Ecma/TC39/2008/061

Text Comparison

Documents Compared
core-language.pdf

core-language.pdf

Summary
6502 word(s) added
6635 word(s) deleted
11812 word(s) matched
330 block(s) matched

patrick
Text Box
Ecma/TC39/2008/061

To see where the changes are, scroll down.

corESIMASeHpt-4th-Editior—ECere-tanguage

1 Values

¢ The evaluation of a program, described in section ..., entails among its effects the calculation and manipulation of
values.

FIXME Draft 1 of the specification does not include a description of evaluation.

2 An ECMAScript value is either undefined, null, or an object. Every ECMAScript value has an associated
ECMAScript type, called the value's allocated type. The allocated type is fixed when the value is allocated in
memory, and cannot change over the lifetime of the value.

Semantics
§ datatype VALUE = Lndefined
4 Null
} Qhject ef QB1

COMPATHBH=IR=NETFE Inthe 3rd edition of the language, several individual types were defined. The three types formerly called primitive
(number, string, boolean) are now represented as object values. The term type has a different meaning in the 4th edition.

1.1 ‘Sseefsed

2 An object value consists of a mutable property binding map, an immutable object identifier, an immutable tag, and
an immutable prototype reference.

Semantics
§ and QBl=
Qb of fprops.PROPERTY _RINDINGS. .

core-language.pdf

ECMAScrint 4th Edition - Care | L

1 Values

L The evaluation of a program, described in section ..., entails among its effects the calculation and manipulation of values.
FIXME Draft 1 of the specification does not include a description of evaluation.

2 An ECMAScript value is either undefined, null, or an object. Every ECMAScript value has an associated ECMAScript type,
called the value's allocated type. The allocated type is fixed when the value is allocated in memory, and cannot change over
the lifetime of the value.

Semantics

3 datatype VALUE = QbiecitValuc of OBJECT

In the 3rd edition of the language, several individual types were defined. The three types formerly called primitive (number,
string, boolean) are now represented as object values. The term fype has a different meaning in the 4th edition.

1.1 Obiject Values
Ny e ECY . .

An object value consists of a mutable property binding map.animmutable fixture map, an immutable object identifier, an
immutable tag, and an immutable prototype reference.

Semantics

3 and QBIECT =
Qblect of { propertvMap: PROPERTY MAP,

Ll1.1 Property Maps

L Ajaperty map associates at most one property with any name. If an object's property map associates a property P with a
name N, then the object is said to have a binding for N. Alternatively, the property P is said to be bound to the name N, in the
object.

Bindings can be added, removed, or replaced within a property map_The semantictype of 2 property map isunspecified,

A_property map stores the order in which properties are added to the map. A property's position in this order is unchanged
when the property is replaced. This order is used by property enumeration (see the chapter on Statements).

EIXME_Replacament' is notan adequaie absiaction boreo e wish to bave oo wodate' anciation Replacementan the language loval acouce whon .
piapenmisdeloied by the dolole ancialon (oran couivalonl ieehani S ac o Da piope il e sae painerisinsarodepndaribic Lind of onlocamen

]h‘\ [irﬁﬁ"“ IFEEYaVITaravay e chop oo WAl o "v\nlq\mv” o tho coooptio loyal thot 1ot ke podoto tho e otyle oot on povor chopoog

1.1.1.1 Properties

1 A property consists of a type, a state, and a set of attributes. The type of a property is also called the property's storage type,
to differentiate it from the allocated type of any value that the property may contain.

COMPATIRILITY NQTE In earlier editions of the language, some characteristics of an object were modeled as internal properties with distinct names
such as LLClass 1] or LILValue]]. These characteristics of objects are described differently in the 4th edition, using a combination of
supporting semantic and ECMAScript standard library functionality.

Semantics

2 and PROPERTY = { ty: TYPE,
state: PROPERTY_ STATE,
attrs: ATTRS }

el slorgcenecdsnatddeal bocanse it alsg annlico to the ot value constainton o funciion ghicct thore i Do msioracon dn that contoxt

Lsenassible that guuaiaied tueanauld be o botior tor

file-/Mlacalhost/Wark/esd/spec/lancnage himl Q7/11/08 16-2R8-33

corESIMASeHpt-4th-Editior—ECere-tanguage

F

Acproperty-bineing map associates at most one property with any name. If an object's property lireirg map
associates a property P with a name N, then the object is said to have a binding for N. Alternatively, the property P

is said to be bound to the name N, in the object.

Bindings can be added, removed, or replaced within a property imeing-reap=—The-semeantictypeofaproperty
el . etk

A-property-himding map stores the order in which properties are added to the map. A property's position in this

order is unchanged when the property is replaced. This order is used by property enumeration (see the chapter on
Statements).

Seraraes
eme RROPERTY. _RINDINGS —

+=8-3=+ Properties

A property consists of a type, a state, and a set of attributes. The type of a property is also called the property's
storage type, to differentiate it from the allocated type of any value that the property may contain.

COMPATBH=I=NOFE Inearlier editions of the language, some characteristics of an object were modeled as internal properties with distinct
names such ae-jeieet-ttSSd=t=ai=t=\/a l u€]] . These characteristics of objects are described differently in the 4th edition, using a
combination of supporting semantic and ECMAScript standard library functionality.

Semantics

and PROPERTY = { ty: TYPE,
state: PROPERTY_STATE,
attrs: ATTRS }

+=3=4=2 Property States

The state of a property encodes either a value associated with the property, or else eme-efasmet-rtmiser-of
. ; I i e omtor

fgetter: ELIN CLOSURE option.
setterLLIN_.CIL OSURE option }

FIXME Itis probably not necessary for the getter and setter to be "option", the missing part of the pair is always generated by the language
implementation.

core-language.pdf

ECMAScrint 4th Edition - Care |

1.1.1.2 Property States
L The state of a property encodes either a value associated with the property, or else a-paicoffunctionsthatdescribea tyictuall
xaluc,

4 and PROPERTY STATE

\aluebroperty of VALIR

setter: CLOSURE option }

FIXME It is probably not necessary for the getter and setter to be "option", the missing part of the pair is always generated by the language
implementation.

L
Aftribute
writable
enumerable
removable
2
fixed

An attribute that can be one of three values. When the value
is Writable, the property can be written to an arbitrary
number of times. When the value is WriteOnce, the
property can be written to once, after which the attribute
assumes the value ReadOnly. When the value is
ReadOnly, attempts to write to the property after
initialization will fail.

A boolean attribute. If true, then the property is to be
enumerated by for-in and for-each-in enumeration. If
false, the property is ignored by such enumeration.

A boolean attribute. If true, then the property can be
removed using the delete operator. If false, the delete
operator fails.

A boolean attribute. If true, then the property was defined
as aufixtureinthe gbjects fixture man and dominates most
non-fixed properties during name resolution. If false, then
the property is a dynamic addition to the object and is
usually consulted after fixed properties during name
resolution.

The £ixed attribute is mutually exclusive with the removable attribute.

If a property is not Writableitis also not removable.

If a property is £ixed it is not enumerable.

Semantics

6 datatype WRITABILITY

= ReadOnly | WriteOnce | Writable

type ATTRS = { removable: BQOLEAN_
enumerable: BOOLEAN,

writable: WRITABITITY 3

file-:/lacalbast/Work/esd/spec/langnage html

Q7/11/08 16-2R8-33

corESASeHpH4-Edition—Coretanguage Page-3

An attribute that can be one of three values. When the
value is Writable, the property can be written to an
arbitrary number of times. When the value is

writable WriteOnce, the property can be written to once,
after which the attribute assumes the value
ReadOnly. When the value is ReadOnly, attempts
to write to the property after initialization will fail.

A boolean attribute. If true, then the property is to be
enumerated by for-in and for-each-in enumeration.
Stherwise the property is ignored by such
enumeration.

enumerable

A boolean attribute. If true, then the property can be
removable removed using the delete operator. If false, the delete
operator fails.

2 A boolean attribute. If true, then the property was

defined as partoftre-object'sfixed-struetore and
- dominates most non-fixed properties during name
fixed . . :
resolution. If false, then the property is a dynamic
addition to the object and is usually consulted after
fixed properties during name resolution.

8 The Fixed attribute is mutually exclusive with the removable attribute.
4 If aproperty is not Writable it is also not removable,
5 If aproperty is Fixed it is not enumerable,

Semantics
& datatype WRITABILITY = ReadOnly | WriteOnce | Writable

type ATTRS = { removable: beelsy
enumerableosbool,
Eivodbool,
weitablo: WOLTARILLTY 1

+32 Object Prototype

4+ The prototype of an object is a means of dynamically delegating behavior from one object to another. In various

conditions, the terguege-defires-the-evataation of an unsuccessful property access on an object in terms of
subsequent property accesses on the object's prototype.

433 Object Identifier

& The identifier of an object uniquely identifies the object. The semantic type of an object identifier is unspecified,
and its value cannot be directly observed by ECMAScript code. Equality of objects is partially defined in terms of
equality of the objects' identifiers, so all identifiers must be comparable with one another for equality.

Semantics

2 and QBJIJADENTLIELED —

core-language.pdf

ECMAScrint 4th Edition - Care | 3

1.1.1.4 Names
. : oo identif
o bindi b
Semantics
3 :gng NEME = [pnge NAMF‘QPA(‘F‘ id: TDENTIFIER }

Lll4l Identifiers

1l
2
4
LransparentNamespace of STRING
J—QpagueNamespace of OPAQUE NAMESPACE TDENTTFTER
type OPAQUE NAMESPACE JIDENTIFIFR = ..
2
[+
<
a

1.1.2 Object Prototype

4 The prototype of an object is a means of dynamically delegating behavior from one object to another. In various conditions,
the result of an unsuccessful property access on an object js.defined in terms of subsequent property accesses on the object's
prototype.

2 JThe~alue ofthe prototype can be the null value oran object value,
1.1.3 Object Identifier

L The identifier of an object uniquely identifies the object. The semantic type of an object identifier is unspecified, and its value
cannot be directly observed by ECMAScript code. Equality of objects is partially defined in terms of equality of the objects'
identifiers, so all identifiers must be comparable with one another for equality.

Semantics
2 and QBJECT IDENTIFIER =

114 ObijectTaa

file-/Mlacalhost/Wark/esd/spec/lancnage himl Q7/11/08 16-2R8-33

corESASeHpH4-Edition—Coretanguage Page4

2

The PrimitiveTag tag is present on objects that are instances of a small number of classes, described in the
following section.

The InstanceTag tag is present on any object that is an instance of a class but does not have an Shjectlag-
ArrayTag or PrimitiveTag tag.

The NoTag tag is present only on un-named objects that implement scopes.

Semantics
and TAG =

Objectlag of FIELD TYPE list
| ArrayTag of (TYPE list * TYPE option)

| PrimitiveTag of PRIMITIVE
| InstanceTag of CLASS
| NoTag

Seme-objectshave-additionatarsemanticraite-assoctatecrwitirtivenm Such objects are called primitive objects and
have a primitive teg=Fhe-semantie-value-is-hele-in-the-tagand is only directly accessible in semantic code.

ECMAScript code can determine if an object is primitive through a correspondence between primitive tags and a

set of +8-speeifie-ECSiASerpt-etass types. The correspondence is a bijection: any instance of these types has the
corresponding primitive tag, and any object with a primitive tag is an instance-of-the-corresponding-ctass:

The allocated type of a primitive object may be more-speeifictrartire-corresponding-ctasstype: In particular,

function objects may have more specific subtypes of the class public::Fametior In such cases, the allocated type
of the object is present=i the semantic value held by the primitive tag.

The correspondence between primitive tags and etesses-is-the-foHowing:

core-language.pdf

The PrimitiveTag tag is present on objects that are instances of a small number of classes, described in the following
section.

a The InstanceTag tag is present on any object that is an instance of a class but does not have an RecardTag,
ArrayTagor PrimitiveTag tag.

& The NoTag tag is present only on un-named objects that implement scopes.

Semantics

Z and TAG =
RecordTag of FIELD TYPE list
ArrayTag of (TYPE list * TYPE option)
PrimitiveTag of PRIMITIVE
InstanceTag of CLASS
NoTag

ag. Such objects are called

prlmltzve ob]ects and have a prlmztlve W is only directly accessible

in semantic code.

2 ECMAScript code can determine if an object is primitive through a correspondence between primitive tags and a set of 2
types. The correspondence is a bijection: any instance of these types has the corresponding primitive
tag, and any object with a primitive tag is an

3 The allocated type of a primitive object may be MMW In particular, function objects

may have more specific subtypes of the class public::

interface helper::Type, In such cases, the allocated type of the object is described by the semantic value held by the
primitive tag.

4 The correspondence between primitive tags and ghjecttypesisthe following:

. s 10 the class haol
.W... W}J 1< 10 the class doubl
.WA.. e lPrimiti s tothe class decimal
. REes . s o b] .

e Iheprimitivetag NamespacebPrimitive corespondstatheclassNamespace,

e lheprimitivetae FunctionPrimitive carespondstothe classpublic:Function,
e Theprimitivetag TvpePrimitive carrespondstothe classhelpersType

e Iheprimitivetag GeneratorPrimitive comespondsiothe classhelperi:GeneratorTmpl
o Theprimitivetag ArgumentsPrimitive correspondstothe classhelperiArgnments,
Semantics

2 and PRIMITIVE =

Booleanbrimitive of BOOLEAN

S+1ringPrimitiv

TYPE

TyvpePrimitive o
LArgumentsbrimitly
mit

yve of GENERATOR

—Generatorbr

file-/Mlacalhost/Wark/esd/spec/lancnage himl Q7/11/08 16-2R8-33

corESIMASeHpt-4th-Editior—ECere-tanguage

1.4 Semantic Values

& Many aspects of the language depend on the semantic values associated with primitive objects. The following
sections describe the semantic values and the correspondences that exist between particular semantic values and
the ECMASCcript values they are held by.

1.4.1 Special Constructors

% While much of the behavior of primitive objects is defined inside the ECMAScript language (in the
section ...library), the means of constructing primitive objects and associating semantic values with them is (at least
partially) defined outside the ECMAScript language, in semantic coetes

2 Therefore the construction of any primitive object is described by a special constructor defined in semantic eeees
rather than a standard constructor that would otherwise be defined in standard library code. The behevierefecach

=2 Beelear-altes

+ Achootearvalue-is-either of two semantic values called true and false. These correspond to the ES4 boolean

literal values true and false, which denote the two sole instances of the class =——ES4——s=irootearrStehobjectsare
catted-booteamrobjects:

NRESFE=Theramespece—CESd——ispregcimeattisusceiotaggiobaramesthatavebeenmitrotreceimrtivedthr-Editor

2 Neoinstancesoftheetass—ES4—==boolean can be constructed aside from the two values true and false: the ==
ES#4—=boolean constructor is a special constructor that always evaluates to one of the two boolean objects.

1.4.3 Double Values

FIXME | cut this section down significantly from ES3, since the corresponding section 8.5 in the old standard mostly consisted of a very weird sort
of selective paraphrasing of bits of 754 itself: restatements of algorithms that are perfectly well described in 754, or of facts such as the definition of
the denormalized numbers that never even get used in the subsequent spec. | assume anyone reading this section and caring about 754 doubles
actually has the 754 spec and can read it. Spelling out the whole 754 spec title in this section likewise seems redundant, since that's the point of the
normative references section at the beginning of the document.

¢ Adouble value is a double precision, 64-bit format binary floating point value, as specified in the IEEE 754
standard.

2 Adouble value can be held in the primitive tag of an instance of the class =—=E=Sé4=——udetriste=Suel-objeets are
called double objects.

g Two special double values are held in special double objects: one "Not-a-Number" (NaN) value, stored in the
global constant public::NaN, and one "infinite" value, stored in the global constant public::Infinity.

FIXME There are also NaN and Infinity properties (as well as others) on INNTRTLI2Y=Y 5 object; those are all double values. ES4 will have NaN and
Infinity properties on e-chac-l-mhark sifeetrreprotmsyon teclaHa-la object for the sake of consistency.

4 ECMAScript provides no way of distinguishing any of the different IEEE 754 NaN values from one another. All
NaN values i are considered unequal to themselves, and to every other value.

5 In this specification, the phrase “the number value of x" where x represents an exact nonzero real mathematical
guantity means a number chosen according to the IEEE 754 rounding mode "rounds to nearest".

FIXME That does not take into account decimal.

& some ECMAScript operators deal only with integers in the range 23 through 231-1, inclusive, or in the range 0
through 2%.1 inclusive. These operators accept any double or decimal value but first convert each such value to
one of 2% integer values. See descriptions of the ToINt32 and ToUint32 operators in sections ...

1.4.4 Decimal Values

¢ Adecimal value is a 128-bit format decimal floating point value, as specified in the eeft IEEE 754r standard.

2 Adecimal value can be held in the primitive tag of an instance of the class ==ESé4=——udecimel=Suel-objects-are

core-language.pdf

1.3 Null Value

The pull value . T il l L litecal nuall i ECMA Scii

The] typeds theallocated type of the pull value The null valueis the only value with the null type asitsallocated type,
T m S b e d Lo ECMA Seui . - I n
Literalnull,

L Abile the o apnd podefined valyoes haove cipailar jnoonin boy bave difforen Quention o be o alye i iptondo indicate o poicaip
ﬂhiﬁﬁi VY FTTN hila tho ppdofinod H]n 1c iwr{ d 1o o di Ao miiiiﬁg Biﬂiiﬂiﬁi Sl ﬂxiiii'ﬂg Qh]’ﬁﬁ‘ Al alal IIHiEiiiﬂ i'iiﬁd B‘ﬁﬂﬂﬂi VR ﬂil'ﬂh o hﬁﬁﬁ

b ‘ : .

1.4 Semantic Values

1l Many aspects of the language depend on the semantic values associated with primitive objects. The following sections
describe the semantic values and the correspondences that exist between particular semantic values and the ECMAScript
values they are held by.

1.4.1 Special Constructors

Ll While much of the behavior of primitive objects is defined inside the ECMAScript language (in the section ..library), the
means of constructing primitive objects and associating semantic values with them is (at least partially) defined outside the

ECMAScript language, in semantic cade.and.specification.prase.

2 Therefore the construction of any primitive object is described by a special constructor defined in semantic code and
spamﬁca.n.nn.pmsg rather than a standard constructor that would 0therw1se be deﬁned in standard hbrary code The

se.man.ﬁuahms.

1.4.2 Boolean Values

1 Abealeanvalueis.ane of two semantic values called true and false. These correspond to the ES4 boolean literal values
true and false, which denote the two sole instances of the class haolean Such objects are called boolegn ghjects,

2 DNadnstances of the clagss boolean can be constructed aside from the two values true and false: the boolean constructor is a
special constructor that always evaluates to one of the two boolean objects.

1.4.3 Double Values

FIXME I cut this section down significantly from ES3, since the corresponding section 8.5 in the old standard mostly consisted of a very weird sort of
selective paraphrasing of bits of 754 itself: restatements of algorithms that are perfectly well described in 754, or of facts such as the definition of the
denormalized numbers that never even get used in the subsequent spec. I assume anyone reading this section and caring about 754 doubles actually has the
754 spec and can read it. Spelling out the whole 754 spec title in this section likewise seems redundant, since that's the point of the normative references
section at the beginning of the document.

ELXME \Woldooor obhioote to that oapiog don nr“mnqn Lt thot tho sunaca of tho calastiyy nnﬂ\hv| oo oo todpnolnde o e cpbheat AF JEEE 784

authmetic dntg ES3 Eor cxample cionalline NaN< are not part of that cubg z N
encneadad to be sglocted Soits passible that the real Gx bore is tg be explicit asto why o ||PNJI of TFFF 7W
Specificar

A double value is a double precision, 64-bit format binary floating point value, as specified in the IEEE 754 standard.

A double value can be held in the primitive tag of an instance of the class dauhle Instancesafdauble are called double
objects.

3 Two special double values are held in special double objects: one "Not-a-Number" (NaN) value, stored in the global constant
public::NaN, and one "infinite" value, stored in the global constant public::Infinity.

file-/Mlacalhost/Wark/esd/spec/lancnage himl Q7/11/08 16-2R8-33

corESASeHpH4-Edition—Coretanguage Page-6

8

Some ECMAScript operators convert double values to decimal values when either operand to the operator is a
decimal value. This conversion can be lossy.

FIXME More information will appear here.
145 String Values
A string value is a finite ordered sequence of zero or more S2-sit-umsigrec-integer-vatues-tetements®y: String
values are generally used to represent textual data, in which case each element in the string is treated as a code
point value (see section ...). gerireceote-points-to-be-tt-bitunsigree-integer-vattesES4-witH-kely-ate
. : - -t

STVIUISE N " " e ok PRSP RP VDN PIVHE TSN ot ES S

A string value can be held in the primitive tag of an instance of the class ==ES4==string. Such objects are called
string objects.

Each element of a string is regarded as occupying a position within the sequence. These positions are indexed with
nonnegative integers. The first element (if any) is at position 0, the next element (if any) is at position 1, and so on.
The length of a string is the number of elements (32-bit values) within it. The empty string has length zero and
therefore contains no elements.

All operations on string (except as otherwise stated) treat them as sequences of undifferentiated 32-bit unsigned
integers. In particular, operations on strings do not ensure the resulting string is in normalised form, they do not
ensure language-sensitive results, and they do not alter their behavior when dealing with 32-bit values outside the

legal range of GF~=32-cote-points:

NOTE The rationale behind these decisions was to keep the implementation of strings as simple and high-performing as possible. The intent is that
textual data coming into the execution environment from outside (e.g., user input, text read fromafile or received over the network, etc.) be converted
to Unicode Normalised Form C before the running program sees it. Usually this would occur at the same time incoming text is converted from its
original character encoding to Unicode (and would impose no additional overhead). Since it is recommended that ECMAScript source code be in
Normalised Form C, string literals are guaranteed to be normalised (if source text is guaranteed to be normalised), as long as they do not contain any
Unicode escape sequences.

FIXME The previous paragraphs regarding string values are adapted from ES3, but personally | think they are very awkward-reading, and would
like to rewrite them abit.

String literals evaluate to string objects.

The equality of string objects -- in both the == and === sense -- is defined as the equality of the underlying string
values. This in turn is established by the identities of the string elements, considered pairwise and in sequence.
Inequalities and relational operations of strings are similarly defined in terms of sequence comparisons on string
elements. No other forms of textual equality or collation are defined.

146 Namespace Values

Namespaces are defined ane-eHse

Acremespaee=vetee can be held in the primitive tag of an instance of the class =——E=S4=——=Namespace. Such objects
are called namespace objects.

A namespace wetee-een-be defined as a fixture in a global or class static scope ustrg-e-ramespace-definition:

core-language.pdf

FIXME There are also NaN and Infinity properties (as well as others) on fhg NIJIBEL object; those are all double values. ES4 will have NaN and
Infinity properties on fhe decimal ehicct andprohably onihe double object for the sake of consistency.

4 ECMAScript provides no way of distinguishing any of the different IEEE 754 NaN values from one another. All NaN
values are considered unequal to themselves, and to every other value.

a In this specification, the phrase "the number value of x" where x represents an exact nonzero real mathematical quantity
means a number chosen according to the IEEE 754 rounding mode "rounds to nearest".

