value.

Returns
2 The toUint function returns a uint value.

Implementation

__ES4 function toUint(x) : boolean
intrinsic::toUint (Number(x));

3.4.20 URI Handling Function Properties

1 Uniform Resource Identifiers, or URISs, are strings that identify resources (e.g. web pages or files) and transport protocols by
which to access them (e.g. HTTP or FTP) on the Internet. The ECMAScript language itself does not provide any support for
using URIs except for functions that encode and decode URIs as described in sections [decodeURI], [decodeURIComponent,
lencodeURI|, and [encodeURIComponent].

NOTE Many implementations of ECMAScript provide additional functions and methods that manipulate web pages; these functions are beyond the scope
of this standard.

2 A URIis composed of a sequence of components separated by component separators. The general form is:
Scheme : First / Second ; Third ? Fourth

3 where the italicised names represent components and the ":","/",";" and "?" are reserved characters used as separators. The
encodeURI and decodeURI functions are intended to work with complete URIs; they assume that any reserved
characters in the URI are intended to have special meaning and so are not encoded. The encodeURIComponent and
decodeURIComponent functions are intended to work with the individual component parts of a URI; they assume that
any reserved characters represent text and so must be encoded so that they are not interpreted as reserved characters when
the component is part of a complete URI The following lexical grammar specifies the form of encoded URIs.

uri :::

uriCharacters
opt

uriCharacters :::

file://localhost/Work/es4/spec/library.html 07/11/08 11:45:54

file://localhost/Work/es4/spec/library.html

ECMAScript 4th Edition -- Predefined Types and Objects

uriCharacter uriCharactersop y
uriCharacter :::

uriReserved

uriUnescaped

uriEscaped

uriReserved ::: one of
i/ 2 @& =+,

uriUnescaped :::
uriAlpha
DecimalDigit
uriMark

uriEscaped :::
% HexDigit HexDigit

uriAlpha ::: one of
abcdefghijklmnopgrstuvwzxyz
ABCDEFGHIJKLMNOPOQRSTUVWIXY?Z
uriMark ::: one of
- _ s b= x ()

FIXME (Ticket #170.) Upgrade to Unicode 5 in the following sections, and upgrade to handling the entire (21-bit) Unicode character set.

When a character to be included in a URI is not listed above or is not intended to have the special meaning sometimes given
to the reserved characters, that character must be encoded. The character is first transformed into a sequence of octets using
the UTF-8 transformation, with surrogate pairs first transformed from their UCS-2 to UCS-4 encodings. (Note that for code
points in the range [0,127] this results in a single octet with the same value.) The resulting sequence of octets is then
transformed into a string with each octet represented by an escape sequence of the form "$xx".

The encoding and escaping process is described by the helper function encode taking two string arguments s and
unescapedSet.

helper function encode(s: string, unescapedSet: string): string {
let R i
let k 0;

while (k != s.length) {
let C = s[k];

if (unescapedSet.intrinsic::indexOf(C) != -1) {
R=R + C;
k=k+ 1;

continue;

}

let V = C.intrinsic::charCodeAt(0);
if (V >= 0xDCO0 && V <= OxDFFF)
throw new URIError(/* Invalid code */);
if (V >= 0xD800 && V <= OxDBFF) {
k =k + 1;
if (k == s.length)
throw new URIError(/* Truncated code */);
let V2 = s[k].intrinsic::charCodeAt(0);
V = (V - 0xD800) * 0x400 + (V2 - 0xDCO00) + 0x10000;

let octets = toUTF8(V);
for (let j=0 ; j < octets.length ; j++)
R =R + "%" + twoHexDigits(octets[j]);
k=k+ 1;
}

return R;

}

helper function twoHexDigits(B) {
let s = "0123456789ABCDEF";
return s[B >> 4] + s[B & 15];
}

The unescaping and decoding process is described by the helper function decode taking two string arguments s and
reservedSet.

14

07/11/08 11:45:54

ECMAScript 4th Edition -- Predefined Types and Objects 15

helper function decode(s: string, reservedSet: string): string {

let R ="";
let k = 0;
while (k != s.length) {
if (s[k] != "8") {
R =R + s[k];
k=k+ 1;

continue;

}

let start = k;
let B = decodeHexEscape(s, k);

k =k + 3;
if ((B & 0x80) == 0) {
let C = string.intrinsic::fromCharCode(B);
if (reservedSet.intrinsic::indexOf(C) != -1)
R = R + s.intrinsic::substring(start, k);
else
R =R+ C;
continue;
}
let n = 1;
while (((B << n) & 0x80) == 1)
++n;
if (n == || n > 4)

throw new URIError(/* Invalid encoded character */);

let octets = [B];
for (let j=1 ; j <n ; ++j) {
let B = decodeHexEscape(s, k);

if ((B & 0xCO) != 0x80)
throw new URIError(/* Invalid encoded character */);
k =k + 3;

octets.intrinsic::push(B);

let V = fromUTF8(octets);
if (V > 0x10FFFF)
throw new URIError(/* Invalid Unicode code point */);

if (V > OXFFFF) {
L = ((V - 0x10000) & Ox3FF) + 0xD800;
H = (((V - 0x10000) >> 10) & Ox3FF) + 0xD800;
R = R + string.intrinsic::fromCharCode(H, L);
}
else {

let C = string.intrinsic::fromCharCode(V);
if (reservedSet.intrinsic::indexOf(C))
R = R + s.intrinsic::substring(start, k);
else
R =R+ C;
}

return R;

}

helper function decodeHexEscape(s, k) {
if (k + 2 >= s.length
s[k] != "s&"
(!isDigitForRadix(s[k+1], 16) &&
!isDigitForRadix(s[k+1l], 16)))
throw new URIError(/* Invalid escape sequence */);
return intrinsic::parseInt(s.intrinsic::substring(k+1l, k+3), 16);

}

7 The helper function isDigitForRadix was defined in section |helper:isDigitForRadix|.

NOTE The syntax of Uniform Resource Identifiers is given in RFC2396.

NOTE A formal description and implementation of UTF-8 is given in the Unicode Standard, Version 2.0, Appendix A. In UTF-8, characters are encoded
using sequences of 1 to 6 octets. The only octet of a "sequence" of one has the higher-order bit set to 0, the remaining 7 bits being used to encode the
character value. In a sequence of n octets, n>1, the initial octet has the n higher-order bits set to 1, followed by a bit set to 0. The remaining bits of that
octet contain bits from the value of the character to be encoded. The following octets all have the higher-order bit set to 1 and the following bit set to 0,
leaving 6 bits in each to contain bits from the character to be encoded. The possible UTF-8 encodings of ECMAScript characters are:

‘ Lt Mot Representation

Value

1st Octet ‘ 2nd Octet ‘ 3rd Octet ‘ 4th Octet

file://localhost/Work/es4/spec/library.html 07/11/08 11:45:54

ECMAScript 4th Edition -- Predefined Types and Objects

16

8 Where

uuuuu = vvvyv + 1

0x0000 00000000

i 0zzzzz722 02222222

0x007F

0x0080

. OO(Z)SSZYZ);}, 110yyyyy 10zzzzzz

0x07FF vy

0x0800 XXX

. ZZZZyZyZy 1110xxxx 10yyyyyy 10222222
0xD7FF vy

0xD800

0xDBEF 110110vv

followed VVWWWWXX

by followed by 11110uuu 10uuwwww 10xxyyyy 10zzzz27
0xDC00 110111yy

) yyZ77777.

0xDFFF

0xD800

0xDBFF

not causes

followed URIError

by

0xDC00

0xDFFF

0xDC00

) causes

0xDFFE URIError

0xE000 XXX

i ZZZZYZYZY 1110xxxx 10yyyyyy 10zzzz2z
0XFFFF vy

9 to account for the addition of 0x 10000 as in section 3.7, Surrogates of the Unicode Standard version 2.0.

10 The range of code point values 0xD800-0xDFFF is used to encode surrogate pairs; the above transformation combines a
UCS-2 surrogate pair into a UCS-4 representation and encodes the resulting 21-bit value in UTF-8. Decoding reconstructs

the surrogate pair.

11 The helper functions encode and decode, defined above, use the helper functions toUTF 8 and £romUTF 8 to convert
code points to UTF-8 sequences and to convert UTF-8 sequences to code points, respectively.

helper function toUTF8(v) {

if (v <= 0x7F)

return [Vv];

if (v <= 0x7FF)

return [0xCO | ((v >> 6) & O0x3F),

file://localhost/Work/es4/spec/library.html

07/11/08 11:45:54

ECMAScript 4th Edition -- Predefined Types and Objects 17

12

0x80 | (v & 0x3F)];
if (v <= 0xD7FF || v >= 0xXE000 && v <= OxXFFFF)
return [O0xXEO ((v >> 12) & 0xOF),
0x80 ((v >> 6) & 0x3F),
0x80 (v & 0x3F)];
if (v >= 0x10000)
return [OxFO ((v >> 18) & 0x07),
0x80 ((v >> 12) & 0x3F),
0x80 ((v >> 6) & 0x3F),
0x80 (v & 0x3F)];
throw URIError (/* Unconvertible code */);

}

helper function fromUTF8(octets) {
let B = octets[0];

let Vv;

if ((B & 0x80) == 0)
V = B;

else if ((B & 0xEQ) == 0xCO)
V = B & 0x1F;

else if ((B & 0xF0) == O0xEO0)
V = B & 0x0F;

else if ((B & 0xF8) == 0xFO0)

V =B & 0x07;
for (let j=1 ; j < octets.length ; j++)
V = (V<< 6) | (octets[j] & O0x3F);
return V;

}
Several helper strings are defined based on the grammar shown previously:
helper const uriReserved = ";/?:Q&=+$,";

helper const uriAlpha = "abcdefghijklmnopgrstuvwxyzABCDEFGHIJKLMNOPQRSTUVWXYZ";

helper const uriDigit "0123456789";
helper const uriMark = "— .!~*'()";

helper const uriUnescaped = uriAlpha + uriDigit + uriMark;

3.4.20.1 intrinsic:decodeURI (encodedURI)

Description

The intrinsic decodeURI function computes a new version of a URI in which each escape sequence and UTF-8 encoding
of the sort that might be introduced by the encodeURI function is replaced with the character that it represents. Escape
sequences that could not have been introduced by encodeURI are not replaced.

Returns
The intrinsic decodeURT function returns a decoded string.

Implementation

intrinsic const function decodeURI (encodedURI: string)
decode(encodedURI, uriReserved + "#");

NOTE The character "#" is not decoded from escape sequences even though it is not a reserved URI character.

3.4.20.2 decodeURI (encodedURI)

Description
The decodeURI function converts its argument to string, then calls its intrinsic counterpart.

Returns
The decodeURI function returns a decoded string.

Implementation

public function decodeURI (encodedURTI)
intrinsic::decodeURI (string(encodedURI));

3.4.20.3 intrinsic:decodeURIComponent (encodedURIComponent)

Description

file://localhost/Work/es4/spec/library.html 07/11/08 11:45:54

ECMAScript 4th Edition -- Predefined Types and Objects 18

1 The intrinsic decodeURIComponent function computes a new version of a URI in which each escape sequence and
UTF-8 encoding of the sort that might be introduced by the encodeURIComponent function is replaced with the
character that it represents.

Returns
2 The intrinsic decodeURIComponent function returns a decoded string.

Implementation

intrinsic const function decodeURIComponent (encodedURIComponent)
decode(encodedURIComponent, "");

3.4.204 decodeURIComponent (encodedURIComponent)

Description
1 The decodeURIComponent function converts its argument to string, then calls its intrinsic counterpart.

Returns
2 The decodeURIComponent function returns a decoded string.

Implementation

public function decodeURIComponent (encodedURIComponent)
intrinsic::decodeURIComponent (string(encodedURIComponent));

3.4.20.5 intrinsic:encodeURI (uri)

Description

1 The intrinsic encodeURT function computes a new version of a URI in which each instance of certain characters is
replaced by one, two, three, or four escape sequences representing the UTF-8 encoding of the character.

Returns
2 The intrinsic encodeURT function returns a encoded string.

Implementation
intrinsic const function encodeURI(uri: string): string

encode(uri, uriReserved + uriUnescaped + "#")

NOTE The character "#" is not encoded to an escape sequence even though it is not a reserved or unescaped URI character.

3.4.20.6 encodeURI (uri)

Description
1 The encodeURI function converts its argument to string, then calls its intrinsic counterpart.

Returns
2 The encodeURI function returns a encoded string.

Implementation

public function encodeURI (uri)
intrinsic::encodeURI (string(uri));

3.4.20.7 intrinsic:encodeURIComponent (uriComponent)
Description

1 The intrinsic encodeURIComponent function computes a new version of a URI in which each instance of certain
characters is replaced by one, two, three, or four escape sequences representing the UTF-8 encoding of the character.

Returns
2 The intrinsic encodeURIComponent function returns a encoded string.

Implementation

intrinsic const function encodeURIComponent (uriComponent: string): string
encode(uri, uriReserved);

3.4.20.8 encodeURIComponent (uriComponent)

Description
1 The encodeURIComponent function converts its argument to string, then calls its intrinsic counterpart.

Returns

file://localhost/Work/es4/spec/library.html 07/11/08 11:45:54

ECMAScript 4th Edition -- Predefined Types and Objects 19

2 The encodeURIComponent function returns a encoded string.
Implementation

public function encodeURIComponent (uriComponent)
intrinsic::encodeURIComponent (string(uriComponent));

3.4.21 intrinsic::hashcode (x)

Description
1 The intrinsic hashcode function computes a numeric value for its argument such that if two values v1 and v2 are equal by
the operator intrinsic: :===then hashcode(v1) is numerically equal to hashcode(v2).

2 The hashcode of any value for which isNaN returns true is zero.
3 The hashcode computed for an object does not change over time.

Returns
4 The intrinsic hashcode function returns a nonnegative integer below 232,

Implementation

intrinsic const function hashcode(o): double {
switch type (o) {
case (x: null)
case (x: undefined)
case (x: AnyBoolean)
case (x: AnyNumber)
case (x: AnyString)
case (xX: Namespace)
case (x: Name)
case (x: *)

}

return 0 }

return 0 }

return Number(x) }

return intrinsic::toUint(x) }
return stringHash(x) }
return namespaceHash(x) }
return nameHash(x) }

return objectHash(x) }

AN A A A A S A A

}

5 The informative functions stringHash, namespaceHash, nameHash, and objectHash compute hash values for
strings, namespaces, names, and arbitrary objects, respectively. They can take into account their arguments' immutable
structure only.

6 The implementation should strive to compute different hashcodes for values that are not the same by intrinsic: : ===,
as the utility of this function depends on that property. (The user program should be able to expect that the hashcodes of
objects that are not the same are different with high probability.)

NOTE A typical implementation of Str ingHash will make use of the string's character sequence and its length.

NOTE A typical implementation of Obj ectHash may make use of the object's address in memory if the object, or it may maintain a separate table
mapping objects to hash codes.

IMPLEMENTATION NOTE The intrinsic hashcode function should not return pointer values cast to integers, even in implementations that do
not use a moving garbage collector. Exposing memory locations of objects may make security vulnerabilities in the host environment significantly worse.
Implementations -- in particular those which read network input -- should return numbers unrelated to memory addresses if possible, or at least use memory
addresses subject to some cryptographically strong one-way transformation, or sequence numbers, cookies, or similar.

3.5 Class and Interface Properties of the Global Object

1 The class properties of the global object are defined in later sections of this Standard:

e The Object class is defined in section

e The Function class is defined in section

e The Name class is defined in section

e The Namespace class is defined in section
e The Array class is defined in section

e The String and string classes are defined in sections [class String| and [class string], respectively.

e The Boolean and boolean classes are defined in sections [class Boolean| and [class boolean|, respectively.

e The Number, double, and decimal classes are defined in sections [class Number], [class doublé], and [class
decimal|, respectively.

e The Date class is defined in section

e The RegExp class is defined in section
e The Map class is defined in section

e The Vector class is defined in section

file://localhost/Work/es4/spec/library.html 07/11/08 11:45:54

ECMAScript 4th Edition -- Predefined Types and Objects 20

e The Error class and its subclasses EvalError, RangeError, ReferenceError, SyntaxError,
TypeError, and URIError are defined in sections [class Errot, [class EvalErrot, [class RangeError], [class
ReferenceError, [class SyntaxError], [class TypeError, and [class URIError], respectively.

3.6 Type Properties on the Global Object
3.6.1 Enumerableld

1 The type EnumerableId is a union type of all the nominal types that are treated as property names by the iteration
protocol and the pre-defined objects:

__ES4__ type EnumerableId = (int|uint|string|Name);

FIXME Removed int and uint from this type if/when we agree that that's the right thing.

3.6.2 AnyNumber

1 The type AnyNumber is a union type of all the nominal types that are treated as numbers by the language:

__ES4__ type AnyNumber = (double|decimal|Number);

3.6.3 AnyString

1 The type AnyStringis a union type of all the nominal types that are treated as strings by the language:

__ES4__ type AnyString = (string|String);

3.6.4 AnyBoolean

1 The type AnyBoolean is a union type of all the nominal types that are treated as booleans by the language:

__ES4__ type AnyBoolean = (boolean|Boolean);

3.6.5 Callable

1 Thetype Callable is a record type describing any object that can be called as a function:

__ES4__ type Callable = { meta::invoke: * }

4 The class Object

1 Theclass Object is a dynamic non-final class that does not subclass any other objects: it is the root of the class hierarchy.
2 All values in ECMAScript except undefined and null are instances of the class Object or one of its subclasses.

NOTE Host objects may not be instances of Object or its subclasses, but must to some extent behave as if they are (see [Host objects]).

4.1 Synopsis
1 The class Object provides this interface:

public dynamic class Object

{
public function Object(value=undefined) ..
static meta function invoke(value=undefined) ..

static public const length =1

intrinsic function toString() : string ..

intrinsic function toLocaleString() : string ..

intrinsic function valueOf() : Object ..

intrinsic function hasOwnProperty(name: EnumerableId): boolean ..

intrinsic function isPrototypeOf(value): boolean ..

intrinsic function propertyIsEnumerable(name: EnumerableId): boolean ..

intrinsic function __ defineProperty_(name: EnumerableId, value,
enumerable:boolean=true, removable:boolean=true, writable:boolean=true): void ..

}

file://localhost/Work/es4/spec/library.html 07/11/08 11:45:54

ECMAScript 4th Edition -- Predefined Types and Objects 21

2 The Object prototype object provides these direct properties:

toString: function () .

toLocaleString: function () ..

valueOf: function () ..

hasOwnProperty: function (name) ..

isPrototypeOf: function (value) ..

propertyIsEnumerable: function (name) ..

__defineProperty_ : function (name, value, enumerable=undefined,

removable=undefined, writable=undefined) ..

FIXME It is likely that _defineProperty_ should become a static method on the Object object and that its parameters should be
passed in some other way, for example as individual values fetched from Object (Object . WRITABLE, and so on) or as a set of bits or'ed
together from bit values fetched from Object.

3 The Object prototype object is itself an instance of the class Object, with the exception that the value of its [
[Prototype]] property is null.

4.2 Methods on the Oobject class object

4.2.1 new Object (value=...)

Description
1 When the Object constructor is called with an argument value (defaulting to undefined) as part of a new expression, it
transforms the value to an object in a way that depends on the type of value.

Returns
2 The Object constructor returns an object (an instance of Object or one of its subclasses, or a host object).

NOTE The Object constructor is the only constructor function defined on a class in the language whose result may be a value of a different class than
the one in which the constructor is defined.
Implementation

3 The Object constructor can't be expressed as a regular ECMAScript constructor. Instead it is presented below as a helper
function makeObject that the ECMAScript implementation will invoke when it evaluates new Object.

4 The helper function makeObject only is invoked on native ECMAScript values. If new Object is evaluated on a host
object, then actions are taken and a result is returned in an implementation dependent manner that may depend on the host
object.

helper function makeObject(value=undefined) {
switch type (value) {
case (s: string) {
return new String(s);
}

case (b: boolean) {
return new Boolean(b);

case (n: (int|uint|double|decimal)) {
return new Number(n);
}

case (x: (null|undefined)) {
return magic::createObject();
}

case (o: Object) {
return o;
}

}
}

4.2.2 Object (value=...)

Description
1 When the Object class object is called as a function with zero or one arguments it performs a type conversion.

Returns
2 Itreturns the converted value.

Implementation

static meta function invoke(value=undefined)
new Object(value);

file://localhost/Work/es4/spec/library.html 07/11/08 11:45:54

ECMAScript 4th Edition -- Predefined Types and Objects 22

4.3 Methods on Object instances

1 The intrinsic methods on Object instances delegate to private methods that are also called by the prototype methods.

4.3.1 intrinsic:toString ()

Description
1 The intrinsic toString method converts the this object to a string.

Returns

2 The intrinsic toString method returns the concatenationof " [", "object", a single space character (U+0032), the
class name of the object,and "]".

Implementation

intrinsic function toString() : string
private::toString();

private function toString(): string
"[object " + getClassName() + "1";

3 The helper function getClassName returns the name for the class. This method is overridden in some of the pre-defined
classes in order to provide backward compatibility with the 3rd Edition of this Standard: It is overridden by the class Error.

helper function getClassName()
getClassName(this);

4 The function helper: : getClassName extracts the class name from the object. See |helper: getClassName|.

4.3.2 intrinsic::toLocaleString ()

Description
1 The intrinsic toLocaleString method calls the public toString method on the this object.

NOTE This method is provided to give all objects a generic toLocaleString interface, even though not all may use it. Currently, Array,
Number, and Date provide their own locale-sensitive toLocaleString methods.

NOTE The first parameter to this function is likely to be used in a future version of this standard; it is recommended that implementations do not use this
parameter position for anything else.

Returns
2 The intrinsic toLocaleString method returns a string.

Implementation

intrinsic function tolLocaleString() : string
private::toLocaleString();

private function toLocaleString()
this.toString();

4.3.3 intrinsic:valueOf ()

Description
1 The intrinsic valueOf method returns its this value.

2 If the object is the result of calling the Object constructor with a host object (see [Host objects|), it is implementation-defined
whether valueOf returns its this value or another value such as the host object originally passed to the constructor.

Returns
3 The intrinsic valueOf method returns an object value.

Implementation

intrinsic function valueOf() : Object
private::valueOf();

private function valueOf(): Object
this;

4.3.4 intrinsic::hasOwnProperty (name)

Description

file://localhost/Work/es4/spec/library.html 07/11/08 11:45:54

ECMAScript 4th Edition -- Predefined Types and Objects 23

1

The intrinsic hasOwnProperty method determines whether the this object contains a property with a certain name,
without considering the prototype chain.

NOTE Unlike [[HasProperty]] (see [HasProperty-defn|), this method does not consider objects in the prototype chain.

Returns
The intrinsic hasOwnProperty method returns true if the object contains the property, otherwise it returns false.

Implementation

intrinsic function hasOwnProperty(name: EnumerableId): boolean
hasOwnProperty(this, name);

private function hasOwnProperty(name: EnumerableId): boolean
hasOwnProperty(this, name);

The function helper: : hasOwnProperty tests whether the object contains the named property on its local property list
(the prototype chain is not considered). See [helper:hasOwnProperty].

The helper function toEnumerableId returns its argument if it is one of the member types of EnumerableId (int,
uint, string, and Name) and otherwise converts the argument to string.

helper function toEnumerableId(x) {
switch type (x) {
case (x: EnumerableId) { return x; }
case (x: *) { return string(x); }

}

4.3.5 intrinsic:isPrototypeOf (value)

Description
The intrinsic isPrototypeOf method determines whether its this object is a prototype object of the argument value.

Returns

The intrinsic isPrototypeOf method returns true if the this object is on the prototype chain of value, otherwise it
returns false.

Implementation

intrinsic function isPrototypeOf (value): boolean
private::isPrototypeOf (value);

private function isPrototypeOf (value): boolean {
if (!(value is Object))
return false;

let obj = value;
while (true) {
obj = getPrototype(obj);

if (obj === null || obj === undefined)
return false;
if (obj === this)

return true;
}

The function helper: : getPrototype extracts the [[Prototype]] property from the object. See
[helper: getPrototypel.

4.3.6 intrinsic:propertylsEnumerable (name)

Description

The intrinsic propertyIsEnumerable method retrieves the enumerability flag for a property with a certain name on the
this object, without considering the prototype chain.

Returns

The intrinsic propertyIsEnumerable method returns false if the property does not exist on the this object;
otherwise it returns the value of the enumerability flag.

Implementation

intrinsic function propertyIsEnumerable(name: EnumerableId): boolean
private::propertyIsEnumerable(name);

file://localhost/Work/es4/spec/library.html 07/11/08 11:45:54

ECMAScript 4th Edition -- Predefined Types and Objects 24

private function propertyIsEnumerable(name) {
if (!hasOwnProperty(this, name))
return false;
return !getPropertyIsEnumerable(this, name);

}

3 The function helper: : hasOwnProperty tests whether the object contains the named property on its local property list.
See |helper:hasOwnProperty].

4 The function helper: : getPropertyIsDontEnum gets the DontEnum flag of the property. See
[helper: getPropertylsDontEnum|.

4.3.7 intrinsic::__defineProperty__
(name, value, enumerable=..., removable=..., writable=...)

Description

1 Theintrinsic __defineProperty _ method creates a new dynamic property named name on this object, giving it the
value value and attributes determined by the parameters enumerable, removable, and writable. If the property already exists,
or if a non-writable property with the same name exists on an object in the prototype chain of this object, then a TypeError
exception is thrown.

NOTE The name ___defineProperty (with the leading and trailing underscores) has been chosen in order to minimize the risk of name
collisions with existing content on the web.

IMPLEMENTATION NOTE The name __defineProperty__ mirrors the names of the non-standard methods ___defineGetter
__and _defineSetter __that are provided by some implementations. Those implementations may wish to extend the non-standard methods so
that they provide control of at least enumerability and deletability in a manner compatible with _defineProperty_.

Returns
2 Theintrinsic __defineProperty method returns nothing.

Implementation

intrinsic function _ defineProperty_(name: Enumerableld, value, enumerable:boolean=true,
removable:boolean=true, writable:boolean=true): void
private:: defineProperty (name, value, enumerable, removable, writable);

private function __ defineProperty (name, value, enumerable, removable, writable) {
if (hasOwnProperty(this, name))
throw new TypeError(/* Property exists */);

let obj = getPrototype(this);
while (obj != null) {
if (hasOwnProperty(obj, name) && !getPropertyIsWritable(obj, name))
throw new TypeError(/* non-Writable property in prototype chain */);
obj = getPrototype(obj);
}

this[name] = value;
setPropertyIsEnumerable(this, name, enumerable);
setPropertyIsRemovable(this, name, removable);
setPropertyIswWritable(this, name, writable);

}

3 The function helper: : hasOwnProperty tests whether the object contains the named property on its local property list.
See |helper:hasOwnProperty|.

4 The function helper: : getPrototype extracts the [[Prototype]] property from the object. See
[helper: getPrototypel.

5 The functions helper: : getPropertyIsDontEnum, helper: :getPropertyIsDontDelete, and
helper: :getPropertyIsReadOnly retrieve the attribute flags of the property. See |helper: getPropertyIsDontEnum),
[helper: getPropertylsDontDeletel, and [helper: getPropertylsReadOnly|.

6 The functions helper: : setPropertyIsDontEnum, helper: : setPropertyIsDontDelete, and
helper: : setPropertyIsReadOnly set the attribute flags of the property. See [helper:setPropertylsDontEnum),
[helper:setPropertylsDontDelete], and [helper:setProperty[sReadOnly].

4.4 Methods on the Object prototype object
Description

1 The methods on the Object prototype object all perform simple type adjustments and then perform the same actions as the
corresponding intrinsic methods.

file://localhost/Work/es4/spec/library.html 07/11/08 11:45:54

ECMAScript 4th Edition -- Predefined Types and Objects 25

Returns
2 The prototype methods return what their corresponding intrinsic methods return.

Implementation

public prototype function toString()
this.private::toString();

public prototype function toLocaleString()
this.private::toLocaleString();

public prototype function valueOf()
this.private::valueOf();

public prototype function hasOwnProperty(name)
this.private: :hasOwnProperty (toEnumerableId(name));

public prototype function isPrototypeOf (value)
this.private::isPrototypeOf (value);

public prototype function propertyIsEnumerable(name)
this.private::propertyIsEnumerable(toEnumerableId(name));

public prototype function __ defineProperty (name, value, enumerable=undefined,
removable=undefined, writable=undefined)

this.private:: defineProperty (toEnumerableId(name),
value,
enumerable === undefined ? true : boolean(enumerable)
4
removable === undefined ? true : boolean(removable),
writable === undefined ? true : boolean(writable));

5 The class Function

1 Theclass Function is a dynamic, non-final, direct subclass of Object (see [class Object|).
2 All objects defined by function definitions or expressions in ECMAScript are instances of the class Function.

3 Not all objects that can be called as functions are instances of subclasses of the Function class, however. Any object that
has ameta: : invoke property can be called as a function.

4 The structural type Callable (see type:Callable)) matches every object that has a meta: : invoke property.

5.1 Synopsis
1 The class Function provides the following interface:
dynamic class Function extends Object

public function Function(...args) ..
static meta function invoke(...args) ..

static public function apply(fn: Callable, thisArg: Object=null, argArray:
Object=null) ..

static public function bind(method: Callable, thisObj: Object, ...args) ..

static public function call(fn: Callable, thisObj: Object=null, ...args) ..

static public const length =1

meta final function invoke(..) ..

override intrinsic function toString() : string ..

intrinsic function apply(thisArg: Object=null, argArray: Object=null) ..

intrinsic function bind(thisObj: Object, ...args) ..

intrinsic function call(thisObj: Object=null, ...args) ..

public const length = ..
public var prototype = ..
}

2 The Function prototype object provides these direct properties:
meta::invoke: function ()

length: 0
toString: function ()

file://localhost/Work/es4/spec/library.html 07/11/08 11:45:54

file://localhost/Work/es4/spec/library.html

ECMAScript 4th Edition -- Predefined Types and Objects

apply: function(thisArg, argArray) ..
bind: function(thisArg, ...args)
call: function(thisArg, ...args)

5.2 Methods on the Function class object

5.2.1 new Function (p1, p2, ..., pn, body)

Description
When the Function constructor is called with some arguments as part of a new expression, it creates a new Function

nn

instance whose parameter list is given by the concatenation of the p; arguments separated by "," and whose executable code
is given by the body argument.

There may be no p; arguments, and body is optional too, defaulting to the empty string.

If the first character of the comma-separated concatenation of the p, is a left parenthesis then the list of parameters must be
parseable as a F\ ormalParameZerListop . enclosed in parentheses and optionally followed by a colon and a return type.

Otherwise, the list of parameters must be parsable as a F ormalParamelerListop -

If the list of parameters is not parseable as outlined in the previous two paragraphs, or if the body is not parsable as a
FunctionBody, then a SyntaxError exception is thrown (see the grammar in section ECMAScript grammar)).

Regardless of the form of the parameter list, it may include type annotations, default parameter values, and rest arguments.

FIXME It appears likely that the Function constructor needs to accept a version parameter so that the keyword set can be controlled, as is the case
for eval.

Returns
The Function constructor returns a new Function instance.

Implementation

public function Function(...args)
createFunction(args);

helper function createFunction(args) {
let parameters = "";
let body = "";
if (args.length > 0) {
body = args[args.length-1];
args.length = args.length-1;
parameters = args.join(",");

}
body = string(body);
initializeFunction(this, _ ES4 ::global, parameters, body);

}

The magic function initializeFunction initializes the function object this from the list of parameters and the body,
as specified in section [translation: FunctionExpression|. The global object is passed in as the scope parameter.

A prototype object is automatically created for every function, to provide for the possibility that the function will be used
as a constructor.

NOTE 1t is permissible but not necessary to have one argument for each formal parameter to be specified. For example, all three of the following
expressions produce the same result:

n_n

new Function("a", "b", "c", "return atb+c")

new Function("a, b, ¢", "return atb+c")

new Function("a,b", "c", "return a+b+c")

5.2.2 Function (p1, p2, ..., pn, body)

Description
When the Function class object is called as a function it creates and initialises a new Function object. Thus the
function call Function(...) is equivalent to the object creation expression new Function(..) with the same arguments.

Returns
The Function class object called as a function returns a new Function instance.

26

07/11/08 11:45:54

ECMAScript 4th Edition -- Predefined Types and Objects 27

Implementation

meta static function invoke(...args)
new Function(...args);

FIXME Ticket #357: That particular definition makes use of the prefix "spread" operator, which has not yet been formally accepted into the language.

5.2.3 apply (fn, thisArg=..., argArray=...)

Description
1 The static apply method takes arguments fn, thisArg, and argArray and invokes fn in the standard manner, passing thisArg
as the value for this and the members of argArray as the individual argument values.

Returns
2 The apply method returns the value returned by fn.

Implementation

static public function apply(fn: Callable, thisArg: Object=null, argArray: Object=null) {
if (argArray === null)
argArray = [];
return apply(fn, thisArg, argArray);

NOTE The magic apply function performs the actual invocation (see). This code will eventually change to use the prefix "spread”
operator.

5.2.4 bind (fn, thisArg=..,, ...args)

Description
1 The static bind method takes arguments fn, thisArg, and optionally some args.

Returns
2 The bind method returns a Function object that accepts some arguments moreargs and which calls fi with thisArg as the
this object and the values of args and moreargs as actual arguments.

Implementation

static public function bind(method: Callable, thisObj: Object, ...args)
bind(method, thisObj, args);

static helper function bind(method, thisObj, args) {
return function (...moreargs)
method.apply(thisObj, args.concat(moreargs));

5.2.5 call (fn, thisArg=..., ...args)

Description
1 The static call method takes arguments fn and thisArg and optionally some args and invokes fn in the standard manner,
passing thisArg as the value for this and the members of args as the individual argument values.

Returns
2 The call method returns the value returned by fn.

Implementation

static public function call(fn: Callable, thisObj: Object=null, ...args)
Function.apply(fn, thisObj, args);

5.3 Methods on Function instances

5.3.1 meta:invoke (...)

Description
1 The meta method invoke is specialized to the individual Function object. When called, it evaluates the executable code
for the function.

2 The meta method invoke is typically called by the ECMAScript implementation as part of the function invocation and
object construction protocols. When a function or method is invoked, the invoke method of the function or method object
provides the code to run. When a function is used to construct a new object, the invoke method provides the code for the
constructor function.

file://localhost/Work/es4/spec/library.html 07/11/08 11:45:54

ECMAScript 4th Edition -- Predefined Types and Objects 28

3 The signature of the meta method invoke is determined when the Function instance is created, and is determined by the
text that defines the function being created.

NOTE The meta method invoke is £inal; therefore subclasses can add properties and methods but can't override the function calling behavior.

FIXME (Ticket #173.) While it is necessary that the 1nvoke method is completely magic in Function instances, it's not clear that it needs to be
magic for instances of subclasses of Function, because these can be treated like other objects that have 1nvoke methods (and which already work
just fine in the reference implementation). Therefore it should not be £inal.

Returns

4 The meta method invoke returns the value produces by the first return statement that is evaluated during the evaluation
of the executable code for the function represented by this Function object.

5.3.2 intrinsic:toString ()

Description

1 The intrinsic toString method converts the executable code of the function to a string representation. This representation
has the syntax of a FunctionDeclaration or FunctionExpression. Note in particular that the use and placement of white space,
line terminators, and semicolons within the representation string is implementation-dependent.

COMPATIBILITY NOTE ES3 required the syntax to be that of a FunctionDeclaration only, but that made it impossible to produce a string
representation for functions created from unnamed function expressions.

Returns
2 The intrinsic toString method returns a string.

Implementation

override intrinsic function toString() : string
private::toString();

3 The private function toString is implementation-dependent.

5.3.3 intrinsic:apply (thisObj=..., args=...)

Description
1 The intrinsic apply method calls the static apply method with the value of this as the first argument.

Returns
2 The intrinsic apply method returns the result of the static apply method.

Implementation

intrinsic function apply(thisArg: Object=null, argArray: Object=null)
Function.apply(this, thisArg, argArray);

5.3.4 intrinsic:bind (thisObj=..., ...args)

Description
1 The intrinsic bind method calls the static bind method with the value of this as the first argument.

Returns
2 The intrinsic bind method returns the result of the static bind method.

Implementation

intrinsic function bind(thisObj: Object, ...args)
Function.bind(this, thisObj, args);

5.3.5 intrinsic:call (thisObj=..,, ...args)

Description
1 The intrinsic call method calls the static apply method with the value of this as the first argument.

Returns
2 The intrinsic call method returns the result of the static call method.

Implementation

intrinsic function call(thisObj: Object=null, ...args)
Function.apply(this, thisObj, args);

file://localhost/Work/es4/spec/library.html 07/11/08 11:45:54

ECMAScript 4th Edition -- Predefined Types and Objects 29

5.4 Value properties of Function instances

5.4.1 length

1 The value of the constant Length property is the number of non-rest arguments accepted by the function.
2 The value of the 1length property is an integer that indicates the "typical" number of arguments expected by the function.
However, the language permits the function to be invoked with some other number of arguments. The behaviour of a

function when invoked on a number of arguments other than the number specified by its length property depends on the
function.

5.4.2 prototype
1 The initial value of the prototype property is a fresh Object instance.

2 The value of the prototype property is used to initialise the internal [[Prototype]] property of a newly created
object before the Function instance is invoked as a constructor for that newly created object.

5.5 Invoking the Function prototype object
1 When the Function prototype object is invoked it accepts any arguments and returns undefined:

public prototype meta function invoke(...args)
undefined;

5.6 Methods on the Function prototype object

1 The methods on the Function prototype object perform simple type adjustments and then perform the same actions as
their intrinsic counterparts:

public prototype function toString(this: Function)
this.private::toString();

public prototype function apply(this: Callable, thisArg=undefined, argArray=undefined)

Function.apply(this,
thisArg === undefined ? null : thisArg,
argArray === undefined ? null : argArray);

public prototype function bind(this: Callable, thisObj, ...args)
Function.bind(this, thisObj, args);

public prototype function call(this: Callable, thisObj=undefined, ...args)
Function.apply(this,

thisObj === undefined ? null : thisObj,
args);

5.7 Value properties on the Function prototype object

5.7.1 length

1 The initial value of the 1ength prototype property is 0.

Implementation
2 public prototype var length : double = 0;

COMPATIBILITY NOTE The "length" property of the prototype is not obviously required by the 3rd Edition of this Standard, but MSIE, Firefox,
Opera, and Safari all provide it.

6 The class Name

1 The class Name is a final, nullable, non-dynamic, direct subclass of Object that reflects a property name as a pair of
Namespace and string values.

COMPATIBILITY NOTE The Namespace class is new in the 4th Edition of this Standard.

6.1 Synopsis

1 The class Name provides the following interface:

file://localhost/Work/es4/spec/library.html 07/11/08 11:45:54

ECMAScript 4th Edition -- Predefined Types and Objects 30

__ES4__ final class Name extends Object

{
public function Name(...args) ..
static meta function invoke(...args): Name ..
static public const length = 2
override intrinsic function toString() : string ..
public const qualifier: Namespace
public const identifier: string

}

2 The Name prototype object provides the following direct properties:

toString: function (this: Name) ..

6.2 Operators

1 Two Name objects are equal (by == and ===) if and only if their qualifier properties are equal and their identifier
properties are equal (by the operator used to compare the Name objects).

6.3 Methods on the Name class object

6.3.1 new Name (x)

Returns
1 When the Name constructor is called with one argument x then x must be either a Name object, a string,a String, or an

integer in the range O through 232.1.If x is a Name object then x is returned. Otherwise x is converted to a string and a Name
object is returned whose qualifier is the public namespace and whose identifier is the converted value of x.

Implementation
public function Name(id) ..

6.3.2 new Name(Xx,y)

Returns

1 When the Name constructor is called with two arguments x and y it returns a Name object constructed from its arguments.
The value of x must be a Namespace object. The value of y mustbe a string,a String, or an integer in the range 0

through 232.1. The qualifier of the returned value is x. The identifier of the returned value is the value of y
converted to string.

Implementation
public function Name(ns: Namespace?, id) ..

6.3.3 Name (...args)

Description
1 The Name class object called as a function creates a Name object by invoking the Name constructor on its argument(s).

Returns
2 The Name class object called as a function returns a Name object.

Implementation

static meta function invoke(...args): Name!
new Name(...args);

6.4 Methods on Name instances

6.4.1 intrinsic:toString ()

Description
1 The intrinsic toString method converts this Name object to a string.

