
Text Comparison

Documents Compared
 core-language.pdf

 core-language.pdf

Summary
 6502 word(s) added
 6635 word(s) deleted
 11812 word(s) matched
 330 block(s) matched

patrick
Text Box
Ecma/TC39/2008/061

To see where the changes are, scroll down.

Page 1ECMAScript 4th Edition -- Core Language

16.05.2008 21:39:09file://localhost/C:/src/com.mozilla.es4.smlnj/spec/language.html

1 Values
The evaluation of a program, described in section ..., entails among its effects the calculation and manipulation of
values.

FIXME Draft 1 of the specification does not include a description of evaluation.

An ECMAScript value is either undefined, null, or an object. Every ECMAScript value has an associated
ECMAScript type, called the value's allocated type. The allocated type is fixed when the value is allocated in
memory, and cannot change over the lifetime of the value.

Semantics

datatype VALUE = Undefined
 | Null
 | Object of OBJ

COMPATIBILITY NOTE In the 3rd edition of the language, several individual types were defined. The three types formerly called primitive
(number, string, boolean) are now represented as object values. The term type has a different meaning in the 4th edition.

1.1 Undefined

There is exactly one undefined value, denoted by the semantic value Undefined and stored in the global constant
property public::undefined in ECMAScript.

NOTE The namespace public is predefined and is used for all global names that were also defined by the 3rd Edition Specification.

The allocated type of the undefined value is called the undefined type. The undefined value is the only value with
the undefined type as its allocated type. The undefined type is denoted by the semantic value UndefinedType,
which is the denoted in ECMAScript type-expression contexts by the identifier undefined.

COMPATIBILITY NOTE Inside of type-expression contexts, the token undefined is reserved and has a fixed meaning. Outside of type-
expression contexts the token is interpreted as in earlier editions.

1.2 Null

There is exactly one null value, denoted by the semantic value Null and by the null literal null in ECMAScript.

The allocated type of the null value is called the null type. The null value is the only value with the null type as its
allocated type. The null type is denoted by the semantic value NullType and denoted in ECMAScript type-
expression contexts by the null literal null.

NOTE While the null and undefined values have similar meanings, they have different conventions of use. The null value is intended to indicate a
missing object value, while the undefined value is intended to indicate a missing property on an existing object value. These indeded uses are
conventions, and are not enforced by the language semantics.

1.3 Object

All values except the null and undefined values are object values.

An object value consists of a mutable property binding map, an immutable object identifier, an immutable tag, and
an immutable prototype reference.

Semantics

and OBJ =
 Obj of { props: PROPERTY_BINDINGS,
 proto: VALUE,
 ident: OBJ_IDENTIFIER,
 tag: TAG
 }

1.3.1 Property Binding Map

1

2

3

1

2

1

2

1

2

3

core-language.pdf

1ECMAScript 4th Edition -- Core Language

07/11/08 16:28:33file://localhost/Work/es4/spec/language.html

1 Values
The evaluation of a program, described in section ..., entails among its effects the calculation and manipulation of values.

FIXME Draft 1 of the specification does not include a description of evaluation.

An ECMAScript value is either undefined, null, or an object. Every ECMAScript value has an associated ECMAScript type,
called the value's allocated type. The allocated type is fixed when the value is allocated in memory, and cannot change over
the lifetime of the value.

Semantics
datatype VALUE = ObjectValue of OBJECT
 | UndefinedValue
 | NullValue

COMPATIBILITY NOTE In the 3rd edition of the language, several individual types were defined. The three types formerly called primitive (number,
string, boolean) are now represented as object values. The term type has a different meaning in the 4th edition.

1.1 Object Values
An object value is any ECMAScript value that is not the null value or the undefined value.

An object value consists of a mutable property binding map, an immutable fixture map, an immutable object identifier, an
immutable tag, and an immutable prototype reference.

Semantics
and OBJECT =
 Object of { propertyMap: PROPERTY_MAP,
 fixtureMap: FIXTURE_MAP,
 ident: OBJECT_IDENTIFIER,
 tag: TAG,
 proto: VALUE }

1.1.1 Property Maps

A property map associates at most one property with any name. If an object's property map associates a property P with a
name N, then the object is said to have a binding for N. Alternatively, the property P is said to be bound to the name N, in the
object.

Bindings can be added, removed, or replaced within a property map. The semantic type of a property map is unspecified.

A property map stores the order in which properties are added to the map. A property's position in this order is unchanged
when the property is replaced. This order is used by property enumeration (see the chapter on Statements).

FIXME "Replacement" is not an adequate abstraction here; we wish to have an "update" operation. Replacement on the language level occurs when a
property is deleted by the delete operator (or an equivalent mechanism) and a new property with the same name is inserted; under this kind of replacement,
the property's position may change. With a "replacement" on the semantic level, that is to say an update, the property's position never changes.

Semantics
and PROPERTY_MAP = …

1.1.1.1 Properties

A property consists of a type, a state, and a set of attributes. The type of a property is also called the property's storage type,
to differentiate it from the allocated type of any value that the property may contain.

COMPATIBILITY NOTE In earlier editions of the language, some characteristics of an object were modeled as internal properties with distinct names
such as [[Class]] or [[Value]]. These characteristics of objects are described differently in the 4th edition, using a combination of
supporting semantic and ECMAScript standard library functionality.

Semantics
and PROPERTY = { ty: TYPE,
 state: PROPERTY_STATE,
 attrs: ATTRS }

FIXME The term storage type is not ideal because it also applies to the return value constraint on a function object; there is no "storage" in that context.
It's possible that annotated type would be a better term.

1

2

3

1

2

3

1

2

3

4

1

2

core-language.pdf

Page 2ECMAScript 4th Edition -- Core Language

16.05.2008 21:39:09file://localhost/C:/src/com.mozilla.es4.smlnj/spec/language.html

A property binding map associates at most one property with any name. If an object's property binding map
associates a property P with a name N, then the object is said to have a binding for N. Alternatively, the property P
is said to be bound to the name N, in the object.

Bindings can be added, removed, or replaced within a property binding map. The semantic type of a property
binding map is unspecified.

A property binding map stores the order in which properties are added to the map. A property's position in this
order is unchanged when the property is replaced. This order is used by property enumeration (see the chapter on
Statements).

Semantics

and PROPERTY_BINDINGS = …

1.3.1.1 Properties

A property consists of a type, a state, and a set of attributes. The type of a property is also called the property's
storage type, to differentiate it from the allocated type of any value that the property may contain.

COMPATIBILITY NOTE In earlier editions of the language, some characteristics of an object were modeled as internal properties with distinct
names such as[[Class]] or[[Value]]. These characteristics of objects are described differently in the 4th edition, using a
combination of supporting semantic and ECMAScript standard library functionality.

Semantics

and PROPERTY = { ty: TYPE,
 state: PROPERTY_STATE,
 attrs: ATTRS }

1.3.1.2 Property States

The state of a property encodes either a value associated with the property, or else one of a small number of
intermediate non-value conditions that a property can assume during evaluation.

When a property is created, it is allocated in a state that derives from its storage type.

A property with storage type * is allocated in the value state, with the undefined value.

A property with a storage type that has the null type as a subtype is allocated in the value state, with the null value.

Any other property is allocated in the uninitialized state, and must be initialized during the initialization phase of
object construction, before the object's first constructor begins evaluation.

If a property is in value state, then the allocated type of the value held in the property is a compatible subtype of the
storage type of the property.

Additional property states are defined for encoding non-value properties, such as types, type variables, and virtual
properties (defined by getter and setter functions).

Semantics

and PROPERTY_STATE = UninitProp
 | ValProp of VALUE
 | TypeProp
 | TypeVarProp
 | VirtualValProp of
 { getter: FUN_CLOSURE option,
 setter: FUN_CLOSURE option }

FIXME It is probably not necessary for the getter and setter to be "option", the missing part of the pair is always generated by the language
implementation.

1.3.1.3 Property Attributes

A property can have zero or more attributes from the following set:

Attribute Description

1

2

3

4

1

2

1

2

3

4

5

6

7

8

1

core-language.pdf

2ECMAScript 4th Edition -- Core Language

07/11/08 16:28:33file://localhost/Work/es4/spec/language.html

1.1.1.2 Property States

The state of a property encodes either a value associated with the property, or else a pair of functions that describe a "virtual"
value.

If a property is in the value state, reading the property returns the value and writing the property updates the value.

If a property is in the virtual value state, reading the property executes the associated "getter" function, and writing the
property executes the associated "setter" function.

Semantics
and PROPERTY_STATE = ValueProperty of VALUE
 | VirtualProperty of
 { getter: CLOSURE option,
 setter: CLOSURE option }

FIXME It is probably not necessary for the getter and setter to be "option", the missing part of the pair is always generated by the language
implementation.

1.1.1.3 Property Attributes

The attributes of a property govern its behavior in various operations. There are 4 attributes on every property:

Attribute Description

writable

An attribute that can be one of three values. When the value
is Writable, the property can be written to an arbitrary
number of times. When the value is WriteOnce, the
property can be written to once, after which the attribute
assumes the value ReadOnly. When the value is
ReadOnly, attempts to write to the property after
initialization will fail.

enumerable
A boolean attribute. If true, then the property is to be
enumerated by for-in and for-each-in enumeration. If
false, the property is ignored by such enumeration.

removable
A boolean attribute. If true, then the property can be
removed using the delete operator. If false, the delete
operator fails.

fixed

A boolean attribute. If true, then the property was defined
as a fixture in the object's fixture map and dominates most
non-fixed properties during name resolution. If false, then
the property is a dynamic addition to the object and is
usually consulted after fixed properties during name
resolution.

The fixed attribute is mutually exclusive with the removable attribute.

If a property is not Writable it is also not removable.

If a property is fixed it is not enumerable.

Semantics
datatype WRITABILITY = ReadOnly | WriteOnce | Writable

type ATTRS = { removable: BOOLEAN,
 enumerable: BOOLEAN,
 fixed: BOOLEAN,
 writable: WRITABILITY }

1

2

3

4

1

2

3

4

5

6

core-language.pdf

Page 3ECMAScript 4th Edition -- Core Language

16.05.2008 21:39:09file://localhost/C:/src/com.mozilla.es4.smlnj/spec/language.html

writable

An attribute that can be one of three values. When the
value is Writable, the property can be written to an
arbitrary number of times. When the value is
WriteOnce, the property can be written to once,
after which the attribute assumes the value
ReadOnly. When the value is ReadOnly, attempts
to write to the property after initialization will fail.

enumerable

A boolean attribute. If true, then the property is to be
enumerated by for-in and for-each-in enumeration.
Otherwise the property is ignored by such
enumeration.

removable
A boolean attribute. If true, then the property can be
removed using the delete operator. If false, the delete
operator fails.

fixed

A boolean attribute. If true, then the property was
defined as part of the object's fixed structure and
dominates most non-fixed properties during name
resolution. If false, then the property is a dynamic
addition to the object and is usually consulted after
fixed properties during name resolution.

The fixed attribute is mutually exclusive with the removable attribute.

If a property is not Writable it is also not removable.

If a property is fixed it is not enumerable.

Semantics

datatype WRITABILITY = ReadOnly | WriteOnce | Writable

type ATTRS = { removable: bool,
 enumerable: bool,
 fixed: bool,
 writable: WRITABILITY }

1.3.2 Object Prototype

The prototype of an object is a means of dynamically delegating behavior from one object to another. In various
conditions, the language defines the evaluation of an unsuccessful property access on an object in terms of
subsequent property accesses on the object's prototype.

1.3.3 Object Identifier

The identifier of an object uniquely identifies the object. The semantic type of an object identifier is unspecified,
and its value cannot be directly observed by ECMAScript code. Equality of objects is partially defined in terms of
equality of the objects' identifiers, so all identifiers must be comparable with one another for equality.

Semantics

and OBJ_IDENTIFIER = …

1.3.4 Object Tag

The tag of an object encodes both the object's ECMAScript type, and any underlying semantic value associated
with the object.

2

3

4

5

6

1

1

2

1

core-language.pdf

3ECMAScript 4th Edition -- Core Language

07/11/08 16:28:33file://localhost/Work/es4/spec/language.html

1.1.1.4 Names

A name consists of a namespace and an identifier.

A name may identify a property binding within a property map.

Semantics
type NAME = { ns: NAMESPACE, id: IDENTIFIER }

1.1.1.4.1 Identifiers

An identifier is a string.

Semantics
type IDENTIFIER = STRING

1.1.1.4.2 Namespaces

A namespace is a semantic value that can be either transparent or opaque.

A transparent namespace consists of a character string that identifies the namespace.

An opaque namespace consists of a unique namespace identifier of unspecified representation.

Semantics
datatype NAMESPACE =
 TransparentNamespace of STRING
 | OpaqueNamespace of OPAQUE_NAMESPACE_IDENTIFIER

type OPAQUE_NAMESPACE_IDENTIFIER = …

Special namespaces

Two important namespaces are used throughout the following sections.

The public namespace is the transparent namespace whose identifying string is the empty string, "".

The 4th Edition namespace is the transparent namespace whose identifying string is the string __ES4__.

All global property names defined subsequently in this specification are written in one of two forms:

Qualified, using the ECMAScript qualitied name expression notation namespace::identifier
Unqualified, using the notation of a bare identifier, implicitly qualified by the 4th Edition namespace

The public namespace is bound to the name public.

More information on special namespaces is given in section ...Names, Special namespaces.

1.1.2 Object Prototype

The prototype of an object is a means of dynamically delegating behavior from one object to another. In various conditions,
the result of an unsuccessful property access on an object is defined in terms of subsequent property accesses on the object's
prototype.

The value of the prototype can be the null value or an object value.

1.1.3 Object Identifier

The identifier of an object uniquely identifies the object. The semantic type of an object identifier is unspecified, and its value
cannot be directly observed by ECMAScript code. Equality of objects is partially defined in terms of equality of the objects'
identifiers, so all identifiers must be comparable with one another for equality.

Semantics
and OBJECT_IDENTIFIER = …

1.1.4 Object Tag

1

2

3

1

2

1

2

3

4

5

6

7

8

9

10

1

2

1

2

core-language.pdf

Page 4ECMAScript 4th Edition -- Core Language

16.05.2008 21:39:09file://localhost/C:/src/com.mozilla.es4.smlnj/spec/language.html

The ObjectTag and ArrayTag tags are present on objects of structural types ObjectType and
ArrayType, respectively.

The PrimitiveTag tag is present on objects that are instances of a small number of classes, described in the
following section.

The InstanceTag tag is present on any object that is an instance of a class but does not have an ObjectTag,
ArrayTag or PrimitiveTag tag.

The NoTag tag is present only on un-named objects that implement scopes.

Semantics

and TAG =
 ObjectTag of FIELD_TYPE list
 | ArrayTag of (TYPE list * TYPE option)
 | PrimitiveTag of PRIMITIVE
 | InstanceTag of CLASS
 | NoTag

1.3.4.1 Primitive Tag

Some objects have additional an semantic value associated with them. Such objects are called primitive objects and
have a primitive tag. The semantic value is held in the tag, and is only directly accessible in semantic code.

ECMAScript code can determine if an object is primitive through a correspondence between primitive tags and a
set of 10 specific ECMAScript class types. The correspondence is a bijection: any instance of these types has the
corresponding primitive tag, and any object with a primitive tag is an instance of the corresponding class.

The allocated type of a primitive object may be more specific than the corresponding class type. In particular,
function objects may have more specific subtypes of the class public::Function. In such cases, the allocated type
of the object is present in the semantic value held by the primitive tag.

The correspondence between primitive tags and classes is the following:

The primitive tag Boolean corresponds to the class __ES4__::boolean.
The primitive tag Double corresponds to the class __ES4__::double.
The primitive tag Decimal corresponds to the class __ES4__::decimal.
The primitive tag String corresponds to the class __ES4__::string.
The primitive tag Namespace corresponds to the class __ES4__::Namespace.
The primitive tag Class corresponds to the class __ES4__::Class.
The primitive tag Interface corresponds to the class __ES4__::Interface.
The primitive tag Function corresponds to the class public::Function.
The primitive tag Type corresponds to the class __ES4__::Type.
The primitive tag Generator corresponds to the class helper::GeneratorImpl.

Semantics

and PRIMITIVE =
 BooleanPrimitive of bool
 | DoublePrimitive of Real64.real
 | DecimalPrimitive of Decimal.DEC
 | StringPrimitive of Ustring.STRING
 | NamespacePrimitive of NAMESPACE
 | ClassPrimitive of CLASS
 | InterfacePrimitive of INTERFACE
 | FunctionPrimitive of FUN_CLOSURE
 | TypePrimitive of TYPE
 | GeneratorPrimitive of GEN

NOTE The typeReal64.real represents IEEE 64 bit binary floating point values. The typeDecimal.DEC represents IEEE 128 bit
decimal floating point numbers. The typeUstring.STRING represents Unicode strings. The typebool represents boolean values.

2

3

4

5

6

1

2

3

4

5

core-language.pdf

4ECMAScript 4th Edition -- Core Language

07/11/08 16:28:33file://localhost/Work/es4/spec/language.html

The tag of an object encodes both the object's allocated type, and any underlying semantic value associated with the object.

The RecordTag tag is present on an object of with the structural type RecordType as its allocated type.

The ArrayTag tag is present on an object of with the structural type ArrayType as its allocated type.

The PrimitiveTag tag is present on objects that are instances of a small number of classes, described in the following
section.

The InstanceTag tag is present on any object that is an instance of a class but does not have an RecordTag,
ArrayTag or PrimitiveTag tag.

The NoTag tag is present only on un-named objects that implement scopes.

Semantics
and TAG =
 RecordTag of FIELD_TYPE list
 | ArrayTag of (TYPE list * TYPE option)
 | PrimitiveTag of PRIMITIVE
 | InstanceTag of CLASS
 | NoTag

1.1.4.1 Primitive Tag

In addition to an allocated type, some objects have an extra semantic value stored in their tag. Such objects are called
primitive objects and have a primitive tag containing the semantic value. The extra semantic value is only directly accessible
in semantic code.

ECMAScript code can determine if an object is primitive through a correspondence between primitive tags and a set of 9
specific ECMAScript types. The correspondence is a bijection: any instance of these types has the corresponding primitive
tag, and any object with a primitive tag is an value of the corresponding type.

The allocated type of a primitive object may be a subtype of the corresponding type listed here. In particular, function objects
may have more specific subtypes of the class public::Function, and class and interface objects are both subtypes of the
interface helper::Type. In such cases, the allocated type of the object is described by the semantic value held by the
primitive tag.

The correspondence between primitive tags and object types is the following:

The primitive tag BooleanPrimitive corresponds to the class boolean.
The primitive tag DoublePrimitive corresponds to the class double.
The primitive tag DecimalPrimitive corresponds to the class decimal.
The primitive tag StringPrimitive corresponds to the class string.
The primitive tag NamespacePrimitive corresponds to the classNamespace.
The primitive tag FunctionPrimitive corresponds to the class public::Function.
The primitive tag TypePrimitive corresponds to the class helper::Type.
The primitive tag GeneratorPrimitive corresponds to the class helper::GeneratorImpl.
The primitive tag ArgumentsPrimitive corresponds to the class helper::Arguments.

Semantics
and PRIMITIVE =
 BooleanPrimitive of BOOLEAN
 | DoublePrimitive of IEEE_754_BINARY_64_BIT
 | DecimalPrimitive of IEEE_754R_DECIMAL_128_BIT
 | StringPrimitive of STRING
 | NamespacePrimitive of NAMESPACE
 | FunctionPrimitive of CLOSURE
 | TypePrimitive of TYPE
 | ArgumentsPrimitive of SCOPE
 | GeneratorPrimitive of GENERATOR

1.1.5 Fixture Map

A fixture map is a structure that describes, but does not contain, a set of fixed property bindings. These descriptions of fixed
properties are called fixtures. The properties described by an object's fixture map are lazily instantiated as fixed property
bindings on the object. Any attempt to access a property binding described by a fixture in an object's fixture map, but not
present in the object's property map, causes the property to be added to the property map.

1

2

3

4

5

6

7

1

2

3

4

5

1

core-language.pdf

Page 5ECMAScript 4th Edition -- Core Language

16.05.2008 21:39:09file://localhost/C:/src/com.mozilla.es4.smlnj/spec/language.html

1.4 Semantic Values

Many aspects of the language depend on the semantic values associated with primitive objects. The following
sections describe the semantic values and the correspondences that exist between particular semantic values and
the ECMAScript values they are held by.

1.4.1 Special Constructors

While much of the behavior of primitive objects is defined inside the ECMAScript language (in the
section ...library), the means of constructing primitive objects and associating semantic values with them is (at least
partially) defined outside the ECMAScript language, in semantic code.

Therefore the construction of any primitive object is described by a special constructor defined in semantic code,
rather than a standard constructor that would otherwise be defined in standard library code. The behavior of each
special constructor is described in the following sections.

1.4.2 Boolean Values

A boolean value is either of two semantic values called true and false. These correspond to the ES4 boolean
literal values true and false, which denote the two sole instances of the class __ES4__::boolean. Such objects are
called boolean objects.

NOTE The namespace __ES4__ is predefined. It is used to tag global names that have been introduced in the 4th Edition.

No instances of the class __ES4__::boolean can be constructed aside from the two values true and false: the __
ES4__::boolean constructor is a special constructor that always evaluates to one of the two boolean objects.

1.4.3 Double Values

FIXME I cut this section down significantly from ES3, since the corresponding section 8.5 in the old standard mostly consisted of a very weird sort
of selective paraphrasing of bits of 754 itself: restatements of algorithms that are perfectly well described in 754, or of facts such as the definition of
the denormalized numbers that never even get used in the subsequent spec. I assume anyone reading this section and caring about 754 doubles
actually has the 754 spec and can read it. Spelling out the whole 754 spec title in this section likewise seems redundant, since that's the point of the
normative references section at the beginning of the document.

A double value is a double precision, 64-bit format binary floating point value, as specified in the IEEE 754
standard.

A double value can be held in the primitive tag of an instance of the class __ES4__::double. Such objects are
called double objects.

Two special double values are held in special double objects: one "Not-a-Number" (NaN) value, stored in the
global constant public::NaN, and one "infinite" value, stored in the global constant public::Infinity.

FIXME There are also NaN and Infinity properties (as well as others) on theNumber object; those are all double values. ES4 will have NaN and
Infinity properties on thedecimal object, and probably on thedouble object for the sake of consistency.

ECMAScript provides no way of distinguishing any of the different IEEE 754 NaN values from one another. All
NaN values in are considered unequal to themselves, and to every other value.

In this specification, the phrase "the number value of x" where x represents an exact nonzero real mathematical
quantity means a number chosen according to the IEEE 754 rounding mode "rounds to nearest".

FIXME That does not take into account decimal.

Some ECMAScript operators deal only with integers in the range -231 through 231-1, inclusive, or in the range 0
through 232-1 inclusive. These operators accept any double or decimal value but first convert each such value to
one of 232 integer values. See descriptions of the ToInt32 and ToUint32 operators in sections ...

1.4.4 Decimal Values

A decimal value is a 128-bit format decimal floating point value, as specified in the draft IEEE 754r standard.

A decimal value can be held in the primitive tag of an instance of the class __ES4__::decimal. Such objects are
called decimal objects.

1

1

2

1

2

1

2

3

4

5

6

1

2

core-language.pdf

5ECMAScript 4th Edition -- Core Language

07/11/08 16:28:33file://localhost/Work/es4/spec/language.html

All instances of a class share a single fixture map.

1.2 Undefined Value
The undefined value is a unique constant denoted by the semantic value UndefinedValue and stored in the global
constant property public::undefined in ECMAScript.

The undefined type is the allocated type of the undefined value. The undefined value is the only value with the undefined type
as its allocated type. The undefined type is denoted by the semantic value UndefinedType, which is denoted in
ECMAScript type-expression contexts by the identifier undefined.

COMPATIBILITY NOTE Inside of type-expression contexts, the token undefined is reserved and has a fixed meaning. Outside of type-expression
contexts the token is interpreted as in earlier editions.

1.3 Null Value
The null value is a unique constant denoted by the semantic value NullValue and by the null literal null in ECMAScript.

The null type is the allocated type of the null value. The null value is the only value with the null type as its allocated type.
The null type is denoted by the semantic value NullType and denoted in ECMAScript type-expression contexts by the null
literal null.

NOTE While the null and undefined values have similar meanings, they have different conventions of use. The null value is intended to indicate a missing
object value, while the undefined value is intended to indicate a missing property on an existing object value or an uninitialized property or variable. These
intended uses are conventions, and are not enforced by the language semantics.

1.4 Semantic Values
Many aspects of the language depend on the semantic values associated with primitive objects. The following sections
describe the semantic values and the correspondences that exist between particular semantic values and the ECMAScript
values they are held by.

1.4.1 Special Constructors

While much of the behavior of primitive objects is defined inside the ECMAScript language (in the section ...library), the
means of constructing primitive objects and associating semantic values with them is (at least partially) defined outside the
ECMAScript language, in semantic code and specification prose.

Therefore the construction of any primitive object is described by a special constructor defined in semantic code and
specification prose, rather than a standard constructor that would otherwise be defined in standard library code. The
specifications of any such special constructors are given in the following sections, accompanying the specifications of the
semantic values.

1.4.2 Boolean Values

A boolean value is one of two semantic values called true and false. These correspond to the ES4 boolean literal values
true and false, which denote the two sole instances of the class boolean. Such objects are called boolean objects.

No instances of the class boolean can be constructed aside from the two values true and false: the boolean constructor is a
special constructor that always evaluates to one of the two boolean objects.

1.4.3 Double Values
FIXME I cut this section down significantly from ES3, since the corresponding section 8.5 in the old standard mostly consisted of a very weird sort of
selective paraphrasing of bits of 754 itself: restatements of algorithms that are perfectly well described in 754, or of facts such as the definition of the
denormalized numbers that never even get used in the subsequent spec. I assume anyone reading this section and caring about 754 doubles actually has the
754 spec and can read it. Spelling out the whole 754 spec title in this section likewise seems redundant, since that's the point of the normative references
section at the beginning of the document.

FIXME Waldemar objects to that paring down, pointing out that the purpose of the selective paraphrasing was to include a specific subset of IEEE 754
arithmetic into ES3. For example, signalling NaNs are not part of that subset, and there are (supposedly) competing round-to-nearest algorithms, of which
one needed to be selected. So it's possible that the real fix here is to be explicit as to why a subset of IEEE 754 arithmetic is described in the ECMAScript
Specification.

A double value is a double precision, 64-bit format binary floating point value, as specified in the IEEE 754 standard.

A double value can be held in the primitive tag of an instance of the class double. Instances of double are called double
objects.

Two special double values are held in special double objects: one "Not-a-Number" (NaN) value, stored in the global constant
public::NaN, and one "infinite" value, stored in the global constant public::Infinity.

2

1

2

1

2

1

1

2

1

2

1

2

3

core-language.pdf

Page 6ECMAScript 4th Edition -- Core Language

16.05.2008 21:39:09file://localhost/C:/src/com.mozilla.es4.smlnj/spec/language.html

Some ECMAScript operators convert double values to decimal values when either operand to the operator is a
decimal value. This conversion can be lossy.

FIXME More information will appear here.

1.4.5 String Values

A string value is a finite ordered sequence of zero or more 32 bit unsigned integer values ("elements"). String
values are generally used to represent textual data, in which case each element in the string is treated as a code
point value (see section ...). ES3 required code points to be 16 bit unsigned integer values; ES4 will likely allow
code points to be either 16 bits or 32 bits.

FIXME This section must accomodate implementations that wish to stick with 16-bit code points, as ES3 requires.

A string value can be held in the primitive tag of an instance of the class __ES4__::string. Such objects are called
string objects.

Each element of a string is regarded as occupying a position within the sequence. These positions are indexed with
nonnegative integers. The first element (if any) is at position 0, the next element (if any) is at position 1, and so on.
The length of a string is the number of elements (32-bit values) within it. The empty string has length zero and
therefore contains no elements.

All operations on string (except as otherwise stated) treat them as sequences of undifferentiated 32-bit unsigned
integers. In particular, operations on strings do not ensure the resulting string is in normalised form, they do not
ensure language-sensitive results, and they do not alter their behavior when dealing with 32-bit values outside the
legal range of UTF-32 code points.