FIXME That does not take into account decimal.

& Some ECMAScript operators deal only with integers in the range 231 through 231-1, inclusive, or in the range O through 232

1 inclusive. These operators accept any double or decimal value but first convert each such value to one of 232 integer values.
See descriptions of the ToInt32 and ToUint32 operators in sections ...

1.4.4 Decimal Values

A decimal value is a 128-bit format decimal floating point value, as specified in the IEEE 754r standard.

A decimal value can be held in the primitive tag of an instance of the class decimal. _Such objects are called decimal ohbiects,

Some ECMAScript operators convert double values to decimal values when either operand to the operator is a decimal
value. This conversion can be lossy.

FIXME More information will appear here.

1.4.5 String Values
L Astring value is a finite ordered sequence of zero or more wnsignedintegervaluesCelements) The clementcafasiring
m er 160 vide Api 1

2 String values are generally used to represent textual data, in which case each element in the string is treated as a code point
value (see section ...).

3 Astring value can be held in the primitive tag of an instance of the class string. Such objects are called string objects.

4 Eachelement of a string is regarded as occupying a position within the sequence. These positions are indexed with
nonnegative integers. The first element (if any) is at position 0, the next element (if any) is at position 1, and so on. The
length of a string is the number of elements (1L&.or 32-bit values) within it. The empty string has length zero and therefore
contains no elements.

2 All operations on string (except as otherwise stated) treat them as sequences of undifferentiated L&.ax 32-bit unsigned
integers. In particular, operations on strings do not ensure the resulting string is in normalised form, they do not ensure
language-sensitive results, and they do not alter their behavior when dealing with La.ar 32-bit values outside the legal range
of > 3 . h

NOTE The rationale behind these decisions was to keep the implementation of strings as simple and high-performing as possible. The intent is that
textual data coming into the execution environment from outside (e.g., user input, text read from a file or received over the network, etc.) be converted to
Unicode Normalised Form C before the running program sees it. Usually this would occur at the same time incoming text is converted from its original
character encoding to Unicode (and would impose no additional overhead). Since it is recommended that ECMAScript source code be in Normalised Form
C, string literals are guaranteed to be normalised (if source text is guaranteed to be normalised), as long as they do not contain any Unicode escape
sequences.

FIXME The previous paragraphs regarding string values are adapted from ES3, but personally I think they are very awkward-reading, and would like to
rewrite them a bit.

& String literals evaluate to string objects.
Z The equality of string objects -- in both the == and === sense -- is defined as the equality of the underlying string values.
This in turn is established by the identities of the string elements, considered pairwise and in sequence. Inequalities and

relational operations of strings are similarly defined in terms of sequence comparisons on string elements. No other forms of
textual equality or collation are defined.

1.4.6 Namespace Values

L Namespaces are defined insection__namespaces.

2 Amnamespace can be held in the primitive tag of an instance of the class Namespace. Such objects are called namespace
objects.

3 Anamespace is defined as a fixture in a global or class static scope hy.anamespace definition,

file-/Mlacalhost/Wark/esd/spec/lancnage himl Q7/11/08 16-2R8-33

corESIMASeHpt-4th-Editior—ECere-tanguage

4+4-% Class Values

Aclass value consists of a name and a set of namespaces, fixteres-are-types:

§ Acetessvataecarrde defined as a fixture in the global scope using a class definition.

4 Each class definition corresponds to zero or more class values, and thus zero or more class objects. If a class
definition is not type-parametric, it corresponds to exactly one class object, and that class object is called the value
of the class definition.

& Aclass value holds class fixtures and instance fixtures. If C is a class object, then the class fiéeres-efthe-aaseeiated

T sttt et o ety ey iy st e Tt et Sty g stoTS e teoTTe
€& Class values can be instantiated to produce new objects. Instantiation is described in section....

Semantics

and CLASS =
Class of
{ name: NAME,
privateNS: NAMESPACE,
protectedNS: NAMESPACE,
parentProtectedNSs: NAMESPACE list,
typeParams: IDENTIFIER list,
nonnul lable: beelsy

.
2
]
o R ismet removable.
o Risiot enumexablo,
o PisEiyod
o 1 Eisdeclaretasconstthenthe weitahle gudlusaot D jslaldally e itoOnce, Silieryisethe
. iimitietby Wi tab]

o Thetypeof & isthetypeof &
2 Stass—TFypes-ard-Clrass=instaree Types

4+ Aclass corresponds to a pair of types: an instance class type and a static class type.

core-language.pdf

1471 Class Values

Ll Aclass value consists of a name and a set of namespaces, fixturemaps.typesand flags governing the behavior of various

2 - :
Aclassvaluecanhehelding Tl classTvpe, T !WMWW.

Aclassvalug is defined as a fixture in the global scope by a class definition.

Each class definition corresponds to zero or more class values, and thus zero or more class objects. If a class definition is not
type-parametric, it corresponds to exactly one class object, and that class object is called the value of the class definition.

A Aclass value holds class fixtures and instance fixtures. If C is a class ob]ect then the class fxturemapaftheassociated.class

Z Class values can be instantiated to produce new objects. Instantiation is described in section....

Semantics

X and CLASS =
Class of
{ name: NAME,
privateNS: NAMESPACE,
protectedNS: NAMESPACE,
parentProtectedNSs: NAMESPACE list,
typeParams: IDENTIFIER list,
nonnullable: BQOLEAN.

dinstanceFixtureMape FIXTURE MAP

constructors CTOR ontion

1472 Instance Tvpes and Class Types

A class corresponds to a pair of types: an instance class type and a static class type.

InstanceType C,denoted in a type expression by the name of C itself, and is the
allocated type of any instance of C. The tag of any instance of C is InstanceTag C.

3 The class type of a class value C is the allocated type of the class object holding C. Ihmag.nfslnh.a.n.nbgﬁm.s
BrimitiveTag (TvpebPrimitive (ClassTvpe
whichisdefinedasasubtypeoffhe TnstanceTvpe mwmwmum
asdnstance fixtures onthe classobiect holding
1.4.7.3 Interface Values

An interface value consists of a name and a set of fixtures and types.

An interface xalue canheheldinan InterfaceTvpe value which caphe heldin the tagofa type ohject An ohject
- v T S allod an iniorace abior

Aninterface valueis defined as a fixture in the global scope hy an interface definition.

Each interface definition corresponds to zero or more interface objects. If an interface definition is not fype-parametric, it
corresponds to exactly one interface object, and that interface object is called the value of the interface definition.

file-/Mlacalhost/Wark/esd/spec/lancnage himl Q7/11/08 16-2R8-33

corESIMASeHpt-4th-Editior—ECere-tanguage

2

Fhe-instaneeclass-type-of-aretassvatte Cis-Classhype C, denoted in a type expression by the name of C itself,

and is the allocated type of any instance of C. The tag of any instance of C is InstanceTag C.

The stetie class type of a class value C is the allocated type of the class object holding C. ta-seel-ar-ebjeet-the
statieclasstypeisstoretiratietwithin & ancEisarancnymoussubypeottse ClassTyne gf—EoaA——Olgss

Thetagototehanoniestis ReimitivaTan (Clace O3,
+4-8 |Interface Values

An interface value consists of a name and a set of fixtures and types.

An interface

PR Gdmintenfase=is-oisoteterproibsisip=Hati-eristbuime-havenropermetaoiiestofortivssertoftning
Ar-interfecevetae-ear-be defined as a fixture in the global scope wsiag an interface definition.

Each interface definition corresponds to zero or more interface objects. If an interface definition is not #ype=
peararmetrie; it corresponds to exactly one interface object, and that interface object is called the value of the
interface definition.

An interface value contains declarations of instance fixtures, but no definitions.

Interfaces are implemented by classes, and any class implementing an interface must define, for each instance
fixture declared in the interface, an instance fixture with the same name and type of the instance fixture.

An interface value 1 also defines a type InterfaceType 1. If a class C implements interface 1, the type
ClassType Cisasubtype of InterfaceType 1.

Semantics

and INTERFACE =
Interface of
{ name: NAME,
typeParams: IDENTIFIER list,
nonnullable: haal.
extends. TYDE List.

Acfumetion closure value consists of a captured scope chain, an optional captured thi's object, and a function
value.

A ferretion closure value can be held in the primitive tag of an instance of the class ==ES#===Function. Such
objects are called function objects.

A fometiorrelosure-vattrecarrbe defined as a fixture in a scope using a function definition.
Each function definition corresponds to zero of more function objects.
A function expression may also evaluate to a function object.

A function value contains setefparameter-fixtaresant-atock-of-EChASeriptcode:

Femetiomretostre values can be invoked to evaluate the ECMAScript code stored in the block of the closure's
associated function value. Invocation is described in section....

FIXME Function definitions can be type-parametric; needs to be described.

Semantics
withtype ELUN-CLASLRE.=
Lfunc. EUNC.
RS SO R

core-language.pdf

ECMAScrint 4th Edition - Core 1

file:/lacalbost/Wark/esd/spec/lancuage html

An interface value contains declarations of instance fixtures, but no definitions.

Interfaces are implemented by classes, and any class implementing an interface must define, for each instance fixture
declared in the interface, an instance fixture with the same name and type of the instance fixture.

An interface value I also defines a type InterfaceType I.If aclass C implements interface I, the type ClassType C
is a subtype of InterfaceType I.

Semantics

and INTERFACE =
Interface of
{ name: NAME,
typeParams: IDENTIFIER list,
nonnullable: BQOLEAN.

aps FIXTURE MADP 3

1.4.8 Closure values

A closure value consists of a captured scope chain, an optional captured this object, and a function value.

A closure value can be held in the primitive tag of an instance of the class publicz:Function. Such objects are called function
objects.

A clasure valuels defined as a fixture in a scope using a function definition.
Each function definition corresponds to zero of more function objects.

A function expression may also evaluate to a function object.

A function value contains asetof parameter fixtures atype anda block of BCMAScript caode,

Closure values can be invoked to evaluate the ECMAScript code stored in the block of the closure's associated function
value. Invocation is described in section....

FIXME Function definitions can be type-parametric; needs to be described.

Semantics

withtype CLOSURE =
hics ,
env. SCOPE 1

and FUNC =
Func of
{ name: FUNC_ NAME,
fsig: FUNC_SIG,
native: BQOLEAN.

block: BLOCK option, (* NONE => abstract *)
param: HEAD,

defaults: EXPRESSION list,

ty: TYPE,

loc: LOC option }

1.4.9 Generator Values

FIXME fill in

2 Reading and Writing Properties

This chapter describes the algorithms for property access: testing objects for the presence of a property, reading from and
writing to a property, and removing a property. Property access is always by the name of the property. A property name is
represented either as an instance of the pre-defined class Name, or as a string (which represents a name in the public
namespace).

SPEC NOTE This chapter complements the chapter on names, scopes, and name resolution. At this time, there is some overlap between the two chapters.

Property accesses are subject to run-time checks, and property access fails (an exception is thrown) if a check does not pass.
The exact exception depends on the particular check.

NOTE For example, a property created by let qiganst or a property whose type is a non-nullable type without a default value must be written (initialized)
before it is read; properties created by const cannot be written more than once; and properties that have type annotations can be updated with a new value

Q7/11/08 16-2R8-33

Matching text on page 9 of other document

Matching text on page 9 of other document

Matching text on page 9 of other document

Matching text on page 9 of other document

Matching text on page 9 of other document

Matching text on page 9 of other document

Matching text on page 9 of other document

Matching text on page 9 of other document

Matching text on page 9 of other document

Matching text on page 9 of other document

Matching text on page 9 of other document

Matching text on page 9 of other document

Matching text on page 9 of other document

Matching text on page 9 of other document

Matching text on page 9 of other document

Matching text on page 9 of other document

Matching text on page 9 of other document

Matching text on page 9 of other document

Matching text on page 9 of other document

Matching text on page 9 of other document

Matching text on page 9 of other document

Matching text on page 9 of other document

Matching text on page 9 of other document

Matching text on page 9 of other document

corESIMASeHpt-4th-Editionr—ECere-tanguage

and FUNC =

Func of

{ name: FUNC_NAME,
fsig: FUNC_SIG,
native: bool.
generator:-bool
block: BLOCK option, (* NONE => abstract *)
param: HEAD,
defaults: EXPRESSION list,
ty: TYPE,
loc: LOC option }

1.410 Type Values

"
+=4-434 Generator Values

FIXME fillin

2 Reading and Writing Properties

This chapter describes the algorithms for property access: testing objects for the presence of a property, reading
from and writing to a property, and removing a property. Property access is always by the name of the property. A
property name is represented either as an instance of the pre-defined class Name, or as a String (which
represents a name in the publ I ¢ namespace).

SPEC NOTE This chapter complements the chapter on names, scopes, and name resolution. At this time, there is some overlap between the two
chapters.

2 Property accesses are subject to run-time checks, and property access fails (an exception is thrown) if a check does
not pass. The exact exception depends on the particular check.

NOTE For example, aproperty created by let ercoRsEora property whose type is anon-nullable type without a default value must be written

(initialized) before it is read; properties created by CONSt cannot be written more than once; and properties that have type annotations can be
updated with anew value only if the allocated type of the new value is acompatible subtype of the storage type of the property. ArReferereceError is
thrown in the first two instances, and a TypeError is thrown in the last.

3 A property may be virtual, that is to say, the reading and writing of the property may be implemented by getter and
setter methods on the object, and an expression that is syntactically a reference to the property is in factan
invocation of these methods. Virtual dynamic properties may be implemented by catch-all methods.

2.1 Catch-All Methods

This section contains a normative overview of the catch-all facility. A more precise, also normative, description is
given in later sections of this chapter, as part of the general description of property access.

SPEC NOTE Any conflicts between the two descriptions are obviously bugs.

2 Objects may contain fbeture-preperties in the meta namespace: meta: :get, meta: :set, meta: :has, and
meta: :delete. These properties always name methods. Jointly they are known as catch-all methods.

8 If a catch-all method is defined on the object then it is invoked when a dynamic property is accessed: meta: -has
is invoked to determine if the object has the property; meta: :get is invoked to read & property's value;
meta: :set is invoked to update or create & property; and meta: :delete is invoked to delete & property. A
catch-all method is invoked even if the dynamic property that is being accessed already exists on the object.

4 A catch-all method operates on the ebjeet-that-eontatnrs-the-method-rot-on-that-ebjeets prototype objects.

5 If a catch-all method returns normally then the value it returns (if any) becomes the result of the eperatien; possibly
after being converted to a canonical type.

& If a catch-all method throws an exception, and the exception thrown is an instance of the pre-defined class
DefaultBehaviorClass, then the default behavior for the catch-all is triggered.

Matching text on page 8 of other document

Matching text on page 8 of other document

Matching text on page 8 of other document

Matching text on page 8 of other document

Matching text on page 8 of other document

Matching text on page 8 of other document

Matching text on page 8 of other document

Matching text on page 8 of other document

Matching text on page 8 of other document

Matching text on page 8 of other document

Matching text on page 8 of other document

Matching text on page 8 of other document

Matching text on page 8 of other document

Matching text on page 8 of other document

Matching text on page 8 of other document

Matching text on page 8 of other document

Matching text on page 8 of other document

Matching text on page 8 of other document

Matching text on page 8 of other document

Matching text on page 8 of other document

Matching text on page 8 of other document

Matching text on page 8 of other document

Matching text on page 8 of other document

Matching text on page 8 of other document

Matching text on page 8 of other document

Matching text on page 8 of other document

Matching text on page 8 of other document

Matching text on page 8 of other document

Matching text on page 8 of other document

Matching text on page 8 of other document

Matching text on page 8 of other document

Matching text on page 8 of other document

Matching text on page 8 of other document

Matching text on page 8 of other document

Matching text on page 8 of other document

Matching text on page 8 of other document

Matching text on page 8 of other document

Matching text on page 8 of other document

Matching text on page 8 of other document

core-language.pdf

only if the allocated type of the new value is a compatible subtype of the storage type of the property. A-Referencelrrar is thrown in the first two
instances, and a TypeError is thrown in the last.

3 A property may be virtual, that is to say, the reading and writing of the property may be implemented by getter and setter
methods on the object, and an expression that is syntactically a reference to the property is in fact an invocation of these
methods. Virtual dynamic properties may be implemented by catch-all methods.

EIXME_We neod o definitign of nothod thic s the frot nice
2.1 Catch-All Methods

1 This section contains a normative overview of the catch-all facility. A more precise, also normative, description is given in
later sections of this chapter, as part of the general description of property access.

SPEC NOTE Any conflicts between the two descriptions are obviously bugs.

2 Objects may contain fixtures in the meta namespace: meta::get, meta::set, meta::has, and meta::delete. These properties
always name methods. Jointly they are known as catch-all methods.

3 If a catch-all method is defined on the object then it is invoked when a dynamic property is accessed: meta::has is invoked
to determine if the object has the property; meta::get is invoked to read the property's value; meta::set is invoked to update
or create the property; and meta::delete is invoked to delete the property. A catch-all method is invoked even if the dynamic
property that is being accessed already exists on the object.

A catch-all method operates on the receiver object of the method call_not an the receiver's prototype objects.

If a catch-all method returns normally then the value it returns (if any) becomes the result of the proparty access, possibly
after being converted to a canonical type.

& If a catch-all method throws an exception, and the exception thrown is an instance of the pre-defined class
DefaultBehaviorClass, then the default behavior for the catch-all is triggered.

7 DefaultBehaviorClass is a singleton class; its only instance is is stored in the global constant DefaultBehavior.

NOTE The mechanism is analogous to the one defined for iterators, where an instance of the singleton itexateruStopltecationClassissiored in.the
global propartyitecatarStoplteration.

8 The meta::get method is invoked on one argument, a property name. The value returned is the property value. The default
behavior for meta::get is to retrieve the value from a dynamic property in the object's property map.

9 The meta::set method is invoked on two arguments, a property name and a value. Any value returned is ignored. The default
behavior for meta::set is to update or attempt to create a dynamic property in the object's property map.

10 The meta::has method is invoked on one argument, a property name. Any value returned by the method is converted to
boolean. The default behavior for meta::has is to search for a dynamic property in the object's property map.

11 The meta::delete method is invoked on one argument, a property name. Any value returned by the method is converted to
boolean. The default behavior for meta::delete is to attempt to delete a dynamic property from the object's property map.

2.2 Checking for the Presence of a Property
1 The HasOwnProperty protocol is invoked to check whether an object obj contains a property named by name.

SPEC NOTE In terms of the 3rd Edition Specification, the HasOwnProperty protocol implements the test for whether an object "has a property",
as used in the implementations of [[Getll. [TPutll [[HasProperty]], and other internal subroutines.

2 An object is said to contain a property if the property is in the object's praperty map or if the meta::has catchall claims the
property to be present.

Semantics
3 and hasOwnProperty (regs :
(obj =
(n :

REGS)

NAME)
: bool =
let

val Qbiect { propertvMap 1 = obd

if Fixture hasFixture (getFixtureMap regs obi) (PropName n)
else

file-/Mlacalhost/Wark/esd/spec/lancnage himl Q7/11/08 16-2R8-33

Matching text on page 10 of other document

Matching text on page 10 of other document

Matching text on page 10 of other document

Matching text on page 10 of other document

Matching text on page 10 of other document

Matching text on page 10 of other document

Matching text on page 10 of other document

Matching text on page 10 of other document

corESIMASeHpt-4th-Editionr—ECere-tanguage

10

11

DefaultBehaviorClass is asingleton class; its only instance is is stored in the global constant
DefaultBehavior,

NOTE The mechanism s analogous to the one defined for iterators, where an instance of the singleton SEQRILSEIALIONCLASS isstored
imthegiobasreperty Stop l teration.

The meta: :get method is invoked on one argument, a property name. The value returned is the property value.
The default behavior for meta: zget is to retrieve the value from a dynamic property in the object's property
map.

The meta: - set method is invoked on two arguments, a property name and a value. Any value returned is
ignored. The default behavior for meta: :set is to update or attempt to create a dynamic property in the object's
property map.

The meta: -has method is invoked on one argument, a property name. Any value returned by the method is
converted to boolean. The default behavior for meta: -has is to search for a dynamic property in the object's
property map.

The meta: :delete method is invoked on one argument, a property name. Any value returned by the method is
converted to boolean, The default behavior for meta: -delete is to attempt to delete a dynamic property from
the object's property map.

2.2 Checking for the Presence of a Property

The HasOwnProperty protocol is invoked to check whether an object obj contains a property named by name.

SPEC NOTE Interms of the 3rd Edition Specification, the HasOwnProperty protocol implements the test for whether an object "has a property", as

used in the implementations effj-eetF=ff-RetJ4fFHasProperty]], andother internal subroutines.

An object is said to contain a property if the property is in the object's pretetype map or if the meta: zhas
catchall claims the property to be present.

Semantics
and hasOwnProperty (regs : REGS)
(obj : @BH
(n : NAME)
: bool =
let
val QbfdlkoRS ol

A
+f hasEixedbron nrons n $hen
LrLg
odse Ef-haskixedRrop—preps meta_has then
let
val v = evalNamedMethodCall
regs obj meta_has [newName regs n]
in
toBoolean v
end
handle ThrowException e =>
let
val ty = typeOfval regs e
val defaultBehaviorClassTy =
instanceType regs ES4.DefaultBehaviorClass []

if ty <* defaultBehaviorClassTy then
hasProp pkops-—a

else
Ehrowbyvn g

Matching text on page 9 of other document

Matching text on page 9 of other document

Matching text on page 9 of other document

Matching text on page 9 of other document

Matching text on page 9 of other document

Matching text on page 9 of other document

Matching text on page 9 of other document

Matching text on page 9 of other document

core-language.pdf

ECMAScript 4th Edition -- Core Language 10
Lrue
else
if hastixedProp propertvMap meta has then
let
val v = evalNamedMethodCall regs obj meta_ has [newName regs n]
in
toBoolean v
end
handle ThrowException e =>
let

val ty = typeOfval regs e
val defaultBehaviorClassTy =
instanceType regs helper.DefaultBehaviorClass []
in
if ty <* defaultBehaviorClassTy then
hasProp properiyMap.n
else

LhrouExn.e
end
alse
hasProp properivMap n
end

NOTE_The reds paameteriepiesentsthe vittual machine stateThegparator <* tests subtype compatibility.
2.3 Reading a property value

1 The GetPropertyValue protocol is invoked to read the value of a property named by name from an object obj. The flag
isStrict is true if the ES4 code that caused GetProperty to be invoked was compiled in strict mode.

2 Specifically, there will be an AST node for the property reference whose strict flag is set because it represents a source
code phrase that was recognized in a region of code that was covered by a strict mode pragma.

SPEC NOTE There may be several types of AST nodes carrying strict flags and invoking GetPropertvValue, depending on how the AST is
eventually structured.