Returns
2 The intrinsic toString method returns a string.

file://localhost/Work/es4/spec/library.html 07/11/08 11:45:54

ECMAScript 4th Edition -- Predefined Types and Objects 31

Implementation

override intrinsic function toString() : string
private::toString();

private function toString() : string {
if (qualifier === public)

return identifier;
return string(qualifier) +

nWn

+ identifier;

}

6.5 Value properties of Name instances

6.5.1 qualifier

1 The qualifier property holds the namespace value for this Name object. If qualifier is null then the implied
namespace is the compatibility namespace noNS.

6.5.2 identifier

1 The identifier property holds the identifier value for this Name object. It is never null.

6.6 Methods on the Name prototype object

Description
1 The methods on the Name prototype object perform the same operations as their corresponding intrinsic methods perform.

Returns
2 The methods on the Name prototype object return what their corresponding intrinsic methods return.

Implementation

public prototype function toString(this : Name)
this.private::toString();

7 The class Namespace

1 The class Namespace is a final, non-dynamic, nullable, direct subclass of Object.

NOTE Namespace values can be created by N€W expressions in the user program or by the evaluation of a namespace definition, which
creates a new namespace and a constant binding for it.

COMPATIBILITY NOTE The Namespace class is new in the 4th Edition of this Standard.

7.1 Synopsis
1 The class Namespace provides the following interface:

__Es4_ final class Namespace extends Object

{ public function Namespace(name=undefined) ..
static meta function invoke(x) ..
static public const length =1
override intrinsic function toString(): string ..
) const name: (string|undefined) ..

2 The Namespace prototype object provides the following direct properties:
toString: function ()

7.2 Operators

1 The operators == and === compare forgeable Namespace objects by comparing their names as obtained by the name
accessor, see below. Forgeable namespaces with the same name are equal by those operators.

2 Inall other cases, Namespace objects are equal only to themselves.

file://localhost/Work/es4/spec/library.html 07/11/08 11:45:54

ECMAScript 4th Edition -- Predefined Types and Objects 32

7.3 Methods on the Namespace class object

7.3.1 new Namespace(name=...)

Returns
1 When the Namespace constructor is called with no arguments or with the argument undefined it returns a new unforgeable
Namespace object. The returned object is unequal to every previously existing Namespace object.

2 When the Namespace constructor is called with an argument name that is not undefined it converts name to string and
returns a new forgeable namespace whose name is the converted value.

Implementation
public function Namespace(name=undefined) ..

7.3.2 Namespace(x)

Returns
1 The Namespace class object called as a function returns a Namespace object. If x is a Namespace object then it is
returned. Otherwise a new Namespace object is constructed by invoking the Namespace constructor on x.

Implementation

static meta function invoke(x): Namespace! {
if (x is Namespace!)
return Xx;
return new Namespace(X);

}

7.4 Methods on Namespace instances

7.4.1 intrinsic:toString()

Description
1 The intrinsic toString method converts the Namespace object to a string. If the Namespace object is forgeable (it was
created with an explicit name) then the string returned by toString contains the name as a substring.

Returns
2 The toString method returns an implementation-defined string.

3 Suppose the intrinsic toString method is invoked on two namespaces N/ and N2 yielding strings 7/ and 72,
respectively. 71 and T2 are equal if and only if N/ is equal to N2 (by === or ==).

4 Suppose the intrinsic toString method is invoked on two different forgeable namespaces N/ and N2 created from strings

S1 and S2, yielding strings 7/ and 72, respectively. T/ and 72 have the same relationship (determined by the relational
operators) as S/ and S2.

7.5 Value Properties on Namespace instances

7.5.1 name

Description
1 If this Namespace object is a forgeable namespace then the value of the property name is the string name with which the
namespace was constructed.

2 If this Namespace object is an unforgeable namespace then the value of the property name is undefined.

7.6 Methods on the Namespace prototype object

Description
1 The methods on the Namespace prototype object delegate to their corresponding intrinsic methods.

Returns
2 The methods on the Namespace prototype object return what their corresponding intrinsic methods return.

Implementation

prototype function toString(this:Namespace)
this.intrinsic::toString()

file://localhost/Work/es4/spec/library.html 07/11/08 11:45:54

ECMAScript 4th Edition -- Predefined Types and Objects 33

8 The class Array

1 The class Object is a dynamic non-final subclass of Object (see [class Object)).

2 Array objects give special treatment to a certain class of property names. A property name that can be interpreted as an
unsigned integer less than 2321 is an array index.

3 A property name P (in the form of a string value) is an array index if and only if string(uint(P)) is equal to P and uint(P) is
not equal to 2321,

4 Every Array object has a length property whose value is always a nonnegative integer less than 232, The value of the
length property is numerically greater than the name of every property whose name is an array index; whenever a
property of an Array object is created or changed, other properties are adjusted as necessary to maintain this invariant.
Specifically, whenever a property is added whose name is an array index, the 1ength property is changed, if necessary, to
be one more than the numeric value of that array index; and whenever the 1ength property is changed, every property
whose name is an array index whose value is not smaller than the new length is automatically deleted. This constraint applies
only to properties of the Array object itself and is unaffected by length or array index properties that may be inherited
from its prototype.

5 The set of array elements held by any object (not just Array objects) are those properties of the object that are named by

array indices numerically less than the object's 1ength property. (If the object has no 1ength property then its value is
assumed to be zero, and the object has no array elements.)

8.1 Synopsis
1 The Array class provides the following interface:
dynamic class Array extends Object

function Array(...args) ..
static meta function invoke(...items) ..

static function concat(object/*: Object!*/, ...items): Array ..
static function every(object/*:0bject!*/, checker/*:function*/, thisObj:Object=null):

boolean ..

static function filter(object/*:0bject!*/, checker/*function*/, thisObj:Object=null):
Array ..

static function forEach(object/*:0bject!*/, eacher/*function*/, thisObj:Object=null):
void ..

static function indexOf(object/*:0bject!*/, value, from:AnyNumber=0): AnyNumber ..
static function join(object/*: Object!*/, separator: string=","): string ..
static function lastIndexOf(object/*:0bject!*/, value, from:AnyNumber=NaN): AnyNumber

static function map(object/*:0bject!*/, mapper/*:function*/, thisObj:Object=null):
Array ..

static function pop(object/*:0bject!*/) ..

static function push(object/*: Object!*/, ...args): double ..

static function reverse(object/*: Object!*/)/*: Object!*/ ..

static function shift(object/*: Object!*/) ..

static function slice(object/*: Object!*/, start: AnyNumber, end: AnyNumber, step:
AnyNumber) ..

static function some(object/*:0bject!*/, checker/*:function*/, thisObj:0bject=null):
boolean ..

static function sort(object/*: Object!*/, comparefn) ..

static function splice(object/*: Object!*/, start: AnyNumber, deleteCount:
AnyNumber, ...items): Array ..

static function unshift(object/*: Object!*/, ...items) : double ..

static const length = 1

override intrinsic function toString():string ..

override intrinsic function toLocaleString():string ..

intrinsic function concat(...items): Array ..

intrinsic function every(checker:Checker, thisObj:Object=null): boolean ..
intrinsic function filter(checker:Checker, thisObj:0Object=null): Array ..
intrinsic function forEach(eacher:Eacher, thisObj:Object=null): void ..
intrinsic function indexOf(value, from:AnyNumber=0): AnyNumber ..
intrinsic function join(separator: string=","): string ..

intrinsic function lastIndexOf(value, from:AnyNumber=NaN): AnyNumber ..
intrinsic function map (mapper:Mapper, thisObj:Object=null): Array ..
intrinsic function pop()

intrinsic function push(...args): double ..

intrinsic function reverse()/*: Object!*/ ..

intrinsic function shift()

intrinsic function slice(start: AnyNumber, end: AnyNumber, step: AnyNumber): Array ..

file://localhost/Work/es4/spec/library.html 07/11/08 11:45:54

ECMAScript 4th Edition -- Predefined Types and Objects

intrinsic function some(checker:Checker, thisObj:0Object=null): boolean ..
intrinsic function sort(comparefn:Comparator):Array ..

34

intrinsic function splice(start: AnyNumber, deleteCount: AnyNumber, ...items): Array ..

intrinsic function unshift(...items): double ..
function get length(): uint ..
function set length(len: uint): void ..

}

2 The Array prototype object provides these direct properties:

toString: function () ..,

toLocaleString: function () .. ,

concat: function (...items) ..,

every: function (checker, thisObj=null) .. ,
filter: function (checker, thisObj=null) .. ,
forEach: function (eacher, thisObj=null) .. ,
indexOf: function (value, from=0) .. ,

join: function (separator=",") ..,
lastIndexOf: function (value, from=Infinity) .. ,
map: function (mapper, thisObj=null) .. ,
pop: function () ..,

push: function (...items) .. ,

reverse: function () .. ,

shift: function () ..,

slice: function (start=0, end=Infinity) .. ,
some: function (checker, thisObj=null) .. ,
sort: function (comparefn=undefined) .. ,
splice: function (start, deleteCount, ...items) .. ,
unshift: function (...items) .. ,

length:

FIXME We've since also included reduce and reduceRight as static, intrinsic, and prototype methods.

8.2 Methods on the Array class object

1 The Array class provides a number of static methods for manipulating array elements: concat, every, filter,
forEach, indexOf, join, lastIndexOf, map, pop, push, reverse, shift,slice, some, sort, splice, and
unshift. These static methods are intentionally generic; they do not require that their object argument be an Array
object. Therefore they can be applied to other kinds of objects as well. Whether the generic Array methods can be applied

successfully to a host object is implementation-dependent.

COMPATIBILITY NOTE The static generic methods on the Array class are all new in 4th edition.

8.2.1 new Array (...items)

Description

1 When the Array constructor is called with some set of arguments items as part of a new Array expression, it initializes

the Array object from its argument values.

2 If there is exactly one argument of any number type, then its value is taken to be the initial value of the 1ength property.

The value must be a nonnegative integer less than 232,

3 If there are zero or more than one arguments, the arguments are taken to be the initial values of array elements, and there will

be as many elements as there are arguments.

Implementation

function Array(...items) {
if (items.length === 1) {
let item = items[0];
if (item is AnyNumber) ({

if (intrinsic::toUint(item) === item)
this.length = intrinsic::toUint(item);
else
throw new RangeError("Invalid array length");
}
else {
this.length = 1;
this[0] = item;
}
else {
this.length items.length;

for (let i=0, limit=items.length ; i < limit ; i++)
this[i] = items[i];

file://localhost/Work/es4/spec/library.html

07/11/08 11:45:54

ECMAScript 4th Edition -- Predefined Types and Objects 35

}

8.2.2 Array (..items)

Description
1 When Array class is called as a function rather than as a constructor, it creates and initialises a new Array object. Thus the
function call Array (...) is equivalent to the object creation expression new Array (..) with the same arguments.

Returns
2 The Array class called as function returns a new Array object.

Implementation
static meta function invoke(...items) {
if (items.length == 1)
return new Array(items[0]);
else
return items;

}

8.2.3 concat (object, ...items)

Description
1 The static concat method collects the array elements from object followed by the array elements from the additional items,
in order, into a new Array object. All the items must be objects.

Returns
2 The static concat method returns a new Array object.

Implementation

static function concat(object/*: Object!*/, ...items): Array
concat(object, items);

helper static function concat(object/*: Object!*/, items: Array): Array {
let out = new Array;

let function emit(x) {
if (x is Array) {
for (let i=0, limit=x.length ; i < limit ; i++)
out[out.length] = x[i];
}

else
out[out.length] = x;
}
emit(object);
for (let i=0, limit=items.length ; i < limit ; i++)
emit(items[i]);

return out;

}

3 The helper concat method is also used by the intrinsic and prototype variants of concat.

8.2.4 every (object, checker, thisObj=...)

Description
1 The static every method calls checker on every array element of object in increasing numerical index order, stopping as
soon as any call returns false.

2 Checker is called with three arguments: the property value, the property index, and object itself. The thisObj is used as the
this object in the call.

Returns
3 The static every method returns true if all the calls to checker returned true values, otherwise it returns false.

Implementation
static function every(object/*:0bject!*/, checker/*:function*/, thisObj:Object=null):
boolean {

if (typeof checker != "function")
throw new TypeError("Function object required to 'every'");

file://localhost/Work/es4/spec/library.html 07/11/08 11:45:54

ECMAScript 4th Edition -- Predefined Types and Objects

for (let i=0, limit=object.length ; i < limit ; i++) {
if (i in object)
if (!checker.call(thisObj, object[i], i, object))
return false;

}

return true;

8.2.5 filter (object, checker, thisObj=...)

Description
1 The static f£ilter method calls checker on every array element of object in increasing numerical index order, collecting all
the array elements for which checker returns a true value.

2 Checker is called with three arguments: the property value, the property index, and object itself. The thisObj is used as the
this object in the call.

Returns
3 The static f£ilter method returns a new Array object containing the elements that were collected, in the order they were
collected.

Implementation
static function filter(object/*:0bject!*/, checker/*function*/, thisObj:Object=null):
Array {

if (typeof checker != "function")
throw new TypeError("Function object required to 'filter'");

let result = [];
for (let i = 0, limit=object.length ; i < limit ; i++) {
if (i in object) {
let item = object[i];
if (checker.call(thisObj, item, i, object))
result[result.length] = item;
}
}
return result;

}
8.2.6 forEach (object, eacher, thisObj=...)

Description
1 The static forEach method calls eacher on every array element of object in increasing numerical index order, discarding
any return value of eacher.

2 Eacher is called with three arguments: the property value, the property index, and object itself. The thisObj is used as the
this object in the call.

Returns
3 The static forEach method does not return a value.

Implementation
static function forEach(object/*:0bject!*/, eacher/*function*/, thisObj:Object=null): void

{

if (typeof eacher != "function")
throw new TypeError("Function object required to 'forEach'");

for (let i=0, limit = object.length ; i < limit ; i++)

if (i in object)
eacher.call(thisObj, object[i], i, object);

8.2.7 indexOf (object, value, from=...)

Description
1 The static indexOf method compares value with every array element of object in increasing numerical index order, starting
at the index from, stopping when an array element is equal to value by the === operator.

2 Fromis rounded toward zero before use. If from is negative, it is treated as object.length+from

36

file://localhost/Work/es4/spec/library.html 07/11/08 11:45:54

ECMAScript 4th Edition -- Predefined Types and Objects 37

Returns
3 The static indexOf method returns the array index the first time value is equal to an element, or -1 if no such element is
found.

Implementation
static function indexOf(object/*:0bject!*/, value, from:AnyNumber=0): AnyNumber {
let len = object.length;

from = from < 0 ? Math.ceil(from) : Math.floor(from);
if (from < 0)
from = from + len;

while (from < len) {
if (from in object)
if (value === object[from])
return from;
from = from + 1;

return -1;

}
8.2.8 join (object, separator=...)

Description
1 The static join method concatenates the string representations of the array elements of object in increasing numerical index
order, separating the individual strings by occurrences of separator.

Returns
2 The static join method returns the complete concatenated string.

Implementation
static function join(object/*: Object!*/, separator: string=","): string {
let out = "";

for (let i=0, limit=intrinsic::toUint(object.length) ; i < limit ; i++) {
if (i > 0)
out += separator;
let x = object[i];
if (x !== undefined && x !== null)
out += string(x);

}

return out;

8.2.9 lastindexOf (object, value, from=...)

Description
1 The static LlastIndexOf method compares value with every array element of object in decreasing numerical index order,
starting at the index from, stopping when an array element is equal to value by the === operator.

2 Fromis rounded toward zero before use. If from is negative, it is treated as object.length+from

Returns
3 The static last IndexOf method returns the array index the first time value is equal to an element, or -1 if no such element

is found.

Implementation
static function lastIndexOf(object/*:Object!*/, value, from:AnyNumber=NaN): AnyNumber {
let len = object.length;

if (isNaN(from))
from = len - 1;
else {
from = from < 0 ? Math.ceil(from) : Math.floor(from);
if (from < 0)
from = from + len;
else if (from >= len)
from = len - 1;

}

while (from > -1) {
if (from in object)

file://localhost/Work/es4/spec/library.html 07/11/08 11:45:54

ECMAScript 4th Edition -- Predefined Types and Objects 38

if (value === object[from])
return from;
from = from - 1;

}

return -1;

}
8.2.10 map (object, mapper, thisObj=...)

Description
1 The static map method calls mapper on each array element of object in increasing numerical index order, collecting the
return values from mapper in a new Array object.

2 Mapper is called with three arguments: the property value, the property index, and object itself. The thisObj is used as the
this object in the call.

Returns
3 The static map method returns a new Array object where the array element at index i is the value returned from the call to
mapper on object[i].

Implementation
static function map(object/*:0bject!*/, mapper/*:function*/, thisObj:0bject=null): Array {

if (typeof mapper != "function")
throw new TypeError("Function object required to 'map'");

let result = [];
for (let i = 0, limit = object.length; i < limit ; i++)
if (i in object)
result[i] = mapper.call(thisObj, object[i], i, object);
return result;

}

8.2.11 pop (object)

Description
1 The static pop method extracts the last array element from object and removes it by decreasing the value of the 1ength
property of object by 1.

Returns
2 The static pop method returns the removed element.

Implementation

static function pop(object/*:0bject!*/) {
let len = intrinsic::toUint(object.length);

if (len != 0) {
len = len - 1;
let x = object[len];
delete object[len]
object.length = len;
return x;

else {

object.length = len;
return undefined;

}
8.2.12 push (object, ...items)

Description
1 The static push method appends the values in ifems to the end of the array elements of object, in the order in which they
appear, in the process updating the 1ength property of object.

Returns
2 The static push method returns the new value of the 1ength property of object.

Implementation

static function push(object/*: Object!*/, ...args): double
Array.push(object, args);

file://localhost/Work/es4/spec/library.html 07/11/08 11:45:54

ECMAScript 4th Edition -- Predefined Types and Objects 39

helper static function push(object/*:Object!*/, args: Array): double {
let len = intrinsic::toUint(object.length);

for (let i=0, limit=args.length ; i < limit ; i++)
object[len++] = args[i];

object.length = len;
return len;

}

3 The helper push method is also used by the intrinsic and prototype variants of push.

8.2.13 reverse (object)

Description
1 The static reverse method rearranges the array elements of object so as to reverse their order. The 1length property of
object remains unchanged.

Returns
2 The static reverse method returns object.

Implementation

static function reverse(object/*: Object!*/)/*: Object!*/ {
let len = intrinsic::toUint(object.length);
let middle = Math.floor(len / 2);

for (let k=0 ; k < middle ; ++k) {
let j = len - k - 1;
if (j in object) {
if (k in object)
[object[k], object[j]] = [object[]], object[k]];
else {
object[k] = object[]];
delete object[]];
}

else if (k in object) {
object[j] = object[k];
delete object[k];

else {
delete object[]]
delete object[k]

’
’

}

return object;

NOTE Property deletion is observable to objects that implement the meta : : delete method, and may not be omitted from this algorithm.

8.2.14 shift (object)

Description
1 The static shift method removes the element called 0 in object, moves the element at index i+/ to index i, and decrements
the length property of object by 1.

Returns
2 The static shift method returns the element that was removed.

Implementation
static function shift(object/*: Object!*/) ({
let len = intrinsic::toUint(object.length);
if (len == 0) {
object.length = 0;
return undefined;

}

let x = object[0];

for (let i = 1; i < len; i++)
object[i-1] = object[i];

delete object[len - 1];
object.length = len - 1;

file://localhost/Work/es4/spec/library.html 07/11/08 11:45:54

ECMAScript 4th Edition -- Predefined Types and Objects 40

return Xx;

8.2.15 slice (object, start=..., end=...)

Description
1 The static s1ice method extracts the subrange of array elements from object between start (inclusive) and end (exclusive)
into a new Array.

2 If start is negative, it is treated as object.length+start. If end is negative, it is treated as object.length+end.
In either case the values of start and end are bounded between O and object.length.

Returns
3 The static s1ice method returns a new Array object containing the extracted array elements.

Implementation

static function slice(object/*: Object!*/, start: AnyNumber, end: AnyNumber, step:
AnyNumber) {
let len = intrinsic::toUint(object.length);

step = int(step);
if (step == 0)
step = 1;

if (intrinsic::isNaN(start))

start = step > 0 2 0 : (len-1);
else

start = clamp(start, len);

if (intrinsic::isNaN(end))

end = step > 0 ? len : (-1);
else

end = clamp(end, len);

let out = new Array;
for (let i = start; step > 0 ? i < end : i > end; i += step)
out.push(object[i]);

return out;

}

helper function clamp(val: AnyNumber, len: double): double {
val = toInteger(val);
if (val < 0)
val += len;
return intrinsic::toUint(Math.min(Math.max(val, 0), len));

}
8.2.16 some (object, checker, thisObj=...)

Description
1 The static some method calls checker on every array element in object in increasing numerical index order, stopping as soon
as checker returns a true value.

2 Checker is called with three arguments: the property value, the property index, and the object itself. The thisObj is used as
the this object in the call.

Returns
3 The static some method returns true when checker returns a true value, otherwise returns false if all the calls to checker
return false values.

Implementation
static function some(object/*:0bject!*/, checker/*:function*/, thisObj:Object=null):
boolean {

if (typeof checker != "function")
throw new TypeError("Function object required to 'some'");

for (let i=0, limit=object.length; i < limit ; i++) {
if (i in object)
if (checker.call(thisObj, object[i], i, object))
return true;

file://localhost/Work/es4/spec/library.html 07/11/08 11:45:54

ECMAScript 4th Edition -- Predefined Types and Objects 41

return false;

8.2.17 sort (object, comparefn=...)

Description
1 The static sort method sorts the array elements of object, it rearranges the elements of object according to some criterion.

2 The sort is not necessarily stable (that is, elements that compare equal do not necessarily remain in their original order). If
comparefn is not undefined, it should be a function that accepts two arguments x and y and returns a negative value if x < y,
zero if x =y, or a positive value if x > y.

3 If comparefn is not undefined and is not a consistent comparison function for the array elements of object (see [sorting-
logic)), the behaviour of sort is implementation-defined. Let len be uint (object.length). If there exist integers i
and j and an object P such that all of the conditions below are satisfied then the behaviour of sort is implementation-
defined:

O<i<len

O<j<len

object does not have a property with name string (1)

P is obtained by following one or more [[Prototype]] properties starting at this
P has a property with name string(j)

Nk W=

4 If the behavior of sort is not implementation-defined then the array is sorted as described in section [sorting-logic|.

Returns
5 The static sort method returns object.

Implementation

6 The static sort method calls on the generic sorting engine, passing a function to compare elements of object.
static function sort(object/*: Object!*/, comparefn) {

function compare(j, k) {
if (!(j in object) && !(k in object))
return 0;
if (!(j in object))
return 1;
if (!(k in object))
return -1;

let x = object[j];

let y = object[k];

if (x === undefined && y === undefined)
return 0;

if (x === undefined)
return 1;

if (y === undefined)

return -1;

if (comparefn !== undefined)
return comparefn(x, y);

b4 String(x);

String(y);

if (x < y) return -1;

if (x > y) return 1;

return 0;

}

let len = intrinsic::toUint(object.length);
sortEngine(object, 0, len-1, compare);
return object;

NOTE Because non-existent property values always compare greater than undefined property values, and undefined always compares greater than any
other value, undefined property values always sort to the end of the result, followed by non-existent property values.

8.2.17.1 The sorting engine

1 The sorting engine sorts the numerically named properties of an object between two indices 1ow and high inclusive, using
a sort-specific function sortCompare to compare elements at two indices:

file://localhost/Work/es4/spec/library.html 07/11/08 11:45:54

ECMAScript 4th Edition -- Predefined Types and Objects 42

informative function sortEngine(object, low, high, sortCompare) ..

2 The sorting engine perform an implementation-dependent sequence of calls tothe [[Get]], [[Put]],and [[Delete]
] methods of object and to sortCompare, where the first argument for each callto [[Get]], [[Put]],or [[Delete]],
and both arguments to sortCompare, are nonnegative integers greater than or equal to low and less than or equal to high.

3 Following the execution of the preceding algorithm, object must have the following two properties.

1. There must be some mathematical permutation st of the nonnegative integers in the range low to high inclusive, such
that for every nonnegative integer j in that range, if property old[j] existed, then new/[7n(j)] is exactly the same value
as old[j], but if property old[j] did not exist, then new/7(j)] does not exist.

2. Then for all nonnegative integers j and k in that range, if sortCompare(j,k) < 0, then 71(j) < 7(k).

4 Here the notation old[j] is used to refer to the hypothetical result of calling the [[Get]] method of this object with
argument j before this function is executed, and the notation new/j] to refer to the hypothetical result of calling the [[Get]
] method of this object with argument j after this function has been executed.

5 A function comparefn is a consistent comparison function for a set of values S if all of the requirements below are met for all
values a, b, and ¢ (possibly the same value) in the set S: The notation a <CF b means comparefn(a,b) < 0; a =CF b means
comparefn(a,b) = 0 (of either sign); and a >CF b means comparefn(a,b) > 0.

1. Calling comparefn(a,b) always returns the same value v when given a specific pair of values a and b as its two
arguments. Furthermore, v has type Number, and v is not NaN. Note that this implies that exactly one of a <CF b, a
=CF b, and a >CF b will be true for a given pair of a and b.

a =CF a (reflexivity)

If a =CF b, then b =CF a (symmetry)

If a =CF b and b =CF c, then a =CF c (transitivity of =CF)

If a <CF b and b <CF c, then a <CF c (transitivity of <CF)

If a >CF b and b >CF c, then a >CF c (transitivity of >CF)

Uk W

NOTE The above conditions are necessary and sufficient to ensure that comparefn divides the set S into equivalence classes and that these equivalence
classes are totally ordered.

8.2.18 splice (object, start, deleteCount, ...items)

Description
1 The static splice method replaces the deleteCount array elements of object starting at array index start with values from
the items.

Returns
2 The static splice method returns a new Array object containing the array elements that were removed from objects, in
order.

Implementation

static function splice(object/*: Object!*/, start: AnyNumber, deleteCount:
AnyNumber, ...items): Array
Array.splice(object, start, deleteCount, items);

helper static function splice(object/*: Object!*/, start: AnyNumber, deleteCount:
AnyNumber, items: Array) {

let out = new Array();

let len = intrinsic::toUint(object.length);

start = clamp(start, len);
deleteCount = clamp(deleteCount, len - start);

let end = start + deleteCount;

for (let i = 0; i < deleteCount; i++)
out.push(object[i + start]);

let insertCount = items.length;
let shiftAmount = insertCount - deleteCount;

if (shiftAmount < 0) {
shiftAmount = -shiftAmount;

for (let i = end; i < len; i++)
object[i - shiftAmount] = object[i];

for (let i = len - shiftAmount; i < len; i++)
delete object[i];

else {

file://localhost/Work/es4/spec/library.html 07/11/08 11:45:54

ECMAScript 4th Edition -- Predefined Types and Objects 43

for (let i = len; i > end;) {
——i;
object[i + shiftAmount] = object[i];

}

for (let i = 0; i < insertCount; i++)
object[start+i] = items[i];

object.length = len + shiftAmount;
return out;

}
3 The helper clamp function was defined earlier (see [Array.slice]).

8.2.19 unshift (object, ...items)

Description

1 The static unshift method inserts the values in items as new array elements at the start of object, such that their order
within the array elements of object is the same as the order in which they appear in items. Existing array elements in object
are shifted upward in the index range, and the 1length property of object is updated.

Returns
2 The static unshift method returns the new value of the 1ength property of object.

Implementation

static function unshift(object/*: Object!*/, ...items) : double
Array.unshift(this, object, items);

helper static function unshift(object/*: Object!*/, items: Array) : double {
let len = intrinsic::toUint(object.length);
let numitems = items.length;

for (let k=len-1 ; k >=0 ; --k) {
let d = k + numitems;
if (k in object)
object[d] = object[k];
else
delete object[d];
}

for (let i=0; i < numitems; i++)
object[i] = items[i];

object.length = len+numitems;

return len+numitems;

}

8.3 Method Properties of Array Instances

8.3.1 Intrinsic methods

Description
1 The intrinsic methods on Array instances delegate to their static counterparts. Unlike their static and prototype counterparts,
these methods are bound to their instance and they are not generic.

Returns
2 The intrinsic methods on Array instances return what their static counterparts return.

Implementation

override intrinsic function toString():string
join();

override intrinsic function toLocaleString():string {

let out = "";
for (let i = 0, limit = this.length; i < limit ; i++) {
if (i > 0)

out += ",";

let x = this[i];

if (x !== null && x !== undefined)
out += x.toLocaleString();

file://localhost/Work/es4/spec/library.html 07/11/08 11:45:54

ECMAScript 4th Edition -- Predefined Types and Objects 44

return out;

}

intrinsic function concat(...items): Array
Array.concat(this, items);

intrinsic function every(checker:Checker, thisObj:Object=null): boolean
Array.every(this, checker, thisObj);

intrinsic function filter(checker:Checker, thisObj:0Object=null): Array
Array.filter(this, checker, thisObj);

intrinsic function forEach(eacher:Eacher, thisObj:Object=null): void {
Array.forEach(this, eacher, thisObj);

}

intrinsic function indexOf(value, from:AnyNumber=0): AnyNumber

Array.indexOf(this, value, from);

intrinsic function join(separator: string=","): string
Array.join(this, separator);

intrinsic function lastIndexOf(value, from:AnyNumber=NaN): AnyNumber
Array.lastIndexOf(this, value, from);

intrinsic function map (mapper:Mapper, thisObj:Object=null): Array
Array.map(this, mapper, thisObj);

intrinsic function pop/()
Array.pop(this);

intrinsic function push(...args): double
Array.push(this, args);

intrinsic function reverse()/*: Object!*/
Array.reverse(this);

intrinsic function shift()
Array.shift(this);

intrinsic function slice(start: AnyNumber, end: AnyNumber, step: AnyNumber): Array
Array.slice(this, start, end, step);

intrinsic function some(checker:Checker, thisObj:0Object=null): boolean
Array.some(this, checker, thisObj);

intrinsic function sort(comparefn:Comparator):Array
Array.sort(this, comparefn);

intrinsic function splice(start: AnyNumber, deleteCount: AnyNumber, ...items): Array
Array.splice(this, start, deleteCount, items);

intrinsic function unshift(...items): double
Array.unshift(this, items);

8.4 Value properties of Array instances

1 Array instances inherit properties from the Array prototype object and also have the following properties.

8.4.1 length

1 The length property of this Array object is always numerically greater than the name of every property whose name is an
array index.

8.5 Method properties on the Array prototype object

8.5.1 toString ()

Description
1 The prototype toString method converts the array to a string. It has the same effect as if the intrinsic join method
were invoked for this object with no argument.

Returns

file://localhost/Work/es4/spec/library.html 07/11/08 11:45:54

ECMAScript 4th Edition -- Predefined Types and Objects 45

2 The prototype toString method returns a string.

Implementation

prototype function toString(this:Array)
this.join();

8.5.2 tolLocaleString ()

Description

1 The elements of this Array are converted to strings using their public toLocaleString methods, and these strings are
then concatenated, separated by occurrences of a separator string that has been derived in an implementation-defined locale-
specific way. The result of calling this function is intended to be analogous to the result of toString, except that the result
of this function is intended to be locale-specific.

Returns
2 The prototype toLocaleString method returns a string.

Implementation

prototype function toLocaleString(this:Array)
this.toLocaleString();

NOTE The first parameter to this method is likely to be used in a future version of this standard; it is recommended that implementations do not use this
parameter position for anything else.

8.5.3 Generic methods

1 These methods delegate to their static counterparts, and like their counterparts, they are generic: they can be transferred to
other objects for use as methods. Whether these methods can be applied successfully to a host object is implementation-
dependent.

prototype function concat(...items)
Array.concat(this, items);

prototype function every(checker, thisObj=null)
Array.every(this, checker, thisObj);

prototype function filter(checker, thisObj=null)
Array.filter(this, checker, thisObj);

prototype function forEach(eacher, thisObj=null) {
Array.forEach(this, eacher, thisObj);

}

prototype function indexOf(value, from=0)

Array.indexOf(this, value, Number(from));

prototype function join(separator=undefined)
Array.join(this, separator === undefined ? "," : string(separator));

prototype function lastIndexOf(value, from=NaN)
Array.lastIndexOf(this, value, Number(from));

prototype function map (mapper, thisObj=null)
Array.map(this, mapper, thisObj);

prototype function pop()
Array.pop(this);

prototype function push(...args)
Array.push(this, args);

prototype function reverse()
Array.reverse(this);

prototype function shift()
Array.shift(this);

prototype function slice(start, end, step)
Array.slice(this, Number(start), Number(end), Number(step))

prototype function some(checker, thisObj=null)
Array.some(this, checker, thisObj);

file://localhost/Work/es4/spec/library.html 07/11/08 11:45:54

ECMAScript 4th Edition -- Predefined Types and Objects 46

prototype function sort(comparefn)
Array.sort(this, comparefn);

prototype function splice(start, deleteCount, ...items)
Array.splice(this, Number(start), Number(deleteCount), items);

prototype function unshift(...items)
Array.unshift(this, items);

COMPATIBILITY NOTE In the 3rd Edition of this Standard some of the functions on the Array prototype object had Length properties that did not
reflect those functions' signatures. In the 4th Edition of this Standard, all functions on the Array prototype object have Length properties that follow the

general rule stated in section [function-semantics.
9 String classes

1 ECMAScript provides a primitive string representation in the class string. It is primitive in the sense that this
representation is directly operated upon by operators of the language, and in the sense that it is a final and non-dynamic class
for which ECMAScript implementations may provide efficient representations.

2 ECMAScript also provides the class String, which is a dynamic non-final class that holds string values. Instances of
String are converted to string when operated upon by operators of the language.

9.1 The type AnyString

1 The type AnyString is a union type that contains the two built-in string types. By standard subtyping rules it also includes
all classes thatextend String.

__ES4__ type AnyString = (string|String!);

10 The class string

1 Theclass String is a dynamic, nullable, non-final subclass of Object. It is a container for string values. Instances of
String are converted to string when operated upon by the operators of the language.

2 Theclass String can be extended and the extending classes can provide novel representations for string values.

10.0.1 Synopsis

1 Theclass String provides the following interface:
FIXME Optional arguments need to be handled better in these interfaces.

dynamic class String
{
function String(value="") ..
static meta function invoke(value="")

static function fromCharCode(...args) ..

static function charAt(self, pos)

static function charCodeAt(self, pos) ..

static function concat(self, ...args) : string ..

static function indexOf(self, searchString, position): double ..
static function lastIndexOf(self, searchString, position) : double ..
static function localeCompare(self, that) : double ..

static function match(self, regexp) : Array ..

static function replace(self, searchValue, replaceValue) : string ..
static function search(self, regexp) : double ..

static function slice(self, start, end, step): string ..

static function split(self, separator, limit): Array! ..

static function substring(self, start, end): string ..

static function toLowerCase(self): string ..

static function toLocalelLowerCase(self): string ..

static function toUpperCase(self): string ..

static function toLocaleUpperCase(self): string ..

static function trim(self) : string ..

static const length: uint = 1

override intrinsic function toString() : string ..
override intrinsic function valueOf() : string ..

intrinsic function charAt(pos: double = 0) : string ..

intrinsic function charCodeAt(pos: double = 0) : double ..
intrinsic function concat(...args) : string ..

file://localhost/Work/es4/spec/library.html 07/11/08 11:45:54

ECMAScript 4th Edition -- Predefined Types and Objects 47

intrinsic function indexOf(searchString: AnyString, position: double = 0.0) : double ..

intrinsic function lastIndexOf(searchString: AnyString, position: double) : double ..

intrinsic function localeCompare(that: AnyString) : double ..

intrinsic function match(regexp: RegExp!) : Array ..

intrinsic function replace(s: (RegExp! |AnyString), r: (AnyString|function(...)
:AnyString)) : string ..

intrinsic function search(regexp: RegExp!) : double ..

intrinsic function slice(start: AnyNumber, end: AnyNumber, step: AnyNumber): string ..

intrinsic function split(separator:(AnyString|RegExp!), limit: double = double.MAX
VALUE) : Array! ..

intrinsic function substring(start: double, end: double=Infinity) : string ..

intrinsic function toLowerCase(): string ..

intrinsic function toLocaleLowerCase(): string ..

intrinsic function toUpperCase() : string ..

intrinsic function tolLocaleUpperCase() : string ..

intrinsic function trim() : string ..

function get length() : double ..
meta function get(n) ..

}

2 The String prototype object provides the following direct properties:

FIXME Optional arguments need to be handled better in these interfaces.
toString: function (this:Strings) ..
valueOf: function (this:Strings) ..
charAt: function (pos) ..
charCodeAt: function (pos) ..
concat: function (...strings) ..
indexOf: function (searchString, pos) ..
lastIndexOf: function (searchString, pos) ..
localeCompare: function (that) ..
match: function (regexp) ..
replace: function (searchvalue, replaceValue) ..
search: function (regexp) ..
slice: function (start, end) ..
split: function (separator, limit) ..
substring: function (start, end) ..
toLowerCase: function () ..
toLocaleLowerCase: function () ..
toUpperCase: function () ..
toLocaleUpperCase: function () ..
trim: function ()

3 The String prototype object is also used as the prototype object for the class string.

10.1 Methods on the string class object

10.1.1 new String (value=...)
Description

1 The String constructor initializes a new String object by storing value, converted to string, in a private property.
Value defaults to the empty string.

10.1.2 String(value=...)

Description
1 The String class object called as a function converts value to string (not to String). Value defaults to the empty
string.

Returns
2 The String class object called as a function returns a string object.

Implementation

static meta function invoke(value="")
string(value);

10.1.3 Methods that delegate to string methods

Description

file://localhost/Work/es4/spec/library.html 07/11/08 11:45:54

ECMAScript 4th Edition -- Predefined Types and Objects 48

1 The intrinsic methods charAt, charCodeAt, concat, index0f, lastIndex0Of, localeCompare, match,
replace, search,slice, split, substring, toLowerCase, toLocaleLowerCase, toUpperCase,
toLocaleUpperCase, and trim all delegate to the corresponding static methods on the string class.

Returns
2 These static methods return what their corresponding static methods on the string class return.

Implementation

static function charAt(self, pos)
string.charAt(self, pos);

static function charCodeAt(self, pos)
string.charCodeAt (self, pos);

static function concat(self, ...args) : string
string.concat(self, args);

static function indexOf(self, searchString, position): double
string.indexOf(self, searchString, position);

static function lastIndexOf(self, searchString, position) : double
string.lastIndexOf(self, searchString, position);

static function localeCompare(self, that) : double
string.localeCompare(self, that);

static function match(self, regexp) : Array
string.match(self, regexp);

static function replace(self, searchValue, replaceValue) : string
string.replace(self, searchvValue, replaceValue);

static function search(self, regexp) : double
string.search(self, regexp);

static function slice(self, start, end, step): string
string.slice(self, Number(start), Number(end), Number(step));

static function split(self, separator, limit): Array!
string.split(self, separator, limit);

static function substring(self, start, end): string
string.substring(self, start, end);

static function toLowerCase(self): string
string.toLowerCase(self);

static function toLocalelowerCase(self): string
string.toLocaleLowerCase(self);

static function trim(self) : string
string.trim(self);

10.2 Methods on string instances

10.2.1 toString

Returns
1 The intrinsic toString method returns this String object converted to string. For the class String itself this results

in the extraction of the private string value held by the String. Subclasses of String can represent strings differently by
overriding toString.
Implementation

override intrinsic function toString() : string
val;

10.2.2 valueOf

Returns
1 The intrinsic valueOf method returns the result of calling the intrinsic toString method.

Implementation

file://localhost/Work/es4/spec/library.html 07/11/08 11:45:54

ECMAScript 4th Edition -- Predefined Types and Objects 49

override intrinsic function valueOf() : string
val;

10.2.3 Methods that delegate to string methods

Description

1 The intrinsic methods charAt, charCodeAt, concat, index0f, lastIndex0Of, localeCompare, match,
replace, search,slice, split, substring, toLowerCase, toLocaleLowerCase, toUpperCase,
toLocaleUpperCase, and trim all delegate to the corresponding static methods on the string class, passing this as
the first argument in all cases.

Returns
2 These intrinsic methods return what their corresponding static methods on the string class return.