NOTE The rationale behind these decisions was to keep the implementation of strings as simple and high-performing as possible. The intent is that
textual data coming into the execution environment from outside (e.g., user input, text read from a file or received over the network, etc.) be converted
to Unicode Normalised Form C before the running program sees it. Usually this would occur at the same time incoming text is converted from its
original character encoding to Unicode (and would impose no additional overhead). Since it is recommended that ECMAScript source code be in
Normalised Form C, string literals are guaranteed to be normalised (if source text is guaranteed to be normalised), as long as they do not contain any
Unicode escape sequences.

FIXME The previous paragraphs regarding string values are adapted from ES3, but personally I think they are very awkward-reading, and would
like to rewrite them a bit.

String literals evaluate to string objects.

The equality of string objects -- in both the == and === sense -- is defined as the equality of the underlying string
values. This in turn is established by the identities of the string elements, considered pairwise and in sequence.
Inequalities and relational operations of strings are similarly defined in terms of sequence comparisons on string
elements. No other forms of textual equality or collation are defined.

1.4.6 Namespace Values

Namespaces are defined and discussed in section ...names. Their notable features are recounted here.

FIXME We should probably define them here and reference this section from the Names chapter.

A namespace value is either transparent or opaque. A transparent namespace has an associated identifying string
value. An opaque namespace has an associated unique identifier of unspecified representation.

A namespace value can be held in the primitive tag of an instance of the class __ES4__::Namespace. Such objects
are called namespace objects.

A namespace value can be defined as a fixture in a global or class static scope using a namespace definition.

Any two transparent namespaces with equal identifying strings are equal. Any two opaque namespaces with equal
identifiers are equal.

Semantics

type OPAQUE_NAMESPACE_IDENTIFIER = …

datatype NAMESPACE =
 TransparentNamespace of Ustring.STRING
 | OpaqueNamespace of OPAQUE_NAMESPACE_IDENTIFIER

3

1

2

3

4

5

6

1

2

3

4

5

6

core-language.pdf

6ECMAScript 4th Edition -- Core Language

07/11/08 16:28:33file://localhost/Work/es4/spec/language.html

FIXME There are also NaN and Infinity properties (as well as others) on the Number object; those are all double values. ES4 will have NaN and
Infinity properties on the decimal object, and probably on the double object for the sake of consistency.

ECMAScript provides no way of distinguishing any of the different IEEE 754 NaN values from one another. All NaN
values are considered unequal to themselves, and to every other value.

In this specification, the phrase "the number value of x" where x represents an exact nonzero real mathematical quantity
means a number chosen according to the IEEE 754 rounding mode "rounds to nearest".

FIXME That does not take into account decimal.

Some ECMAScript operators deal only with integers in the range -231 through 231-1, inclusive, or in the range 0 through 232-
1 inclusive. These operators accept any double or decimal value but first convert each such value to one of 232 integer values.
See descriptions of the ToInt32 and ToUint32 operators in sections ...

1.4.4 Decimal Values

A decimal value is a 128-bit format decimal floating point value, as specified in the IEEE 754r standard.

A decimal value can be held in the primitive tag of an instance of the class decimal. Such objects are called decimal objects.

Some ECMAScript operators convert double values to decimal values when either operand to the operator is a decimal
value. This conversion can be lossy.

FIXME More information will appear here.

1.4.5 String Values

A string value is a finite ordered sequence of zero or more unsigned integer values ("elements"). The elements of a string
must be either 16 or 32 bits wide. An implementation of ECMAScript may provide elements of either size, but all strings in
a single implementation must consist of elements of the same size.

String values are generally used to represent textual data, in which case each element in the string is treated as a code point
value (see section ...).

A string value can be held in the primitive tag of an instance of the class string. Such objects are called string objects.

Each element of a string is regarded as occupying a position within the sequence. These positions are indexed with
nonnegative integers. The first element (if any) is at position 0, the next element (if any) is at position 1, and so on. The
length of a string is the number of elements (16 or 32-bit values) within it. The empty string has length zero and therefore
contains no elements.

All operations on string (except as otherwise stated) treat them as sequences of undifferentiated 16 or 32-bit unsigned
integers. In particular, operations on strings do not ensure the resulting string is in normalised form, they do not ensure
language-sensitive results, and they do not alter their behavior when dealing with 16 or 32-bit values outside the legal range
of UTF-16 or UTF-32 code points, respectively.

NOTE The rationale behind these decisions was to keep the implementation of strings as simple and high-performing as possible. The intent is that
textual data coming into the execution environment from outside (e.g., user input, text read from a file or received over the network, etc.) be converted to
Unicode Normalised Form C before the running program sees it. Usually this would occur at the same time incoming text is converted from its original
character encoding to Unicode (and would impose no additional overhead). Since it is recommended that ECMAScript source code be in Normalised Form
C, string literals are guaranteed to be normalised (if source text is guaranteed to be normalised), as long as they do not contain any Unicode escape
sequences.

FIXME The previous paragraphs regarding string values are adapted from ES3, but personally I think they are very awkward-reading, and would like to
rewrite them a bit.

String literals evaluate to string objects.

The equality of string objects -- in both the == and === sense -- is defined as the equality of the underlying string values.
This in turn is established by the identities of the string elements, considered pairwise and in sequence. Inequalities and
relational operations of strings are similarly defined in terms of sequence comparisons on string elements. No other forms of
textual equality or collation are defined.

1.4.6 Namespace Values

Namespaces are defined in section ...namespaces.

A namespace can be held in the primitive tag of an instance of the classNamespace. Such objects are called namespace
objects.

A namespace is defined as a fixture in a global or class static scope by a namespace definition.

4

5

6

1

2

3

1

2

3

4

5

6

7

1

2

3

core-language.pdf

Page 7ECMAScript 4th Edition -- Core Language

16.05.2008 21:39:09file://localhost/C:/src/com.mozilla.es4.smlnj/spec/language.html

1.4.7 Class Values

A class value consists of a name and a set of namespaces, fixtures and types.

A class value can be held in the primitive tag of an instance of the class __ES4__::Class. Such objects are called
class objects.

A class value can be defined as a fixture in the global scope using a class definition.

Each class definition corresponds to zero or more class values, and thus zero or more class objects. If a class
definition is not type-parametric, it corresponds to exactly one class object, and that class object is called the value
of the class definition.

A class value holds class fixtures and instance fixtures. If C is a class object, then the class fixtures of the associated
class value describe fixed properties found on the class object C. In this way, the class fixtures effectively describe
an implicit anonymous subtype of __ES4__::Class that the class object C is an instance of.

FIXME __ES4__::Class is obsolete, probably. It still exists but we have proper metaobjects for this sort of thing.

FIXME This tying-knots stuff at the top of the type hierarchy is always a little subtle and hard to word. Suggestions welcome.

Class values can be instantiated to produce new objects. Instantiation is described in section....

Semantics

and CLASS =
 Class of
 { name: NAME,
 privateNS: NAMESPACE,
 protectedNS: NAMESPACE,
 parentProtectedNSs: NAMESPACE list,
 typeParams: IDENTIFIER list,
 nonnullable: bool,
 dynamic: bool,
 extends: TYPE option,
 implements: TYPE list,
 classRib: RIB,
 instanceRib: RIB,
 instanceInits: HEAD,
 constructor: CTOR option,
 classType: TYPE }

NOTE ARIB datum is a map from property names to fixtures: types, names, and fixture properties.

1.4.7.1 Instance Fixtures

In addition to class fixtures, a class value holds instance fixtures. These describe the fixed properties found on
instances of the class.

An object is an instance of a class value C if the object's tag is InstanceTag and the class type in the tag is
ClassType C.

If an object X is an instance of a class value C, then for every instance fixture F in C, a property P exists on X
satisfying the following conditions:

P is not removable.
P is not enumerable.
P is fixed.
If F is declared as const then the writable attribute of P is initially WriteOnce. Otherwise the
attribute is initially Writable.
The type of F is the type of P.

1.4.7.2 Class Types and Class-Instance Types

A class corresponds to a pair of types: an instance class type and a static class type.

1

2

3

4

5

6

7

1

2

3

1

core-language.pdf

7ECMAScript 4th Edition -- Core Language

07/11/08 16:28:33file://localhost/Work/es4/spec/language.html

1.4.7 Type Values

A type value is a description of a set of values. Types are described in chapter ...types.

A type value can be held in the tag of an object, in a primitive tag TypePrimitive. An object of such a primitive type tag
is called a type object.

Two sorts of type values are of particular significance: class values and interface values.

1.4.7.1 Class Values

A class value consists of a name and a set of namespaces, fixture maps, types and flags governing the behavior of various
objects.

A class value can be held in a ClassType value, which can be held in the tag of a type object. An object carrying a
primitive type tag of class type is called a class object.

A class value is defined as a fixture in the global scope by a class definition.

Each class definition corresponds to zero or more class values, and thus zero or more class objects. If a class definition is not
type-parametric, it corresponds to exactly one class object, and that class object is called the value of the class definition.

A class value holds class fixtures and instance fixtures. If C is a class object, then the class fixture map of the associated class
value describes the fixed properties found on the class object C, and the instance fixture map describes the fixed properties
found on objects that are instances of the class value held in C.

If a class definition is type-parametric, each unique application of a set of type arguments produces a new class object with
its own property map and unique copy of the class fixture map, specialized to the type arguments provided.

Class values can be instantiated to produce new objects. Instantiation is described in section....

Semantics
and CLASS =
 Class of
 { name: NAME,
 privateNS: NAMESPACE,
 protectedNS: NAMESPACE,
 parentProtectedNSs: NAMESPACE list,
 typeParams: IDENTIFIER list,
 nonnullable: BOOLEAN,
 dynamic: BOOLEAN,
 extends: TYPE option,
 implements: TYPE list,
 classFixtureMap: FIXTURE_MAP,
 instanceFixtureMap: FIXTURE_MAP,
 instanceInits: HEAD,
 constructor: CTOR option }

1.4.7.2 Instance Types and Class Types

A class corresponds to a pair of types: an instance class type and a static class type.

The instance type of a class value C is InstanceType C, denoted in a type expression by the name of C itself, and is the
allocated type of any instance of C. The tag of any instance of C is InstanceTag C.

The class type of a class value C is the allocated type of the class object holding C. The tag of such an object is
PrimitiveTag (TypePrimitive (ClassType C)). The allocated type of such an object is ClassType C,
which is defined as a subtype of the InstanceType helper::ClassTypeImpl. The class fixtures in the class C are defined
as instance fixtures on the class object holding C.

1.4.7.3 Interface Values

An interface value consists of a name and a set of fixtures and types.

An interface value can be held in an InterfaceType value, which can be held in the tag of a type object. An object
carrying a primitive type tag of interface type is called an interface object.

An interface value is defined as a fixture in the global scope by an interface definition.

Each interface definition corresponds to zero or more interface objects. If an interface definition is not type-parametric, it
corresponds to exactly one interface object, and that interface object is called the value of the interface definition.

1

2

3

1

2

3

4

5

6

7

8

1

2

3

1

2

3

4

core-language.pdf

Page 8ECMAScript 4th Edition -- Core Language

16.05.2008 21:39:09file://localhost/C:/src/com.mozilla.es4.smlnj/spec/language.html

The instance class type of a class value C is ClassType C, denoted in a type expression by the name of C itself,
and is the allocated type of any instance of C. The tag of any instance of C is InstanceTag C.

The static class type of a class value C is the allocated type of the class object holding C. In such an object, the
static class type is stored in a field within C, and is an anonymous subtype of the ClassType of __ES4__::Class.
The tag of such an object is PrimitiveTag (Class C).

1.4.8 Interface Values

An interface value consists of a name and a set of fixtures and types.

An interface closure value can be held in the primitive tag of an instance of the class __ES4__::Interface. Such
objects are called interface objects.

FIXME __ES4__::Interface is obsolete, probably. It still exists but we have proper metaobjects for this sort of thing.

An interface value can be defined as a fixture in the global scope using an interface definition.

Each interface definition corresponds to zero or more interface objects. If an interface definition is not type-
parametric, it corresponds to exactly one interface object, and that interface object is called the value of the
interface definition.

An interface value contains declarations of instance fixtures, but no definitions.

Interfaces are implemented by classes, and any class implementing an interface must define, for each instance
fixture declared in the interface, an instance fixture with the same name and type of the instance fixture.

An interface value I also defines a type InterfaceType I. If a class C implements interface I, the type
ClassType C is a subtype of InterfaceType I.

Semantics

and INTERFACE =
 Interface of
 { name: NAME,
 typeParams: IDENTIFIER list,
 nonnullable: bool,
 extends: TYPE list,
 instanceRib: RIB }

1.4.9 Function Closures

A function closure value consists of a captured scope chain, an optional captured this object, and a function
value.

A function closure value can be held in the primitive tag of an instance of the class __ES4__::Function. Such
objects are called function objects.

A function closure value can be defined as a fixture in a scope using a function definition.

Each function definition corresponds to zero of more function objects.

A function expression may also evaluate to a function object.

A function value contains set of parameter fixtures and a block of ECMAScript code.

Function closure values can be invoked to evaluate the ECMAScript code stored in the block of the closure's
associated function value. Invocation is described in section....

FIXME Function definitions can be type-parametric; needs to be described.

Semantics

withtype FUN_CLOSURE =
 { func: FUNC,
 this: OBJ option,
 env: SCOPE }

2

3

1

2

3

4

5

6

7

8

1

2

3

4

5

6

7

8

core-language.pdf

8ECMAScript 4th Edition -- Core Language

07/11/08 16:28:33file://localhost/Work/es4/spec/language.html

An interface value contains declarations of instance fixtures, but no definitions.

Interfaces are implemented by classes, and any class implementing an interface must define, for each instance fixture
declared in the interface, an instance fixture with the same name and type of the instance fixture.

An interface value I also defines a type InterfaceType I. If a class C implements interface I, the type ClassType C
is a subtype of InterfaceType I.

Semantics
and INTERFACE =
 Interface of
 { name: NAME,
 typeParams: IDENTIFIER list,
 nonnullable: BOOLEAN,
 extends: TYPE list,
 instanceFixtureMap: FIXTURE_MAP }

1.4.8 Closure values

A closure value consists of a captured scope chain, an optional captured this object, and a function value.

A closure value can be held in the primitive tag of an instance of the class public::Function. Such objects are called function
objects.

A closure value is defined as a fixture in a scope using a function definition.

Each function definition corresponds to zero of more function objects.

A function expression may also evaluate to a function object.

A function value contains a set of parameter fixtures, a type, and a block of ECMAScript code.

Closure values can be invoked to evaluate the ECMAScript code stored in the block of the closure's associated function
value. Invocation is described in section....

FIXME Function definitions can be type-parametric; needs to be described.

Semantics
withtype CLOSURE =
 { func: FUNC,
 this: OBJECT option,
 env: SCOPE }

and FUNC =
 Func of
 { name: FUNC_NAME,
 fsig: FUNC_SIG,
 native: BOOLEAN,
 generator: BOOLEAN,
 block: BLOCK option, (* NONE => abstract *)
 param: HEAD,
 defaults: EXPRESSION list,
 ty: TYPE,
 loc: LOC option }

1.4.9 Generator Values
FIXME fill in

2 Reading and Writing Properties
This chapter describes the algorithms for property access: testing objects for the presence of a property, reading from and
writing to a property, and removing a property. Property access is always by the name of the property. A property name is
represented either as an instance of the pre-defined className, or as a string (which represents a name in the public
namespace).

SPEC NOTE This chapter complements the chapter on names, scopes, and name resolution. At this time, there is some overlap between the two chapters.

Property accesses are subject to run-time checks, and property access fails (an exception is thrown) if a check does not pass.
The exact exception depends on the particular check.

NOTE For example, a property created by let or const or a property whose type is a non-nullable type without a default value must be written (initialized)
before it is read; properties created by const cannot be written more than once; and properties that have type annotations can be updated with a new value

5

6

7

8

1

2

3

4

5

6

7

8

1

2

core-language.pdf

Matching text on page 9 of other document

Matching text on page 9 of other document

Matching text on page 9 of other document

Matching text on page 9 of other document

Matching text on page 9 of other document

Matching text on page 9 of other document

Matching text on page 9 of other document

Matching text on page 9 of other document

Matching text on page 9 of other document

Matching text on page 9 of other document

Matching text on page 9 of other document

Matching text on page 9 of other document

Matching text on page 9 of other document

Matching text on page 9 of other document

Matching text on page 9 of other document

Matching text on page 9 of other document

Matching text on page 9 of other document

Matching text on page 9 of other document

Matching text on page 9 of other document

Matching text on page 9 of other document

Matching text on page 9 of other document

Matching text on page 9 of other document

Matching text on page 9 of other document

Matching text on page 9 of other document

Page 9ECMAScript 4th Edition -- Core Language

16.05.2008 21:39:09file://localhost/C:/src/com.mozilla.es4.smlnj/spec/language.html

and FUNC =
 Func of
 { name: FUNC_NAME,
 fsig: FUNC_SIG,
 native: bool,
 generator: bool,
 block: BLOCK option, (* NONE => abstract *)
 param: HEAD,
 defaults: EXPRESSION list,
 ty: TYPE,
 loc: LOC option }

1.4.10 Type Values

FIXME fill in

1.4.11 Generator Values

FIXME fill in

2 Reading and Writing Properties
This chapter describes the algorithms for property access: testing objects for the presence of a property, reading
from and writing to a property, and removing a property. Property access is always by the name of the property. A
property name is represented either as an instance of the pre-defined class Name, or as a string (which
represents a name in the public namespace).

SPEC NOTE This chapter complements the chapter on names, scopes, and name resolution. At this time, there is some overlap between the two
chapters.

Property accesses are subject to run-time checks, and property access fails (an exception is thrown) if a check does
not pass. The exact exception depends on the particular check.

NOTE For example, a property created bylet orconst or a property whose type is a non-nullable type without a default value must be written
(initialized) before it is read; properties created byconst cannot be written more than once; and properties that have type annotations can be
updated with a new value only if the allocated type of the new value is a compatible subtype of the storage type of the property. A ReferenceError is
thrown in the first two instances, and a TypeError is thrown in the last.

A property may be virtual, that is to say, the reading and writing of the property may be implemented by getter and
setter methods on the object, and an expression that is syntactically a reference to the property is in fact an
invocation of these methods. Virtual dynamic properties may be implemented by catch-all methods.

2.1 Catch-All Methods

This section contains a normative overview of the catch-all facility. A more precise, also normative, description is
given in later sections of this chapter, as part of the general description of property access.

SPEC NOTE Any conflicts between the two descriptions are obviously bugs.

Objects may contain fixture properties in the meta namespace: meta::get, meta::set, meta::has, and
meta::delete. These properties always name methods. Jointly they are known as catch-all methods.

If a catch-all method is defined on the object then it is invoked when a dynamic property is accessed: meta::has
is invoked to determine if the object has the property; meta::get is invoked to read a property's value;
meta::set is invoked to update or create a property; and meta::delete is invoked to delete a property. A
catch-all method is invoked even if the dynamic property that is being accessed already exists on the object.

A catch-all method operates on the object that contains the method, not on that object's prototype objects.

If a catch-all method returns normally then the value it returns (if any) becomes the result of the operation, possibly
after being converted to a canonical type.

If a catch-all method throws an exception, and the exception thrown is an instance of the pre-defined class
DefaultBehaviorClass, then the default behavior for the catch-all is triggered.

1

2

3

1

2

3

4

5

6

core-language.pdf

Matching text on page 8 of other document

Matching text on page 8 of other document

Matching text on page 8 of other document

Matching text on page 8 of other document

Matching text on page 8 of other document

Matching text on page 8 of other document

Matching text on page 8 of other document

Matching text on page 8 of other document

Matching text on page 8 of other document

Matching text on page 8 of other document

Matching text on page 8 of other document

Matching text on page 8 of other document

Matching text on page 8 of other document

Matching text on page 8 of other document

Matching text on page 8 of other document

Matching text on page 8 of other document

Matching text on page 8 of other document

Matching text on page 8 of other document

Matching text on page 8 of other document

Matching text on page 8 of other document

Matching text on page 8 of other document

Matching text on page 8 of other document

Matching text on page 8 of other document

Matching text on page 8 of other document

Matching text on page 8 of other document

Matching text on page 8 of other document

Matching text on page 8 of other document

Matching text on page 8 of other document

Matching text on page 8 of other document

Matching text on page 8 of other document

Matching text on page 8 of other document

Matching text on page 8 of other document

Matching text on page 8 of other document

Matching text on page 8 of other document

Matching text on page 8 of other document

Matching text on page 8 of other document

Matching text on page 8 of other document

Matching text on page 8 of other document

Matching text on page 8 of other document

9ECMAScript 4th Edition -- Core Language

07/11/08 16:28:33file://localhost/Work/es4/spec/language.html

only if the allocated type of the new value is a compatible subtype of the storage type of the property. A ReferenceError is thrown in the first two
instances, and a TypeError is thrown in the last.

A property may be virtual, that is to say, the reading and writing of the property may be implemented by getter and setter
methods on the object, and an expression that is syntactically a reference to the property is in fact an invocation of these
methods. Virtual dynamic properties may be implemented by catch-all methods.

FIXME We need a definition of "method", this is the first use.

2.1 Catch-All Methods
This section contains a normative overview of the catch-all facility. A more precise, also normative, description is given in
later sections of this chapter, as part of the general description of property access.

SPEC NOTE Any conflicts between the two descriptions are obviously bugs.

Objects may contain fixtures in themeta namespace: meta::get,meta::set,meta::has, andmeta::delete. These properties
always name methods. Jointly they are known as catch-all methods.

NOTE The requirement that the meta properties always name methods must be checked by the language implementation. The namespace meta is
reserved and known to the implementation and may only be used in specific circumstances. See section (...).

If a catch-all method is defined on the object then it is invoked when a dynamic property is accessed: meta::has is invoked
to determine if the object has the property; meta::get is invoked to read the property's value; meta::set is invoked to update
or create the property; andmeta::delete is invoked to delete the property. A catch-all method is invoked even if the dynamic
property that is being accessed already exists on the object.

A catch-all method operates on the receiver object of the method call, not on the receiver's prototype objects.

If a catch-all method returns normally then the value it returns (if any) becomes the result of the property access, possibly
after being converted to a canonical type.

If a catch-all method throws an exception, and the exception thrown is an instance of the pre-defined class
DefaultBehaviorClass, then the default behavior for the catch-all is triggered.

DefaultBehaviorClass is a singleton class; its only instance is is stored in the global constantDefaultBehavior.

NOTE The mechanism is analogous to the one defined for iterators, where an instance of the singleton iterator::StopIterationClass is stored in the
global property iterator::StopIteration.

Themeta::get method is invoked on one argument, a property name. The value returned is the property value. The default
behavior formeta::get is to retrieve the value from a dynamic property in the object's property map.

Themeta::setmethod is invoked on two arguments, a property name and a value. Any value returned is ignored. The default
behavior formeta::set is to update or attempt to create a dynamic property in the object's property map.

Themeta::has method is invoked on one argument, a property name. Any value returned by the method is converted to
boolean. The default behavior formeta::has is to search for a dynamic property in the object's property map.

Themeta::deletemethod is invoked on one argument, a property name. Any value returned by the method is converted to
boolean. The default behavior formeta::delete is to attempt to delete a dynamic property from the object's property map.

2.2 Checking for the Presence of a Property
The HasOwnProperty protocol is invoked to check whether an object obj contains a property named by name.

SPEC NOTE In terms of the 3rd Edition Specification, the HasOwnProperty protocol implements the test for whether an object "has a property",
as used in the implementations of [[Get]], [[Put]], [[HasProperty]], and other internal subroutines.

An object is said to contain a property if the property is in the object's property map or if themeta::has catchall claims the
property to be present.

Semantics
and hasOwnProperty (regs : REGS)
 (obj : OBJECT)
 (n : NAME)
 : bool =
 let
 val Object { propertyMap, ... } = obj
 in
 if Fixture.hasFixture (getFixtureMap regs obj) (PropName n)
 then true
 else
 if hasFixedProp propertyMap n then

3

1

2

3

4

5

6

7

8

9

10

11

1

2

3

core-language.pdf

Matching text on page 10 of other document

Matching text on page 10 of other document

Matching text on page 10 of other document

Matching text on page 10 of other document

Matching text on page 10 of other document

Matching text on page 10 of other document

Matching text on page 10 of other document

Matching text on page 10 of other document

Page 10ECMAScript 4th Edition -- Core Language

16.05.2008 21:39:09file://localhost/C:/src/com.mozilla.es4.smlnj/spec/language.html

DefaultBehaviorClass is a singleton class; its only instance is is stored in the global constant
DefaultBehavior .

NOTE The mechanism is analogous to the one defined for iterators, where an instance of the singletonStopIterationClass is stored
in the global propertyStopIteration.

The meta::get method is invoked on one argument, a property name. The value returned is the property value.
The default behavior for meta::get is to retrieve the value from a dynamic property in the object's property
map.

The meta::set method is invoked on two arguments, a property name and a value. Any value returned is
ignored. The default behavior for meta::set is to update or attempt to create a dynamic property in the object's
property map.

The meta::has method is invoked on one argument, a property name. Any value returned by the method is
converted to boolean. The default behavior for meta::has is to search for a dynamic property in the object's
property map.

The meta::delete method is invoked on one argument, a property name. Any value returned by the method is
converted to boolean. The default behavior for meta::delete is to attempt to delete a dynamic property from
the object's property map.

2.2 Checking for the Presence of a Property

The HasOwnProperty protocol is invoked to check whether an object obj contains a property named by name.

SPEC NOTE In terms of the 3rd Edition Specification, the HasOwnProperty protocol implements the test for whether an object "has a property", as
used in the implementations of[[Get]],[[Put]],[[HasProperty]], and other internal subroutines.

An object is said to contain a property if the property is in the object's prototype map or if the meta::has
catchall claims the property to be present.

Semantics

and hasOwnProperty (regs : REGS)
 (obj : OBJ)
 (n : NAME)
 : bool =
 let
 val Obj { props, ... } = obj
 in
 if hasFixedProp props n then
 true
 else if hasFixedProp props meta_has then
 let
 val v = evalNamedMethodCall
 regs obj meta_has [newName regs n]
 in
 toBoolean v
 end
 handle ThrowException e =>
 let
 val ty = typeOfVal regs e
 val defaultBehaviorClassTy =
 instanceType regs ES4_DefaultBehaviorClass []
 in
 if ty <* defaultBehaviorClassTy then
 hasProp props n
 else
 throwExn e
 end
 else
 hasProp props n
 end

7

8

9

10

11

1

2

3

core-language.pdf

Matching text on page 9 of other document

Matching text on page 9 of other document

Matching text on page 9 of other document

Matching text on page 9 of other document

Matching text on page 9 of other document

Matching text on page 9 of other document

Matching text on page 9 of other document

Matching text on page 9 of other document

10ECMAScript 4th Edition -- Core Language

07/11/08 16:28:33file://localhost/Work/es4/spec/language.html

 true
 else
 if hasFixedProp propertyMap meta_has then
 let
 val v = evalNamedMethodCall regs obj meta_has [newName regs n]
 in
 toBoolean v
 end
 handle ThrowException e =>
 let
 val ty = typeOfVal regs e
 val defaultBehaviorClassTy =
 instanceType regs helper_DefaultBehaviorClass []
 in
 if ty <* defaultBehaviorClassTy then
 hasProp propertyMap n
 else
 throwExn e
 end
 else
 hasProp propertyMap n
 end

NOTE The regs parameter represents the virtual machine state. The operator <* tests subtype compatibility.

2.3 Reading a property value
The GetPropertyValue protocol is invoked to read the value of a property named by name from an object obj. The flag
isStrict is true if the ES4 code that caused GetProperty to be invoked was compiled in strict mode.

Specifically, there will be an AST node for the property reference whose strict flag is set because it represents a source
code phrase that was recognized in a region of code that was covered by a strict mode pragma.

SPEC NOTE There may be several types of AST nodes carrying strict flags and invoking GetPropertyValue, depending on how the AST is
eventually structured.

FIXME Strict mode is not implemented in this code.

Semantics
and getPropertyValue (regs:REGS)
 (obj:OBJECT)
 (name:NAME)
 : VALUE =
 getPropertyValueOrVirtual regs obj name true

and getPropertyValueOrVirtual (regs:REGS)
 (obj:OBJECT)
 (name:NAME)
 (doVirtual:bool)
 : VALUE =
 let
 val Object { propertyMap, tag, ... } = obj
 in
 case findProp propertyMap name of
 SOME {state=(ValueProperty v), ...}
 => v

 | SOME {state=(VirtualProperty { getter, ... }), ...}
 => if doVirtual
 then
 case getter of
 SOME g => invokeFuncClosure (withThis regs obj) g NONE []
 | _ => UndefinedValue
 else
 UndefinedValue

 | NONE =>
 case Fixture.findFixture (getFixtureMap regs obj) (PropName name) of
 SOME fixture
 =>
 (reifyFixture regs obj name fixture;
 getPropertyValueOrVirtual regs obj name doVirtual)

 | NONE =>
 case (isNumericName name, tag) of
 (true, ArrayTag (_, SOME defaultType))
 => let
 val defaultVal = defaultValueForType regs defaultType

1

2

3

core-language.pdf

Page 11ECMAScript 4th Edition -- Core Language

16.05.2008 21:39:09file://localhost/C:/src/com.mozilla.es4.smlnj/spec/language.html

NOTE The regs parameter represents the virtual machine state. The operator<* tests subtype compatibility.