XML St made i nat inlomantad in this code

Semantics
3 and.getlropartyvalue (regsiREGS)
LODJZORIECT)
LDANGINANUE)

=2

SOME_J{state=(VirtualProperty { detter 1) 1
=> jf dng ;t”ﬁ
then
case geiter of
SOME_g =>_invokeFuncClosure (withThis regs obil g NONE]
4—e =2Undefinedvalue

[E t[T g

(true . ArrayTag (SOME_defaultTypel))
==.lct

file-/Mlocalhost/Wark/esd/spec/langnage html 07/11/08 16-28-33

corE@MASeript 4th Edition -- Core Language Page-tt

NOTFE=Fhe -85 S-parameter represents-tevirtratrrachine-state=Fhe operatorss tests subtype compatibility.
2.3 Reading a property value

4+ The GetPreperty protocol is invoked to read the value of a property named by name from an object obj. The flag
isStrict is true if the ES4 code that caused GetProperty to be invoked was compiled in strict mode.

2 Specifically, there will be an AST node for the property reference whose Strict flag is set because it represents a
source code phrase that was recognized in a region of code that was covered by a strict mode pragma.

SPEC NOTE There may be several types of AST nodes carrying strict flags and invoking GetRreperty= depending on how the AST is eventually

structured.
]
4
Ffor-every-object--1n—0b) +-0bj=S—prototypes—c—=
iE o :
keturn..getRropertytelper(objo—nane. ~-isStrictk)
end
end

core-language.pdf

in
case defaulival of
=>
=>
feiiaR
end

Lthen

2.4 Writing a property value

1 The SetProperty protocol is invoked to write a value value to a property named by name on an object obj. The object
may or may not have a property of that name when SetProperty is invoked, and SetProperty may attempt to create the
property. The flag isStrict is true if the ES4 code that caused SetProperty to be invoked was compiled in strict mode.

2 Specifically, there will be an AST node for the property update whose strict flag is set because it represents a source code
phrase that was recognized in a region of code that was covered by a strict mode pragma.

FIXME Stgctgnade do pnat dmplomoptad io thic codo

3

Semantics
and _setPropertvvalue (reds:REGS)
LLascOBIECT)
Lname :NAME)
. L2 NALUE)
. unit = .
SefProperiyvalucorviriual regs base name v truc
and_setPropertyValueOrVirtual (reds:REGS)
LODRIZOBIECT)
Lname :NAME)
L2 VALUE),
Ldovirtual:bool)
—ll =

det
yal Obdject { propertvMap, tag, ... } = obi

SOME. exisfingPron =>
det

val { state. atirs. ity b=_existingProp
val { _removable, enumerable, fixed, writable 3 = attrs

fun writeRxisting = writeProperty reds propertyMap name v Ly

=>

grifablp => Writable)

in
case siatc of
YaluebProperty
S=2writebExisting ()
fi |g-((|gga|hgsﬂwmk(ﬁsz_l(spgg(|ang"agg html 07/11/08 16°-28-33

and
end

2.4 Writing a property value

1 The SetProperty protocol is invoked to write a value value to a property named by name on an object obj. The
object may or may not have a property of that name when SetProperty is invoked, and SetProperty may attempt to
create the property. The flag isStrict is true if the ES4 code that caused SetProperty to be invoked was compiled in
strict mode.

2 Specifically, there will be an AST node for the property update whose Strict flag is set because it represents a
source code phrase that was recognized in a region of code that was covered by a strict mode pragma.

FIXME HrisprotocotmostirespecifietasSivicote

core-language.pdf

ECMAScript 4th Edition -- Core Language 12

Eixture hasFixinre (getFixtureMap redgs obd)

|

handle ThrowFException e =>

xal ty = typeOfval redgs.g
dnstanceType regs helper DefaultBehaviorClass [

false Writable

file-/localbast/Work/esd/spec/lancuage html Q7/11/08 16:28:33

corE@MASeript 4th Edition -- Core Language

2.5 Deleting a property

& The DeleteProperty protocol is invoked to remove a property named by name from an object obj. The object may
or may not have a property of that name when DeleteProperty is invoked. The flag isStrict is true if the ES4 code
that caused DeleteProperty to be invoked was compiled in strict mode.

2 Specifically, there will be an AST node for the property deletion whose Strict flag is set because it represents a
source code phrase that was recognized in a region of code that was covered by a strict mode pragma.

FIXME Hhio-protcoskrmustbespeotied-asShipote

core-language.pdf

ELXME e e colodoio oo oo [[CanPut 11 fupeticpaliss £ 2Q21

2.5 Deleting a property

L The DeleteProperty protocol is invoked to remove a property named by name from an object obj. The object may or
may not have a property of that name when DeleteProperty is invoked. The flag isStrict is true if the ES4 code that caused

DeleteProperty to be invoked was compiled in strict mode.

2 Specifically, there will be an AST node for the property deletion whose strict flag is set because it represents a source
code phrase that was recognized in a region of code that was covered by a strict mode pragma.

FIXME Suicimodeisnotimplomenicd in hiscode,
Semantics
3 and. delefcbProperiyvvaluc (regsiREGS)

% [|

val object { properiyMap. tag t=_obd

in
SOME_ L _attrs = L fixed = true 1 1
=>
=it
dovirtual andalso
Eixture haqF"is(*i-nrw'l-F"iY*i-nraMan reds thl (PropName ma;a_de ate)
Lthen
LnewString reds (#id pname)l)
=>
pr=id
val tv = tvpeOfval reds o
xal_defaultBehavigorClassly =
. hel Faul payi]
a0 .
Aty < defauliBehaviorClassTy then
ol] L] pi 2l
glse
LhrowEXn o
end
glse
SOoME_L _attrs = _{ _remoyvable = _truec 1 1
=> ‘dﬁ]E:QQ RropertvMap name:
newBoglean regs. fruc)
=> newBoolean reds false
end

3 Types

FIXME Double-check that the specification and implementation of the subtype relation are consistent.

4 ECMAScript includes a gradual type system that supports optional type annotations on properties (e.g., on variables and
fields). These type annotations are currently enforced i i i

file-/Mlacalhost/Wark/esd/spec/lancnage himl Q7/11/08 16-2R8-33

erd
3 Hypes

FIXME Double-check that the specification and implementation of the subtype relation are consistent.

ECMAScript includes a gradual type system that supports optional type annotations on properties (e.g., on
variables and fields). These type annotations are currently enforced eiyreamicety:

Every value has an allocated type. The allocated type is the type given to a value when it is created and which
defines its fixed structure.

Every property has a storage type. The storage type of a property is given by its declaration and constrains the set

of values that can be stored in the property. The storage type of a property is-etse-eaHee-the-prepertys type
constraint.

The declarations of properties can carry type annotations, which define the storage type of the property.
Annotation is denoted by following the annotated property name with a colon and a type expression. Annotations
are not required: any property lacking an annotation is implicitly given the storage type *, meaning that the
property can hold a value of any allocated type.

If a property holds a value, then that value must have an allocated type that is a compatible subtype of property's
storage type. The compatible subtype relation is an extension of the traditional subtype relation that supports
interoperation between typed and untyped code. The definition of the compatible subtype relation is included
below.

For a given type T, a set of values is said to populate T if the values all have allocated types that are compatible
subtypes of T. Some types are specified by specifying the values that populate them.

3.1 TheTypelLanguage

ES4 includes the following types:

core-language.pdf

2 Every value has an allocated type. The allocated type is the type given to a value when it is created and which defines its
fixed structure.

2 Every property andfixtuze has a storage type. The storage type of a property arfixture is given by its declaration and
constrains the set of values that can be stored in the property. The storage type of a property grfixture is also called it's type
constraint.

4 The declarations of properties can carry type annotations, which define the storage type of the property. Annotation is
denoted by following the annotated property name with a colon and a type expression. Annotations are not required: any
property lacking an annotation is implicitly given the storage type *, meaning that the property can hold a value of any
allocated type.

S If a property holds a value, then that value must have an allocated type that is a compatible subtype of property's storage type.
The compatible subtype relation is an extension of the traditional subtype relation that supports interoperation between typed
and untyped code. The definition of the compatible subtype relation is included below.

& Foragiven type T, a set of values is said to populate T if the values all have allocated types that are compatible subtypes of
T. Some types are specified by specifying the values that populate them.

3.1 The Type Language
L ES4 includes the following types:
3.1.1 The any type

1 The any type is the type populated by every possible value. In other words, every other type is a compatible subtype of the
any type.

2 The any type is denoted in a type expression as *.

3 No value has the any type as its allocated type. The any type is meaningfulanly as the storage type of a property.
3.1.2 The null type

1 The null type is the type populated only by the semanticvalue NullvValue,

2 The null type is denoted in a type expression as null.
3.1.3 The undefined type

1 The undefined type the type populated only by the semanticvaluelindefinedvalue,

2 The undefined type is denoted in type expressions as undefined.
3.1.4 Nominal types

1 A nominal type is either a class type_aninstance type or an interface type.
A class type andan instauce type are both defined by a class definition.

An interface type is a type defined by an interface definition.

A WD

Nominal types are arranged in an explicit subtype relation through the use of extends and implements clauses in class
and interface definitions.

5 Andnstance orinterface type is denoted in type expressions by the name of the class or interface that defined the type,

Lespectively,
& Auinsaneeoriloe e Clor Gl ae T2) wwbedeelued ava nogepulllvpe via any ol e Jollowing
declarations:

m“_u
dinterface CI ..
W]‘ _.X‘>! =

2 . ntert i< pullable if i ol

file-/Mlacalhost/Wark/esd/spec/lancnage himl Q7/11/08 16-2R8-33

Matching text on page 15 of other document

Matching text on page 15 of other document

Matching text on page 15 of other document

Matching text on page 15 of other document

Matching text on page 15 of other document

Matching text on page 15 of other document

Matching text on page 15 of other document

Matching text on page 15 of other document

Matching text on page 15 of other document

Matching text on page 15 of other document

Matching text on page 15 of other document

Matching text on page 15 of other document

corESIMASeHpt-4th-Editionr—ECere-tanguage

3.1.1 The any type

1 Theany type is the type populated by every possible value. In other words, every other type is a compatible
subtype of the any type.

2 Theany type is denoted in a type expression as *.

3 No value has the any type as its allocated type. The any type is erty-meeningfed as the storage type of a property.
3.1.2 The null type

1 The null type is the type populated only by the Rl vatere:

2 Thenull type is denoted in a type expression as nul I
3.1.3 The undefined type
1 The undefined type the type populated only by the vette-steree-in-the-global-econstant pubd-i-e==tndefined:

2 The undefined type is denoted in type expressions as undefined.

3.1.4 Nominal types

1 Anominal type is either a class type or an interface type.
2 Aclass type #s-a=type defined by a class definition.
3 Aninterface type is a type defined by an interface definition.

4 Nominal types are arranged in an explicit subtype relation through the use of extends and implements
clauses in class and interface definitions.

5 Aeremiret type is denoted in type expressions by the name of the class or interface that defined sre-bypes
3.1.5 Record types

Avrecord type is a subtype of the public: :Object etass type that has additional type constraints on some
specific set of named properties.

2 Record types are arranged implicitly into a subtype relation through structural comparison of their property
constraints.

8 Arecord type is denoted in a type expression by listing the names of the specified properties in a comma separated
list, with optional type annotations, enclosed in curly braces.

4 Anexampleis {x: Number, y: String}, which denotes a record type with two properties X and Y, the first
constrained to type Number and the second to type String. The &gpe=f } denotes the empty record type.

3.1.6 Array types

Anarray type is a subtype of the public: Array type that has type constraints on some prefix of the set of all
possible integer-indexed properties. An array type may be either fixed-length or variable-length.

2 Array types are arranged implicitly into a subtype relation through structural comparison of their property
constraints.

3.1.6.1 Fixed-length array types

¥ Afixed-length array type describes an explicit set of initial integer-indexed property constraints that must be
satisfied by properties found at those indices.

2 A fixed-terght array type is denoted in a type expression by listing the types of the specified properties in a
comma-separated list enclosed in square brackets.

Matching text on page 14 of other document

Matching text on page 14 of other document

Matching text on page 14 of other document

Matching text on page 14 of other document

Matching text on page 14 of other document

Matching text on page 14 of other document

Matching text on page 14 of other document

Matching text on page 14 of other document

Matching text on page 14 of other document

Matching text on page 14 of other document

Matching text on page 14 of other document

Matching text on page 14 of other document

core-language.pdf

ECMAScrint 4th Edition - Care | 15

3.1.5 Record types

L Avecord type is a subtype of the public: :Object instance type that has additional type constraints on some specific set
of named properties.

Record types are arranged implicitly into a subtype relation through structural comparison of their property constraints.

A record type is denoted in a type expression by listing the names of the specified properties in a comma separated list, with
optional type annotations, enclosed in curly braces.

4 Anexampleis {x: Number, y: String}, which denotes a record type with two properties x and y, the first
constrained to type Number and the second to type String. The fype { } denotes the empty record type.

3.1.6 Array types

L Anarray type is a subtype of the public: : Array type that has type constraints on some prefix of the set of all possible
uosignediinteger-indexed properties. An array type may be either fixed-length or variable-length.

2 Array types are arranged implicitly into a subtype relation through structural comparison of their property constraints.

3.1.6.1 Fixed-length array types

L A fixed-length array type describes an explicit set of initial integer-indexed property constraints that must be satisfied by
properties found at those indices.

2 A fixed-length array type is denoted in a type expression by listing the types of the specified properties in a comma-separated
list enclosed in square brackets.

3 Forexample, the type [Number, String] describes fixed-length arrays of length at least 2, where the entry at index 0
has type Number and the entry at index 1 has type String.

4 Thetypa [1 describes fixed-length arrays of length at least 0, that is, it describes all fixed-length arrays.

ELXME Do e need to diccucs boleg bored

3.1.6.2 Variable-length array types

Ll Avariable-length array type describes an explicit set of initial integer-indexed property constraints and then a final
constraint that is implied for any further integer-indexed properties (including zero further properties).

2 Avariable length array type is denoted, initially, the same way a fixed-length array is, but concludes its type list with
symbol . . . and a trailing type expression.

3 For example, the type [Number, ... String] describes arrays of length at least 1, where the entry at index O has type

Number, and any remaining entries have type String. Thetype [... Number] describes arrays of zero or more
elements, all of which must be of type Number.

3.1.7 Union types
A union type is a storage type that is populated by all values that populate all of the types that make up the union.

A union type is denoted in a type expresison by listing the types of the union members, separated by the yartical-bar
character, enclosed in parentheses.

3 Forexample, the type (Number | String) denotes a type that is populated by both Number and String values. A
property annotated with this type can therefore hold either instances of the Number type or instances of the String type.

4 No value has a union type as its allocated type. Union types are only meaningful as the storage types of properties.

3.1.8 Function types

L Afunction type is a subtype of the public: : Function type that describes additional type constraints on any function
populating it.

2 A function type describes the number and type of required parameters, any optional parameters, any trailing "rest" parameter
that accumulates excess arguments, and the return value.

3 Function types are denoted with the keyword function, followed by a parenthesis-enclosed, comma-separated list of
parameter types -- optionally including default and rest symbols -- and an optional colon and trailing return type.

file-/Mlacalhost/Wark/esd/spec/lancnage himl Q7/11/08 16-2R8-33

Matching text on page 18 of other document

Matching text on page 18 of other document

corESIMASeHpt-4th-Editior—ECere-tanguage

8

For example, the type [Number, String] describes fixed-length arrays of length at least 2, where the entry at
index 0 has type Number and the entry at index 1 has type String.

The #ype=f 1 describes fixed-length arrays of length at least 0, that is, it describes all fixed-length arrays.
3.1.6.2 Variable-length array types

A variable-length array type describes an explicit set of initial integer-indexed property constraints and then a final
constraint that is implied for any further integer-indexed properties (including zero further properties).

Avariable length array type is denoted, initially, the same way a fixed-length array is, but concludes its type list
with symbol . . . and a trailing type expression.

For example, the type [Number, ... String] describes arrays of length at least 1, where the entry at index
0 has type Number, and any remaining entries have type String. Thetype [- .- Number] describes arrays
of zero or more elements, all of which must be of type Number.

3.1.7 Union types

A union type is a storage type that is populated by all values that populate all of the types that make up the union.

A union type is denoted in a type expresison by listing the types of the union members, separated by the vertead=
ber character, enclosed in parentheses.

For example, the type (Number | String) denotes a type that is populated by both Number and String
values. A property annotated with this type can therefore hold either instances of the Number type or instances of
the String type.

No value has a union type as its allocated type. Union types are only meaningful as the storage types of properties.
3.1.8 Function types

A function type is a subtype of the public: : Function type that describes additional type constraints on any
function populating it.

A function type describes the number and type of required parameters, any optional parameters, any trailing "rest"
parameter that accumulates excess arguments, and the return value.

Function types are denoted with the keyword function, followed by a parenthesis-enclosed, comma-separated
list of parameter types -- optionally including default and rest symbols -- and an optional colon and trailing return
type.

An example of a function type is:

function (Number, String) : String

This function type is populated by any function that is declared as taking a Number value and a String value as
parameters, and returning a String value.

The return type of a function type can be omitted, in which case the return type is implicity the any type.

If a function should not return a value, the function return type can be annotated as void, which is a retetierfer

defimingreturmtypesof-famctiomrtypes-omty: there is no separate "void type" that can be denoted elsewhere.

A function type may include a type constraint for the this binding. Such a constraint must be listed as the first
parameter in the function type parameter list, and must be denoted with the keyword thi's and a colon. For
example, the function type

function(this : Number, String) : String

denotes a type of functions that require a Number value as their implicit this parameter, as well as taking a
String argument and returning a String. The type constraint for the thi's binding defaults to the any type * if
omitted.

core-language.pdf

ECMAScript 4th Edition -- Core Language 16

4 Anexample of a function type is:

function (Number, String) : String

2 This function type is populated by any function that is declared as taking a Number value and a String value as
parameters, and returning a String value.

& The return type of a function type can be omitted, in which case the return type is implicity the any type.

Z If afunction should not return a value, the function return type can be annotated as void, which is a special notation for
. there is no separate "void type" that can be denoted elsewhere.

8 A function type may include a type constraint for the this binding. Such a constraint must be listed as the first parameter in
the function type parameter list, and must be denoted with the keyword this and a colon. For example, the function type

function(this : Number, String) : String

denotes a type of functions that require a Number value as their implicit this parameter, as well as taking a String
argument and returning a String. The type constraint for the this binding defaults to the any type * if omitted.

Q A function type may denote the presence of default value assignments for some suffix of its parameter types by annotating
the types of such parameters with trailing = symbols. For example, the function type

function (Number, String=) : String

denotes a type of function that takes a mandatory Number argument and an optional second String argument, and returns
aString.

10 A function type may denote the presence of a trailing "rest-argument" with the symbol . . . in the final position of the
function parameter list. This final parameter, if present, indicates that there is no maximum number of arguments to the
function: additional arguments beyond the parameter list are collected into an array object and passed to the function. For
example, the function type

function(String, ...) : String

denotes a type of function that takes a String and any number of additional arguments (of any type), returning a String.
Rest arguments cannot have type constraints.

1l Function types can optionally include a parameter name preceding cach argument type, and separated from that type by a
colon. These parameter names are for documentation purposes only. For example, the type of a substring function might

be specified as:

function(str : String, start : double, end : double) : String

3.1.9 Nullable types

A nullable type is an abbreviation for a union between some type and the null type.
A nullable type is denoted ?T for some type T.

For example, the nullable type ?String is an abbreviation for the union type (String | null).

[T O R S

Nullable types are purely a syntactic convenience, and are not given further special treatment.

3.1.10 Non-null types
1 Anon-null type is a type that excludes the null value from the population of a nullable instance or interface type.
2 Anon-null type is denoted ! T for some jnstance or interface type T.

3 Forexample, the non-null type ! String is populated by instances of public: : String but excludes null values.

3.1.11 Parametric types

1 A parametric type is a user-defined type constructor -- not a proper type -- associated with some typedefinition such asan
instance type interface type ortype abhreviation, A parametric type takes some number of types as arguments and produces

a new type as its result.
2 Parametric types are denoted by appending a type-parameter list to the name of a class, interface, or type at the site of its

definition. A type parameter list consists of a single period, a less-than (or "left angle bracket") character, a comma-separated
list of identifiers, and a greater-than (or "right angle-bracket") character.

file-//localhost/Wark/esd/spec/language html 07/11/08 16-28-33

Matching text on page 23 of other document

Matching text on page 23 of other document

corESIMASeHpt-4th-Editior—ECere-tanguage

9

A function type may denote the presence of default value assignments for some suffix of its parameter types by
annotating the types of such parameters with trailing = symbols. For example, the function type

function(Number, String=) : String

denotes a type of function that takes a mandatory Number argument and an optional second String argument,
and returns a String.

A function type may denote the presence of a trailing "rest-argument" with the symbol . . . in the final position of
the function parameter list. This final parameter, if present, indicates that there is no maximum number of
arguments to the function: additional arguments beyond the parameter list are collected into an array object and
passed to the function. For example, the function type

function(String, ...) I String

denotes a type of function that takes a String and any number of additional arguments (of any type), returning a
String. Rest arguments cannot have type constraints.

Function types can optionally include a parameter name preeeesing-eachargementtypess and separated from that
type by a colon. These parameter names are for documentation purposes only. For example, the type of a

substring function might be specified as:
function(str : String, start : double, end : double) : String
3.1.9 Nullable types
Anullable type is an abbreviation for a union between some type and the null type.
Anullable type is denoted ?T for some type T.
For example, the nullable type ?String is an abbreviation for the union type (String | null).

Nullable types are purely a syntactic convenience, and are not given further special treatment.

3.1.10 Non-null types

E=Coias formetatestiremornrH-operatorsreirtitatitoesinotiometetetes Femer=frommemsatratirerperststease
WPWWM mh rrmetoreeeTHR STyt
Hetmray-tooutreremey-red eheserts terer=mren

A non-null type is a type that excludes the null I value from the population of a nullable etess or interface type.
A non-null type is denoted ! T for some etess or interface type T.

For example, the non-null type 1String is populated by instances of public: String but excludes null
values.

3.1.11 Parametric types

A parametric type is a user-defined type constructor -- not a proper type -- associated with some fixee-eefirition
suehraseretassrinterfaceortypedefinitiom A parametric type takes some number of types as arguments and

produces a new type as its result.

Parametric types are denoted by appending a type-parameter list to the name of a class, interface, or type at the site
of its definition. A type parameter list consists of a single period, a less-than (or "left angle bracket") character, a
comma-separated list of identifiers, and a greater-than (or “right angle-bracket") character.

For example, the class definition

class Vector.<X> { .. }

defines a class Vector that is parameterized over a single type variable X. This class therefere-alse-servesas-a
perermetrie type that can be used in type applications to form proper types.

3.1.12 Type applications

core-language.pdf

ECMAScript 4th Edition -- Core Language 17

3 Forexample, the class definition

class Vector.<X> { .. }

defines a class Vector that is parameterized over a single type variable X. This class definition itherefore alsq.sarvesasa
parametric instance type that can be used in type applications to form proper types.

3.1.12 Type applications

1l Audpe applicationis-a.combination of a parametric type with a set of type arguments that serve to instantiate the parametric
type into a proper type that can be populated by values.

2 A type application is denoted by appending a type-argument list to the name of a parametric type. A type argument list
consists of a single period, a less-than character, a comma-separated list of type expressions, and a greater-than character.

3 Forexample, the type application Vector . <Number> denotes an instance type that can be used as the allocated type of
new objects.