Implementation

intrinsic function charAt(pos: double = 0) : string
string.charAt(val, pos);

intrinsic function charCodeAt(pos: double = 0) : double
string.charCodeAt(val, pos);

intrinsic function concat(...args) : string
string.concat(val, args);

intrinsic function indexOf(searchString: AnyString, position: double = 0.0) : double
string.indexOf(val, searchString, position);

intrinsic function lastIndexOf(searchString: AnyString, position: double) : double
string.lastIndexOf(val, searchString, position);

intrinsic function localeCompare(that: AnyString) : double
string.localeCompare(val, that);

intrinsic function match(regexp: RegExp!) : Array
string.match(val, regexp);

intrinsic function replace(s: (RegExp! |AnyString), r: (AnyString|function(...):AnyString))
: string

string.replace(val, searchvalue, replaceValue);

intrinsic function search(regexp: RegExp!) : double
string.search(val, r);

intrinsic function slice(start: AnyNumber, end: AnyNumber, step: AnyNumber): string
string.slice(val, start, end, step);

intrinsic function split(separator:(AnyString|RegExp!), limit: double = double.MAX VALUE)
: Array!
string.split(val, separator, limit);

intrinsic function substring(start: double, end: double=Infinity) : string
string.substring(val, start, end);

intrinsic function toLowerCase(): string
string.toLowerCase(val);

intrinsic function toLocalelLowerCase(): string
string.toLocaleLowerCase(val);

intrinsic function toUpperCase() : string
string.toUpperCase(val);

intrinsic function toLocaleUpperCase() : string
string.toLocaleUpperCase(val);

intrinsic function trim() : string
string.trim(string(val));

NOTE The second parameter to the intrinsic method LlocaleCompare and the first parameter to the intrinsic methods

toLocaleLowerCase and toLocaleUpperCase are likely to be used in a future version of this standard; it is recommended that
implementations do not use these parameter position for anything else.

10.3 Methods on the string prototype object

file://localhost/Work/es4/spec/library.html 07/11/08 11:45:54

ECMAScript 4th Edition -- Predefined Types and Objects 50

10.3.1 toString ()

Returns
1 Returns the result of invoking the intrinsic toString method.

2 The toString function is not generic; it throws a TypeError exception if its this value is not a String or string
object. Therefore, it cannot be transferred to other kinds of objects for use as a method.

Implementation

prototype function toString(this: AnyString)
this.intrinsic::toString();

10.3.2 valueOf ()

Returns
1 Returns this result of invoking the intrinsic valueOf method.

2 The valueOf function is not generic; it throws a TypeError exception if its this value is not a String or string object.
Therefore, it cannot be transferred to other kinds of objects for use as a method.

Implementation

prototype function valueOf(this: AnyString)
this.intrinsic::valueOf();

10.3.3 Methods that delegate to string methods

Description

1 The methods charAt, charCodeAt, concat, index0f, lastIndexOf, localeCompare, match, replace,
search,slice, split, substring, toLowerCase, toLocaleLowerCase, toUpperCase,
toLocaleUpperCase, and trimon the String prototype object all delegate to the corresponding static methods on
the string class, passing this as the first argument in all cases.

2 These methods are all generic, they do not require that their this object is a String. Therefore, they can be transferred to
other kinds of objects for use as methods.

Returns
3 These methods on the String prototype object all return the values returned by their corresponding static methods on the
string class.

Implementation

prototype function charAt(pos)
string.charAt(this.toString(), pos);

prototype function charCodeAt (pos)
string.charCodeAt (this.toString(), pos);

prototype function concat(...args)
string.concat(this.toString(), args);

prototype function indexOf(searchString, position)
string.indexOf(this.toString(), searchString, position);

prototype function lastIndexOf(searchString, position)
string.lastIndexOf(this.toString(), searchString, position);

prototype function localeCompare (that)
string.localeCompare(this.toString(), that);

prototype function match(regexp)
string.match(this.toString(), regexp);

prototype function replace(searchValue, replaceValue)
string.replace(this.toString(), searchValue, replaceValue);

prototype function search(regexp)
string.search(this.toString(), regexp);

prototype function slice(start, end, step)
string.slice(this.toString(), Number(start), Number(end), Number(step));

file://localhost/Work/es4/spec/library.html 07/11/08 11:45:54

ECMAScript 4th Edition -- Predefined Types and Objects

prototype function split(separator, limit)
string.split(this.toString(), separator, limit);

prototype function substring(start, end)
string.substring(this.toString(), start, end);

prototype function toLowerCase()
string.toLowerCase(this.toString());

prototype function toLocaleLowerCase()
string.toLocaleLowerCase(this.toString());

prototype function trim()
string.trim(this.toString());

NOTE The second parameter to the prototype method 1localeCompare and the first parameter to the prototype methods

toLocaleLowerCase and toLocaleUpperCase are likely to be used in a future version of this standard; it is recommended that
implementations do not use these parameter position for anything else.

11 The class string

1 Theclass string is a final, non-nullable, non-dynamic subclass of Object that represents an immutable indexable sequence
of Unicode characters. The property "1length" holds the number of characters in this sequence. The property " 0" names
the first character, the property " 1" names the second character, and so on, up to property " length"-1. Single characters
are represented as string objects with length equal to one.

2 The string class has the same prototype object as the String class; changes made to the prototype object of one class
are visible on the prototype object of the other class.

COMPATIBILITY NOTE The class String is new in the 4th Edition of this Standard, but St ing models the "string values" in the 3rd Edition.

11.1 Synopsis
1 The class string provides the following interface:

final class string!
{
function string(value="") ..
static meta function invoke(value="")

static function fromCharCode(...codes) ..

static function charAt(self, pos) : string ..

static function charCodeAt(self, pos) : double ..

static function concat(self, ...args) ..

static function indexOf(self, searchString, position) : double ..

static function lastIndexOf(self, searchString, position) : double ..

static function localeCompare(self, that) : double ..

static function match(self, regexp): Array ..

static function replace(self, s, r): string ..

static function search(self, regexp): double ..

static function slice(object, start: AnyNumber=NaN, end: AnyNumber=NaN, step:
AnyNumber=1) ..

static function split(self, separator, limit) : Array! ..

static function substring(self, start, end) : string ..

static function toLowerCase(self): string ..

static function toLocalelowerCase(self): string ..

static function toUpperCase(self): string ..

static function toLocaleUpperCase(self)

static function trim(s): string ..

static const length: uint = 1

override intrinsic function toString() : string ..
override intrinsic function valueOf() : string ..

intrinsic function charAt(pos: double = 0) : string ..

intrinsic function charCodeAt(pos: double = 0) : double ..

intrinsic function concat(...args) : string ..

intrinsic function indexOf(searchString: string, position: double = 0.0) : double ..
intrinsic function lastIndexOf (searchString: string, position: double) : double ..
intrinsic function localeCompare(that : string) : double ..

intrinsic function match(regexp: RegExp) : Array ..

intrinsic function replace(searchvValue: (string|RegExp!),

intrinsic function search(regexp: RegExp!) : double ..

intrinsic function slice(start: AnyNumber=NaN, end: AnyNumber=NaN, step: AnyNumber=1):

51

file://localhost/Work/es4/spec/library.html 07/11/08 11:45:54

ECMAScript 4th Edition -- Predefined Types and Objects 52

string ..

intrinsic function split(separator:(string|RegExp!), limit: double = double.MAX VALUE)
: Array!

intrinsic function substring(start: double, end: double=this.length) : string ..

intrinsic function toLowerCase() : string ..

intrinsic function toLocaleLowerCase() : string ..

intrinsic function toUpperCase() : string ..

intrinsic function tolLocaleUpperCase() : string ..

intrinsic function trim() : string ..

function get length() : double ..
meta function get(pos)

}
11.2 Static Methods on the string Class

11.2.1 new string (value=...)

Description
1 The string constructor initializes a new string object by storing an implementation-dependent string representation of
value in a private property. The default value is the empty string.

Implementation

2 The string constructor is implementation-dependent.

11.2.2 string (value=...)

Description
1 The string class object called as a function converts value to string as by the ToString operator. The default value is
the empty string.

Returns
2 The string class object called as a function returns a string.

Implementation

static meta function invoke(value="")
(value is string) ? value : new string(value);

FIXME (Ticket #176.) The use of magic: :newString is an optimization that confuses the spec; new String(x) would have been
better.

11.2.3 fromCharCode (...codes)

Description

1 The static fromCharCode method creates a string containing as many characters as there are elements in codes. Each
element of codes specifies the Unicode code point value of one character of the resulting string, with the first argument
specifying the first character, and so on, from left to right.

FIXME (Ticket #170.) The code below assumes a 21-bit Unicode representation. What happens in a system that only has 16-bit unicode? We'd like to be
backwards compatible. If so, the upper bits are ignored. This conflicts with how \u{ « « « } is handled, though: it creates two code points.

Returns
2 The static fromCharCode method returns the computed string.

Implementation

static function fromCharCode(...codes)
string. fromCharCode(codes) ;

helper static function fromCharCode(codes: Array): string {
let s = "";
for (let i=0, limit=codes.length ; i < limit ; ++i)
s += fromCharCode(intrinsic::toUint(codes[i] & O0x1FFFFF));
return s;

11.2.4 charAt (self, pos)

Description
1 The static charAt method converts self to string and extracts the character at index pos.

file://localhost/Work/es4/spec/library.html 07/11/08 11:45:54

ECMAScript 4th Edition -- Predefined Types and Objects 53

Returns
2 The static charAt method returns a string.

Implementation

static function charAt(self, pos) : string {
let S = string(self);
let ipos = toInteger(pos);
if (ipos < 0 || ipos >= S.length)
return "";
return fromCharCode(charCodeAt(S, intrinsic::toUint(ipos)));

FIXME (Ticket #176.) The use of magic : : charCodeAt is an optimization that complicates the spec; String.charCodeAt (x)
would have been better.

11.2.5 charCodeAt (self, pos)

Description
1 The static charCodeAt method converts selfto string and extracts the code point value of the character at index pos.

Returns
2 The static charCodeAt method returns a number.

Implementation

static function charCodeAt(self, pos) : double {
let S = string(self);
let ipos = toInteger(pos);
if (ipos < 0 || ipos >= S.length)
return NaN;
return charCodeAt(S, intrinsic::toUint(ipos));

11.2.6 concat (self, ...strings)

Description
1 The static concat method computes a string value consisting of the characters of self (converted to string) followed
by the characters of each of the elements of strings (where each argument is converted to string).

Returns
2 The static concat method returns the concatenated string.

Implementation

static function concat(self, ...args)
string.concat(self, args);

helper static function concat(self, strings) : string {
let S = string(self);
let n = strings.length;
for (let i=0; i < n ; i++)
S += string(strings[i]);
return S;

11.2.7 indexOf (self, searchString, position)

Description
1 The static indexOf method searches self (converted to string) for occurrences of searchString (converted to string), at
positions that are greater than or equal to position (converted to integer).

Returns
2 The static indexOf method returns the smallest index at which a match was found, or -1 if there was no match.

Implementation
static function indexOf(self, searchString, position) : double {

let S = string(self);

let SS = string(searchString);

let pos = toInteger(position);

let slen = S.length;

let m = Math.min(Math.max(pos, 0), slen);

file://localhost/Work/es4/spec/library.html 07/11/08 11:45:54

ECMAScript 4th Edition -- Predefined Types and Objects 54

let sslen = SS.length;
let 1lim = slen - sslen + 1;

FIXME (Ticket #176.) The use of magic : : charCodeAt is an optimization that complicates the spec; using String.charCodeAt
would have been better.

11.2.8 lastindexOf (self, searchString, position)

Description
1 The static lLastIndexOf method searches self (converted to string) for occurrences of searchString (converted to
string), at positions that are smaller than or equal to position (converted to integer).

Returns
2 The static lLastIndexOf method returns the greatest index at which a match was found, or -1 if there was no match.

Implementation
static function indexOf(self, searchString, position) : double {

let S = string(self);

let SS = string(searchString);

let pos = toInteger(position);

let slen = S.length;

let m = Math.min(Math.max(pos, 0), slen);
let sslen = SS.length;

let 1lim = slen - sslen + 1;

FIXME (Ticket #176.) The use oi‘magic : :charCodeAt is an optimization that complicates the spec; using string .charCodeAt
would have been better.

11.2.9 localeCompare (self, other)

Description

1 The static LlocaleCompare method compares self (converted to string) with other (converted to string) in a locale-
sensitive manner. The two strings are compared in an implementation-defined fashion. The comparison is intended to order
strings in the sort order specified by the system default locale.

Returns

2 The static localeCompare method returns a number other than NaN that represents the result of the comparison. The
result will be negative, zero, or positive, depending on whether self comes before other in the sort order, the strings are equal,
or self comes after other in the sort order, respectively.

3 The static LocaleCompare method is a consistent comparison function (as defined in [sort:consistent_comparator) on the
set of all strings. Furthermore, localeCompare returns O or -0 when comparing two strings that are considered
canonically equivalent by the Unicode standard.

4 The actual return values are left implementation-defined to permit implementers to encode additional information in the
result value, but the function is required to define a total ordering on all strings and to return 0 when comparing two strings
that are considered canonically equivalent by the Unicode standard.

Implementation
5 The static localeCompare method is implementation-defined.
NOTE This function is intended to rely on whatever language-sensitive comparison functionality is available to the ECMAScript environment from the
host environment, and to compare according to the rules of the host environment's current locale. It is strongly recommended that this function treat strings
that are canonically equivalent according to the Unicode standard as identical (in other words, compare the strings as if they had both been converted to

Normalised Form C or D first). It is also recommended that this function not honour Unicode compatibility equivalences or decompositions. If no language-
sensitive comparison at all is available from the host environment, this function may perform a bitwise comparison.

NOTE The third parameter to this function is likely to be used in a future version of this standard; it is recommended that implementations do not use this
parameter position for anything else.

11.2.10 match (self, regexp)

Description
1 The static match method searches self (converted to string) for occurrences of regexp (converted to RegExp).

Returns

2 Ifthe global flag on regexp is false, the match method returns the result obtained by invoking the intrinsic exec method
on regexp with self as a parameter.

3 If the global flag on regexp is true, the match method returns an array of strings containing the substrings of self that
were matched by regexp, in order.

file://localhost/Work/es4/spec/library.html 07/11/08 11:45:54

ECMAScript 4th Edition -- Predefined Types and Objects 55

Implementation
static function match(self, regexp): Array {
let S = string(self);
let R = (regexp is RegExp) ? regexp : new RegExp(regexp);

if (!R.global)
return R.exec(S);

let matches = [];

R.lastIndex = 0;

while (true) {
let oldLastIndex = R.lastIndex;
let res = R.exec(S);

if (res === null)
break;

matches.push(res[0]);
if (R.lastIndex === oldLastIndex)
++R.lastIndex;

}

if (matches.length == 0)
return null;

else
return matches;

}
11.2.11 replace (self, searchValue, replaceValue)

Description
1 The static replace method computes a string from self (converted to string) by replacing substrings matching
searchValue (converted to string if not RegExp) by instances of replaceValue (converted to string if not a function).

2 If replaceValue is a function, then it is called once for each matched substring on arguments providing details about the
match, and the value returned from this call is converted to string if necessary and replaces the matched substring.

3 If replaceValue is not a function then a string to replace a matched substring is derived from replaceValue by replacing
characters of replaceValue (converted to string) as specified in the following table. These $ replacements are done left-to-
right, and, once such a replacement is performed, the new replacement text is not subject to further replacements. For
example, "$1,$2" .replace(/(\$(\d))/g, "$$1-$1$2") returns "$1-$11,$1-$22". A $ inreplaceValue
that does not match any of the forms below is left as is.

file://localhost/Work/es4/spec/library.html 07/11/08 11:45:54

ECMAScript 4th Edition -- Predefined Types and Objects

|Characters | Replacement text
$$ $
$& The matched substring.
$ The portion of self that precedes the matched substring.

The portion of self that follows the matched substring.

$n

The nth capture, where 7 is a single digit 1-9 and $n is not
followed by a decimal digit. If n<m and the nth capture is
undefined, use the empty string instead. If n>m, the result is
implementation-defined.

NOTE In

Returns

The nnth capture, where nn is a two-digit decimal number 01-99. If

$nn nn=<m and the nnth capture is undefined, use the empty string

instead. If nn>m, the result is implementation-defined.

the above table, m is the length of the search result's capture array.

4 The static replace function returns a string object that is the concatenation of the unmatched portions of self and the
computed replace values for the matched portions of self, in order.

Implementation

static £

let
string {

}

let
string {

file://localhost/Work/es4/spec/library.html

unction replace(self, s, r): string {
function substituteFunction(start: double, end: double, m: double, cap: Array) :

let A = [];
A[0] = S.substring(start, end);
for (let i=0 ; i < m ; i++)
A[i+l] = cap[i+l];
A[mt2] = start;
A[mt3] = S;
return string(replaceFun.apply(null, A));

function substituteString(start: double, end: double, m: double, cap: Array) :

let s ="";

let i = 0;

let r = /A$(2:(\$) | (\&) [(\T)[(\')[(10-91{1,2}))/g;
let res;

while ((res = r.exec(replaceString)) !== null) {

s += replaceString.substring(i, r.lastIndex - res[0].length);
i = r.lastIndex;

if (res[1]) s += "$";
else if (res[2]) s += S.substring(start, end);
else if (res[3]) s += S.substring(0, start);
else if (res[4]) s += S.substring(end);
else {

let n = parseInt(res[5]);

if (n <= m && cap[n] !== undefined)

s += cap[n];

}

}

s += replaceString.substring(i);

return s;

56

07/11/08 11:45:54

ECMAScript 4th Edition -- Predefined Types and Objects 57

let function match(regexp, i : double) : [double, CapArray] {
while (i <= S.length) {
let res : MatchResult = regexp.match(S, i);
if (res !== null) {
res.captures[0] = S.substring(i,res.endIndex);
return [i, res.captures];

}

++i;

return [0, null];

}

let S = string(self);
let replaceString = (r is string) ? r cast string : null;
let replaceFun = (r is Function) ? r cast Function : null;

let substitute : function (double, double, double, Array) : string =
replaceFun !== null ? substituteFunction : substituteString;

if (s !== null && s is RegExp) {
let regexp = s cast RegExp;
let m = regexp.nCapturingParens;

if (!regexp.global) {
let [i, res] = match(regexp, 0);

if (res === null)
return S;

let end = i + res[0].length;
return S.substring(0,i) + substitute(i, end, m, res) + S.substring(end);
}
else {
let newstring
let prevEnd

nno,
’

0;

regexp.lastIndex = 0;
while (true) {
let oldLastIndex : double = regexp.lastIndex;
let [i,res] = match(regexp, intrinsic::toUint(oldLastIndex));

if (res === null)
break;

newstring += S.substring(prevEnd, i);

let end = i + res[0].length;

regexp.lastIndex = end;

if (regexp.lastIndex == oldLastIndex)
regexp.lastIndex++;

newstring += substitute(i, end, m, res);

prevEnd = end;

}

newstring += S.substring(prevEnd, S.length);
return newstring;
}
}
else {

let searchString
let pos

string(s);
S.indexOf (searchString, 0);

if (pos === -1)
return S;

let end = pos + searchString.length;
return S.substring(0,pos) + substitute(pos, end, 0, []) + S.substring(end);

FIXME (Ticket #177.) The code above needs to be factored into a top-level function with the auxiliary functions following it; values of names now free
in the nested functions must be passed as parameters.

11.2.12 search (self, regexp)

Description

file://localhost/Work/es4/spec/library.html 07/11/08 11:45:54

ECMAScript 4th Edition -- Predefined Types and Objects 58

1 The static search method searches self (converted to string) for the first occurrence of the search term regexp (converted
to RegExp).

NOTE This method ignores the 1ast Index and global properties of regexp. The 1ast Index property of regexp is left unchanged.

Returns
2 The static search method returns a number indicating the index at which a match was made, or -1 if there was no match.

Implementation
static function search(self, regexp): double {

let S = string(self);
let R = (regexp is RegExp) ? regexp : new RegExp(regexp);

for (let i=0, limit=S.length ; i < limit ; i++)
if (R.match(S, i) !== null)
return ij;
return -1;

11.2.13 slice (self, start, end)

Description
1 The static s1ice method extracts a substring of self (converted to string) from start and up to but not including end (both
converted to integer). Both start and end may be negative.

Returns
2 The static slice method returns a string.

Implementation

static function slice(object, start: AnyNumber=NaN, end: AnyNumber=NaN, step:
AnyNumber=1) {

let len = intrinsic::toUint(object.length);

step = int(step);
if (step == 0)
step = 1;

if (intrinsic::isNaN(start))

start = step > 0 2 0 : (len-1);
else

start = clamp(start, len);

if (intrinsic::isNaN(end))

end = step > 0 ? len : (-1);
else

end = clamp(end, len);

let out = new string();
for (let i = start; step > 0 ? i < end : i > end; i1 += step)
out += object[i];

return out;

11.2.14 split (self, separator, limit)

Description
1 The static split method extracts substrings from self (converted to string), where substrings are separated by instances
of separator (converted to string if not a RegExp). At most limit substrings are extracted.

2 Occurrences of separator are not part of any substring in the result.

3 The value of separator may be an empty string, an empty regular expression, or a regular expression that can match an empty
string. In this case, separator does not match the empty substring at the beginning or end of the input string, nor does it
match the empty substring at the end of the previous separator match. (For example, if separator is the empty string, the
string is split up into individual characters; the length of the result array equals the length of the string, and each substring
contains one character.) If separator is a regular expression, only the first match at a given position of the this string is
considered, even if backtracking could yield a non-empty-substring match at that position. (For example, string.split
("ab",/a*?/) evaluates to the array ["a", "b"], while string.split("ab", /a*/) evaluates to the array
[nn , llbll]‘)

file://localhost/Work/es4/spec/library.html 07/11/08 11:45:54

ECMAScript 4th Edition -- Predefined Types and Objects

4

file://localhost/Work/es4/spec/library.html

If selfis (or converts to) the empty string, the result depends on whether separator can match the empty string. If it can, the

result contains no elements. Otherwise, the result contains one element, which is the empty string.

If separator is a regular expression that contains capturing parentheses, then each time separator is matched the results
(including any undefined results) of the capturing parentheses are spliced into the result. For example,

"Aboldand<CODE>coded</CODE>".split (/<(\/)?(["<>]+)>/)
evaluates to the array

["A", undefined, "B", "bold", "/", "B", "and", undefined, "CODE", "coded", "/", "CODE",
iy

If separator is undefined, then the result contains just one string, which is self (converted to string).

Returns
The static split method returns a new Array object holding the extracted substrings, in order.

Implementation
static function split(self, separator, limit) : Array! {

FIXME (Ticket #178.) The exposition leaves something to be desired. Should split SplitMatch out as a separate helper function, at least.

NOTE The static SpL1it method ignores the value of separator . global for separators that are RegGEXP objects.

11.2.15 substring (self, start, end)

Description

The static substring method extracts a substring from self (converted to string) from start up to but not including end

(converted to number).

Returns
The static substring method returns a string.

Implementation

static function substring(self, start, end) : string {
let S = string(self);
let len S.length;

start = toInteger(start);
end = end === undefined ? len : toInteger(end);

start = Math.min(Math.max(start, 0), len);
end = Math.min(Math.max(end, 0), len);

if (start > end)

[start, end] = [end, start];
let s = "";
for (let i=start ; i < end ; i++)
s += S[i];

return s;

11.2.16 tolLowerCase (self)

Description
The static toLowerCase method converts the characters of self (converted to string) to lower case. The characters are

converted one by one. The result of each conversion is the original character, unless that character has a Unicode lowercase

equivalent, in which case the lowercase equivalent is used instead.

NOTE The result should be derived according to the case mappings in the Unicode character database (this explicitly includes not only the
UnicodeData. txt file, but also the SpecialCasings. txt file that accompanies it in Unicode 2.1.8 and later).

Returns
The static toLowerCase method returns a string.

Implementation

static function toLowerCase(self): string {
let S = string(self);

nn

let s ;

59

07/11/08 11:45:54

ECMAScript 4th Edition -- Predefined Types and Objects 60

for (let i=0, limit=S.length ; i < limit ; i++) {
let u = Unicode::toLowerCaseCharCode (charCodeAt(S,intrinsic::toUint(i)));
if (u is double)
s += fromCharCode(intrinsic::toUint(u));
else {
for (let j=0 ; j < u.length ; j++)
s += fromCharCode(u[]j]);
}
}

return s;

FIXME (Ticket #176.) The use of magic: : charCodeAt andmagic: : fromCharCode is a confusing optimization.

FIXME (Ticket #179.) Cross reference to the Unicode library somehow, or put the unicode stuff into the he 1 pexr namespace.

11.2.17 tolLocaleLowerCase (self)

Description

1 The static toLocaleLowerCase method works exactly the same as the static toLowerCase method except that it is
intended to yield the correct result for the host environment's current locale, rather than a locale-independent result. There
will only be a difference in the few cases (such as Turkish) where the rules for that language conflict with the regular Unicode

case mappings.

Returns
2 The static toLocaleLowerCase method returns a string.

Implementation
3 The static toLocaleLowerCase method is implementation-dependent.

NOTE The second parameter to this function is likely to be used in a future version of this standard; it is recommended that implementations do not use
this parameter position for anything else.

11.2.18 toUpperCase (self)

Description

1 The static toUpperCase method converts the characters of self (converted to string) to upper case. The characters are
converted one by one. The result of each conversion is the original character, unless that character has a Unicode uppercase
equivalent, in which case the uppercase equivalent is used instead.

NOTE The result should be derived according to the case mappings in the Unicode character database (this explicitly includes not only the
UnicodeData. txt file, but also the SpecialCasings. txt file that accompanies it in Unicode 2.1.8 and later).

Returns
2 The static toUpperCase method returns a string.

Implementation

static function toUpperCase(self): string {
let S = string(self);

let s ="";

for (let i=0, limit=S.length ; i < limit ; i++) {
let u = Unicode::toUpperCaseCharCode (charCodeAt(S,intrinsic::toUint(i)));
if (u is double)
s += fromCharCode(intrinsic::toUint(u));
else {
for (let j=0 ; j < u.length ; j++)
s += fromCharCode(u[]j]);
}
}

return s;

NOTE Because both toUpperCase and toLowerCase have context-sensitive behaviour, the functions are not symmetrical. In other words,
string.toLowerCase(string.toUpperCase(s)) is not necessarily equal to String.toLowerCase(s).

11.2.19 toLocaleUpperCase (self)

Description
1 The static toLocaleUpperCase method works exactly the same as the static toUpperCase method except that it is
intended to yield the correct result for the host environment's current locale, rather than a locale-independent result. There

file://localhost/Work/es4/spec/library.html 07/11/08 11:45:54

ECMAScript 4th Edition -- Predefined Types and Objects 61

will only be a difference in the few cases (such as Turkish) where the rules for that language conflict with the regular Unicode
case mappings.

Returns
2 The static toLocaleUpperCase method returns a string.

Implementation

3 The static toLocaleUpperCase method is implementation-dependent.

NOTE The second parameter to this function is likely to be used in a future version of this standard; it is recommended that implementations do not use
this parameter position for anything else.

11.2.20 trim (self)

Description
1 The static trim method extracts a substring from self (converted to string) such that the extracted string contains no
whitespace characters at either end.

Returns
2 The static trim method returns a string.

Implementation

static function trim(s): string {
s = string(s);

let len = s.length;
let i, J;
for i=0 ; i < len && Unicode::isTrimmableSpace(s.charAt(i)) ; i++)

for j=len-1 ; j >= i && Unicode::isTrimmableSpace(s.charAt(j)) ; j--)

(
7
(
7
return s.substring(i,j+1);

FIXME (Ticket #179.) Reference to Unicode library -- handle this somehow.

11.3 Methods on string instances

11.3.1 intrinsic:toString

Returns
1 The intrinsic toString method returns this string value: the object itself.

override intrinsic function toString() : string
this;

11.3.2 intrinsic:valueOf

Returns
1 The intrinsic valueOf method returns this string value: the object itself.

override intrinsic function valueOf() : string
this;

11.3.3 Methods that delegate to static methods

Description

1 The intrinsic methods charAt, charCodeAt, concat, index0f, lastIndexOf, localeCompare, match,
replace, search,slice, split, substring, toLowerCase, toLocaleLowerCase, toUpperCase,
toLocaleUpperCase, and trim all delegate to the corresponding static methods on the string class.

Returns
2 These intrinsic methods return what their corresponding static methods on the string class return.

Implementation

intrinsic function charAt(pos: double = 0) : string
string.charAt(this, pos);

file://localhost/Work/es4/spec/library.html 07/11/08 11:45:54

ECMAScript 4th Edition -- Predefined Types and Objects 62

intrinsic function charCodeAt(pos: double = 0) : double
string.charCodeAt (this, pos);

intrinsic function concat(...args) : string
string.concat(this, args);

intrinsic function indexOf(searchString: string, position: double = 0.0) : double
string.indexOf(this, searchString, position);

intrinsic function lastIndexOf(searchString: string, position: double) : double
string.lastIndexOf(this, searchString, position);

intrinsic function localeCompare(that : string) : double
string.localeCompare(this, that);

intrinsic function match(regexp: RegExp) : Array
string.match(this, regexp);

intrinsic function replace(searchvValue: (string|RegExp!),
replacevalue: (string|function(...):string)) : string
string.replace(this, searchvalue, replaceValue);

intrinsic function search(regexp: RegExp!) : double
string.search(this, regexp);

intrinsic function slice(start: AnyNumber=NaN, end: AnyNumber=NaN, step: AnyNumber=1):
string
string.slice(this, start, end, step);

intrinsic function split(separator:(string|RegExp!), limit: double = double.MAX VALUE):
Array!
string.split(this, separator, limit)

static function split(self, separator, limit) : Array! {
type matcher = (string|RegExp!);

let function splitMatch(R: matcher, S: string, g: double) : [double, [string]]? {
switch type (R) {
case (x: string) {
let r = x.length;
if (g + r <= S.length && S.substring(q, q + r) === R)
return [g+r, []];
else
return null;
}
case (x: RegExp!) {
let mr: MatchResult = x.match(S, q);
if (mr === null)
return null;
else
return [mr.endIndex, mr.captures];

o~

}

let
let
let
let
let
let

new Array;

limit === undefined ? double.MAX VALUE : double(limit);
string(self);

S.length;

0;

0o n -

’

if (separator !== null && separator is RegExp)
R = separator;

else
R = string(separator);

if (lim === 0)
return A;

if (separator === undefined) {
A[0] = S;
return A;

}

if (s === 0) {
let z = splitMatch(R, S, 0);
if (z === null)
A[0] = s;

file://localhost/Work/es4/spec/library.html 07/11/08 11:45:54

ECMAScript 4th Edition -- Predefined Types and Objects 63

return A;

}
for (let g=p; g !==s;) {
let z = splitMatch(R, S, q);
if (z === null) {
++q;
continue;
}
let [e,cap] = z;
if (e === p) {
++q;
continue;
}
A[A.length] = S.substring(p, 9);
if (A.length === 1lim)
return A;
p = e;
for (let i=1 ; i < cap.length ; i++) {
A[A.length] = cap[i];
if (A.length === 1lim)
return A;
}
q = p;
}

A[A.length] = S.substring(p, s);
return A;

}

intrinsic function substring(start: double, end: double=this.length) : string
string.substring(this, start, end);

intrinsic function toLowerCase() : string
string.toLowerCase(this);

intrinsic function toLocalelLowerCase() : string
string.toLowerCase(this);

intrinsic function toUpperCase() : string
string.toUpperCase(this);

intrinsic function toLocaleUpperCase() : string
string.toLocaleUpperCase(this);

intrinsic function trim() : string
string.trim(this);

NOTE The second parameter to the intrinsic method LocaleCompare and the first parameter to the intrinsic methods

toLocaleLowerCase and toLocaleUpperCase are likely to be used in a future version of this standard; it is recommended that
implementations do not use these parameter position for anything else.

12 Boolean classes

1 ECMAScript provides a primitive truth value representation in the class boolean. It is primitive in the sense that this
representation is directly operated upon by the operators of the language, and in the sense that the class boolean is a final
and non-dynamic class for which ECMAScript implementations may provide efficient representations.

2 ECMAScript also provides the class Boolean, which is a dynamic non-final class that holds boolean values.

NOTE Instances of Boolean are not normally converted to boolean when operated upon by operators of the language.

12.1 The type AnyBoolean

1 The type AnyBoolean is a union containing all the built-in boolean types. By standard subtyping rules it also includes all
classes that extend Boolean.

__ES4__ type AnyBoolean = (boolean|Boolean!);

file://localhost/Work/es4/spec/library.html 07/11/08 11:45:54

ECMAScript 4th Edition -- Predefined Types and Objects

13 The class Boolean

64

1 The class Boolean is a dynamic, nullable, non-final subclass of Object that holds a boolean value in the form of a
boolean object. Instances of Boolean are converted to boolean when operated upon by operators of the language.

2 The class Boolean can be extended and the extending classes can provide novel representations for boolean values.

13.1 Synopsis
1 The class Boolean provides the following interface:

dynamic class Boolean

{
function Boolean(x=false) : val = boolean(x) {} ..
static meta function invoke(x=false) : boolean ..
static const length: uint = 1
override intrinsic function toString() : string ..
override intrinsic function valueOf() : boolean ..
}

2 The Boolean prototype object provides the following direct properties:

toString: function (this: Booleans) ..
valueOf: function (this: Booleans) ..

3 The Boolean prototype object is also the prototype object of the class boolean.

13.2 Methods on the Boolean class object

13.2.1 new Boolean (value=...)

Description

1 The Boolean constructor intializes a new Boolean object by storing value, converted to boolean, in a private property.

The default value is false.

Implementation

2 The Boolean constructor is implementation-defined.

13.2.2 Boolean(value=...)

Description
1 The Boolean class object called as a function converts value to boolean (not Boolean).

Returns
2 The boolean class object called as a function returns a boolean object.

Implementation

static meta function invoke(x=false) : boolean
boolean(x);

13.3 Methods on Boolean instances

13.3.1 intrinsic:toString ()

Description
1 The intrinsic toString method converts this boolean value to a string.

Returns
2 The intrinsic toString method returns a string.

Implementation

override intrinsic function toString() : string
intrinsic::valueOf().intrinsic::toString();

file://localhost/Work/es4/spec/library.html

07/11/08 11:45:54

ECMAScript 4th Edition -- Predefined Types and Objects 65

13.3.2 intrinsic:valueOf ()

Description
1 The intrinsic valueOf method returns this boolean value.

Returns
2 The intrinsic valueOf method returns a boolean object (not a Boolean object).

Implementation

override intrinsic function valueOf() : boolean
val;

13.4 Methods on the Boolean prototype object

Description
1 The methods on the Boolean prototype object invoke their intrinsic counterparts.

Returns
2 The methods on the Boolean prototype object return what their intrinsic counterparts return.

Implementation
prototype function toString(this: AnyBoolean)

this.intrinsic::toString();

prototype function valueOf(this: AnyBoolean)
this.intrinsic::valueOf();

14 The class boolean

1 The class boolean is a non-dynamic, non-nullable, final subclass of Object. It represents a boolean value (true or false).

COMPATIBILITY NOTE The class boolean is new in the 4th Edition of this Standard, but boolean models the "boolean values" in the 3rd
Edition.

14.1 Synopsis
1 The class boolean provides the following interface:

final class boolean!

{
function boolean(value=false) ..
static meta function invoke(x=false) : boolean ..
static const length: uint = 1
override intrinsic function toString() : string ..
override intrinsic function valueOf() : boolean ..
}

2 The boolean prototype object is the same as the Boolean prototype object (Boolean.prototype)).

14.2 Methods on the boolean class object

14.2.1 new boolean (value=...)
Description

1 The boolean constructor intializes a new boolean object by storing an implementation-dependent representation of the
truth value of value, as computed by ToBoolean (see [ToBoolean)), in a private property. The default value is false.

Implementation

2 The boolean constructor is implementation-defined.

14.2.2 boolean(value=...)

Description
1 The boolean class object called as a function converts value to boolean.

file://localhost/Work/es4/spec/library.html 07/11/08 11:45:54

ECMAScript 4th Edition -- Predefined Types and Objects 66

Returns
2 The boolean class object called as a function returns a boolean object.

Implementation

static meta function invoke(x=false) : boolean
(x is boolean) ? x : new boolean(x);

14.3 Methods on boolean instances

14.3.1 intrinsic::toString ()

Description
1 The intrinsic toString method converts this boolean value to a string, either "true" or "false".

Returns
2 The intrinsic toString method returns the string.

Implementation

override intrinsic function toString() : string
this ? "true" : "false";

14.3.2 intrinsic:valueOf ()

Description
1 The intrinsic valueOf method returns a boolean instance: the object on which the method was invoked.

Returns
2 The intrinsic valueOf method returns its this object.

Implementation

override intrinsic function valueOf() : boolean
this;

15 Number classes

1 ECMAScript provides a variety of primitive number representations. They are primitive in the sense that these are the
representations directly operated upon by the operators of the language, and also in the sense that they are represented by
final non-dynamic classes for which ECMAScript implementations may provide efficient representations.

2 The class double represents 64-bit IEEE-format binary floating point numbers approximately in the range -
1.7976931348623157 x 103% to +1.7976931348623157 x 103%,

3 Theclass decimal represents 128-bit IEEE-format decimal floating point numbers in the range -(1034-1) x 10611 t0 (103+-
1) x 10611,

COMPATIBILITY NOTE The 3rd Edition of this Standard provided only one kind of primitive number value, represented as 64-bit IEEE-format binary
floating point.

4 ECMAScript also provides the class Number, which is a dynamic non-final class that represents 64-bit IEEE-format binary
floating point numbers.

15.1 The type AnyNumber
1 The type AnyNumber is a union type that contains all the number types in the language.

__ES4__ type AnyNumber = (double|decimal|Number!);

16 The class Number

1 The class Number is a dynamic, nullable, non-final direct subclass of Object that holds a double value.

2 All intrinsic methods of Number obtain the number value stored in the object by calling the intrinsic valueOf method. If
the class Number is extended then the extending class can override the intrinsic valueOf method in order to provide new
ways of representing the number value stored in the class.

3 The intrinsic valueOf method is not constrained to return a double value, it can return any primitive number type.

file://localhost/Work/es4/spec/library.html 07/11/08 11:45:54

file://localhost/Work/es4/spec/library.html

ECMAScript 4th Edition -- Predefined Types and Objects

16.1 Synopsis
The class Number provides the following interface:

dynamic class Number

{

function Number(value=0) ..
static meta function invoke(value=0) ..

static const MAX VALUE: double = double.MAX VALUE

static const MIN VALUE: double = double.MIN_ VALUE

static const NaN: double = double.NAN

static const NEGATIVE_INFINITY: double = double.NEGATIVE_INFINITY
static const POSITIVE INFINITY: double = double.POSITIVE INFINITY
static const length: uint = 1

override intrinsic function toString(radix = 10) : string ..
override intrinsic function toLocaleString() : string ..
override intrinsic function valueOf(): (double|decimal) ..

intrinsic function toFixed(fractionDigits=0): string ..
intrinsic function toExponential (fractionDigits=undefined) : string ..
intrinsic function toPrecision(precision=undefined) : string ..

}
The Number prototype object provides these direct properties:

toString: function (this: Numeric, radix) ..
toLocaleString: function (this: Numeric)

valueOf: function (this: Numeric)

toFixed: function (this: Numeric, fractionDigits)
toExponential: function (this: Numeric, fractionDigits)
toPrecision: function (this: Numeric, precision)

16.2 Methods on the Number class object

16.2.1 new Number(value=...)

Description
The Number constructor initialises the newly created Number object by storing value (which defaults to +0), converted to
double, in a private property.

FIXME 1t is likely that Numbex should not be constrained to hold doulble values, but that it should be able to hold any numeric type and that its
methods should work properly on any numeric type, in a type-specific manner.

16.2.2 Number(value=...)

Description
When the Number class object is called as a function it performs a type conversion: if value (which defaults to +0) is not a
primitive number type it is converted to double.

Returns
The Number class object called as a function returns value converted to a primitive number type.
Implementation
static meta function invoke(value=0) {
if (value is AnyNumber)
return value;
return double(value);

}

16.3 Value properties on the Number class object

16.3.1 MAX_VALUE

The value of MAX VALUE is the largest positive finite value represented by the double class.