2.3 Reading a property value

The GetProperty protocol is invoked to read the value of a property named by name from an object obj. The flag
isStrict is true if the ES4 code that caused GetProperty to be invoked was compiled in strict mode.

Specifically, there will be an AST node for the property reference whose strict flag is set because it represents a
source code phrase that was recognized in a region of code that was covered by a strict mode pragma.

SPEC NOTE There may be several types of AST nodes carrying strict flags and invoking GetProperty, depending on how the AST is eventually
structured.

The GetProperty protocol queries the object for the presence of the property using the HasOwnProperty protocol,
moving up the object's prototype chain if the object does not contain the property. Once an object on the prototype
chain is found that contains the object, the internal getPropertyHelper function is invoked to extract the
property value. If no property is found, then a default value may be returned, or, in strict mode, an exception may be
thrown.

FIXME The GetProperty protocol below overlaps with thesearchObject algorithm described in Names; the two algorithms must be
reconciled. That will happen when the protocol here is described in terms of SML (because then they will use the same code).

Semantics

fun GetProperty(obj, name, isStrict)
 for every object in obj, obj's prototype, ...
 if HasOwnProperty(obj, name)
 return getPropertyHelper(obj, name, isStrict)
 end
 end

 if obj allows dynamic property creation
 if obj has a structural array type with a "rest" type constraint, denote it T
 if T has a default value
 return that default value
 else
 throw a ReferenceError
 "Cannot read uninitialized property with non-nullable type"
 end
 end
 return undefined
 end

 if isStrict
 throw a ReferenceError
 "Trying to read undefined property from non-dynamic object"
 end

 return undefined
end

The internal getPropertyHelper function reads the property named by name from an object obj,
implementing strict mode checking if isStrict is true. An error is signalled in strict mode if the object's
meta::has catch-all returned true for name and the property cannot be read.

Semantics

fun getPropertyHelper(obj, name, isStrict)
 if (name is a property in the property map of obj, denote it obj.name &&
 the fixed attribute of obj.name is true)
 if obj.name is a method
 return a closure
 where obj is bound as this to the method extracted from obj.name
 end
 if obj.name is a getter/setter pair, denote the getter obj.name.[[Getter]]
 return obj.name.[[Getter]](name)
 end

1

2

3

4

5

6

core-language.pdf

11ECMAScript 4th Edition -- Core Language

07/11/08 16:28:33file://localhost/Work/es4/spec/language.html

 in
 case defaultVal of
 NONE => throwExn (newTypeErr …)
 | SOME dv
 => (setPropertyValueOrVirtual regs obj name dv false;
 dv)
 end
 | _
 => if doVirtual andalso
 Fixture.hasFixture (getFixtureMap regs obj) (PropName meta_get)
 then
 evalNamedMethodCall regs obj meta_get [newString regs (#id
name)]
 handle ThrowException e =>
 let
 val ty = typeOfVal regs e
 val defaultBehaviorClassTy =
 instanceType regs helper_DefaultBehaviorClass []
 in
 if ty <* defaultBehaviorClassTy then
 getPropertyValueOrVirtual regs obj name false
 else
 throwExn e
 end
 else
 if isDynamic regs obj
 then UndefinedValue
 else throwExn (newRefErr …)
 end

NOTE A bound method has identity, so if m is a method on the class of some object o then the expression o.m always evaluates to the same object value
(in terms of ===).

2.4 Writing a property value
The SetProperty protocol is invoked to write a value value to a property named by name on an object obj. The object
may or may not have a property of that name when SetProperty is invoked, and SetProperty may attempt to create the
property. The flag isStrict is true if the ES4 code that caused SetProperty to be invoked was compiled in strict mode.

Specifically, there will be an AST node for the property update whose strict flag is set because it represents a source code
phrase that was recognized in a region of code that was covered by a strict mode pragma.

FIXME Strict mode is not implemented in this code.

Semantics
and setPropertyValue (regs:REGS)
 (base:OBJECT)
 (name:NAME)
 (v:VALUE)
 : unit =
 setPropertyValueOrVirtual regs base name v true

and setPropertyValueOrVirtual (regs:REGS)
 (obj:OBJECT)
 (name:NAME)
 (v:VALUE)
 (doVirtual:bool)
 : unit =
 let
 val Object { propertyMap, tag, ... } = obj
 in
 case findProp propertyMap name of
 SOME existingProp =>
 let
 val { state, attrs, ty, ... } = existingProp
 val { removable, enumerable, fixed, writable } = attrs

 fun writeExisting _ = writeProperty regs propertyMap name v ty
 removable enumerable fixed
 (case writable of
 ReadOnly => ReadOnly
 | WriteOnce => ReadOnly
 | Writable => Writable)
 in
 case state of
 ValueProperty _
 => writeExisting ()

1

2

3

core-language.pdf

Page 12ECMAScript 4th Edition -- Core Language

16.05.2008 21:39:09file://localhost/C:/src/com.mozilla.es4.smlnj/spec/language.html

 return the value of obj.name
 end

 if (meta::get is a property in the property map of obj, denote it obj.meta::get
 && the fixed attribute of obj.meta::get is true)
 try
 return obj.meta::get(name)
 catch DefaultBehavior
 ; fall through to the next case
 end
 end

 if name is a property in the property map of obj
 if obj.name is a getter/setter pair, denote the getter obj.name.[[Getter]]
 return obj.name.[[Getter]](name)
 end
 return obj.name
 end

 if isStrict
 throw a ReferenceError, "Property not found"
 else
 return undefined
 end
end

FIXME We need to specify whether the bound method is cached or not, ie, whether, given that o.m is a method, (o.m === o.m).

2.4 Writing a property value

The SetProperty protocol is invoked to write a value value to a property named by name on an object obj. The
object may or may not have a property of that name when SetProperty is invoked, and SetProperty may attempt to
create the property. The flag isStrict is true if the ES4 code that caused SetProperty to be invoked was compiled in
strict mode.

Specifically, there will be an AST node for the property update whose strict flag is set because it represents a
source code phrase that was recognized in a region of code that was covered by a strict mode pragma.

FIXME This protocol must be specified as SML code.

Semantics

fun SetProperty(obj, name, value, isStrict)
 if (name is a property in the property map of obj, denote it obj.name &&
 the fixed attribute of obj.name is true)
 return setPropertyHelper(obj, name, value, isStrict)
 end

 if (meta::set is a property in the property map of obj, denote it obj.meta::set
 && the fixed attribute of meta::set is true)
 try
 invoke obj.meta::set(name, value)
 return
 catch DefaultBehavior
 ; fall through to the next case
 end
 end

 if name is a property in the property map of obj
 return setPropertyHelper(obj, name, value, isStrict)
 end

 if the dynamic attribute on obj is true
 if isStrict && obj is a global object
 throw a ReferenceError
 "illegal to create props on global obj in strict mode"
 end

1

2

3

core-language.pdf

12ECMAScript 4th Edition -- Core Language

07/11/08 16:28:33file://localhost/Work/es4/spec/language.html

 | VirtualProperty { setter, ... }
 =>
 if doVirtual
 then
 case setter of
 NONE => ()
 | SOME s => (invokeFuncClosure (withThis regs obj) s
 NONE [v]; ())
 else
 if writable = ReadOnly
 then throwExn (newTypeErr …)
 else writeExisting ()

 end
 | NONE =>
 case Fixture.findFixture (getFixtureMap regs obj) (PropName name) of
 SOME (ValFixture {ty, writable})
 => writeProperty regs propertyMap name v ty
 false false true
 (if writable
 then Writable
 else ReadOnly)

 | SOME f
 (reifyFixture regs obj name f;
 setPropertyValueOrVirtual regs obj name v doVirtual)

 | NONE
 =>
 case (isNumericName name, tag) of
 (true, ArrayTag (_, SOME defaultType))
 => writeProperty regs propertyMap name v defaultType true true
 false Writable

 | _
 =>
 if
 doVirtual andalso
 Fixture.hasFixture (getFixtureMap regs obj)
 (PropName meta_set)
 then
 ((evalNamedMethodCall regs obj meta_set
 [newString regs (#id name), v]; ())
 handle ThrowException e =>
 let
 val ty = typeOfVal regs e
 val defaultBehaviorClassTy =
 instanceType regs helper_DefaultBehaviorClass []
 in
 if ty <* defaultBehaviorClassTy then
 setPropertyValueOrVirtual regs obj name v false
 else
 throwExn e
 end
 else
 if isDynamic regs obj
 then writeProperty regs propertyMap name v AnyType true true
 false Writable
 else throwExn (newTypeErr …)
 end

and writeProperty (regs:REGS)
 (propertyMap:PROPERTY_MAP)
 (name:NAME)
 (v:VALUE)
 (ty:TYPE)
 (removable:BOOLEAN)
 (enumerable:BOOLEAN)
 (fixed:BOOLEAN)
 (writable:WRITABILITY)
 : unit =
 let
 val newProp = { state = ValueProperty (checkAndConvert regs v ty),
 ty = ty,
 attrs = { removable = removable,
 enumerable = enumerable,
 fixed = fixed,
 writable = writable } }
 in

core-language.pdf

Page 13ECMAScript 4th Edition -- Core Language

16.05.2008 21:39:09file://localhost/C:/src/com.mozilla.es4.smlnj/spec/language.html

 if (obj has an array type with a "rest" type constraint, denote it T &&
 the type of value is not a compatible subtype of T)
 throw a TypeError
 "allocated type of value is not compatible with \
 \storage type of property"
 end

 place a new object into the property map of obj
 property name = name
 property value = value
 property flags = (writable=true,
 enumerable=true,
 removable=true,
 fixed=false)
 return
 end

 if isStrict
 throw a ReferenceError, "cannot create a property on a non-dynamic object"
 end
}

The internal setPropertyHelper function is invoked when name is known to name a property in obj.

FIXME Here I simply assume that methods are not writeable, but this may or may not be the right abstraction we want to use; the RI has two cases
here anyway, and that's the code that will eventually be here.

Semantics

fun setPropertyHelper(obj, name, value, isStrict)
 if obj.name is a getter/setter pair, denote the setter obj.name.[[Setter]]
 return obj.name.[[Setter]](name)
 end

 if the writeable attribute of obj.name is false
 if isStrict
 throw a ReferenceError, "Attempting to update read-only value"
 end
 return
 end

 if (obj.name has a type annotation, denote it T &&
 the type of value is not a compatible subtype of T)
 throw a TypeError, "Attempting to store value of incompatible type"
 end

 store value in obj.name

 if the writeOnce attribute of obj.name is true
 set the writeOnce attribute of obj.name to false
 set the writeable attribute of obj.name to false
 end
end

2.5 Deleting a property

The DeleteProperty protocol is invoked to remove a property named by name from an object obj. The object may
or may not have a property of that name when DeleteProperty is invoked. The flag isStrict is true if the ES4 code
that caused DeleteProperty to be invoked was compiled in strict mode.

Specifically, there will be an AST node for the property deletion whose strict flag is set because it represents a
source code phrase that was recognized in a region of code that was covered by a strict mode pragma.

FIXME This protocol must be specified as SML code.

Semantics

4

5

1

2

core-language.pdf

13ECMAScript 4th Edition -- Core Language

07/11/08 16:28:33file://localhost/Work/es4/spec/language.html

 if hasProp propertyMap name
 then updateProp propertyMap name newProp
 else addProp propertyMap name newProp
 end

FIXME We must take into account the [[CanPut]] functionality from ES3!

2.5 Deleting a property
The DeleteProperty protocol is invoked to remove a property named by name from an object obj. The object may or
may not have a property of that name when DeleteProperty is invoked. The flag isStrict is true if the ES4 code that caused
DeleteProperty to be invoked was compiled in strict mode.

Specifically, there will be an AST node for the property deletion whose strict flag is set because it represents a source
code phrase that was recognized in a region of code that was covered by a strict mode pragma.

FIXME Strict mode is not implemented in this code.

Semantics
and deletePropertyValue (regs:REGS)
 (base:OBJECT)
 (name:NAME)
 : VALUE =
 deletePropertyValueOrVirtual regs base name true

and deletePropertyValueOrVirtual (regs:REGS)
 (obj:OBJECT)
 (name:NAME)
 (doVirtual:bool)
 : VALUE =
 let
 val Object { propertyMap, tag, ... } = obj
 val existingProp = findProp propertyMap name
 in
 case existingProp of
 SOME { attrs = { fixed = true, ...}, ...}

 => newBoolean regs false

 | _
 => if
 doVirtual andalso
 Fixture.hasFixture (getFixtureMap regs obj) (PropName meta_delete)
 then
 ((evalNamedMethodCall regs obj meta_delete
 [newString regs (#id name)])
 handle ThrowException e =>
 let
 val ty = typeOfVal regs e
 val defaultBehaviorClassTy =
 instanceType regs helper_DefaultBehaviorClass []
 in
 if ty <* defaultBehaviorClassTy then
 deletePropertyValueOrVirtual regs obj name false
 else
 throwExn e
 end
 else
 case existingProp of
 SOME { attrs = { removable = true, ... }, ... }
 => (delProp propertyMap name;
 newBoolean regs true)

 | _
 => newBoolean regs false
 end

3 Types
FIXME Double-check that the specification and implementation of the subtype relation are consistent.

ECMAScript includes a gradual type system that supports optional type annotations on properties (e.g., on variables and
fields). These type annotations are currently enforced dynamically, during evaluation.

1

2

3

1

core-language.pdf

Page 14ECMAScript 4th Edition -- Core Language

16.05.2008 21:39:09file://localhost/C:/src/com.mozilla.es4.smlnj/spec/language.html

fun DeleteProperty(obj, name, isStrict)
 if (name is a property in the property map of obj, denote it obj.name &&
 the fixed attribute of obj.name is true)
 if isStrict
 throw a ReferenceError, "can't delete fixture properties"
 end
 return false
 end

 if (meta::delete is a property in the property map of obj,
 denote it obj.meta::delete
 && the fixed attribute of meta::delete is true)
 try
 return obj.meta::delete(name)
 catch DefaultBehavior
 ; fall through to the next case
 end
 end

 if name is a property in the property map of obj, denote it obj.name
 if the removable attribute of obj.name is true
 remove obj.name from the property map of obj
 return true
 end

 if isStrict
 throw a ReferenceError, "can't delete non-removable property"
 end
 end

 return false
end

3 Types
FIXME Cross-check with normative grammer on terminology, etc

FIXME Double-check that the specification and implementation of the subtype relation are consistent.

ECMAScript includes a gradual type system that supports optional type annotations on properties (e.g., on
variables and fields). These type annotations are currently enforced dynamically.

Every value has an allocated type. The allocated type is the type given to a value when it is created and which
defines its fixed structure.

Every property has a storage type. The storage type of a property is given by its declaration and constrains the set
of values that can be stored in the property. The storage type of a property is also called the property's type
constraint.

The declarations of properties can carry type annotations, which define the storage type of the property.
Annotation is denoted by following the annotated property name with a colon and a type expression. Annotations
are not required: any property lacking an annotation is implicitly given the storage type *, meaning that the
property can hold a value of any allocated type.

If a property holds a value, then that value must have an allocated type that is a compatible subtype of property's
storage type. The compatible subtype relation is an extension of the traditional subtype relation that supports
interoperation between typed and untyped code. The definition of the compatible subtype relation is included
below.

For a given type T, a set of values is said to populate T if the values all have allocated types that are compatible
subtypes of T. Some types are specified by specifying the values that populate them.

3.1 The Type Language

ES4 includes the following types:

3

1

2

3

4

5

6

1

core-language.pdf

14ECMAScript 4th Edition -- Core Language

07/11/08 16:28:33file://localhost/Work/es4/spec/language.html

Every value has an allocated type. The allocated type is the type given to a value when it is created and which defines its
fixed structure.

Every property and fixture has a storage type. The storage type of a property or fixture is given by its declaration and
constrains the set of values that can be stored in the property. The storage type of a property or fixture is also called it's type
constraint.

The declarations of properties can carry type annotations, which define the storage type of the property. Annotation is
denoted by following the annotated property name with a colon and a type expression. Annotations are not required: any
property lacking an annotation is implicitly given the storage type *, meaning that the property can hold a value of any
allocated type.

If a property holds a value, then that value must have an allocated type that is a compatible subtype of property's storage type.
The compatible subtype relation is an extension of the traditional subtype relation that supports interoperation between typed
and untyped code. The definition of the compatible subtype relation is included below.

For a given type T, a set of values is said to populate T if the values all have allocated types that are compatible subtypes of
T. Some types are specified by specifying the values that populate them.

3.1 The Type Language
ES4 includes the following types:

3.1.1 The any type

The any type is the type populated by every possible value. In other words, every other type is a compatible subtype of the
any type.

The any type is denoted in a type expression as *.

No value has the any type as its allocated type. The any type is meaningful only as the storage type of a property.

3.1.2 The null type

The null type is the type populated only by the semantic value NullValue.

The null type is denoted in a type expression as null.

3.1.3 The undefined type

The undefined type the type populated only by the semantic value UndefinedValue.

The undefined type is denoted in type expressions as undefined.

3.1.4 Nominal types

A nominal type is either a class type, an instance type or an interface type.

A class type and an instance type are both defined by a class definition.

An interface type is a type defined by an interface definition.

Nominal types are arranged in an explicit subtype relation through the use of extends and implements clauses in class
and interface definitions.

An instance or interface type is denoted in type expressions by the name of the class or interface that defined the type,
respectively.

An instance or interface type C (or C.<T1, .., Tn>) can be declared as a non-null type via any of the following
declarations:

 class C! ..
 class C.<X1, .., Xn>! ..
 interface C! ..
 interface C.<X1, .., Xn>! ..

An instance or interface type is nullable if it is not a non-null type.

2

3

4

5

6

1

1

2

3

1

2

1

2

1

2

3

4

5

6

7

core-language.pdf

Matching text on page 15 of other document

Matching text on page 15 of other document

Matching text on page 15 of other document

Matching text on page 15 of other document

Matching text on page 15 of other document

Matching text on page 15 of other document

Matching text on page 15 of other document

Matching text on page 15 of other document

Matching text on page 15 of other document

Matching text on page 15 of other document

Matching text on page 15 of other document

Matching text on page 15 of other document

Page 15ECMAScript 4th Edition -- Core Language

16.05.2008 21:39:09file://localhost/C:/src/com.mozilla.es4.smlnj/spec/language.html

3.1.1 The any type

The any type is the type populated by every possible value. In other words, every other type is a compatible
subtype of the any type.

The any type is denoted in a type expression as *.

No value has the any type as its allocated type. The any type is only meaningful as the storage type of a property.

3.1.2 The null type

The null type is the type populated only by the null value.

The null type is denoted in a type expression as null.

3.1.3 The undefined type

The undefined type the type populated only by the value stored in the global constant public::undefined.

The undefined type is denoted in type expressions as undefined.

3.1.4 Nominal types

A nominal type is either a class type or an interface type.

A class type is a type defined by a class definition.

An interface type is a type defined by an interface definition.

Nominal types are arranged in an explicit subtype relation through the use of extends and implements
clauses in class and interface definitions.

A nominal type is denoted in type expressions by the name of the class or interface that defined the type.

3.1.5 Record types

A record type is a subtype of the public::Object class type that has additional type constraints on some
specific set of named properties.

Record types are arranged implicitly into a subtype relation through structural comparison of their property
constraints.

A record type is denoted in a type expression by listing the names of the specified properties in a comma separated
list, with optional type annotations, enclosed in curly braces.

An example is {x: Number, y: String}, which denotes a record type with two properties x and y, the first
constrained to type Number and the second to type String. The type { } denotes the empty record type.

3.1.6 Array types

An array type is a subtype of the public::Array type that has type constraints on some prefix of the set of all
possible integer-indexed properties. An array type may be either fixed-length or variable-length.

Array types are arranged implicitly into a subtype relation through structural comparison of their property
constraints.

3.1.6.1 Fixed-length array types

A fixed-length array type describes an explicit set of initial integer-indexed property constraints that must be
satisfied by properties found at those indices.

A fixed-lenght array type is denoted in a type expression by listing the types of the specified properties in a
comma-separated list enclosed in square brackets.

1

2

3

1

2

1

2

1

2

3

4

5

1

2

3

4

1

2

1

2

core-language.pdf

Matching text on page 14 of other document

Matching text on page 14 of other document

Matching text on page 14 of other document

Matching text on page 14 of other document

Matching text on page 14 of other document

Matching text on page 14 of other document

Matching text on page 14 of other document

Matching text on page 14 of other document

Matching text on page 14 of other document

Matching text on page 14 of other document

Matching text on page 14 of other document

Matching text on page 14 of other document

15ECMAScript 4th Edition -- Core Language

07/11/08 16:28:33file://localhost/Work/es4/spec/language.html

3.1.5 Record types

A record type is a subtype of the public::Object instance type that has additional type constraints on some specific set
of named properties.

Record types are arranged implicitly into a subtype relation through structural comparison of their property constraints.

A record type is denoted in a type expression by listing the names of the specified properties in a comma separated list, with
optional type annotations, enclosed in curly braces.

An example is {x: Number, y: String}, which denotes a record type with two properties x and y, the first
constrained to type Number and the second to type String. The type { } denotes the empty record type.

3.1.6 Array types

An array type is a subtype of the public::Array type that has type constraints on some prefix of the set of all possible
unsigned-integer-indexed properties. An array type may be either fixed-length or variable-length.

Array types are arranged implicitly into a subtype relation through structural comparison of their property constraints.

3.1.6.1 Fixed-length array types

A fixed-length array type describes an explicit set of initial integer-indexed property constraints that must be satisfied by
properties found at those indices.

A fixed-length array type is denoted in a type expression by listing the types of the specified properties in a comma-separated
list enclosed in square brackets.

For example, the type [Number, String] describes fixed-length arrays of length at least 2, where the entry at index 0
has type Number and the entry at index 1 has type String.

The type [] describes fixed-length arrays of length at least 0, that is, it describes all fixed-length arrays.

FIXME Do we need to discuss holes here?

3.1.6.2 Variable-length array types

A variable-length array type describes an explicit set of initial integer-indexed property constraints and then a final
constraint that is implied for any further integer-indexed properties (including zero further properties).

A variable length array type is denoted, initially, the same way a fixed-length array is, but concludes its type list with
symbol ... and a trailing type expression.

For example, the type [Number, ... String] describes arrays of length at least 1, where the entry at index 0 has type
Number, and any remaining entries have type String. The type [... Number] describes arrays of zero or more
elements, all of which must be of type Number.

3.1.7 Union types

A union type is a storage type that is populated by all values that populate all of the types that make up the union.

A union type is denoted in a type expresison by listing the types of the union members, separated by the vertical-bar
character, enclosed in parentheses.

For example, the type (Number | String) denotes a type that is populated by both Number and String values. A
property annotated with this type can therefore hold either instances of the Number type or instances of the String type.

No value has a union type as its allocated type. Union types are only meaningful as the storage types of properties.

3.1.8 Function types

A function type is a subtype of the public::Function type that describes additional type constraints on any function
populating it.

A function type describes the number and type of required parameters, any optional parameters, any trailing "rest" parameter
that accumulates excess arguments, and the return value.

Function types are denoted with the keyword function, followed by a parenthesis-enclosed, comma-separated list of
parameter types -- optionally including default and rest symbols -- and an optional colon and trailing return type.

1

2

3

4

1

2

1

2

3

4

1

2

3

1

2

3

4

1

2

3

core-language.pdf

Matching text on page 18 of other document

Matching text on page 18 of other document

Page 16ECMAScript 4th Edition -- Core Language

16.05.2008 21:39:09file://localhost/C:/src/com.mozilla.es4.smlnj/spec/language.html

For example, the type [Number, String] describes fixed-length arrays of length at least 2, where the entry at
index 0 has type Number and the entry at index 1 has type String.

The type [] describes fixed-length arrays of length at least 0, that is, it describes all fixed-length arrays.

3.1.6.2 Variable-length array types

A variable-length array type describes an explicit set of initial integer-indexed property constraints and then a final
constraint that is implied for any further integer-indexed properties (including zero further properties).

A variable length array type is denoted, initially, the same way a fixed-length array is, but concludes its type list
with symbol ... and a trailing type expression.

For example, the type [Number, ... String] describes arrays of length at least 1, where the entry at index
0 has type Number, and any remaining entries have type String. The type [... Number] describes arrays
of zero or more elements, all of which must be of type Number.

3.1.7 Union types

A union type is a storage type that is populated by all values that populate all of the types that make up the union.

A union type is denoted in a type expresison by listing the types of the union members, separated by the vertical-
bar character, enclosed in parentheses.

For example, the type (Number | String) denotes a type that is populated by both Number and String
values. A property annotated with this type can therefore hold either instances of the Number type or instances of
the String type.

No value has a union type as its allocated type. Union types are only meaningful as the storage types of properties.

3.1.8 Function types

A function type is a subtype of the public::Function type that describes additional type constraints on any
function populating it.

A function type describes the number and type of required parameters, any optional parameters, any trailing "rest"
parameter that accumulates excess arguments, and the return value.

Function types are denoted with the keyword function, followed by a parenthesis-enclosed, comma-separated
list of parameter types -- optionally including default and rest symbols -- and an optional colon and trailing return
type.

An example of a function type is:

 function (Number, String) : String

This function type is populated by any function that is declared as taking a Number value and a String value as
parameters, and returning a String value.

The return type of a function type can be omitted, in which case the return type is implicity the any type.

If a function should not return a value, the function return type can be annotated as void, which is a notation for
defining return types of function types only; there is no separate "void type" that can be denoted elsewhere.

A function type may include a type constraint for the this binding. Such a constraint must be listed as the first
parameter in the function type parameter list, and must be denoted with the keyword this and a colon. For
example, the function type

 function(this : Number, String) : String

denotes a type of functions that require a Number value as their implicit this parameter, as well as taking a
String argument and returning a String. The type constraint for the this binding defaults to the any type * if
omitted.

3

4

1

2

3

1

2

3

4

1

2

3

4

5

6

7

8

core-language.pdf

16ECMAScript 4th Edition -- Core Language

07/11/08 16:28:33file://localhost/Work/es4/spec/language.html

An example of a function type is:

 function (Number, String) : String

This function type is populated by any function that is declared as taking a Number value and a String value as
parameters, and returning a String value.

The return type of a function type can be omitted, in which case the return type is implicity the any type.

If a function should not return a value, the function return type can be annotated as void, which is a special notation for
indicating the absence of a return type; there is no separate "void type" that can be denoted elsewhere.

A function type may include a type constraint for the this binding. Such a constraint must be listed as the first parameter in
the function type parameter list, and must be denoted with the keyword this and a colon. For example, the function type

 function(this : Number, String) : String

denotes a type of functions that require a Number value as their implicit this parameter, as well as taking a String
argument and returning a String. The type constraint for the this binding defaults to the any type * if omitted.

A function type may denote the presence of default value assignments for some suffix of its parameter types by annotating
the types of such parameters with trailing = symbols. For example, the function type

 function(Number, String=) : String

denotes a type of function that takes a mandatory Number argument and an optional second String argument, and returns
a String.

A function type may denote the presence of a trailing "rest-argument" with the symbol ... in the final position of the
function parameter list. This final parameter, if present, indicates that there is no maximum number of arguments to the
function: additional arguments beyond the parameter list are collected into an array object and passed to the function. For
example, the function type

 function(String, ...) : String

denotes a type of function that takes a String and any number of additional arguments (of any type), returning a String.
Rest arguments cannot have type constraints.

Function types can optionally include a parameter name preceding each argument type, and separated from that type by a
colon. These parameter names are for documentation purposes only. For example, the type of a substring function might
be specified as:

 function(str : String, start : double, end : double) : String

3.1.9 Nullable types

A nullable type is an abbreviation for a union between some type and the null type.

A nullable type is denoted ?T for some type T.

For example, the nullable type ?String is an abbreviation for the union type (String | null).