3.1.13 Type names
1 Atpe nameis asymbolic reference to aninstance type. an interface type.a type abbreviation, or a type variable bound by a

parameter in a parametric type.

2 Atype name is denoted in a type expression by the same syntax as a name expression.

5 .
3.2 Semantics of the Type Language

Semantics

1l and TYPE =
AnyType
NullType
UndefinedType
RecordType of (NAME EXPRESSION * TYPE) list
ArrayType of (TYPE list * TYPE option)
UnionType of TYPE list
FunctionType of FUNCTION_ TYPE
NonNullType of TYPE
AppType of (TYPE * TYPE list)
TypeName of (NAME EXPRESSION * NONCE option)
ClassType £ CLASS
of CLASS
InterfaceType of INTERFACE

and FUNCTION TYPE =
{ typeParams : IDENTIFIER list,
thisType : TYPE,
params : TYPE list,
minArgs : int,
hasRest :
result : TYPE option (* NONE indicates return type is void *)

}

type NONCE = int

To help avoid name collisions, each type variable bound in a type parameter list is-assigned a unique integer, or nonce. Any
reference to that type variable is then resolved into a TypeName that includes that nonce.

3.3 Type Resolution

Ll Atrun-time, when a type T is encountered in the source program, that type is immediately zesolved This typeresolution
Rracess proceeds as follows:

2 In the scope of a type definition
type X = S
any reference to a type variable X in T is replaced by the type S.

3 ol ‘ . lefinisi

file-//localhost/Wark/esd/spec/language html 07/11/08 16-28-33

Matching text on page 18 of other document

Matching text on page 18 of other document

Matching text on page 18 of other document

Matching text on page 18 of other document

Matching text on page 18 of other document

Matching text on page 18 of other document

Matching text on page 18 of other document

Matching text on page 18 of other document

Matching text on page 18 of other document

Matching text on page 18 of other document

Matching text on page 18 of other document

Matching text on page 18 of other document

Matching text on page 18 of other document

Matching text on page 18 of other document

Matching text on page 18 of other document

Matching text on page 18 of other document

Matching text on page 18 of other document

Matching text on page 18 of other document

Matching text on page 18 of other document

Matching text on page 18 of other document

Matching text on page 18 of other document

Matching text on page 18 of other document

Matching text on page 18 of other document

Matching text on page 18 of other document

Matching text on page 18 of other document

Matching text on page 18 of other document

Matching text on page 18 of other document

Matching text on page 18 of other document

Matching text on page 18 of other document

Matching text on page 18 of other document

Matching text on page 18 of other document

Matching text on page 18 of other document

Matching text on page 18 of other document

Matching text on page 18 of other document

Matching text on page 18 of other document

Matching text on page 18 of other document

Matching text on page 18 of other document

Matching text on page 18 of other document

Matching text on page 18 of other document

Matching text on page 18 of other document

Matching text on page 18 of other document

Matching text on page 18 of other document

Matching text on page 18 of other document

Matching text on page 18 of other document

Matching text on page 18 of other document

Matching text on page 18 of other document

Matching text on page 18 of other document

Matching text on page 18 of other document

Matching text on page 18 of other document

Matching text on page 18 of other document

Matching text on page 18 of other document

Matching text on page 25 of other document

Matching text on page 25 of other document

Matching text on page 25 of other document

Matching text on page 25 of other document

Matching text on page 25 of other document

Matching text on page 25 of other document

Matching text on page 25 of other document

Matching text on page 25 of other document

corE@MASeript 4th Edition -- Core Language

E

A type application is a combination of a parametric type with a set of type arguments that serve to instantiate the
parametric type into a proper type that can be populated by values.

A type application is denoted by appending a type-argument list to the name of a parametric type. A type argument
list consists of a single period, a less-than character, a comma-separated list of type expressions, and a greater-than
character.

For example, the type application Vector . <Number> denotes an etass type that can be used as the allocated
type of new objects.

3.1.13 Type names
A type name is a symbolic reference to e-etassran-interfacerertype-definition; or a type variable bound by a

parameter in a parametric type.

A type name is denoted in a type expression by the same syntax as a name expression.

Actypemame-that-referstoaclassresolvestoaclasstype-A-typename-that-referstoamrinterfaceresotvestoan
interface type.

3.2 Semantics of the Type Language

Semantics

datatype TYPE =

AnyType

NullType

UndefinedType

RecordType of (NAME_EXPRESSION * TYPE) list
ArrayType of (TYPE list * TYPE option)
UnionType of TYPE list

FunctionType of FUNCTION_TYPE

NonNulIType of TYPE

AppType of (TYPE * TYPE list)

TypeName of (NAME_EXPRESSION * NONCE option)

ClassType of CLASS
InterfaceType of INTERFACE

and FUNCTION_TYPE =
{ typeParams : IDENTIFIER list,

thisType > TYPE,

params : TYPE list,

minArgs : iInt,

hasRest : boal.

result : TYPE option (* NONE indicates return type is void *)

}
type NONCE = int

To help avoid name collisions, each type variable bound in a type parameter list is assigned a unique integer, or
nonce. Any reference to that type variable is then resolved into a TypeName that includes that nonce.

3.3 The Subtype and Type Equivalence Relations

The subtype relation is a binary relation on types. It is defined by the collection of subtype rules described below
and in the following subsections.

Subtyping is reflexive, so every type is a subtype of itself.

Subtyping is transitive, so if S is a subtype of T and T is in turn a subtype of U, then S is also a subtype of U.

332 implementatton-ofthre-Subtype-Retaton

Matching text on page 17 of other document

Matching text on page 17 of other document

Matching text on page 17 of other document

Matching text on page 17 of other document

Matching text on page 17 of other document

Matching text on page 17 of other document

Matching text on page 17 of other document

Matching text on page 17 of other document

Matching text on page 17 of other document

Matching text on page 17 of other document

Matching text on page 17 of other document

Matching text on page 17 of other document

Matching text on page 17 of other document

Matching text on page 17 of other document

Matching text on page 17 of other document

Matching text on page 17 of other document

Matching text on page 17 of other document

Matching text on page 17 of other document

Matching text on page 17 of other document

Matching text on page 17 of other document

Matching text on page 17 of other document

Matching text on page 17 of other document

Matching text on page 17 of other document

Matching text on page 17 of other document

Matching text on page 17 of other document

Matching text on page 17 of other document

Matching text on page 17 of other document

Matching text on page 17 of other document

Matching text on page 17 of other document

Matching text on page 17 of other document

Matching text on page 17 of other document

Matching text on page 17 of other document

Matching text on page 17 of other document

Matching text on page 17 of other document

Matching text on page 17 of other document

Matching text on page 17 of other document

Matching text on page 17 of other document

Matching text on page 17 of other document

Matching text on page 17 of other document

Matching text on page 17 of other document

Matching text on page 17 of other document

Matching text on page 17 of other document

Matching text on page 17 of other document

Matching text on page 17 of other document

Matching text on page 17 of other document

Matching text on page 17 of other document

Matching text on page 17 of other document

Matching text on page 17 of other document

Matching text on page 17 of other document

Matching text on page 17 of other document

Matching text on page 17 of other document

Matching text on page 17 of other document

Matching text on page 17 of other document

Matching text on page 17 of other document

Matching text on page 17 of other document

Matching text on page 17 of other document

Matching text on page 17 of other document

Matching text on page 17 of other document

Matching text on page 17 of other document

Matching text on page 17 of other document

Matching text on page 17 of other document

Matching text on page 17 of other document

Matching text on page 17 of other document

Matching text on page 17 of other document

Matching text on page 17 of other document

Matching text on page 17 of other document

Matching text on page 17 of other document

Matching text on page 17 of other document

Matching text on page 17 of other document

Matching text on page 17 of other document

Matching text on page 17 of other document

Matching text on page 17 of other document

Matching text on page 17 of other document

Matching text on page 17 of other document

Matching text on page 17 of other document

Matching text on page 17 of other document

Matching text on page 17 of other document

Matching text on page 17 of other document

Matching text on page 15 of other document

Matching text on page 15 of other document

core-language.pdf

ECMAScript 4th Edition -- Core Language 18

Lype X.<y;, .., ¥,> = 8
a type application X.<S,, .., S_>inTisreplacedby thetypeS[y,:=S;, .., ¥, :=S_1.

4 Inthescope of a class definition thatassociates a ngn-aullable instance type name € with a class definition D, type resolution
replaces any TypeName that refers to € with InstanceTvpe D-Earreferencestoanullable inctance fype the same
Leplacementis.made.butthe result(orthe enclosing AppType node.ifthercisoncisunioned with the aull (upc.

2 Similarly,in the scope of an interface definition that associates an interface name I with an interface definition D, type

resolution replaces any TypeName that refers to I with InterfaceType D (againunionedwithihe null typeif Lisa
oullableinterface),

3.3.1 Implementation of Type Resolution

1 The following function resolveTypeNames performs type resolution on a particular type ty in the context of an
environment gny,

2 This function relies on the auxiliary function Fixture.resolveNameExpr (described in section ...) to resolve each type
name. The function Fixture.resolveNameEXpr
environment that ixiure was definedin. () the fully-resolved name for the given name gxpression.and (3) the
coresponding fixture,

3 If the resulting fixture is for a non-parametric type definition, the body of that type definition is resolved in its environment,
and then replaces the original type name.

4 If the resulting fixture is for a class or interface definition, the type name is replaced by an.nstancetypeocanintorfacetype
Qunioned with thetype null iftheinstance orinierface typeisdeclared asoullable)

2 A type application that refers to a type-parametric type definition is replaced by the body of that type definition, after the
replacement of each formal parameter name with the corresponding resolved type argument.

Z If none of the above cases apply, then resolveTypeNames uses the helper function mapType to perform type name
resolution on each sub-term of the given type.

& The function exrox reports.error-messages, and the module LogErr contains functions for converting various data
structures into corresponding Strings.

ELXME o tho "I oob " nrofiv ton verbose an calls to errar?
smantics
Q fun resolvelypeNames (env : FIXTURE MAPS)
Lty S IXDE)
. =
-—w—: | . {£hNull 1lab] _
ifnonnullable then
A4
else
Unionlvpe fiv. Nulllvpcel _
L
else

erxor I Incorrect no_of arguments to parametric tvpedefn:]

i
case ty of

TypeName (nameExpr,) =>
let in
case (Fixture.resolveNameExpr env nameExpr) of

(envOfDefn, , TypeFixture ([], typeBody)) =>

resolveTypeNames envOfDefn typeBody

| (_, _, ClassFixture (c as.Class.{nonpullable. typeParams=lle .. d) =2
; onuith

h . . >

file-//localhost/Wark/esd/spec/language html Q7/11/08 16-2R8-33

Matching text on page 26 of other document

Matching text on page 26 of other document

Matching text on page 26 of other document

Matching text on page 26 of other document

Matching text on page 26 of other document

Matching text on page 26 of other document

Matching text on page 26 of other document

Matching text on page 26 of other document

Matching text on page 26 of other document

Matching text on page 26 of other document

Matching text on page 26 of other document

Matching text on page 26 of other document

Matching text on page 26 of other document

Matching text on page 26 of other document

Matching text on page 26 of other document

Matching text on page 26 of other document

Matching text on page 26 of other document

Matching text on page 26 of other document

Matching text on page 26 of other document

Matching text on page 26 of other document

Matching text on page 26 of other document

Matching text on page 26 of other document

Matching text on page 26 of other document

Matching text on page 26 of other document

Matching text on page 26 of other document

Matching text on page 26 of other document

Matching text on page 26 of other document

Matching text on page 26 of other document

Matching text on page 26 of other document

Matching text on page 26 of other document

Matching text on page 26 of other document

Matching text on page 26 of other document

Matching text on page 26 of other document

Matching text on page 26 of other document

Matching text on page 26 of other document

Matching text on page 26 of other document

Matching text on page 26 of other document

Matching text on page 26 of other document

Matching text on page 26 of other document

Matching text on page 26 of other document

Matching text on page 26 of other document

Matching text on page 26 of other document

Matching text on page 26 of other document

Matching text on page 26 of other document

Matching text on page 26 of other document

Matching text on page 26 of other document

Matching text on page 26 of other document

Matching text on page 26 of other document

Matching text on page 26 of other document

Matching text on page 26 of other document

Matching text on page 26 of other document

Matching text on page 26 of other document

Matching text on page 26 of other document

Matching text on page 26 of other document

Matching text on page 26 of other document

Matching text on page 26 of other document

Matching text on page 26 of other document

Matching text on page 26 of other document

Matching text on page 26 of other document

Matching text on page 26 of other document

Matching text on page 26 of other document

Matching text on page 26 of other document

Matching text on page 26 of other document

Matching text on page 26 of other document

Matching text on page 26 of other document

Matching text on page 26 of other document

Matching text on page 26 of other document

Matching text on page 26 of other document

Matching text on page 26 of other document

corE@MASeript 4th Edition -- Core Language Page-19

1

The subtype relation is defined by the following function SubType. This function takes an additional argument
called extra, which is later used to extend the subtype relation with additional rules (for example, to define the

eompetibte=stbtyping relation below).

Reflexivity is included explicitly in the code below, whereas transitivity is a consequence of the remainder of the
algorithm. This function dispatches to additional subtype functions described in the following subsections.

Semantics

fun subType (extra : TYPE -> TYPE -> bool)

(typel : TYPE)

(type2 : TYPE)
> bool
(typel = type2) E=keflexivibyz) orelse
(subTypeRecord extra typel type2) orelse
(subTypeArray extra typel type2) orelse
(subTypeUnion extra typel type2) orelse
(subTypeFunction extra typel type2) orelse
(subTypeNonNull-—.extra-typel-type2) orelse
L{subTypeNullable-extra-typel-type2) orelse
L{subTypeNominal-—extra-typel-type2) orelse
LsublypeHierakchy—extra-typel-type2) orelse
&LsubTypeStructuralNominal extra typel type2) orelse
(extra typel type2)

Hhe-type-equivatenee relation is also a binary relation on types. Two types are equivalent if and only if they are
both subtypes of each other.

833+ Implementation of the Type Equivalence Relation

The function equivType below checks type equivalence in a straightforward manner by checking subtyping in
both directions. Like subType, equivType also takes an extra parameter.

HeiP=EWENTATHONNOFE The following implementation is straightforward and sufficies for a specification, but its worst-case time
complexity is exponential in the height of a type, and so this naive approach would be inadequate in an implementation.

Semantics
and equivType (extra : TYPE -> TYPE -> bool)
(typel : TYPE)
(type2 : TYPE)
: bool =
(subType extra typel type2) andalso
(subType (fn typel => fn type2 => extra type2 typel)
type2 typel)

334 Subtyping Record Types

Arecordtype {N,:S,, .., N_zS_} (where each distinct N, is a name and each S; is a type) is a subtype of
{N;=T,, --, N =T }ifm<nandS;isequivalentto T; foralliin1.m.

The ordering of the Name = Type bindings in a record type is irrelevant, and so re-arranging these bindings yields
an equivalent type. In particular, this re-arranging may be necessary in order to make the above rule applicable. The
function nameExpressionEqual checks if two field names are equal.

Semantics

and subTypeRecord extra typel type2 =
case (typel, type2) of

(RecordType fieldsl, RecordType fields2) =>
List.all (fn (Ranelybyped-) ==
Listexists—(fR (—hanel—Lype2n) =>»

core-language.pdf

| (_, n, _) => error ["name
LogErr.ty ty,

, LogErr.name n, in type expression
" 1s not a proper type"]
end

| AppType (TypeName (nameExpr,), typeArgs) =>
let in
case Fixture.resolveNameExpr env nameExpr of
(envOfDefn, _, TypeFixture (typeParams, typeBody)) =>
let in
resolveTypeNames envOfDefn
(substTypes typeParams
(map (resolveTypeNames env)

4

typeArgs)
typeBody)
sand
| ¢ ClassFixture (c as Class Jfnonnullable, typeParams 1)) _=>
et in
checkArgs typeArgs. typebParams.
] r 1] 1] 1labl
end
InterfaceFixture (J _as Interface {pnonnullable, typeParams 1) _=>
et in
checkArgs typeArgs. typebParams.
] r 1] 1] 1labl : .
end
L _ => mapType (resolveTypeNames env) ty

end

| _ => mapType (resolveTypeNames env) ty

snd
fun mapType (f : TYPE -> TYPE)
(ty: TYPE)
: TYPE =

case ty of
RecordType fields =>
RecordType (map (fn (name, ty) => (name, f ty)) fields)
| UnionType types =>
UnionType (map f types)
| ArrayType (types, restType) =>
ArrayType (map f types, Option.map f restType)

| FunctionType { typeParams, params, result, thisType, hasRest, minArgs } =>

FunctionType { typeParams = typeParams,
params = map f params,
result = Option.map f result,
thisType = f thisType,
hasRest hasRest,
minArgs minArgs }

| NonNullType ty =>
NonNullType (f ty)
| AppType (base, args) =>

AppType (f base, map f args)

| _=>ty

3.3.2 Resolved Types
1l Azesolued type is one thatis the result of the preceding typeresolution process,
2 Resalved types do not include:

o type names that refer to instance orinterfacetypes(InstanceType and InterfaceType are used instead)

e type names that refer to type abbreviations (which are inlined)
3 Resalved types may include type names that refer to typeparameters.thesereferencesincludea nonce,

3.4 The Subtype and Type Equivalence Relations
3.4.1 TIhe Subtvpe Relation

file:/lacalbost/Wark/esd/spec/lancuage html

Q7/11/08 16-2R8-33

Matching text on page 26 of other document

Matching text on page 26 of other document

Matching text on page 26 of other document

Matching text on page 26 of other document

Matching text on page 26 of other document

Matching text on page 26 of other document

Matching text on page 26 of other document

Matching text on page 26 of other document

Matching text on page 26 of other document

Matching text on page 26 of other document

Matching text on page 27 of other document

Matching text on page 27 of other document

Matching text on page 27 of other document

Matching text on page 27 of other document

Matching text on page 27 of other document

Matching text on page 27 of other document

Matching text on page 27 of other document

Matching text on page 27 of other document

Matching text on page 27 of other document

Matching text on page 27 of other document

Matching text on page 27 of other document

Matching text on page 27 of other document

Matching text on page 27 of other document

Matching text on page 27 of other document

Matching text on page 27 of other document

Matching text on page 27 of other document

Matching text on page 27 of other document

Matching text on page 27 of other document

Matching text on page 27 of other document

Matching text on page 27 of other document

Matching text on page 27 of other document

Matching text on page 27 of other document

Matching text on page 27 of other document

Matching text on page 27 of other document

Matching text on page 27 of other document

Matching text on page 27 of other document

Matching text on page 27 of other document

Matching text on page 27 of other document

Matching text on page 27 of other document

Matching text on page 27 of other document

Matching text on page 27 of other document

Matching text on page 27 of other document

Matching text on page 27 of other document

Matching text on page 27 of other document

Matching text on page 27 of other document

Matching text on page 27 of other document

Matching text on page 27 of other document

Matching text on page 27 of other document

Matching text on page 27 of other document

Matching text on page 27 of other document

Matching text on page 27 of other document

corE@MASeript 4th Edition -- Core Language

£ioldel

| _ => false

fun nameExpressionkEqual (namel :
(name2 :

- bool

&35 Subtyping Array Types

+ Afixed-length array type [S;, - -,

[Number, String].

2 Afixed-length array type [S;, .-, S_]1isasubtypeof [T,

1.n.

8 Avariable-length array type [S,, - -,

S] is asubtype of [S,,
fewer element in the array than the subtype does. For example, [Number,

n:

ne
supertype demands one fewer element in the array than the subtype does. For example, [Number,

NAME_EXPRESSION)
NAME_EXPRESSION)

-» S,]. The supertype demands one
String, S&EHReY is a subtype of

- Tn] if each S; is equivalentto T; for i in

--- S].The
String,

S, ... S]isasubtypeof [S;, .-, S

n?

StElngT———SEnsT basosiypeo! Phuneer———C%agT- vicransitvite

NOFE Simee======denotes concrete syntax, we use the meta-syntax Sl ”

types.

4 Avariable-length array type [S,, - -,

n?

.-, S n to denote a sequence of zero-or-mereeemmerseparated

S]isasubtype of [T,, -., T , -.. T]ifSis

n?

equivalent to T and if each S; is equivalentto T; foriin 1..n.

5 Viatransitivity, the above rules may be applied multiple times, in various combinations. The following code
combines all of these rules into a single deterministic algorithm for array subtyping.

Semantics

& and subTypeArray extra typel type2 =

case (typel, type2) of

(ArrayType (typesl,
ArrayType (types2,
=>

let

val min = Int.min(length typesl,

imn

restl),
rest2))

length types2)

ListPair.all (fn (typel, type2) => equivType extra typel type2)

(List._take(typesl,
List.take(types2,

andalso
(case (restil,
(NONE,
| (NONE,
| (SOME _,

min),

min))

rest2) of
NONE
SOME _
NONE

) => length typesl >= length types2
) => false
) => false

| (SOME t1, SOME t2) =>
length typesl >= length types2 andalso
equivType extra tl t2 andalso
List.all (fn typesl => equivType extra typel t2)

(List.drop(typesli,

end

| _ => false

length types2)))

core-language.pdf

Ll The subtype relation is a binary relation on types. It is defined by the collection of subtype rules described below and in the
following subsections.

Subtyping is reflexive, so every type is a subtype of itself.

Subtyping is transitive, so if S is a subtype of T and T is in turn a subtype of U, then S is also a subtype of U.

3.4.2 Implementation of the Subtype Relation

1 The subtype relation is defined by the following function subType. This function takes an additional argument called
extra, which is later used to extend the subtype relation with additional rules (for example, to define the compatible:

subtyping relation below).

2 Reflexivity is included explicitly in the code below, whereas transitivity is a consequence of the remainder of the algorithm.
This function dispatches to additional subtype functions described in the following subsections.

Semantics

3 fun subType (extra : TYPE -> TYPE -> bool)
(typel : TYPE)
(type2 : TYPE)
: bool =
(typel = type2) orelse
(subTypeRecord extra typel type2) orelse
(subTypeArray extra typel type2) orelse
(subTypeUnion extra typel type2) orelse
(subTypeFunction extra typel type2) orelse
(subIyvpeNominal
LsubTypeStructuralNominal extra typel type2) orelse
(extra typel type2)

3.4.3 The Type Equivalence Relation

1 Ihetypeeguivalencel relation is also a binary relation on types. Two types are equivalent if and only if they are both
subtypes of each other.

3.4.3.1 Implementation of the Type Equivalence Relation

The function equivType below checks type equivalence in a straightforward manner by checking subtyping in both
directions. Like subType, equivType also takes an extra parameter.

The following implementation is straightforward and sufficies for a specification, but its worst-case time complexity is
exponential in the height of a type, and so this naive approach would be inadequate in an implementation.

Semantics
1 and equivType (extra : TYPE -> TYPE -> bool)
(typel : TYPE)
(type2 : TYPE)

: bool =
(subType extra typel type2) andalso
(subType (fn typel => fn type2 => extra type2 typel)
type2 typel)

3.4.4 Subtyping Record Types

1 Arecordtype {N;:S,, .., N :S_} (whereeach distinct N, is a name and each S is a type) is a subtype of
{N;:T;, .., N :T }ifm=<nandS$, isequivalentto T, foralliinl.m.