16.3.2 MIN_VALUE

67

07/11/08 11:45:54

ECMAScript 4th Edition -- Predefined Types and Objects 68

1 The value of MIN_VALUE is the smallest positive value represented by the double class.

16.3.3 NaN

1 The value of NaN is the not-a-number value represented by the double class.

16.3.4 NEGATIVE_INFINITY

1 The value of NEGATIVE INFINITY is the value - as represented by a double object.

16.3.5 POSITIVE_INFINITY

1 The value of POSITIVE INFINITY is the value + as represented by a double object.

16.4 Methods on Number instances

16.4.1 intrinsic::toString (radix=...)

Description
1 The intrinsic toString method converts this number value to a string representation in a base given by radix.

2 If radix is the number 10 or undefined, then the result is as for the ToString operator.
3 Ifradix is an integer from 2 to 36, but not 10, the result is an implementation-dependent string

Returns
4 The intrinsic toString method returns a string.

Implementation

override intrinsic function toString(radix = 10) : string
intrinsic::valueOf().intrinsic::toString(radix);

NOTE The intrinsic toStr ing method operates by obtaining a primitive number value, which it then converts to string by invoking the intrinsic
toString method on the primitive value.

16.4.2 intrinsic:itoLocaleString ()

Description

1 The intrinsic toLocaleString method converts this number value to a string value that represents the number value
formatted according to the conventions of the host environment's current locale.

Returns
2 The intrinsic toLocaleString method returns an implementation-dependent string.

Implementation

3 The intrinsic toLocaleString method is implementation-dependent, and it is permissible, but not encouraged, for it to
return the same thing as the intrinsic toString method.

NOTE The first parameter to this function is likely to be used in a future version of this standard; it is recommended that implementations do not use this
parameter position for anything else.

16.4.3 intrinsic:valueOf ()

Description
1 The intrinsic valueOf method returns the number value represented by this Number object.

Returns
2 The intrinsic valueOf method returns a primitive number value.

Implementation

override intrinsic function valueOf(): (double|decimal)
val;

16.4.4 Intrinsic methods that delegate to methods on primitive types

Description

file://localhost/Work/es4/spec/library.html 07/11/08 11:45:54

ECMAScript 4th Edition -- Predefined Types and Objects

69

1 The intrinsic toFixed, toExponential, and toPrecision methods operate by obtaining a primitive number value

from the intrinsic valueOf method, then invoking the appropriate method on the primitive value.

Returns

2 The intrinsic toFixed, toExponential, and toPrecision methods return what their delegates return.

Implementation

intrinsic function toFixed(fractionDigits=0): string
intrinsic::valueOf().intrinsic::toFixed(fractionDigits);

intrinsic function toExponential (fractionDigits=undefined)
intrinsic::valueOf().intrinsic::toExponential (fractionDigits);

intrinsic function toPrecision(precision=undefined)
intrinsic::valueOf().intrinsic::toPrecision(precision);

16.5 Methods on the Number prototype object

Description

1 The methods on the Number prototype object are constrained to being invoked on members of the type Numeric. All

operate by calling the corresponding intrinsic method on the this object.

NOTE The Number prototype object is also the prototype object for int, uint, double, and decimal.

Returns

2 The methods on the Number prototype object return what their corresponding intrinsic methods return.

Implementation

prototype function toString(this: AnyNumber, radix=10)

this.intrinsic::toString(radix);

prototype function toLocaleString(this: AnyNumber)

this.intrinsic::toLocaleString();

prototype function valueOf(this: AnyNumber)

this.intrinsic::valueOf();

prototype function toFixed(this:AnyNumber, fractionDigits)

this.intrinsic::toFixed(fractionDigits);

prototype function toExponential(this: AnyNumber, fractionDigits)
this.intrinsic::toExponential (fractionDigits);

prototype function toPrecision(this: AnyNumber, precision)
this.intrinsic::toPrecision(precision);

17 The class double

1 The class double is a final, non-nullable, non-dynamic direct subclass of Object that represents 64-bit ("double

precision") IEEE binary floating point number values in the range -(1-(1 12)°%) x 21024 16 +(1-(1/2)73) x 219%* inclusive

(approximately the range -1.7976931348623157 x 10°%8 to +1.7976931348623157 x 103%8, inclusive), plus the three special
values -, +o0, and NaN.

COMPATIBILITY NOTE The class double is new in the 4th Edition of this Standard, but double models the "number values" in the 3rd

Edition.

17.1 Synopsis

1 The class double provides the following interface:

final class double!

{

function double(value=false) ..
meta function invoke(x=0d) ..

static

static
static
static
static
static
static
static

const
const
const
const
const
const
const

MAX_ VALUE: double
MIN_VALUE: double
NaN: double = ..
NEGATIVE_INFINITY: double
POSITIVE_INFINITY: double
E: double = ..

LN10: double = ..

file://localhost/Work/es4/spec/library.html

07/11/08 11:45:54

ECMAScript 4th Edition -- Predefined Types and Objects 70

static const LN2: double = ..

static const LOG2E: double = ..

static const LOGl0E: double = ..

static const PI: double = ..

static const SQRT1 2: double = ..

static const SQRT2: double = ..

static const length: uint =1

override intrinsic function toString(radix = 10) : string ..
override intrinsic function toLocaleString() : string ..
override intrinsic function valueOf() : double ..

intrinsic function toFixed(fractionDigits=0) : string ..
intrinsic function toExponential (fractionDigits=undefined) : string ..
intrinsic function toPrecision(precision=undefined) : string ..

}
2 The double prototype object is identical to the Number prototype object (Number.prototype]).
17.2 Methods on the double class object

17.2.1 new double(value=...)
Description

1 The double constructor initialises the newly created double object by storing an implementation-dependent
representation of the double-precision value of value, converted to a number by the ToNumber operator, in a private
property. The default value is 0.

Implementation

2 The double constructor is implementation-dependent.

17.2.2 double(value=...)

Description

1 When the double class object is called as a function it performs a type conversion: it converts value (which defaults to +0)
to double.

Returns
2 The double class object called as a function returns value converted to double.

Implementation

static meta function invoke(x=0d)
(x is double) ? x : new double(x);

FIXME (Ticket #176.) The optimization used here, Magic: : newDouble for new double, makes the spec harder than it needs to be.

17.3 Value properties on the double class object

17.3.1 MAX_VALUE

1 The value of MAX_VALUE is the largest positive finite value represented by the double class, type, which is approximately
1.7976931348623157 x 103%8,

17.3.2 MIN_VALUE

1 The value of MIN_VALUE is the smallest positive value represented by the double class, which is approximately 5 x 10
324

17.3.3 NaN

1 The value of NaN is the not-a-number value represented by a double instance.

17.3.4 NEGATIVE_INFINITY

1 The value of NEGATIVE INFINITY is the value - as represented by a double instance.

file://localhost/Work/es4/spec/library.html 07/11/08 11:45:54

ECMAScript 4th Edition -- Predefined Types and Objects 71

17.3.5 POSITIVE_INFINITY

1 The value of POSITIVE INFINITY is the value + as represented by a double instance.

17.3.6 E

1 The value of E is the double value for e, the base of the natural logarithms, which is approximately
2.7182818284590452354.

17.3.7 LN10O

1 The value of LN10 is the double value for the natural logarithm of 10, which is approximately 2.302585092994046.

17.3.8 LN2

1 The value of LN2 is the double value for the natural logarithm of 2, which is approximately 0.6931471805599453.

17.3.9 LOG2E

1 The value of LOG2E is the double value for the base-2 logarithm of e, the base of the natural logarithms; this value is
approximately 1.4426950408889634.

NOTE The value of double . LOG2E is approximately the reciprocal of the value of double . LN2.

17.3.10 LOGI10E

1 The value of LOG10E is the double value for the base-10 logarithm of e, the base of the natural logarithms; this value is
approximately 0.4342944819032518.

NOTE The value of double .LOGLOE is approximately the reciprocal of the value of double .LN10.

17.3.11 PI

1 The value of PI is the double value for 7, the ratio of the circumference of a circle to its diameter, which is approximately
3.1415926535897932.

17.3.12 SQRT1_.2

1 The value of SQRT1_ 2 is the double value for the square root of 1/2, which is approximately 0.7071067811865476.

NOTE The value of double.SQRT1 2 is approximately the reciprocal of the value of double . SQRT2.

17.3.13 SQRT2

1 The value of SQRT2 is the double value for the square root of 2, which is approximately 1.4142135623730951.

17.4 Methods on double instances

17.4.1 intrinsic::toString (radix=...)

Description
1 The intrinsic toString method converts this number value to a string representation in a base given by radix.

2 If radix is the number 10 or undefined, then the result is as for the ToString operator.
3 Ifradix is an integer from 2 to 36, but not 10, the result is an implementation-dependent string

Returns
4 The intrinsic toString method returns a string.

Implementation
override intrinsic function toString(radix = 10) : string {
if (radix === 10 || radix === undefined)
return string(this);
if (radix is AnyNumber && radix >= 2 && radix <= 36 && intrinsic::isIntegral(radix))

file://localhost/Work/es4/spec/library.html 07/11/08 11:45:54

ECMAScript 4th Edition -- Predefined Types and Objects 72

return toString(int(radix));
throw new TypeError("Invalid radix argument to double.toString");

}

17.4.2 intrinsic::toLocaleString ()

Description

1 The intrinsic toLocaleString method converts this number value to a string value that represents the value of the
integer formatted according to the conventions of the host environment's current locale.

Returns
2 The intrinsic toLocaleString method returns an implementation-dependent string.

Implementation

3 Theintrinsic toLocaleString method is implementation-dependent, and it is permissible, but not encouraged, for it to
return the same thing as the intrinsic toString method.

NOTE The first parameter to this function is likely to be used in a future version of this standard; it is recommended that implementations do not use this
parameter position for anything else.

17.4.3 intrinsic:valueOf ()

Description
1 The intrinsic valueOf method returns the number value represented by this double object: the object itself.

Returns
2 The intrinsic valueOf method returns its this object.

Implementation

override intrinsic function valueOf() : double
this;

17.4.4 intrinsic::itoFixed (fractionDigits=...)

Description
1 The intrinsic toFixed method converts the this number value to a string in fixed-point notation with fractionDigits digits
after the decimal point. If fractionDigits is undefined, O is assumed.

Returns
2 The intrinsic toFixed method returns the fixed-point notation string representation of this number value.

Implementation
intrinsic function toFixed(fractionDigits=0) : string {
let x = this;
let f = toInteger(fractionDigits);
if (£<0 || £> 20)
throw new RangeError();

if (isNaN(x))
return "NaN";

let s = "";
if (x < 0) {
s = "o,
X = =X;
}

if (x >= Math.pow(10,21))
return s + string(m);

let n = toFixedSteplO(x, f);
let m=n==0 2 "0" : string(n);
if (f == 0)
return s + m;
let k = m.length;

if (k <= f)
m = "00000000000000000000".substring(0,£f+1-k) + m;
k = £+1;

}

non
.

return s + m.substring(0,k-f) + + m.substring(k-£f);

file://localhost/Work/es4/spec/library.html 07/11/08 11:45:54

ECMAScript 4th Edition -- Predefined Types and Objects 73

FIXME (Ticket #184.) Note that calling anything "step 10" no longer makes sense.

Note also that "step 10" is informative and needs to be documented and implemented as such.

3 An implementation is permitted to extend the behaviour of toFixed for values of fractionDigits less than O or greater than 20.
In this case toFixed would not necessarily throw RangeError for such values.

NOTE The output of tOF ixed may be more precise than tOString for some values because toString only prints enough significant
digits to distinguish the number from adjacent number values. For example, (1000000000000000128) .toString() returns
"1000000000000000100", while (1000000000000000128) . toF ixed (0) returns "1000000000000000128".

17.4.5 intrinsic::toExponential (fractionDigits=...)

Description

1 The intrinsic toExponential method converts this number value to a string in exponential notation with one digit before
the significand's decimal point and fractionDigits digits after the significand's decimal point. If fractionDigits is undefined,
include as many significand digits as necessary to uniquely specify the number (just like in ToString except that in this
case the number is always output in exponential notation).

Returns
2 The intrinsic toExponential method returns the exponential notation string representation of this number value.

Implementation

intrinsic function toExponential (fractionDigits=undefined) : string {
return "**toExponential: FIXME**";
}

FIXME (Ticket #185.) Implement this function.

3 Animplementation is permitted to extend the behaviour of toExponential for values of fractionDigits less than O or
greater than 20. In this case toExponential would not necessarily throw RangeError for such values.

NOTE For implementations that provide more accurate conversions than required by the rules above, it is recommended that the following alternative
version of step 19 be used as a guideline:

Let e, n, and f be integers such that f >0, 100 <n<](Jf”, the number value for n x 10°7 is x, and f is as small as possible. If there are multiple
possibilities for n, choose the value of n for which n x 10°7 is closest in value to x. If there are two such possible values of n, choose the one that is even.

FIXME (Ticket #186.) "Step 19" is obsolete.

17.4.6 intrinsic::toPrecision (precision=...)

Description
1 The intrinsic toPrecision method converts this number value to a string, either in exponential notation with one digit

before the significand's decimal point and precision-1 digits after the significand's decimal point or in fixed notation with
precision significant digits. If precision is undefined, call ToString (joperator: ToString)) instead.
Returns
2 The intrinsic toPrecision method returns the selected string representation of this number value.
Implementation

intrinsic function toPrecision(precision=undefined) : string {
return "**toPrecision: FIXME**";
}

FIXME (Ticket #185.) Implement this function.

3 Animplementation is permitted to extend the behaviour of toPrecision for values of precision less than 1 or greater
than 21. In this case toPrecision would not necessarily throw RangeError for such values.

18 The class decimal
1 Theclass decimal is a final, non-nullable, non-dynamic direct subclass of Object that represents 128-bit IEEE decimal

floating point number values in the range -(10°*-1) x 106! to (1034-1) x 10%'" inclusive, plus the three special values -,
+oo, and NaN.

COMPATIBILITY NOTE The class decimal is new in the 4th Edition of this Standard.

18.1 Synopsis

1 The class decimal provides the following interface:

file://localhost/Work/es4/spec/library.html 07/11/08 11:45:54

file://localhost/Work/es4/spec/library.html

ECMAScript 4th Edition -- Predefined Types and Objects

final class decimal!

{
function decimal(value=false) ..
static meta function invoke(x=0m) ..

static const MAX VALUE: decimal
static const MIN_VALUE: decimal
static const NaN: decimal = ..
static const NEGATIVE_ INFINITY: decimal
static const POSITIVE_INFINITY: decimal
static const E: decimal = ..

static const LN10: decimal = ..

static const LN2: decimal = ..

static const LOG2E: decimal = ..

static const LOG1l0E: decimal = ..

static const PI: decimal = ..

static const SQRT1 2: decimal = ..
static const SQRT2: decimal =

static const length: uint = 1

override intrinsic function toString(radix = 10) : string ..

override intrinsic function toLocaleString() : string ..

override intrinsic function valueOf() : decimal ..

intrinsic function toFixed(fractionDigits=0) : string ..

intrinsic function toExponential (fractionDigits=undefined) : string ..
intrinsic function toPrecision(precision=undefined) : string ..

}
The decimal prototype object is identical to the Number prototype object (Number.prototype|).

18.2 Methods on the decimal class object

18.2.1 new decimal(value=...)

Description

The decimal constructor initialises the newly created decimal object by storing an implementation-dependent
representation of the decimal value of value, as converted by ToNumber, in a private property. The default value is +0.

Implementation

The decimal constructor is implementation-dependent.

18.2.2 decimal(value=...)

Description

When the decimal class object is called as a function it performs a type conversion: it converts value (which defaults to
+0)to decimal.

Returns
The decimal class object called as a function returns value converted to decimal.

Implementation
static meta function invoke(x=0m)
(x is decimal) ? x : new decimal(x);

18.3 Value properties on the decimal class object

18.3.1 MAX_VALUE

The value of MAX VALUE is the largest positive finite value represented by the decimal class, type, which is (10%*-1) x
106111

18.3.2 MIN_VALUE

The value of MIN VALUE is the smallest positive value represented by the decimal class, which is 100143,

18.3.3 NaN

74

07/11/08 11:45:54

ECMAScript 4th Edition -- Predefined Types and Objects 75

1 The value of NaN is the not-a-number value represented by a decimal instance.

18.3.4 NEGATIVE_INFINITY

1 The value of NEGATIVE INFINITY is the value - as represented by a decimal instance.

18.3.5 POSITIVE_INFINITY

1 The value of POSITIVE INFINITY is the value + as represented by a decimal instance.

18.3.6 E

1 The value of E is the decimal value for e, the base of the natural logarithms, which is approximately
2.718281828459045235360287471352662.

18.3.7 LN1O

1 The value of LN10 is the decimal value for the natural logarithm of 10, which is approximately
2.302585092994045684017991454684364.

18.3.8 LN2

1 The value of LN2 is the decimal value for the natural logarithm of 2, which is approximately
0.6931471805599453094172321214581766.

18.3.9 LOG2E

1 The value of LOG2E is the decimal value for the base-2 logarithm of e, the base of the natural logarithms; this value is
approximately 1.442695040888963407359924681001892.

NOTE The value of decimal . LOG2E is approximately the reciprocal of the value of decimal . LN2.
18.3.10 LOGI10E

1 The value of LOG10E is the decimal value for the base-10 logarithm of e, the base of the natural logarithms; this value is
approximately 0.4342944819032518276511289189166051.

NOTE The value of decimal . LOGLOE is approximately the reciprocal of the value of decimal . LN10.
18.3.11 PI

1 The value of PI is the decimal value for m, the ratio of the circumference of a circle to its diameter, which is
approximately 3.141592653589793238462643383279503.

18.3.12 SQRT1_.2

1 The value of SQRT1_2 is the decimal value for the square root of 1/2, which is approximately
0.7071067811865475244008443621048490.

NOTE The value of decimal . SQRT1 2 is approximately the reciprocal of the value of decimal . SQRT2. 1/sqrt(2) =
0.7071067811865475244008443621048490392848359376884740365883398689953674 as computed by math.sch -->

18.3.13 SQRT2

1 The value of SQRT2 is the decimal value for the square root of 2, which is approximately
1.414213562373095048801688724209698.

18.4 Methods on decimal instances

18.4.1 intrinsic:toString (radix=...)

Description
1 The intrinsic toString method converts this number value to a string representation in a base given by radix.

file://localhost/Work/es4/spec/library.html 07/11/08 11:45:54

ECMAScript 4th Edition -- Predefined Types and Objects 76

2
3

If radix is the number 10 or undefined, then the result is as for the ToString operator.
If radix is an integer from 2 to 36, but not 10, the result is an implementation-dependent string

Returns
The intrinsic toString method returns a string.

Implementation

override intrinsic function toString(radix = 10) : string {
if (radix === 10 || radix === undefined)
return string(this);
if (radix is AnyNumber && radix >= 2 && radix <= 36 && intrinsic::isIntegral(radix))
return toString(int(radix));
throw new TypeError("Invalid radix argument to decimal.toString");

18.4.2 intrinsic:itoLocaleString ()

Description
The intrinsic toLocaleString method converts this number value to a string value that represents the value of the
integer formatted according to the conventions of the host environment's current locale.

Returns
The intrinsic toLocaleString method returns an implementation-dependent string.

Implementation
The intrinsic toLocaleString method is implementation-dependent, and it is permissible, but not encouraged, for it to
return the same thing as the intrinsic toString method.

NOTE The first parameter to this function is likely to be used in a future version of this standard; it is recommended that implementations do not use this
parameter position for anything else.

18.4.3 intrinsic:valueOf ()

Description
The intrinsic valueOf method returns the number value represented by this decimal object: the object itself.

Returns
The intrinsic valueOf method returns its this object.

Implementation

override intrinsic function valueOf() : decimal
this;

18.4.4 intrinsic:toFixed (fractionDigits=...)

Description
The intrinsic toF ixed method converts this number value to a string in fixed-point notation with fractionDigits digits after
the decimal point. If fractionDigits is undefined, O is assumed.

Returns
The intrinsic toF ixed method returns the fixed-point notation string representation of this number value.

Implementation

intrinsic function toFixed(fractionDigits=0) : string
double(this).intrinsic::toFixed(fractionDigits);

FIXME (Ticket #188.) That implementation is bogus.

An implementation is permitted to extend the behaviour of toFixed for values of fractionDigits less than 0 or greater than 20.
In this case toFixed would not necessarily throw RangeError for such values.

FIXME (Ticket #188.) Greater number of fractionDigits is possible for decimal.

NOTE The output of tOFixed may be more precise than tOString for some values because tOString only prints enough significant
digits to distinguish the number from adjacent number values. For example, (1000000000000000128) .toString() returns
"1000000000000000100", while (1000000000000000128) .toFixed (0) returns "1000000000000000128".

FIXME (Ticket #188.) Better example / more precision (for decimal).

file://localhost/Work/es4/spec/library.html 07/11/08 11:45:54

ECMAScript 4th Edition -- Predefined Types and Objects 77

18.4.5 intrinsic::toExponential (fractionDigits=...)

Description

1 The intrinsic toExponential method converts this number value to a string in exponential notation with one digit before
the significand's decimal point and fractionDigits digits after the significand's decimal point. If fractionDigits is undefined,
include as many significand digits as necessary to uniquely specify the number (just like in ToString except that in this
case the number is always output in exponential notation).

Returns
2 The static toExponential method returns the exponential notation string representation of this number value.

Implementation

intrinsic function toExponential (fractionDigits=undefined) : string
double(this).intrinsic::toExponential (fractionDigits);

FIXME (Ticket #188.) That implementation is bogus.

3 Animplementation is permitted to extend the behaviour of toExponential for values of fractionDigits less than O or
greater than 20. In this case toExponential would not necessarily throw RangeError for such values.

FIXME (Ticket #188.) Greater number of fractionDigits is possible for decimal.

NOTE For implementations that provide more accurate conversions than required by the rules above, it is recommended that the following alternative
version of step 19 be used as a guideline:

Let e, n, and f be integers such that f >0, 100 <n<]0f+l, the number value for n x 10°7 is x, and f is as small as possible. If there are multiple
possibilities for n, choose the value of n for which n x 10°7 is closest in value to x. If there are two such possible values of n, choose the one that is even.

FIXME (Ticket #188.) "Step 19" is obsolete.
18.4.6 intrinsic::toPrecision (precision=...)

Description
1 The intrinsic toPrecision method converts this number value to a string, either in exponential notation with one digit

before the significand's decimal point and precision-1 digits after the significand's decimal point or in fixed notation with
precision significant digits. If precision is undefined, call ToString (joperator: ToString)) instead.
Returns
2 The intrinsic toPrecision method returns the selected string representation of this number value.
Implementation

intrinsic function toPrecision(precision=undefined) : string
double(this).intrinsic::toPrecision(precision);

FIXME (Ticket #188.) That implementation is bogus.

3 Animplementation is permitted to extend the behaviour of toPrecision for values of precision less than 1 or greater
than 21. In this case toPrecision would not necessarily throw RangeError for such values.

FIXME (Ticket #188.) Greater precision possible for decimal.

19 The Math Object

1 The global Math object is a single object that has some named properties, some of which are functions. The Math object is
the only instance of an internal helper class called Math.

2 The Math object acts as a container for built-in mathematics-related functions and constants.

19.1 Synopsis

1 For convenience of notation the definition of the Math object uses the helper type name PrimitiveNumber.
helper type PrimitiveNumber = (double|decimal);

2 The intrinsic methods on the math object are restricted to arguments of the type PrimitiveNumber.

3 The Math object provides the following interface:
helper dynamic final class Math extends Object

intrinsic function abs(x: helper::PrimitiveNumber): helper::PrimitiveNumber ..
intrinsic function acos(x: helper::PrimitiveNumber): helper::PrimitiveNumber ..
intrinsic function atan(x: helper::PrimitiveNumber): helper::PrimitiveNumber ..

file://localhost/Work/es4/spec/library.html 07/11/08 11:45:54

ECMAScript 4th Edition -- Predefined Types and Objects 78

intrinsic function atan2(y: helper::PrimitiveNumber, x: helper::PrimitiveNumber):
helper::PrimitiveNumber ..

intrinsic function ceil(x: helper::PrimitiveNumber): helper::PrimitiveNumber ..

intrinsic function cos(x: helper::PrimitiveNumber): helper::PrimitiveNumber ..

intrinsic function exp(x: helper::PrimitiveNumber): helper::PrimitiveNumber ..

intrinsic function floor(x: helper::PrimitiveNumber): helper::PrimitiveNumber ..

intrinsic function log(x: helper::PrimitiveNumber): helper::PrimitiveNumber ..

intrinsic function max(x: helper::PrimitiveNumber, y: helper::PrimitiveNumber):
helper::PrimitiveNumber ..

intrinsic function min(x: helper::PrimitiveNumber, y: helper::PrimitiveNumber):
helper::PrimitiveNumber ..

intrinsic function pow(x: helper::PrimitiveNumber, y: helper::PrimitiveNumber):
helper::PrimitiveNumber ..

intrinsic function random(): double ..

intrinsic function round(x: helper::PrimitiveNumber): helper::PrimitiveNumber ..

intrinsic function sin(x: helper::PrimitiveNumber): helper::PrimitiveNumber ..

intrinsic function sqrt(x: helper::PrimitiveNumber): helper::PrimitiveNumber ..

intrinsic function tan(x: helper::PrimitiveNumber): helper::PrimitiveNumber ..

const E: double = double.E
const LN10: double = double.LN10
const LN2: double = double.LN2
const LOG2E: double = double.LOG2E
const LOGlOE: double = double.LOG1l0E
const PI: double = double.PI
const SQRT1 2: double = double.SQRT1 2
const SQRT2: double = double.SQRT2

}

4 The constant values E, LN10, LN2, LOG2E, LOG10E, PI, SQRT1_2, and SQRT2 in the Math class are of type double
for compatibility with 3rd Edition.

NOTE New code may find it more convenient to access these constant values through the double or decimal classes, as appropriate, to obtain
values with the best precision for the particular type.

5 The Math object additionally provides the following dynamic function properties. These functions are not restricted in the
types of arguments they accept, but convert all their arguments to a primitive number.

abs: function (x) ..,
acos: function (x) ’
asin: function (x) .. ,
atan: function (x) ..,
atan2: function (y,x) ..,
ceil: function (X) .. ,
cos: function (x) ..,
exp: function (x) ..,
floor: function (x) ’
log: function (x) .. ,
max: function (...xs) ..,
min: function (...xs) ..,
pow: function (X,y) . ,
random: function () ..,
round: function (X) .. ,
sin: function (x) ..,
sqgrt: function (x) .. ,
tan: function (x) ..

6 The [[Prototype]] object of the Math object does not contain a constructor property.

NOTE The constraint on cOnsStructor is for backward compatibility and is also necessary to insure that the math object is a singleton object. But
note that Math .constructor is still defined, it is accessible through the prototype chain and is Object .constructor.

19.2 Primitive operations on numbers

FIXME (Ticket #189.) Describe the following helper and informative functions here: isPositive, isPositiveZero, isNegativeZero, isOddInteger.

19.3 Intrinsic function properties of the Math object
1 In the function descriptions below, the symbols NaN, -0, 40, -0 and + refer to the number values described in 8.5.

FIXME Clean up the cross-reference later.

NOTE The behaviour of the functions aCOs, asin, atan, atan2, cos, exp, 1og, pow, sin, and sqrt is not precisely specified
here except to require specific results for certain argument values that represent boundary cases of interest. For other argument values, these functions are
intended to compute approximations to the results of familiar mathematical functions, but some latitude is allowed in the choice of approximation
algorithms. The general intent is that an implementer should be able to use the same mathematical library for ECMAScript on a given hardware platform
that is available to C programmers on that platform.

file://localhost/Work/es4/spec/library.html 07/11/08 11:45:54

ECMAScript 4th Edition -- Predefined Types and Objects 79

Although the choice of algorithms is left to the implementation, it is recommended (but not specified by this standard) that implementations use the
approximation algorithms for IEEE 754 arithmetic contained in fdlibm, the freely distributable mathematical library from Sun Microsystems (£d1ibm—
comment@sunpro.eng.sun.com). This specification also requires specific results for certain argument values that represent boundary
cases of interest.

NOTE The functions defined in this section preserve the representation of the argument(s) in the result where this is reasonable. All functions map
double and decimal arguments to double and decimal results, respectively.

19.3.1 intrinsic:abs (x)

Description
1 The intrinsic abs function computes the absolute value of the number x, which has the same magnitude as x but has positive
sign.

Returns
2 The intrinsic abs function returns the absolute value of x. The representation of the result is the same as the representation
of x.

Implementation

3 intrinsic function abs(x: PrimitiveNumber): PrimitiveNumber {

switch type (x) {

case (n: double) {
if (isNaN(n)) return n;
if (x == 0) return 0;
return n < 0 ?2 -n : n;

}

case (n: decimal) {
if (isNaN(n)) return n;
if (x == Om) return Om;
return n < Om ? -n : n;

e~

19.3.2 intrinsic:acos (x)

Description
1 The intrinsic acos function computes an implementation-dependent approximation to the arc cosine of the number x. The
result is expressed in radians and ranges from +0 to +t.

Returns
2 The intrinsic acos function returns a floating-point number.

Implementation

intrinsic function acos(x: PrimitiveNumber): PrimitiveNumber {
switch type (x) {
case (n: double) {

if (isNaN(n) || n > 1 || n < -1) return NaN;
if (n == 1) return 0;
return acosDouble(n);
}
case (n: decimal) {
if (isNaN(n) || n > 1m || n < 1m) return decimal.NaN;
if (n == 1lm) return Om;
return acosDecimal(n);
}
}

}

3 The informative functions acosDouble and acosDecimal implement representation-preserving approximate
computation of the arc cosine of their argument.

informative function acosDouble(x: double): double ..
informative function acosDecimal(x: decimal): decimal ..

19.3.3 intrinsic:asin (x)
Description
1 The intrinsic asin function computes an implementation-dependent approximation to the arc sine of the number x. The

result is expressed in radians and ranges from -1t/2 to +m/2.

Returns

file://localhost/Work/es4/spec/library.html 07/11/08 11:45:54

ECMAScript 4th Edition -- Predefined Types and Objects

2

80

The intrinsic asin function returns a floating-point number.

Implementation

intrinsic function asin(x: PrimitiveNumber): PrimitiveNumber {
switch type (x) {
case (n: double) {

if (isNaN(n) || n > 1 || n < -1) return NaN;
if (n == 0) return n;
return asinDouble(n);
}
case (n: decimal) {
if (isNaN(n) || n > 1m || n < 1m) return decimal.NaN;
if (n == Om) return n;
return asinDecimal(n);
}
}

NOTE The intrinsic S 11 function preserves the sign of x if x is 0.

The informative functions asinDouble and asinDecimal implement representation-preserving approximate
computation of the arc sine of their argument.

informative function asinDouble(x: double): double ..
informative function asinDecimal(x: decimal): decimal ..

19.3.4 intrinsic:atan (x)

Description
The intrinsic atan function computes an implementation-dependent approximation to the arc tangent of the number x. The
result is expressed in radians and ranges from -t/2 to +m/2.

Returns
The intrinsic atan function returns a floating-point number.

Implementation

intrinsic function atan(x: PrimitiveNumber): PrimitiveNumber {
switch type (x) {
case (n: double) {
if (isNaN(n) || n == 0) return n;
if (!isFinite(n))
return copysign(double.PI / 2, n);
return atanDouble(n);

}
case (n: decimal) {
if (isNaN(n) || n == Om) return n;
if (!isFinite(n))
return copysign(decimal.PI / 2m, n);
return atanDecimal(n);
}
}

NOTE The intrinsic @atan function preserves the sign of x if x is 0.

The informative functions atanDouble and atanDecimal implement representation-preserving approximate
computation of the arc tangent of their argument.

informative function atanDouble(x: double): double ..
informative function atanDecimal(x: decimal): decimal ..

19.3.5 intrinsic:atan2 (y, x)

Description

The intrinsic atan2 function computes an implementation-dependent approximation to the arc tangent of the quotient y/x of
the numbers y and x, where the signs of y and x are used to determine the quadrant of the result. Note that it is intentional and
traditional for the two-argument arc tangent function that the argument named y be first and the argument named x be second.
The result is expressed in radians and ranges from - to .

Returns

The intrinsic atan2 function returns a floating-point number. The result is decimal of y or x is decimal, otherwise
double.

file://localhost/Work/es4/spec/library.html 07/11/08 11:45:54

ECMAScript 4th Edition -- Predefined Types and Objects

Implementation

intrinsic function atan2(y: PrimitiveNumber, X: PrimitiveNumber): PrimitiveNumber {

if (y is decimal && !(x is decimal))
x = decimal(x);

else if (x is decimal && !(y is decimal))
y = decimal(y);

let Type = (x is double) ? double : decimal;

if (isNaN(x) || isNaN(y))
return Type.NaN;
if (y > 0 && x ==
return Type.PI/2;
if (isPositiveZero(y))
return isPositive(x) ? Type(+0) : Type.PI;
if (isNegativeZero(y))
return isPositive(x) ? Type(-0) : -Type.PI;
if (y < 0 && x == 0)
return -Type.PI/2;
if (y != 0 && isFinite(y) && !isFinite(x) && x > 0)
return Type(copysign(0, y));
if (y != 0 && isFinite(y) && !isFinite(x) && x < 0)
return copysign(Type.PI, y);
if (!isFinite(y) && isFinite(x))
return copysign(Type.PI/2, y);
if (!isFinite(y) && !isFinite(x))
return copysign(x > 0 ? Type.PI/4 : 3*Type.PI/4, y);

if (Type == double)
return atanZDouble(y, X);
return atan2Decimal(y, X);

NOTE An implementation is free to produce approximations for all computations involving PT in the preceding algorithm.

81

The informative functions atan2Double and atan2Decimal implement representation-preserving approximate

computation of the arc tangent of the quotient of their arguments.

informative function atan2Double(y: double, x: double): double ..
informative function atan2Decimal(y: decimal, x: decimal): decimal ..

19.3.6 intrinsic:ceil (x)

Description

The intrinsic ceil function computes the smallest (closest to -0) number value that is not less than x and is equal to a

mathematical integer. If x is already an integer, the result is x.

NOTE The value of Math.ceil (x) is the same as the value of —Math.floor (-x).

Returns
The intrinsic ceil function returns a number in the same representation as x.

Implementation

intrinsic function ceil(x: PrimitiveNumber): PrimitiveNumber {

switch type (x) {

case (n: double) {
if (!isFinite(n) || n == 0) return n;
if (-1 < n & n < 0) return -0;
return ceilDouble(n);

}

case (n: decimal) {
if (!isFinite(n) || n == Om) return n;
if (-1Im < n & n < Om) return -Om;
return ceilDecimal(n);

}

}

}

The informative functions ceilDouble and ceilDecimal implement representation-preserving computation of the

ceiling of their argument.

informative function ceilDouble(x: double): double ..
informative function ceilDecimal(x: decimal): decimal ..

file://localhost/Work/es4/spec/library.html

07/11/08 11:45:54

ECMAScript 4th Edition -- Predefined Types and Objects 82

19.3.7 intrinsic:cos (x)

Description
1 The intrinsic cos method computes an implementation-dependent approximation to the cosine of the number x. The
argument is expressed in radians.

Returns
2 The intrinsic cos function returns a floating-point number.

Implementation

intrinsic function cos(x: PrimitiveNumber): PrimitiveNumber {
switch type (x) {
case (n: double) {
if (!isFinite(n)) return NaN;
if (n == 0) return 1;
return cosDouble(n);
}
case (n: decimal) {
if (!isFinite(n)) return decimal.NaN;
if (n == Om) return 1m;
return cosDecimal(n);

B el

}

3 The informative functions cosDouble and cosDecimal implement representation-preserving approximate computation
of the cosine of their argument.

informative function cosDouble(x: double): double ..
informative function cosDecimal(x: decimal): decimal ..

19.3.8 intrinsic:exp (x)

Description
1 The intrinsic exp function computes an implementation-dependent approximation to the exponential function of the number
x (e*, where e is the base of the natural logarithms).

Returns
2 The intrinsic exp function returns a floating-point number.

Implementation

intrinsic function exp(x: PrimitiveNumber): PrimitiveNumber {
switch type (x) {
case (n: double) {
if (isNaN(n)) return n;

if (n == 0) return 1d;
if (n == Infinity) return Infinity;
if (n == -Infinity) return 0;

return expDouble(n);
}
case (n: decimal) {
if (isNaN(n)) return n;

if (n == Om) return 1lm;
if (n == decimal.POSITIVE_INFINITY) return decimal.POSITIVE_INFINITY;
if (n == decimal.NEGATIVE_ INFINITY) return Om;
return expDecimal(n);
}
}

}

3 The informative functions expDouble and expDecimal implement representation-preserving approximate computation
of the exponential function of their argument.

informative function expDouble(x: double): double ..
informative function expDecimal(x: decimal): decimal ..

19.3.9 intrinsic:floor (x)

Description
1 The intrinsic £1oor function computes the greatest (closest to +9) number value that is not greater than x and is equal to a
mathematical integer. If x is already an integer, the result is x.

file://localhost/Work/es4/spec/library.html 07/11/08 11:45:54

file://localhost/Work/es4/spec/library.html

ECMAScript 4th Edition -- Predefined Types and Objects

Returns
The intrinsic £1oor function returns a number in the same representation as x.

Implementation

intrinsic function floor(x: PrimitiveNumber): PrimitiveNumber {
switch type (x) {
case (n: double) {
if (!isFinite(n) || n == 0) return n;
if (0 < n & n < 1) return +0;
return floorDouble(n);

}

case (n: decimal) {
if (!isFinite(n) || n == Om) return n;
if (Om < n && n < 1lm) return +0m;
return floorDecimal(n);

}

}

NOTE The value of Math.floor (x) is the same as the value of -Math.ceil (-x).

The informative functions £loorDouble and floorDecimal implement representation-preserving computation of the
floor of their argument.

informative function floorDouble(x: double): double ..
informative function floorDecimal(x: decimal): decimal ..

19.3.10 intrinsic:log (x)

Description
The intrinsic 1og function computes an implementation-dependent approximation to the natural logarithm of the number x.

Returns
The intrinsic 1og function returns a floating-point number.

Implementation

intrinsic function log(x: PrimitiveNumber): PrimitiveNumber {
switch type (x) {
case (n: double) {
if (isNaN(n) || n < 0) return NaN;
if (n == 0) return -Infinity;
if (n == 1) return +0;
if (n == Infinity) return n;
return IogDouble(n);
}
case (n: decimal) {
if (isNaN(n) || n < Om) return decimal.NaN;
if (n == Om) return decimal.NEGATIVE INFINITY;
if (n == 1lm) return +0m;
if (n == decimal.POSITIVE INFINITY) return n;
return logDecimal(n);

B el

}

The informative functions logDouble and 1ogDecimal implement representation-preserving approximate computation
of the natural logarithm of their argument.

informative function logDouble(x: double): double ..
informative function logDecimal(x: decimal): decimal ..

19.3.11 intrinsic:max (x, y)

Description
The intrinsic max method selects the numerically largest (closest to +) value among x and y. +0 is considered larger than -0.

Returns
The intrinsic max method returns either x or y.

Implementation

intrinsic function max(x: PrimitiveNumber, y: PrimitiveNumber): PrimitiveNumber {
if (isNaN(x)) return x;
if (isNaN(y)) return y;

83

07/11/08 11:45:54

ECMAScript 4th Edition -- Predefined Types and Objects 84

if (x > y) return x;
if (y > x) return y;
if (x != 0) return x;

let x sign = sign(x),

y_sign = sign(y);
if (x_sign > y sign) return x;
if (y_sign > x sign) return y;
return Xx;

NOTE If x and y are numerically equal (and of the same sign if they are both 0) then the implementation is free to return either one of them.

19.3.12 intrinsic:min (x, y)

Description

1 The intrinsic min method selects the numerically smallest (closest to -o°) number among x and y. -0 is considered smaller
than +0.

Returns
2 The intrinsic min method returns either x or y.

Implementation

intrinsic function min(x: PrimitiveNumber, y: PrimitiveNumber): PrimitiveNumber {
if (isNaN(x)) return x;
if (isNaN(y)) return y;
if (x < y) return x;
if (y < x) return y;
if (x != 0) return x;

let x sign = sign(x),

y_sign = sign(y);
if (x_sign < y sign) return x;
if (y_sign < x _sign) return y;
return x;

NOTE If x and y are numerically equal (and of the same sign if they are both 0) then the implementation is free to return either one of them.

19.3.13 intrinsic:pow (X, y)

Description
1 The intrinsic pow function computes an implementation-dependent approximation to the result of raising x to the power y.

2 The intrinsic pow function produces a result in the representation of x.

Returns
3 The intrinsic pow function returns a number.