Nullable types are purely a syntactic convenience, and are not given further special treatment.

3.1.10 Non-null types

A non-null type is a type that excludes the null value from the population of a nullable instance or interface type.

A non-null type is denoted !T for some instance or interface type T.

For example, the non-null type !String is populated by instances of public::String but excludes null values.

3.1.11 Parametric types

A parametric type is a user-defined type constructor -- not a proper type -- associated with some type definition such as an
instance type, interface type or type abbreviation. A parametric type takes some number of types as arguments and produces
a new type as its result.

Parametric types are denoted by appending a type-parameter list to the name of a class, interface, or type at the site of its
definition. A type parameter list consists of a single period, a less-than (or "left angle bracket") character, a comma-separated
list of identifiers, and a greater-than (or "right angle-bracket") character.

4

5

6

7

8

9

10

11

1

2

3

4

1

2

3

1

2

core-language.pdf

Matching text on page 23 of other document

Matching text on page 23 of other document

Page 17ECMAScript 4th Edition -- Core Language

16.05.2008 21:39:09file://localhost/C:/src/com.mozilla.es4.smlnj/spec/language.html

A function type may denote the presence of default value assignments for some suffix of its parameter types by
annotating the types of such parameters with trailing = symbols. For example, the function type

 function(Number, String=) : String

denotes a type of function that takes a mandatory Number argument and an optional second String argument,
and returns a String.

A function type may denote the presence of a trailing "rest-argument" with the symbol ... in the final position of
the function parameter list. This final parameter, if present, indicates that there is no maximum number of
arguments to the function: additional arguments beyond the parameter list are collected into an array object and
passed to the function. For example, the function type

 function(String, ...) : String

denotes a type of function that takes a String and any number of additional arguments (of any type), returning a
String. Rest arguments cannot have type constraints.

Function types can optionally include a parameter name preceeding each argument types, and separated from that
type by a colon. These parameter names are for documentation purposes only. For example, the type of a
substring function might be specified as:

 function(str : String, start : double, end : double) : String

3.1.9 Nullable types

A nullable type is an abbreviation for a union between some type and the null type.

A nullable type is denoted ?T for some type T.

For example, the nullable type ?String is an abbreviation for the union type (String | null).

Nullable types are purely a syntactic convenience, and are not given further special treatment.

3.1.10 Non-null types

FIXME Cormac recently reformulated the non-null operator such that it does *not* model deletion-of-null-from-union but rather persists, as a
normal-form of a type term, wrapping a class or interface type, and modifies the contained class or interface type to reject null as a subtype. It works
this way too, but there may be left over text that describes it the older way.

A non-null type is a type that excludes the null value from the population of a nullable class or interface type.

A non-null type is denoted !T for some class or interface type T.

For example, the non-null type !String is populated by instances of public::String but excludes null
values.

3.1.11 Parametric types

A parametric type is a user-defined type constructor -- not a proper type -- associated with some fixed definition
such as a class, interface or type definition. A parametric type takes some number of types as arguments and
produces a new type as its result.

Parametric types are denoted by appending a type-parameter list to the name of a class, interface, or type at the site
of its definition. A type parameter list consists of a single period, a less-than (or "left angle bracket") character, a
comma-separated list of identifiers, and a greater-than (or "right angle-bracket") character.

For example, the class definition

 class Vector.<X> { .. }

defines a class Vector that is parameterized over a single type variable X. This class therefore also serves as a
parametric type that can be used in type applications to form proper types.

3.1.12 Type applications

9

10

11

1

2

3

4

1

2

3

1

2

3

core-language.pdf

17ECMAScript 4th Edition -- Core Language

07/11/08 16:28:33file://localhost/Work/es4/spec/language.html

For example, the class definition

 class Vector.<X> { .. }

defines a class Vector that is parameterized over a single type variable X. This class definition itherefore also serves as a
parametric instance type that can be used in type applications to form proper types.

3.1.12 Type applications

A type application is a combination of a parametric type with a set of type arguments that serve to instantiate the parametric
type into a proper type that can be populated by values.

A type application is denoted by appending a type-argument list to the name of a parametric type. A type argument list
consists of a single period, a less-than character, a comma-separated list of type expressions, and a greater-than character.

For example, the type application Vector.<Number> denotes an instance type that can be used as the allocated type of
new objects.

3.1.13 Type names

A type name is a symbolic reference to an instance type, an interface type, a type abbreviation, or a type variable bound by a
parameter in a parametric type.

A type name is denoted in a type expression by the same syntax as a name expression.

Type names are resolved during type resolution, described in Section 3.3 below.

3.2 Semantics of the Type Language
Semantics
and TYPE =
 AnyType
 | NullType
 | UndefinedType
 | RecordType of (NAME_EXPRESSION * TYPE) list
 | ArrayType of (TYPE list * TYPE option)
 | UnionType of TYPE list
 | FunctionType of FUNCTION_TYPE
 | NonNullType of TYPE
 | AppType of (TYPE * TYPE list)
 | TypeName of (NAME_EXPRESSION * NONCE option)
 | ClassType of CLASS
 | InstanceType of CLASS
 | InterfaceType of INTERFACE

and FUNCTION_TYPE =
 { typeParams : IDENTIFIER list,
 thisType : TYPE,
 params : TYPE list,
 minArgs : int,
 hasRest : BOOLEAN,
 result : TYPE option (* NONE indicates return type is void *)
 }

type NONCE = int

To help avoid name collisions, each type variable bound in a type parameter list is assigned a unique integer, or nonce. Any
reference to that type variable is then resolved into a TypeName that includes that nonce.

3.3 Type Resolution
At run-time, when a type T is encountered in the source program, that type is immediately resolved. This type resolution
process proceeds as follows:

In the scope of a type definition

 type X = S

any reference to a type variable X in T is replaced by the type S.

In the scope of a parametric type definition

3

1

2

3

1

2

3

1

1

2

3

core-language.pdf

Matching text on page 18 of other document

Matching text on page 18 of other document

Matching text on page 18 of other document

Matching text on page 18 of other document

Matching text on page 18 of other document

Matching text on page 18 of other document

Matching text on page 18 of other document

Matching text on page 18 of other document

Matching text on page 18 of other document

Matching text on page 18 of other document

Matching text on page 18 of other document

Matching text on page 18 of other document

Matching text on page 18 of other document

Matching text on page 18 of other document

Matching text on page 18 of other document

Matching text on page 18 of other document

Matching text on page 18 of other document

Matching text on page 18 of other document

Matching text on page 18 of other document

Matching text on page 18 of other document

Matching text on page 18 of other document

Matching text on page 18 of other document

Matching text on page 18 of other document

Matching text on page 18 of other document

Matching text on page 18 of other document

Matching text on page 18 of other document

Matching text on page 18 of other document

Matching text on page 18 of other document

Matching text on page 18 of other document

Matching text on page 18 of other document

Matching text on page 18 of other document

Matching text on page 18 of other document

Matching text on page 18 of other document

Matching text on page 18 of other document

Matching text on page 18 of other document

Matching text on page 18 of other document

Matching text on page 18 of other document

Matching text on page 18 of other document

Matching text on page 18 of other document

Matching text on page 18 of other document

Matching text on page 18 of other document

Matching text on page 18 of other document

Matching text on page 18 of other document

Matching text on page 18 of other document

Matching text on page 18 of other document

Matching text on page 18 of other document

Matching text on page 18 of other document

Matching text on page 18 of other document

Matching text on page 18 of other document

Matching text on page 18 of other document

Matching text on page 18 of other document

Matching text on page 25 of other document

Matching text on page 25 of other document

Matching text on page 25 of other document

Matching text on page 25 of other document

Matching text on page 25 of other document

Matching text on page 25 of other document

Matching text on page 25 of other document

Matching text on page 25 of other document

Page 18ECMAScript 4th Edition -- Core Language

16.05.2008 21:39:09file://localhost/C:/src/com.mozilla.es4.smlnj/spec/language.html

A type application is a combination of a parametric type with a set of type arguments that serve to instantiate the
parametric type into a proper type that can be populated by values.

A type application is denoted by appending a type-argument list to the name of a parametric type. A type argument
list consists of a single period, a less-than character, a comma-separated list of type expressions, and a greater-than
character.

For example, the type application Vector.<Number> denotes an class type that can be used as the allocated
type of new objects.

3.1.13 Type names

A type name is a symbolic reference to a class, an interface, a type definition, or a type variable bound by a
parameter in a parametric type.

A type name is denoted in a type expression by the same syntax as a name expression.

A type name that refers to a class resolves to a class type. A type name that refers to an interface resolves to an
interface type.

3.2 Semantics of the Type Language
Semantics

datatype TYPE =
 AnyType
 | NullType
 | UndefinedType
 | RecordType of (NAME_EXPRESSION * TYPE) list
 | ArrayType of (TYPE list * TYPE option)
 | UnionType of TYPE list
 | FunctionType of FUNCTION_TYPE
 | NonNullType of TYPE
 | AppType of (TYPE * TYPE list)
 | TypeName of (NAME_EXPRESSION * NONCE option)
 | ClassType of CLASS
 | InterfaceType of INTERFACE

and FUNCTION_TYPE =
 { typeParams : IDENTIFIER list,
 thisType : TYPE,
 params : TYPE list,
 minArgs : int,
 hasRest : bool,
 result : TYPE option (* NONE indicates return type is void *)
 }

type NONCE = int

To help avoid name collisions, each type variable bound in a type parameter list is assigned a unique integer, or
nonce. Any reference to that type variable is then resolved into a TypeName that includes that nonce.

3.3 The Subtype and Type Equivalence Relations

3.3.1 The Subtype Relation

The subtype relation is a binary relation on types. It is defined by the collection of subtype rules described below
and in the following subsections.

Subtyping is reflexive, so every type is a subtype of itself.

Subtyping is transitive, so if S is a subtype of T and T is in turn a subtype of U, then S is also a subtype of U.

3.3.2 Implementation of the Subtype Relation

1

2

3

1

2

3

1

1

2

3

core-language.pdf

Matching text on page 17 of other document

Matching text on page 17 of other document

Matching text on page 17 of other document

Matching text on page 17 of other document

Matching text on page 17 of other document

Matching text on page 17 of other document

Matching text on page 17 of other document

Matching text on page 17 of other document

Matching text on page 17 of other document

Matching text on page 17 of other document

Matching text on page 17 of other document

Matching text on page 17 of other document

Matching text on page 17 of other document

Matching text on page 17 of other document

Matching text on page 17 of other document

Matching text on page 17 of other document

Matching text on page 17 of other document

Matching text on page 17 of other document

Matching text on page 17 of other document

Matching text on page 17 of other document

Matching text on page 17 of other document

Matching text on page 17 of other document

Matching text on page 17 of other document

Matching text on page 17 of other document

Matching text on page 17 of other document

Matching text on page 17 of other document

Matching text on page 17 of other document

Matching text on page 17 of other document

Matching text on page 17 of other document

Matching text on page 17 of other document

Matching text on page 17 of other document

Matching text on page 17 of other document

Matching text on page 17 of other document

Matching text on page 17 of other document

Matching text on page 17 of other document

Matching text on page 17 of other document

Matching text on page 17 of other document

Matching text on page 17 of other document

Matching text on page 17 of other document

Matching text on page 17 of other document

Matching text on page 17 of other document

Matching text on page 17 of other document

Matching text on page 17 of other document

Matching text on page 17 of other document

Matching text on page 17 of other document

Matching text on page 17 of other document

Matching text on page 17 of other document

Matching text on page 17 of other document

Matching text on page 17 of other document

Matching text on page 17 of other document

Matching text on page 17 of other document

Matching text on page 17 of other document

Matching text on page 17 of other document

Matching text on page 17 of other document

Matching text on page 17 of other document

Matching text on page 17 of other document

Matching text on page 17 of other document

Matching text on page 17 of other document

Matching text on page 17 of other document

Matching text on page 17 of other document

Matching text on page 17 of other document

Matching text on page 17 of other document

Matching text on page 17 of other document

Matching text on page 17 of other document

Matching text on page 17 of other document

Matching text on page 17 of other document

Matching text on page 17 of other document

Matching text on page 17 of other document

Matching text on page 17 of other document

Matching text on page 17 of other document

Matching text on page 17 of other document

Matching text on page 17 of other document

Matching text on page 17 of other document

Matching text on page 17 of other document

Matching text on page 17 of other document

Matching text on page 17 of other document

Matching text on page 17 of other document

Matching text on page 17 of other document

Matching text on page 15 of other document

Matching text on page 15 of other document

18ECMAScript 4th Edition -- Core Language

07/11/08 16:28:33file://localhost/Work/es4/spec/language.html

 type X.<y1, .., yn> = S

a type application X.<S1, .., Sn> in T is replaced by the type S[y1:=S1, .., yn:=Sn].

In the scope of a class definition that associates a non-nullable instance type name C with a class definition D, type resolution
replaces any TypeName that refers to C with InstanceType D. For references to a nullable instance type, the same
replacement is made, but the result (or the enclosing AppType node, if there is one) is unioned with the null type.

Similarly, in the scope of an interface definition that associates an interface name I with an interface definition D, type
resolution replaces any TypeName that refers to I with InterfaceType D (again, unioned with the null type, if I is a
nullable interface).

3.3.1 Implementation of Type Resolution

The following function resolveTypeNames performs type resolution on a particular type ty in the context of an
environment env.

This function relies on the auxiliary function Fixture.resolveNameExpr (described in section ...) to resolve each type
name. The function Fixture.resolveNameExpr finds the corresponding fixture, and returns a triple containing (1) the
environment that fixture was defined in; (2) the fully-resolved name for the given name expression, and (3) the
corresponding fixture.

If the resulting fixture is for a non-parametric type definition, the body of that type definition is resolved in its environment,
and then replaces the original type name.

If the resulting fixture is for a class or interface definition, the type name is replaced by an instance type or an interface type
(unioned with the type null if the instance or interface type is declared as nullable).

A type application that refers to a type-parametric type definition is replaced by the body of that type definition, after the
replacement of each formal parameter name with the corresponding resolved type argument.

A type application of a type name that refers to a type-parametric instance type or interface type is replaced by a type
application that directly includes that instance or interface type (unioned with the type null if the nominal type is declared
as nullable).

If none of the above cases apply, then resolveTypeNames uses the helper function mapType to perform type name
resolution on each sub-term of the given type.

The function error reports error messages, and the module LogErr contains functions for converting various data
structures into corresponding Strings.

FIXME Is the "LogErr." prefix too verbose on calls to error?

Semantics
fun resolveTypeNames (env : FIXTURE_MAPS)
 (ty : TYPE)
 : TYPE =
 let fun maybeUnionWithNull nonnullable ty =
 if nonnullable then
 ty
 else
 UnionType [ty, NullType]
 fun checkArgs typeArgs typeParams =
 if length typeArgs = length typeParams then
 ()
 else
 error ["Incorrect no of arguments to parametric typedefn"]
 in
 case ty of

 TypeName (nameExpr, _) =>
 let in
 case (Fixture.resolveNameExpr env nameExpr) of

 (envOfDefn, _, TypeFixture ([], typeBody)) =>
 resolveTypeNames envOfDefn typeBody

 | (_, _, ClassFixture (c as Class {nonnullable, typeParams=[], ...})) =>
 maybeUnionWithNull nonnullable (InstanceType c)

 | (_, _,
 InterfaceFixture (i as Interface {nonnullable, typeParams=[], ...})) =>
 maybeUnionWithNull nonnullable (InterfaceType i)

4

5

1

2

3

4

5

6

7

8

9

core-language.pdf

Matching text on page 26 of other document

Matching text on page 26 of other document

Matching text on page 26 of other document

Matching text on page 26 of other document

Matching text on page 26 of other document

Matching text on page 26 of other document

Matching text on page 26 of other document

Matching text on page 26 of other document

Matching text on page 26 of other document

Matching text on page 26 of other document

Matching text on page 26 of other document

Matching text on page 26 of other document

Matching text on page 26 of other document

Matching text on page 26 of other document

Matching text on page 26 of other document

Matching text on page 26 of other document

Matching text on page 26 of other document

Matching text on page 26 of other document

Matching text on page 26 of other document

Matching text on page 26 of other document

Matching text on page 26 of other document

Matching text on page 26 of other document

Matching text on page 26 of other document

Matching text on page 26 of other document

Matching text on page 26 of other document

Matching text on page 26 of other document

Matching text on page 26 of other document

Matching text on page 26 of other document

Matching text on page 26 of other document

Matching text on page 26 of other document

Matching text on page 26 of other document

Matching text on page 26 of other document

Matching text on page 26 of other document

Matching text on page 26 of other document

Matching text on page 26 of other document

Matching text on page 26 of other document

Matching text on page 26 of other document

Matching text on page 26 of other document

Matching text on page 26 of other document

Matching text on page 26 of other document

Matching text on page 26 of other document

Matching text on page 26 of other document

Matching text on page 26 of other document

Matching text on page 26 of other document

Matching text on page 26 of other document

Matching text on page 26 of other document

Matching text on page 26 of other document

Matching text on page 26 of other document

Matching text on page 26 of other document

Matching text on page 26 of other document

Matching text on page 26 of other document

Matching text on page 26 of other document

Matching text on page 26 of other document

Matching text on page 26 of other document

Matching text on page 26 of other document

Matching text on page 26 of other document

Matching text on page 26 of other document

Matching text on page 26 of other document

Matching text on page 26 of other document

Matching text on page 26 of other document

Matching text on page 26 of other document

Matching text on page 26 of other document

Matching text on page 26 of other document

Matching text on page 26 of other document

Matching text on page 26 of other document

Matching text on page 26 of other document

Matching text on page 26 of other document

Matching text on page 26 of other document

Matching text on page 26 of other document

Page 19ECMAScript 4th Edition -- Core Language

16.05.2008 21:39:09file://localhost/C:/src/com.mozilla.es4.smlnj/spec/language.html

The subtype relation is defined by the following function subType. This function takes an additional argument
called extra, which is later used to extend the subtype relation with additional rules (for example, to define the
compatible-subtyping relation below).

Reflexivity is included explicitly in the code below, whereas transitivity is a consequence of the remainder of the
algorithm. This function dispatches to additional subtype functions described in the following subsections.

Semantics

fun subType (extra : TYPE -> TYPE -> bool)
 (type1 : TYPE)
 (type2 : TYPE)
 : bool =
 (type1 = type2) (* reflexivity *) orelse
 (subTypeRecord extra type1 type2) orelse
 (subTypeArray extra type1 type2) orelse
 (subTypeUnion extra type1 type2) orelse
 (subTypeFunction extra type1 type2) orelse
 (subTypeNonNull extra type1 type2) orelse
 (subTypeNullable extra type1 type2) orelse
 (subTypeNominal extra type1 type2) orelse
 (subTypeHierarchy extra type1 type2) orelse
 (subTypeStructuralNominal extra type1 type2) orelse
 (extra type1 type2)

3.3.3 The Type Equivalence Relation

The type equivalence relation is also a binary relation on types. Two types are equivalent if and only if they are
both subtypes of each other.

3.3.3.1 Implementation of the Type Equivalence Relation

The function equivType below checks type equivalence in a straightforward manner by checking subtyping in
both directions. Like subType, equivType also takes an extra parameter.

IMPLEMENTATION NOTE The following implementation is straightforward and sufficies for a specification, but its worst-case time
complexity is exponential in the height of a type, and so this naive approach would be inadequate in an implementation.

Semantics

and equivType (extra : TYPE -> TYPE -> bool)
 (type1 : TYPE)
 (type2 : TYPE)
 : bool =
 (subType extra type1 type2) andalso
 (subType (fn type1 => fn type2 => extra type2 type1)
 type2 type1)

3.3.4 Subtyping Record Types

A record type {N1:S1, .., Nn:Sn} (where each distinct Ni is a name and each Si is a type) is a subtype of
{N1:T1, .., Nm:Tm} if m ≤ n and Si is equivalent to Ti for all i in 1..m.

The ordering of the Name:Type bindings in a record type is irrelevant, and so re-arranging these bindings yields
an equivalent type. In particular, this re-arranging may be necessary in order to make the above rule applicable. The
function nameExpressionEqual checks if two field names are equal.

Semantics

and subTypeRecord extra type1 type2 =
 case (type1, type2) of

 (RecordType fields1, RecordType fields2) =>
 List.all (fn (name1, type1) =>
 List.exists (fn (name2, type2) =>
 nameExpressionEqual name1 name2 andalso

1

2

3

1

1

1

2

3

core-language.pdf

19ECMAScript 4th Edition -- Core Language

07/11/08 16:28:33file://localhost/Work/es4/spec/language.html

 | (_, n, _) => error ["name ", LogErr.name n, " in type expression ",
 LogErr.ty ty, " is not a proper type"]
 end

 | AppType (TypeName (nameExpr, _), typeArgs) =>
 let in
 case Fixture.resolveNameExpr env nameExpr of
 (envOfDefn, _, TypeFixture (typeParams, typeBody)) =>
 let in
 checkArgs typeArgs typeParams;
 resolveTypeNames envOfDefn
 (substTypes typeParams
 (map (resolveTypeNames env)
 typeArgs)
 typeBody)
 end

 | (_, _, ClassFixture (c as Class {nonnullable, typeParams, ...})) =>
 let in
 checkArgs typeArgs typeParams;
 maybeUnionWithNull nonnullable (AppType (InstanceType c, typeArgs))
 end

 | (_, _,
 InterfaceFixture (i as Interface {nonnullable, typeParams, ...})) =>
 let in
 checkArgs typeArgs typeParams;
 maybeUnionWithNull nonnullable (AppType (InterfaceType i, typeArgs))
 end

 | _ => mapType (resolveTypeNames env) ty
 end

 | _ => mapType (resolveTypeNames env) ty
 end

fun mapType (f : TYPE -> TYPE)
 (ty: TYPE)
 : TYPE =
 case ty of
 RecordType fields =>
 RecordType (map (fn (name, ty) => (name, f ty)) fields)
 | UnionType types =>
 UnionType (map f types)
 | ArrayType (types, restType) =>
 ArrayType (map f types, Option.map f restType)
 | FunctionType { typeParams, params, result, thisType, hasRest, minArgs } =>
 FunctionType { typeParams = typeParams,
 params = map f params,
 result = Option.map f result,
 thisType = f thisType,
 hasRest = hasRest,
 minArgs = minArgs }
 | NonNullType ty =>
 NonNullType (f ty)
 | AppType (base, args) =>
 AppType (f base, map f args)
 | _ => ty

3.3.2 Resolved Types

A resolved type is one that is the result of the preceding type resolution process.

Resolved types do not include:

type names that refer to instance or interface types (InstanceType and InterfaceType are used instead)
type names that refer to type abbreviations (which are inlined)

Resolved types may include type names that refer to type parameters; these references include a nonce.

3.4 The Subtype and Type Equivalence Relations

3.4.1 The Subtype Relation

1

2

3

core-language.pdf

Matching text on page 26 of other document

Matching text on page 26 of other document

Matching text on page 26 of other document

Matching text on page 26 of other document

Matching text on page 26 of other document

Matching text on page 26 of other document

Matching text on page 26 of other document

Matching text on page 26 of other document

Matching text on page 26 of other document

Matching text on page 26 of other document

Matching text on page 27 of other document

Matching text on page 27 of other document

Matching text on page 27 of other document

Matching text on page 27 of other document

Matching text on page 27 of other document

Matching text on page 27 of other document

Matching text on page 27 of other document

Matching text on page 27 of other document

Matching text on page 27 of other document

Matching text on page 27 of other document

Matching text on page 27 of other document

Matching text on page 27 of other document

Matching text on page 27 of other document

Matching text on page 27 of other document

Matching text on page 27 of other document

Matching text on page 27 of other document

Matching text on page 27 of other document

Matching text on page 27 of other document

Matching text on page 27 of other document

Matching text on page 27 of other document

Matching text on page 27 of other document

Matching text on page 27 of other document

Matching text on page 27 of other document

Matching text on page 27 of other document

Matching text on page 27 of other document

Matching text on page 27 of other document

Matching text on page 27 of other document

Matching text on page 27 of other document

Matching text on page 27 of other document

Matching text on page 27 of other document

Matching text on page 27 of other document

Matching text on page 27 of other document

Matching text on page 27 of other document

Matching text on page 27 of other document

Matching text on page 27 of other document

Matching text on page 27 of other document

Matching text on page 27 of other document

Matching text on page 27 of other document

Matching text on page 27 of other document

Matching text on page 27 of other document

Matching text on page 27 of other document

Page 20ECMAScript 4th Edition -- Core Language

16.05.2008 21:39:09file://localhost/C:/src/com.mozilla.es4.smlnj/spec/language.html

 equivType extra type1 type2)
 fields2)
 fields1

 | _ => false

fun nameExpressionEqual (name1 : NAME_EXPRESSION)
 (name2 : NAME_EXPRESSION)
 : bool
 = …

3.3.5 Subtyping Array Types

A fixed-length array type [S1, .., Sn, S] is a subtype of [S1, .., Sn]. The supertype demands one
fewer element in the array than the subtype does. For example, [Number, String, String] is a subtype of
[Number, String].

A fixed-length array type [S1, .., Sn] is a subtype of [T1, .., Tn] if each Si is equivalent to Ti for i in
1..n.

A variable-length array type [S1, .., Sn, S, ... S] is a subtype of [S1, .., Sn, ... S]. The
supertype demands one fewer element in the array than the subtype does. For example, [Number, String,
String, ... String] is a subtype of [Number, ... String], via transitivity.

NOTE Since... denotes concrete syntax, we use the meta-syntax S1, .., Sn to denote a sequence of zero-or-more comma-separated

types.

A variable-length array type [S1, .., Sn, ... S] is a subtype of [T1, .., Tn, ... T] if S is
equivalent to T and if each Si is equivalent to Ti for i in 1..n.

Via transitivity, the above rules may be applied multiple times, in various combinations. The following code
combines all of these rules into a single deterministic algorithm for array subtyping.

Semantics

and subTypeArray extra type1 type2 =
 case (type1, type2) of

 (ArrayType (types1, rest1),
 ArrayType (types2, rest2))
 =>
 let
 val min = Int.min(length types1, length types2)
 in
 ListPair.all (fn (type1, type2) => equivType extra type1 type2)
 (List.take(types1, min),
 List.take(types2, min))
 andalso
 (case (rest1, rest2) of
 (NONE, NONE) => length types1 >= length types2
 | (NONE, SOME _) => false
 | (SOME _, NONE) => false
 | (SOME t1, SOME t2) =>
 length types1 >= length types2 andalso
 equivType extra t1 t2 andalso
 List.all (fn types1 => equivType extra type1 t2)
 (List.drop(types1, length types2)))
 end

 | _ => false

3.3.6 Subtyping Union Types

1

2

3

4

5

6

core-language.pdf

20ECMAScript 4th Edition -- Core Language

07/11/08 16:28:33file://localhost/Work/es4/spec/language.html

The subtype relation is a binary relation on types. It is defined by the collection of subtype rules described below and in the
following subsections.

Subtyping is reflexive, so every type is a subtype of itself.

Subtyping is transitive, so if S is a subtype of T and T is in turn a subtype of U, then S is also a subtype of U.

3.4.2 Implementation of the Subtype Relation

The subtype relation is defined by the following function subType. This function takes an additional argument called
extra, which is later used to extend the subtype relation with additional rules (for example, to define the compatible-
subtyping relation below).

Reflexivity is included explicitly in the code below, whereas transitivity is a consequence of the remainder of the algorithm.
This function dispatches to additional subtype functions described in the following subsections.

Semantics
fun subType (extra : TYPE -> TYPE -> bool)
 (type1 : TYPE)
 (type2 : TYPE)
 : bool =
 (type1 = type2) orelse
 (subTypeRecord extra type1 type2) orelse
 (subTypeArray extra type1 type2) orelse
 (subTypeUnion extra type1 type2) orelse
 (subTypeFunction extra type1 type2) orelse
 (subTypeNominal extra type1 type2) orelse
 (subTypeStructuralNominal extra type1 type2) orelse
 (extra type1 type2)

3.4.3 The Type Equivalence Relation

The type equivalence/ relation is also a binary relation on types. Two types are equivalent if and only if they are both
subtypes of each other.

3.4.3.1 Implementation of the Type Equivalence Relation

The function equivType below checks type equivalence in a straightforward manner by checking subtyping in both
directions. Like subType, equivType also takes an extra parameter.
IMPLEMENTATION NOTE The following implementation is straightforward and sufficies for a specification, but its worst-case time complexity is
exponential in the height of a type, and so this naive approach would be inadequate in an implementation.