2 The ordering of the Name : Type bindings in a record type is irrelevant, and so re-arranging these bindings yields an
equivalent type. In particular, this re-arranging may be necessary in order to make the above rule applicable. The function
nameExpressionEqual checks if two field names are equal.

Semantics

3 and subTypeRecord extra typel type2 =
case (typel, type2) of

(RecordType fieldsl, RecordType fields2) =>
List.all (fn (pame2.fype2) =2

Licldsl)

file-/Mlacalhost/Wark/esd/spec/lancnage himl Q7/11/08 16-2R8-33

corESIMASeHpt-4th-Editior—ECere-tanguage

1

Auniontype (S; | -- | S,) isasubtype of atype T if S; is a subtype of T foralliinl.n.
Atype Sisasubtype of (T, | -. | T ifthereexists someiin 1..n such that S is a subtype of F==
Semantics

and subTypeUnion extra typel type2 =
case (typel, type2) of

(UnionType typesl, type2)
=> List.all (fn typel => subType extra typel type2) typesl

| (typel, UnionType types2)
=> List.exists (fn type2 => subType extra typel type2) types2

4 = == false

3-3=F% Subtyping Function Types

Afunction type function(S,, .., S) : ®-sasubtype of function(T,, .., T) : R#Uisa
subtype of R and S; is equivalentto T; forall i in 1..m.

NOTE Function subtyping is invariant in the argument position, and covariant in the result type.

This rule generalizes to this arguments, default arguments, and rest arguments according to the following rule,
where the number of default arguments (indicated via the = symbol) in each function type may be zero, and where
[- - -] indicates an optional rest argument. A function type

function(this:Sl, Sz, --» S,S =, .., S=, [---D - U

is a subtype of

function(this:Tl, T2, e, T, T =, .., T=, [---D - R
if Uis a subtype of Rand n < p and S; is equivalent to T, for all i in 1..min(g,m). In addition:

If neither function type has a rest argument, then we require that g < m.

If only the first function type has a rest argument, then no additional conditions are needed.

If only the second function type has a rest argument, then subtyping does not hold.

If both function types have a rest argument, then S; must be equivalent to the any type * for all i in (q+&)

Fergenerie functions, alpha-renaming of the type variable preserves the meaning of types. Moreover,

function _<X1, - ,Xn> (argtypesl) : R1

is a subtype of

function _<X1, - ,Xn> (argtypes2) : R2
if and only if
function(argtypesl) : R1

is a subtype of

function(argtypes2) : R2

Hence, to check subtyping between gemerte functions, we alpha-rename the type variables to be identical in both
types, and then proceed to check subtyping on the non-geresie versions of the two function types.

core-language.pdf

ECMAScript 4th Edition -- Core Language

file:/lacalbost/Wark/esd/spec/lancuage html

| _ => false

NAME_EXPRESSION)
NAME EXPRESSION)

fun nameExpressionEqual (namel
(name2

: bool

4. Subtyping Array Types

A fixed-length array type [S,, .., S,, S]isasubtypeof [S,, .., S_].Thesupertype demands one fewer

element in the array than the subtype does. For example, [Number, String, Boolean] is a subtype of [Number,
String].

A fixed-length array type [S,, .., S,]isasubtypeof [T,, .., T 1ifeachS, isequivalenttoT, foriinl.n.

A variable-length array type [S;, .., S,, S, ... S]isasubtypeof [S;, .., S , ... S].Thesupertype
demands one fewer element in the array than the subtype does. For exam.pvlez [Number, String, Boglean. ...
Eunciion] isasubtypeof [Number. ... Functionl viafransitivity,

NOQTE _Sincs o o denotes concrete syntax, we use the meta-syntax Sl y ey Sn to denote a sequence of zero-or-ake-cauamasseparated types.

... T]ifSisequivalentto T

nl

A variable-length array type [S;, .., S,, ... S]isasubtypeof [T;, .., T

and if each S, is equivalent to T, foriin 1..n.

Via transitivity, the above rules may be applied multiple times, in various combinations. The following code combines all of
these rules into a single deterministic algorithm for array subtyping.

Semantics
and subTypeArray extra typel type2 =
case (typel, type2) of

(ArrayType (typesl, restl),
ArrayType (types2, rest2))

=>
let
val min = Int.min(length typesl, length types2)
in
ListPair.all (fn (typel, type2) => equivType extra typel type2)
(List.take(typesl, min),
List.take(types2, min))
andalso
(case (restl, rest2) of
(NONE, NONE) => length typesl >= length types2
(NONE, SOME _) => false
(SOME _, NONE) => false
(SOME tl1, SOME t2) =>
length typesl >= length types2 andalso
equivType extra tl t2 andalso
List.all (fn typesl => equivType extra typel t2)
(List.drop(typesl, length types2)))
end
| _ => false

3.4.6 Subtyping Union Types

A union type (S, | -« | S,) is a subtype of a type T if S, is a subtype of T foralli in 1..n.

Atype Sisasubtypeof (T, | .. | T,) if there exists someiin 1..n such that S is a subtype of T..

Semantics

and subTypeUnion extra typel type2 =
case (typel, type2) of

(UnionType typesl, type2)
=> List.all (fn typel => subType extra typel type2) typesl

| (typel, UnionType types2)
=> List.exists (fn type2 => subType extra typel type2) types2

Q7/11/08 16-2R8-33

Matching text on page 27 of other document

Matching text on page 27 of other document

Matching text on page 27 of other document

corESIMASeHpt-4th-Editionr—ECere-tanguage

4 The types in a subtype relation may contain free type variables, which are assumed to denote the same unknown
type in both arguments to the subtype relation. For example, within the scope of a binding for a type variable X, the
type [X, ... X]isasubtypeofthetype[--- X].

Semantics

5 and subTypeFunction extra typel type2 =
case (typel, type2) of

(FunctionType
{ typeParams = typeParamsl, params = paramsl,
result = resultl, thisType = thisTypel,
hasRest = hasRestl, minArgs = minArgsl },
FunctionType
{ typeParams = typeParams2, params = params2,
result = result2, thisType = thisType2,
hasRest = hasRest2, minArgs = minArgs2 })
=>
(* set up a substitution to alpha-rename typeParams to be identical *)
let
val subst = rename typeParamsl typeParams2
val min = Int.min(length paramsl, length params2)
in

length typeParamsl = length typeParams2
andalso
(case (resultl, result2) of
(SOME typel, SOME type2) => subType extra typel (subst type2)

| (NONE, NONE) => true)
andalso
equivType extra thisTypel (subst thisType2)
andalso
minArgsl <= minArgs2
andalso

ListPair.all (fn (typel, type2) => equivType extra typel (subst type2))
(List._take(paramsl, min),
List.take(params2, min))
andalso
(case (hasRestl, hasRest2) of
(false, false) => length params2 <= length paramsl
| (true, Talse) => true
| (false, true) => false
| (true, true) =>
List.all (fn t => equivType extra t AnyType)
(List._drop(paramsl, min)))
end

| _ => false

& The following function rename performs the capture-free substitution of references to any of the identifiers in
typeParams1 with references to the corresponding identifier in typeParams2 in the type ty.

Semantics

fun rename (typeParamsl : IDENTIFIER list)
(typeParams2 : IDENTIFIER list)
(ty : TYPE)
TYPE

3.3.8 Subtyping Non-Null Types
1 Anon-null type 1S is-a subtype of type Tif S is a subtype of the union type (T | nul).
2 AtypeS isasubtype of anon-nulltype 1T if S is a subtype of T and the type null is not a subtype of S.

Matching text on page 22 of other document

Matching text on page 22 of other document

Matching text on page 22 of other document

Matching text on page 22 of other document

Matching text on page 22 of other document

Matching text on page 22 of other document

Matching text on page 22 of other document

Matching text on page 22 of other document

Matching text on page 22 of other document

Matching text on page 22 of other document

Matching text on page 22 of other document

Matching text on page 22 of other document

Matching text on page 22 of other document

Matching text on page 22 of other document

Matching text on page 22 of other document

Matching text on page 22 of other document

Matching text on page 22 of other document

Matching text on page 22 of other document

Matching text on page 22 of other document

Matching text on page 22 of other document

Matching text on page 22 of other document

Matching text on page 22 of other document

Matching text on page 22 of other document

Matching text on page 22 of other document

Matching text on page 22 of other document

Matching text on page 22 of other document

Matching text on page 22 of other document

Matching text on page 22 of other document

Matching text on page 22 of other document

Matching text on page 22 of other document

Matching text on page 22 of other document

Matching text on page 22 of other document

Matching text on page 22 of other document

Matching text on page 22 of other document

Matching text on page 22 of other document

Matching text on page 22 of other document

Matching text on page 22 of other document

Matching text on page 22 of other document

Matching text on page 22 of other document

Matching text on page 22 of other document

Matching text on page 22 of other document

Matching text on page 22 of other document

Matching text on page 22 of other document

Matching text on page 22 of other document

Matching text on page 22 of other document

Matching text on page 22 of other document

Matching text on page 22 of other document

Matching text on page 22 of other document

Matching text on page 22 of other document

Matching text on page 22 of other document

core-language.pdf

ECMAScript 4th Edition -- Core Language 22

J =2_false
3.4.7Z Subtyping Function Types

1 Afunctiontype function(S,, .., S)) : Uisasubtypeof function(T,, .., T) : RifUisasubtypeofR
and S, is equivalentto T, for alliin 1..m.

NOTE Function subtyping is invariant in the argument position, and covariant in the result type.
2 This rule generalizes to this arguments, default arguments, and rest arguments according to the following rule, where the
number of default arguments (indicated via the = symbol) in each function type may be zero, and where [. . .] indicates an
optional rest argument. A function type

function(this:S,, S,, .., S,, S, ;;=r s S;=; [.--]) = U

is a subtype of

function(this:T;, T,, .., T,, Tpy=, -+, T=, [-..]1) : R

if U is a subtype of Rand n <p and S, is equivalent to T, for all i in 1..min(q,m). In addition:

If neither function type has a rest argument, then we require that q < m.

If only the first function type has a rest argument, then no additional conditions are needed.

If only the second function type has a rest argument, then subtyping does not hold.
If both function types have a rest argument, then S; must be equivalent to the any type * for all i in (q-luila

3 Eortype-parametric functions, alpha-renaming of the type variable preserves the meaning of types. Moreover,

function.<X,,..,X > (argtypesl) : Rl

is a subtype of
function.<X,,..,X > (argtypes2) : R2

if and only if
function (argtypesl) : R1

is a subtype of
function (argtypes2) : R2

Hence, to check subtyping between type-parametric functions, we alpha-rename the type variables to be identical in both
types, and then proceed to check subtyping on the non-type-parametric versions of the two function types.

4 The typesin a subtype relation may contain free type variables, which are assumed to denote the same unknown type in both
arguments to the subtype relation. For example, within the scope of a binding for a type variable X, the type [X, ... X]
is a subtype of the type [... X].

Semantics

S and subTypeFunction extra typel type2 =
case (typel, type2) of

(FunctionType
{ typeParams = typeParamsl, params = paramsl,
result = resultl, thisType = thisTypel,
hasRest = hasRestl, minArgs = minArgsl },
FunctionType
{ typeParams = typeParams2, params = params2,
result = result2, thisType = thisType2,
hasRest = hasRest2, minArgs = minArgs2 })
=>
(* set up a substitution to alpha-rename typeParams to be identical *)
let

val subst = rename typeParamsl typeParams2
val min = Int.min(length paramsl, length params2)
in
length typeParamsl = length typeParams2
andalso
(case (resultl, result2) of

file-//localhost/Wark/esd/spec/language html 07/11/08 16-28-33

Matching text on page 22 of other document

Matching text on page 22 of other document

Matching text on page 22 of other document

Matching text on page 22 of other document

Matching text on page 22 of other document

Matching text on page 22 of other document

Matching text on page 22 of other document

Matching text on page 22 of other document

Matching text on page 22 of other document

Matching text on page 22 of other document

Matching text on page 22 of other document

Matching text on page 22 of other document

Matching text on page 22 of other document

Matching text on page 22 of other document

Matching text on page 22 of other document

Matching text on page 22 of other document

Matching text on page 22 of other document

Matching text on page 22 of other document

Matching text on page 22 of other document

Matching text on page 22 of other document

Matching text on page 22 of other document

Matching text on page 22 of other document

Matching text on page 22 of other document

Matching text on page 22 of other document

Matching text on page 22 of other document

Matching text on page 22 of other document

Matching text on page 22 of other document

Matching text on page 22 of other document

Matching text on page 22 of other document

Matching text on page 22 of other document

Matching text on page 22 of other document

Matching text on page 22 of other document

Matching text on page 22 of other document

Matching text on page 22 of other document

Matching text on page 22 of other document

Matching text on page 22 of other document

Matching text on page 22 of other document

Matching text on page 22 of other document

Matching text on page 22 of other document

Matching text on page 22 of other document

Matching text on page 22 of other document

Matching text on page 22 of other document

P®»

Given a class definition

class C extends D implements |1’ -y In {--- %}

the type € isasabtypest Bs and © isalseasastypesf Ij forjinl.n.

Given an interface definition

interface K extends |1’ -, L { ...}

Matching text on page 16 of other document

Matching text on page 16 of other document

core-language.pdf

(SOME typel, SOME type2) => subType extra typel (subst type2)

| (woNE, NONE) => true)
andalso
equivType extra thisTypel (subst thisType2)
andalso
minArgsl <= minArgs2
andalso

ListPair.all (fn (typel, type2) => equivType extra typel (subst type2))
(List.take(paramsl, min),
List.take(params2, min))

andalso

(case (hasRestl, hasRest2) of
(false, false) => length params2 <= length paramsl
(true, false) => true
(false, true) => false
(true, true) =>

List.all (fn t => equivType extra t AnyType)
(List.drop(paramsl, min)))
end

| _ => false

& The following function rename performs the capture-free substitution of references to any of the identifiers in
typeParams1 with references to the corresponding identifier in typeParams?2 in the type ty.

Semantics

Z fun rename (typeParamsl
(typeParams2
(ty : TYPE)
: TYPE

IDENTIFIER list)
IDENTIFIER list)

4. Subtyping Nominal Tvpes

1 Given a class definition

class C extends D implements I,, .., I { ...}

the instance type Cisa subtype of instance type D and instance type Cisalso a subtypeofinterface type I, for jin 1..n.

2 Given an interface definition

interface K extends I,, .., I { ... }

the type K is a subtype of I, forjin 1.m.

3 These rules generalize to applications of typesparametricinstance and interfacetypes via appropriate renaming of bound
variables. For example, given a fype-parametric interface type defined by

glass C.<x,, .., x> extends D.<T;, .., T > { ... }
wehavethatc.<sl, ey Sn>isasubtypeof
D.<T,[%x,:=8,,..,%,:=S 1, .., T [%X,:=S,,..,% =S]>

4 Also,C.<T,, .., T >isasubtypeofC.<S,, .., S >ifeachtypeT, isequivalent to the corresponding type S, for
iinl.n.

NOTE The notation T[X;2=8,, .+, X, =S] denotes the fupa T with-cach-accurencealiheypevariahle X . seplaced (nacapuucsfics
wanncn.bythe comespondingtuae S ..
—
' £ Ci .
NOTE_Thercisadisingionhatweenthetypename C andiheinsance typetowhich it refers intharthe typename C includesthetype DULLIEC isa
aullable fype whercasthednstancetype € describesonly classinstances,

Semantics

S and subTypeNominal extra typel type2 =
case (typel, type2) of

(InstanceTvpe (Class { typeParams = [], extends, implements, ...}),
=> (case extends of

)

file-/Mlacalhost/Wark/esd/spec/lancnage himl Q7/11/08 16-2R8-33

Matching text on page 24 of other document

Matching text on page 24 of other document

corE@MASeript 4th Edition -- Core Language

the type K is a subtype of 1j forjin1.m.

8 These rules generalize to applications of genrerte-etasses-ane-trterfaees via appropriate renaming of bound
variables. For example, given a genericetasscefinition

elass C.<x1, ey xn> extends D'<T1’ e Tm> {---}

we have that C.<S,, .., S >isasubtype of
D.<Tl[x1:=Sl,..,xn:=Sn], i Tm[x1:=Sl,_.,xn:=Sn]>

4 Also,C.<T;, .., T >isasubtypeofC.<S;, .., S >ifeachtypeT; isequivalentto the corresponding
type S; foriin1.n.

NOTE The notationT[Xl::Sl, .- ,XnZZSn] denotes thewmmmww
free-menmery by the coTresponting iypa-See
Semantics

5 and subTypeNominal extra typel type2 =
case (typel, type2) of

(AppType (typeConstructorl, typeArgsl),
AppType (typeConstructor2, typeArgs2))

=>

typeConstructorl = typeConstructor2 andalso

length typeArgsl length typeArgs2 andalso

ListPair.all
(fn (typel, type2) => equivType extra typel type2)
(typeArgsl, typeArgs?2)

| = == false

ere sublypeHierarchy extra typel type2 —
ease (Lypel.—Lype2) ef

—Classlhype—(Class { typeParams = [], extends, implements, ...}), _)
=> (case extends of

NONE => false
| SOME extends => subType extra extends type2)
orelse
List_exists
(fn iface => subType extra iface type2)
implements

I C AppType
(Classhype (Class { typeParams, extends, implements, ...}),
typeArgs),
_)
=> tcase extends of
NONE => false
| SOME extends => subType extra
(substTypes typeParams typeArgs extends)
type2)
orelse
List._exists
(fn 1face => subType extra
(substTypes typeParams typeArgs iface)
type2)
implements

| C InterfaceType (Interface { typeParams = [], extends, .-.}), _)
=> List.exists

Page-24

Matching text on page 23 of other document

Matching text on page 23 of other document

Matching text on page 23 of other document

Matching text on page 23 of other document

Matching text on page 23 of other document

Matching text on page 23 of other document

Matching text on page 23 of other document

Matching text on page 23 of other document

Matching text on page 23 of other document

Matching text on page 23 of other document

Matching text on page 23 of other document

Matching text on page 23 of other document

Matching text on page 23 of other document

Matching text on page 23 of other document

Matching text on page 23 of other document

Matching text on page 23 of other document

Matching text on page 23 of other document

Matching text on page 23 of other document

Matching text on page 23 of other document

Matching text on page 23 of other document

Matching text on page 23 of other document

Matching text on page 23 of other document

Matching text on page 23 of other document

Matching text on page 24 of other document

Matching text on page 24 of other document

Matching text on page 24 of other document

Matching text on page 24 of other document

Matching text on page 24 of other document

Matching text on page 24 of other document

Matching text on page 24 of other document

Matching text on page 24 of other document

Matching text on page 24 of other document

Matching text on page 24 of other document

Matching text on page 24 of other document

Matching text on page 24 of other document

Matching text on page 24 of other document

Matching text on page 24 of other document

Matching text on page 24 of other document

Matching text on page 24 of other document

Matching text on page 24 of other document

Matching text on page 24 of other document

Matching text on page 24 of other document

Matching text on page 24 of other document

Matching text on page 24 of other document

Matching text on page 24 of other document

Matching text on page 24 of other document

Matching text on page 24 of other document

Matching text on page 24 of other document

Matching text on page 24 of other document

Matching text on page 24 of other document

Matching text on page 24 of other document

Matching text on page 24 of other document

Matching text on page 24 of other document

core-language.pdf

NONE => false
| SOME extends => subType extra extends type2)
orelse
List.exists
(fn iface => subType extra iface type2)
implements

| (AppType _
(LnstanceType (Class { typeParams, extends, implements, ...}),
typeArgs),
)

=> (case extends of
NONE => false
| SOME extends => subType extra
(substTypes typeParams typeArgs extends)
type2)
orelse
List.exists
(fn iface => subType extra
(substTypes typeParams typeArgs iface)
type2)
implements

| (InterfaceType (Interface { typeParams = [], extends, ...}), _)
=> List.exists
(fn iface => subType extra iface type2)
extends

| (AppType
(InterfaceType (Interface { typeParams, extends, ...}),
typeArgs),

=> List.exists
(fn iface => subType extra
(substTypes typeParams typeArgs iface)
type2)
extends

| L AppType (typeConstructorl, typeArgsl),
AppType (typeConstructor2, typeArgs2))
=>
typeConstructorl
length typeArgsl
ListPair.all
(fn (typel, type2) => equivType extra typel type2)
(typeArgsl, typeArgs2)

typeConstructor2 andalso
length typeArgs2 andalso

| _ => false

The following function substTypes performs the capture-free replacement of all occurrences of typeParams by
typeArgs within the type ty.

fun substTypes (typeParams : IDENTIFIER list)
(typeArgs : TYPE list)
(ty : TYPE)

: TYPE

3.4.9 Relating Structural and Nominal Types

1 Arecordtype {N;:S,;, .., N_:S }isasubtypeof the ilnstance type public: :Object

2 Anarray type [S;, .., S,] isasubtypeaftheinstancetype public: :Axxay.whichisasubtypeoftheinsanceype
eubliciiobject

3 Any function type is a subtype of the instance type public: : Function whichisa subtypeaf the instance type
eubliciiobject

Semantics

4 and subTypeStructuralNominal extra typel type2 =
case (typel, type2) of

(RecordType _, Jlanstancelype (Class { name, ... }))
=> nameEq name Name.public_Object

| (ArrayType _, Insiancelype (Class { name 1))

file-//localhost/Wark/esd/spec/language html Q7/11/08 16-2R8-33

Matching text on page 24 of other document

Matching text on page 24 of other document

Matching text on page 24 of other document

Matching text on page 24 of other document

Matching text on page 24 of other document

Matching text on page 24 of other document

Matching text on page 24 of other document

Matching text on page 24 of other document

Matching text on page 24 of other document

Matching text on page 24 of other document

Matching text on page 24 of other document

Matching text on page 24 of other document

Matching text on page 24 of other document

Matching text on page 24 of other document

Matching text on page 24 of other document

Matching text on page 24 of other document

Matching text on page 24 of other document

Matching text on page 24 of other document

Matching text on page 24 of other document

Matching text on page 24 of other document

Matching text on page 24 of other document

Matching text on page 24 of other document

Matching text on page 24 of other document

Matching text on page 24 of other document

Matching text on page 24 of other document

Matching text on page 24 of other document

Matching text on page 24 of other document

Matching text on page 24 of other document

Matching text on page 24 of other document

Matching text on page 24 of other document

Matching text on page 24 of other document

Matching text on page 24 of other document

Matching text on page 24 of other document

Matching text on page 24 of other document

Matching text on page 24 of other document

Matching text on page 24 of other document

Matching text on page 24 of other document

Matching text on page 24 of other document

Matching text on page 24 of other document

Matching text on page 24 of other document

Matching text on page 24 of other document

Matching text on page 24 of other document

Matching text on page 24 of other document

corESIMASeHpt-4th-Editionr—ECere-tanguage

(fn iface => subType extra iface type2)
extends

| C AppType
(InterfaceType (Interface { typeParams, extends, -..}),
typeArgs),
_)

=> List.exists
(fn iface => subType extra
(substTypes typeParams typeArgs iface)
type?2)

extends

| _ => false

The following function substTypes performs the capture-free replacement of all occurrences of typeParams
by typeArgs within the type ty.
fun substTypes (typeParams : IDENTIFIER list)

(typeArgs : TYPE list)

(ty : TYPE)
: TYPE

3-3-+* Relating Structural and Nominal Types

* Arecordtype{N,:S,, .., N_zS_}isasubtype of the etass type public: :Object.
2 Anarray type [S;, .-, S,] isesubiype-ofthe-elass-type pridie=Array:
3 Any function type is a subtype of the etasstype peiod-ieFerction:

Semantics
4 and subTypeStructuralNominal extra typel type2 =
case (typel, type2) of

(RecordType _, GClasskhype (Class { name, ... }))

=> nameEq name Name.public_Object

| (ArrayType _, Classlhype—(LlasSS—{Raintymm—)):
=> nameEq name Name.public_Array orelse
nameEq name Name.public_Object

| (FunctionType _, &lasshype (Class { name, ... }))
=> nameEq name Name.public_Function orelse
nameEq name Name.public_Object
| _ => false

34 TypeNormalization

Atrun-time, when a type T is encountered in the source program, that type is immediately mormatizec—Fype
ot . ‘ : atiom-fott I entiration

¥ Fyperesotutiomomatype + proceeds as follows:

2 In the scope of a type definition

type X = S

any reference to a type variable X in T is replaced by the type S.