Implementation

intrinsic function pow(x: PrimitiveNumber, y: PrimitiveNumber): PrimitiveNumber {
if (x is decimal && !(y is decimal))
y = decimal(y);
else if (y is decimal && !(x is decimal))
x = decimal(x);

let Type = (x is double) ? double : decimal;

if (isNaN(y)) return Type.NaN;

if (y == 0) return Type(l);

if (isNaN(x) && y != 0) return Type.NaN;

if (abs(x) > 1 && y == Infinity) return Type.POSITIVE INFINITY;

if (abs(x) > 1 && == -Infinity) return Type(+0);

if (abs(x) == 1 && y == Infinity) return Type.NaN;

if (abs(x) == 1 && y == -Infinity) return Type.NaN;

if (abs(x) < 1 && y == Infinity) return Type(+0);

if (abs(x) < 1 && y == -Infinity) return Type.POSITIVE INFINITY;

if (x == Infinity && y > 0) return Type.POSITIVE INFINITY;

if (x == Infinity && y < 0) return Type(+0);

if (x == -Infinity && y > 0 && isOddInteger(y)) return Type.NEGATIVE_ INFINITY;
if (x == -Infinity && y > 0 && !isOddInteger(y)) return Type.POSITIVE_ INFINITY;
if (x == -Infinity && y < 0 && isOddInteger(y)) return Type(-0);

if (x == -Infinity && y < 0 && !isOddInteger(y)) return Type(+0);

if (x == 0 && y > 0) return Type(+0);

if (x == 0 && y < 0) return Type.POSITIVE INFINITY;

file://localhost/Work/es4/spec/library.html 07/11/08 11:45:54

file://localhost/Work/es4/spec/library.html

ECMAScript 4th Edition -- Predefined Types and Objects

if (isNegativeZero(x) && y
if (isNegativeZero(x) && y

0 && isOddInteger(y)) return Type(-0);
0 && !isOddInteger(y)) return Type(+0);
if (isNegativeZero(x) && y 0 && isOddInteger(y)) return Type.NEGATIVE INFINITY;
if (isNegativeZero(x) && y && !isOddInteger(y)) return Type.POSITIVE_ INFINITY;
if (x < 0 && isFinite(x) && isFinite(y) && !isIntegral(y)) return Type.NaN;

ANANVYV
o

if (Type == double)
return powDouble(x, Y);
return powDecimal(x, Y);

}

The informative functions powDouble and powDecimal implement representation-dependent computation of the value
y
X,

informative function powDouble(x: double, y: double): double ..
informative function powDecimal(x: decimal, y: decimal): decimal ..

19.3.14 intrinsici:random ()

Description

The intrinsic random function computes a double value with positive sign, greater than or equal to O but less than 1,
chosen randomly or pseudo randomly with approximately uniform distribution over that range, using an implementation-
dependent algorithm or strategy. This function takes no arguments.

Returns
The intrinsic random function returns a double.

Implementation

The intrinsic random function is implementation-dependent.

19.3.15 intrinsic:round (x)

Description

The intrinsic round function computes the number value that is closest to x and is equal to a mathematical integer. If two
integer number values are equally close to x, then the result is the number value that is closer to +. If x is already an integer,
the result is x.

Returns

The intrinsic round function returns a number, the representation of which is always the same as the representation of the
input x.

Implementation

intrinsic function round(x: PrimitiveNumber): PrimitiveNumber {
switch type (x) {
case (n: double) {
if (!isFinite(n) || n == 0) return n;
if (0 < n && n < 0.5) return +0;
if (-0.5 < n && n < 0) return -0;
return roundDouble(n);

}

case (n: decimal) {
if (!isFinite(n) || n == Om) return n;
if (Om < n && n < 0.5m) return +0m;
if (-0.5m < n && n < Om) return -Om;
return roundDecimal(n);

}

}

}

The informative functions roundDouble and roundDecimal implement representation-preserving computation of the
rounded value of their argument.

informative function roundDouble(x: double):double ..
informative function roundDecimal(x: decimal):decimal ..

NOTE The intrinsic round function preserves the sign of x if x is 0.
NOTE Math.round(3.5) returns 4, but Math.round(-3.5) returns -3.

NOTE The value of Math.round (x) is the same as the value of Math.floor (x+0.5), except when x is -0 or is less than 0 but
greater than or equal to -0.5; for these cases Math.round(x) returns -0, but Math.floor (x+0.5) returns +0.

85

07/11/08 11:45:54

ECMAScript 4th Edition -- Predefined Types and Objects 86

19.3.16 intrinsic:sin (x)

Description
1 The intrinsic sin function computes an implementation-dependent approximation to the sine of the number x. The argument
is expressed in radians.

Returns
2 The intrinsic sin function returns a floating-point number.

Implementation

intrinsic function sin(x: PrimitiveNumber): PrimitiveNumber {
switch type (x) {
case (n: double) {
if (!isFinite(n)) return NaN;
if (n == 0) return n;
return sinDouble(n);
}
case (n: decimal) {
if (!isFinite(n)) return decimal.NaN;
if (n == Om) return n;
return sinDecimal(n);

B el

}

3 The informative functions sinDouble and sinDecimal implement representation-preserving approximate computation
of the sine of their argument.

informative function sinDouble(x: double):double ..
informative function sinDecimal(x: decimal):decimal ..

NOTE The intrinsic S1n function preserves the sign of x if x is 0.

19.3.17 intrinsic:sqrt (x)

Description
1 The intrinsic sgqrt method computes an implementation-dependent approximation to the square root of the number x.

Returns
2 The intrinsic sqrt method returns a number. The representation of the result is the same as the representation of x.

Implementation

intrinsic function sqrt(x: PrimitiveNumber): PrimitiveNumber {
switch type (x) {
case (n: double) {

if (isNaN(n) || n < 0) return NaN;
if (n == || n == Infinity) return n;
return sqrtDouble(n);
}
case (n: decimal) {
if (isNaN(n) || n < Om) return decimal.NaN;
if (n == Om || n == decimal.POSITIVE INFINITY) return n;
return sqrtDecimal(n);
}
}

19.3.18 intrinsic:tan (x)

Description
1 The intrinsic tan function computes an implementation-dependent approximation to the tangent of x. The argument is
expressed in radians.

Returns
2 The intrinsic tan function returns a floating-point number.

Implementation

intrinsic function sin(x: PrimitiveNumber): PrimitiveNumber {
switch type (x) {
case (n: double) {
if (!isFinite(n)) return NaN;
if (n == 0) return n;

file://localhost/Work/es4/spec/library.html 07/11/08 11:45:54

ECMAScript 4th Edition -- Predefined Types and Objects 87

return sinDouble(n);

}

case (n: decimal) {
if (!isFinite(n)) return decimal.NaN;
if (n == Om) return n;
return sinDecimal(n);

}

3 The informative functions tanDouble and tanDecimal implement representation-preserving approximate computation
of the tangent of their argument.

informative function tanDouble(x: double):double ..
informative function tanDecimal(x: decimal):decimal ..

NOTE The intrinsic tan function preserves the sign of x if x is 0.

19.4 Other function properties of the Math object

1 Every function listed in this section applies the toPrimitiveNumber function to each of its arguments (in left-to-right
order if there is more than one) and then performs a computation on the resulting number value(s) by invoking the
corresponding intrinsic method.

Math.public::abs =
function (x) Math.abs(toPrimitiveNumber(x));

Math.public::acos =
function (x) Math.acos(toPrimitiveNumber(x));

Math.public::asin =
function (x) Math.asin(toPrimitiveNumber(x));

Math.public::atan =
function (x) Math.atan(toPrimitiveNumber(x));

Math.public::atan2 =
function (y,x)
Math.atan2(toPrimitiveNumber(y), toPrimitiveNumber(x));

Math.public::ceil =
function (x) Math.ceil(toPrimitiveNumber(x));

Math.public::cos =
function (x) Math.cos(toPrimitiveNumber(x));

Math.public::exp =
function (x) Math.exp(toPrimitiveNumber(x));

Math.public::floor =
function (x) Math.floor(toPrimitiveNumber(x));

Math.public::log =
function (x) Math.log(toPrimitiveNumber(x));

Math.public::pow =
function (x, y)
Math.pow(toPrimitiveNumber(x), toPrimitiveNumber(y));

Math.public::random =
function () Math.random();

Math.public::round =
function (x) Math.round(toPrimitiveNumber(x));

Math.public::sin =
function (x) Math.sin(toPrimitiveNumber(x));

Math.public::sqgrt =
function (x) Math.sqrt(toPrimitiveNumber(x));

Math.public::tan =
function (x) Math.atan(toPrimitiveNumber(x));

2 The max and min functions are more general than their corresponding intrinsic methods: they accept zero or more
arguments and apply their corresponding intrinsic methods to the current result and the next argument, in left-to-right order.

file://localhost/Work/es4/spec/library.html 07/11/08 11:45:54

file://localhost/Work/es4/spec/library.html

ECMAScript 4th Edition -- Predefined Types and Objects

Math.public::max =
function max(...xs) {

if (xs.length == 0)
return -Infinity;

let result = toPrimitiveNumber(xs[0]);

for (let i=1 ; i < xs.length; ++i) {
result = Math.max(result, toPrimitiveNumber(xs[i]));
if (isNaN(result))

break;
}
return result;

}i

Math.public::min =
function min(...xs) {

if (xs.length == 0)
return Infinity;

let result = toPrimitiveNumber(xs[0]);

for (let i=1 ; i < xs.length; ++i) {
result = Math.min(result, toPrimitiveNumber(xs[i]));
if (isNaN(result))

break;
}

return result;

}i
20 The class Date

The Date object serves two purposes: as a record of an instant in time, and as a simple timer.

Time is measured in ECMAScript in milliseconds since 01 January, 1970 UTC (the "epoch"), and a Date object contains a
number indicating a particular instant in time to within a millisecond relative to the epoch. The number may also be NaN,
indicating that the Date object does not represent a specific instant of time.

A Date object also contains a record of its time of creation to nanosecond precision, and can be queried for the elapsed time
since its creation to within a nanosecond.

20.1 Synopsis
The Date class provides this interface:
dynamic class Date extends Object

function Date(year=NOARG, month=NOARG, date=NOARG, hours=NOARG, minutes=NOARG,
seconds=NOARG, ms=NOARG) ..
static meta function invoke(...args) // args are ignored. ..

static intrinsic function parse(s:string, reference:double=0.0) : double ..
static intrinsic function UTC(year: double,
static function now() : double ..

static var parse = function parse(str, reference:double=0.0) ..
static var UTC = ..

static const length: uint = 7;

override intrinsic function toString() : string ..
intrinsic function toDateString() : string ..
intrinsic function toTimeString():string ..
override intrinsic function toLocaleString() : string ..
intrinsic function toLocaleDateString() : string ..
intrinsic function toLocaleTimeString() : string ..
intrinsic function toUTCString() : string ..
intrinsic function toISOString() : string ..
intrinsic function nanoAge() : double ..

intrinsic function getTime() double ..

intrinsic function getYear() : double ..

intrinsic function getFullYear() : double ..
intrinsic function getUTCFullYear() : double ..
intrinsic function getMonth() : double ..

intrinsic function getUTCMonth() : double ..
intrinsic function getDate() : double ..

intrinsic function getUTCDate() : double ..
intrinsic function getDay() : double ..

intrinsic function getUTCDay() : double ..
intrinsic function getHours() : double ..

88

07/11/08 11:45:54

ECMAScript 4th Edition -- Predefined Types and Objects

intrinsic function getUTCHours() : double ..
intrinsic function getMinutes() : double ..
intrinsic function getUTCMinutes() : double ..
intrinsic function getSeconds() : double ..
intrinsic function getUTCSeconds() : double ..
intrinsic function getMilliseconds() : double ..
intrinsic function getUTCMilliseconds() : double ..
intrinsic function getTimezoneOffset() : double ..
intrinsic function setTime(t:double) : double ..

intrinsic function setYear(this:Date, year:double) ..

intrinsic function setFullYear(year:double, ..

intrinsic function setUTCFullYear (year:double,

intrinsic function setMonth(month:double, date:double = getDate()):double ..
intrinsic function setUTCMonth(month:double, date:double = getUTCDate()):double ..
intrinsic function setDate(date: double): double ..

intrinsic function setUTCDate(date: double): double ..

intrinsic function setHours (hour: double, ..

intrinsic function setUTCHours (hour: double,

intrinsic function setMinutes(min:double, ..

intrinsic function setUTCMinutes (min:double,

intrinsic function setSeconds(sec:double, ms:double = getMilliseconds()) : double ..

intrinsic function setUTCSeconds (sec:double, ms:double = getUTCMilliseconds()) :

double ..

intrinsic function setMilliseconds(ms:double) : double ..
intrinsic function setUTCMilliseconds (ms:double) : double ..

function get
function get
function get
function get
function get
function get
function get
function get
function get
function get
function get
function get
function get
function get
function get
function get
function get
function get

function set
function set
function set
function set
function set
function set
function set
function set
function set
function set
function set
function set
function set
function set
function set
function set

time(this:Date) : double ..

year (this:Date) : double ..
fullYear(this:Date) : double ..
UTCFullYear(this:Date) : double ..
month(this:Date) : double ..
UTCMonth (this:Date) : double ..
date(this:Date) : double ..
UTCDate(this:Date) : double ..
day(this:Date) : double ..
UTCDay(this:Date) : double ..
hours(this:Date) : double ..
UTCHours (this:Date) : double ..
minutes(this:Date) : double ..
UTCMinutes(this:Date) : double ..
seconds(this:Date) : double ..
UTCSeconds (this:Date) : double ..
milliseconds(this:Date) : double ..
UTCMilliseconds(this:Date) : double ..

time(this:Date, t : double) : double ..

year (this:Date, t: double) : double ..
fullYear(this:Date, t : double) : double ..
UTCFullYear(this:Date, t : double) : double ..
month(this:Date, t : double) : double ..
UTCMonth (this:Date, t : double) : double ..
date(this:Date, t : double) : double ..
UTCDate(this:Date, t : double) : double ..
hours(this:Date, t : double) : double ..
UTCHours (this:Date, t : double) : double ..
minutes(this:Date, t : double) : double ..
UTCMinutes(this:Date, t : double) : double ..
seconds(this:Date, t : double) : double ..
UTCSeconds (this:Date, t : double) : double ..
milliseconds(this:Date, t : double) : double ..
UTCMilliseconds(this:Date, t : double) : double ..

private var timeval: double = ..

}

2 The Date prototype object is itself a Date object whose time value is NaN. It provides the following direct properties:

toString: function
toDateString: function
toTimeString: function
toLocaleString: function

toLocaleDateString: function
toLocaleTimeString: function

toUTCString:
toISOString:
valueOf:
getTime:
getFullYear:

file://localhost/Work/es4/spec/library.html

function
function
function
function
function

~N AN o~ A~
—_— e e — — — =~ o
D T T T L T BN

89

07/11/08 11:45:54

ECMAScript 4th Edition -- Predefined Types and Objects

getUTCFullYear: function
getMonth: function
getUTCMonth: function
getDate: function
getUTCDate: function
getDay: function
getUTCDay: function
getHours: function
getUTCHours: function
getMinutes: function
getUTCMinutes: function
getSeconds: function
getUTCSeconds: function
getMilliseconds: function

getUTCMilliseconds: function
getTimezoneOffset: function

setTime: function
setMilliseconds: function
setUTCMilliseconds: function
setSeconds: function
setUTCSeconds: function
setMinutes: function
setUTCMinutes: function
setHours: function
setUTCHours: function
setDate: function
setUTCDate: function
setMonth: function
setUTCMonth: function
setFullYear: function
setUTCFullYear: function

-y
(ms) ..,

(ms) .. ,

(sec, ms=undefined) .. ,

(sec, ms=undefined) .. ,

(min, sec=undefined, ms=undefined) .. ,

(min, sec=undefined, ms=undefined) .. ,

(hour, min=undefined, sec=undefined, ms=undefined) .. ,
(hour, min=undefined, sec=undefined, ms=undefined) .. ,
(date) ..,

(date) ..,

(month, date=undefined) .. ,

(month, date=undefined) .. ,

(year, month=undefined, date=undefined) .. ,

(year, month=undefined, date=undefined) .. ,

20.2 Overview of Date Objects and Definitions of Helper Functions

1 A Date object contains a private property timeval thatindicates a particular instant in time to within a millisecond. The
number may also be NaN, indicating that the Date object does not represent a specific instant of time.

2 The following sections define a number of helper functions for operating on time values. Note that, in every case, if any
argument to such a function is NaN, the result will be NaN.

3 For the sake of succinctness, the helper and informative namespaces are open in all the definitions that follow.

20.2.1

1 Time is measured in ECMAScript in milliseconds since 01 January, 1970 UTC. Leap seconds are ignored. It is assumed that

Time Range

there are exactly 86,400,000 milliseconds per day. ECMAScript double values can represent all integers from -
9,007,199,254,740,991 to 9,007,199,254,740,991; this range suffices to measure times to millisecond precision for any
instant that is within approximately 285,616 years, either forward or backward, from 01 January, 1970 UTC.

2 The actual range of times supported by ECMAScript Date objects is slightly smaller: exactly -100,000,000 days to
100,000,000 days measured relative to midnight at the beginning of 01 January, 1970 UTC. This gives a range of
8,640,000,000,000,000 milliseconds to either side of 01 January, 1970 UTC.

3 The exact moment of midnight at the beginning of 01 January, 1970 UTC is represented by the value +0.

20.2.2

Constants

1 The following simple constants are used by the helper functions defined below.

helper
helper
helper
helper
helper
helper
helper

helper

const

const

const

const

const

const

const

const

hoursPerDay = 24;

minutesPerHour = 60;

secondsPerMinute = 60;

daysPerYear = 365.2425;

msPerSecond 1000;

msPerMinute = msPerSecond * secondsPerMinute;

msPerHour = msPerMinute * minutesPerHour;

msPerDay = msPerHour * hoursPerDay;

file://localhost/Work/es4/spec/library.html

90

07/11/08 11:45:54

ECMAScript 4th Edition -- Predefined Types and Objects 91

helper const msPerYear = msPerDay * daysPerYear;
2 The table monthOffsets contains the day offset within a non-leap year of the first day of each month:

helper const monthOffsets = [0, 31, 59, 90, 120, 151, 181, 212, 243, 273, 304, 334];

20.2.3 Day Number and Time within Day

1 A given time value ¢ belongs to day number Day(t):

helper function Day(t : double) : double
Math.floor(t / msPerDay);

2 The remainder is called the time within the day, TimeWithinDay(t):

helper function TimeWithinDay(t : double) : double
t % msPerDay;
helper function HourFromTime(t : double) : double {

let v = Math.floor(t / msPerHour) % hoursPerDay;
if (v < 0)

return v + hoursPerDay;
return v;

}

20.2.4 Year Number

1 ECMAScript uses an extrapolated Gregorian system to map a day number to a year number and to determine the month and
date within that year. In this system, leap years are precisely those which are (divisible by 4) and ((not divisible by 100) or
(divisible by 400)). The number of days in year number y is therefore defined by DaysInYear (y):

helper function DaysInYear(y : double) : double {
if (y %4 !==0 || y % 100 === 0 && y % 400 !== 0)
return 365;
return 366;

}

2 All non-leap years have 365 days with the usual number of days per month and leap years have an extra day in February.
The day number of the first day of year y is given by DayFromYear (y):

helper function DayFromYear(y : double) : double
365 * (y-1970) + Math.floor((y-1969)/4) - Math.floor((y-1901)/100) + Math.floor((y-
1601)/400);

3 The time value of the start of a year y is TimefromYear (y):

helper function TimeFromYear(y : double) : double
msPerDay * DayFromYear(y);

4 Atime value f determines a year by YearFromTime (t), which yields the largest integer y (closest to positive infinity)
such that TimeFromYear (y) =< t.

5 The function YearFromTime is not defined precisely by this Standard.
informative static function YearFromTime(t: double): double ..

FIXME (Ticket #190.) Is there any good reason not to define how YearFromTime should be computed? The RI uses a non-iterative algorithm
which I believe comes from SpiderMonkey. I have seen iterative algorithms elsewhere.

6 The leap-year function InLeapYear is 1 for a time within a leap year and otherwise is zero:

helper function InLeapYear(t : double) : double
(DaysInYear(YearFromTime(t)) == 365) ? 0 : 1;
helper function MonthFromTime(t : double) : double {

let dwy = DayWithinYear(t),
ily = InLeapYear(t);
for (let i=monthOffsets.length-1; i >= 0; i--) {
let firstDayOfMonth = monthOffsets[i];
if (i >= 2)
firstDayOfMonth += ily;
if (dwy >= firstDayOfMonth)
return i;

file://localhost/Work/es4/spec/library.html 07/11/08 11:45:54

ECMAScript 4th Edition -- Predefined Types and Objects 92

20.2.5 Month Number

1 Months are identified by an integer in the range O to 11, inclusive. The mapping from a time value ¢ to a month number is
defined by MonthFromTime(t) :

helper function MonthFromTime(t : double) : double {
let dwy = DayWithinYear(t),
ily = InLeapYear(t);
for (let i=monthOffsets.length-1; i >= 0; i--) {
let firstDayOfMonth = monthOffsets[i];
if (i >= 2)
firstDayOfMonth += ily;
if (dwy >= firstDayOfMonth)
return i;

}

helper function DayWithinYear(t : double) : double
Day(t) - DayFromYear(YearFromTime(t));

2 A month value of O specifies January; 1 specifies February; 2 specifies March; 3 specifies April; 4 specifies May; 5 specifies
June; 6 specifies July; 7 specifies August; 8 specifies September; 9 specifies October; 10 specifies November; and 11
specifies December.

NOTE MonthFromTime (0)=0, corresponding to Thursday, 01 January, 1970.

20.2.6 Date Number

1 A date number is identified by an integer in the range 1 through 31, inclusive. The mapping from a time value ¢ to a month
number is defined by DateFromTime (t):

helper function DateFromTime(t : double) : double {
let dwy = DayWithinYear(t),
mft MonthFromTime(t),
ily InLeapYear(t);
return (dwy+l) - (monthOffsets[mft]) - (mft >= 2 ? ily : 0);

}
20.2.7 Week Day

1 The weekday for a particular time value 7 is defined as WeekDay (t):

helper function WeekDay(t : double) : double {
let v = (Day(t) + 4) % 7;
if (v < 0)
return v + 7;
return v;

}

2 A weekday value of O specifies Sunday; 1 specifies Monday; 2 specifies Tuesday; 3 specifies Wednesday; 4 specifies
Thursday; 5 specifies Friday; and 6 specifies Saturday.

NOTE WeekDay (0)=4, corresponding to Thursday, 01 January, 1970.

20.2.8 Local Time Zone Adjustment

1 Animplementation of ECMAScript is expected to determine the local time zone adjustment. The local time zone adjustment
is a value LocalTZA measured in milliseconds which when added to UTC represents the local standard time. Daylight
saving time is not reflected by LocalTZA.

informative function LocalTZA(): double ..
2 The value LocalTZA does not vary with time but depends only on the geographic location.

FIXME (Ticket #129.) This is bogus because it assumes time zone boundaries are fixed for all eternity. Yet time zone (standard time) is political;
changing political conditions can lead to adoption of a different standard time (analogous to the changes in daylight savings time adjustment). So the above
assertion needs to go, and probably be replaced by language similar to that we want to adopt for DaylightSavingsTA, which encourages "best effort for the
given time".

file://localhost/Work/es4/spec/library.html 07/11/08 11:45:54

ECMAScript 4th Edition -- Predefined Types and Objects 93

20.2.9 Daylight Saving Time Adjustment

1 Animplementation of ECMAScript is expected to determine the daylight saving time algorithm. The algorithm to determine
the daylight saving time adjustment for a time ¢, implemented by DaylightSavingTA(t), measured in milliseconds,
must depend only on four things:

1. The time since the beginning of the year: t - TimeFromYear (YearFromTime (t))

2. Whether t is in a leap year: InLeapYear (t)

3. The week day of the beginning of the year: WeekDay (TimeFromYear (YearFromTime (t))
4. The geographic location.

2 The implementation of ECMAScript should not try to determine whether the exact time ¢ was subject to daylight saving
time, but just whether daylight saving time would have been in effect if the current daylight saving time algorithm had been
used at the time. This avoids complications such as taking into account the years that the locale observed daylight saving
time year round.

3 If the host environment provides functionality for determining daylight saving time, the implementation of ECMAScript is
free to map the year in question to an equivalent year (same leapyear-ness and same starting week day for the year) for which
the host environment provides daylight saving time information. The only restriction is that all equivalent years should
produce the same result.

FIXME (Ticket #129.) We've already agreed that the above is bogus; the implementation needs to make a "best effort" to find the correct adjustment for
the time 7, in the year of . More to come here. Also see note above for LocalTZA.

20.2.10 Local Time

1 Conversion from UTC to local time is defined by

helper function LocalTime(t : double) : double
t + LocalTZA() + DaylightSavingsTA(t);

2 Conversion from local time to UTC is defined by

helper function UTCTime(t : double) : double
t - LocalTZA() - DaylightSavingsTA(t - LocalTZA());

3 Note that UTCTime (LocalTime(t)) is not necessarily always equal to ¢ because the former expands as
t+DaylightSavingsTA(t)-DaylightSavingsTA(t-LocalTZA()).

20.2.11 Hours, Minutes, Seconds, and Milliseconds

1 The following functions are useful in decomposing time values:

helper function HourFromTime(t : double) : double {
let v = Math.floor(t / msPerHour) % hoursPerDay;
if (v < 0)
return v + hoursPerDay;
return v;

}

helper function MinFromTime(t : double) : double {
let v = Math.floor(t / msPerMinute) % minutesPerHour;
if (v < 0)
return v + minutesPerHour;
return v;

}

helper function SecFromTime(t : double) : double {
let v = Math.floor(t / msPerSecond) % secondsPerMinute;
if (v < 0)
return v + secondsPerMinute;
return v;

}

helper function msFromTime(t : double) : double
t % msPerSecond;
helper function DaysInYear(y : double) : double {

if (y % 4 !== || v $ 100 === 0 && y % 400 !== 0)

return 365;
return 366;

file://localhost/Work/es4/spec/library.html 07/11/08 11:45:54

ECMAScript 4th Edition -- Predefined Types and Objects 94

20.2.12 MakeTime (hour, min, sec, ms)

1 The operator MakeTime calculates a number of milliseconds from its four arguments, which must be ECMAScript number
values. This operator functions as follows:

helper function MakeTime (hour:double, min:double, sec:double, ms:double):double {
if (!isFinite(hour) || !isFinite(min) || !isFinite(sec) || !isFinite(ms))
return NaN;

return (toInteger(hour) * msPerHour +
toInteger(min) * msPerMinute +
toInteger(sec) * msPerSecond +
toInteger(ms));

20.2.13 MakeDay (year, month, date)

1 The helper function MakeDay calculates a number of days from its three arguments, which must be ECMAScript double
values:

helper function MakeDay(year : double, month : double, date : double) : double {
if (!isFinite(year) || !isFinite(month) || !isFinite(date))
return NaN;

year = toInteger(year);
month = toInteger(month);
date = toInteger(date);

return FindDay(year, month) + date - 1;

}
20.2.14 MakeDate (day, time)

1 The helper function MakeDate calculates a number of milliseconds from its two arguments, which must be ECMAScript
double values:

helper function MakeDate(day : double, time : double) : double {
if (!isFinite(day) || !isFinite(time))
return NaN;
return day * msPerDay + time;

}
20.2.15 TimeClip (time)

1 The helper function TimeC1lip calculates a number of milliseconds from its argument, which must be an ECMAScript
double value:

helper function TimeClip(t : double) : double
(!isFinite(t) || Math.abs(t) > 8.64el5) ? NaN : adjustZero(toInteger(t));

informative function adjustZero(t: double): double ..

NOTE The informative function adjustZexro (t) can either return unchanged or it can add (+0) to it. The point of this freedom is that an
implementation is permitted a choice of internal representations of time values, for example as a 64-bit signed integer or as a 64-bit floating-point value.
Depending on the implementation, this internal representation may or may not distinguish -0 and +0.

20.3 Date strings

1 Dates can be converted to string representations for purposes of human consumption and data transmission in a number of
ways, many of them locale-dependent.

2 Some of the string representations of dates are required to be lossless, which is to say that converting a time value to a string
and then parsing that string as a Date will always yield the same time value. Other string representations are implementation-
dependent and it is not guaranteed that they can be parsed to yield the same time value (or that they can be parsed at all).

3 This Standard defines numerous methods on Date instances to generate strings from time values: toString,
toDateString, toTimeString, toLocaleString, toLocaleDateString, toLocaleTimeString,
toUTCString, and toISOString.

4 The toStringand toUTCString methods convert time values to a string losslessly except for fractional seconds, which
may not be represented in the string. The format of these strings is implementation-dependent.

file://localhost/Work/es4/spec/library.html 07/11/08 11:45:54

ECMAScript 4th Edition -- Predefined Types and Objects 95

5 The toISOString method converts time values to a string losslessly, and the string conforms to the ISO date grammar
defined below.

6 This Standard defines the static parse method on the Date class to parse strings and compute time values represented by
those strings. The parse method is only required to parse all strings that conform to the ISO date grammar defined below,
as well as all strings produced by the toString and toUTCString methods on Date instances.

7 The grammar for ISO date strings is defined by the following regular expression:
helper const isoTimestamp =

(?: (?P<year> - [0-91+ | [0-91{4} [0-9]*)
(?: - (?P<month> [0-9]{2})
. (?: - (?P<day> [0-91{2}))2)?)?
(?: (2?P<hour> [0-9]{2})
(?: : (?P<minutes> [0-9]{2})
(?: : (?P<seconds> [0-9]1{2})
o (fépééu{3£<§r?ction> [0-971+))2)?)2)2
| (?P<offs>
(?P<tzdir> \+ | -)
(?P<tzhr> [0-9]{2})
(?: ¢ (?P<tzmin> [0-9]1{2}))?))?

~
T I T T

$/%;
helper function MakeTime (hour:double, min:double, sec:double, ms:double):double {

if (!isFinite(hour) || !isFinite(min) || !isFinite(sec) || !isFinite(ms))
return NaN;

return (toInteger(hour) * msPerHour +
toInteger(min) * msPerMinute +
toInteger(sec) * msPerSecond +
toInteger(ms));

FIXME (Ticket #192.) Replace the regexp by a proper grammar, eventually.

FIXME The T is optional if the time stamp does not have a time part.

20.4 Methods on the Date class

20.4.1 new Date
(year=...,, month=..,, date=..,, hours=..., minutes=..., seconds=...,, ms=..))

Description

1 When the Date constructor is called as part of a new Date expression it initialises the newly created object by setting its
private timeval property.

2 The Date constructor can be called with zero, one, or two to seven arguments, and sets timeval in different ways
depending on how it is called.

Implementation

function Date(year=NOARG, month=NOARG, date=NOARG, hours=NOARG, minutes=NOARG,
seconds=NOARG, ms=NOARG) {
setupNanoAge();

switch (NOARG) {

case year:
timeval = Date.now();
return;

case month: {
let v = ToPrimitive(year);
if (v is string)
return parse(v);

timeval = TimeClip(double(v));
return;

}

default:
ms = double(ms);

file://localhost/Work/es4/spec/library.html 07/11/08 11:45:54

ECMAScript 4th Edition -- Predefined Types and Objects 96

case ms:
seconds = double(seconds);

case seconds:
minutes = double(minutes);

case minutes:
hours = double(hours);

case hours:
date = double(date);

case date:
year = double(year);
month = double(month);

let intYear : double = toInteger(year);
if (!isNaN(year) && 0 <= intYear && intYear <= 99)
intYear += 1900;
timeval = TimeClip(UTCTime(MakeDate(MakeDay(intYear, month, date),
MakeTime(hours, minutes, seconds, ms))));

NOTE The default value NOARG is an unforgeable private value and is used to detect the difference between an unsupplied parameter and a parameter
value of undefined.

20.4.2 Date (...args)

Description
1 When the Date class is called as a function rather than as a constructor, it converts the current time (as returned by the static
method now on Date) to a string.

2 All arguments are ignored. A string is created as if by the expression (new Date()).toString().

NOTE The function call Date (...) is not equivalent to the object creation expression new Date (...) with the same arguments.

Returns
3 The Date class called as a function returns a string object.

Implementation

static meta function invoke(...args) // args are ignored.
(new Date()).public::toString();

20.4.3 intrinsic:parse (s, reference=...)

Description

1 The static intrinsic parse method applies the string function to its argument s and interprets the resulting string as a
date. The string may be interpreted as a local time, a UTC time, or a time in some other time zone, depending on the contents
of the string.

2 The value reference (defaulting to zero) is a time value that will provide default values for any fields missing from the string.

3 If x is any Date object whose milliseconds amount is zero within a particular implementation of ECMAScript, then all of the
following expressions should produce the same numeric value in that implementation, if all the properties referenced have
their initial values:

x.valueOf ()
Date.parse(x.toString())
Date.parse(x.toUTCString())

4 However, the expression Date.parse(x.toLocaleString()) is not required to produce the same number value as
the preceding three expressions and, in general, the value produced by Date.parse is implementation-dependent when given
any string value that could not be produced in that implementation by the toString or toUTCString method.

Returns
5 The static parse method returns a number, the UTC time value corresponding to the date represented by the string.

Implementation

6 The static parse method parses a string that conforms to the ISO grammar as an ISO date string. Otherwise, the parsing is
implementation-dependent.

file://localhost/Work/es4/spec/library.html 07/11/08 11:45:54

ECMAScript 4th Edition -- Predefined Types and Objects 97

static intrinsic function parse(s:string, reference:double=0.0) : double {
let isoRes = isoTimestamp.exec(s);
let defaults = new Date(reference);
if (isoRes) {
let year = isoRes.year !
let month = isoRes.month
defaults.UTCMonth;

undefined ? parseInt(isoRes.year) : defaults.UTCYear;
== undefined ? parselInt(isoRes.month)-1 :

let day = isoRes.day !== undefined ? parselInt(isoRes.day) : defaults.UTCDay;

let hour = isoRes.hour !== undefined ? parseInt(isoRes.hour) : defaults.UTCHours;

let mins = isoRes.minutes !== undefined ? parselnt(isoRes.minutes) :
defaults.UTCMinutes;

let secs = isoRes.seconds !== undefined ? parseInt(isoRes.seconds) :
defaults.UTCSeconds;

let millisecs = isoRes.fraction !== undefined ?

fractionToMilliseconds(isoRes.fraction) :
defaults.UTCMilliseconds;
let tzo = defaults.timezoneOffset;

if (isoRes.zulu !== undefined)
tzo = 0;
else if (isoRes.offs !== undefined) {
tzo = parselnt(isoRes.tzhr) * 60;
if (isoRes.tzmin !== undefined)
tzo += parseInt(isoRes.tzmin);
if (isoRes.tzdir === "-")
tzo = -tzo;
}
return new Date.UTC(year, month, day, hour, mins, secs, millisecs) - tzo;
}
else

return fromDateString(s, reference);

function fractionToMilliseconds(frac: string): double
Math.floor (1000 * (parseInt(frac) / Math.pow(10, frac.length)));

20.4.4 parse(s, reference=...)

Description
1 The static parse method applies the string function to its argument s and the double function to its argument reference
(which defaults to zero), and then calls the intrinsic parse method on the resulting values.

Returns
2 The static parse method returns a number, the UTC time value corresponding to the date represented by the string.

Implementation
static var parse = function parse(str, reference:double=0.0) {
return Date.parse(string(str), reference);

}i

20.4.5 intrinsic:UTC
(year, month, date=..., hours=..., minutes=..., seconds=...,, ms=...)

Description
1 When the static intrinsic UTC method is called with two to seven arguments, it computes the date from year, month and
(optionally) date, hours, minutes, seconds and ms.

NOTE The UTC method differs from the Date constructor in two ways: it returns a time value as a number, rather than creating a Date object, and
it interprets the arguments in UTC rather than as local time.

Returns
2 The static intrinsic UTC method returns a time value.

Implementation

static intrinsic function UTC(year: double,
month: double,
date: double=1,
hours: double=0,
minutes: double=0,
seconds: double=0,
ms: double=0) : double

let intYear = toInteger(year);

if (!isNaN(year) && 0 <= intYear && intYear <= 99)
intYear += 1900;

file://localhost/Work/es4/spec/library.html 07/11/08 11:45:54

ECMAScript 4th Edition -- Predefined Types and Objects 98

return TimeClip(MakeDate(MakeDay(intYear, month, date),
MakeTime(hours, minutes, seconds, ms)));

}
20.4.6 UTC (year, month, date=..., hours=..., minutes=..., seconds=..., ms=...)

Description

1 When the static intrinsic UTC method is called with fewer than two arguments, the behaviour is implementation dependent.
When the UTC method is called with two to seven arguments, it computes the date from year, month and (optionally) date,
hours, minutes, seconds and ms by converting all arguments to double values and calling the static intrinsic UTC method.

Returns
2 The static UTC method returns a time value.

Implementation
static var UTC =
function UTC(year, month, date=NOARG, hours=NOARG, minutes=NOARG, seconds=NOARG,
ms=NOARG) {
switch (NOARG) {

case date: date = 1;
case hours: hours = 0;
case minutes: minutes = 0;
case seconds: seconds = 0;
case ms: ms = 0;

}

return Date.UTC (double(year),
double(month),
double(date),
double(hours),
double(minutes),
double(seconds),
double(ms));

}i

NOTE The default value NOARG is an unforgeable private value and is used to detect the difference between an unsupplied parameter and a parameter
value of undefined.

20.4.7 now

Description
1 The static now method produces the time value at the time of the call.

Returns
2 The static now method returns a double representing a time value.

Implementation
3 The static now method is implementation-dependent.

20.5 Methods on Date instances

20.5.1 intrinsic:toString ()

Description
1 The intrinsic toString method converts the Date value to a string. The contents of the string are intended to represent the
value in the current time zone in a convenient, human-readable form.

NOTE It is intended that for any Date value d, the result of Date . parse (d.toString()) is equal to d. (See [Date.parse].)

Returns
2 Astring value.

Implementation
3 The intrinsic toString method is implementation-dependent.

20.5.2 intrinsic:toDateString ()

Description

file://localhost/Work/es4/spec/library.html 07/11/08 11:45:54

ECMAScript 4th Edition -- Predefined Types and Objects 99

1 The intrinsic toLocaleString method converts the "date" portion of the Date value to a string. The contents of the
string are intended to represent the value in the current time zone in a convenient, human-readable form.

Returns
2 Astringvalue.

Implementation

3 The intrinsic toDateString method is implementation-dependent.

20.5.3 intrinsic::toTimeString ()

Description
1 The intrinsic toTimeString method converts the "time" portion of the Date value to a string. The contents of the string
are intended to represent the value in the current time zone in a convenient, human-readable form.

Returns
2 Astringvalue.

Implementation
3 The intrinsic toTimeString method is implementation-dependent.

20.5.4 intrinsic::itoLocaleString ()

Description

1 The intrinsic toLocaleString method converts the Date value to a string. The contents of the string are intended to
represent the value in the current time zone in a convenient, human-readable form that corresponds to the conventions of the
host environment's current locale.

NOTE The first parameter to this function is likely to be used in a future version of this standard; it is recommended that implementations do not use this
parameter position for anything else.

Returns
2 A stringvalue.

Implementation
3 Theintrinsic toLocaleString method is implementation-dependent.

20.5.5 intrinsic::toLocaleDateString ()

Description

1 The intrinsic toLocaleDateString method converts the "date" portion of the Date value to a string. The contents of
the string are intended to represent the value in the current time zone in a convenient, human-readable form that corresponds
to the conventions of the host environment's current locale.

NOTE The first parameter to this function is likely to be used in a future version of this standard; it is recommended that implementations do not use this
parameter position for anything else.

Returns
2 Astring value.

Implementation
3 Theintrinsic toLocaleDateString method is implementation-dependent.

20.5.6 intrinsic:toLocaleTimeString ()

Description

1 The intrinsic toLocaleTimeString method converts the "time" portion of the Date value to a string. The contents of
the string are intended to represent the value in the current time zone in a convenient, human-readable form that corresponds
to the conventions of the host environment's current locale.

NOTE The first parameter to this function is likely to be used in a future version of this standard; it is recommended that implementations do not use this
parameter position for anything else.

Returns
2 Astring value.