Semantics
and equivType (extra : TYPE -> TYPE -> bool)
 (type1 : TYPE)
 (type2 : TYPE)
 : bool =
 (subType extra type1 type2) andalso
 (subType (fn type1 => fn type2 => extra type2 type1)
 type2 type1)

3.4.4 Subtyping Record Types

A record type {N1:S1, .., Nn:Sn} (where each distinct Ni is a name and each Si is a type) is a subtype of
{N1:T1, .., Nm:Tm} if m ≤ n and Si is equivalent to Ti for all i in 1..m.

The ordering of the Name:Type bindings in a record type is irrelevant, and so re-arranging these bindings yields an
equivalent type. In particular, this re-arranging may be necessary in order to make the above rule applicable. The function
nameExpressionEqual checks if two field names are equal.

Semantics
and subTypeRecord extra type1 type2 =
 case (type1, type2) of

 (RecordType fields1, RecordType fields2) =>
 List.all (fn (name2, type2) =>
 List.exists (fn (name1, type1) =>
 nameExpressionEqual name2 name1 andalso
 equivType extra type2 type1)
 fields1)
 fields2

1

2

3

1

2

3

1

1

1

2

3

core-language.pdf

Page 21ECMAScript 4th Edition -- Core Language

16.05.2008 21:39:09file://localhost/C:/src/com.mozilla.es4.smlnj/spec/language.html

A union type (S1 | .. | Sn) is a subtype of a type T if Si is a subtype of T for all i in 1..n.

A type S is a subtype of (T1 | .. | Tn) if there exists some i in 1..n such that S is a subtype of Ti.

Semantics

and subTypeUnion extra type1 type2 =
 case (type1, type2) of

 (UnionType types1, type2)
 => List.all (fn type1 => subType extra type1 type2) types1

 | (type1, UnionType types2)
 => List.exists (fn type2 => subType extra type1 type2) types2

 | _ => false

3.3.7 Subtyping Function Types

A function type function(S1, .., Sn) : U is a subtype of function(T1, .., Tn) : R if U is a
subtype of R and Si is equivalent to Ti for all i in 1..m.

NOTE Function subtyping is invariant in the argument position, and covariant in the result type.

This rule generalizes to this arguments, default arguments, and rest arguments according to the following rule,
where the number of default arguments (indicated via the = symbol) in each function type may be zero, and where
[...] indicates an optional rest argument. A function type

 function(this:S
1
, S

2
, .., S

n
, S

n+1
=, .., S

m
=, [...]) : U

is a subtype of

 function(this:T
1
, T

2
, .., T

p
, T

p+1
=, .., T

q
=, [...]) : R

if U is a subtype of R and n ≤ p and Si is equivalent to Ti for all i in 1..min(q,m). In addition:

If neither function type has a rest argument, then we require that q ≤ m.
If only the first function type has a rest argument, then no additional conditions are needed.
If only the second function type has a rest argument, then subtyping does not hold.
If both function types have a rest argument, then Si must be equivalent to the any type * for all i in (q+1)
..m.

For generic functions, alpha-renaming of the type variable preserves the meaning of types. Moreover,

 function.<X
1
,..,X

n
> (argtypes1) : R1

is a subtype of

 function.<X
1
,..,X

n
> (argtypes2) : R2

if and only if

 function(argtypes1) : R1

is a subtype of

 function(argtypes2) : R2

Hence, to check subtyping between generic functions, we alpha-rename the type variables to be identical in both
types, and then proceed to check subtyping on the non-generic versions of the two function types.

1

2

3

1

2

3

core-language.pdf

21ECMAScript 4th Edition -- Core Language

07/11/08 16:28:33file://localhost/Work/es4/spec/language.html

 | _ => false

fun nameExpressionEqual (name1 : NAME_EXPRESSION)
 (name2 : NAME_EXPRESSION)
 : bool
 = …

3.4.5 Subtyping Array Types

A fixed-length array type [S1, .., Sn, S] is a subtype of [S1, .., Sn]. The supertype demands one fewer
element in the array than the subtype does. For example, [Number, String, Boolean] is a subtype of [Number,
String].

A fixed-length array type [S1, .., Sn] is a subtype of [T1, .., Tn] if each Si is equivalent to Ti for i in 1..n.

A variable-length array type [S1, .., Sn, S, ... S] is a subtype of [S1, .., Sn, ... S]. The supertype
demands one fewer element in the array than the subtype does. For example, [Number, String, Boolean, ...
Function] is a subtype of [Number, ... Function], via transitivity.

NOTE Since ... denotes concrete syntax, we use the meta-syntax S1, .., Sn to denote a sequence of zero-or-more comma-separated types.

A variable-length array type [S1, .., Sn, ... S] is a subtype of [T1, .., Tn, ... T] if S is equivalent to T
and if each Si is equivalent to Ti for i in 1..n.

Via transitivity, the above rules may be applied multiple times, in various combinations. The following code combines all of
these rules into a single deterministic algorithm for array subtyping.

Semantics
and subTypeArray extra type1 type2 =
 case (type1, type2) of

 (ArrayType (types1, rest1),
 ArrayType (types2, rest2))
 =>
 let
 val min = Int.min(length types1, length types2)
 in
 ListPair.all (fn (type1, type2) => equivType extra type1 type2)
 (List.take(types1, min),
 List.take(types2, min))
 andalso
 (case (rest1, rest2) of
 (NONE, NONE) => length types1 >= length types2
 | (NONE, SOME _) => false
 | (SOME _, NONE) => false
 | (SOME t1, SOME t2) =>
 length types1 >= length types2 andalso
 equivType extra t1 t2 andalso
 List.all (fn types1 => equivType extra type1 t2)
 (List.drop(types1, length types2)))
 end

 | _ => false

3.4.6 Subtyping Union Types

A union type (S1 | .. | Sn) is a subtype of a type T if Si is a subtype of T for all i in 1..n.

A type S is a subtype of (T1 | .. | Tn) if there exists some i in 1..n such that S is a subtype of Ti.

Semantics
and subTypeUnion extra type1 type2 =
 case (type1, type2) of

 (UnionType types1, type2)
 => List.all (fn type1 => subType extra type1 type2) types1

 | (type1, UnionType types2)
 => List.exists (fn type2 => subType extra type1 type2) types2

1

2

3

4

5

6

1

2

3

core-language.pdf

Matching text on page 27 of other document

Matching text on page 27 of other document

Matching text on page 27 of other document

Page 22ECMAScript 4th Edition -- Core Language

16.05.2008 21:39:09file://localhost/C:/src/com.mozilla.es4.smlnj/spec/language.html

The types in a subtype relation may contain free type variables, which are assumed to denote the same unknown
type in both arguments to the subtype relation. For example, within the scope of a binding for a type variable X, the
type [X, ... X] is a subtype of the type [... X].

Semantics

and subTypeFunction extra type1 type2 =
 case (type1, type2) of

 (FunctionType
 { typeParams = typeParams1, params = params1,
 result = result1, thisType = thisType1,
 hasRest = hasRest1, minArgs = minArgs1 },
 FunctionType
 { typeParams = typeParams2, params = params2,
 result = result2, thisType = thisType2,
 hasRest = hasRest2, minArgs = minArgs2 })
 =>
 (* set up a substitution to alpha-rename typeParams to be identical *)
 let
 val subst = rename typeParams1 typeParams2
 val min = Int.min(length params1, length params2)
 in
 length typeParams1 = length typeParams2
 andalso
 (case (result1, result2) of
 (SOME type1, SOME type2) => subType extra type1 (subst type2)
 | (NONE, NONE) => true)
 andalso
 equivType extra thisType1 (subst thisType2)
 andalso
 minArgs1 <= minArgs2
 andalso
 ListPair.all (fn (type1, type2) => equivType extra type1 (subst type2))
 (List.take(params1, min),
 List.take(params2, min))
 andalso
 (case (hasRest1, hasRest2) of
 (false, false) => length params2 <= length params1
 | (true, false) => true
 | (false, true) => false
 | (true, true) =>
 List.all (fn t => equivType extra t AnyType)
 (List.drop(params1, min)))
 end

 | _ => false

The following function rename performs the capture-free substitution of references to any of the identifiers in
typeParams1 with references to the corresponding identifier in typeParams2 in the type ty.

Semantics

fun rename (typeParams1 : IDENTIFIER list)
 (typeParams2 : IDENTIFIER list)
 (ty : TYPE)
 : TYPE
 = …

3.3.8 Subtyping Non-Null Types

A non-null type !S is a subtype of type T if S is a subtype of the union type (T | null).

A type S is a subtype of a non-null type !T if S is a subtype of T and the type null is not a subtype of S.

4

5

6

7

1

2

core-language.pdf

Matching text on page 22 of other document

Matching text on page 22 of other document

Matching text on page 22 of other document

Matching text on page 22 of other document

Matching text on page 22 of other document

Matching text on page 22 of other document

Matching text on page 22 of other document

Matching text on page 22 of other document

Matching text on page 22 of other document

Matching text on page 22 of other document

Matching text on page 22 of other document

Matching text on page 22 of other document

Matching text on page 22 of other document

Matching text on page 22 of other document

Matching text on page 22 of other document

Matching text on page 22 of other document

Matching text on page 22 of other document

Matching text on page 22 of other document

Matching text on page 22 of other document

Matching text on page 22 of other document

Matching text on page 22 of other document

Matching text on page 22 of other document

Matching text on page 22 of other document

Matching text on page 22 of other document

Matching text on page 22 of other document

Matching text on page 22 of other document

Matching text on page 22 of other document

Matching text on page 22 of other document

Matching text on page 22 of other document

Matching text on page 22 of other document

Matching text on page 22 of other document

Matching text on page 22 of other document

Matching text on page 22 of other document

Matching text on page 22 of other document

Matching text on page 22 of other document

Matching text on page 22 of other document

Matching text on page 22 of other document

Matching text on page 22 of other document

Matching text on page 22 of other document

Matching text on page 22 of other document

Matching text on page 22 of other document

Matching text on page 22 of other document

Matching text on page 22 of other document

Matching text on page 22 of other document

Matching text on page 22 of other document

Matching text on page 22 of other document

Matching text on page 22 of other document

Matching text on page 22 of other document

Matching text on page 22 of other document

Matching text on page 22 of other document

22ECMAScript 4th Edition -- Core Language

07/11/08 16:28:33file://localhost/Work/es4/spec/language.html

 | _ => false

3.4.7 Subtyping Function Types

A function type function(S1, .., Sn) : U is a subtype of function(T1, .., Tn) : R if U is a subtype of R
and Si is equivalent to Ti for all i in 1..m.

NOTE Function subtyping is invariant in the argument position, and covariant in the result type.

This rule generalizes to this arguments, default arguments, and rest arguments according to the following rule, where the
number of default arguments (indicated via the = symbol) in each function type may be zero, and where [...] indicates an
optional rest argument. A function type

 function(this:S1, S2, .., Sn, Sn+1=, .., Sm=, [...]) : U

is a subtype of

 function(this:T1, T2, .., Tp, Tp+1=, .., Tq=, [...]) : R

if U is a subtype of R and n ≤ p and Si is equivalent to Ti for all i in 1..min(q,m). In addition:

If neither function type has a rest argument, then we require that q ≤m.
If only the first function type has a rest argument, then no additional conditions are needed.
If only the second function type has a rest argument, then subtyping does not hold.
If both function types have a rest argument, then Si must be equivalent to the any type * for all i in (q+1)..m.

For type-parametric functions, alpha-renaming of the type variable preserves the meaning of types. Moreover,

 function.<X1,..,Xn> (argtypes1) : R1

is a subtype of

 function.<X1,..,Xn> (argtypes2) : R2

if and only if

 function(argtypes1) : R1

is a subtype of

 function(argtypes2) : R2

Hence, to check subtyping between type-parametric functions, we alpha-rename the type variables to be identical in both
types, and then proceed to check subtyping on the non-type-parametric versions of the two function types.

The types in a subtype relation may contain free type variables, which are assumed to denote the same unknown type in both
arguments to the subtype relation. For example, within the scope of a binding for a type variable X, the type [X, ... X]
is a subtype of the type [... X].

Semantics
and subTypeFunction extra type1 type2 =
 case (type1, type2) of

 (FunctionType
 { typeParams = typeParams1, params = params1,
 result = result1, thisType = thisType1,
 hasRest = hasRest1, minArgs = minArgs1 },
 FunctionType
 { typeParams = typeParams2, params = params2,
 result = result2, thisType = thisType2,
 hasRest = hasRest2, minArgs = minArgs2 })
 =>
 (* set up a substitution to alpha-rename typeParams to be identical *)
 let
 val subst = rename typeParams1 typeParams2
 val min = Int.min(length params1, length params2)
 in
 length typeParams1 = length typeParams2
 andalso
 (case (result1, result2) of

1

2

3

4

5

core-language.pdf

Matching text on page 22 of other document

Matching text on page 22 of other document

Matching text on page 22 of other document

Matching text on page 22 of other document

Matching text on page 22 of other document

Matching text on page 22 of other document

Matching text on page 22 of other document

Matching text on page 22 of other document

Matching text on page 22 of other document

Matching text on page 22 of other document

Matching text on page 22 of other document

Matching text on page 22 of other document

Matching text on page 22 of other document

Matching text on page 22 of other document

Matching text on page 22 of other document

Matching text on page 22 of other document

Matching text on page 22 of other document

Matching text on page 22 of other document

Matching text on page 22 of other document

Matching text on page 22 of other document

Matching text on page 22 of other document

Matching text on page 22 of other document

Matching text on page 22 of other document

Matching text on page 22 of other document

Matching text on page 22 of other document

Matching text on page 22 of other document

Matching text on page 22 of other document

Matching text on page 22 of other document

Matching text on page 22 of other document

Matching text on page 22 of other document

Matching text on page 22 of other document

Matching text on page 22 of other document

Matching text on page 22 of other document

Matching text on page 22 of other document

Matching text on page 22 of other document

Matching text on page 22 of other document

Matching text on page 22 of other document

Matching text on page 22 of other document

Matching text on page 22 of other document

Matching text on page 22 of other document

Matching text on page 22 of other document

Matching text on page 22 of other document

Page 23ECMAScript 4th Edition -- Core Language

16.05.2008 21:39:09file://localhost/C:/src/com.mozilla.es4.smlnj/spec/language.html

Semantics

and subTypeNonNull extra type1 type2 =
 case (type1, type2) of

 (NonNullType type1, type2) =>
 subType extra type1 (UnionType [type2, NullType])

 | (type1, NonNullType type2) =>
 subType extra type1 type2 andalso
 not (subType extra NullType type1)

 | _ => false

3.3.9 Subtyping Nullable Nominal Types

A nominal type C (or C.<T1, .., Tn>) can be declared as a non-null type via any of the following
declarations:

 class C! ..
 class C.<X

1
, .., X

n
>! ..

 interface C! ..
 interface C.<X

1
, .., X

n
>! ..

A nominal type is nullable if it is not a non-null type.

The type null is a subtype of any nullable nominal type.

Semantics

and subTypeNullable extra type1 type2 =
 case (type1, type2) of

 (NullType,
 ClassType (Class { nonnullable = false, ... }))
 => true

 | (NullType,
 AppType (ClassType (Class { nonnullable = false, ... }), typeArgs))
 => true

 | (NullType,
 InterfaceType (Interface { nonnullable = false, ... }))
 => true

 | (NullType,
 AppType (InterfaceType (Interface { nonnullable = false, ...}), typeArgs))
 => true

 | _ => false

3.3.10 Subtyping Nominal Types

Given a class definition

 class C extends D implements I
1
, .., I

n
 { ... }

the type C is a subtype of D, and C is also a subtype of Ij for j in 1..n.

Given an interface definition

 interface K extends I
1
, .., I

n
 { ... }

3

1

2

3

4

1

2

core-language.pdf

Matching text on page 16 of other document

Matching text on page 16 of other document

23ECMAScript 4th Edition -- Core Language

07/11/08 16:28:33file://localhost/Work/es4/spec/language.html

 (SOME type1, SOME type2) => subType extra type1 (subst type2)
 | (NONE, NONE) => true)
 andalso
 equivType extra thisType1 (subst thisType2)
 andalso
 minArgs1 <= minArgs2
 andalso
 ListPair.all (fn (type1, type2) => equivType extra type1 (subst type2))
 (List.take(params1, min),
 List.take(params2, min))
 andalso
 (case (hasRest1, hasRest2) of
 (false, false) => length params2 <= length params1
 | (true, false) => true
 | (false, true) => false
 | (true, true) =>
 List.all (fn t => equivType extra t AnyType)
 (List.drop(params1, min)))
 end

 | _ => false

The following function rename performs the capture-free substitution of references to any of the identifiers in
typeParams1 with references to the corresponding identifier in typeParams2 in the type ty.

Semantics
fun rename (typeParams1 : IDENTIFIER list)
 (typeParams2 : IDENTIFIER list)
 (ty : TYPE)
 : TYPE
 = …

3.4.8 Subtyping Nominal Types

Given a class definition

 class C extends D implements I1, .., In { ... }

the instance type C is a subtype of instance type D, and instance type C is also a subtype of interface type Ij for j in 1..n.

Given an interface definition

 interface K extends I1, .., In { ... }

the type K is a subtype of Ij for j in 1..m.

These rules generalize to applications of type-parametric instance and interface types via appropriate renaming of bound
variables. For example, given a type-parametric interface type defined by

 class C.<x1, .., xn> extends D.<T1, .., Tm> { ... }

we have that C.<S1, .., Sn> is a subtype of

 D.<T1[x1:=S1,..,xn:=Sn], .., Tm[x1:=S1,..,xn:=Sn]>

Also, C.<T1, .., Tn> is a subtype of C.<S1, .., Sn> if each type Ti is equivalent to the corresponding type Si for
i in 1..n.

NOTE The notation T[x1:=S1,..,xn:=Sn] denotes the type T with each occurrence of the type variable xi replaced (in a capture-free

manner) by the corresponding type Si.

NOTE The above rules also apply if C is declared as a non-nullable instance type.

NOTE There is a distinction between the type name C and the instance type to which it refers, in that the type name C includes the type null if C is a
nullable type, whereas the instance type C describes only class instances.

Semantics
and subTypeNominal extra type1 type2 =
 case (type1, type2) of

 (InstanceType (Class { typeParams = [], extends, implements, ...}), _)
 => (case extends of

6

7

1

2

3

4

5

core-language.pdf

Matching text on page 24 of other document

Matching text on page 24 of other document

Page 24ECMAScript 4th Edition -- Core Language

16.05.2008 21:39:09file://localhost/C:/src/com.mozilla.es4.smlnj/spec/language.html

the type K is a subtype of Ij for j in 1..m.

These rules generalize to applications of generic classes and interfaces via appropriate renaming of bound
variables. For example, given a generic class definition

 class C.<x
1
, .., x

n
> extends D.<T

1
, .., T

m
> { ... }

we have that C.<S1, .., Sn> is a subtype of

 D.<T
1
[x

1
:=S

1
,..,x

n
:=S

n
], .., T

m
[x

1
:=S

1
,..,x

n
:=S

n
]>

Also, C.<T1, .., Tn> is a subtype of C.<S1, .., Sn> if each type Ti is equivalent to the corresponding
type Si for i in 1..n.

NOTE The notationT[x1:=S1,..,xn:=Sn] denotes the typeT with each occurrence of the type variablexi replaced (in a capture-

free manner) by the corresponding typeSi.

Semantics

and subTypeNominal extra type1 type2 =
 case (type1, type2) of

 (AppType (typeConstructor1, typeArgs1),
 AppType (typeConstructor2, typeArgs2))
 =>
 typeConstructor1 = typeConstructor2 andalso
 length typeArgs1 = length typeArgs2 andalso
 ListPair.all
 (fn (type1, type2) => equivType extra type1 type2)
 (typeArgs1, typeArgs2)

 | _ => false

and subTypeHierarchy extra type1 type2 =
 case (type1, type2) of

 (ClassType (Class { typeParams = [], extends, implements, ...}), _)
 => (case extends of
 NONE => false
 | SOME extends => subType extra extends type2)
 orelse
 List.exists
 (fn iface => subType extra iface type2)
 implements

 | (AppType
 (ClassType (Class { typeParams, extends, implements, ...}),
 typeArgs),
 _)
 => (case extends of
 NONE => false
 | SOME extends => subType extra
 (substTypes typeParams typeArgs extends)
 type2)
 orelse
 List.exists
 (fn iface => subType extra
 (substTypes typeParams typeArgs iface)
 type2)
 implements

 | (InterfaceType (Interface { typeParams = [], extends, ...}), _)
 => List.exists

3

4

5

core-language.pdf

Matching text on page 23 of other document

Matching text on page 23 of other document

Matching text on page 23 of other document

Matching text on page 23 of other document

Matching text on page 23 of other document

Matching text on page 23 of other document

Matching text on page 23 of other document

Matching text on page 23 of other document

Matching text on page 23 of other document

Matching text on page 23 of other document

Matching text on page 23 of other document

Matching text on page 23 of other document

Matching text on page 23 of other document

Matching text on page 23 of other document

Matching text on page 23 of other document

Matching text on page 23 of other document

Matching text on page 23 of other document

Matching text on page 23 of other document

Matching text on page 23 of other document

Matching text on page 23 of other document

Matching text on page 23 of other document

Matching text on page 23 of other document

Matching text on page 23 of other document

Matching text on page 24 of other document

Matching text on page 24 of other document

Matching text on page 24 of other document

Matching text on page 24 of other document

Matching text on page 24 of other document

Matching text on page 24 of other document

Matching text on page 24 of other document

Matching text on page 24 of other document

Matching text on page 24 of other document

Matching text on page 24 of other document

Matching text on page 24 of other document

Matching text on page 24 of other document

Matching text on page 24 of other document

Matching text on page 24 of other document

Matching text on page 24 of other document

Matching text on page 24 of other document

Matching text on page 24 of other document

Matching text on page 24 of other document

Matching text on page 24 of other document

Matching text on page 24 of other document

Matching text on page 24 of other document

Matching text on page 24 of other document

Matching text on page 24 of other document

Matching text on page 24 of other document

Matching text on page 24 of other document

Matching text on page 24 of other document

Matching text on page 24 of other document

Matching text on page 24 of other document

Matching text on page 24 of other document

Matching text on page 24 of other document

24ECMAScript 4th Edition -- Core Language

07/11/08 16:28:33file://localhost/Work/es4/spec/language.html

 NONE => false
 | SOME extends => subType extra extends type2)
 orelse
 List.exists
 (fn iface => subType extra iface type2)
 implements

 | (AppType
 (InstanceType (Class { typeParams, extends, implements, ...}),
 typeArgs),
 _)
 => (case extends of
 NONE => false
 | SOME extends => subType extra
 (substTypes typeParams typeArgs extends)
 type2)
 orelse
 List.exists
 (fn iface => subType extra
 (substTypes typeParams typeArgs iface)
 type2)
 implements

 | (InterfaceType (Interface { typeParams = [], extends, ...}), _)
 => List.exists
 (fn iface => subType extra iface type2)
 extends

 | (AppType
 (InterfaceType (Interface { typeParams, extends, ...}),
 typeArgs),
 _)
 => List.exists
 (fn iface => subType extra
 (substTypes typeParams typeArgs iface)
 type2)
 extends

 | (AppType (typeConstructor1, typeArgs1),
 AppType (typeConstructor2, typeArgs2))
 =>
 typeConstructor1 = typeConstructor2 andalso
 length typeArgs1 = length typeArgs2 andalso
 ListPair.all
 (fn (type1, type2) => equivType extra type1 type2)
 (typeArgs1, typeArgs2)

 | _ => false

The following function substTypes performs the capture-free replacement of all occurrences of typeParams by
typeArgswithin the type ty.

fun substTypes (typeParams : IDENTIFIER list)
 (typeArgs : TYPE list)
 (ty : TYPE)
 : TYPE
 = …

3.4.9 Relating Structural and Nominal Types

A record type {N1:S1, .., Nn:Sn} is a subtype of the instance type public::Object.

An array type [S1, .., Sn] is a subtype of the instance type public::Array, which is a subtype of the instance type
public::Object.

Any function type is a subtype of the instance type public::Function, which is a subtype of the instance type
public::Object.

Semantics
and subTypeStructuralNominal extra type1 type2 =
 case (type1, type2) of

 (RecordType _, InstanceType (Class { name, ... }))
 => nameEq name Name.public_Object

 | (ArrayType _, InstanceType (Class { name, ... }))

1

2

3

4

core-language.pdf

Matching text on page 24 of other document

Matching text on page 24 of other document

Matching text on page 24 of other document

Matching text on page 24 of other document

Matching text on page 24 of other document

Matching text on page 24 of other document

Matching text on page 24 of other document

Matching text on page 24 of other document

Matching text on page 24 of other document

Matching text on page 24 of other document

Matching text on page 24 of other document

Matching text on page 24 of other document

Matching text on page 24 of other document

Matching text on page 24 of other document

Matching text on page 24 of other document

Matching text on page 24 of other document

Matching text on page 24 of other document

Matching text on page 24 of other document

Matching text on page 24 of other document

Matching text on page 24 of other document

Matching text on page 24 of other document

Matching text on page 24 of other document

Matching text on page 24 of other document

Matching text on page 24 of other document

Matching text on page 24 of other document

Matching text on page 24 of other document

Matching text on page 24 of other document

Matching text on page 24 of other document

Matching text on page 24 of other document

Matching text on page 24 of other document

Matching text on page 24 of other document

Matching text on page 24 of other document

Matching text on page 24 of other document

Matching text on page 24 of other document

Matching text on page 24 of other document

Matching text on page 24 of other document

Matching text on page 24 of other document

Matching text on page 24 of other document

Matching text on page 24 of other document

Matching text on page 24 of other document

Matching text on page 24 of other document

Matching text on page 24 of other document

Matching text on page 24 of other document

Page 25ECMAScript 4th Edition -- Core Language

16.05.2008 21:39:09file://localhost/C:/src/com.mozilla.es4.smlnj/spec/language.html

 (fn iface => subType extra iface type2)
 extends

 | (AppType
 (InterfaceType (Interface { typeParams, extends, ...}),
 typeArgs),
 _)
 => List.exists
 (fn iface => subType extra
 (substTypes typeParams typeArgs iface)
 type2)
 extends

 | _ => false

The following function substTypes performs the capture-free replacement of all occurrences of typeParams
by typeArgs within the type ty.

fun substTypes (typeParams : IDENTIFIER list)
 (typeArgs : TYPE list)
 (ty : TYPE)
 : TYPE
 = …

3.3.11 Relating Structural and Nominal Types

A record type {N1:S1, .., Nn:Sn} is a subtype of the class type public::Object.

An array type [S1, .., Sn] is a subtype of the class type public::Array.

Any function type is a subtype of the class type public::Function.

Semantics

and subTypeStructuralNominal extra type1 type2 =
 case (type1, type2) of

 (RecordType _, ClassType (Class { name, ... }))
 => nameEq name Name.public_Object

 | (ArrayType _, ClassType (Class { name, ... }))
 => nameEq name Name.public_Array orelse
 nameEq name Name.public_Object

 | (FunctionType _, ClassType (Class { name, ... }))
 => nameEq name Name.public_Function orelse
 nameEq name Name.public_Object

 | _ => false

3.4 Type Normalization

At run-time, when a type T is encountered in the source program, that type is immediately normalized. Type
normalization consists of two phases: type resolution followed by type canonicalization.

3.4.1 Type Resolution

Type resolution on a type T proceeds as follows:

In the scope of a type definition

 type X = S

any reference to a type variable X in T is replaced by the type S.

1

2

3

4

1

1

2

core-language.pdf

Matching text on page 24 of other document

Matching text on page 24 of other document

Matching text on page 24 of other document

Matching text on page 24 of other document

Matching text on page 24 of other document

Matching text on page 24 of other document

Matching text on page 24 of other document

Matching text on page 24 of other document

Matching text on page 24 of other document

Matching text on page 24 of other document

Matching text on page 24 of other document

Matching text on page 24 of other document

Matching text on page 24 of other document

Matching text on page 24 of other document

Matching text on page 24 of other document

Matching text on page 24 of other document

Matching text on page 24 of other document

Matching text on page 24 of other document

Matching text on page 24 of other document

Matching text on page 24 of other document

Matching text on page 24 of other document

Matching text on page 24 of other document

Matching text on page 17 of other document

Matching text on page 17 of other document

Matching text on page 17 of other document

Matching text on page 17 of other document

Matching text on page 17 of other document

Matching text on page 17 of other document

Matching text on page 17 of other document

Matching text on page 17 of other document

Matching text on page 17 of other document

Matching text on page 17 of other document

Matching text on page 17 of other document

25ECMAScript 4th Edition -- Core Language

07/11/08 16:28:33file://localhost/Work/es4/spec/language.html

 => nameEq name Name.public_Array orelse
 nameEq name Name.public_Object

 | (FunctionType _, InstanceType (Class { name, ... }))
 => nameEq name Name.public_Function orelse
 nameEq name Name.public_Object

 | _ => false

3.5 Compatible Types
The compatibility relation is a binary relation on type values. A type S is compatible with a type T if T can be obtained from
S by replacing certain portions of S by the any type *.