Matching text on page 24 of other document

Matching text on page 24 of other document

Matching text on page 24 of other document

Matching text on page 24 of other document

Matching text on page 24 of other document

Matching text on page 24 of other document

Matching text on page 24 of other document

Matching text on page 24 of other document

Matching text on page 24 of other document

Matching text on page 24 of other document

Matching text on page 24 of other document

Matching text on page 24 of other document

Matching text on page 24 of other document

Matching text on page 24 of other document

Matching text on page 24 of other document

Matching text on page 24 of other document

Matching text on page 24 of other document

Matching text on page 24 of other document

Matching text on page 24 of other document

Matching text on page 24 of other document

Matching text on page 24 of other document

Matching text on page 24 of other document

Matching text on page 17 of other document

Matching text on page 17 of other document

Matching text on page 17 of other document

Matching text on page 17 of other document

Matching text on page 17 of other document

Matching text on page 17 of other document

Matching text on page 17 of other document

Matching text on page 17 of other document

Matching text on page 17 of other document

Matching text on page 17 of other document

Matching text on page 17 of other document

core-language.pdf

=> nameEq name Name.public Array orelse
nameEq name Name.public_ Object

| (FunctionType _, InstanceType (Class { name, ... }))
=> nameEq name Name.public Function orelse
nameEq name Name.public Object

| _ => false
3.5 Compatible Tvpes

1 The compatibility relation is a binary relation on type values. Atype Sis compatible with 3 type T if T can be obtained from
S by replacing certain portions of S by the any type *.

2 Forexample, the record type {x : double} iscampatiblewithbath {x : *} and with *,but the typa {x : *} is not
double},

compatible with {x
3 Also, T.<Number> is compatible with T . <*>.

4 This compatibility relation is reflexive and transitive, but not symmetric.

3.6 Compatible-Subtyping

1 The compatible-subtype relation is a binary relation on types. A type S is a compatible-subtype of a type T if there exists
some type U such that S is a subtype of U and U compatible with T.

2 For example, the record type {x : double. v _: boolean} isacampatiblecsubtypeofthetypes{x : *, y :
*},{x : double}. {x : *},and *.

3 The compatible-subtyping relation is reflexive and transitive, but not symmetric.

4 The compatible-subtyping relation is implemented by calling the previously-defined subType predicate and passing in an

extra parameter that implementsthe campatibility relation, that every type is compatible with *.

Semantics

5 fun compatibleSubtype (typel : TYPE) (type2 : TYPE) : bool =
subType
(fn typel => fn type2 => type2 = ApyIvpe)
typel type2

3.7 Type Invariants at Run Time

1 Atype is allecatable if it is not the any type or a union type.

2 Every value in ES has an associated allocated type, which is a type that is associated with the value when the value is first
allocated or created. An allocated type is always anallacatable type. The allocated type of a value is invariant; for example,
updating the fields of an object cannot change the allocated type of that object.

3 If a property of storage type T hold a value v of type S, then S is a compatible-subtype of T.

4 Names
1 Names in ECMAScript are defined in section . names,
2 [\ nle c o] l. ‘ DIran 1o lllll L'}]
3
L
2
3

file-/Mlacalhost/Wark/esd/spec/lancnage himl Q7/11/08 16-2R8-33

Matching text on page 28 of other document

Matching text on page 28 of other document

Matching text on page 28 of other document

Matching text on page 28 of other document

Matching text on page 28 of other document

Matching text on page 28 of other document

Matching text on page 28 of other document

Matching text on page 28 of other document

Matching text on page 28 of other document

Matching text on page 28 of other document

Matching text on page 28 of other document

Matching text on page 28 of other document

Matching text on page 28 of other document

Matching text on page 28 of other document

Matching text on page 28 of other document

corESIMASeHpt-4th-Editionr—ECere-tanguage

3 | .
ype X.<y,, .., y> =S

n

atype application X-<S;, .., S_ >inT isreplaced by the type S[y,:=S,, .., y,:=S 1.

4 In the scope of a class definition that associates a etass name C with a class definition D, type resolution replaces
any TypeName that refers to C with lasshype—b-

5 Similarly, in the scope of an interface definition that associates an interface name 1 with an interface definition D,
type resolution replaces any TypeName that refers to 1 with InterfaceType B

6 Fhetype-resotution-code-is-not-presented-here:
34-+%* Implementation of Type Resolution

The following function resolveTypeNames performs type resolution on a particular type ty in the context of
an environment &y=

2 This function relies on the auxiliary function Fixture . resolveNameEXpr (described in section ...) to resolve

each type name. The function Fixture . resolveNameEXpr returns-the-corresponding-fixture-(as-the-tirire
componentofthe-resuit-tripte)-plus-the-environment-that-fixture-was-defined-im-and the fully-resolved name for
the given name expression:

8 If the resulting fixture is for a non-parametric type definition, the body of that type definition is resolved in its
environment, and then replaces the original type name.

4 If the resulting fixture is for a class or interface definition, the type name is replaced by e-elass-type-or-antaterface
type:

5 Atype application that refers to a type-parametric type definition is replaced by the body of that type definition,
after the replacement of each formal parameter name with the corresponding resolved type argument.

& If none of the above cases apply, then resolveTypeNames uses the helper function mapType to perform type
name resolution on each sub-term of the given type.

The function €rror reports error messages, and the module LOGEYr contains functions for converting various
data structures into corresponding Strings.

Semantics
g8 fun resolveTypeNames (env : RIBS)
Cty——TYPE)
s FVRE—=

case ty of

TypeName (nameExpr, _) =>
let in
case (Fixture.resolveNameExpr env nameExpr) of

(envOfDefn, _, TypeFixture ([], typeBody)) =>

resolveTypeNames envOfDefn typeBody

| (., _, ClassFixture ¢) == Classlype-c
+ ———lnterfacekixture—i) => lnterfacelype—i

in type expression ",
is not a proper type']

| ., n,) => error ["name
LogErr.ty ty,

, LOgErr_name n,

end

| AppType (TypeName (nameExpr, _), typeArgs) =>
let iIn
case Fixture.resolveNameExpr env nameExpr of
(envOfDefn, _, TypeFixture (typeParams, typeBody)) =>
let iIn

Matching text on page 18 of other document

Matching text on page 18 of other document

Matching text on page 18 of other document

Matching text on page 18 of other document

Matching text on page 18 of other document

Matching text on page 18 of other document

Matching text on page 18 of other document

Matching text on page 18 of other document

Matching text on page 18 of other document

Matching text on page 18 of other document

Matching text on page 18 of other document

Matching text on page 18 of other document

Matching text on page 18 of other document

Matching text on page 18 of other document

Matching text on page 18 of other document

Matching text on page 18 of other document

Matching text on page 18 of other document

Matching text on page 18 of other document

Matching text on page 18 of other document

Matching text on page 18 of other document

Matching text on page 18 of other document

Matching text on page 18 of other document

Matching text on page 18 of other document

Matching text on page 18 of other document

Matching text on page 18 of other document

Matching text on page 18 of other document

Matching text on page 18 of other document

Matching text on page 18 of other document

Matching text on page 18 of other document

Matching text on page 18 of other document

Matching text on page 18 of other document

Matching text on page 18 of other document

Matching text on page 18 of other document

Matching text on page 18 of other document

Matching text on page 18 of other document

Matching text on page 18 of other document

Matching text on page 18 of other document

Matching text on page 18 of other document

Matching text on page 18 of other document

Matching text on page 18 of other document

Matching text on page 18 of other document

Matching text on page 18 of other document

Matching text on page 18 of other document

Matching text on page 18 of other document

Matching text on page 18 of other document

Matching text on page 18 of other document

Matching text on page 18 of other document

Matching text on page 18 of other document

Matching text on page 18 of other document

Matching text on page 18 of other document

Matching text on page 18 of other document

Matching text on page 18 of other document

Matching text on page 18 of other document

Matching text on page 18 of other document

Matching text on page 18 of other document

Matching text on page 18 of other document

Matching text on page 18 of other document

Matching text on page 18 of other document

Matching text on page 18 of other document

Matching text on page 18 of other document

Matching text on page 18 of other document

Matching text on page 18 of other document

Matching text on page 18 of other document

Matching text on page 18 of other document

Matching text on page 18 of other document

Matching text on page 18 of other document

Matching text on page 18 of other document

Matching text on page 18 of other document

Matching text on page 18 of other document

Matching text on page 18 of other document

Matching text on page 18 of other document

Matching text on page 18 of other document

Matching text on page 18 of other document

Matching text on page 18 of other document

Matching text on page 18 of other document

Matching text on page 18 of other document

Matching text on page 18 of other document

Matching text on page 18 of other document

Matching text on page 18 of other document

Matching text on page 18 of other document

Matching text on page 18 of other document

Matching text on page 18 of other document

Matching text on page 18 of other document

Matching text on page 18 of other document

Matching text on page 19 of other document

Matching text on page 19 of other document

Matching text on page 19 of other document

Matching text on page 19 of other document

Matching text on page 19 of other document

Matching text on page 19 of other document

Matching text on page 19 of other document

Matching text on page 19 of other document

Matching text on page 19 of other document

Matching text on page 19 of other document

Matching text on page 19 of other document

Matching text on page 19 of other document

Matching text on page 19 of other document

Matching text on page 19 of other document

Matching text on page 19 of other document

Matching text on page 19 of other document

Matching text on page 19 of other document

Matching text on page 19 of other document

Matching text on page 19 of other document

Matching text on page 19 of other document

Matching text on page 19 of other document

core-language.pdf

NOTE In a qualified name such asJintrinsiczsubstring the leftmost identifier, intrinsic, is itself unqualified and subject to definition-time resolution.

L and NAME EXPRESSTON =

identifier: IDENTIFIER }
UngualifiedName of { identifier: TDENTTFTER

NOTE The public namespace is distinguished in several ways. The names of properties added dynamically to objects are qualified by public by default,
so all properties created by 3rd Edition code running on a 4th Edition implementation are public, and public is sometimes called "the compatibility
namespace" for that reason. The default namespace qualifier that is applied to declarations in every scope is public, so absent other qualification every
property on every object and every lexically bound name is in the public namespace.

file-/Mlacalhost/Wark/esd/spec/lancnage himl Q7/11/08 16-2R8-33

corESIMASeHpt-4th-Editionr—ECere-tanguage

£ dopgth tunolroc = Llonath tusoDarams #hen
©
else
[t of arguments to parametric typedefn']:
resolveTypeNames envOfDefn
(substTypes typeParams
(map (resolveTypeNames env)
typeArgs)
typeBody)
end

4 _ => mapType (resolveTypeNames env) ty
end

| _ => mapType (resolveTypeNames env) ty

fun mapType (f : TYPE -> TYPE)
(ty: TYPE)
- TYPE =
case ty of
RecordType fields =>
RecordType (map (fn (name, ty) => (name, f ty)) Ffields)
| UnionType types =>
UnionType (map f types)
| ArrayType (types, restType) =>
ArrayType (map T types, Option.map f restType)
| FunctionType { typeParams, params, result, thisType, hasRest, minArgs } =>
FunctionType { typeParams = typeParams,
params = map f params,
result = Option.map f result,
thisType = T thisType,
hasRest = hasRest,
minArgs = minArgs }
| NonNullType ty =>
NonNul IType (f ty)
| AppType (base, args) =>
AppType (F base, map f args)
e

1 Eachtype T is considered equivalent (under the equivalence relation defined above) to some collection of types.
Fheprocessoftype-ca °“'°""_“"° conve t’, ortypemt CIIP'° mg"lz' SOHTeeeo del' E°, ereanonieal °'|.'°p.'°’°' ."I trve
. erient " .

5 centimati . _

1 Amormetized type is one that is the result of the preceeding-normatizatiomprocess:
2 Normatized types do not include:

e type names that refer to remiraktypes-(classtype and InterfaceType are used instead)
e type names that refer to type defirittons-fehich-are-intined)

3 Nermehzed types may include type names that refer to generie-type-parameters-these-references-inelude-arnonee:

35 Compatiblte Types

Matching text on page 19 of other document

Matching text on page 19 of other document

Matching text on page 19 of other document

Matching text on page 19 of other document

Matching text on page 19 of other document

Matching text on page 19 of other document

Matching text on page 19 of other document

Matching text on page 19 of other document

Matching text on page 19 of other document

Matching text on page 19 of other document

Matching text on page 19 of other document

Matching text on page 19 of other document

Matching text on page 19 of other document

Matching text on page 19 of other document

Matching text on page 19 of other document

Matching text on page 19 of other document

Matching text on page 19 of other document

Matching text on page 19 of other document

Matching text on page 19 of other document

Matching text on page 19 of other document

Matching text on page 19 of other document

Matching text on page 19 of other document

Matching text on page 19 of other document

Matching text on page 19 of other document

Matching text on page 19 of other document

Matching text on page 19 of other document

Matching text on page 19 of other document

Matching text on page 19 of other document

Matching text on page 19 of other document

Matching text on page 19 of other document

Matching text on page 19 of other document

Matching text on page 19 of other document

Matching text on page 19 of other document

Matching text on page 19 of other document

Matching text on page 19 of other document

Matching text on page 19 of other document

Matching text on page 19 of other document

Matching text on page 19 of other document

Matching text on page 19 of other document

Matching text on page 19 of other document

Matching text on page 19 of other document

Matching text on page 19 of other document

Matching text on page 19 of other document

Matching text on page 19 of other document

Matching text on page 19 of other document

Matching text on page 19 of other document

Matching text on page 19 of other document

Matching text on page 19 of other document

Matching text on page 19 of other document

Matching text on page 19 of other document

Matching text on page 19 of other document

Matching text on page 19 of other document

Matching text on page 19 of other document

Matching text on page 19 of other document

Matching text on page 19 of other document

Matching text on page 19 of other document

Matching text on page 19 of other document

Matching text on page 19 of other document

Matching text on page 19 of other document

Matching text on page 19 of other document

Matching text on page 19 of other document

Matching text on page 19 of other document

Matching text on page 19 of other document

Matching text on page 19 of other document

Matching text on page 21 of other document

Matching text on page 21 of other document

Matching text on page 21 of other document

core-language.pdf

ECMAScript 4th Edition -- Core Language

Semantics

datatype EXPRESSION =
LexicalReference of { name: NAME EXPRESSION }
| ObjectNameReference of { object: EXPRESSION,
name: NAME EXPRESSION }
| ObjectIndexReference of { object: EXPRESSION,
index: EXPRESSION }

NOTE AnQbijectIndexReference is evaluated by evaluating its index operand to a Name abjcct and then treating that value the
same as a resolved qualified name. Index operands that do not evaluate to NAIE ehicafsamcanveradie Strind, anda Name abject is formed from

the string and the public namespace.

4.3 Lexical scopes

Lexical ined | .

Defining and binding forms introduce names intoa lexical scope.Thesenamesarethen visible to lexical references that
occur within the scope of the binding. The scope of a binding is primarily determined i

(ECMAScript is primarily lexically scoped) and depends also on the defining or binding form that introduced the binding.

NOTE ., For example; the scope of a=xak binding inside a block statement is the entire body of the function or program containing the block, whereas the
scope of a.at binding inside a block statement is that block statement.

Scopes nest textually, and a name that is bound in one scope may be shadowed in an inner scope by a binding of the same
name in the inner scope; name expressions in the inner scope will not be able to access the outer binding.

In this specification. the nesting of scopes is modelled as a list of fixture.maps in the definition phase and a list of objects
during evaluation. Theformerlistiscalledthe static scape chainarthe static euviopment The latter st is called the

file-/Mlacalhost/Wark/esd/spec/lancnage himl Q7/11/08

16:28-33

Matching text on page 31 of other document

Matching text on page 31 of other document

Matching text on page 31 of other document

Matching text on page 31 of other document

Matching text on page 31 of other document

Matching text on page 31 of other document

Matching text on page 31 of other document

Matching text on page 31 of other document

Matching text on page 31 of other document

Matching text on page 31 of other document

Matching text on page 31 of other document

Matching text on page 31 of other document

Matching text on page 31 of other document

Matching text on page 31 of other document

Matching text on page 31 of other document

Matching text on page 31 of other document

Matching text on page 30 of other document

Matching text on page 30 of other document

Matching text on page 30 of other document

Matching text on page 30 of other document

Matching text on page 30 of other document

Matching text on page 30 of other document

Matching text on page 30 of other document

Matching text on page 30 of other document

Matching text on page 30 of other document

Matching text on page 30 of other document

Matching text on page 30 of other document

Matching text on page 30 of other document

Matching text on page 30 of other document

Matching text on page 30 of other document

Matching text on page 30 of other document

Matching text on page 30 of other document

Matching text on page 30 of other document

Matching text on page 30 of other document

Matching text on page 30 of other document

Matching text on page 30 of other document

Matching text on page 30 of other document

Matching text on page 30 of other document

Matching text on page 30 of other document

corE@MASeript 4th Edition -- Core Language Page-28

1

The compatibility relation is a binary relation on type values. Fweo-types S and + are-compatibrte if T can be
obtained from S by replacing certain portions of S by the any type *

For example, the record type {X : +#A&3 is-eompatible-with beth=fX - *} and with *, but the type-fx = *3}
is not compatible with {X : 3=

Also, T.<Number> is compatible with T . <*>,

This compatibility relation is reflexive and transitive, but not symmetric.

3.6 Compatible-Subtyping

The compatible-subtype relation is a binary relation on types. A type S is a compatible-subtype of a type T if there
exists some type U such that S is a subtype of U and U compatible with T.

For example, the record type {X : #Atgp—y—i—booldd iso-compatible-suitype-ofthe types=fx - *, y =
*FAXx o wAEdEx - *}and >

The compatible-subtyping relation is reflexive and transitive, but not symmetric.

The compatible-subtyping relation is implemented by calling the previously-defined SubType predicate and
passing in an extra parameter that reasens-abert-compatibtity=ta that every type is compatible with *.

Semantics

fun compatibleSubtype (typel : TYPE) (type2 : TYPE) : bool =
subType

(fn typel => fn type2 => type2 = anylype)
typel type2

3.7 Typelnvariants at Run Time
Atype is retftabte if it is not the any type or a union type.

Every value in ES has an associated allocated type, which is a type that is associated with the value when the value
is first allocated or created. An allocated type is always e=retfiabte type. The allocated type of a value is invariant;
for example, updating the fields of an object cannot change the allocated type of that object.

If a property of storage type T hold a value Vv of type S, then S is a compatible-subtype of T.

4 Names

Names in ECMAScript are eenstents-that-a

are-resetvee-trepeatectyy at evaluation time.

NOTE Inaqualified name such es=ldadllHaSie-==SUDS T I NQ the leftmost identifier, INTK INS 1 C, is itself unqualified and
subject to definition-time resolution.

Matching text on page 25 of other document

Matching text on page 25 of other document

Matching text on page 25 of other document

Matching text on page 25 of other document

Matching text on page 25 of other document

Matching text on page 25 of other document

Matching text on page 25 of other document

Matching text on page 25 of other document

Matching text on page 25 of other document

Matching text on page 25 of other document

Matching text on page 25 of other document

Matching text on page 25 of other document

Matching text on page 25 of other document

Matching text on page 25 of other document

Matching text on page 25 of other document

core-language.pdf

Semantics

Z and FIXTURE MAPS = ((FIXTIRE NAME > FIXTURE) Jlist) ligt

1l Some objects that appear on evaluation-time scope chains are dynamically extensible, For example, class objects appear on
the scope chain of class and instance methods, and properties can be added to and removed from class objects; hawever,

4.3.1 Pr hain

1 Every object has a distinguished value called its prototype (see section Object prototype in Values).

2 If the prototype value of an object is another object, then the prototype value is called fha object's prototype object, and the
connection between the initial object and its prototype object is called its prototype link.

3 The prototype chain is the list of objects formed by following prototype links from an object. The prototype chain of an
object begins with the object itself, and ends with the first object having a null prototype value.

4 When a name is to be resolved against an object, if resolution initially fails because the object does not contain a property
matching the name, then resolution continues along the object's prototype chain.

4.4 Name Resolution

4.4.1 Overview

1 The purpose of name resolution is to take an unresolved name and a list of objects and return an unambiguous name
(consisting of a namespace value and an identifier) and an object that contains a property with that name. The objects are
searched in order, and the first object to contain a property with the name is selected.

2 There are twa.camplications.The first appears with the need for disambiguation. When an unqualified name is resolved the
resolution is performed in the context of the namespaces that were open at the point of reference. Thus the search of any one
object may find multiple bindings that match the name, up to one binding per open namespace. Instead of making this an
error, the name resolver disambiguates by trying to select the most desirable of those namespaces. Selection is performed by
filtering the applicable namespaces until we are left with one. (If we have more than one then the name is deemed
ambiguous.)

contains the name. For example, if ; is asubclass of B.and B is.a subclass of A, and our name n-maiched nsl::n,
ns2::n,andns3::n,and nsl: :nand ns2: :n were defined in B and ns3: : n was defined in C, then we'd be left with
justns1 and ns2.