Implementation

3 Theintrinsic toLocaleTimeString method is implementation-dependent.

file://localhost/Work/es4/spec/library.html 07/11/08 11:45:54

ECMAScript 4th Edition -- Predefined Types and Objects 100

20.5.7 intrinsic:toUTCString ()

Description

1 The intrinsic toUTCString method converts the Date value to a string. The contents of the string are intended to
represent the value in UTC in a convenient, human-readable form.

Returns
2 Astringvalue.

Implementation
3 The intrinsic toUTCString method is implementation-dependent.

20.5.8 intrinsic::tolSOString ()

Description

1 The intrinsic toISOString method converts the Date value to a string. The string conforms to the ISO time and date
grammar presented in section [ISO date grammar]|. All fields are present in the string and the shortest possible nonempty
string of digits follows the period in the time part. The time zone is always UTC, denoted by a suffix Z.

Returns
2 Astring value.

Implementation

intrinsic function toISOString() : string {
return (formatYears(UTCFullYear) + "-" +

zeroFill(UTCMonth+1, 2) + "-" +
zeroFill(UTCDate, 2) +
wpn oy
zeroFill(UTCHours, 2) + ":" +
zeroFill(UTCMinutes, 2) + ":" +
zeroFill(UTCSeconds, 2) + "." +
removeTrailingZeroes(UTCMilliseconds) +
"ty ;

}

helper function formatYears(n: double): string {
if (n >= 0 && n <= 9999)
return zeroFill(n, 4);
return string(n);

}

3 The helper functions removeTrailingZeroes and zeroFill are described in section Minor date helpers].

20.5.9 intrinsic::nanoAge()

Description
1 The intrinsic nanoAge method computes an approximation of the number of nanoseconds of real time that have elapsed
since this Date object was created.

NOTE The approximation is of unspecified quality, and may vary in both accuracy and precision from platform to platform. The approximation will
necessarily lose precision as its object ages, since it is expressed as a double: after approximately 104 days of real time, its object will have been alive for

over 253 nanoseconds, so the result of this call will carry more than 2 nanoseconds rounding error after 104 days, and more than 4 nanoseconds rounding
error after 208 days. Code wishing to measure greater periods of real time may either construct fresh Date objects after 104 days, or accept the gradual loss
of precision.

Returns
2 A double object.

Implementation
3 The static nanoAge method is implementation-dependent.

20.5.10 intrinsic:valueOf ()

Description
1 The intrinsic valueOf method returns the time value of the Date object.

Returns
2 A double object.

Implementation

file://localhost/Work/es4/spec/library.html 07/11/08 11:45:54

ECMAScript 4th Edition -- Predefined Types and Objects 101

override intrinsic function valueOf() : Object
getTime();

20.5.11 intrinsic:getTime ()

Description
1 The intrinsic getTime method retrieves the full time value of the Date object.

Returns
2 This time value.

Implementation

intrinsic function getTime() : double
timeval;

20.5.12 intrinisic::getFullYear ()

Description
1 The intrinsic getFullYear method retrieves the year number of the Date object, in the local time zone.

Returns

2 Ayear number ().

Implementation

intrinsic function getFullYear() : double
let (t = timeval)
isNaN(t) ? t : YearFromTime(LocalTime(t));

20.5.13 intrinisic::getUTCFullYear ()

Description
1 The intrinsic getUTCFullYear method retrieves the year number of the Date object, in UTC.

FIXME Is the phrasing "in UTC" appropriate? (Ditto for all following functions.)

Returns

2 Ayear number ().

Implementation

intrinsic function getUTCFullYear() : double
let (t = timeval)
isNaN(t) ? t : YearFromTime(t);

20.5.14 intrinisic::getMonth ()

Description
1 The intrinsic getMonth method retrieves the month number of the Date object, in the local time zone.

Returns

2 A month number ().

Implementation

intrinsic function getMonth() : double
let (t = timeval)
isNaN(t) ? t : MonthFromTime(LocalTime(t));

20.5.15 intrinisic::getUTCMonth ()

Description
1 The intrinsic getUTCMonth method retrieves the month number of the Date object, in UTC.

Returns

2 A month number (month number).

Implementation

file://localhost/Work/es4/spec/library.html 07/11/08 11:45:54

ECMAScript 4th Edition -- Predefined Types and Objects 102

intrinsic function getUTCMonth() : double
let (t = timeval)
isNaN(t) ? t : MonthFromTime(t);

20.5.16 intrinisic::getDate ()

Description
1 The intrinsic getDate method retrieves the date number of the Date object, in the local time zone.

Returns

2 A date number ().

Implementation

intrinsic function getDate() : double
let (t = timeval)
isNaN(t) ? t : DateFromTime(LocalTime(t));

20.5.17 intrinisic::getUTCDate ()

Description
1 The intrinsic getUTCDate method retrieves the date number of the Date object, in UTC.

Returns

2 Adate number (date number)).

Implementation

intrinsic function getUTCDate() : double
let (t = timeval)
isNaN(t) ? t : DateFromTime(t);

20.5.18 intrinisic::getDay ()

Description
1 The intrinsic getDay method retrieves the day number of the Date object, in the local time zone.

Returns

2 Aday number (day number]).

Implementation

intrinsic function getDay() : double
let (t = timeval)
isNaN(t) ? t : WeekDay(LocalTime(t));

20.5.19 intrinisic::getUTCDay ()

Description
1 The intrinsic getUTCDay method retrieves the day number of the Date object, in UTC.

Returns

2 Aday number (day number).

Implementation

intrinsic function getUTCDay() : double
let (t = timeval)
isNaN(t) ? t : WeekDay(t);

20.5.20 intrinisic:getHours ()

Description
1 The intrinsic getHours method retrieves the hours value of the Date object, in the local time zone.

Returns
2 An hours value (hours, minutes, seconds, and milliseconds)).

Implementation

file://localhost/Work/es4/spec/library.html 07/11/08 11:45:54

ECMAScript 4th Edition -- Predefined Types and Objects 103

intrinsic function getHours() : double
let (t = timeval)
isNaN(t) ? t : HourFromTime(LocalTime(t));

20.5.21 intrinisic::getUTCHours ()

Description
1 The intrinsic getUTCHours method retrieves the hours value of the Date object, in UTC.

Returns
2 Anhours value (hours, minutes, seconds, and milliseconds]).

Implementation

intrinsic function getUTCHours() : double
let (t = timeval)
isNaN(t) ? t : HourFromTime(t);

20.5.22 intrinisic::getMinutes ()

Description
1 The intrinsic getMinutes method retrieves the minutes value of the Date object, in the local time zone.

Returns
2 A minutes value (hours, minutes, seconds, and milliseconds]).

Implementation

intrinsic function getMinutes() : double
let (t = timeval)
isNaN(t) ? t : MinFromTime(LocalTime(t));

20.5.23 intrinisic::getUTCMinutes ()

Description
1 The intrinsic getUTCMinutes method retrieves the minutes value of the Date object, in UTC.

Returns
2 A minutes value (hours, minutes, seconds, and milliseconds]).

Implementation

intrinsic function getUTCMinutes() : double
let (t = timeval)
isNaN(t) ? t : MinFromTime(t);

20.5.24 intrinisic::getSeconds ()

Description
1 The intrinsic getSeconds method retrieves the seconds value of the Date object, in the local time zone.

Returns
2 Aseconds value (hours, minutes, seconds, and milliseconds).

Implementation

intrinsic function getSeconds() : double
let (t = timeval)
isNaN(t) ? t : SecFromTime(LocalTime(t));

20.5.25 intrinisic::getUTCSeconds ()

Description
1 The intrinsic getUTCSeconds method retrieves the seconds value of the Date object, in UTC.

Returns
2 A seconds value (hours, minutes, seconds, and milliseconds]).

Implementation

file://localhost/Work/es4/spec/library.html 07/11/08 11:45:54

ECMAScript 4th Edition -- Predefined Types and Objects 104

intrinsic function getUTCSeconds() : double
let (t = timeval)
isNaN(t) ? t : SecFromTime(t);

20.5.26 intrinisic::getMilliseconds ()

Description
1 The intrinsic getMilliseconds method retrieves the milliseconds value of the Date object, in the local time zone.

Returns
2 A milliseconds value (hours, minutes, seconds, and milliseconds).

Implementation

intrinsic function getMilliseconds() : double
let (t = timeval)
isNaN(t) ? t : msFromTime(LocalTime(t));

20.5.27 intrinisic::getUTCMilliseconds ()

Description
1 The intrinsic getUTCMilliseconds method retrieves the milliseconds value of the Date object, in UTC.

Returns
2 A milliseconds value (hours, minutes, seconds, and milliseconds).

Implementation

intrinsic function getUTCMilliseconds() : double
let (t = timeval)
isNaN(t) ? t : msFromTime(t);

20.5.28 intrinisic::getTimezoneOffset ()

Description
1 Computes the difference between local time and UTC time.

Returns
2 A possibly non-integer number of minutes.

Implementation

intrinsic function getTimezoneOffset() : double
let (t = timeval)
isNaN(t) ? t : (t - LocalTime(t)) / msPerMinute;

20.5.29 intrinisic::setTime (time)

Description
1 The intrinsic setTime method sets the time value of the Date object.

Returns
2 The new time value.

Implementation

intrinsic function setTime(t:double) : double
timeval = TimeClip(t);

20.5.30 intrinisic::setMilliseconds (ms)

Description
1 The intrinsic setMilliseconds method sets the milliseconds value of the Date object, taking ms to be a value in the
local time zone.

Returns
2 The new time value.

Implementation

intrinsic function setMilliseconds(ms:double) : double
timeval = let (t = LocalTime(timeval))
UTCTime(MakeDate(Day(t), MakeTime(HourFromTime(t),

file://localhost/Work/es4/spec/library.html 07/11/08 11:45:54

ECMAScript 4th Edition -- Predefined Types and Objects 105

MinFromTime(t),
SecFromTime(t),
ms)));

20.5.31 intrinisic::setUTCMilliseconds (ms)

Description
1 The intrinsic setUTCMilliseconds method sets the milliseconds value of the Date object, taking ms to be a value in
UTC.

Returns
2 The new time value.

Implementation
intrinsic function setUTCMilliseconds (ms:double) : double
timeval = let (t = timeval)
MakeDate(Day(t), MakeTime(HourFromTime(t),
MinFromTime(t),
SecFromTime(t),
ms));

20.5.32 intrinisic::setSeconds (sec, ms=...)

Description
1 The intrinsic setSeconds method sets the seconds value (and optionally the milliseconds value) of the Date object, taking
sec and ms to be values in the local time zone.

Returns
2 The new time value.

Implementation

intrinsic function setSeconds(sec:double, ms:double = getMilliseconds()) : double
timeval = let (t = LocalTime(timeval))
UTCTime(MakeDate(Day(t), MakeTime(HourFromTime(t),
MinFromTime(t),
sec,
ms)));

FIXME (Ticket #193.) Default arguments: is this the way we want it?

For this and the following methods the signature has the following impliciation: if a program subclasses Date and overrides the intrinsic
getMilliseconds () method, the new method will be invoked if setSeconds is called with one argument.

There are various ways to avoid this, though I don't think it's really a problem that there is this dependence, except that it binds implementations in how
they represent and handle dates.

3rd Edition has imprecise language here, it says that if ms is not provided by the caller then its value will be as if ms were specified with the value
getMilliseconds(). Whether that implies that that method is called (and that the user could override it) or not is not at all clear.

20.5.33 intrinisic:setUTCSeconds (sec, ms=...)

Description
1 The intrinsic setUTCSeconds method sets the seconds value (and optionally the milliseconds value) of the Date object,
taking sec and ms to be values in UTC.

Returns
2 The new time value.

Implementation
intrinsic function setUTCSeconds (sec:double, ms:double = getUTCMilliseconds()) : double
timeval = let (t = timeval)
MakeDate(Day(t), MakeTime(HourFromTime(t),
MinFromTime(t),
sec,
ms));

20.5.34 intrinisic::setMinutes (min, sec=..., ms=...)

Description
1 The intrinsic setMinutes method sets the minutes value (and optionally the seconds and milliseconds values) of the Date
object, taking min, sec and ms to be values in the local time zone.

file://localhost/Work/es4/spec/library.html 07/11/08 11:45:54

ECMAScript 4th Edition -- Predefined Types and Objects 106

Returns
2 The new time value.

Implementation
intrinsic function setMinutes(min:double,
sec:double = getSeconds(),
ms:double = getMilliseconds()) : double
timeval = let (t = LocalTime(timeval))
UTCTime(MakeDate(Day(t), MakeTime(HourFromTime(t),
min,
sec,
ms)));

20.5.35 intrinisic::setUTCMinutes (min, sec=...,, ms=...)

Description
1 The intrinsic setUTCMinutes method sets the minutes value (and optionally the seconds and milliseconds values) of the
Date object, taking min, sec and ms to be values in UTC.

Returns
2 The new time value.

Implementation
intrinsic function setUTCMinutes (min:double,
sec:double = getUTCSeconds (),
ms:double = getUTCMilliseconds()) : double
timeval = let (t = timeval)
MakeDate(Day(t), MakeTime(HourFromTime(t),
min,
sec,
ms));

20.5.36 intrinisic::setHours (hour, min=minutes, sec=..., ms=...)

Description
1 The intrinsic setHours method sets the hours value (and optionally the minutes, seconds, and milliseconds values) of the
Date object, taking hour, min, sec and ms to be values in the local time zone.

Returns
2 The new time value.

Implementation
intrinsic function setHours (hour: double,
min: double = getMinutes(),
sec: double = getSeconds(),
ms: double = getMilliseconds()) : double
timeval = let (t = LocalTime(timeval))
UTCTime(MakeDate(Day(t), MakeTime(hour,
min,
sec,
ms)));

20.5.37 intrinisic::setUTCHours (hour, min=..., sec=...,, ms=...)

Description
1 The intrinsic setUTCHours method sets the hours value (and optionally the minutes, seconds, and milliseconds values) of
the Date object, taking hour, min, sec and ms to be values in UTC.

Returns
2 The new time value.

Implementation

intrinsic function setUTCHours (hour: double,
min: double getUTCMinutes (),
sec: double getUTCSeconds (),
ms: double = getUTCMilliseconds()) : double
timeval = let (t = timeval)
MakeDate(Day(t), MakeTime (hour,
min,

file://localhost/Work/es4/spec/library.html 07/11/08 11:45:54

ECMAScript 4th Edition -- Predefined Types and Objects 107

sec,
ms));

20.5.38 intrinisic:setDate (date)

Description
1 The intrinsic setDate method sets the date value of the Date object, taking date to be a value in the local time zone.

Returns
2 The new time value.

Implementation

intrinsic function setDate(date: double): double
timeval = let (t = LocalTime(timeval))
UTCTime(MakeDate (MakeDay(YearFromTime(t), MonthFromTime(t), date),
TimeWithinDay(t)));

20.5.39 intrinisic::setUTCDate (date)

Description
1 The intrinsic setUTCDate method sets the date value of the Date object, taking date to be a value in UTC.

Returns
2 The new time value.

Implementation
intrinsic function setUTCDate(date: double): double
timeval = let (t = timeval)
MakeDate(MakeDay(YearFromTime(t), MonthFromTime(t), date),
TimeWithinDay(t));

20.5.40 intrinisic::setMonth (month, date=...)

Description
1 The intrinsic setMonth method sets the month value (and optionally the date value) of the Date object, taking month and
date to be values in the local time zone.

Returns
2 The new time value.

Implementation

intrinsic function setMonth(month:double, date:double = getDate()):double
timeval = let (t = LocalTime(timeval))
UTCTime(MakeDate(MakeDay(YearFromTime(t), month, date),
TimeWithinDay(t)));

20.5.41 intrinisic::setUTCMonth (month, date=...)

Description
1 The intrinsic setUTCMonth method sets the month value (and optionally the date value) of the Date object, taking month
and date to be values in UTC.

Returns
2 The new time value.

Implementation

intrinsic function setUTCMonth(month:double, date:double = getUTCDate()):double
timeval = let (t = timeval)
MakeDate(MakeDay(YearFromTime(t), month, date),
TimeWithinDay(t));

20.5.42 intrinisic::setFullYear (year, month=..., date=...)
Description
1 The intrinsic setFullYear method sets the year value (and optionally the month and date values) of the Date object,

taking year, month, and date to be values in the local time zone.

Returns

file://localhost/Work/es4/spec/library.html 07/11/08 11:45:54

ECMAScript 4th Edition -- Predefined Types and Objects 108

2

The new time value.

Implementation

intrinsic function setFullYear(year:double,
month:double = getMonth(),
date:double = getDate()) : double
timeval = let (t = LocalTime(timeval))
UTCTime(MakeDate(MakeDay(year, month, date),
TimeWithinDay(t)));

20.5.43 intrinisic::setUTCFullYear (year, month=..,, date=...)

Description

The intrinsic setFullYear method sets the year value (and optionally the month and date values) of the Date object,
taking year, month, and date to be values in UTC.

Returns
The new time value.

Implementation

intrinsic function setUTCFullYear (year:double,
month:double = getUTCMonth(),
date:double = getUTCDate()) : double
timeval = let (t = timeval)
MakeDate(MakeDay(year, month, date),
TimeWithinDay(t));

20.6 Getters on Date instances

Description
The Date object provides a number of getters that call the object's corresponding accessor methods.

Returns
The getters all return what their corresponding accessor methods return.

Implementation

function get time(this:Date) : double
getTime();

function get year(this:Date) : double
getYear();

function get fullYear(this:Date) : double
getFullYear();

function get UTCFullYear(this:Date) : double
getUTCFullYear();

function get month(this:Date) : double
getMonth();

function get UTCMonth(this:Date) : double
getUTCMonth();

function get date(this:Date) : double
getDate();

function get UTCDate(this:Date) : double
getUTCDate();

function get day(this:Date) : double
getDay();

function get UTCDay(this:Date) : double
getUTCDay ();

function get hours(this:Date) : double
getHours ();

function get UTCHours (this:Date) : double
getUTCHours();

file://localhost/Work/es4/spec/library.html 07/11/08 11:45:54

ECMAScript 4th Edition -- Predefined Types and Objects

function get minutes(this:Date) : double
getMinutes();

function get UTCMinutes(this:Date) : double
getUTCMinutes();

function get seconds(this:Date) : double
getSeconds();

function get UTCSeconds(this:Date) : double
getUTCSeconds () ;

function get milliseconds(this:Date) : double
getMilliseconds();

function get UTCMilliseconds(this:Date) : double
getUTCMilliseconds();

20.7 Setters on Date instances

Description

The Date object provides a number of setters that call the object's corresponding updater methods. Since the setters only
accept a single argument, the updaters will be called with default arguments for all arguments beyond the first.

Returns
The setters all return what their corresponding updater methods return.

Implementation

function set time(this:Date, t : double) : double
setTime(t);

function set year(this:Date, t: double) : double
setYear(t);

function set fullYear(this:Date, t : double) : double
setFullYear(t);

function set UTCFullYear(this:Date, t : double) : double
setUTCFullYear(t);

function set month(this:Date, t : double) : double
setMonth(t);

function set UTCMonth(this:Date, t : double) : double
setUTCMonth(t);

function set date(this:Date, t : double) : double
setDate(t);

function set UTCDate(this:Date, t : double) : double
setUTCDate(t);

function set hours(this:Date, t : double) : double
setHours (t);

function set UTCHours(this:Date, t : double) : double
setUTCHours(t);

function set minutes(this:Date, t : double) : double
setMinutes(t);

function set UTCMinutes(this:Date, t : double) : double
setUTCMinutes(t);

function set seconds(this:Date, t : double) : double
setSeconds(t);

function set UTCSeconds(this:Date, t : double) : double
setUTCSeconds (t);

function set milliseconds(this:Date, t : double) : double
setMilliseconds(t);

function set UTCMilliseconds(this:Date, t : double) : double

setUTCMilliseconds(t);

file://localhost/Work/es4/spec/library.html

109

07/11/08 11:45:54

ECMAScript 4th Edition -- Predefined Types and Objects

20.8 Method properties on the Date prototype object

Description

110

1 The Date prototype methods are not generic; their this object must be a Date. The methods forward the call to the

corresponding intrinsic method in all cases.

Returns
2 The Date prototype methods return the values returned by the intrinsic methods they call.

Implementation

prototype function toString(this:Date)
this.intrinsic::toString();

prototype function toDateString(this:Date)
this.toDateString();

prototype function toTimeString(this:Date)
this.toTimeString();

prototype function toLocaleString(this:Date)
this.toLocaleString();

prototype function toLocaleDateString(this:Date)
this.toLocaleDateString();

prototype function toLocaleTimeString(this:Date)
this.toLocaleTimeString();

prototype function toUTCString(this:Date)
this.toUTCString();

prototype function toISOString(this:Date)
this.toISOString();

prototype function valueOf(this:Date)
this.valueOf();

prototype function getTime(this:Date)
this.intrinsic::getTime();

prototype function getFullYear(this:Date)
this.intrinsic::getFullYear();

prototype function getUTCFullYear (this:Date)
this.intrinsic::getUTCFullYear();

prototype function getMonth(this:Date)
this.intrinsic::getMonth();

prototype function getUTCMonth(this:Date)
this.intrinsic::getUTCMonth();

prototype function getDate(this:Date)
this.intrinsic::getDate();

prototype function getUTCDate(this:Date)
this.intrinsic::getUTCDate();

prototype function getDay(this:Date)
this.intrinsic::getDay();

prototype function getUTCDay(this:Date)
this.intrinsic::getUTCDay();

prototype function getHours (this:Date)
this.intrinsic::getHours();

prototype function getUTCHours(this:Date)
this.intrinsic::getUTCHours();

prototype function getMinutes(this:Date)
this.intrinsic::getMinutes();

prototype function getUTCMinutes (this:Date)
this.intrinsic::getUTCMinutes();

file://localhost/Work/es4/spec/library.html

07/11/08 11:45:54

ECMAScript 4th Edition -- Predefined Types and Objects 111

prototype function getSeconds(this:Date)
this.intrinsic::getSeconds();

prototype function getUTCSeconds (this:Date)
this.intrinsic::getUTCSeconds();

prototype function getMilliseconds(this:Date)
this.intrinsic::getMilliseconds();

prototype function getUTCMilliseconds (this:Date)
this.intrinsic::getUTCMilliseconds();

prototype function getTimezoneOffset(this:Date)
this.intrinsic::getTimezoneOffset();

prototype function setTime(this:Date, t)
this.intrinsic::setTime(double(t));

prototype function setMilliseconds(this:Date, ms)
this.intrinsic::setMilliseconds(double(ms));

prototype function setUTCMilliseconds(this:Date, ms)
this.intrinsic::setUTCMilliseconds (double(ms));

prototype function setSeconds(this:Date, sec, ms = this.getMilliseconds())
this.intrinsic::setSeconds(double(sec), double(ms));

prototype function setUTCSeconds(this:Date, sec, ms = this.getUTCMilliseconds())
this.intrinsic::setUTCSeconds (double(sec), double(ms));

prototype function setMinutes(this:Date, min, sec = this.getSeconds(), ms =
this.getMilliseconds())
this.intrinsic::setMinutes(double(min), double(sec), double(ms));

prototype function setUTCMinutes(this:Date,
min,
sec = this.getUTCSeconds(),
ms = this.getUTCMilliseconds())
this.intrinsic::setUTCMinutes (double(min), double(sec), double(ms));

prototype function setHours(this:Date,
hour,
min=this.getMinutes(),
sec=this.getSeconds(),
ms=this.getMilliseconds())
this.intrinsic::setHours (double(hour), double(min), double(sec), double(ms));

prototype function setUTCHours(this:Date,
hour,
min=this.getUTCMinutes (),
sec=this.getUTCSeconds (),
ms=this.getUTCMilliseconds())
this.intrinsic::setUTCHours(double(hour), double(min), double(sec), double(ms));

prototype function setDate(this:Date, date)
this.intrinsic::setDate(double(date));

prototype function setUTCDate(this:Date, date)
this.intrinsic::setUTCDate(double(date));

prototype function setMonth(this:Date, month, date=this.getDate())
this.intrinsic::setMonth(double(month), double(date));

prototype function setUTCMonth(this:Date, month, date=this.getUTCDate())
this.intrinsic::setUTCMonth(double(month), double(date));

prototype function setFullYear(this:Date, year, month=this.getMonth(), date=this.getDate
()

this.intrinsic::setFullYear(double(year), double(month), double(date));
prototype function setUTCFullYear(this:Date, year, month=this.getUTCMonth(),

date=this.getUTCDate())
this.intrinsic::setUTCFullYear (double(year), double(month), double(date));

21 The class RegExp

FILE: spec/library/RegExp.html
DRAFT STATUS: DRAFT 1 - ROUGH - 2008-06-25

file://localhost/Work/es4/spec/library.html 07/11/08 11:45:54

ECMAScript 4th Edition -- Predefined Types and Objects

2

file://localhost/Work/es4/spec/library.html

REVIEWED AGAINST ES3: NO
REVIEWED AGAINST ERRATA: NO
REVIEWED AGAINST BASE DOC: NO
REVIEWED AGAINST PROPOSALS: NO
REVIEWED AGAINST CODE: NO

The class RegExp is a dynamic, nullable, non-final, direct subclass of Object.

A RegExp object contains a regular expression pattern and the associated flags.
NOTE The form and functionality of regular expressions is modelled after the regular expression facility in the Perl 5 programming language.

A regular expression is transformed ("compiled") into a matcher function that can be used to match an input string: to test
whether the input string has a certain form or contains substrings of a certain form, where the form is defined by the regular
expression.

The intrinsic exec method on a RegExp object drives the matching by invoking the matcher on a string and an offset
within the string to determine whether the pattern would match starting at exactly that offset within the string, and, if it does
match, what the values of the capturing parentheses would be.

Regular expression patterns are written down using a compact and rich source syntax that is separate from the syntax of the
surrounding language. A grammar for this syntax is presented below (RegExp grammary).

The regular expression flags modify the meaning of the pattern in various ways, for example by specifying case-
insensitivity, the meaning of white space, or how to perform the matching.

This Standard defines the meaning of regular expressions in two stages: declaratively as a mapping from surface syntax to
abstract syntax trees, and then operationally (in ECMAScript itself) as an interpreter that performs matching of input strings
by interpreting those abstract syntax trees.

Compiling a pattern may throw a SyntaxError exception; on the other hand, once the pattern is successfully compiled,
applying the compiled pattern to find a match in a string cannot throw an exception (except for any host-defined exceptions
that can occur anywhere such as out-of-memory).

The abstract syntax trees for regular expressions are represented as trees of ECMAScript objects. These objects are all
instances of specific ECMAScript classes, which are presented below (RegExp ASTs)).

21.1 Synopsis
The class RegExp provides the following interface:

dynamic class RegExp
{
function RegExp(pattern, flags) ..
static meta function invoke(pattern, flags) ..

static const length: uint = 2
override intrinsic function toString() : string ..

intrinsic function exec(s : string) : Array ..
intrinsic function test(s : string) : boolean ..

meta function invoke(s : string) : Array ..

const source: string = ..
const global: boolean = ..
const ignoreCase: boolean = ..
const multiline: boolean = ..
const extended: boolean = ..
const sticky: boolean = ..

final function get lastIndex()
final function set lastIndex(x) ..

}

The RegExp prototype object provides the following direct dynamic properties:
exec: function (s) .. ,

test: function (s) .. ,
toString: function ()

21.2 Surface syntax and mapping to abstract syntax trees

112

07/11/08 11:45:54

ECMAScript 4th Edition -- Predefined Types and Objects 113

21.2.1 Grammar

The RegExp constructor applies the following grammar to the pattern string. A SyntaxError exception is thrown if the
grammar cannot recognize the string as an expansion of the nonterminal Pattern.

The grammar acts as a transformer from segments of the pattern string into abstract syntax (sub)trees. A transformation
computation of one of the following types is associated with each production in the grammar.

e The construction of an abstract syntax tree node. Construction appears as the call to a factory function for the node,
denoted by an identifier in boldface with an initial capital letter. The factory functions map directly to the
constructors for the respective abstract syntax tree classes, described in section [RegExp.matching].

e The computation of a value, which may be a string, a number, or an abstract syntax tree node. Computation appears
as the call to a helper function, denoted by an identifier in boldface with an initial lower-case letter.

o The construction or destructuring of value tuples that carry multiple values from a production to a surrounding
production. Tuple construction and destructuring use the ECMAScript syntax for constructing and destructuring
Array values.

o The extraction of a token value from the production. Extraction appears as the use of the name of the token in the
computation.

The definition language also has side computations, side conditions, and error conditions. These are suffixed to a
transformation computation.

e Side computations bind temporary names to values and are introduced by where clauses.
o Side conditions test the applicability of a production and are introduced by provided clauses.
e FError conditions throw a SyntaxError exception if they do not hold and are introduced by requires clauses.

Pattern ::
Disjunction => RegExpMatcher (Disjunction)

Disjunction ::
Alternative => Alternative
Alternative | Disjunction => Disjunct(Alternative, Disjunction)

Alternative ::

[empty] => Empty()
Alternative Term => Conjunct(Alternative, Term)
Term ::

Assertion => Assertion

Atom => Atom

Atom Quantifier => Quantified(parenIndex,
parenCount,
atom,
min,
max,
greedy)

where [min, max, greedy] = Quantifier
requires min < max

Assertion ::

~ => AssertStartOfInput ()
$ => AssertEndOfInput()
\'b => AssertWordBoundary ()
\'B => AssertNotWordBounary ()
Quantifier ::
QuantifierPrefix => [min, max, true] where [min, max] = QuantifierPrefix
QuantifierPrefix ? => [min, max, false] where [min, max] = QuantifierPrefix

QuantifierPrefix ::

* => [0, @]

+ =>[1, @]

? => [0, 1]

{ DecimalDigits } => [DecimalDigits, DecimalDigits]
{ DecimalDigits , } => [DecimalDigits, o]

{ DecimalDigits, , DecimalDigits, }
=> [DecimalDigits,, DecimalDigits,]

file://localhost/Work/es4/spec/library.html 07/11/08 11:45:54

ECMAScript 4th Edition -- Predefined Types and Objects 114

CharacterSet(CharsetAdhoc(PatternCharacter))

CharacterSet(CharsetComplement(charset linebreak))

Backref(DecimalEscape)

requires that the regular expression as a whole has
at least DecimalEscape capturing parentheses

CharacterSet(CharsetAdhoc(CharacterEscape)))

CharacterSet(CharacterClassEscape)

CharacterSet(CharacterClass)

Capturing(Disjunction, parenIndex+1)

Disjunction

PositiveLookahead(Disjunction)

NegativeLookahead(Disjunction)

Capturing(Disjunction, capno(Identifier))
where capno(Identifier) is defined as parenIndex+l
Backref(capno(Identifier))

Atom ::

PatternCharacter =>

. =>

\ DecimalEscape =

\ CharacterEscape =

\ CharacterClassEscape =>

CharacterClass =>

(Disjunction) =>

(? : Disjunction) =>

(? = Disjunction) =>

(? ! Disjunction) =>

(? # [sequence matching [*)]*]) => Empty()

(? P < Identifier > Disjunction)

=>

(? P = Identifier) =>

PatternCharacter ::

SourceCharacter but not any of

SN Lx+2 ()01 {0}

=> SourceCharacter

CharacterEscape ::

ControlEscape => ControlEscape

¢ ControlLetter => chr (ord(ControlLetter) / 32)

HexEscapeSequence => HexEscapeSequence

UnicodeEscapeSequence => UnicodeEscapeSequence

IdentityEscape => IdentityEscape
ControlEscape ::

£ => "\u000C'

n => "\u000A'

r => '"\u000D'

t => "\u0009"'

v => "\uOOOB'
ControlLetter :: one of

abcdefghijklmnopgqrstuvwzxyz

ABCDEFGHIJKLMNOPOQRSTUVWXYZ

=> ControlLetter

IdentityEscape ::

SourceCharacter but not IdentifierPart
=> SourceCharacter

DecimalEscape ::
DecimalIntegerLiteral [lookahead n

ot in DecimalDigit]

=> dec(DecimalIntegerLiteral)

CharacterClassEscape ::

d => charset digit
D => CharsetComplement(charset digit)
s => charset space
S => CharsetComplement(charset space)
w => charset_word
W => CharsetComplement(charset word)
p { UnicodeClass } => unicodeClass(UnicodeClass)
P { UnicodeClass } => CharsetComplement(unicodeClass(UnicodeClass))
CharacterClass ::
[CharacterClassBody] => merge(U, I)
where [U, I] = CharacterClassBody
CharacterClassBody ::
[lookahead not in {"}] ClassRanges
=> ClassRanges
~ ClassRanges => [[CharsetComplement(merge(U, I))], []]
where [U, I] = ClassRanges
ClassRanges ::
[empty] => [[CharsetEmpty()], []]
NonemptyClassranges => NonemptyClassRanges

file://localhost/Work/es4/spec/library.html

07/11/08 11:45:54

ECMAScript 4th Edition -- Predefined Types and Objects 115

10
11

12
13

14

NonemptyClassRanges ::
ClassRange => ClassRange
ClassRange NonemptyClassRanges
=> [[union,, union,.], [intersection;, intersection,..]]

where [union,, intersection;] = ClassRange
and [union,., intersection,.] = NonemptyClassRanges

ClassRange ::

ClassAtom => [[ClassAtom],[]]
provided the next production does not apply
ClassAtom; - ClassAtom, => [[CharsetRange(ClassAtom;, ClassAtom,)],[]]

requires that ClassAtom,; and ClassAtom,

have one element each and that
the code point value of ClassAtom,

is = the code point value of ClassAtom,

& & [CharacterClassBody 1 => [[], [merge(U, I)]]
where [U, I] = CharacterClassBody

ClassAtom ::
- => CharsetAdhoc('-")

\ DecimalEscape => CharsetAdhoc(chr(DecimalEscape))
\'b => CharsetAdhoc('\u0008')

\ CharacterEscape => CharsetAdhoc(CharacterEscape)

\ CharacterClassEscape => CharacterClassEscape

SourceCharacter but not one of \] -
=> CharsetAdhoc(SourceCharacter)

UnicodeClass ::
Identifier => Identifier
provided Identifier spells one of these names:
CCcCfCnCoCs LLlI Lm Lo Lt Lu M Mc Me Mn N Nd N1
No
P Pc Pd Pe Pf Pi Po Ps S Sc Sk Sm So Z Zl1 Zp Zs

SourceCharacter, HexEscapeSequence, UnicodeEscapeSequence, and IdentityEscape are defined as part of the general
ECMAScript grammar) and all produce one-character strings.

To every expansion of a production there belongs two variables, parenindex and parenCount. ParenIndex represents the
number of left capturing parentheses in the entire regular expression that occur to the left of the production expansion's

initial token. ParenCount represents the number of left capturing parentheses in the expansion of the production.

Character set unions and intersections are represented explicitly as data structures that reference the subsets that are the
operands of the union or intersection operator, respectively; sets are not flattened.

There are four predefined character sets:

e charset_linebreak contains the Unicode line terminator characters <LF>, <CR>, <LLS>, and <PS>.
e charset_digit contains the decimal digit characters 0 through 9

e charset_space contains all the Unicode WhiteSpace (Unicode.whitespacel) and LineTerminator
({Unicode.lineterminator|) characters

e charset_word contains the upper-case letters A through z, the lower-case letters a through z, the decimal digit
characters 0 through 9, and the underscore _.

The helper function chr converts a Unicode code point value into the corresponding Unicode character (a one-character
string).

The helper function ord converts a one-character string into a Unicode code point value.
The helper function dec converts the textual representation of a nonnegative decimal integer into its integer value.

The helper function merge creates a single character set from two collections of sets U and I, where the result set is the
union of the sets of U, intersected with the intersection of the sets of /unless / is empty.

The helper function capno maps identifiers to capture numbers.

The helper function unicodeClass maps a one or two character Unicode class name to a character set containing the
characters in that Unicode class.

Even if the pattern ignores case, the case of the two ends of a range is significant in determining which characters belong to
the range. Thus, for example, the pattern / [E-F] /1 matches only the letters E, F, e, and £, while the pattern / [E-£]/1
matches all upper and lower-case ASCII letters as well as the symbols [, \,], ", ,and ~.

file://localhost/Work/es4/spec/library.html 07/11/08 11:45:54

ECMAScript 4th Edition -- Predefined Types and Objects

15

16

17

file://localhost/Work/es4/spec/library.html

A ClassAtom can use any of the escape sequences that are allowed in the rest of the regular expression except for \b, \ B,
and backreferences. Inside a CharacterClass, \b means the backspace character, while \ B and backreferences raise errors.
Using a backreference inside a ClassAtom causes an error.

ClassRanges can expand into single ClassAtoms and/or ranges of two ClassAtoms separated by dashes. In the latter case the
ClassRanges includes all characters between the first ClassAtom and the second ClassAtom, inclusive; an error occurs if
either ClassAtom does not represent a single character (for example, if one is \w) or if the first ClassAtom's code point value
is greater than the second ClassAtom's code point value.

A - character can be treated literally or it can denote a range. It is treated literally if it is the first or last character of
ClassRanges, the beginning or end limit of a range specification, or immediately follows a range specification.

21.2.2 White space and line comments

FIXME It has been agreed that comment syntax (both forms) is to be removed from the spec and that newlines in regex literals must be escaped by a
backslash. Both decisions make it possible to retain the ES3 split between surface lexing and regex parsing, and probably also helps preserve programmers'
sanity.

The grammar takes on one of two meanings depending on whether the x flag was supplied to the regular expression
constructor.

If the x flag was not supplied then all white space is treated as literal characters (typically SourceCharacter) and the #
character, outside the context of the (?# character sequence, does not mean anything special -- it is just another
SourceCharacter.

If the x flag was supplied then white space is ignored in a number of contexts and the # character, outside the context of the
(?# character sequence, starts a comment that ends when a line terminator character is seen (the line terminator is not part of
the comment). White space and line comments act as token separators but are otherwise completely ignored. The multi-
character tokens of the regular expression grammar inside which white space and line comments break the token are:

o the character sequences (?:, (?=, (2!, (?#, (?P=, (?P<,and &&][

o the character sequences starting with a backslash (\), except that white space and line comments are allowed
immediately following the backslash

e DecimalDigits and Identifier

FIXME (Ticket #194.) The definition on where whitespace is ignored / not ignored needs to be stronger, particularly around backspace. Eg, \p{N} is
the same as \p{ N } but not the same as \p {N}. We could go fascist and say that the middle of those three is not allowed, but that seems
unnatural.

21.3 Abstract syntax trees

The abstract syntax trees for regular expressions are represented as trees of instances of the ECMAScript classes
Disjunct,Conjunct,AssertStartOfInput, AssertEndOfInput, AssertWordBoundary,
AssertNotWordBoundary, Quantified, Capturing, Backref, PositiveLookahead,
NegativeLookahead, CharacterSet, and Empty.

These abstract syntax tree classes all implement the Matcher interface, which requires them to provide a match method
that takes a matching context, a matching state, and a continuation, and returns a result:

interface Matcher {
function match(ctx: Context, x: State, c: Continuation): MatchResult
}

NOTE The types Context, State, Continuation, and MatchResult are described later, along with the matching algorithm.

An additional set of classes, comprised of CharsetEmpty, CharsetUnion, CharsetIntersection,
CharsetComplement, CharsetRange, and CharsetAdhoc, represents character sets and unions, intersections, and
complements of characters sets. Each of these implements the CharsetMatcher interface, which takes a matching
context and a single-character string and returns a truth value:

interface CharsetMatcher {

function match(ctx: Context, s: string): boolean;
}

All abstract syntax tree classes are described in detail below.

21.4 Matching

The match method of the object that implements the Matcher interface attempts to match a middle subpattern
(determined by the type of matcher and its internal settings) of the pattern against the input string, starting at the intermediate
state given by its State argument. The Continuation argument is a closure that matches the rest of the pattern. After
matching the subpattern of a pattern to obtain a new State, the matcher then calls Continuation on the new state to test

116

07/11/08 11:45:54

ECMAScript 4th Edition -- Predefined Types and Objects 117

if the rest of the pattern can match as well. If it can, the matcher returns the state returned by the continuation; if not, the
matcher may try different choices at its choice points, repeatedly calling the continuation until it either succeeds or all
possibilities have been exhausted.

2 The interface to this machinery is the class RegExpMatcher, which takes as arguments an input, a start position, and some
flags, and which constructs a matcher context, an internal state, and a final continuation and then invokes its internal matcher
on these values, returning the result returned by the matcher.