For example, the record type {x : double} is compatible with both {x : *} and with *, but the type {x : *} is not
compatible with {x : double}.

Also, T.<Number> is compatible with T.<*>.

This compatibility relation is reflexive and transitive, but not symmetric.

3.6 Compatible-Subtyping
The compatible-subtype relation is a binary relation on types. A type S is a compatible-subtype of a type T if there exists
some type U such that S is a subtype of U and U compatible with T.

For example, the record type {x : double, y : boolean} is a compatible-subtype of the types {x : *, y :
*}, {x : double}, {x : *}, and *.

The compatible-subtyping relation is reflexive and transitive, but not symmetric.

The compatible-subtyping relation is implemented by calling the previously-defined subType predicate and passing in an
extra parameter that implements the compatibility relation, that every type is compatible with *.

Semantics
fun compatibleSubtype (type1 : TYPE) (type2 : TYPE) : bool =
 subType
 (fn type1 => fn type2 => type2 = AnyType)
 type1 type2

3.7 Type Invariants at Run Time
A type is allocatable if it is not the any type or a union type.

Every value in ES has an associated allocated type, which is a type that is associated with the value when the value is first
allocated or created. An allocated type is always an allocatable type. The allocated type of a value is invariant; for example,
updating the fields of an object cannot change the allocated type of that object.

If a property of storage type T hold a value v of type S, then S is a compatible-subtype of T.

4 Names
Names in ECMAScript are defined in section ...names.

Names are used to identify properties within property maps and fixtures within fixture maps.

A name is calculated from a name expression found in ECMAScript source code.

4.1 Name Expressions
A name expresison is either qualified or unqualified.

A qualified name expression consists of a namespace expression and an identifier. The former is either a literal namespace
value (resulting from using a string as a namespace qualifier) or else a further name expression identifying a namespace
fixture in the lexical environment. Examples of a qualified names are intrinsic::subtring or "org.w3.dom"::DOMNode

An unqualified name expression consists of an identifier and a list of sets of open namespaces, determined by context. An
example of an unqualified name is encodeURI.

1

2

3

4

1

2

3

4

5

1

2

3

1

2

3

1

2

3

core-language.pdf

Matching text on page 28 of other document

Matching text on page 28 of other document

Matching text on page 28 of other document

Matching text on page 28 of other document

Matching text on page 28 of other document

Matching text on page 28 of other document

Matching text on page 28 of other document

Matching text on page 28 of other document

Matching text on page 28 of other document

Matching text on page 28 of other document

Matching text on page 28 of other document

Matching text on page 28 of other document

Matching text on page 28 of other document

Matching text on page 28 of other document

Matching text on page 28 of other document

Page 26ECMAScript 4th Edition -- Core Language

16.05.2008 21:39:09file://localhost/C:/src/com.mozilla.es4.smlnj/spec/language.html

In the scope of a generic type definition

 type X.<y
1
, .., y

n
> = S

a type application X.<S1, .., Sn> in T is replaced by the type S[y1:=S1, .., yn:=Sn].

In the scope of a class definition that associates a class name C with a class definition D, type resolution replaces
any TypeName that refers to C with ClassType D.

Similarly, in the scope of an interface definition that associates an interface name I with an interface definition D,
type resolution replaces any TypeName that refers to I with InterfaceType D.

The type resolution code is not presented here.

3.4.1.1 Implementation of Type Resolution

The following function resolveTypeNames performs type resolution on a particular type ty in the context of
an environment ty.

This function relies on the auxiliary function Fixture.resolveNameExpr (described in section ...) to resolve
each type name. The function Fixture.resolveNameExpr returns the corresponding fixture (as the third
component of the result triple), plus the environment that fixture was defined in, and the fully-resolved name for
the given name expression.

If the resulting fixture is for a non-parametric type definition, the body of that type definition is resolved in its
environment, and then replaces the original type name.

If the resulting fixture is for a class or interface definition, the type name is replaced by a class type or an interface
type.

A type application that refers to a type-parametric type definition is replaced by the body of that type definition,
after the replacement of each formal parameter name with the corresponding resolved type argument.

If none of the above cases apply, then resolveTypeNames uses the helper function mapType to perform type
name resolution on each sub-term of the given type.

The function error reports error messages, and the module LogErr contains functions for converting various
data structures into corresponding Strings.

Semantics

fun resolveTypeNames (env : RIBS)
 (ty : TYPE)
 : TYPE =
 case ty of

 TypeName (nameExpr, _) =>
 let in
 case (Fixture.resolveNameExpr env nameExpr) of

 (envOfDefn, _, TypeFixture ([], typeBody)) =>
 resolveTypeNames envOfDefn typeBody

 | (_, _, ClassFixture c) => ClassType c
 | (_, _, InterfaceFixture i) => InterfaceType i

 | (_, n, _) => error ["name ", LogErr.name n, " in type expression ",
 LogErr.ty ty, " is not a proper type"]
 end

 | AppType (TypeName (nameExpr, _), typeArgs) =>
 let in
 case Fixture.resolveNameExpr env nameExpr of
 (envOfDefn, _, TypeFixture (typeParams, typeBody)) =>
 let in

3

4

5

6

1

2

3

4

5

6

7

8

core-language.pdf

Matching text on page 18 of other document

Matching text on page 18 of other document

Matching text on page 18 of other document

Matching text on page 18 of other document

Matching text on page 18 of other document

Matching text on page 18 of other document

Matching text on page 18 of other document

Matching text on page 18 of other document

Matching text on page 18 of other document

Matching text on page 18 of other document

Matching text on page 18 of other document

Matching text on page 18 of other document

Matching text on page 18 of other document

Matching text on page 18 of other document

Matching text on page 18 of other document

Matching text on page 18 of other document

Matching text on page 18 of other document

Matching text on page 18 of other document

Matching text on page 18 of other document

Matching text on page 18 of other document

Matching text on page 18 of other document

Matching text on page 18 of other document

Matching text on page 18 of other document

Matching text on page 18 of other document

Matching text on page 18 of other document

Matching text on page 18 of other document

Matching text on page 18 of other document

Matching text on page 18 of other document

Matching text on page 18 of other document

Matching text on page 18 of other document

Matching text on page 18 of other document

Matching text on page 18 of other document

Matching text on page 18 of other document

Matching text on page 18 of other document

Matching text on page 18 of other document

Matching text on page 18 of other document

Matching text on page 18 of other document

Matching text on page 18 of other document

Matching text on page 18 of other document

Matching text on page 18 of other document

Matching text on page 18 of other document

Matching text on page 18 of other document

Matching text on page 18 of other document

Matching text on page 18 of other document

Matching text on page 18 of other document

Matching text on page 18 of other document

Matching text on page 18 of other document

Matching text on page 18 of other document

Matching text on page 18 of other document

Matching text on page 18 of other document

Matching text on page 18 of other document

Matching text on page 18 of other document

Matching text on page 18 of other document

Matching text on page 18 of other document

Matching text on page 18 of other document

Matching text on page 18 of other document

Matching text on page 18 of other document

Matching text on page 18 of other document

Matching text on page 18 of other document

Matching text on page 18 of other document

Matching text on page 18 of other document

Matching text on page 18 of other document

Matching text on page 18 of other document

Matching text on page 18 of other document

Matching text on page 18 of other document

Matching text on page 18 of other document

Matching text on page 18 of other document

Matching text on page 18 of other document

Matching text on page 18 of other document

Matching text on page 18 of other document

Matching text on page 18 of other document

Matching text on page 18 of other document

Matching text on page 18 of other document

Matching text on page 18 of other document

Matching text on page 18 of other document

Matching text on page 18 of other document

Matching text on page 18 of other document

Matching text on page 18 of other document

Matching text on page 18 of other document

Matching text on page 18 of other document

Matching text on page 18 of other document

Matching text on page 18 of other document

Matching text on page 18 of other document

Matching text on page 18 of other document

Matching text on page 19 of other document

Matching text on page 19 of other document

Matching text on page 19 of other document

Matching text on page 19 of other document

Matching text on page 19 of other document

Matching text on page 19 of other document

Matching text on page 19 of other document

Matching text on page 19 of other document

Matching text on page 19 of other document

Matching text on page 19 of other document

Matching text on page 19 of other document

Matching text on page 19 of other document

Matching text on page 19 of other document

Matching text on page 19 of other document

Matching text on page 19 of other document

Matching text on page 19 of other document

Matching text on page 19 of other document

Matching text on page 19 of other document

Matching text on page 19 of other document

Matching text on page 19 of other document

Matching text on page 19 of other document

26ECMAScript 4th Edition -- Core Language

07/11/08 16:28:33file://localhost/Work/es4/spec/language.html

An unqualified name is subject to name resolution, and must resolve to a unique qualified name. The algorithm for name
resolution is presented in subsequent sections, and differs depending on the context the unqualified name occurs within.

Names that are used in contexts denoting types and namespaces must be resolved statically at definition time. Names that
denote other properties may be resolved repeatedly at evaluation time.

NOTE In a qualified name such as intrinsic::substring the leftmost identifier, intrinsic, is itself unqualified and subject to definition-time resolution.

Semantics
and NAME_EXPRESSION =
 QualifiedName of { namespace: NAMESPACE_EXPRESSION,
 identifier: IDENTIFIER }
 | UnqualifiedName of { identifier: IDENTIFIER,
 openNamespaces: OPEN_NAMESPACES }

and NAMESPACE_EXPRESSION =
 Namespace of NAMESPACE
 | NamespaceName of NAME_EXPRESSION

4.1.1 Open namespaces list

The open namespaces list of an unqualified name expression is a list of sets of namespaces open at the point of the program
where the name expression occurs, and is ordered by priority, with sets of namespaces earlier in the list taking priority over
sets later in the list. The list reflects the nesting of lexical scopes, with the namespaces opened in the "innermost" lexical
scope held in the first set of namespaces in the list, and subsequent sets holding namespaces opened in enclosing lexical
scopes.

Semantics
type NAMESPACE_SET = …

type OPEN_NAMESPACES = NAMESPACE_SET list

4.1.2 Special namespaces

Several namespaces are assigned special meaning, and are generated by an ECMAScript implementation in specific
contexts.

These namespaces are bound to predefined names and implicitly opened in their associated scopes. In the following sections,
when a namespace is said to be implicitly opened in a given lexical scope, the specified meaning is that a new namespace set
is added to the front of the open namespaces list for the duration of the scope containing the implicitly opened namespaces.

4.1.2.1 Public and 4th Edition namespaces

The public and 4th Edition namespaces are defined in section Standard Namespaces of Values, and are defined identically in
all programs and lexical scopes.

The 4th Edition namespace is bound to the global property name ""::__ES4__ (that is, the name formed by qualifying the
identifier __ES4__ with the public namespace) and can therefore be seen by code loaded in either 3rd Edition or 4th Edition
mode.

The public namespace is bound to the global property name __ES4__::public (that is, the name formed by qualifying the
identifier public with the 4th Edition namespace).

When a program is loaded in 3rd Edition or 4th Edition mode, the public namespace is implicitly opened.

When a program is loaded in 4th Edition mode, after the public namespace is implicitly opened, the 4th edition namespace is
implicitly opened. The 4th Edition namespace is therefore opened at a higher priority than the public namespace.

NOTE The public namespace is distinguished in several ways. The names of properties added dynamically to objects are qualified by public by default,
so all properties created by 3rd Edition code running on a 4th Edition implementation are public, and public is sometimes called "the compatibility
namespace" for that reason. The default namespace qualifier that is applied to declarations in every scope is public, so absent other qualification every
property on every object and every lexically bound name is in the public namespace.

4.1.2.2 Internal namespaces

Each program (compilation unit) has a new implementation-generated opaque namespace implicitly defined as its internal
namespace at the start of the definition phase.

The internal namespace for a program is bound to the name internal in the global fixture map for the duration of definition
and evaluation. The binding to internal is removed after definition and evaluation of a program, and is re-bound to new
internal namespaces for any subsequent programs loaded.

4

5

6

1

2

1

2

1

2

3

4

5

1

2

core-language.pdf

Page 27ECMAScript 4th Edition -- Core Language

16.05.2008 21:39:09file://localhost/C:/src/com.mozilla.es4.smlnj/spec/language.html

 if length typeArgs = length typeParams then
 ()
 else
 error ["Incorrect no of arguments to parametric typedefn"];
 resolveTypeNames envOfDefn
 (substTypes typeParams
 (map (resolveTypeNames env)
 typeArgs)
 typeBody)
 end

 | _ => mapType (resolveTypeNames env) ty
 end

 | _ => mapType (resolveTypeNames env) ty

fun mapType (f : TYPE -> TYPE)
 (ty: TYPE)
 : TYPE =
 case ty of
 RecordType fields =>
 RecordType (map (fn (name, ty) => (name, f ty)) fields)
 | UnionType types =>
 UnionType (map f types)
 | ArrayType (types, restType) =>
 ArrayType (map f types, Option.map f restType)
 | FunctionType { typeParams, params, result, thisType, hasRest, minArgs } =>
 FunctionType { typeParams = typeParams,
 params = map f params,
 result = Option.map f result,
 thisType = f thisType,
 hasRest = hasRest,
 minArgs = minArgs }
 | NonNullType ty =>
 NonNullType (f ty)
 | AppType (base, args) =>
 AppType (f base, map f args)
 | _ => ty

3.4.2 Type Canonicalization

Each type T is considered equivalent (under the equivalence relation defined above) to some collection of types.
The process of type canonicalization converts a type in the program source code into a canonical or representative
element of its equivalence class. In particular, if two types T1 and T2 are equivalent, then canonicalization will
convert them both into an identical normalized type.

This canonicalization process is necessary to efficiently support type-parametric classes.

The type canonicalization code is not presented here.

3.4.3 Normalized Types

A normalized type is one that is the result of the preceeding normalization process.

Normalized types do not include:

type names that refer to nominal types (ClassType and InterfaceType are used instead)
type names that refer to type definitions (which are inlined)

Normalized types may include type names that refer to generic type parameters; these references include a nonce.

3.5 Compatible Types

1

2

3

1

2

3

core-language.pdf

Matching text on page 19 of other document

Matching text on page 19 of other document

Matching text on page 19 of other document

Matching text on page 19 of other document

Matching text on page 19 of other document

Matching text on page 19 of other document

Matching text on page 19 of other document

Matching text on page 19 of other document

Matching text on page 19 of other document

Matching text on page 19 of other document

Matching text on page 19 of other document

Matching text on page 19 of other document

Matching text on page 19 of other document

Matching text on page 19 of other document

Matching text on page 19 of other document

Matching text on page 19 of other document

Matching text on page 19 of other document

Matching text on page 19 of other document

Matching text on page 19 of other document

Matching text on page 19 of other document

Matching text on page 19 of other document

Matching text on page 19 of other document

Matching text on page 19 of other document

Matching text on page 19 of other document

Matching text on page 19 of other document

Matching text on page 19 of other document

Matching text on page 19 of other document

Matching text on page 19 of other document

Matching text on page 19 of other document

Matching text on page 19 of other document

Matching text on page 19 of other document

Matching text on page 19 of other document

Matching text on page 19 of other document

Matching text on page 19 of other document

Matching text on page 19 of other document

Matching text on page 19 of other document

Matching text on page 19 of other document

Matching text on page 19 of other document

Matching text on page 19 of other document

Matching text on page 19 of other document

Matching text on page 19 of other document

Matching text on page 19 of other document

Matching text on page 19 of other document

Matching text on page 19 of other document

Matching text on page 19 of other document

Matching text on page 19 of other document

Matching text on page 19 of other document

Matching text on page 19 of other document

Matching text on page 19 of other document

Matching text on page 19 of other document

Matching text on page 19 of other document

Matching text on page 19 of other document

Matching text on page 19 of other document

Matching text on page 19 of other document

Matching text on page 19 of other document

Matching text on page 19 of other document

Matching text on page 19 of other document

Matching text on page 19 of other document

Matching text on page 19 of other document

Matching text on page 19 of other document

Matching text on page 19 of other document

Matching text on page 19 of other document

Matching text on page 19 of other document

Matching text on page 19 of other document

Matching text on page 21 of other document

Matching text on page 21 of other document

Matching text on page 21 of other document

27ECMAScript 4th Edition -- Core Language

07/11/08 16:28:33file://localhost/Work/es4/spec/language.html

When a program is loaded in 4th Edition mode, after the 4th Edition namespace is implicitly opened, the program's internal
namespace is implicitly opened. The internal namespace is therefore opened at a higher priority than the 4th Edition
namespace.

NOTE An internal namespace can be used to qualify definitions that are not intended to be visible to any other program.

4.1.2.3 Private and protected namespaces

Each class definition has two new implementation-generated opaque namespaces implicitly defined as its private namespace
and protected namespace.

The private and protected namespaces for a class are bound to the names private and protected, respectively, within the
lexical scope of the class definition they are associated with.

The private and protected namespaces for a class are implicitly opened within the lexical scope of the class.

The protected namespace for a class C is also implicitly opened within the lexical scope of every class that extends C.

4.2 Reference Expressions
A reference expression provides context for resolving a name expression to a name, and identifying a particular fixture or
property to which the name refers. A reference expression is either a lexical reference, an object name reference, or an object
index reference.

A lexical reference is a reference expression that resolves to a name within a lexical scope, and therefore a property or
fixture stored in a scope object. Some lexical references are required to be resolved to fixtures statically during program
definition, while others may be resolved dynamically during program evaluation. Examples of lexical references are
encodeURI or public::Function.

An object name reference is formed by conjoining an object expression and a name expression with a period ("."). A name
expression in an object name reference resolves to the name of a fixture or property on the provided object, or a fixture or
property on the object's prototype chain. Some object references may be resolved to fixtures statically, but the specified
behavior of object references is as if they are always resolved dynamically during program evaluation. Examples of object
references are s.length or s.intrinsic::substring, where s is the name of an object.

An object index reference is similar to an object name reference, in that it combines an expression for a name with an object
and resolves the calculated name against the provided object. An object index reference differs from an object name
reference by the fact that there is no proper name expression inside it: rather an object expression is conjoined with a general
ECMAScript expression, enclosed within square brackets, and determining the name to resolve may require arbitrary
evaluation of the bracketed expression. An example of an object index reference is s[f()], where s is the name of an object,
and the name to be resolved against s is calculated dynamically by evaluating the function expression f(). Object index
expressions can therefore never be resolved statically.

Semantics
datatype EXPRESSION =
 LexicalReference of { name: NAME_EXPRESSION }
 | ObjectNameReference of { object: EXPRESSION,
 name: NAME_EXPRESSION }
 | ObjectIndexReference of { object: EXPRESSION,
 index: EXPRESSION }
 …

NOTE An ObjectIndexReference is evaluated by evaluating its index operand to a Name object and then treating that value the
same as a resolved qualified name. Index operands that do not evaluate to Name objects are converted to string, and a Name object is formed from
the string and the public namespace.

4.3 Lexical scopes
Lexical scopes are defined in section ...scopes.

Defining and binding forms introduce names into a lexical scope. These names are then visible to lexical references that
occur within the scope of the binding. The scope of a binding is primarily determined by the textual boundaries of the scope
(ECMAScript is primarily lexically scoped) and depends also on the defining or binding form that introduced the binding.

NOTE For example, the scope of a var binding inside a block statement is the entire body of the function or program containing the block, whereas the
scope of a let binding inside a block statement is that block statement.

Scopes nest textually, and a name that is bound in one scope may be shadowed in an inner scope by a binding of the same
name in the inner scope; name expressions in the inner scope will not be able to access the outer binding.

In this specification, the nesting of scopes is modelled as a list of fixture maps in the definition phase and a list of objects
during evaluation. The former list is called the static scope chain or the static environment. The latter list is called the

3

1

2

3

4

1

2

3

4

5

1

2

3

4

core-language.pdf

Matching text on page 31 of other document

Matching text on page 31 of other document

Matching text on page 31 of other document

Matching text on page 31 of other document

Matching text on page 31 of other document

Matching text on page 31 of other document

Matching text on page 31 of other document

Matching text on page 31 of other document

Matching text on page 31 of other document

Matching text on page 31 of other document

Matching text on page 31 of other document

Matching text on page 31 of other document

Matching text on page 31 of other document

Matching text on page 31 of other document

Matching text on page 31 of other document

Matching text on page 31 of other document

Matching text on page 30 of other document

Matching text on page 30 of other document

Matching text on page 30 of other document

Matching text on page 30 of other document

Matching text on page 30 of other document

Matching text on page 30 of other document

Matching text on page 30 of other document

Matching text on page 30 of other document

Matching text on page 30 of other document

Matching text on page 30 of other document

Matching text on page 30 of other document

Matching text on page 30 of other document

Matching text on page 30 of other document

Matching text on page 30 of other document

Matching text on page 30 of other document

Matching text on page 30 of other document

Matching text on page 30 of other document

Matching text on page 30 of other document

Matching text on page 30 of other document

Matching text on page 30 of other document

Matching text on page 30 of other document

Matching text on page 30 of other document

Matching text on page 30 of other document

Page 28ECMAScript 4th Edition -- Core Language

16.05.2008 21:39:09file://localhost/C:/src/com.mozilla.es4.smlnj/spec/language.html

The compatibility relation is a binary relation on type values. Two types S and T are compatible if T can be
obtained from S by replacing certain portions of S by the any type *.

For example, the record type {x : int} is compatible with both {x : *} and with *, but the type {x : *}
is not compatible with {x : int}.

Also, T.<Number> is compatible with T.<*>.

This compatibility relation is reflexive and transitive, but not symmetric.

3.6 Compatible-Subtyping

The compatible-subtype relation is a binary relation on types. A type S is a compatible-subtype of a type T if there
exists some type U such that S is a subtype of U and U compatible with T.

For example, the record type {x : int, y : bool} is a compatible-subtype of the types {x : *, y :
*}, {x : int}, {x : *}, and *.

The compatible-subtyping relation is reflexive and transitive, but not symmetric.

The compatible-subtyping relation is implemented by calling the previously-defined subType predicate and
passing in an extra parameter that reasons about compatibility, in that every type is compatible with *.

Semantics

fun compatibleSubtype (type1 : TYPE) (type2 : TYPE) : bool =
 subType
 (fn type1 => fn type2 => type2 = anyType)
 type1 type2

3.7 Type Invariants at Run Time

A type is reifiable if it is not the any type or a union type.

Every value in ES has an associated allocated type, which is a type that is associated with the value when the value
is first allocated or created. An allocated type is always a reifiable type. The allocated type of a value is invariant;
for example, updating the fields of an object cannot change the allocated type of that object.

If a property of storage type T hold a value v of type S, then S is a compatible-subtype of T.

4 Names
Names in ECMAScript are constants that are comprised of a namespace value and an identifier.

Names denote types, namespaces, and locations (properties bound in objects and scopes). The denotation of a name
depends on the context of the name's use: When a name is used in a type annotation context it denotes a type; when
it is used in a qualifier context it denotes a namespace; and in all other contexts it denotes a location.

Unqualified names are expressed as simple identifiers, for example encodeURI. Qualified names are expressed as
pairs of namespace expressions and simple identifiers, for example intrinsic::substring or
"org.w3.dom"::DOMNode.

Unqualified names are subject to name resolution: every unqualified name must resolve to a unique qualified
name. Names that denote types and namespaces are resolved at definition time, while names that denote locations
are resolved (repeatedly) at evaluation time.

NOTE In a qualified name such asintrinsic::substring the leftmost identifier,intrinsic , is itself unqualified and
subject to definition-time resolution.

Name resolution makes use of the open namespaces that implicitly qualify any unqualified name. In every
compilation unit the open namespaces starts out being comprised of the public and internal namespaces. The
program can open additional namespaces by means of the use namespace pragma.

Name resolution is performed differently depending on whether the name is a lexical reference (for example, the
variable reference encodeURI) or a property reference on an object (for example, the reference s.substring)
.

1

2

3

4

1

2

3

4

5

1

2

3

1

2

3

4

5

6

core-language.pdf

Matching text on page 25 of other document

Matching text on page 25 of other document

Matching text on page 25 of other document

Matching text on page 25 of other document

Matching text on page 25 of other document

Matching text on page 25 of other document

Matching text on page 25 of other document

Matching text on page 25 of other document

Matching text on page 25 of other document

Matching text on page 25 of other document

Matching text on page 25 of other document

Matching text on page 25 of other document

Matching text on page 25 of other document

Matching text on page 25 of other document

Matching text on page 25 of other document

28ECMAScript 4th Edition -- Core Language

07/11/08 16:28:33file://localhost/Work/es4/spec/language.html

dynamic scope chain or the dynamic environment. Both lists are generically referred to as scope chains, with the distinction
between the static and dynamic environments indicated where not otherwise clear from context.

Each scope holds a fixture map of the named fixtures defined in that scope.

The fixture maps in the static environment are arranged into a simple list.

Semantics
and FIXTURE_MAPS = ((FIXTURE_NAME * FIXTURE) list) list

The fixture maps in the dynamic environment are arranged into accompanying objects, each with a corresponding property
map in which values may be stored as properties.

Semantics
and SCOPE =
 Scope of { object: OBJECT,
 parent: SCOPE option,
 temps: TEMPS,
 kind: SCOPE_KIND }

and SCOPE_KIND =
 WithScope
 | GlobalScope
 | InstanceScope of CLASS
 | ClassScope
 | ActivationScope
 | BlockScope
 | TypeArgScope
 | EvalScope

At each point in the program, both during definition and evaluation, exactly one scope chain is in effect. This scope chain is
called the scope chain or the environment containing an expression, statement or definition.

Some objects that appear on evaluation-time scope chains are dynamically extensible. For example, class objects appear on
the scope chain of class and instance methods, and properties can be added to and removed from class objects; however,
these properties are not visible to lexical references within the class.

4.3.1 Prototype chain

Every object has a distinguished value called its prototype (see section Object prototype in Values).

If the prototype value of an object is another object, then the prototype value is called the object's prototype object, and the
connection between the initial object and its prototype object is called its prototype link.

The prototype chain is the list of objects formed by following prototype links from an object. The prototype chain of an
object begins with the object itself, and ends with the first object having a null prototype value.

When a name is to be resolved against an object, if resolution initially fails because the object does not contain a property
matching the name, then resolution continues along the object's prototype chain.

4.4 Name Resolution

4.4.1 Overview

The purpose of name resolution is to take an unresolved name and a list of objects and return an unambiguous name
(consisting of a namespace value and an identifier) and an object that contains a property with that name. The objects are
searched in order, and the first object to contain a property with the name is selected.

There are two complications. The first appears with the need for disambiguation. When an unqualified name is resolved the
resolution is performed in the context of the namespaces that were open at the point of reference. Thus the search of any one
object may find multiple bindings that match the name, up to one binding per open namespace. Instead of making this an
error, the name resolver disambiguates by trying to select the most desirable of those namespaces. Selection is performed by
filtering the applicable namespaces until we are left with one. (If we have more than one then the name is deemed
ambiguous.)

We first select those namespaces among the matching namespaces that are in use by the least specific class of the object that
contains the name. For example, if C is a subclass of B and B is a subclass of A, and our name n matched ns1::n,
ns2::n, and ns3::n, and ns1::n and ns2::n were defined in B and ns3::n was defined in C, then we'd be left with
just ns1 and ns2.

5

6

7

8

9

10

11

1

2

3

4

1

2

3

core-language.pdf

Matching text on page 30 of other document

Matching text on page 30 of other document

Matching text on page 30 of other document

Matching text on page 32 of other document

Matching text on page 32 of other document

Matching text on page 32 of other document

Matching text on page 32 of other document

Matching text on page 32 of other document

Matching text on page 32 of other document

Matching text on page 32 of other document

Matching text on page 32 of other document

Matching text on page 32 of other document

Matching text on page 32 of other document

Matching text on page 32 of other document

Matching text on page 32 of other document

Matching text on page 32 of other document

Matching text on page 32 of other document

Matching text on page 32 of other document

Matching text on page 32 of other document

Matching text on page 32 of other document

Matching text on page 32 of other document

Matching text on page 32 of other document

Matching text on page 32 of other document

Matching text on page 32 of other document

Matching text on page 32 of other document

Matching text on page 32 of other document

Matching text on page 32 of other document

Matching text on page 32 of other document

Matching text on page 32 of other document

Matching text on page 32 of other document

Matching text on page 32 of other document

Page 29ECMAScript 4th Edition -- Core Language

16.05.2008 21:39:09file://localhost/C:/src/com.mozilla.es4.smlnj/spec/language.html

In the case of a lexical reference a name is resolved as a reference to a name bound in the scope of the reference;
each entry in the chain formed by active scope objects binds names to which the reference may resolve, with
resolutions in scopes closer to the point of reference (in "inner scopes") preferred over those in scopes further away
(in "outer scopes").