3 We first select those namespaces among the matchin nameiipaces thatare in use by the least specific class of the object that

file-/Mlacalhost/Wark/esd/spec/lancnage himl Q7/11/08 16-2R8-33

Matching text on page 30 of other document

Matching text on page 30 of other document

Matching text on page 30 of other document

Matching text on page 32 of other document

Matching text on page 32 of other document

Matching text on page 32 of other document

Matching text on page 32 of other document

Matching text on page 32 of other document

Matching text on page 32 of other document

Matching text on page 32 of other document

Matching text on page 32 of other document

Matching text on page 32 of other document

Matching text on page 32 of other document

Matching text on page 32 of other document

Matching text on page 32 of other document

Matching text on page 32 of other document

Matching text on page 32 of other document

Matching text on page 32 of other document

Matching text on page 32 of other document

Matching text on page 32 of other document

Matching text on page 32 of other document

Matching text on page 32 of other document

Matching text on page 32 of other document

Matching text on page 32 of other document

Matching text on page 32 of other document

Matching text on page 32 of other document

Matching text on page 32 of other document

Matching text on page 32 of other document

Matching text on page 32 of other document

Matching text on page 32 of other document

Matching text on page 32 of other document

Seraniies
wak publichs - Ast Trancoarontiamesnace lstring omoty

NOTE The public namespace is distinguished in several ways. The names of properties added dynamically to objects are qualified by public by
default, so all properties created by 3rd Edition code running on a4th Edition implementation are public, and public is sometimes called "the
compatibility namespace" for that reason. The default namespace qualifier that is applied to declarations in every scope is public, so absent other
qualification every property on every object and every lexically bound name is in the public namespace.

core-language.pdf

ECMAScript 4th Edition -- Core Language 29

5 We then filter by namespace priority. The open namespaces are organized in a prioritized list of namespace sets. If one of the
matching names has a namespace that is from a set with a higher priority than all the other matching names, then that's the
namespace we want. So if the referencing context of n opened ns2 in a scope nested inside the one that opened ns1, then
we are left with just ns2 -- and a single binding, ns2: :

6 (The motivation for disambiguation hythe.scapeinwhich a namespaceisapened issimple- it allows more programs to run.
Furthermore, since the priority af namespaces during disambiguation is under the control of the programmer, the
programmer can rely on disambiguation to control which names arefound.)

7 Thesecand complication is that some names are required to be resolved successfully at definition time -- names that denote
namespaces and types. (We require definition_time resolution in order to make names and types constant, which generally
simplifies the language and makes programs more easily comprehensible.) The consequence is that namespace and type
references are illegal inside scopes introduced by with or scopes that may be extended by the eval operator, because those
scopes make definition time resolution impossible -- their contents are unknown. Such programs result in a syntax error
being signalled. (It is possible to ease that restriction in various ways but we have not done so.)

8 However, we also require that type and namespace names that are resolved at definition time must resolve to the same
bindings that they would resolve to if they were to be resolved at evaluation time. (We require that because it simplifies the
user's model of the language: equal names in the same scope have the same meaning, provided they resolve at all.) The
consequence is that the language must provide protection against ambiguities that can be introduced at a later time. If a name
is resolved at definition time to a global binding then compilation units loaded later may introduce new global bindings that
will make the resolved binding ambiguous. For example, consider the following program.

namespace NS1

namespace NS2

NS1 type T

use namespace NS1, namespace NS2

... var x: T

9 The reference to T in the type annotation is resolved uniquely at definition time to NS1::T. Then another compilation unit is
loaded:

NS2 type T Zoasu

10 Since the global environment is "flat"--code in earlier compilation units can see bindings introduced by later compilation
units--the reference to T from the first program is now ambiguous.

11 ES4 protects against this eventuality by reserving global names that are resolved at definition time. When T is resolved in the
first program and found to be in NS1, the name NS2::T is reserved: it is made off-limits to later programs. As a consequence,
the second program above would not be loaded, because the introduction of NS2::T would be an error.

12 Names are reserved in namespaces at the same or higher priority level as the namespace that the name was resolved to, so in
the example above neither public::T nor internal::T would become reserved, as those namespaces are at lower priority
levels than NS1 and NS2.

NOTE Top-level "use namespace" pragmas are given a higher priority level than names originating "outside" the compilation unit, as is the case for
public and internal,

4.4.2 Definition-Time Resolution of Namespace and Type Expressions

Ll The definition time scope chain is modelled as a list of fixture maps.defined.clsawhare A fixture map maps names to fixture
bindings that result from defining and binding forms (var, function, type, class, interface, namespace, and others). Eixfure
maps have no dynamic properties.

2 Definition time resolution resolves name expressions that denote namespaces and types, and performs reservation of global
names if necessary.

3 The following algorithm resolves a name expression to a specific name and fixture in the list of fixtureinaps.

Semantics
4 and.resolveNameExpr (£] H
(ne : Ast.NAME EXPRESSION)
: (Ast.[IXTURE MAPS * Ast.NAME * Ast.FIXTURE) =

case ne of
Ast.QualifiedName { namespace, identifier }
=> resolveQualifiedName fixfureMaps.ddentifier namespace

file-//localhost/Wark/esd/spec/language html Q7/11/08 16-2R8-33

Matching text on page 33 of other document

Matching text on page 33 of other document

Matching text on page 33 of other document

Matching text on page 33 of other document

Matching text on page 33 of other document

Matching text on page 33 of other document

Matching text on page 33 of other document

Matching text on page 33 of other document

Matching text on page 33 of other document

Matching text on page 33 of other document

Matching text on page 33 of other document

Matching text on page 33 of other document

Matching text on page 33 of other document

Matching text on page 33 of other document

Matching text on page 33 of other document

Matching text on page 33 of other document

Matching text on page 33 of other document

corE@MASeript 4th Edition -- Core Language Page-36

1 Every object has a distinguished value called its prototype (see section Object prototype in Values).

2 If the prototype value of an object is another object, then the prototype value is called am object's prototype object,
and the connection between the initial object and its prototype object is called & prototype link.

3 The prototype chain is the list of objects formed by following prototype links from an object. The prototype chain
of an object begins with the object itself, and ends with the first object having a null ertrdefired prototype value.

4 When a name is to be resolved against an object, if resolution initially fails because the object does not contain a
property matching the name, then resolution continues along the object's prototype chain.

44 ot

1 Defining and binding forms introduce names into a pregreas- . . i
that occur within the scope of the binding. The scope of a blndlng is prlmarlly determlned textmﬂ-ly (ECMAScrlpt
is primarily lexically scoped) and depends also on the defining or binding form that introduced the binding.

NOTE For example, the scope of esvs@d= hinding inside a block statement is the entire body of the function or program containing the block,
whereas the scope of e-l&% binding inside ablock statement s that block statement.

2 Scopes nest textually, and a name that is bound in one scope may be shadowed in an inner scope by a binding of
the same name in the inner scope; hame expressions in the inner scope will not be able to access the outer binding.

3 Inthis S-peerhmt-run- the nestlng of scopes is modelled asa Ilst of nb-s in the deflnltlon phase and a Ilst of objects
durlng evaluation. Beth-eny men ger =Y :

ElaC A Lol oo o Loiio o o P £ Laioo L
R oo

5 Some objects that appear on evaluation-time scope chains are dynamically extenstbte-ireffectprovicing-e-form-of

eyramie-seepe- For example, class objects appear on the scope chain of class and instance methods, and properties
can be added to and removed from class objects; these-properties-then-hecome-visivle-ane-invisible-te-the-methots:

2 and NAME-EXPRESSION-=
QualifiedName of {-namespace:-NAMESPACE.-EXPRESSION.;
sdentifier-—IDENTIFIER -}
+ UngualifiedName of {_MLLDENLI.EI.E&.

4 and NAMESRPACE_EXRPRESSION-=
Namespace of NAMESPACE
+ NamespaceName of NAME.-EXPRESSION

Matching text on page 27 of other document

Matching text on page 27 of other document

Matching text on page 27 of other document

Matching text on page 27 of other document

Matching text on page 27 of other document

Matching text on page 27 of other document

Matching text on page 27 of other document

Matching text on page 27 of other document

Matching text on page 27 of other document

Matching text on page 27 of other document

Matching text on page 27 of other document

Matching text on page 27 of other document

Matching text on page 27 of other document

Matching text on page 27 of other document

Matching text on page 28 of other document

Matching text on page 28 of other document

Matching text on page 28 of other document

Matching text on page 27 of other document

Matching text on page 27 of other document

Matching text on page 27 of other document

Matching text on page 27 of other document

Matching text on page 27 of other document

Matching text on page 27 of other document

Matching text on page 27 of other document

Matching text on page 27 of other document

Matching text on page 27 of other document

core-language.pdf
| Ast.UnqualifiedName { identifier, openNamespaces, ... }

=> case (resolveUnqualifiedName fixtureMaps identifier openNamespaces) of

NONE
=> error ["unresolved name

| SOME ([1,)
=> error ["unresolved name

| soME ([£fixtureMapl, name)

=> (reserveNames name openNamespaces ;
([&ixtureMapl, pame, dgetFixture fixturcMap (Ast.PropName name)))

| SOME (fixtureMaps. name)
TS . hd £

4.42.1 AQualified Name Expressions

, LogErr.nameExpr ne]

, LogErr.nameExpr ne]

L A qualified name expression is resolved by resolving the namespace part and then returning the tail of the list of fixturemans
such thatthe first fixture map on the tail contains a binding for the name.

: , . .

Semantics
(identifier : IDENTIFIER)
(namespaceExpr : Ast.NAMESPACE_EXPRESSION)
: (Ast.EIXTURE MAPS * NAME * Ast.FIXTURE) =
let

val ns = resolveNamespaceExpr fiXtureMaps namespaceExpr
val name = { ns = ns, id = identifier }

fun search (r::rs) = if hasFixture r (Ast.PropName name) then
(r::rs)
else
search rs
| search [1 = []
in
case (search fixtureMaps) of
[1]
=> error ["qualified name not present in fixtureMaps: ‘', TogErr_ pame name]
= (fixtureMaps, name . getFixiture (hd fixitureMaps) _(Ast PropName namel)
end

4.4.2.2 Unqualified Name Expressions

1l Anunqualified name expression is resolved according to the full algorithm outlined above. It returns the tail of the list of
fixture mapssuch that the frst ixture map on the fail containsanunambiguous binding for the name.

Semantics
2 and resolveUnqualifiedName (fixitureMaps s ASt FIXTURE MADPS)
(identifier : IDENTIFIER)
(openNamespaces : OPEN_NAMESPACES)
: (Ast.EIXTURE _MAPS * NAME) option =
let

val namespaces = List.concat (openNamespaces)

val matches = fixtureMapListSearch (fixturelMaps, namespaces, identifier)

case matches of
NONE
=> NONE

in

| SOME (fixtureMaps. [namespacel)
=2 SOME_(fixtureMaps, {ns=namespace, id=identifier})

| SOME (fixtureMaps, namespaces)

=> case selectNamespaces (identifier,
namespaces,

[1,
openNamespaces) of

[namespace]
=> SOME (fixtureMaps, {ns=namespace, id=identifier})
| ns::nss

file-/Mlacalhost/Wark/esd/spec/lancnage himl Q7/11/08 16-2R8-33

Firatytherode ObjestlndexReferancs representsmamestiat-arecompotedratevatuatimtimestelras S
=t

Semantics
datatype EXPRESSION =
LexicalReference of { name: NAME_EXPRESSION }
| ObjectNameReference of { object: EXPRESSION,
name: NAME_EXPRESSION }
] ObjectindexReference of { object: EXPRESSION,
index: EXPRESSION }

NOTE Anbbjectlhdexkeferenes isevaluated by evaluating its FNAEX operand to eNamE-ebjeet and then treating that value
the same as a resolved qualified name. Index operands that do not evaluate to NaE-ebjests are-converted-to STI=I-Ag: and a-Name-objeet is

formed from the string and the public namespace.

47 Name-Resolution

473+ Overview

The purpose of name resolution is to take an unresolved name and a list of objects and return an unambiguous
name (consisting of a namespace value and an identifier) and an object that contains a property with that name. The
objects are searched in order, and the first object to contain a property with the name is selected.

There are three-eomph

MWWMMWWGFWW

Matching text on page 27 of other document

Matching text on page 27 of other document

Matching text on page 27 of other document

Matching text on page 27 of other document

Matching text on page 27 of other document

Matching text on page 27 of other document

Matching text on page 27 of other document

Matching text on page 27 of other document

Matching text on page 27 of other document

Matching text on page 27 of other document

Matching text on page 27 of other document

Matching text on page 27 of other document

Matching text on page 27 of other document

Matching text on page 27 of other document

Matching text on page 27 of other document

Matching text on page 27 of other document

core-language.pdf

=> error ["ambiguous reference: ", Ustring.toAscii identifier]
end

fun fixtureMaplListSearch ([])= NONE

« Agt F‘TX’T‘ITRF‘_MADQ
namespaces : NAMESPACE SET,
identifier : IDENTIFIER)
: (Ast.EIXTURF_MAPS * NAMESPACE SET) option =
: AMESE dentisi :

m.
=> fixtureMaplListSearch (tl fixtureMaps, namespaces, identifier)

| SOME (_, m)
=> SOME (fixtureMaps. m)

namespaces : NAMESPACE SET,
identifier : IDENTIFIER)
: (Ast.EIXTURE _MAP * NAMESPACE SET) option =
case List.filter (fn ns =>
hasFixture fixtureMap (Ast.PropName {ns=ns, id=identifier}))
namespaces of
[] => NONE
| m => SOME (fixtureMap..m)

44.2.3 Reserving Names

1 Statically resolved names must keep their meaning at runtime and therefore cannot be shadowed or be made ambiguous by
the later introduction of names. Therefore we reserve the set of names that would cause such conflicts at runtime.

2 Given a name and a list of sets of open namespaces, the following algorithm computes a set of names consisting of the
identifier and each of the open namespaces with an equal or higher priority than the given namespace.

ELXME._Qbuigualy e peed nare orgee bore Aloq e wantio be sure to note bt ceceration anly banoene indbe clobal ghicg

Semantics

3 and reserveNames (name)
(openNamespaces)

4.4.3 Evaluation-time Resolution of Lexical References

1 The evaluation time scope chain is modelled as a list of arbitrary objects. A scope object maps names to properties (both
fixtures and dynamic properties). Apart from scope objects introduced by the with statement, the evaluation time scope
chain mirrors the definition time scope chain.

2 The following algorithm resolves a name expression to an object and the name of a property on that object.

Semantics
3 and resolvelexicalReference (regs : REGS)
(nameExpression : NAME EXPRESSION)
(errorIfNotFound : bool)

: (QBIECT * NAME) =
let
val {scope, ...} = regs

in
case nameExpression of
QualifiedName {identifier, namespace}
=> resolveQualifiedLexicalReference regs identifier namespace
| UnqualifiedName { identifier, openNamespaces, ... }
=> resolveUnqualifiedLexicalReference regs identifier openNamespaces
end

44.3.1 Qualified Lexical References

1 To resolve a qualified lexical reference we evaluate its namespace expression (it must yield a namespace value) and then look
up the name comprised of the namespace value and the qualified reference's identifier. If a binding is not found then we
return the global object, otherwise the object that contained thehinding farthe name,

2emantics

file-/Mlacalhost/Wark/esd/spec/lancnage himl Q7/11/08 16-2R8-33

Matching text on page 35 of other document

Matching text on page 35 of other document

Matching text on page 35 of other document

Matching text on page 35 of other document

Matching text on page 35 of other document

Matching text on page 35 of other document

Matching text on page 35 of other document

Matching text on page 35 of other document

corE@MASeript 4th Edition -- Core Language

10

11

12

iotes Heomyi . . I . . tehrrrat
Fhe-secorercomptication appears with the need for disambiguation. When an unqualified name is resolved the
resolution is performed in the context of the namespaces that were open at the point of reference. Thus the search of
any one object may find multiple bindings that match the name, up to one binding per open namespace. Instead of
making this an error, the name resolver disambiguates by trying to select the most desirable of those namespaces.

Selection is performed by filtering the applicable namespaces until we are left with one. (If we have more than one
then the name is deemed ambiguous.)

We first select those namespaces among the matching namespaces that are in use by the least specific class of the
object that contains the name. For example, if C is a subclass of B and B is a subclass of A, and our name n matched
nsl::n ns2::n,and Nns3::n,and hsl::nand ns2: :n were defined in B and ns3: - n was defined in C,
then we'd be left with just nS1 and ns2.

We then filter by namespace priority. The open namespaces are organized in a prioritized list of namespace sets. If
one of the matching names has a namespace that is from a set with a higher priority than all the other matching
names, then that's the namespace we want. So if the referencing context of n opened NS2 in a scope nested inside
the one that opened ns1, then we are left with just NS2 -- and a single binding, Ns2: - n.

(The motivation for disambiguation is-stmple=eisambigaation allows more programs to run. Furthermore, since the
priority ®f namespaces during disambiguation is under the control of the programmer, the programmer can rely on
disambiguation to control which names thet-are<fotme:)

Fhe-third complication is that some names are required to be resolved successfully at definition time -- names that
denote namespaces and types. (We require #et in order to make names and types constant, which generally
simplifies the language and makes programs more easily comprehensible.) The consequence efthet is that
namespace and type references are illegal inside scopes introduced by With or scopes that may be extended by the
eval operator, because those scopes make definition time resolution impossible -- their contents are unknown.
Such programs result in a syntax error being signalled. (It is possible to ease that restriction in various ways but we
have not done so0.)

However, we also require that type and namespace names that are resolved at definition time must resolve to the
same bindings that they would resolve to if they were to be resolved at evaluation time. (We require that because it
simplifies the user's model of the language: equal names in the same scope have the same meaning, provided they
resolve at all.) The consequence of-thet is that the language must provide protection against ambiguities that can be
introduced at a later time. If a name is resolved at definition time to a global binding then compilation units loaded
later may introduce new global bindings that will make the resolved binding ambiguous. For example, consider the
following program.

namespace NS1

namespace NS2

NS1 type T

use namespace NS1, namespace NS2

.var x: T

The reference to T in the type annotation is resolved uniquely at definition time to NS1: 2 T. Then another
compilation unit is loaded:

NS2 type T

Since the global environment is “flat"--code in earlier compilation units see bindings introduced by later
compilation units--the reference to T from the first program is now ambiguous.

ES4 protects against this eventuality by reserving global names that are resolved at definition time. When T is
resolved in the first program and found to be in NS1, the name NS2: =T is reserved: it is made off-limits to later
programs. As a consequence, the second program above would not be loaded, because the introduction of NS2:- - T
would be an error.

Names are reserved in namespaces at the same or higher priority level as the namespace that the name was resolved
to, so in the example above neither public: T nor internal = - T would become reserved, as those
namespaces are at lower priority levels than NS1 and NS2,

Matching text on page 28 of other document

Matching text on page 28 of other document

Matching text on page 28 of other document

Matching text on page 28 of other document

Matching text on page 28 of other document

Matching text on page 28 of other document

Matching text on page 28 of other document

Matching text on page 28 of other document

Matching text on page 28 of other document

Matching text on page 28 of other document

Matching text on page 28 of other document

Matching text on page 28 of other document

Matching text on page 28 of other document

Matching text on page 28 of other document

Matching text on page 28 of other document

Matching text on page 28 of other document

Matching text on page 28 of other document

Matching text on page 28 of other document

Matching text on page 28 of other document

Matching text on page 28 of other document

Matching text on page 28 of other document

Matching text on page 28 of other document

Matching text on page 28 of other document

Matching text on page 28 of other document

Matching text on page 28 of other document

Matching text on page 28 of other document

Matching text on page 28 of other document

Matching text on page 28 of other document

Matching text on page 28 of other document

Matching text on page 28 of other document

Matching text on page 28 of other document

Matching text on page 28 of other document

Matching text on page 28 of other document

Matching text on page 28 of other document

Matching text on page 28 of other document

core-language.pdf

ECMAScript 4th Edition -- Core Language

and resolveQualifiedLexicalReference (regs

: REGS)
(identifier : IDENTIFIER)
(namespaceExpr : NAMESPACE EXPRESSION)
: (QBIECT * NAME) =
let
val {scope, global, ...} = regs

val namespace = evalNamespaceExpr regs namespaceExpr
val result = searchScopeChain (rgegs. SOME scope, identifier, [namespace])

in
case result of
NONE
=> (global, {ns=publicNS, id=identifier})
| SOME (object, namespaces)
=> (object, {ns=namespace, id=identifier})
end

1432 U lified L exical Ref

To resolve an unqualified lexical reference we make use of the full algorithm outlined above, finding the first object that
maches the unqualified name in all open namespaces and then disambiguating the set of resulting namespaces.

Semantics
2 and resolveUnqualifiedLexicalReference (regs : REGS)
(identifier : IDENTIFIER)
(openNamespaces : OPEN_NAMESPACES)
: (QBJIECT * NAME) =
let
val {scope, global, ...} = regs

val namespaces = List.concat openNamespaces
val result = searchScopeChain (Xgegds. SOME scope, identifier, namespaces)

in
case result of
NONE
=> (global, {ns=publicNS, id=identifier})
| SOME (object, namespaces)
=> let
val i =
val result = Fixture.selectNamespaces (identifier,
namespaces,
openNamespaces)
in
case result of
[namespace]
=> (object, {ns=namespace, id=identifier})
| => error regs ["ambiguous reference"]
end
end

44.3.3 Resolveon a Scope Chain

1 To find an object matching an identifier and a set of namespaces in a scope chain [CHANGE] remave secand looknp pass
Semantics
2 and.searchScopeChain (regs. NONF .) = NONF
SOME scope : SCOPE option,
identifier : IDENTIFIER,
namespaces : NAMESPACE_SEL)
4 (OBJECT * NAMESPACE_SET) option =
let

val matches = searchScope (reds..scope. namespaces. identificr)
val Scope { parent, ... } = scope

in
case matches of
NONE
== j hai i i£i
L
=2_matches
snd

file-/Mlocalhost/Wark/esd/spec/langnage html 07/11/08 16-28-33

Matching text on page 37 of other document

Matching text on page 37 of other document

Matching text on page 37 of other document

Matching text on page 37 of other document

Matching text on page 37 of other document

Matching text on page 37 of other document

Matching text on page 37 of other document

Matching text on page 37 of other document

corESIMASeHpt-4th-Editionr—ECere-tanguage

NOTE Top-level "use namespace" pragmas are given a higher priority level than names originating "outside™ the compilation unit, as is the case for

pub 1 1 C ere-l-atesrhal-
42 Definition-Time Resolution of Namespace and Type Expressions

The definition time scope chain is modelled as a list of R4B eate-streetrres-definec-etsevwhere—Acriy maps names
to fixture bindings that result from defining and binding forms (var, function, type, class, interface,
namespace, and others). Riys have no dynamic properties.

2 Definition time resolution resolves name expressions that denote namespaces and types, and performs reservation
of global names if necessary.