3 A cContext object describes constant values used by all the matchers during the matching.

class Context

{
const input : string,
inputLength : uint,
ignoreCase : boolean,
multiline : boolean
}

4 input is the string being matched by the regular expression pattern; inputLength is the number of characters in
input; ignoreCase is true if the matching is case-insensitive; and multiline is true if the matching allows the *
assertion to match at the beginning of a line and the $ assertion to match at the end of a line (and not just at the beginning
and end of the input, respectively).

5 A State object represents partial match states in the regular expression matching algorithms.

class State

{

const endIndex: uint,
captures: CapArray

}

type CapArray = [(string,undefined)]

6 The endIndexis one plus the index of the last input character matched so far by the pattern, while captures holds the
results of capturing parentheses. Captures is an array whose length is the number of left capturing parentheses in the
pattern. The nth element of captures is either a string that represents the value obtained by the nth set of capturing
parentheses or undefined if the nth set of capturing parentheses hasn't been reached yet. Due to backtracking, many states
may be in use at any time during the matching process.

7 AMatchResult is either a State or the special token failure that indicates that the match failed:

type MatchResult = (State, ..)
const failure = ..

8 A Continuation function is a closure that takes a Context and a State and returns a MatchResult:
type Continuation = function(Context, State): MatchResult;

9 The continuation attempts to match the remaining portion (specified by the closure's already-bound arguments) of the pattern
against the input string, starting at the intermediate state given by its State argument. If the match succeeds, the
continuation returns the final State that it reached; if the match fails, the continuation returns failure.

21.4.1 RegExpMatcher

1 The class RegExpMatcher drives the matching. When its match method is invoked it creates a Context, a State, a
Continuation, and then it invokes its matcher object---the result of compiling the pattern---on these values, returning the
result returned by the matcher.

function RegExpMatcher (matcher, nCapturingParens)
: matcher = matcher
, nCapturingParens = nCapturingParens

{
}
const matcher: Matcher,

nCapturingParens: uint

function match(input: string, endIndex: double, multiline: boolean, ignoreCase: boolean)
: MatchResult

{
return matcher.match(new Context(input, multiline, ignoreCase),
new State(endIndex, makeCapArray(nCapturingParens+l)),
function (ctx: Context, x: State): State? { return x });
}

file://localhost/Work/es4/spec/library.html 07/11/08 11:45:54

ECMAScript 4th Edition -- Predefined Types and Objects 118

2

Capture arrays are created by makeCapArray and copied and partly cleared by copyCapArray:

function makeCapArray(len: double): CapArray {
let a = []: CapArray;
for (let 1 =0 ; i < len ; it++)
a[i] = undefined;
return a;

}

function copyCapArray(a: CapArray, parenIndex: double, parenCount: double): CapArray {
let b = makeCapArray(a.length);
for (let i = 0 ; i < a.length ; i++)
b[i] = a[i];

for (let k = parenIndex+l ; k <= parenIndex+parenCount ; k++)
b[k] = undefined;
return b;

}
21.4.2 Disjunct

The class Disjunct represents a matcher that allows two alternatives:
function Disjunct(ml, m2) : ml=ml, m2=m2 {}

const ml: Matcher,
m2: Matcher

public function match(ctx: Context, x: State, c: Continuation): MatchResult {
let r = ml.match(ctx, x, c);
if (r != failure)
return r;
return m2.match(ctx, x, c);

}

A Disjunct first tries to match the left alternative m/ (followed by the sequel of the regular expression); if it fails, it tries to
match the right alternative m2 (followed by the sequel of the regular expression). If m1, m2, and the sequel all have choice
points, all choices in the sequel are tried before moving on to the next choice in m/. If choices in ml are exhausted, m2 is
tried instead of mI. Any capturing parentheses inside a portion of the pattern skipped by | produce undefined values instead
of strings. Thus, for example,

/a|ab/.exec("abc")
returns the result "a" and not "ab". Moreover,
/((a)](ab)) ((c)]|(bc))/.exec("abc")

returns the array

["abc", "a", "a", undefined, "bc", undefined, "bc"]

and not

["abc", "ab", undefined, "ab", "c", "c", undefined]

21.4.3 Conjunct

The class Conjunct represents a matcher that requires the matching of two consecutive terms:
function Conjunct(ml, m2) : ml=ml, m2=m2 {}

const ml: Matcher,
m2: Matcher

public function match(ctx: Context, x: State, c: Continuation): MatchResult {
return ml.match(ctx,
XI
(function (ctx: Context, y: State): MatchResult
m2.match(ctx, y, ¢)));

}

A Conjunct tries simultaneoulsly to match the terms m/ and m2 on consecutive portions of the input string. If m/, m2, and
the sequel of the regular expression all have choice points, all choices in the sequel are tried before moving on to the next
choice in m2, and all choices in m2 are tried before moving on to the next choice in m!.

file://localhost/Work/es4/spec/library.html 07/11/08 11:45:54

ECMAScript 4th Edition -- Predefined Types and Objects 119

21.4.3.1 AssertStartOfinput

1 The Start-of-Input assertion succeeds without consuming input if the current input position is at the start of the input or if the
match is multiline and the current position is at the start of a line.

public function match(ctx: Context, x: State, c: Continuation): MatchResult {
let e = x.endIndex;
if (e == || etx.multiline && isTerminator(ctx.input[e-1]))
return c(ctx, x);
return failure;

}

2 The helper function isTerminator takes a character ¢ and returns true if c is one of the Unicode line terminator
characters <LF>, <CR>, <LLS>, and <PS>.

21.4.3.2 AssertEndOfinput

1 The End-of-Input assertion succeeds without consuming input if the current input position is at the end of the input or if the
match is multiline and the current position is at the end of a line.

public function match(ctx: Context, x: State, c: Continuation): MatchResult {
let e = x.endIndex;
if (e == ctx.inputLength || ctx.multiline && isTerminator(ctx.input[e]))
return c(ctx, x);
return failure;

}
21.4.3.3 AssertWordBoundary

1 The Word-Boundary assertion succeeds without consuming input if the current input position is inside a word and the
previous position is outside a word, or vice versa.

public function match(ctx: Context, x: State, c: Continuation): MatchResult {
let e = x.endIndex;
if (isREWordChar(ctx, e-1) != isREWordChar(ctx, e))
return c(ctx, x);
return failure;

}
2 The test for word character also takes boundary conditions into consideration:

function isREWordChar(ctx: Context, e: double): boolean {
if (e == -1 || e == ctx.inputLength)
return false;
let ¢ = ctx.input[e];
return isWordChar(ctx.input[e]);

}

3 The helper function isWordChar takes a character ¢ and returns true if ¢ is one of the upper-case ASCII letters A through
z, one of the lower-case ASCII letters a through z, one of the ASCII decimal digits 0 through 9, or the ASCII underbar _.

21.4.3.4 AssertNotWordBoundary

1 The Not-Word-Boundary assertion succeeds without consuming input if neither the current input position is inside a word
and the previous position is outside a word, nor vice versa.

public function match(ctx: Context, x: State, c: Continuation): MatchResult {
let e = x.endIndex;
if (isREWordChar(ctx, e-1) == isREWordChar(ctx, e))
return c(ctx, x);
return failure;

}
21.4.4 Quantified

1 Theclass Quantified represents a matcher that succeeds if its submatch m matches the input a certain number of times.

function Quantified(parenIndex, parenCount, m, min, max, greedy)
: parenIndex=parenIndex

parenCount=parenCount

m=m

min=min

max=max

greedy=greedy

N N N~~~

file://localhost/Work/es4/spec/library.html 07/11/08 11:45:54

ECMAScript 4th Edition -- Predefined Types and Objects 120

const parenIndex: uint,
parenCount: uint,
m: Matcher,
min: double,
max: double,
greedy: boolean

public function match(ctx: Context, x: State, c: Continuation): MatchResult {

function RepeatMatcher (min: double, max: double, x: State): MatchResult {
function d(ctx: Context, y: State): MatchResult {

if (min == 0 && y.endIndex == x.endIndex)
return failure;
else
return RepeatMatcher (Math.max (0, min-1), max-1, y);
}
if (max == 0)

return c(ctx, x);
let xr = new State(x.endIndex, copyCapArray(x.captures, parenIndex, parenCount));

if (min != 0)
return m.match(ctx, xr, d);

if (!greedy) {
let z = c(ctx, X);
if (z != failure)
return z;
return m.match(ctx, xr, d);

else {
let z = m.match(ctx, xr, d);
if (z != failure)

return z;
return c(ctx, Xx);

}

return RepeatMatcher (min, max, x);
}

2 Apattern term m followed by a quantifier is repeated the number of times specified by the quantifier. A quantifier can be
non-greedy, in which case m is repeated as few times as possible while still matching the sequel, or it can be greedy, in which
case m is repeated as many times as possible while still matching the sequel. M is repeated rather than the input string that it
matches, so different repetitions of m can match different input substrings.

3 If mand the sequel of the regular expression all have choice points, m is first matched as many (or as few, if non-greedy)
times as possible. All choices in the sequel are tried before moving on to the next choice in the last repetition of m. All
choices in the last (nth) repetition of m are tried before moving on to the next choice in the next-to-last (n-1)st repetition of

m; at which point it may turn out that more or fewer repetitions of m are now possible; these are exhausted (again, starting
with either as few or as many as possible) before moving on to the next choice in the (n-1)st repetition of Atom and so on.

4 Compare
/ala-2]1{2,4}/.exec("abcdefghi")
which returns "abcde" with
/ala-z]1{2,4}?/.exec("abcdefghi")
which returns "abc".
5 Consider also
/ (aa|aabaac|ba|b|c)*/.exec("aabaac")
which, by the choice point ordering above, returns the array
["aaba", "ba"]
and not any of:

["aabaac", "aabaac"]
["aabaac", "c"]

file://localhost/Work/es4/spec/library.html 07/11/08 11:45:54

ECMAScript 4th Edition -- Predefined Types and Objects 121
6 The above ordering of choice points can be used to write a regular expression that calculates the greatest common divisor of
two numbers (represented in unary notation). The following example calculates the gcd of 10 and 15:
"aaaaaaaaaa,aaaaaaaaaaaaaaa".replace(/"(a+)\1*,\1+$/,"S1")

which returns the ged in unary notation "aaaaa".

7 The helper function copyCapArray clears the portion of the captures array between parenindex+ 1 and
parenindex+parenCount inclusive each time m is repeated. We can see its behaviour in the regular expression

/(z)((a+)?(b+)?(c))*/.exec("zaacbbbcac")
which returns the array
["zaacbbbcac", "z", "ac", "a", undefined, "c"]
and not

["zaacbbbcac", "z", "ac", "a", "bbb", "c"]

because each iteration of the outermost * clears all captured strings contained in m, which in this case includes capture
strings numbered 2, 3, and 4.

8 The initial test of RepeatMatcher's closure d states that, once the minimum number of repetitions has been satisfied, any
more expansions of m that match the empty string are not considered for further repetitions. This prevents the regular
expression engine from falling into an infinite loop on patterns such as:

/(a*)*/.exec("b")
or the slightly more complicated:
/(a*)b\1+/.exec("baaaac")
which returns the array

["b", ""1]
21.4.5 PositiveLookahead

1 The positive lookahead matcher succeeds without consuming input if its contained matcher can match the input at the
current location:

function PositiveLookahead(m) : m=m {}
const m: Matcher
public function match(ctx: Context, x: State, c: Continuation): MatchResult {
let r = m.match(ctx,
XI

(function (ctx, y: State): MatchResult
Y))i

if (r == failure)
return failure;
return c(ctx, new State(x.endIndex, r.captures));
}

2 If m can match at the current position in several ways, only the first one is tried. Unlike other regular expression operators,
there is no backtracking into a (?= form (this unusual behaviour is inherited from Perl). This only matters when the m
contains capturing parentheses and the sequel of the pattern contains backreferences to those captures. For example,

/(?=(a+))/.exec("baaabac")
matches the empty string immediately after the first b and therefore returns the array:
["", "aaa"]
3 To illustrate the lack of backtracking into the lookahead, consider:
/(?2=(a+))a*b\1l/.exec("baaabac")

This expression returns

["aba", "a"]

file://localhost/Work/es4/spec/library.html 07/11/08 11:45:54

ECMAScript 4th Edition -- Predefined Types and Objects 122

and not:

["aaaba", "a"]

21.4.6 NegativeLookahead

1 The negative lookahead matcher succeeds without consuming input if its contained matcher fails to match the input at the
current location:

function NegativeLookahead(m) : m=m {}
const m: Matcher

public function match(ctx: Context, x: State, c: Continuation): MatchResult {
let r = m.match(ctx,
Xl
(function (ctx, y: State): MatchResult
y))i
if (r != failure)
return failure;
return c(ctx, Xx);

}

2 M can contain capturing parentheses, but backreferences to them only make sense from within m itself. Backreferences to
these capturing parentheses from elsewhere in the pattern always return undefined because the negative lookahead must fail
for the pattern to succeed. For example,

/(.*?)a(?! (at)b\2c)\2(.*)/.exec("baaabaac")

looks for an a not immediately followed by some positive number n of a's, a b, another n a's (specified by the first \ 2) and a
c. The second \ 2 is outside the negative lookahead, so it matches against undefined and therefore always succeeds. The
whole expression returns the array:

["baaabaac", "ba", undefined, "abaac"]

21.4.7 CharacterSet

1 A cCharacterSet matches the input at the current location if the canonical representation of the character at the current
location is a member of the character set.

function CharacterSet(cs)
: cs=cs {}

const cs: CharsetMatcher;

public function match(ctx: Context, x: State, c: Continuation) /*: MatchResult */ {
let e = x.endIndex;
let cap = x.captures;
if (e == ctx.inputLength)
return failure;
let cc = Canonicalize(ctx, ctx.input[e]);
let res = cs.match(ctx, cc);
if (lres)
return failure;
return c(ctx, new State(e+l, cap));

}

2 The helper function Canonicalize converts a character to its canonical form. In case-significant matches the canonical
form is the character itself. In case-insignificant matches all characters are converted to upper case immediately before they
are compared.

function Canonicalize(ctx, ch) {

if (!ctx.ignoreCase)
return ch;

let u = ch.toUpperCase();

if (u.length != 1)
return ch;

if (ch.charCodeAt(0) >= 128 && u.charCodeAt(0) < 128)
return ch;

return u;

NOTE If converting a character to upper case would expand that character into more than one character (such as converting "8" (\0ODF) into "SS"), then
the character is left as-is instead. The character is also left as-is if it is not an ASCII character but converting it to upper case would make it into an ASCII

file://localhost/Work/es4/spec/library.html 07/11/08 11:45:54

ECMAScript 4th Edition -- Predefined Types and Objects 123

character. This prevents Unicode characters such as \u0131 and \uO17F from matching regular expressions such as / [a=-2] / i, which are only intended
to match ASCII letters. Furthermore, if these conversions were allowed, then / [~ \W] / 1 would match eachof &, b, ..., h, butnot 1 or S.

21.4.7.1 Character sets

1 Acharacter set as passed to the CharacterSet constructor is a mathematical set of characters. However, in this Standard
the sets are provided with a concrete representation in order to present their semantics operationally.

2 Acharacter set is represented as a tree of objects that represent unions, intersections, complements, ranges, and primitive
sets containing some number of single characters. These data types are presented in the following sections.

21.4.7.2 CharsetEmpty
1 The empty character set contains no characters, so matching always fails.

public function match(ctx: Context, c: string): boolean {
return false;
}

21.4.7.3 CharsetUnion
1 The union of two sets contains a character if either set contains it.
function CharsetUnion(ml,m2) : ml=ml, m2=m2 {}

const ml: Charset,
m2: Charset

public function match(ctx: Context, c: string): boolean {
return ml.match(ctx, c) || m2.match(ctx, c);
}

21.4.7.4 Charsetintersection
FIXME It has been agreed that character set intersection (which is used to represent set intersection and difference on the source level) be removed.
1 The intersection of two sets contains a character if both sets contain it.
function CharsetIntersection(ml,m2) : ml=ml, m2=m2 {}

const ml: Charset,
m2: Charset

public function match(ctx: Context, c: string): boolean {
return ml.match(ctx, c) && m2.match(ctx, c);
}

21.4.7.5 CharsetComplement

1 Acomplemented character set contains a character if the contained set does not contain the character.
function CharsetComplement(m) : m=m {}
const m: Charset

public function match(ctx: Context, c: string): boolean {
return !m.match(ctx, c);
}

21.4.7.6 CharsetRange

1 A setrepresenting a range contains a character if the character matches the canonicalized value of one of the characters in
the range.

function CharsetRange(lo,hi) : lo=lo, hi=hi {}

const lo: string,
hi: string

public function match(ctx: Context, c: string): boolean {
let lo code = lo.charCodeAt(0);
let hi code = hi.charCodeAt(0);
for (let i=lo_code ; i <= hi code ; it++)
if (Canonicalize(ctx, string.intrinsic::fromCharCode(i)) == c)
return true;

file://localhost/Work/es4/spec/library.html 07/11/08 11:45:54

ECMAScript 4th Edition -- Predefined Types and Objects 124

return false;

NOTE The strings 10 and hi both contain a single character.

21.4.7.7 CharsetAdhoc

An ad-hoc character set contains a character c if the c is equal to the canonicalized value of one of the characters in the set.
function CharsetAdhoc(cs) : cs=explodeString(cs) {}

const cs: [string]

public function match(ctx: Context, c: string): boolean {
for (let i=0 ; i < cs.length ; i++) {
if (Canonicalize(ctx, cs[i]) == c)
return true;

return false;

}

The helper function explodeString converts a string into an array containing the individual characters in the string, each
represented as a one-character string.

function explodeString(s : string) : [string] {
let ¢s = [] : [string];
for (let i=0 ; i < s.length ; it++)
cs[i] = s[i];
return cs;

}

21.4.8 Capturing

A capturing matcher succeeds if its contained matcher m matches the input at the current location. The string that is matched
by the contained matcher is saved in the captures array at index parenlndex.

function Capturing(m, parenIndex) : m=m, parenIndex=parenIndex {}

const m: Matcher,
parenIndex: uint

public function match(ctx: Context, x: State, c: Continuation): MatchResult {

let function d(ctx: Context, y: State): MatchResult {
let cap = copyCapArray(y.captures, 0, 0);
let xe = x.endIndex;
let ye = y.endIndex;
cap[parenIndex+l] = ctx.input.substring(xe, ye);
return c(ctx, new State(ye, cap));

}

return m.match(ctx, x, d);

}
21.4.9 Backref

A back-referencing matcher succeeds if the input at the current location exactly matches the value in the captures array at
index capno.

function Backref(capno) : capno=capno {}
const capno: uint

public function match(ctx: Context, x: State, c: Continuation): MatchResult {
let cap = x.captures;
let s = cap[capno];
if (s == null)
return c(ctx, x);
let e = x.endIndex;
let len = s.length;
let £ = etlen;
if (£ > ctx.inputLength)
return failure;
for (let i=0 ; i < len ; i++)
if (Canonicalize(ctx, s[i]) != Canonicalize(ctx, ctx.input[e+i]))

file://localhost/Work/es4/spec/library.html 07/11/08 11:45:54

ECMAScript 4th Edition -- Predefined Types and Objects 125

return failure;
return c(ctx, new State(f, cap));

NOTE An escape sequence of the form \ followed by a nonzero decimal number n matches the result of the nth set of capturing parentheses (see
15.10.2.11). If the nth entry in the captures array is undefined because it hasn't captured anything, then the backreference always succeeds.

21.4.10 Empty

1 An empty match succeeds without consuming input.

public function match(ctx: Context, x: State, c: Continuation): MatchResult {
return c(ctx, Xx);
}

21.5 Methods on the class RegExp

21.5.1 new RegExp(pattern, flags)

Description
1 The RegExp constructor creates a new regular expression. Pattern can be an existing regular expression, in which case the
source and flags for the new object is taken from pattern.

Implementation

function RegExp(pattern, flags)
: { matcher: matcher,
names: names,
source: source,
multiline: multiline,
ignoreCase: ignoreCase,
global: global,
extended: extended,
sticky: sticky }
, private::lastIndex

analyzePatternAndFlags(pattern, flags)
0

A

NOTE If the characters of src do not have the form Pattern, then a SyntaxError exception will be thrown.
2 The class RegExp has two internal properties matcher and and names:

private const matcher: Matcher,
names: [string?]

3 Thematcher property holds the regular expression matcher object (the result of compiling the regular expression). The
names property holds a string in position i if capturing submatch 7 in the pattern string was given a name; the string is that
name.

NOTE If pattern is a StringLiteral, the usual escape sequence substitutions are performed before the string is processed by RegEXpP. If pattern must

contain an escape sequence to be recognised by RegEXp, the " \ " character must be escaped within the StringLiteral to prevent its being removed
when the contents of the StringLiteral are formed.

NOTE The source property of the newly constructed object is set to an implementation-defined string value in the form of a Pattern based on src.

21.5.2 RegExp(pattern, flags)

Description
1 The RegExp class object invoked as a function converts pattern to RegExp.

2 If pattern is a RegExp object and flags is undefined, then return pattern unchanged. Otherwise construct a new regular
expression from pattern and flags and return that.

Returns
3 The RegExp function returns a RegExp object.

Implementation
static meta function invoke(pattern, flags) {
if (pattern is RegExp && flags === undefined)
return pattern;
else

file://localhost/Work/es4/spec/library.html 07/11/08 11:45:54

ECMAScript 4th Edition -- Predefined Types and Objects

return new RegExp(pattern, flags);

}

21.6 Methods on RegExp instances

21.6.1 intrinsic:exec (s)

Description
The intrinsic exec method performs a regular expression match of the string s against the regular expression.

Returns

126

The intrinsic exec method returns an Array object containing the results of the match, or null if the string did not match.

Implementation

intrinsic function exec(s : string) : Array {
let length = s.length;
let i = lastIndex;
if (!global)
i=0;
let res = failure;
while (true) {
if (1 <0 || i > length) {
lastIndex = 0;
return null;

}
res = matcher.match(s, i, multiline, ignoreCase);
if (res !== failure)
break;
++i;

}
if (global)
lastIndex = res.endIndex;
let a = new Array(res.captures.length);
a.index i;
a.input s;
a.length = res.captures.length;
a[0] = s.substring(i,res.endIndex);
for (let j=1 ; j < res.captures.length ; Jj++)
al[j] = res.captures[j];
for (let j=1 ; j < names.length ; Jj++)
if (names[]j] !== null)
a[names[j]] = res.captures[]j];
return a;

21.6.2 intrinsic:test(s)

Description

The intrinsic test method tests whether the string s can be successfully matched against the regular expression.

Returns
The intrinsic test method returns true if the string can be matched, and otherwise false.

Implementation

intrinsic function test(s : string) : boolean
exec(s) !== null;

21.6.3 intrinsic:toString()

Description
The intrinsic toString method converts the regular expression to a string.

Let src be a string in the form of a Pattern representing the current regular expression. src may or may not be identical to the
source property or to the source code supplied to the RegExp constructor; however, if src were supplied to the RegExp
constructor along with the current regular expression's flags, the resulting regular expression must behave identically to the

current regular expression.

The intrinsic toString method produces a string value formed by concatenating the strings "/", src, and "/"; plus "g" if the
global property is true, "i" if the ignoreCase property is true, "'m" if the multiline property is true, "x" if the

extended property is true, and "y" if the st icky property is true.

file://localhost/Work/es4/spec/library.html

07/11/08 11:45:54

ECMAScript 4th Edition -- Predefined Types and Objects 127

NOTE An implementation may choose to take advantage of src being allowed to be different from the source passed to the RegEXP constructor to
escape special characters in src. For example, in the regular expression obtained from new RegExp (" /"), src could be, among other possibilities,
"/" or "V". The latter would permit the entire result ("/\//") of the toString call to have the form RegularExpressionLiteral.

Returns
4 The intrinsic toString method returns a string.

Implementation
5 The intrinsic toString method is implementation-defined.

21.6.4 meta:invoke (s)

Returns
1 When a RegExp object is called as a function, it invokes the exec method on its argument and returns what exec returns.

Implementation
meta function invoke(s : string) : Array

exec(s);

21.7 Value properties on RegExp instances

21.7.1 source

1 The value of the source property is string in the form of a Pattern representing the current regular expression.

21.7.2 global

1 The value of the global property is a boolean value indicating whether the flags contained the character "g".

21.7.3 ignoreCase
1 The value of the ignoreCase property is a boolean value indicating whether the flags contained the character "1i".

21.7.4 multiline

1 The value of the multiline property is a boolean value indicating whether the flags contained the character "m".

21.7.5 extended

1 The value of the extended property is a boolean value indicating whether the flags contained the character "x".

21.7.6 sticky

1 The value of the sticky property is a boolean value indicating whether the flags contained the character "y".

21.7.7 lastindex

1 The value of the 1lastIndex property is an integer that specifies the string position at which to start the next match.
2 The value is converted to integer on setting.

Implementation final function get lastindex() ... final function set lastindex(x) ...

21.8 Methods on the RegExp prototype object

Description
1 The methods on the RegExp prototype object call their intrinsic counterparts.

Returns
2 The methods on the RegExp prototype object return what their intrinsic counterparts return.

Implementation

prototype function exec(this:RegExp, s)
this.exec(string(s));

file://localhost/Work/es4/spec/library.html 07/11/08 11:45:54

ECMAScript 4th Edition -- Predefined Types and Objects 128

prototype function test(this:RegExp, s)
this.test(string(s));

prototype function toString(this:RegExp)
this.intrinsic::toString();

22 The class vVector

1 Theclass Vector is a parameterized, dynamic, direct subclass of Object. It represents dense, typed, 0-based, one-
dimensional arrays with bounds checking and optionally fixed length.

2 The class Vector provides two benefits. One is optimization: the restrictions placed on the class---denseness and a
predefined iteration order---make it possible for ECMAScript implementations to implement it particularly efficiently. The
other is error checking: Vector provides stronger type checking and bounds checking than Array.

COMPATIBILITY NOTE The class VECtOY is new in the 4th Edition of this Standard.
3 Theclass Vector provides a method suite that is largely compatible with the class Array.

NOTE 1t is likely that many current uses of Array can be switched over to Vector without much work, and programs that can be switched will
receive the benefits of stronger type and bounds checking.

4 The type parameter of the Vector is called its base type.

5 Asthe Vector class is dynamic, new properties can be added to its instances but any property whose name is a number (an
instance of any class in the union type AnyNumber) is handled specially. These properties are called indexed properties.

6 Only indexed properties named by nonnegative integers less than the value of the property length are defined, and only
indexed properties named by nonnegative integers less than 232-1 can be defined.

7 Any attempt to read an undefined indexed property results in a RangeError exception being thrown.

8 Any attempt to write an undefined indexed property results in a RangeError being thrown unless the index is equal to the
current value of length, the current value of length is not 23%-1, and the value of the property £ixed is not true.

9 The property £ixed is a flag that determines whether the vector has fixed length or not. Any attempt to update the value of
length fails if the £ixed property has the value true.

NOTE If V is a Vectox then reading and writing V[3. 14] or V[—3] will always fail, though reading and writing V["3.14"] or v
["=3"] will succeed.

This behavior deviates from the 3rd Edition, where strings and numbers are interchangeable as property names. But that's no longer quite true in 4th Edition
anyway, which has have namespaces and Name objects.

Most attempts to set or get properties that are named by numbers that are not valid array indices are probably errors, especially if the object is an Array.
Most attempts to read beyond the end of an Array are probably errors. And in a number of cases, attempts to write beyond the end of an Array are probably
errors too. The Vector class makes it possible to discover these errors.

10 All indexed properties named by nonnegative integers less than 1ength are always defined.

NOTE As a consequence, a VECtOX does not have "holes" in its index range in the way an Array does.

22.1 Synopsis
1 The class Vector provides the following interface:

__ES4 dynamic class Vector.<T> extends Object

{

public function Vector(length: double=0, fixed: boolean=false) ..
static const length = 2;

override intrinsic function toString()

override intrinsic function toLocaleString()

intrinsic function concat(...items): Vector.<T> ..

intrinsic function every(checker: Checker, thisObj: Object=null): boolean ..
intrinsic function filter(checker: Checker, thisObj: Object=null): Vector.<T> ..
intrinsic function forEach(eacher: Eacher, thisObj: Object=null): void ..
intrinsic function indexOf(value: T, from: AnyNumber=0): AnyNumber ..

intrinsic function join(separator: string=","): string ..

intrinsic function lastIndexOf(value: T, from: AnyNumber=Infinity): AnyNumber ..
intrinsic function map (mapper:Mapper, thisObj:Object=null)

intrinsic function pop(): T ..

intrinsic function push(...items): double ..

intrinsic function reduce(reducer/+*: function*/, initialvalue:(T|None)=NONE): T ..

file://localhost/Work/es4/spec/library.html 07/11/08 11:45:54

ECMAScript 4th Edition -- Predefined Types and Objects

intrinsic function
intrinsic function reverse(): Vector.<T> ..
intrinsic function shift(): T ..
intrinsic function
AnyNumber=1): Vector.<T> ..
intrinsic function some(checker: Checker, thisObj:
intrinsic function sort(comparefn: function(T, T):
intrinsic function splice(start: AnyNumber, deleteCount: AnyNumber,
Vector.<T> ..
intrinsic function unshift(...items): double ..
iterator function get(deep: boolean = false) :
iterator function getKeys(deep: boolean = false)
iterator function getValues(deep: boolean = false)
iterator function getItems(deep: boolean = false)

public var fixed: boolean ..

public final function get length() ..
public final function set length(len: AnyNumber) ..

129

reduceRight (reducer/*: function*/, initialValue:(T|None)=NONE): T

slice(start: AnyNumber=0, end: AnyNumber=Infinity, step:

Object=null): boolean ..
AnyNumber): Vector.<T> ..
...items):

iterator::Iterator.<double> ..

iterator::Iterator.<double> ..
iterator::Iterator.<T> ..
iterator::Iterator.<[double,T]> ..

Every indexed element of the new vector below

meta final function get(name): T ..
meta final function set(name, v): void ..
meta final function has(name) ..
meta final function delete(name) ..
}
2 The types Checker, Eacher, and Mapper are as for the Array class (see).
3 The Vector prototype object provides these direct properties:
toString: function ()
toLocaleString: function () ..
concat: function (...items) ..
every: function (checker, thisObj) ..
filter: function (checker, thisObj) ..
forEach: function (eacher, thisObj) ..
indexOf: function (value, from) ..
join: function (separator) ..
lastIndexOf: function (value, from) ..
map: function (mapper, thisObj) ..
pop: function () ..
push: function (...items) ..
reduce: function (callback, initialvalue) ..
reduceRight: function (callback, initialvalue) ..
reverse: function ()
shift: function () ..
slice: function (start, end) ..
some: function (checker, thisObj) ..
sort: function (comparefn) ..
splice: function (start, deleteCount, ...items) ..
unshift: function (...items) ..
22.2 Methods on the vector class object
22.2.1 new Vector.<T> (length=..,, fixed=...)
Description
1 The Vector constructor initializes a new Vector object.
2 Length s the inital value of the 1length property. Its default value is zero.
length is initialized to a default value that is appropriate to the base type T.
3 Fixed is the initial value of the £ixed property. Its default value is false.

22.3 Methods on vector instances
22.3.1 intrinsic:toString ()
Description

invoked for this object with no argument.

file://localhost/Work/es4/spec/library.html

The intrinsic toString method converts the vector to a string. It has the same effect as if the join method were

07/11/08 11:45:54

file://localhost/Work/es4/spec/library.html

ECMAScript 4th Edition -- Predefined Types and Objects

Returns
The toString method returns a string.

Implementation

override intrinsic function toString()
intrinsic::join();

22.3.2 intrinsic::itoLocaleString ()

Description
The intrinsic toLocaleString method converts the Vector to a string in the following manner.

Elements of this Vector are converted to strings using their public toLocaleString methods, and these strings are then
concatenated, separated by occurrences of a separator string that has been derived in an implementation-defined locale-
specific way. The result of calling this function is intended to be analogous to the result of toString, except that the result
of this function is intended to be locale-specific.

Returns
The toLocaleString method returns a string.

Implementation

override intrinsic function toLocaleString() {
let limit = length;
let separator = localeSpecificSeparatorString();
let s = "";
let i 0;

while (true) {
let x = this[i];

if (x !== undefined && x !== null)
s += x.toLocaleString();

if (++i == limit)
break;

s += separator;

}

return s;

NOTE The first parameter to this method is likely to be used in a future version of this standard; it is recommended that implementations do not use this
parameter position for anything else.

22.3.3 intrinsic:concat (...items)

Description

The intrinsic concat method collects the vector elements from this followed by the vector elements from the additional
items, in order, into a new Vector object. All the items must be Vector instances whose base types are subtypes of the
base type of this.

Returns
The concat method returns a new Vector object with the same base type as this.

Implementation

intrinsic function concat(...items): Vector.<T>
concat(items);

helper function concat(items) {
let v = new Vector.<T>;
let k = 0;

for (let i=0, limit=length ; i < limit ; i++)
v[k++] = this[i];

for (let j=0 ; j < items.length ; j++) {
let item = items[j];
for (let i=0, limit=item.length ; i < limit ; i++)
v[ik++] = item[i];

}
return v;
}
FIXME Need to check a detail of the type system, namely whether Vectoxr . <T> is a subtype of Vector.<U> if T is a subtype of U and U is not *.

130

07/11/08 11:45:54

ECMAScript 4th Edition -- Predefined Types and Objects 131

22.3.4 intrinsic:every (checker, thisObj=...)

Description
1 The intrinsic every method calls checker on every vector element of this in increasing index order, stopping as soon as
any call returns false.

2 Checker is called with three arguments: the vector element value, the vector element index, and this. ThisObj is used as the
this object in the call.

Returns
3 The every method returns true if all the calls to checker returned true values, otherwise it returns false.

Implementation
intrinsic function every(checker: Checker, thisObj: Object=null): boolean {
for (let i=0, limit=length ; i < limit ; i++)
if (!checker.call(thisObj, this[i], i, this))
return false;
return true;

}
22.3.5 intrinsic:filter (checker, thisObj=...)

Description
1 The intrinsic £ilter method calls checker on every vector element of this in increasing index order, collecting all the
vector elements for which checker returns a true value.

2 Checker is called with three arguments: the vector element value, the vector element index, and this. ThisObj is used as the
this object in the call.

Returns

3 The filter method returns a new Vector object with the same base type as this, containing the elements that were
collected, in the order they were collected. The length of the new Vector is equal to the number of values that were
collected.

Implementation

intrinsic function filter(checker: Checker, thisObj: Object=null): Vector.<T> {
var result = new Vector.<T>;
for (let i=0, limit=length ; i < limit ; i++) {
let item = this[i];
if (checker.call(thisObj, item, i, this))
result[result.length] = item;

}

return result;

}

22.3.6 intrinsic::forEach (eacher, thisObj=...)

Description
1 The intrinsic forEach method calls eacher on every vector element of this in increasing index order, discarding any
return value of eacher.

2 Eacher is called with three arguments: the vector element value, the vector element index, and this. ThisObj is used as the
this object in the call.

Returns
3 The forEach method does not return a value.

Implementation
intrinsic function forEach(eacher: Eacher, thisObj: Object=null): void {
for (let i=0, limit=length ; i < limit ; i++)
eacher.call(thisObj, this[i], i, this);
}

22.3.7 intrinsic:indexOf (value, from=...)

Description
1 The intrinsic indexOf method compares value with every vector element of this in increasing index order, starting at the
index from, stopping when a vector element is equal to value by the === operator.

file://localhost/Work/es4/spec/library.html 07/11/08 11:45:54

ECMAScript 4th Edition -- Predefined Types and Objects 132

2 If from is negative, it is treated as this.length+from

Returns
3 The indexOf method returns the vector index the first time value is equal to an element, or -1 if no such element is found.

Implementation
intrinsic function indexOf(value: T, from: AnyNumber=0): AnyNumber {
let start = clamp(from, length);
for (let i=start, limit=length ; i < limit ; i++) {
let item = this[i];
if (item === value)
return i;

}

return -1;

}
4 The helper function c1amp performs clamping of from to the length of this Vector.

helper function clamp(val: AnyNumber, len: double): double {
val = toInteger(val);
if (val < 0)
val += len;
return intrinsic::toUint(Math.min(Math.max(val, 0), len));

NOTE The helper function toInteger, used by clamp, is described elsewhere; it performs the ToInteger operation of the 3rd Edition.

22.3.8 intrinsic:join (separator=...)

Description
1 The intrinsic join method concatenates the string representations of the vector elements of this in increasing index order,
separating the individual strings by occurrences of separator.

Returns
2 The join method returns the concatenated string.

Implementation

intrinsic function join(separator: string=","): string {
let limit = length;
let s e
let i 0;

for (let i = 0; i < limit; i++) {
let item = this[i];
if (i t= 0)
s += separator;
if (item is Object)
s += string(x);
}

return s;

22.3.9 intrinsic:lastindexOf (value, from=...)

Description
1 The intrinsic lastIndexOf method compares value with every vector element of this in decreasing numerical index
order, starting at the index from, stopping when a vector element is equal to value by the === operator.

2 If from is negative, it is treated as this.length+from

Returns
3 The lastIndexOf method returns the vector index the first time value is equal to an element, or -1 if no such element is
found

Implementation

intrinsic function lastIndexOf(value: T, from: AnyNumber=Infinity): AnyNumber {
let start = clamp(from, length);
for (let i=start ; i >=0 ; i--) {
let item = this[i];
if (item === value)
return i;

file://localhost/Work/es4/spec/library.html 07/11/08 11:45:54

ECMAScript 4th Edition -- Predefined Types and Objects 133

return -1;

}
22.3.10 intrinsic::map (mapper, thisObj=...)

Description
1 The intrinsic map method calls mapper on each vector element of this in increasing numerical index order, collecting the
return values from mapper.

2 Mapper is called with three arguments: the vector element value, the vector element index, and this. ThisObj is used as the
this object in the call.

Returns
3 The map method returns a new Vector object of the same base type and length as this Vector. The element at index i in
the new vector is the value collected from the call to mapper on this[i].

Implementation

intrinsic function map (mapper:Mapper, thisObj:Object=null) {
var result = new Vector.<T>(length);
for (let i=0, limit=length ; i < limit ; i++) {
let item = this[i];
result[i] = mapper.call(thisObj, item, i, this);
}

return result;

}

22.3.11 intrinsic:pop ()

Description
1 The intrinsic pop method extracts the last vector element from this and removes it by decreasing the value of the length
property of this by 1.

Returns
2 The pop method returns the removed element, or the appropriate default value for the base type of this if there are no
elements.

Implementation
intrinsic function pop(): T {
if (length == 0)
return undefined;

let v = this[length-1];
length--;
return v;

}

22.3.12 intrinsic:push (...items)

Description
1 The intrinsic push method appends the values in items to this Vector, in the order in which they appear in items. The
length property of this Vector will be incremented by the length of items.

Returns
2 The push method returns the new value of the 1length property of this Vector.

Implementation

intrinsic function push(...items): double
push(items);
helper function push(items) {
for (let i=0, limit=items.length ; i < limit ; i++)
this[length] = items[i];
return length;
}

22.3.13 intrinsic:reverse ()

Description

file://localhost/Work/es4/spec/library.html 07/11/08 11:45:54

ECMAScript 4th Edition -- Predefined Types and Objects

134

1 The intrinsic reverse method rearranges the vector elements of this so as to reverse their order. The Length property

file://localhost/Work/es4/spec/library.html

of this remains unchanged.

Returns
The reverse method returns this.

Implementation
intrinsic function reverse(): Vector.<T> {
for (let i=0, j=length-1 ; i < j ; i++, j--
[this[i], this[j]] = [this[j], this[i]];
return this;

22.3.14 intrinsic:shift ()

Description
The intrinsic shift method removes the element called 0 in this, moves the element at index i+ to index i, and
decrements the length property of this by 1.

Returns
The shift method returns the element that was removed.

Implementation
intrinsic function shift(): T {
if (length == 0)
return undefined;
let v = this[0];
for (let i=1, limit=length ; i < limit ; i++)
this[i-1] = this[i];
length--;
return v;

}

22.3.15 intrinsic:slice (start=..., end=..., step=...)

Description

The intrinsic s1ice method extracts the subrange of array elements from this between start (inclusive) and end
(exclusive) into a new Array. Each step element is taken.

The default value of start is 0. If it is negative, it is treated as object.length+start.

The default value of end is Infinity. If it is negative, it is treated as object.length+end.

The default value of step is 1. If itis O, itis setto 1.

Returns

The s1ice method returns a new Vector object with the same base type as this, containing the extracted vector

elements.