In the case of a property reference a name is resolved as a reference to a property on a specific object; each entry in
the chain formed by the object and its prototype objects in order provides named properties to which the reference
may resolve, with resolutions in objects closer to the original object preferred over those further out in the
prototype chain.

A reference may be found to be ambiguous. The resolution algorithm incorporates several forms of disambiguation,
described later, but some references are inherently ambiguous. Such references cause errors to be signalled at
definition or evaluation time.

Names that denote types, namespaces, and locations are resolved by the same algorithm. Suppose an unqualified
name that denotes a type or namespace is resolved to a particular type or namespace definition in a particular
scope. Then the same unqualified name denoting a location will be resolved unambiguously to an immutable
location that holds a value that represents the type or namespace, if resolution takes place in the same scope as for
the first name. A reservation mechanism ensures that names that are resolved at definition time cannot become
ambiguous at evaluation time by the introduction of new bindings.

4.1 Name Values

A name is a constant value comprised of a namespace value and an identifier.

Semantics

type NAME = { ns: NAMESPACE, id: IDENTIFIER }

An identifier is a character string.

Semantics

type IDENTIFIER = Ustring.STRING

A namespace value is an immutable object. A namespace is transparent or opaque. A transparent namespace
contains a character string that identifies the namespace; two transparent namespaces are equal if and only if their
contained strings are equal. An opaque namespace contains an unforgeable system-generated value that identifies
the namespace; two opaque namespaces are equal if and only if their contained identifier values are the same
object.

Semantics

datatype NAMESPACE =
 TransparentNamespace of Ustring.STRING
 | OpaqueNamespace of OPAQUE_NAMESPACE_IDENTIFIER

type OPAQUE_NAMESPACE_IDENTIFIER = …

fun compareNamespaces (n1: NAMESPACE, n2: NAMESPACE) : bool =
 case (n1, n2) of
 (Ast.TransparentNamespace s1, Ast.TransparentNamespace s2) => s1 = s2
 | (Ast.OpaqueNamespace i1, Ast.OpaqueNamespace i2) => i1 = i2
 | _ => false

4.2 The namespace public

The namespace known as public is the transparent namespace whose identifying string is the empty string.

Semantics

val publicNS = Ast.TransparentNamespace Ustring.empty

NOTE The public namespace is distinguished in several ways. The names of properties added dynamically to objects are qualified by public by
default, so all properties created by 3rd Edition code running on a 4th Edition implementation are public, and public is sometimes called "the
compatibility namespace" for that reason. The default namespace qualifier that is applied to declarations in every scope is public, so absent other
qualification every property on every object and every lexically bound name is in the public namespace.

4.3 Prototype chain

7

8

9

10

1

2

3

4

5

6

1

2

core-language.pdf

29ECMAScript 4th Edition -- Core Language

07/11/08 16:28:33file://localhost/Work/es4/spec/language.html

(The motivation for using the order in which names are introduced in the class hierarchy is to guarantee that the meaning of
valid references to object properties doesn't change. In other words, if o.x is ever valid, then it shall always refer to the same
property x as long as the type of o doesn't change.)

We then filter by namespace priority. The open namespaces are organized in a prioritized list of namespace sets. If one of the
matching names has a namespace that is from a set with a higher priority than all the other matching names, then that's the
namespace we want. So if the referencing context of n opened ns2 in a scope nested inside the one that opened ns1, then
we are left with just ns2 -- and a single binding, ns2::n.

(The motivation for disambiguation by the scope in which a namespace is opened, is simple: it allows more programs to run.
Furthermore, since the priority of namespaces during disambiguation is under the control of the programmer, the
programmer can rely on disambiguation to control which names are found.)

The second complication is that some names are required to be resolved successfully at definition time -- names that denote
namespaces and types. (We require definition-time resolution in order to make names and types constant, which generally
simplifies the language and makes programs more easily comprehensible.) The consequence is that namespace and type
references are illegal inside scopes introduced by with or scopes that may be extended by the eval operator, because those
scopes make definition time resolution impossible -- their contents are unknown. Such programs result in a syntax error
being signalled. (It is possible to ease that restriction in various ways but we have not done so.)

However, we also require that type and namespace names that are resolved at definition time must resolve to the same
bindings that they would resolve to if they were to be resolved at evaluation time. (We require that because it simplifies the
user's model of the language: equal names in the same scope have the same meaning, provided they resolve at all.) The
consequence is that the language must provide protection against ambiguities that can be introduced at a later time. If a name
is resolved at definition time to a global binding then compilation units loaded later may introduce new global bindings that
will make the resolved binding ambiguous. For example, consider the following program.

namespace NS1
namespace NS2
NS1 type T
use namespace NS1, namespace NS2

 ... var x: T

The reference to T in the type annotation is resolved uniquely at definition time to NS1::T. Then another compilation unit is
loaded:

NS2 type T = ...

Since the global environment is "flat"--code in earlier compilation units can see bindings introduced by later compilation
units--the reference to T from the first program is now ambiguous.

ES4 protects against this eventuality by reserving global names that are resolved at definition time. When T is resolved in the
first program and found to be in NS1, the name NS2::T is reserved: it is made off-limits to later programs. As a consequence,
the second program above would not be loaded, because the introduction of NS2::T would be an error.

Names are reserved in namespaces at the same or higher priority level as the namespace that the name was resolved to, so in
the example above neither public::T nor internal::T would become reserved, as those namespaces are at lower priority
levels thanNS1 and NS2.

NOTE Top-level "use namespace" pragmas are given a higher priority level than names originating "outside" the compilation unit, as is the case for
public and internal.

4.4.2 Definition-Time Resolution of Namespace and Type Expressions

The definition time scope chain is modelled as a list of fixture maps, defined elsewhere. A fixture map maps names to fixture
bindings that result from defining and binding forms (var, function, type, class, interface, namespace, and others). Fixture
maps have no dynamic properties.

Definition time resolution resolves name expressions that denote namespaces and types, and performs reservation of global
names if necessary.

The following algorithm resolves a name expression to a specific name and fixture in the list of fixture maps.

Semantics
and resolveNameExpr (fixtureMaps : Ast.FIXTURE_MAPS)
 (ne : Ast.NAME_EXPRESSION)
 : (Ast.FIXTURE_MAPS * Ast.NAME * Ast.FIXTURE) =

 case ne of
 Ast.QualifiedName { namespace, identifier }
 => resolveQualifiedName fixtureMaps identifier namespace

4

5

6

7

8

9

10

11

12

1

2

3

4

core-language.pdf

Matching text on page 33 of other document

Matching text on page 33 of other document

Matching text on page 33 of other document

Matching text on page 33 of other document

Matching text on page 33 of other document

Matching text on page 33 of other document

Matching text on page 33 of other document

Matching text on page 33 of other document

Matching text on page 33 of other document

Matching text on page 33 of other document

Matching text on page 33 of other document

Matching text on page 33 of other document

Matching text on page 33 of other document

Matching text on page 33 of other document

Matching text on page 33 of other document

Matching text on page 33 of other document

Matching text on page 33 of other document

Page 30ECMAScript 4th Edition -- Core Language

16.05.2008 21:39:09file://localhost/C:/src/com.mozilla.es4.smlnj/spec/language.html

Every object has a distinguished value called its prototype (see section Object prototype in Values).

If the prototype value of an object is another object, then the prototype value is called an object's prototype object,
and the connection between the initial object and its prototype object is called a prototype link.

The prototype chain is the list of objects formed by following prototype links from an object. The prototype chain
of an object begins with the object itself, and ends with the first object having a null or undefined prototype value.

When a name is to be resolved against an object, if resolution initially fails because the object does not contain a
property matching the name, then resolution continues along the object's prototype chain.

4.4 Scopes and visibility

Defining and binding forms introduce names into a program. These names can be referenced by name expressions
that occur within the scope of the binding. The scope of a binding is primarily determined textually (ECMAScript
is primarily lexically scoped) and depends also on the defining or binding form that introduced the binding.

NOTE For example, the scope of avar binding inside a block statement is the entire body of the function or program containing the block,
whereas the scope of alet binding inside a block statement is that block statement.

Scopes nest textually, and a name that is bound in one scope may be shadowed in an inner scope by a binding of
the same name in the inner scope; name expressions in the inner scope will not be able to access the outer binding.

In this Specification, the nesting of scopes is modelled as a list of ribs in the definition phase and a list of objects
during evaluation. Both environments are generically called the scope chain. Which kind of list is being referred to
will be clear from the context in which the term is used.

Each scope holds a table of named bindings in that scope. Ribs hold a table of fixture bindings and objects hold a
table of property bindings. Every time a new scope is entered the scope chain is extended with a new rib or object,
and at every point in the program one particular scope chain is in effect.

FIXME What's a fixture? Is it defined somewhere?

FIXME Exhibit the definition-time and evaluation-time structures for scope chains here.

Some objects that appear on evaluation-time scope chains are dynamically extensible, in effect providing a form of
dynamic scope. For example, class objects appear on the scope chain of class and instance methods, and properties
can be added to and removed from class objects; these properties then become visible and invisible to the methods.

In order for ECMAScript to have a lexically scoped flavor, bindings that are textually visible (lexical bindings) are
usually preferred over dynamically added bindings (dynamic bindings) during name resolution. See the section
"Name Resolution" below.

4.5 Name Expressions

There are two kinds of name expressions, the unqualified name (such as encodeURI) and the namespace-
qualified name (such as intrinsic::subtring or "org.w3.dom"::DOMNode). Name resolution
transforms name expressions into name values.

Semantics

and NAME_EXPRESSION =
 QualifiedName of { namespace: NAMESPACE_EXPRESSION,
 identifier: IDENTIFIER }
 | UnqualifiedName of { identifier: IDENTIFIER,
 openNamespaces: OPEN_NAMESPACES }

A qualified name expression is comprised of a namespace expression and an identifier. The former is either a literal
namespace value (resulting from using a string as a namespace qualifier) or a name expression denoting a
namespace binding.

Semantics

and NAMESPACE_EXPRESSION =
 Namespace of NAMESPACE
 | NamespaceName of NAME_EXPRESSION

An unqualified name expression is comprised of the namespaces that are open at the point where the name
expression occurs in the source text and and identifier. The open namespaces will be used to resolve the name: an

1

2

3

4

1

2

3

4

5

6

1

2

3

4

5

core-language.pdf

Matching text on page 27 of other document

Matching text on page 27 of other document

Matching text on page 27 of other document

Matching text on page 27 of other document

Matching text on page 27 of other document

Matching text on page 27 of other document

Matching text on page 27 of other document

Matching text on page 27 of other document

Matching text on page 27 of other document

Matching text on page 27 of other document

Matching text on page 27 of other document

Matching text on page 27 of other document

Matching text on page 27 of other document

Matching text on page 27 of other document

Matching text on page 28 of other document

Matching text on page 28 of other document

Matching text on page 28 of other document

Matching text on page 27 of other document

Matching text on page 27 of other document

Matching text on page 27 of other document

Matching text on page 27 of other document

Matching text on page 27 of other document

Matching text on page 27 of other document

Matching text on page 27 of other document

Matching text on page 27 of other document

Matching text on page 27 of other document

30ECMAScript 4th Edition -- Core Language

07/11/08 16:28:33file://localhost/Work/es4/spec/language.html

 | Ast.UnqualifiedName { identifier, openNamespaces, ... }
 => case (resolveUnqualifiedName fixtureMaps identifier openNamespaces) of

 NONE
 => error ["unresolved name ", LogErr.nameExpr ne]

 | SOME ([], _)
 => error ["unresolved name ", LogErr.nameExpr ne]

 | SOME ([fixtureMap], name)
 => (reserveNames name openNamespaces ;
 ([fixtureMap], name, getFixture fixtureMap (Ast.PropName name)))

 | SOME (fixtureMaps, name)
 => (fixtureMaps, name, getFixture (hd fixtureMaps) (Ast.PropName name))

4.4.2.1 Qualified Name Expressions

A qualified name expression is resolved by resolving the namespace part and then returning the tail of the list of fixture maps
such that the first fixture map on the tail contains a binding for the name.

NOTE The name can't be ambiguous because there is only one namespace.

Semantics
fun resolveQualifiedName (fixtureMaps : Ast.FIXTURE_MAPS)
 (identifier : IDENTIFIER)
 (namespaceExpr : Ast.NAMESPACE_EXPRESSION)
 : (Ast.FIXTURE_MAPS * NAME * Ast.FIXTURE) =
 let
 val ns = resolveNamespaceExpr fixtureMaps namespaceExpr
 val name = { ns = ns, id = identifier }
 fun search (r::rs) = if hasFixture r (Ast.PropName name) then
 (r::rs)
 else
 search rs
 | search [] = []
 in
 case (search fixtureMaps) of
 []
 => error ["qualified name not present in fixtureMaps: ", LogErr.name name]

 | fixtureMaps'
 => (fixtureMaps', name, getFixture (hd fixtureMaps') (Ast.PropName name))
 end

4.4.2.2 Unqualified Name Expressions

An unqualified name expression is resolved according to the full algorithm outlined above. It returns the tail of the list of
fixture maps such that the first fixture map on the tail contains an unambiguous binding for the name.

Semantics
and resolveUnqualifiedName (fixtureMaps : Ast.FIXTURE_MAPS)
 (identifier : IDENTIFIER)
 (openNamespaces : OPEN_NAMESPACES)
 : (Ast.FIXTURE_MAPS * NAME) option =
 let
 val namespaces = List.concat (openNamespaces)
 val matches = fixtureMapListSearch (fixtureMaps, namespaces, identifier)
 in
 case matches of
 NONE
 => NONE

 | SOME (fixtureMaps, [namespace])
 => SOME (fixtureMaps, {ns=namespace, id=identifier})

 | SOME (fixtureMaps, namespaces)
 => case selectNamespaces (identifier,
 namespaces,
 [],
 openNamespaces) of

 [namespace]
 => SOME (fixtureMaps, {ns=namespace, id=identifier})

 | ns::nss

1

2

1

2

core-language.pdf

Page 31ECMAScript 4th Edition -- Core Language

16.05.2008 21:39:09file://localhost/C:/src/com.mozilla.es4.smlnj/spec/language.html

unqualified name matches any binding or property that has the same identifier and a namespace value from among
the open namespaces.

The open namespaces are represented as a list of sets of namespace values. Each set contains namespace values that
are given the same priority during name resolution. The list holds sets in priority order.

NOTE A new set is added to the list every time a new lexical scope is entered, and the innermost (highest priority) set is extended by the
use namespace pragma. An unqualified name expression retains a reference to the open namespaces data structure as it appears at the
point where the expression occurs.

The two lowest priority sets are singleton sets holding the public and internal namespaces, respectively. The namespace internal is specific to each
compilation unit.

Semantics

type NAMESPACE_SET = NAMESPACE list

type OPEN_NAMESPACES = NAMESPACE_SET list

The first element on an OPEN_NAMESPACES list is the highest priority element.

4.6 Reference Expressions

Name expressions are incorporated into reference expressions that provide context to the name expressions. Name
expressions that reference names bound in a scope, such as encodeURI and intrinsic::substring, are
contained in LexicalReference nodes.

Name expressions that reference properties on objects, such as s.intrinsic::substring, are contained in
ObjectNameReference nodes, which contain both the object expression (s, in the example) and the name
(intrinsic::substring).

Finally, the node ObjectIndexReference represents names that are computed at evaluatin time, such as s
[e].

Semantics

datatype EXPRESSION =
 LexicalReference of { name: NAME_EXPRESSION }
 | ObjectNameReference of { object: EXPRESSION,
 name: NAME_EXPRESSION }
 | ObjectIndexReference of { object: EXPRESSION,
 index: EXPRESSION }
 …

NOTE AnObjectIndexReference is evaluated by evaluating its index operand to aName object and then treating that value
the same as a resolved qualified name. Index operands that do not evaluate toName objects are converted tostring, and aName object is
formed from the string and the public namespace.

4.7 Name Resolution

4.7.1 Overview

The purpose of name resolution is to take an unresolved name and a list of objects and return an unambiguous
name (consisting of a namespace value and an identifier) and an object that contains a property with that name. The
objects are searched in order, and the first object to contain a property with the name is selected.

There are three complications. First, the search is performed differently for object chains (an object and its
prototypes) and scope chains. An object chain is searched in a single pass and each object's fixed and dynamic
properties are considered when the object is searched. A scope chain, on the other hand, is searched in two passes,
with the first pass considering mainly fixed properties and the second pass considering also dynamic properties.
(The search ends as soon as an object matching the name is found, so the second pass may never be run.) Thus fixed
properties in outer scopes shadow dynamic properties in inner scopes. However, for reasons of compatibility with
ES3, the first pass searches both dynamic and fixed properties in scopes that are introduced by the with statement
or in scopes that have been extended by the eval operator evaluating a function or var directive.

(The motivation for the preference for fixed bindings in scopes is to retain the lexically scoped flavor of
ECMAScript. Some of the objects on the scope chain--class objects and instance objects--are dynamically

6

7

8

1

2

3

4

1

2

3

core-language.pdf

Matching text on page 27 of other document

Matching text on page 27 of other document

Matching text on page 27 of other document

Matching text on page 27 of other document

Matching text on page 27 of other document

Matching text on page 27 of other document

Matching text on page 27 of other document

Matching text on page 27 of other document

Matching text on page 27 of other document

Matching text on page 27 of other document

Matching text on page 27 of other document

Matching text on page 27 of other document

Matching text on page 27 of other document

Matching text on page 27 of other document

Matching text on page 27 of other document

Matching text on page 27 of other document

31ECMAScript 4th Edition -- Core Language

07/11/08 16:28:33file://localhost/Work/es4/spec/language.html

 => error ["ambiguous reference: ", Ustring.toAscii identifier]
 end

fun fixtureMapListSearch ([], _, _) = NONE

 | fixtureMapListSearch (fixtureMaps : Ast.FIXTURE_MAPS,
 namespaces : NAMESPACE_SET,
 identifier : IDENTIFIER)
 : (Ast.FIXTURE_MAPS * NAMESPACE_SET) option =
 case fixtureMapSearch (hd fixtureMaps, namespaces, identifier) of
 NONE
 => fixtureMapListSearch (tl fixtureMaps, namespaces, identifier)

 | SOME (_, m)
 => SOME (fixtureMaps, m)

fun fixtureMapSearch (fixtureMap : Ast.FIXTURE_MAP,
 namespaces : NAMESPACE_SET,
 identifier : IDENTIFIER)
 : (Ast.FIXTURE_MAP * NAMESPACE_SET) option =
 case List.filter (fn ns =>
 hasFixture fixtureMap (Ast.PropName {ns=ns, id=identifier}))
 namespaces of
 [] => NONE
 | m => SOME (fixtureMap, m)

4.4.2.3 Reserving Names

Statically resolved names must keep their meaning at runtime and therefore cannot be shadowed or be made ambiguous by
the later introduction of names. Therefore we reserve the set of names that would cause such conflicts at runtime.

Given a name and a list of sets of open namespaces, the following algorithm computes a set of names consisting of the
identifier and each of the open namespaces with an equal or higher priority than the given namespace.

FIXME Obviously we need more prose here. Also we want to be sure to note that reservation only happens in the global object.

Semantics
and reserveNames (name)
 (openNamespaces)
 = …

4.4.3 Evaluation-time Resolution of Lexical References

The evaluation time scope chain is modelled as a list of arbitrary objects. A scope object maps names to properties (both
fixtures and dynamic properties). Apart from scope objects introduced by the with statement, the evaluation time scope
chain mirrors the definition time scope chain.

The following algorithm resolves a name expression to an object and the name of a property on that object.

Semantics
and resolveLexicalReference (regs : REGS)
 (nameExpression : NAME_EXPRESSION)
 (errorIfNotFound : bool)
 : (OBJECT * NAME) =
 let
 val {scope, ...} = regs
 in
 case nameExpression of

 QualifiedName {identifier, namespace}
 => resolveQualifiedLexicalReference regs identifier namespace

 | UnqualifiedName { identifier, openNamespaces, ... }
 => resolveUnqualifiedLexicalReference regs identifier openNamespaces
 end

4.4.3.1 Qualified Lexical References

To resolve a qualified lexical reference we evaluate its namespace expression (it must yield a namespace value) and then look
up the name comprised of the namespace value and the qualified reference's identifier. If a binding is not found then we
return the global object, otherwise the object that contained the binding for the name.

Semantics

1

2

3

1

2

3

1

2

core-language.pdf

Matching text on page 35 of other document

Matching text on page 35 of other document

Matching text on page 35 of other document

Matching text on page 35 of other document

Matching text on page 35 of other document

Matching text on page 35 of other document

Matching text on page 35 of other document

Matching text on page 35 of other document

Page 32ECMAScript 4th Edition -- Core Language

16.05.2008 21:39:09file://localhost/C:/src/com.mozilla.es4.smlnj/spec/language.html

extensible, and allowing dynamic properties to shadow static properties would make programs harder to
understand, and it would make them slower, as it would be hard to perform early binding.)

The second complication appears with the need for disambiguation. When an unqualified name is resolved the
resolution is performed in the context of the namespaces that were open at the point of reference. Thus the search of
any one object may find multiple bindings that match the name, up to one binding per open namespace. Instead of
making this an error, the name resolver disambiguates by trying to select the most desirable of those namespaces.
Selection is performed by filtering the applicable namespaces until we are left with one. (If we have more than one
then the name is deemed ambiguous.)

We first select those namespaces among the matching namespaces that are in use by the least specific class of the
object that contains the name. For example, if C is a subclass of B and B is a subclass of A, and our name n matched
ns1::n, ns2::n, and ns3::n, and ns1::n and ns2::n were defined in B and ns3::n was defined in C,
then we'd be left with just ns1 and ns2.

We then filter by namespace priority. The open namespaces are organized in a prioritized list of namespace sets. If
one of the matching names has a namespace that is from a set with a higher priority than all the other matching
names, then that's the namespace we want. So if the referencing context of n opened ns2 in a scope nested inside
the one that opened ns1, then we are left with just ns2 -- and a single binding, ns2::n.

(The motivation for disambiguation is simple: disambiguation allows more programs to run. Furthermore, since the
priority or namespaces during disambiguation is under the control of the programmer, the programmer can rely on
disambiguation to control which names that are found.)

The third complication is that some names are required to be resolved successfully at definition time -- names that
denote namespaces and types. (We require that in order to make names and types constant, which generally
simplifies the language and makes programs more easily comprehensible.) The consequence of that is that
namespace and type references are illegal inside scopes introduced by with or scopes that may be extended by the
eval operator, because those scopes make definition time resolution impossible -- their contents are unknown.
Such programs result in a syntax error being signalled. (It is possible to ease that restriction in various ways but we
have not done so.)

However, we also require that type and namespace names that are resolved at definition time must resolve to the
same bindings that they would resolve to if they were to be resolved at evaluation time. (We require that because it
simplifies the user's model of the language: equal names in the same scope have the same meaning, provided they
resolve at all.) The consequence of that is that the language must provide protection against ambiguities that can be
introduced at a later time. If a name is resolved at definition time to a global binding then compilation units loaded
later may introduce new global bindings that will make the resolved binding ambiguous. For example, consider the
following program.

namespace NS1
namespace NS2
NS1 type T
use namespace NS1, namespace NS2

 ... var x: T

The reference to T in the type annotation is resolved uniquely at definition time to NS1::T. Then another
compilation unit is loaded:

NS2 type T

Since the global environment is "flat"--code in earlier compilation units see bindings introduced by later
compilation units--the reference to T from the first program is now ambiguous.

ES4 protects against this eventuality by reserving global names that are resolved at definition time. When T is
resolved in the first program and found to be in NS1, the name NS2::T is reserved: it is made off-limits to later
programs. As a consequence, the second program above would not be loaded, because the introduction of NS2::T
would be an error.

Names are reserved in namespaces at the same or higher priority level as the namespace that the name was resolved
to, so in the example above neither public::T nor internal::T would become reserved, as those
namespaces are at lower priority levels than NS1 and NS2.

4

5

6

7

8

9

10

11

12

13

core-language.pdf

Matching text on page 28 of other document

Matching text on page 28 of other document

Matching text on page 28 of other document

Matching text on page 28 of other document

Matching text on page 28 of other document

Matching text on page 28 of other document

Matching text on page 28 of other document

Matching text on page 28 of other document

Matching text on page 28 of other document

Matching text on page 28 of other document

Matching text on page 28 of other document

Matching text on page 28 of other document

Matching text on page 28 of other document

Matching text on page 28 of other document

Matching text on page 28 of other document

Matching text on page 28 of other document

Matching text on page 28 of other document

Matching text on page 28 of other document

Matching text on page 28 of other document

Matching text on page 28 of other document

Matching text on page 28 of other document

Matching text on page 28 of other document

Matching text on page 28 of other document

Matching text on page 28 of other document

Matching text on page 28 of other document

Matching text on page 28 of other document

Matching text on page 28 of other document

Matching text on page 28 of other document

Matching text on page 28 of other document

Matching text on page 28 of other document

Matching text on page 28 of other document

Matching text on page 28 of other document

Matching text on page 28 of other document

Matching text on page 28 of other document

Matching text on page 28 of other document

32ECMAScript 4th Edition -- Core Language

07/11/08 16:28:33file://localhost/Work/es4/spec/language.html

and resolveQualifiedLexicalReference (regs : REGS)
 (identifier : IDENTIFIER)
 (namespaceExpr : NAMESPACE_EXPRESSION)
 : (OBJECT * NAME) =
 let
 val {scope, global, ...} = regs
 val namespace = evalNamespaceExpr regs namespaceExpr
 val result = searchScopeChain (regs, SOME scope, identifier, [namespace])
 in
 case result of
 NONE
 => (global, {ns=publicNS, id=identifier})

 | SOME (object, namespaces)
 => (object, {ns=namespace, id=identifier})
 end

4.4.3.2 Unqualified Lexical References

To resolve an unqualified lexical reference we make use of the full algorithm outlined above, finding the first object that
maches the unqualified name in all open namespaces and then disambiguating the set of resulting namespaces.

Semantics
and resolveUnqualifiedLexicalReference (regs : REGS)
 (identifier : IDENTIFIER)
 (openNamespaces : OPEN_NAMESPACES)
 : (OBJECT * NAME) =
 let
 val {scope, global, ...} = regs
 val namespaces = List.concat openNamespaces
 val result = searchScopeChain (regs, SOME scope, identifier, namespaces)
 in
 case result of
 NONE
 => (global, {ns=publicNS, id=identifier})

 | SOME (object, namespaces)
 => let
 val classFixtureMaps = [getFixtureMap regs object]
 val result = Fixture.selectNamespaces (identifier,
 namespaces,
 classFixtureMaps,
 openNamespaces)
 in
 case result of
 [namespace]
 => (object, {ns=namespace, id=identifier})

 | _
 => error regs ["ambiguous reference"]
 end
 end

4.4.3.3 Resolve on a Scope Chain

To find an object matching an identifier and a set of namespaces in a scope chain. [CHANGE] remove second lookup pass

Semantics
and searchScopeChain (regs, NONE, _, _) = NONE

 | searchScopeChain (regs : REGS,
 SOME scope : SCOPE option,
 identifier : IDENTIFIER,
 namespaces : NAMESPACE_SET)
 : (OBJECT * NAMESPACE_SET) option =
 let
 val matches = searchScope (regs, scope, namespaces, identifier)
 val Scope { parent, ... } = scope
 in
 case matches of
 NONE
 => searchScopeChain (regs, parent, identifier, namespaces)

 | _
 => matches
 end

1

2

1

2

core-language.pdf

Matching text on page 37 of other document

Matching text on page 37 of other document

Matching text on page 37 of other document

Matching text on page 37 of other document

Matching text on page 37 of other document

Matching text on page 37 of other document

Matching text on page 37 of other document

Matching text on page 37 of other document

Page 33ECMAScript 4th Edition -- Core Language

16.05.2008 21:39:09file://localhost/C:/src/com.mozilla.es4.smlnj/spec/language.html

NOTE Top-level "use namespace" pragmas are given a higher priority level than names originating "outside" the compilation unit, as is the case for
public andinternal.