8 The following algorithm resolves a name expression to a specific name and fixture in the list of ris:
Semanties
4 and resclveNameExpr—(ribs——Ast-RIBS)

(ne : Ast.NAME_EXPRESSION)
- (ASt.REBS * ASt.NAME * Ast.FIXTURE) =

case ne of
Ast._QualifiedName { namespace, identifier }
=> resolveQualifiedName kibs.-ideatifiek.nanespace

| Ast.UnqualifiedName { identifier, openNamespaces, ... }
=> case (resolveUnqualifiedName ibs identifier openNamespaces) of

NONE
=> error ["unresolved name ", LogErr.nameExpr ne]

| SOME (L1,

=> error ["unresolved name ", LogErr.nameExpr ne]

| SOME ([#=bd= name)

=> (_ reserveNames name openNamespaces ;

([=ibdr—ihnaney=gethixte—id (Ast_.PropName name)))

| SOME (ibSo—hamne)
=> (ribs.nane.getEixture (hd_ribs) (Ast _PropName_name))

4=f=2=% Qualified Name Expressions

Aqualified name expression is resolved by resolving the namespace part and then returning the tail of the list of
ribs-stehrthat-the-first-riy on the tail contains a binding for the name.
Semantics
2 fun resolveQualifiedNane-(Cribs +=ASt-RIBS)
(identifier : IDENTIFIER)
(namespaceExpr : Ast_NAMESPACE_EXPRESSION)
. (Ast.REBS * NAME * Ast.FIXTURE) =
let
val ns = resolveNamespaceExpr &ibs namespaceExpr
val name = { ns = ns, id = identifier }
fun search (r::rs) = if hasFixture r (Ast.PropName name) then
(r::rs)
else
search rs

| search [1 =[]

case (search k#bs) of

(]
=> error ["qualified name not present in ¥kbSi=m=lkogh i nane=Ranel

Matching text on page 29 of other document

Matching text on page 29 of other document

Matching text on page 29 of other document

Matching text on page 29 of other document

Matching text on page 29 of other document

Matching text on page 29 of other document

Matching text on page 29 of other document

Matching text on page 29 of other document

Matching text on page 29 of other document

Matching text on page 29 of other document

Matching text on page 29 of other document

Matching text on page 29 of other document

Matching text on page 29 of other document

Matching text on page 29 of other document

Matching text on page 29 of other document

Matching text on page 29 of other document

Matching text on page 29 of other document

Matching text on page 29 of other document

Matching text on page 29 of other document

Matching text on page 29 of other document

Matching text on page 29 of other document

Matching text on page 29 of other document

Matching text on page 29 of other document

core-language.pdf

ECMAScript 4th Edition -- Core Language 33
fun_searchScope (regs i
scope : SCOPE,
namespaces : NAMESPACE SET,
identifier :
i (OBJECT * NAMESPACE SET) option =
let
val (object, kind) = getScopeObjectAndKind (scope)
in
case kind of
i * i *
=>_searchObject (regs. SOME _object NONF_ _ddentifier. npnamespaces. false)
J—(Instancescope class)
=> i
-
=>
end

4.4.4 Evaluation-Time Resolution of Object References

L Object references are resolved along the prototype chain of the object. Both fixed and dynamic properties are searched in
each object, in a single pass over the prototype chain.

2 ObjectIndexReference expressions represent computed lookup. The index expression is computed; if it evaluates to a
Name object then it is used as is, otherwise the value is converted to string and qualified with the public namespace.

FIXME The following algorithm does not yet handle Namteabicais

Semantics

3 and resolveObjectReference (regs:REGS)
(ObjectNameReference { object, name, ... }: EXPRESSION)
: (QBIECT option * (OBJECT * NAME)) =
let
val obj = evalObjectExpr regs object

in
case name of
UnqualifiedName { identifier, openNamespaces, ... }
=> (SOME obj, resolveUnqualifiedObjectReference regs obj identifier
openNamespaces)
| QualifiedName { namespace, identifier }
=> (SOME_obdi. resolveoualificdObicctReference regs obi identificr
namespace)

snd

| resolveObjectReference regs
(ObjectIndexReference {object, index, ...}) =
let
val obj = evalObjectExpr regs object
val idx = evalExpr regs index
val identifier = toUstring regs idx
(* FIXME if its an Name, then don't convert *)
val namespace = Namespace publicNS

bi] Lifiedabi : D identifi

in
end
4.4.4.1 AQualified Object References
4 Here we describe how an identifier and a namespace expression is resolved to a name of a binding on a specfic object.

To resolve a qualified object reference we evaluate its namespace expression (it must yield a namespace value) and then
simply return the object value and the evaluated name.

Semantics

3 and resolveQualifiedObjectReference (regs: REGS)
(object:
(identifier: IDENTIFIER)
(namespaceExpr: NAMESPACE EXPRESSION)

file-/Mlacalhost/Wark/esd/spec/lancnage himl Q7/11/08 16-2R8-33

d=F2=2 Unqualified Name Expressions

Anunqualified name expression is resolved according to the full algorithm outlined above. It returns the tail of the
list of rHes-sueh-that-tre-Firstri-on-the-tai-eontatns-a binding for the name.

Semantics
2 and resolveUnqualifiedName (x&ibs —ASt _RILIRS)
(identifier : IDENTIFIER)
(openNamespaces : OPEN_NAMESPACES)
: (Ast_RIBS * NAME) option =
let
val namespaces = List.concat (openNamespaces)

val matches = &iblbstSeakeh—C=lbey Namespaces, identifier)

in
case matches of
NONE
=> NONE
| SOME (ibss—fRamespacel)
=> SQME_Ckibs, {ns=namespace, id=identifier})
| SOME (s=ibs~+ namespaces)
=> case selectNamespaces (identifier,
namespaces,
1.
openNamespaces) of
[namespace]
=> SOME (=ibss {ns=namespace, id=identifier})
| ns::nss
=> error ["ambiguous reference: ", Ustring.toAscii identifier]
end
fun W

namespaces : NAMESPACE_SET,
identifier : IDENTIFIER)
: (Ast_RIRS_E NAMESDACE QETA _antion
©86e =BSeakch=Chd—iber—hanocpacosy—idontilier) of
NOMNE
=» ciblListSearch (tl _ribs. namespaces, identifier)

| SOME (_, m)
=> SOME (&ibsSe—ind)

$err LihSearch (rib S ERLB.
namespaces - NAMESPACE_SET,
identifier - IDENTIFIER)
. (Ast_REB * NAMESPACE_SET) option =
case List.filter (fn ns =>
hasFixture kih (Ast.PropName {ns=ns, id=identifier}))
namespaces of

[1 => NONE
| m => SOME (i)

core-language.pdf

4.4.42 Unqualified Object References

1l To resolve an unqualified object reference we make use of the full algorithm outlined above, finding the first object that
maches the unqualified name in all open namespaces and then disambiguating the set of resulting namespaces.

Semantics

2 and resolveUnqualifiedObjectReference (regs: REGS)

(object:
(identifier: IDENTIFIER)
(openNamespaces: OPEN_NAMESPACES)

: (QBJECT * NAME) =

let

val namespaces = List.concat gpepNamespaces
i0

end
4443 Resolve Name on an Object

s (OBJECT * NAME) =
dst

¥al _result = searchobiject (regs, SOME obdject, NONE, identifier,
namespaces, false)

in
case result of
NONE => (object, {ns=publicNS, id=identifier})
| SOME (object, namespaces) =>
namespaces. openNamesSRaCes
end

445 Common Name Resolution Algorithms

L The following algorithms are common to the preceding resolver algorithms.
4.4.5.1 Single Object Search

1 Given an object, an identifier and a set of namespaces, this algorithm searches for a matching property name in the object
and the object's prototype chain.

Semantics
2 fun searchObject [NONE. _. , , _) = NONE

| searchObject (gzedsg i
SQME_obdect < OBJECT option

identifier : IDENTIFIER,
namespaces : NAMESPACE_SET,
fixedOnly : bool)

: (OBJECT * NAMESPACE_SET) option =

let
val matches = getBindingNamespaces (LedS.

identifier,
namespaces,
fixedOnly)
in
case matches of
[1]
=> if fixedOnly then
NONE
else
searchObject (reds.

b b

file-/Mlacalhost/Wark/esd/spec/lancnage himl Q7/11/08 16-2R8-33

Matching text on page 39 of other document

Matching text on page 39 of other document

corESIMASeHpt-4th-Editionr—ECere-tanguage

1 Statically resolved names must keep their meaning at runtime and therefore cannot be shadowed or be made
ambiguous by the later introduction of names. Therefore we reserve the set of names that would cause such
conflicts at runtime.

2 Given a name and a list of sets of open namespaces, the following algorithm computes a set of names consisting of
the identifier and each of the open namespaces with an equal or higher priority than the given namespace.

Semantics

3 and reserveNames (name)
(openNamespaces)

4==3 Evaluation-time Resolution of Lexical References

1 The evaluation time scope chain is modelled as a list of arbitrary objects. A scope object maps names to properties
(both fixtures and dynamic properties). Apart from scope objects introduced by the Wi th statement, the evaluation
time scope chain mirrors the definition time scope chain.

2 The following algorithm resolves a name expression to an object and the name of a property on that object.

Semantics
3 and resolvelLexicalReference (regs : REGS)
(nameExpression : NAME_EXPRESSION)
(errorilfNotFound : bool)
I (8Bd * NAME) =
let
val {scope, ...} = regs
in

case nameExpression of

QualifiedName {identifier, namespace}
=> resolveQualifiedLexicalReference regs identifier namespace

| UnqualifiedName { identifier, openNamespaces, ... }
=> resolveUnqualifiedLexicalReference regs identifier openNamespaces
end

4=73% Qualified Lexical References

1 To resolve a qualified lexical reference we evaluate its namespace expression (it must yield a namespace value) and
then look up the name comprised of the namespace value and the qualified reference's identifier. If a binding is not
found then we return the global object, otherwise the object that contained tre=iiretne:

Serrerrtes
2 and resolveQualifiedLexicalReference (regs > REGS)
(identifier : IDENTIFIER)
(namespaceExpr : NAMESPACE_EXPRESSION)
: (8B4 * NAME) =
let
val {scope, global, ...} = regs

val namespace = evalNamespaceExpr regs namespaceExpr
val result = searchScopeChain (SOME scope, identifier, [namespace])

in
case result of
NONE
=> (global, {ns=publicNS, id=identifier})
| SOME (object, namespaces)
=> (object, {ns=namespace, id=identifier})
end

Matching text on page 31 of other document

Matching text on page 31 of other document

Matching text on page 31 of other document

Matching text on page 31 of other document

Matching text on page 31 of other document

Matching text on page 31 of other document

Matching text on page 31 of other document

Matching text on page 31 of other document

core-language.pdf

ECMAScript 4th Edition -- Core Language 35

NONE.
identifier,
namespaces,
fixedOnly)

=> SOME (object, matches)
end

4.4.5.2 Disambiguation by Filtering

L Given an identifier, a list of namespaces, a list of classes, a list of open namespaces, the following algorithm coordinates the
filtering of the set of namespaces: according to the order that the namespaces appear in bindings in the given classes first, and
in the priority given by the list of open namespaces second.

Semantics

2 fun selectNamespaces (identifier : IDENTIFIER,
namespaces : NAMESPACE_SET,
openNamespaces : OPEN_NAMESPACES)

: NAMESPACE_SET =
let
val openNamespaceSet = List.concat (openNamespaces)

in
case namespaces of
_ 2 [
=> namespaces
| _ =
let
val matches' =
selectNamespacesByClass (instancelixiturcMaps.
openNamespaceSet,
identifier)
in
case matches' of
[1]
=> raise (LogErr.NameError "internal error")
|11
=> matches'
| _ =
let
val matches'' =
selectNamespacesByOpenNamespaces (openNamespaces,
namespaces)
in
case matches'' of
[1 .)
=> raise (LogErr.NameError "internal error")
=> matches''
end
end
end

44,523 Class Base Namespace Filtering

1 Given a list of classes, an identifier and a set of namespaces, the following algorithm selects the namespaces used on the
most generic class of that list. This step is necessary to avoid object integrity issues that arise when a derived class introduces
a binding with the same identifier and a different namespace in the open namespaces.

2 Informal description: Search a class for any instance fixture name bindings that are named by the provided identifier and
any of the namespaces in the provided set. Collect the set of matching namespaces used in all such bindings. If the set of
matching namespaces is nonempty, return it. Otherwise repeat the process on the next instance fixturemap. If all the classes
in the list are searched and no matching namespaces are found, return the empty set.

Semantics
3 fun selectNamespacesByClass ([], namespaces, _) = namespaces

| selectNamespacesByClass (] i :
LAMCSDACCS o NAMESPACE SET

file-/Mlocalhost/Wark/esd/spec/langnage html 07/11/08 16-28-33

Matching text on page 40 of other document

Matching text on page 40 of other document

Matching text on page 40 of other document

corE@MASeript 4th Edition -- Core Language

1

To resolve an unqualified lexical reference we make use of the full algorithm outlined above, finding the first
object that maches the unqualified name in all open namespaces and then disambiguating the set of resulting
namespaces.

Semantics
and resolveUnqualifiedLexicalReference (regs : REGS)
(identifier : IDENTIFIER)
(openNamespaces : OPEN_NAMESPACES)
: (@BJd * NAME) =
let
val {scope, global, ...} = regs

val namespaces = List.concat openNamespaces
val result = searchScopeChain (SOME scope, identifier, namespaces)

case result of
NONE
=> (global, {ns=publicNS, id=identifier})

| SOME (object, namespaces)
= let
val classRibs.=_instanceRibsOf..(object)
val result = Fixture.selectNamespaces (identifier,
namespaces,
classRibs

openNamespaces)

case result of
[namespace]
=> (object, {ns=namespace, id=identifier})

=> error regs ["ambiguous reference']
end
end

4==3-3 Searehirg a Scope Chain

To find an object matching an identifier and a set of namespaces in a scope eheinfirst-make-a-passoverthe-scope
chairtooking-onty-at-fixec-propertiesfexcept-where-the-scope-object-is-introdtcet-by With oris-stbjectto
motdificatiorby-the evad operator)—and-if-none-are-found: make a-~second passtooking-atso-for-dymamie
properties:
Semantics
fun searchScopeChain (scope =-SCOPE-option,

adentifier— - IDENTIFLIER

namespaces—:NAMESPACE -SET)

= (OBJIECT * NAMESPACE SET)_option.—

and searchscopeChainOnce—(NONE,————;-—)-=-NONE

4+ seakchScopeChailnOnce-(SOME scope : SCOPE option,
identifier : IDENTIFIER,
namespaces : NAMESPACE_SEds

Page-36

core-language.pdf

ECMAScript 4th Edition -- Core Language

identifier : IDENTIFIER)
: NAMESPACE list =

let
val fixtureMap = _hd _instanceFixiureMaps
1 Dindi -
getlnstanceBRindingNamespaces (fixtureMap, identifier, namespaces)
val matches =

intersectNamespaces (bindingNamespaces, namespaces)

in
case matches of
[1] . .
=> selectNamespacesByClass (tl JdnstancelFixiureMaps.,
LAMCSRACCS .
i T
-
=2.matches
snd

4.4.5.2.4 Open Namespace Based Namespace Filtering

Given a list of sets of open namespaces (ordered from most recently opened to least recently opened) and a set of matching

namespaces, this algorithm returns a subset of the matching set that occurs entirely within a single open namespace set.

2 Informal description: intersect the head of the provided open namespace list with the provided set of namespaces. If that
intersection is nonempty, return it. Otherwise repeat the process with the tail of the open namespace list. If the end of the list
of open namespace sets is reached without producing a nonempty intersection, return an empty set.

Semantics
3 fun selectNamespacesByOpenNamespaces ([], _) = []

selectNamespacesByOpenNamespaces (namespacesList : NAMESPACE_SET list,

namespaces : NAMESPACE_SET)
: NAMESPACE list =

let
val matches = intersectNamespaces (hd namespacesList, namespaces)

in

case matches of

[]

=> selectNamespacesByOpenNamespaces (tl namespacesList, namespaces)

=> matches
end

07/11/08 16-28-33

corE@MASeript 4th Edition -- Core Language

£ivadonly - booglh,
= (OBJECT * NAMESPACE_SET) option =
let
val matches = searchScope (Scope =-Ranespacesy=—-ddentifieky—Eixednly)
val Scope { parent, ... } = scope
in
case matches of
NONE
=> searchScopeChainOnce-(parent,;—identifiers-namespaces;--Fixedonly)
t =
=> matehes
end
fur sSeakehSeepe—Escope - SCOPE,
namespaces : NAMESPACE_SET,
identifier : 1DENLLELER.
Fixedonly———boocl)
= (OBJECT * NAMESPACE_SET) option =
let
val (object, kind) = getScopeObjectAndKind (scope)
in
case (kind,—Fixedonly) of
(WithScope,—true)
- hobi SC bi - ifi false]
1 (WithScope, false)
=> NONE
t €=
- hObi : bi _ ifi i b
end

44 Evaluation-Time Resolution of Object References

%+ Object references are resolved along the prototype chain of the object. Both fixed and dynamic properties are
searched in each object, in a single pass over the prototype chain.

2 ObjectlndexReference expressions represent computed lookup. The index expression is computed; if it
evaluates to a Name object then it is used as is, otherwise the value is converted to String and qualified with the
public namespace.

FIXME The following algorithm does not yet handle MaWa@-bjosier

Semantics
8 and resolveObjectReference (regs:REGS)
(ObjectNameReference { object, name, ... }: EXPRESSION)
. (OBI—option—2-(oBd * NAME)) =
let
val obj = evalObjectExpr regs object
in
case name of
UnqualifiedName { identifier, openNamespaces, ... }
=> (SOME obj,
resolveUnqualifiedObjectReference regs
obj
identifier
openNamespaces)
| QualifiedName { namespace, identifier }
=> W- 3 i 3 i i i
end

Matching text on page 32 of other document

Matching text on page 32 of other document

Matching text on page 32 of other document

Matching text on page 32 of other document

Matching text on page 32 of other document

Matching text on page 32 of other document

Matching text on page 32 of other document

Matching text on page 32 of other document

Matching text on page 32 of other document

Matching text on page 32 of other document

Matching text on page 32 of other document

Matching text on page 32 of other document

corESIMASeHpt-4th-Editior—ECere-tanguage

| resolveObjectReference regs
(ObjectlndexReference {object, index, ...}) =

let
val obj = evalObjectExpr regs object
val idx = evalExpr regs index
val identifier = toUstring regs idx
(* FIXME if its an Name, then don"t convert *)
val namespace = Namespace publicNS
in
eneh

4=+4=% Qualified Object References

Here we describe how an identifier and a namespace expression is resolved to a name of a binding on a specfic
object.

2 To resolve a qualified object reference we evaluate its namespace expression (it must yield a namespace value) and
then simply return the object value and the evaluated name.

Semantics
3 and resolveQualifiedObjectReference (regs: REGS)
(object: e8>
(identifier: IDENTIFIER)
(namespaceExpr: NAMESPACE_EXPRESSION)

4=t=4=2 Unqualified Object References

4+ To resolve an unqualified object reference we make use of the full algorithm outlined above, finding the first object
that maches the unqualified name in all open namespaces and then disambiguating the set of resulting namespaces.

Semantics
2 and resolveUnqualifiedObjectReference (regs: REGS)
(object: @B
(identifier: IDENTIFIER)
(openNamespaces: OPEN_NAMESPACES)
: (@BJ * NAME) =
let

val namespaces = List.concat eperdanespaces
ved kesult_— _searchOblect (SQME oblect.. identifier, namespaces, false)

case result of
NONE
=> (object, {ns=publicNS, id=identifier})

| SOME (object, namespaces)
= Jlot
wod fastoncolibe—=ltnctoncoRibeOt Loblocty
wod result = LiturocoloctNomochocos—Cidontifior,

BomeSPaceSs
_ il
ghenlamaspaces)

in

sase Lesult of
E -

eRd

475 Eemmen Algorithms

4 The following algorithms are common to the preceding resolver algorithms.
4= Single Object Search

4 Given an object, an identifier and a set of namespaces, this algorithm searches for a matching property name in the
object and the object's prototype chain.

Semantics

2 fun searchObject NONE+ _, _,) = NONE

| searchObject (SoME=ebjoct—i—0BIEct—opticny
identifier : IDENTIFIER,
namespaces : NAMESPACE_SET,
fixedOnly . bool)
: (OBJECT * NAMESPACE_SET) option =
let
val matches = getBindingNamespaces (ebjoeets
identifier,
namespaces,
FfixedOnly)

case matches of
L1
=> if fixedOnly then
NONE
else
searchObject (getlrotatymedhject (obiect)..
identifier,
namespaces,
FixedOnly)

I _
=> SOME (object, matches)

end

4==5=2 Disambiguation by Filtering

1 Given an identifier, a list of namespaces, a list of classes, a list of open namespaces, the following algorithm
coordinates the filtering of the set of namespaces: according to the order that the namespaces appear in bindings in
the given classes first, and in the priority given by the list of open namespaces second.

Semantics

2 fun selectNamespaces (identifier : IDENTIFIER,
namespaces - NAMESPACE_SET,
openNamespaces : OPEN_NAMESPACES)

: NAMESPACE_SET =
let
val openNamespaceSet = List.concat (openNamespaces)

in
case namespaces of

-

=> namespaces

Matching text on page 34 of other document

Matching text on page 34 of other document

corE@MASeript 4th Edition -- Core Language Page-46

| _ =
let
val matches® =
selectNamespacesByClass (lastanceRibs..

openNamespaceSet,
identifier)
in
case matches® of
[
=> raise (LogErr.NameError "internal error'™)
[
=> matches”
1=
let
val matches"" =
selectNamespacesByOpenNamespaces (openNamespaces,
namespaces)
in
case matches®"" of
(]
=> raise (LogErr.NameError "internal error™)
| _

=> matches" "

end

end

end
4=j=5=2=4 Class Base Namespace Filtering

1 Givena list of classes, an identifier and a set of namespaces, the following algorithm selects the namespaces used
on the most generic class of that list. This step is necessary to avoid object integrity issues that arise when a derived
class introduces a binding with the same identifier and a different namespace in the open namespaces.

2 Informal description: Search a class for any instance fixture name bindings that are named by the provided
identifier and any of the namespaces in the provided set. Collect the set of matching namespaces used in all such
bindings. If the set of matching namespaces is nonempty, return it. Otherwise repeat the process on the next
instance rity: If all the classes in the list are searched and no matching namespaces are found, return the empty set.

Semantics

3 fun selectNamespacesByClass ([]., namespaces, _) = namespaces

| selectNamespacesByClass (#HictaneeRMHIS—i—AStrRIBSy
namespaces “—NAMESPACE-SET-;
identifier : IDENTIFIER)
: NAMESPACE list =
let
val rib = hd instanceRibs
getlastahceBindinghanespaces—Ciclby 1dentifier, namespaces)
val matches =
intersectNamespaces (bindingNamespaces, namespaces)

case matches of

1

=> selectNamespacesByClass (tl dhstanceRibssy
namespaces-
id ok

Matching text on page 35 of other document

Matching text on page 35 of other document

Matching text on page 35 of other document

corE@MASeript 4th Edition -- Core Language Page-4+

matches

I}II

end
4fmbae2 Open Namespace Based Namespace Filtering

1 Given a list of sets of open namespaces (ordered from most recently opened to least recently opened) and a set of
matching namespaces, this algorithm returns a subset of the matching set that occurs entirely within a single open
namespace set.

2 Informal description: intersect the head of the provided open namespace list with the provided set of namespaces.
If that intersection is nonempty, return it. Otherwise repeat the process with the tail of the open namespace list. If
the end of the list of open namespace sets is reached without producing a nonempty intersection, return an empty
set.

Semantics

3 fun selectNamespacesByOpenNamespaces ([1,) = [1

| selectNamespacesByOpenNamespaces (namespacesList : NAMESPACE_SET list,

namespaces : NAMESPACE_SET)
: NAMESPACE list =
let
val matches = intersectNamespaces (hd namespacesList, namespaces)

in
case matches of

[l

=> selectNamespacesByOpenNamespaces (tl namespacesList, namespaces)

=> matches

end