Implementation

intrinsic function slice(start: AnyNumber=0, end: AnyNumber=Infinity, step: AnyNumber=1):

Vector.<T> {
step = toInteger(step);
if (step == 0)
step = 1;

start = clamp(start, length);
end = clamp(end, length);

let result = new Vector.<T>;
if (step > 0)
for (let i=start; i < end ; i += step)
result[result.length] = this[i];
else
for (let i=start; i > end ; i += step)
result[result.length] = this[i];

return result;

22.3.16 intrinsic::some (checker, thisObj=...)

07/11/08 11:45:54

ECMAScript 4th Edition -- Predefined Types and Objects 135

Description
1 The intrinsic some method calls checker on every vector element in this in increasing index order, stopping as soon as
checker returns a true value.

2 Checker is called with three arguments: the vector element value, the vector element index, and this. ThisObj is used as the
this object in the call.

Returns
3 The some method returns true when checker returns a true value, otherwise returns false if all the calls to checker return
false values.

Implementation

intrinsic function some(checker: Checker, thisObj: Object=null): boolean {
for (let i=0, limit=length ; i < limit ; i++) {
let item = this[i];
if (checker.call(thisObj, item, i, this))
return true;

return false;

22.3.17 intrinsic:sort (comparefn)

Description
1 The intrinsic::sort method sorts the vector elements of this according to the ordering defined by comparefn.

2 The sort is not necessarily stable (that is, elements that compare equal do not necessarily remain in their original order).
Comparefn must be a consistent (see [sorting-logic]) function that accepts two arguments x and y of the base type of this and
returns a negative value if x < y, zero if x =y, or a positive value if x > y.

COMPATIBILITY NOTE Unlike the case for Array, the comparefn is a required argument.
FIXME (Ticket #197.) Should we provide a default comparator?

Returns
3 The sort method returns this.

Implementation

4 The sort method calls on the generic sorting engine, passing a function to compare elements of this.

intrinsic function sort(comparefn: function(T, T): AnyNumber): Vector.<T> {
let object = this;
return sortEngine(object,
0,
length-1,
(function (j, k) comparefn(object[j], object[k])));

NOTE For a description of the informative SOY tEng ine method, see .

FIXME The signature of comparefn is probably too constraining, it will require the client to pass a strongly-typed function.

22.3.18 intrinsic:splice (start, deleteCount, ...items)

Description
1 The intrinsic splice method replaces the deleteCount vector elements of this starting at index start with values from the
items.

Returns
2 The splice method returns a new Vector object of the same base type as this, containing the vector elements that were
removed from this, in order.

Implementation

intrinsic function splice(start: AnyNumber, deleteCount: AnyNumber, ...items): Vector.<T>
splice(start, deleteCount, items);

helper function splice(start, deleteCount, items) {
let out = new Vector.<T>;
let len = intrinsic::toUint(length);

start = clamp(start, len);
deleteCount = clamp(deleteCount, len - start);

file://localhost/Work/es4/spec/library.html 07/11/08 11:45:54

ECMAScript 4th Edition -- Predefined Types and Objects

let

for

end =

start + deleteCount;

(let 1 = 0; i < deleteCount; i++)

out.push(this[i + start]);

let insertCount = items.length;
let shiftAmount = insertCount - deleteCount;
if (shiftAmount < 0) {
shiftAmount = -shiftAmount;
for (let i = end; i < len; i++)
this[i - shiftAmount] = this[i];
else {
for (let i = len; i > end;) {
—-—1i;
this[i + shiftAmount] = this[i];
}
}
for (let i = 0; i < insertCount; it++)

this[start+i] =

items[i];

length = len + shiftAmount;
return out;

}
22.3.19

Description

intrinsic::unshift (...items)

136

1 The instrinsic unshift method inserts the values in ifems as new vector elements at the start of this, such that their order
within the vector elements of this is the same as the order in which they appear in items. Existing vector elements in this
are shifted upward in the index range, and the 1length property of this is updated.

Returns

2 The unshift method returns the new value of the length property of this.

Implementation
intrinsic function unshift(...items): double

unsh

ift(items);

helper function unshift(items) {

let
let
let

leng
for

for

retu

}
22.4

numitems =
oldlimit
newlimit

items.length;
length;
0ldlimit + numitems;

th = newlimit;

(let i=0 ; i < length ; i++)
this[newlimit-i] = this[oldlimit-i];
(let i=0 ; i < numitems ; i++)
this[i] = items[i];

rn newlimit;

Iteration protocol on vector instances

1 Iterators are defined on the Vector such that for-in and for each-in loops always iterate across the vector from low
indices toward high indices. Only indexed properties defined directly on the vector object are visited.

Implementation

iterator
getK

iterator
let
let
retu

function get(deep: boolean = false) :

eys(deep);
function getKeys(deep: boolean = false)
i=0;
a = this;
rn {
const next:
function () : double {
if (i < a.length)
return i++;
throw iterator::StopIteration;

file://localhost/Work/es4/spec/library.html

iterator::Iterator.<double>

iterator::Iterator.<double> {

07/11/08 11:45:54

ECMAScript 4th Edition -- Predefined Types and Objects

} : iterator::Iterator.<double>;

}

iterator function getValues(deep: boolean = false) : iterator::Iterator.<T> {
let i = 0;
let a = this;
return {
const next:
function () : T {
if (i < a.length)
return af[i++];
throw iterator::StopIteration;

}

} : iterator::Iterator.<T>;

}

iterator function getItems(deep: boolean = false) : iterator::Iterator.<[double,T]> {
let i = 0;
let a = this;
return {
const next:
function () : T {
if (i === a.length)
return [i,a[i++]];
throw iterator::StopIteration;

}

} : iterator::Iterator.<[double,T]>;

}

22.5 Value properties of vector instances

22.5.1 length

1 The property length determines the range of valid indices into the Vector. Indices up to but not including 1length are
always defined.

2 When length is given a new value that is smaller than its old value then the elements in the vector at the new length and
beyond are removed from the vector.

3 When length is given a new value that is greater than its old value then the elements in the vector at the old length and
beyond are given a default value that is appropriate to the base type T.

4 If an attempt is made to set Length when the £ixed property is true then a RangeError is thrown.

232

5 Ifan attempt is made to set Length to any value that is not a nonnegative integer less than 2°“ then a RangeError is

thrown.

22.5.2 fixed

1 The boolean property f£ixed determines whether the Vector has fixed length.
2 If fixed has the value true then any attempt to change length will result in in a RangeError being thrown.

3 The value of £ixed is not constant, so vectors can be of fixed length and variable length at different times.

22.5.3 Numerically named properties

1 AVector contains all properties whose names are nonnegative integers below the value of the Vector's length
property.

2 If an attempt is made to read a property whose name is a number that is not a nonnegative integer below length thena
RangeError is thrown.

3 If an attempt is made to write a property whose name is a number that is not a nonnegative integer below length then one
of two things happen:

e If the fixed property has the value true, or if the number is not a nonnegative integer, or if the number is

nonnegative but not the same value as the value of Length, or if length is already 23%-1, then a RangeError is
thrown.

e Otherwise, the property is defined on the vector and the 1ength property is incremented by 1.

137

file://localhost/Work/es4/spec/library.html 07/11/08 11:45:54

ECMAScript 4th Edition -- Predefined Types and Objects 138

22.6 Methods on the vector prototype object

Description
1 The methods on the Vector prototype object perform a small amount of type conversion and delegate to the corresponding
intrinsic methods.

Returns
2 The methods on the Vector prototype object return what their corresponding intrinsic methods return.

Implementation

prototype function toString(this:Vector.<#*>)
this.intrinsic::toString();

prototype function toLocaleString(this:Vector.<*>)
this.intrinsic::toLocaleString();

prototype function concat(this:Vector.<*>, ...items)
this.concat(items);

prototype function every(this:Vector.<*>, checker, thisObj=undefined)
this.intrinsic::every(checker, thisObj is Object ? thisObj : null);

prototype function filter(this:Vector.<*>, checker, thisObj=undefined)
this.intrinsic::filter(checker, thisObj is Object ? thisObj : null);

prototype function forEach(this:Vector.<*>, eacher, thisObj=undefined)
this.intrinsic::forEach(checker, thisObj is Object ? thisObj : null);

prototype function indexOf(this:Vector.<*>, value, from=undefined)
this.intrinsic::indexOf(value, Number(from));

prototype function join(this:Vector.<*>, separator=undefined)
this.intrinsic::join(separator == undefined ? "," : string(separator));

prototype function lastIndexOf(this:Vector.<*>, value, from=undefined)
this.intrinsic::indexOf(value, from == undefined ? Infinity : Number(from));

prototype function map(this:Vector.<*>, mapper, thisObj=undefined)
this.intrinsic::map(mapper, thisObj is Object ? thisObj : null);

prototype function pop(this:Vector.<*>)
this.intrinsic::pop();

prototype function push(this:Vector.<*>, ...items)
this.push(items);

prototype function reverse(this:Vector.<*>)
this.intrinsic::reverse();

prototype function shift(this:Vector.<*>)
this.intrinsic::shift();

prototype function slice(this:Vector.<*>, start, end, step)
this.intrinsic::slice(Number(start), Number(end), Number(step));

prototype function some(this:Vector.<*>, checker, thisObj=undefined)
this.intrinsic::some(checker, thisObj is Object ? thisObj : null);

prototype function sort(this:Vector.<*>, comparefn)
this.intrinsic::sort(comparefn);

prototype function splice(this:Vector.<*>, start, deleteCount, ...items)
this.splice(Number(start), Number(deleteCount), items);

prototype function unshift(this:Vector.<*>, ...items)
this.unshift(items);

23 The class Map

1 The class Map is a parameterized, dynamic, non-final, direct subclass of Object that provides a reliable, efficient, mutable,
and iterable map from keys to values. Keys and values may be of arbitrary types.

COMPATIBILITY NOTE The class Map is new in the 4th Edition of this Standard.

file://localhost/Work/es4/spec/library.html 07/11/08 11:45:54

ECMAScript 4th Edition -- Predefined Types and Objects 139

2 A Mapis realized as a hash table. When the Map is constructed the caller may provide specialized functions that compare
keys and compute hash values for keys.

23.1 Synopsis
1 The class Map provides the following interface:

__ES4 dynamic class Map.<K,V> extends Object
{
function Map(equals: Callable = (function(a,b) a === b),
hashcode: Callable = intrinsic::hashcode) ..

static const length = 2;

intrinsic function size() : double ..

intrinsic function get(key: K, notfound: (V|undefined)=undefined) : (V|undefined) ..

intrinsic function put(key: K, value: V, notfound: (V|undefined)=undefined) : (V|
undefined) ..

intrinsic function has(key:K) : boolean ..

intrinsic function remove(key:K) : boolean ..

intrinsic function clear() : void ..

iterator function get(deep: boolean = false) : iterator::Iterator.<K> ..
iterator function getKeys(deep: boolean = false) : iterator::Iterator.<K> ..
iterator function getValues(deep: boolean = false) : iterator::Iterator.<v> ..
iterator function getItems(deep: boolean = false) : iterator::Iterator.<[K,V]> ..

private const equals : Callable
private const hashcode : Callable
private var population : uint = ..

}
2 The Map prototype object provides these direct properties:

size: function () ..

get: function (key, notfound) ..

put: function (key, value, notfound) ..
has: function (key) ..

remove: function (key) ..

clear: function ()

23.2 Methods on the Map class object

23.2.1 new Map.<K,V>(equals=..., hashcode=...)

Description
1 The Map constructor creates a new map for key type K and value type V.

2 The optional equals argument is a function that compares two keys and returns true if they are equal and false if they are
not. This function must implement a reflexive, transitive, and symmetric relation, and equals(k1,k2) must be constant for any
two actual keys k7 and k2. The default value for equals is a function that compares the two keys using the === operator.

3 The optional hashcode argument is a function that takes a key and returns a numeric value for it; this key is converted to a
uint hash value for the key. The hash value may be used to find associations more quickly in the map. Two calls to
hashcode on the same key value must always result in the same hash value, and a call to hashcode must always result in the
same hash value for two key values that compare equal by the equals function. The default value for hashcode is the intrinsic
global function hashcode.

NOTE The constraint that equals and hashcode return constant values does not apply to key values that are not in a Map nor referenced from an
activation of any method on Map.
NOTE There is no requirement that the values returned from hashcode for two unequal keys must be different.

NOTE The operator == is not a valid comparator for the global intrinsic function hashcode because == will consider some values to be equal for
which hashcode returns different hash values.

Implementation

4 The Map constructor initializes the Map object by saving its parameters in private storage and initializing the count of the
number of associations in the table to zero.

function Map (equals : Callable = (function (x,y) === vy),
ashcode : Callable = intrinsic::hashcode)

quals = equals

ashcode = function (k) intrinsic::toUint(hashcode (k) cast AnyNumber)

file://localhost/Work/es4/spec/library.html 07/11/08 11:45:54

ECMAScript 4th Edition -- Predefined Types and Objects 140

opulation = 0
{
}

23.3 Methods on Map instances

23.3.1 intrinsic:size ()

Returns
1 The intrinsic method size returns the number of associations in the map.

Implementation

intrinsic function size() : double
ulation;

23.3.2 intrinsic:get (key, notfound=...)

Returns
1 The intrinsic method get returns the value associated with key, or notfound if there is no such association.

Implementation

intrinsic function get(key: K, notfound: (V|undefined)=undefined) : (V|undefined) {
probe = find(key);
urn probe ? probe.value : notfound;

}

2 The informative function f£ind searches for key in the Map and returns an object containing at least the properties key and
value if the association was found, or otherwise null. (The returned object is part of the Map data structure, and writing to
it updates the association in the Map.)

informative function find(key: K): like { key: K, value: V } ..

23.3.3 intrinsic:put (key, value, notfound=...)

Description
1 The intrinsic method put creates an association between key and value, or overwrites an existing association if there is one.

Returns
2 The put method returns the old value of the association if there was one, otherwise it returns notfound.

Implementation

intrinsic function put(key: K, value: V, notfound: (V|undefined)=undefined) : (V|
undefined) {

oldvalue = notfound;

probe = find(key);

(probe) {

oldvalue = probe.value;

probe.value = value;

e {
++population;
insert(key, value);

urn oldvalue;

}
3 The informative function insert adds a new association between key and value to the Map.

informative function insert(key: K, value: V): void ..

23.3.4 intrinsic:has (key)

Returns
1 The intrinsic method has returns true if there exists an association for key, or false otherwise.

Implementation

intrinsic function has(key:K) : boolean {
probe = find(key);

file://localhost/Work/es4/spec/library.html 07/11/08 11:45:54

ECMAScript 4th Edition -- Predefined Types and Objects 141

urn probe ? true : false;

}

23.3.5 intrinsic:iremove (key)

Description
1 The intrinsic method remove removes any association for key.

Returns
2 The remove method returns true if there was an association for key, or false otherwise.

Implementation

intrinsic function remove(key:K) : boolean ({
probe = find(key);

(probe) {

--population;

eject(probe);

return true;

urn false;

}
3 The informative function e ject removes the association for key from the Map.

informative function eject(box: like { key: K, value: V }): void ..

23.3.6 intrinsic:clear ()

Description
1 The intrinsic method clear removes all associations from the map.

Returns
2 The clear method returns nothing.

Implementation

intrinsic function clear() : void {
(let k in this)
intrinsic::remove(k);

}

23.4 Iteration protocol on Map instances

1 The iterator protocol makes use of a helper method iterate which first collects the values that will be returned by the
iterator methods and then returns an object that provides the correct next method:

helper function iterate.<T>(f) {
a=1[1];
ormative::allItems (function (k,v) { f(a,k,v) });
urn {
const next:
t (i=0, limit=a.length)

function () : T {

if (i < limit)
return a[it++];

hrow iterator::StopIteration;

iterator::Iterator.<T>;

}
2 The informative function allItems calls its function argument on every key/value pair in the Map:
informative function allItems(fn: function): void ..

3 The iterator methods getKeys, getValues, and get Items return iterator objects that iterate over keys, values, and key/
value pairs, respectively. The iterator method get iterates over keys (like getKeys).

Implementation

iterator function getKeys(deep: boolean = false) : iterator::Iterator.<K>
per::iterate.<K>(function (a,k,v) { a.push(k) });

file://localhost/Work/es4/spec/library.html 07/11/08 11:45:54

ECMAScript 4th Edition -- Predefined Types and Objects 142

iterator function getValues(deep: boolean = false) : iterator::Iterator.<v>
per::iterate.<V>(function (a,k,v) { a.push(v) });

iterator function getItems(deep: boolean = false) : iterator::Iterator.<[K,V]>
per::iterate.<[K,V]>(function (a,k,v) { a.push([k,v]) });

iterator function get(deep: boolean = false) : iterator::Iterator.<K>
rator::getKeys(deep);

23.5 Methods on the Map prototype object

1 The methods on the Map prototype object are constrained to being called on instances of Map. They all delegate to the
corresponding intrinsic method on their this object.

prototype function size(this: Map.<*,*>)
s.intrinsic::size();

prototype function get(this: Map.<*,*>, key, notfound)
s.intrinsic::get(key, notfound);

prototype function put(this: Map.<*,*>, key, value, notfound)
s.intrinsic::put(key, value, notfound);

prototype function has(this: Map.<*,*>, key)
s.intrinsic::has (key);

prototype function remove(this: Map.<*,*>, key)
s.intrinsic::remove(key);

prototype function clear(this: Map.<*,*>)
s.intrinsic::clear();

24 The meta-object classes

1 The intrinsic meta-object interfaces Type, NominalType, ClassType, InterfaceType, AnyType,
UndefinedType, NullType, UnionType, RecordType, ArrayType, FunctionType, Field, and
FieldValue, along with the intrinsic helper types FieldIterator, NominalTypeIterator, Typelterator,
ValueIterator,and FieldvValueIterator, provide a simple reflection capability.

2 The standard meta-objects described by the interface types may be immutable.

FIXME (Ticket #199.) Right now the class C1lass is not defined in ES4. (Nor is there an Interface, nor are there described classes for other
type objects.) If these are defined, then we must decide whether they implement the meta-object interfaces or not. Otherwise we have problems of
nonportability due to name shadowing in some systems but not in others, or subclassability in some systems but not in others.

3 ECMAScript implementations may choose to provide extensions to these interfaces, in order to provide richer reflective
capabilities. Clients wishing to use extended meta-object interfaces can perform runtime downcasts on the meta-objects
described by this Standard.

FIXME (Ticket #200.) The meta-objects system does not currently deal with parameterized types. It will almost certainly need to. First, classes can
contain type definitions and those definitions can be public, and it would be strange if they could not be iterated by the publ icMembers and
publicStaticMembes methods of NominalType. But type definitions can bind type parameters, so there would need to be a
representation of that. Second, method definitions can bind type parameters (this facility is used in eg the Map class for internal helper methods), so even
if type definitions were not iterated we'd have to deal with the problem for methods.

There is also the question of what the meaning of typeOf (Map) means, when Map is a paremeterized type. Presumably that too needs to reveal
parameterization in some way.

The original meta-objects proposal had some facilities for parameterization in the context of instantiation: the cOnstruct methods would take a type
iterator that would provide values for type parameters. But that's not good enough, and the following spec does not provide for these. Something like that
will come back in, though.
There will probably be a new interface ParemeterizedType that acts as a binder for type parameters:
interface ParameterizedType

function numberOfParameters()

function construct(typeVals: TypeIterator): Type
}

We must decide whether only instantiated types can be manipulated or not. If so, then we could then arrange for a "dummy type" factory to allow easy
instantiation for inspection purposes:

intrinsic function dummyTypes(t: Type): Typelterator

That may or may not run afoul of type checking, if any type checking happens at instantiation time. The alternative would be to provide an interface for
TypeParameter, and for ParameterizedType to allow inspection of its contained type without instantiation, with the proviso that
TypeParameter values will pop up during inspection and will have to be handled.

file://localhost/Work/es4/spec/library.html 07/11/08 11:45:54

ECMAScript 4th Edition -- Predefined Types and Objects 143

NOTE In the following sections all interfaces, types, and methods are implicitly defined in the intxrinsic namespace. The methods defined on the
interfaces are not defined on the prototypes of the classes that implement those interfaces.

NOTE Type annotations that denote nullable types are revealed as a union of NuU11Type and another type.
24.1 Retrieving the type of an object
24.1.1 typeOf(v)

Description
1 The global intrinsic function typeOf delivers the run-time type of its argument v, which may be a value of any type.

Returns
2 The function typeOf returns an object that implements Type and possibly one of the interfaces extending Type.

Implementation

3 The function typeOf is implementation-dependent.

24.2 The interface Type

1 The intrinsic interface Type describes a type in the system in basic terms.

24.2.1 Synopsis

interface Type

function canConvertTo(t: Type): boolean
function isSubtypeOf(t: Type): boolean

}
24.2.2 Methods

24.2.2.1 canConvertTo (t)

Returns
1 The canConvertTo method returns true if this type can be converted to the type ¢, otherwise it returns false.

24.2.2.2 isSubtypeOf (t)

Returns
1 The isSubtypeOf method returns true if this type is a subtype of the type #, otherwise it returns false.

24.3 The interface Field

1 The intrinsic interface Field describes a field (property) of a class, record, or array type by the field name and field type.

24.3.1 Synopsis

interface Field

function name(): Name
function type(): Type
}

24.3.2 Methods

24.3.2.1 name ()

Returns
1 The name method returns the field name as a Name object.

24.3.2.2 type ()

Returns
1 The type method returns the field type as an object that implements Type or one of the interfaces extending Type.

file://localhost/Work/es4/spec/library.html 07/11/08 11:45:54

ECMAScript 4th Edition -- Predefined Types and Objects 144

24.4 The interface Fieldvalue

1 The intrinsic interface FieldValue describes a field (property) of a record or array by the field name and field value. It is
used for constructing new record and array instances.

24.4.1 Synopsis

interface Fieldvalue

function name(): Name
function value(): *

}
24.4.2 Methods

24.4.2.1 name ()

Returns
1 The name method returns the field name as a Name object.

24.4.2.2 value ()

Returns
1 The value method returns the actual field value as an ECMAScript value.

24.5 The interface NominalType

1 The intrinsic interface NominalType is a base interface for InterfaceType and ClassType. It provides accessors for
aspects common to those two types.

24.5.1 Synopsis

interface NominalType extends Type

{
function name(): Name
function superTypes(): NominalTypelIterator
function publicMembers(): FieldIterator
function publicStaticMembers(): FieldIterator
}

24.5.2 Methods

24.5.2.1 name ()

Returns
1 The name method returns the name of the nominal type as a Name object.

24.5.2.2 superTypes ()

Returns
1 The superTypes method returns an iterator that iterates over the superclasses and implemented interfaces of this nominal
type.

24.5.2.3 publicMembers ()
Returns

1 The publicMembers method returns an iterator that iterates over the field definitions of all public instance fields (both
method properties and value properties).

24.5.2.4 publicStaticMembers ()
Returns

1 The publicMembers method returns an iterator that iterates over the field definitions of all public class fields (both
method properties and value properties).

2 The constructor method is included in the set of static members, provided that it is public.

file://localhost/Work/es4/spec/library.html 07/11/08 11:45:54

ECMAScript 4th Edition -- Predefined Types and Objects 145

FIXME (Ticket #200.) Likely, this will also iterate type definitions (see comment at the start of this chapter).

24.6 The interface InterfaceType

1 The intrinsic interface InterfaceType describes an interface.

24.6.1 Synopsis

interface InterfaceType extends NominalType

{
}

24.6.2 Methods

function implementedBy(): ClassTypeIlterator

24.6.2.1 implementedBy ()

Returns
1 The implementedBy method returns an interator that iterates over all the class types that implement this interface.

24.7 The interface ClassType

1 The intrinsic interface ClassType describes a class and provides a means of creating new instances of the class.

24.7.1 Synopsis

interface ClassType extends NominalType

function construct(valArgs: Valuelterator): Object

}
24.7.2 Methods

24.7.2.1 construct (valArgs)
Description

1 The construct method creates a new instance of the class represented by this ClassType, provided the class's
constructor is public.

2 The iterator valArgs provides any value arguments required by the constructor. Only as many values as necessary for calling
the constructor will be consumed from the iterator. If the constructor takes no arguments then valArgs may be null.

Returns
3 The construct method returns a new object of the type represented by this ClassType.

24.8 The interface AnyType

1 The intrinsic interface AnyType describes the type *.

24.8.1 Synopsis

interface AnyType extends Type
{
}

249 The interface NullType

1 The intrinsic interface Nul1Type describes the type null.

24.9.1 Synopsis

interface NullType extends Type
{
}

24.10 The interface UndefinedType

file://localhost/Work/es4/spec/library.html 07/11/08 11:45:54

ECMAScript 4th Edition -- Predefined Types and Objects 146

1

The intrinsic interface Unde f inedType describes the type undefined.

24.10.1 Synopsis

interface UndefinedType extends Type

{
}

24.11 The interface UnionType

The intrinsic interface UnionType describes a union of other types. No object has a union type for its manifest type. Union
types are only used for annotating parameters or fields, and cannot be instantiated.

24.11.1 Synopsis

interface UnionType extends Type

function members(): Typelterator

}
24.11.2 Methods

24.11.2.1 members ()

Returns
The members method returns an iterator that iterates over the member types of the union.

24.12 The interface RecordType

The intrinsic interface RecordType describes a structural object type.

24.12.1 Synopsis

interface RecordType extends Type

function fields(): FieldIterator
function construct(valArgs: FieldValueIterator): Object

}
24.12.2 Methods

24.12.2.1 fields ()

Returns
The £ields method returns an iterator that iterates over the fields of the record type.

24.12.2.2 construct (valArgs)

Description
The construct method creates a new instance of the structural object type represented by this RecordType.

The iterator valArgs provides any field names and values required to initialize the object. All values will be consumed from
the iterator; the iterator may provide more field names and values than are required by the type. If the iterator does not
provide a value for a field required by the type, the field will be initialized to undefined cast to the type of the field; this may
cause a TypeError exception to be thrown at run-time.

ValArgs may not be null.

Returns
The construct method returns a new object of the type represented by this RecordType.

24.13 The interface ArrayType

The intrinsic interface ArrayType describes a structural array type.

24.13.1 Synopsis

file://localhost/Work/es4/spec/library.html 07/11/08 11:45:54

ECMAScript 4th Edition -- Predefined Types and Objects 147

interface ArrayType extends Type
function fields(): FieldIterator
function construct(length: uint, valArgs: FieldValueIterator): Object

}
24.13.2 Methods

24.13.2.1 fields ()
Returns

1 The fields method returns an iterator that iterates over the fields of the array type. The fields are iterated from low to high
indices, and only fields that are present are iterated. The name of the field provides the field index as the identifier.

24.13.2.2 construct (length, valArgs)

Description
1 The construct method creates a new instance of the structural array type represented by this ArrayType.

2 The value length provides the value for the length of the array; it is set after all fields have been initialized.

3 The iterator valArgs provides any field names and values required to initialize the object. All values will be consumed from
the iterator; the iterator may provide more field names and values than are required by the type. The field name must encode
the correct array index of the field in the identifier. If the iterator does not provide a value for a field required by the
type, the field will be initialized to undefined cast to the type of the field; this may cause a TypeError exception to be
thrown at run-time.

4 ValArgs may not be null.

Returns
5 The construct method returns a new object of the type represented by this ArrayType.

24.14 The interface FunctionType

1 The intrinsic interface FunctionType describes a structural function type. Function types cannot be instantiated.

24.14.1 Synopsis

interface FunctionType extends Type

{
function boundThis(): Type
function parameterTypes(): Typelterator
function defaultValues(): Valuelterator
function hasRestType(): boolean
function returnType(): Type

}

24.14.2 Methods

24.14.2.1 boundThis ()

Returns
1 The boundThis method returns a type if the function has a bound this value, otherwise it returns an AnyType object.

24.14.2.2 parameterTypes ()
Returns

1 The parameterTypes method returns an iterator that iterates over the types of the formal parameters of the function,
starting with the first argument and iterating in order, including all optional and rest arguments.

2 Arguments that do not have annotations will be revealed as type AnyType.
24.14.2.3 defaultValues ()
Returns

1 ThedefaultValues method returns an iterator that iterates over the default values of the optional arguments, starting
with the first default value and iterating in order.

file://localhost/Work/es4/spec/library.html 07/11/08 11:45:54

file://localhost/Work/es4/spec/library.html

ECMAScript 4th Edition -- Predefined Types and Objects

24.14.2.4 hasRestTypes()

Returns
The hasRestTypes method returns true if the function has a rest argument, false otherwise.

24.14.2.5 returnType ()

Returns
The returnType method returns the return type annotation for this function, or an AnyType object if there was no type
annotation.

24.15 Iterator types

The following iterator type definitions are used as annotations on parameters and methods in the interface hierarchy
described previously.

type FieldIterator = iterator::IteratorType.<Field>

type ClassTypelterator = iterator::IteratorType.<ClassType>
type NominalTypeIterator = iterator::IteratorType.<NominalType>
type Typelterator = iterator::IteratorType.<Type>

type FieldValuelterator = iterator::IteratorType.<FieldvValue>
type ValueIterator = iterator::IteratorType.<*>

25 Error classes
ECMAScript provides a hierarchy of standard pre-defined error classes rooted at the class Exrror (see).

The ECMAScript implementation throws a new instance of one of the pre-defined error classes when it detects certain run-
time errors. The conditions under which run-time errors are detected are explained throughout this Standard. The description
of each of the pre-defined error classes contains a summary of the conditions under which an instance of that particular error
class is thrown.

The class Error serves as the base class for all the classes describing standard errors thrown by the ECMAScript
implementation: EvalError, RangeError, ReferenceError, SyntaxError, TypeError, and URIError. (See
[class EvalError, [class RangeError], [class ReferenceErrot], [class SyntaxError], [class TypeErrot, [class URIError].)

The class Error as well as all its pre-defined subclasses are non-final and dynamic and may be subclassed by user-defined
exception classes.

All the pre-defined subclasses of Error share the same structure.

26 The class Error

The class Error is a dynamic, non-final subclass of Object. Instances of Exrror are not thrown by the implementation;
rather, Error is intended to serve as a base class for other error classes whose instances represent specific classes of run-
time errors.

26.1 Synopsis
The class Error provides the following interface:

dynamic class Error extends Object

{
public function Error(message) ..
static meta function invoke(message) ..
static public const length =1
override intrinsic function toString()
override helper function getClassName()
}

The Error prototype object provides these direct properties:
toString: function ()

name: Error
message:

26.2 Methods on the Error class

148

07/11/08 11:45:54

ECMAScript 4th Edition -- Predefined Types and Objects 149

26.2.1 new Error (message)

Description

1 When the Error constructor is called as part of a new Error expression it initialises the newly created object: If message
is not undefined, the dynamic message property of the newly constructed Error object is setto string (message).

Implementation

public function Error(message) {
if (message !== undefined)
this.message = string(message);

26.2.2 Error (message)

Description
1 When the Error class object is called as a function, it creates and initialises a new Error object by invoking the Error
constructor.

Returns
2 The Error class object called as a function returns a new Error object.

Implementation

static meta function invoke(message)
new Error (message);

26.3 Methods on Error instances

26.3.1 intrinsic:toString ()

Description
1 The intrinsic toString method converts the Error object to an implementation-defined string.

Returns
2 A string object.

Implementation

override intrinsic function toString()
private::toString();

3 The private function toString is implementation-defined.

26.3.2 helper:getClassName ()

Description
1 The helper method getClassName overrides the method defined in Object and makes the pre-defined subclasses of
Error appear to have the [[Class]] value "Error".

NOTE The helper method getClassName is a specification artifact. The protocol it defines for overriding [[Class]] is not available to
user code.

Returns
2 The helper method getClassName returns a string.

Implementation

override helper function getClassName() {

if (isExactlyType(this, EvalError) ||
isExactlyType(this, RangeError) ||
isExactlyType(this, ReferenceError) ||
isExactlyType(this, SyntaxError) ||
isExactlyType(this, TypeError) ||
isExactlyType(this, URIError))
return "Error";

return super.getClassName();

}

helper function isExactlyType(obj, cls)
let (objtype = reflect::typeOf(obj))
cls.reflect::isSubtypeOf (objtype) && objtype.reflect::isSubtypeOf(cls);

file://localhost/Work/es4/spec/library.html 07/11/08 11:45:54

ECMAScript 4th Edition -- Predefined Types and Objects

26.4 Methods on the Error prototype object

26.4.1 toString ()

Description
1 The prototype toString method calls the private toString method.

Returns
2 The prototype toString method returns a string object.

Implementation

public prototype function toString()
this.private::toString();

26.5 Value properties on the Error prototype object

26.5.1 name
1 The initial value of the name prototype property is the string "Error".
26.5.2 message

1 The initial value of the message prototype property is an implementation-defined string.

27 The class EvalError

150

1 The implementation throws a new EvalError instance when it detects that the global function eval was used in a way

that is incompatible with its definition. See sections XXX.
FIXME Clean up the section references when we reach final draft.
27.1 Synopsis
1 The EvalError class provides this interface:

dynamic class EvalError extends Error

public function EvalError (message) ..
static meta function invoke(message) ..

static public const length =1

}
2 The EvalError prototype object provides these direct properties:
name: "EvalError"
message: ..

27.2 Methods on the EvalError class

27.2.1 new EvalError (message)

Description

1 When the EvalError constructor is called as part of a new EvalError expression it initialises the newly created object

by delegating to the Exrror constructor.
Implementation

public function EvalError (message)
: super (message)
{

}

27.2.2 EvalError (message)

Description

file://localhost/Work/es4/spec/library.html

07/11/08 11:45:54

ECMAScript 4th Edition -- Predefined Types and Objects 151

1 When the EvalError class object is called as a function, it creates and initialises a new EvalError object by invoking
the EvalError constructor.

Returns
2 The EvalError class object called as a function returns a new EvalError object.

Implementation

static meta function invoke(message)
new EvalError (message);

27.3 Value properties on the EvalError prototype object

27.3.1 name

1 The initial value of the name prototype property is the string "EvalError".

27.3.2 message

1 The initial value of the message prototype property is an implementation-defined string.

28 The class RangeError

1 The implementation throws a new RangeError instance when it detects that a numeric value has exceeded the allowable
range. See sections XXX.

FIXME Clean up the section references when we reach final draft.

28.1 Synopsis
1 The RangeError class provides this interface:
dynamic class RangeError extends Error

public function RangeError (message) ..
static meta function invoke(message) ..

static public const length =1
}

2 The RangeError prototype object provides these direct properties:

name: "RangeError"
message: ..

28.2 Methods on the RangeError class

28.2.1 new RangeError (message)

Description
1 When the RangeError constructor is called as part of a new RangeError expression it initialises the newly created
object by delegating to the Error constructor.
Implementation
public function RangeError (message)
: super (message)
{

}

28.2.2 RangeError (message)

Description
1 When the RangeError class object is called as a function, it creates and initialises a new RangeError object by
invoking the RangeError constructor.

Returns
2 The RangeError class object called as a function returns a new RangeError object.

Implementation

file://localhost/Work/es4/spec/library.html 07/11/08 11:45:54

ECMAScript 4th Edition -- Predefined Types and Objects 152

static meta function invoke(message)
new RangeError (message);

28.3 Value properties on the RangeError prototype object

28.3.1 name

1 The initial value of the name prototype property is the string "RangeError".

28.3.2 message

1 The initial value of the message prototype property is an implementation-defined string.

29 The class ReferenceError

1 The implementation throws a new ReferenceError instance when it detects an invalid reference value. See sections
XXX.

FIXME Clean up the section references when we reach final draft.
29.1 Synopsis
dynamic class ReferenceError extends Error

public function ReferenceError (message) ..
static meta function invoke(message) ..

static public const length =1
}

1 The ReferenceError prototype object provides these direct properties:

name: "ReferenceError"
message: ..

29.2 Methods on the ReferenceError class

29.2.1 new ReferenceError (message)

Description
1 When the ReferenceError constructor is called as part of a new ReferenceError expression it initialises the
newly created object by delegating to the Error constructor.
Implementation
public function ReferenceError (message)
: super (message)
{

}
29.2.2 ReferenceError (message)
Description
1 When the ReferenceError class object is called as a function, it creates and initialises a new ReferenceError

object by invoking the ReferenceError constructor.

Returns
2 The ReferenceError class object called as a function returns a new ReferenceError object.

Implementation

static meta function invoke(message)
new ReferenceError (message);

29.3 Value properties on the ReferenceError prototype object

29.3.1 name

file://localhost/Work/es4/spec/library.html 07/11/08 11:45:54

ECMAScript 4th Edition -- Predefined Types and Objects 153

1

The initial value of the name prototype property is the string "ReferenceError".

29.3.2 message

The initial value of the message prototype property is an implementation-defined string.

30 The class SsyntaxError

The implementation throws a new SyntaxError instance when a parsing error has occurred. See sections XXX.
FIXME Clean up the section references when we reach final draft.

30.1 Synopsis

dynamic class SyntaxError extends Error

public function SyntaxError(message) ..
static meta function invoke(message) ..

static public const length =1
}

The SyntaxError prototype object provides these direct properties:

name: "SyntaxError"
message: ..

30.2 Methods on the syntaxError class

30.2.1 new SyntaxError (message)
Description
When the SyntaxError constructor is called as part of a new SyntaxError expression it initialises the newly created
object by delegating to the Error constructor.
Implementation
public function SyntaxError (message)
: super (message)
{
}
30.2.2 SyntaxError (message)
Description
When the SyntaxError class object is called as a function, it creates and initialises a new SyntaxError object by

invoking the SyntaxError constructor.

Returns
The SyntaxError class object called as a function returns a new SyntaxError object.

Implementation

static meta function invoke(message)
new SyntaxError(message);

30.3 Value properties on the syntaxError prototype object

30.3.1 name

The initial value of the name prototype property is the string "SyntaxError".
30.3.2 message

The initial value of the message prototype property is an implementation-defined string.

31 The class TypeError

file://localhost/Work/es4/spec/library.html 07/11/08 11:45:54

ECMAScript 4th Edition -- Predefined Types and Objects 154

1

The implementation throws a new TypeError instance when it has detected that the actual type of an operand is different
than the expected type. See sections XXX.

FIXME Clean up the section references when we reach final draft.

31.1 Synopsis
dynamic class TypeError extends Error

public function TypeError (message) ..
static meta function invoke(message) ..

static public const length =1

}

The TypeError prototype object provides these direct properties:
name: "TypeError"
message: ..

31.2 Methods on the TypeError class

31.2.1 new TypeError (message)

Description
When the TypeError constructor is called as part of a new TypeError expression it initialises the newly created object
by delegating to the Error constructor.

Implementation

public function TypeError (message)
: super (message)
{

}

31.2.2 TypeError (message)

Description

When the TypeError class object is called as a function, it creates and initialises a new TypeError object by invoking

the TypeError constructor.

Returns
The TypeError class object called as a function returns a new TypeError object.

Implementation

static meta function invoke(message)
new TypeError (message);

31.3 Value properties on the TypeError prototype object

31.3.1 name

The initial value of the name prototype property is the string "TypeError".

31.3.2 message

The initial value of the message prototype property is an implementation-defined string.

32 The class URIError

The implementation throws a new URIError when one of the global URI handling functions was used in a way that is
incompatible with its definition. See sections XXX.

FIXME Clean up the section references when we reach final draft.

32.1 Synopsis

dynamic class URIError extends Error

{

file://localhost/Work/es4/spec/library.html 07/11/08 11:45:54

ECMAScript 4th Edition -- Predefined Types and Objects

public function URIError (message) ..
static meta function invoke(message) ..

static public const length =1
}

1 The URIError prototype object provides these direct properties:

name: "URIError"
message: ..

32.2 Methods on the URIError class

32.2.1 new URIError (message)

Description

155

1 When the URIError constructor is called as part of a new URIError expression it initialises the newly created object by

delegating to the Error constructor.
Implementation
public function URIError (message)

: super (message)
{

}
32.2.2 URIError (message)

Description

1 When the URIError class object is called as a function, it creates and initialises a new URIError object by invoking the

URIError constructor.

Returns
2 The URIError class object called as a function returns a new URIError object.

Implementation

static meta function invoke(message)
new URIError (message);

32.3 Value properties on the URIError prototype object

32.3.1 name

1 The initial value of the name prototype property is the string "URIError".

32.3.2 message

1 The initial value of the message prototype property is an implementation-defined string.

file://localhost/Work/es4/spec/library.html

07/11/08 11:45:54