4.7.2 Definition-Time Resolution of Namespace and Type Expressions

The definition time scope chain is modelled as a list of RIB data structures, defined elsewhere. A rib maps names
to fixture bindings that result from defining and binding forms (var, function, type, class, interface,
namespace, and others). Ribs have no dynamic properties.

Definition time resolution resolves name expressions that denote namespaces and types, and performs reservation
of global names if necessary.

The following algorithm resolves a name expression to a specific name and fixture in the list of ribs.

Semantics

and resolveNameExpr (ribs : Ast.RIBS)
 (ne : Ast.NAME_EXPRESSION)
 : (Ast.RIBS * Ast.NAME * Ast.FIXTURE) =

 case ne of
 Ast.QualifiedName { namespace, identifier }
 => resolveQualifiedName ribs identifier namespace

 | Ast.UnqualifiedName { identifier, openNamespaces, ... }
 => case (resolveUnqualifiedName ribs identifier openNamespaces) of

 NONE
 => error ["unresolved name ", LogErr.nameExpr ne]

 | SOME ([], _)
 => error ["unresolved name ", LogErr.nameExpr ne]

 | SOME ([rib], name)
 => (reserveNames name openNamespaces ;
 ([rib], name, getFixture rib (Ast.PropName name)))

 | SOME (ribs, name)
 => (ribs, name, getFixture (hd ribs) (Ast.PropName name))

4.7.2.1 Qualified Name Expressions

A qualified name expression is resolved by resolving the namespace part and then returning the tail of the list of
ribs such that the first rib on the tail contains a binding for the name.

Semantics

fun resolveQualifiedName (ribs : Ast.RIBS)
 (identifier : IDENTIFIER)
 (namespaceExpr : Ast.NAMESPACE_EXPRESSION)
 : (Ast.RIBS * NAME * Ast.FIXTURE) =
 let
 val ns = resolveNamespaceExpr ribs namespaceExpr
 val name = { ns = ns, id = identifier }
 fun search (r::rs) = if hasFixture r (Ast.PropName name) then
 (r::rs)
 else
 search rs
 | search [] = []
 in
 case (search ribs) of
 []
 => error ["qualified name not present in ribs: ", LogErr.name name]

 | ribs'

1

2

3

4

1

2

core-language.pdf

Matching text on page 29 of other document

Matching text on page 29 of other document

Matching text on page 29 of other document

Matching text on page 29 of other document

Matching text on page 29 of other document

Matching text on page 29 of other document

Matching text on page 29 of other document

Matching text on page 29 of other document

Matching text on page 29 of other document

Matching text on page 29 of other document

Matching text on page 29 of other document

Matching text on page 29 of other document

Matching text on page 29 of other document

Matching text on page 29 of other document

Matching text on page 29 of other document

Matching text on page 29 of other document

Matching text on page 29 of other document

Matching text on page 29 of other document

Matching text on page 29 of other document

Matching text on page 29 of other document

Matching text on page 29 of other document

Matching text on page 29 of other document

Matching text on page 29 of other document

33ECMAScript 4th Edition -- Core Language

07/11/08 16:28:33file://localhost/Work/es4/spec/language.html

fun searchScope (regs : REGS,
 scope : SCOPE,
 namespaces : NAMESPACE_SET,
 identifier : IDENTIFIER)
 : (OBJECT * NAMESPACE_SET) option =
 let
 val (object, kind) = getScopeObjectAndKind (scope)
 in
 case kind of
 (WithScope | EvalScope | GlobalScope) (* FIXME EvalScope is unused *)
 => searchObject (regs, SOME object, NONE, identifier, namespaces, false)

 | (InstanceScope class)
 => searchObject (regs, SOME object, SOME class, identifier, namespaces, true)

 | _
 => searchObject (regs, SOME object, NONE, identifier, namespaces, true)
 end

4.4.4 Evaluation-Time Resolution of Object References

Object references are resolved along the prototype chain of the object. Both fixed and dynamic properties are searched in
each object, in a single pass over the prototype chain.

ObjectIndexReference expressions represent computed lookup. The index expression is computed; if it evaluates to a
Name object then it is used as is, otherwise the value is converted to string and qualified with the public namespace.

FIXME The following algorithm does not yet handle Name objects.

Semantics
and resolveObjectReference (regs:REGS)
 (ObjectNameReference { object, name, ... }: EXPRESSION)
 : (OBJECT option * (OBJECT * NAME)) =
 let
 val obj = evalObjectExpr regs object
 in
 case name of
 UnqualifiedName { identifier, openNamespaces, ... }
 => (SOME obj, resolveUnqualifiedObjectReference regs obj identifier
 openNamespaces)

 | QualifiedName { namespace, identifier }
 => (SOME obj, resolveQualifiedObjectReference regs obj identifier
 namespace)
 end

 | resolveObjectReference regs
 (ObjectIndexReference {object, index, ...}) =
 let
 val obj = evalObjectExpr regs object
 val idx = evalExpr regs index
 val identifier = toUstring regs idx
 (* FIXME if its an Name, then don't convert *)
 val namespace = Namespace publicNS
 in
 (SOME obj, resolveQualifiedObjectReference regs obj identifier namespace)
 end

4.4.4.1 Qualified Object References

Here we describe how an identifier and a namespace expression is resolved to a name of a binding on a specfic object.

To resolve a qualified object reference we evaluate its namespace expression (it must yield a namespace value) and then
simply return the object value and the evaluated name.

Semantics
and resolveQualifiedObjectReference (regs: REGS)
 (object: OBJECT)
 (identifier: IDENTIFIER)
 (namespaceExpr: NAMESPACE_EXPRESSION)
 : (OBJECT * NAME) =
 let
 val namespaces = [evalNamespaceExpr regs namespaceExpr]
 val openNamespaces = []
 in

1

2

3

1

2

3

core-language.pdf

Page 34ECMAScript 4th Edition -- Core Language

16.05.2008 21:39:09file://localhost/C:/src/com.mozilla.es4.smlnj/spec/language.html

 => (ribs', name, getFixture (hd ribs') (Ast.PropName name))
 end

4.7.2.2 Unqualified Name Expressions

An unqualified name expression is resolved according to the full algorithm outlined above. It returns the tail of the
list of ribs such that the first rib on the tail contains a binding for the name.

Semantics

and resolveUnqualifiedName (ribs : Ast.RIBS)
 (identifier : IDENTIFIER)
 (openNamespaces : OPEN_NAMESPACES)
 : (Ast.RIBS * NAME) option =
 let
 val namespaces = List.concat (openNamespaces)
 val matches = ribListSearch (ribs, namespaces, identifier)
 in
 case matches of
 NONE
 => NONE

 | SOME (ribs, [namespace])
 => SOME (ribs, {ns=namespace, id=identifier})

 | SOME (ribs, namespaces)
 => case selectNamespaces (identifier,
 namespaces,
 [],
 openNamespaces) of

 [namespace]
 => SOME (ribs, {ns=namespace, id=identifier})

 | ns::nss
 => error ["ambiguous reference: ", Ustring.toAscii identifier]
 end

fun ribListSearch ([], _, _) = NONE

 | ribListSearch (ribs : Ast.RIBS,
 namespaces : NAMESPACE_SET,
 identifier : IDENTIFIER)
 : (Ast.RIBS * NAMESPACE_SET) option =
 case ribSearch (hd ribs, namespaces, identifier) of
 NONE
 => ribListSearch (tl ribs, namespaces, identifier)

 | SOME (_, m)
 => SOME (ribs, m)

fun ribSearch (rib : Ast.RIB,
 namespaces : NAMESPACE_SET,
 identifier : IDENTIFIER)
 : (Ast.RIB * NAMESPACE_SET) option =
 case List.filter (fn ns =>
 hasFixture rib (Ast.PropName {ns=ns, id=identifier}))
 namespaces of
 [] => NONE
 | m => SOME (rib, m)

4.7.2.3 Reserving Names

1

2

core-language.pdf

34ECMAScript 4th Edition -- Core Language

07/11/08 16:28:33file://localhost/Work/es4/spec/language.html

 resolveOnObject regs object identifier namespaces openNamespaces
 end

4.4.4.2 Unqualified Object References

To resolve an unqualified object reference we make use of the full algorithm outlined above, finding the first object that
maches the unqualified name in all open namespaces and then disambiguating the set of resulting namespaces.

Semantics
and resolveUnqualifiedObjectReference (regs: REGS)
 (object: OBJECT)
 (identifier: IDENTIFIER)
 (openNamespaces: OPEN_NAMESPACES)
 : (OBJECT * NAME) =
 let
 val namespaces = List.concat openNamespaces
 in
 resolveOnObject regs object identifier namespaces openNamespaces
 end

4.4.4.3 Resolve Name on an Object

Semantics
and resolveOnObject (regs:REGS)
 (object:OBJECT)
 (identifier:IDENTIFIER)
 (namespaces:NAMESPACE_SET)
 (openNamespaces: OPEN_NAMESPACES)
 : (OBJECT * NAME) =
 let
 val result = searchObject (regs, SOME object, NONE, identifier,
 namespaces, false)
 in
 case result of
 NONE => (object, {ns=publicNS, id=identifier})
 | SOME (object, namespaces) =>
 selectNamespacesByInstanceFixtureMaps regs object identifier
 namespaces openNamespaces
 end

4.4.5 Common Name Resolution Algorithms

The following algorithms are common to the preceding resolver algorithms.

4.4.5.1 Single Object Search

Given an object, an identifier and a set of namespaces, this algorithm searches for a matching property name in the object
and the object's prototype chain.

Semantics
fun searchObject (_, NONE, _, _, _, _) = NONE

 | searchObject (regs : REGS,
 SOME object : OBJECT option,
 class : Ast.CLASS option,
 identifier : IDENTIFIER,
 namespaces : NAMESPACE_SET,
 fixedOnly : bool)
 : (OBJECT * NAMESPACE_SET) option =
 let
 val matches = getBindingNamespaces (regs,
 object,
 class,
 identifier,
 namespaces,
 fixedOnly)
 in
 case matches of
 []
 => if fixedOnly then
 NONE
 else
 searchObject (regs,
 getPrototypeObject (object),

1

2

1

1

1

2

core-language.pdf

Matching text on page 39 of other document

Matching text on page 39 of other document

Page 35ECMAScript 4th Edition -- Core Language

16.05.2008 21:39:09file://localhost/C:/src/com.mozilla.es4.smlnj/spec/language.html

Statically resolved names must keep their meaning at runtime and therefore cannot be shadowed or be made
ambiguous by the later introduction of names. Therefore we reserve the set of names that would cause such
conflicts at runtime.

Given a name and a list of sets of open namespaces, the following algorithm computes a set of names consisting of
the identifier and each of the open namespaces with an equal or higher priority than the given namespace.

Semantics

and reserveNames (name)
 (openNamespaces)
 = …

4.7.3 Evaluation-time Resolution of Lexical References

The evaluation time scope chain is modelled as a list of arbitrary objects. A scope object maps names to properties
(both fixtures and dynamic properties). Apart from scope objects introduced by the with statement, the evaluation
time scope chain mirrors the definition time scope chain.

The following algorithm resolves a name expression to an object and the name of a property on that object.

Semantics

and resolveLexicalReference (regs : REGS)
 (nameExpression : NAME_EXPRESSION)
 (errorIfNotFound : bool)
 : (OBJ * NAME) =
 let
 val {scope, ...} = regs
 in
 case nameExpression of

 QualifiedName {identifier, namespace}
 => resolveQualifiedLexicalReference regs identifier namespace

 | UnqualifiedName { identifier, openNamespaces, ... }
 => resolveUnqualifiedLexicalReference regs identifier openNamespaces
 end

4.7.3.1 Qualified Lexical References

To resolve a qualified lexical reference we evaluate its namespace expression (it must yield a namespace value) and
then look up the name comprised of the namespace value and the qualified reference's identifier. If a binding is not
found then we return the global object, otherwise the object that contained the binding.

Semantics

and resolveQualifiedLexicalReference (regs : REGS)
 (identifier : IDENTIFIER)
 (namespaceExpr : NAMESPACE_EXPRESSION)
 : (OBJ * NAME) =
 let
 val {scope, global, ...} = regs
 val namespace = evalNamespaceExpr regs namespaceExpr
 val result = searchScopeChain (SOME scope, identifier, [namespace])
 in
 case result of
 NONE
 => (global, {ns=publicNS, id=identifier})

 | SOME (object, namespaces)
 => (object, {ns=namespace, id=identifier})
 end

4.7.3.2 Unqualified Lexical References

1

2

3

1

2

3

1

2

core-language.pdf

Matching text on page 31 of other document

Matching text on page 31 of other document

Matching text on page 31 of other document

Matching text on page 31 of other document

Matching text on page 31 of other document

Matching text on page 31 of other document

Matching text on page 31 of other document

Matching text on page 31 of other document

35ECMAScript 4th Edition -- Core Language

07/11/08 16:28:33file://localhost/Work/es4/spec/language.html

 NONE,
 identifier,
 namespaces,
 fixedOnly)

 | _
 => SOME (object, matches)
 end

4.4.5.2 Disambiguation by Filtering

Given an identifier, a list of namespaces, a list of classes, a list of open namespaces, the following algorithm coordinates the
filtering of the set of namespaces: according to the order that the namespaces appear in bindings in the given classes first, and
in the priority given by the list of open namespaces second.

Semantics
fun selectNamespaces (identifier : IDENTIFIER,
 namespaces : NAMESPACE_SET,
 instanceFixtureMaps : Ast.FIXTURE_MAPS,
 openNamespaces : OPEN_NAMESPACES)
 : NAMESPACE_SET =
 let
 val openNamespaceSet = List.concat (openNamespaces)
 in
 case namespaces of

 _ :: []
 => namespaces

 | _ =>
 let
 val matches' =
 selectNamespacesByClass (instanceFixtureMaps,
 openNamespaceSet,
 identifier)
 in
 case matches' of
 []
 => raise (LogErr.NameError "internal error")

 | [_]
 => matches'

 | _ =>
 let
 val matches'' =
 selectNamespacesByOpenNamespaces (openNamespaces,
 namespaces)
 in
 case matches'' of

 []
 => raise (LogErr.NameError "internal error")

 | _
 => matches''
 end
 end
 end

4.4.5.2.3 Class Base Namespace Filtering

Given a list of classes, an identifier and a set of namespaces, the following algorithm selects the namespaces used on the
most generic class of that list. This step is necessary to avoid object integrity issues that arise when a derived class introduces
a binding with the same identifier and a different namespace in the open namespaces.

Informal description: Search a class for any instance fixture name bindings that are named by the provided identifier and
any of the namespaces in the provided set. Collect the set of matching namespaces used in all such bindings. If the set of
matching namespaces is nonempty, return it. Otherwise repeat the process on the next instance fixture map. If all the classes
in the list are searched and no matching namespaces are found, return the empty set.

Semantics
fun selectNamespacesByClass ([], namespaces, _) = namespaces

| selectNamespacesByClass (instanceFixtureMaps : Ast.FIXTURE_MAPS,
 namespaces : NAMESPACE_SET,

1

2

1

2

3

core-language.pdf

Matching text on page 40 of other document

Matching text on page 40 of other document

Matching text on page 40 of other document

Page 36ECMAScript 4th Edition -- Core Language

16.05.2008 21:39:09file://localhost/C:/src/com.mozilla.es4.smlnj/spec/language.html

To resolve an unqualified lexical reference we make use of the full algorithm outlined above, finding the first
object that maches the unqualified name in all open namespaces and then disambiguating the set of resulting
namespaces.

Semantics

and resolveUnqualifiedLexicalReference (regs : REGS)
 (identifier : IDENTIFIER)
 (openNamespaces : OPEN_NAMESPACES)
 : (OBJ * NAME) =
 let
 val {scope, global, ...} = regs
 val namespaces = List.concat openNamespaces
 val result = searchScopeChain (SOME scope, identifier, namespaces)
 in
 case result of
 NONE
 => (global, {ns=publicNS, id=identifier})

 | SOME (object, namespaces)
 => let
 val classRibs = instanceRibsOf (object)
 val result = Fixture.selectNamespaces (identifier,
 namespaces,
 classRibs,
 openNamespaces)
 in
 case result of
 [namespace]
 => (object, {ns=namespace, id=identifier})

 | _
 => error regs ["ambiguous reference"]
 end
 end

4.7.3.3 Searching a Scope Chain

To find an object matching an identifier and a set of namespaces in a scope chain, first make a pass over the scope
chain looking only at fixed properties (except where the scope object is introduced by with or is subject to
modification by the eval operator), and if none are found, make a second pass looking also for dynamic
properties.

Semantics

fun searchScopeChain (scope : SCOPE option,
 identifier : IDENTIFIER,
 namespaces : NAMESPACE_SET)
 : (OBJECT * NAMESPACE_SET) option =
 let
 val result = searchScopeChainOnce(scope, identifier, namespaces, true)
 in
 case result of
 NONE
 => searchScopeChainOnce(scope, identifier, namespaces, false)

 | SOME _
 => result
 end

and searchScopeChainOnce (NONE, _, _, _) = NONE

 | searchScopeChainOnce (SOME scope : SCOPE option,
 identifier : IDENTIFIER,
 namespaces : NAMESPACE_SET,

1

2

1

2

core-language.pdf

36ECMAScript 4th Edition -- Core Language

07/11/08 16:28:33file://localhost/Work/es4/spec/language.html

 identifier : IDENTIFIER)
 : NAMESPACE list =
 let
 val fixtureMap = hd instanceFixtureMaps
 val bindingNamespaces =
 getInstanceBindingNamespaces (fixtureMap, identifier, namespaces)
 val matches =
 intersectNamespaces (bindingNamespaces, namespaces)
 in
 case matches of

 []
 => selectNamespacesByClass (tl instanceFixtureMaps,
 namespaces,
 identifier)

 | _
 => matches
 end

4.4.5.2.4 Open Namespace Based Namespace Filtering

Given a list of sets of open namespaces (ordered from most recently opened to least recently opened) and a set of matching
namespaces, this algorithm returns a subset of the matching set that occurs entirely within a single open namespace set.

Informal description: intersect the head of the provided open namespace list with the provided set of namespaces. If that
intersection is nonempty, return it. Otherwise repeat the process with the tail of the open namespace list. If the end of the list
of open namespace sets is reached without producing a nonempty intersection, return an empty set.

Semantics
fun selectNamespacesByOpenNamespaces ([], _) = []

| selectNamespacesByOpenNamespaces (namespacesList : NAMESPACE_SET list,
 namespaces : NAMESPACE_SET)
 : NAMESPACE list =
 let
 val matches = intersectNamespaces (hd namespacesList, namespaces)
 in
 case matches of

 []
 => selectNamespacesByOpenNamespaces (tl namespacesList, namespaces)

 | _
 => matches
 end

1

2

3

core-language.pdf

Page 37ECMAScript 4th Edition -- Core Language

16.05.2008 21:39:09file://localhost/C:/src/com.mozilla.es4.smlnj/spec/language.html

 fixedOnly : bool)
 : (OBJECT * NAMESPACE_SET) option =
 let
 val matches = searchScope (scope, namespaces, identifier, fixedOnly)
 val Scope { parent, ... } = scope
 in
 case matches of
 NONE
 => searchScopeChainOnce (parent, identifier, namespaces, fixedOnly)

 | _
 => matches
 end

fun searchScope (scope : SCOPE,
 namespaces : NAMESPACE_SET,
 identifier : IDENTIFIER,
 fixedOnly : bool)
 : (OBJECT * NAMESPACE_SET) option =
 let
 val (object, kind) = getScopeObjectAndKind (scope)
 in
 case (kind, fixedOnly) of
 (WithScope, true)
 => searchObject (SOME object, identifier, namespaces, false)

 | (WithScope, false)
 => NONE

 | (_,_)
 => searchObject (SOME object, identifier, namespaces, fixedOnly)
 end

4.7.4 Evaluation-Time Resolution of Object References

Object references are resolved along the prototype chain of the object. Both fixed and dynamic properties are
searched in each object, in a single pass over the prototype chain.

ObjectIndexReference expressions represent computed lookup. The index expression is computed; if it
evaluates to a Name object then it is used as is, otherwise the value is converted to string and qualified with the
public namespace.

FIXME The following algorithm does not yet handleName objects.

Semantics

and resolveObjectReference (regs:REGS)
 (ObjectNameReference { object, name, ... }: EXPRESSION)
 : (OBJ option * (OBJ * NAME)) =
 let
 val obj = evalObjectExpr regs object
 in
 case name of
 UnqualifiedName { identifier, openNamespaces, ... }
 => (SOME obj,
 resolveUnqualifiedObjectReference regs
 obj
 identifier
 openNamespaces)

 | QualifiedName { namespace, identifier }
 => resolveQualifiedObjectReference regs obj identifier namespace
 end

1

2

3

core-language.pdf

Matching text on page 32 of other document

Matching text on page 32 of other document

Matching text on page 32 of other document

Matching text on page 32 of other document

Matching text on page 32 of other document

Matching text on page 32 of other document

Matching text on page 32 of other document

Matching text on page 32 of other document

Matching text on page 32 of other document

Matching text on page 32 of other document

Matching text on page 32 of other document

Matching text on page 32 of other document

Page 38ECMAScript 4th Edition -- Core Language

16.05.2008 21:39:09file://localhost/C:/src/com.mozilla.es4.smlnj/spec/language.html

 | resolveObjectReference regs
 (ObjectIndexReference {object, index, ...}) =
 let
 val obj = evalObjectExpr regs object
 val idx = evalExpr regs index
 val identifier = toUstring regs idx
 (* FIXME if its an Name, then don't convert *)
 val namespace = Namespace publicNS
 in
 resolveQualifiedObjectReference regs obj identifier namespace
 end

4.7.4.1 Qualified Object References

Here we describe how an identifier and a namespace expression is resolved to a name of a binding on a specfic
object.

To resolve a qualified object reference we evaluate its namespace expression (it must yield a namespace value) and
then simply return the object value and the evaluated name.

Semantics

and resolveQualifiedObjectReference (regs: REGS)
 (object: OBJ)
 (identifier: IDENTIFIER)
 (namespaceExpr: NAMESPACE_EXPRESSION)
 : (OBJ option * (OBJ * NAME)) =
 let
 val namespace = evalNamespaceExpr regs namespaceExpr
 in
 (SOME object, (object, {ns=namespace, id=identifier}))
 end

4.7.4.2 Unqualified Object References

To resolve an unqualified object reference we make use of the full algorithm outlined above, finding the first object
that maches the unqualified name in all open namespaces and then disambiguating the set of resulting namespaces.

Semantics

and resolveUnqualifiedObjectReference (regs: REGS)
 (object: OBJ)
 (identifier: IDENTIFIER)
 (openNamespaces: OPEN_NAMESPACES)
 : (OBJ * NAME) =
 let
 val namespaces = List.concat openNamespaces
 val result = searchObject (SOME object, identifier, namespaces, false)
 in
 case result of
 NONE
 => (object, {ns=publicNS, id=identifier})

 | SOME (object, namespaces)
 => let
 val instanceRibs = instanceRibsOf (object)
 val result = Fixture.selectNamespaces (identifier,
 namespaces,
 instanceRibs,
 openNamespaces)
 in
 case result of
 []
 => internalError ["empty namespace set"]

1

2

3

1

2

core-language.pdf

Page 39ECMAScript 4th Edition -- Core Language

16.05.2008 21:39:09file://localhost/C:/src/com.mozilla.es4.smlnj/spec/language.html

 | namespace :: []
 => (object, {ns=namespace, id=identifier})

 | _
 => error regs ["ambiguous reference"]
 end
 end

4.7.5 Common Algorithms

The following algorithms are common to the preceding resolver algorithms.

4.7.5.1 Single Object Search

Given an object, an identifier and a set of namespaces, this algorithm searches for a matching property name in the
object and the object's prototype chain.

Semantics

fun searchObject (NONE, _, _, _) = NONE

 | searchObject (SOME object : OBJECT option,
 identifier : IDENTIFIER,
 namespaces : NAMESPACE_SET,
 fixedOnly : bool)
 : (OBJECT * NAMESPACE_SET) option =
 let
 val matches = getBindingNamespaces (object,
 identifier,
 namespaces,
 fixedOnly)
 in
 case matches of
 []
 => if fixedOnly then
 NONE
 else
 searchObject (getPrototypeObject (object),
 identifier,
 namespaces,
 fixedOnly)

 | _
 => SOME (object, matches)
 end

4.7.5.2 Disambiguation by Filtering

Given an identifier, a list of namespaces, a list of classes, a list of open namespaces, the following algorithm
coordinates the filtering of the set of namespaces: according to the order that the namespaces appear in bindings in
the given classes first, and in the priority given by the list of open namespaces second.

Semantics

fun selectNamespaces (identifier : IDENTIFIER,
 namespaces : NAMESPACE_SET,
 instanceRibs : Ast.RIBS,
 openNamespaces : OPEN_NAMESPACES)
 : NAMESPACE_SET =
 let
 val openNamespaceSet = List.concat (openNamespaces)
 in
 case namespaces of

 _ :: []
 => namespaces

1

1

2

1

2

core-language.pdf

Matching text on page 34 of other document

Matching text on page 34 of other document

Page 40ECMAScript 4th Edition -- Core Language

16.05.2008 21:39:09file://localhost/C:/src/com.mozilla.es4.smlnj/spec/language.html

 | _ =>
 let
 val matches' =
 selectNamespacesByClass (instanceRibs,
 openNamespaceSet,
 identifier)
 in
 case matches' of
 []
 => raise (LogErr.NameError "internal error")

 | [_]
 => matches'

 | _ =>
 let
 val matches'' =
 selectNamespacesByOpenNamespaces (openNamespaces,
 namespaces)
 in
 case matches'' of

 []
 => raise (LogErr.NameError "internal error")

 | _
 => matches''
 end
 end
 end

4.7.5.2.1 Class Base Namespace Filtering

Given a list of classes, an identifier and a set of namespaces, the following algorithm selects the namespaces used
on the most generic class of that list. This step is necessary to avoid object integrity issues that arise when a derived
class introduces a binding with the same identifier and a different namespace in the open namespaces.

Informal description: Search a class for any instance fixture name bindings that are named by the provided
identifier and any of the namespaces in the provided set. Collect the set of matching namespaces used in all such
bindings. If the set of matching namespaces is nonempty, return it. Otherwise repeat the process on the next
instance rib. If all the classes in the list are searched and no matching namespaces are found, return the empty set.

Semantics

fun selectNamespacesByClass ([], namespaces, _) = namespaces

 | selectNamespacesByClass (instanceRibs : Ast.RIBS,
 namespaces : NAMESPACE_SET,
 identifier : IDENTIFIER)
 : NAMESPACE list =
 let
 val rib = hd instanceRibs
 val bindingNamespaces =
 getInstanceBindingNamespaces (rib, identifier, namespaces)
 val matches =
 intersectNamespaces (bindingNamespaces, namespaces)
 in
 case matches of

 []
 => selectNamespacesByClass (tl instanceRibs,
 namespaces,
 identifier)

1

2

3

core-language.pdf

Matching text on page 35 of other document

Matching text on page 35 of other document

Matching text on page 35 of other document

Page 41ECMAScript 4th Edition -- Core Language

16.05.2008 21:39:09file://localhost/C:/src/com.mozilla.es4.smlnj/spec/language.html

 | _
 => matches
 end

4.7.5.2.2 Open Namespace Based Namespace Filtering

Given a list of sets of open namespaces (ordered from most recently opened to least recently opened) and a set of
matching namespaces, this algorithm returns a subset of the matching set that occurs entirely within a single open
namespace set.

Informal description: intersect the head of the provided open namespace list with the provided set of namespaces.
If that intersection is nonempty, return it. Otherwise repeat the process with the tail of the open namespace list. If
the end of the list of open namespace sets is reached without producing a nonempty intersection, return an empty
set.

Semantics

fun selectNamespacesByOpenNamespaces ([], _) = []

 | selectNamespacesByOpenNamespaces (namespacesList : NAMESPACE_SET list,
 namespaces : NAMESPACE_SET)
 : NAMESPACE list =
 let
 val matches = intersectNamespaces (hd namespacesList, namespaces)
 in
 case matches of

 []
 => selectNamespacesByOpenNamespaces (tl namespacesList, namespaces)

 | _
 => matches
 end

1

2

3

core-language.pdf

