
 

 

 

 

 

 

 

Ecma International   Rue du Rhône 114   CH-1204 Geneva   T/F: +41 22 849 6000/01   www.ecma-international.org 
 

PC             For Ecma use only  

 

 

 

 

Minutes of the: Ecma TC39, ES3.1WG 

held in: Phone conference 

on: 19 August 2008 

1 Roll call and logistics 

1.1 Participants 

Doug Crockford (Yahoo!), Pratap Lakshman (Microsoft), Mark Miller (Google), Adam Peller, 
(IBM), Sam Ruby (IBM) and Allen Wirfs-Brock (Microsoft) 

2 Agenda 

Decimal 

3 Minutes 

noSuchMethod  

this one came on the discuss list - should we formalize this ? - seems interesting - not enough 
time to pin down details - need to consider interactions with other features, security 
implications, etc. - the semantics can be realized through various means (the proposal being 
just one of them) - needs to considered in the context of other features in “Harmony” - will 
need to evaluate it from a future-friendliness perspective - will need to eventually be expressed 
using appropriate spec formalism - not for ES3.1; can wait until “Harmony”. 

Decimal  

‘===’ on decimal values should check for computational indistinguishability - ok, in that case 
what happens in a switch case ? switch uses ===, and if we have a case 1: and a case 1.0m:, 
then they are equivalent, and control shall go to whichever comes earlier textually ? - how 
about case use EQ ? - no, leave switch alone - should we just back out EQ then ? ‘===’ 
already special cases Number - computational indistinguishability is too valuable a property to 
loose - keep EQ for now.  

is it premature to introduce Decimal ? Its tentacles seem to be extending further and further - 
but, EQ was generalized independent of Decimal - not Decimal’s fault - we have already 
invested time in Decimal; lets see if we can see it through. 

No compelling reason to add Hash in ES3.1 (that maps to EQ). 

Mixed mode arithmetic should always be done as binary FP - limited precision (LP) vs 
unlimited precision (ULP) - which of these two implementations should ES3.1 have ? - what 
does 1/3 evaluate to in ULP ? - if there are no slippery-slope issues we should go with ULP - 
whatever decimal we add should be the last decimal we add - if we add LP, there will surely be 
a need for ULP - what are the usecases for ULP ? - crypto, for instance; need to check if ULP 
will address the requirements - perhaps we need to have separate types for those (like 
bigInterger or bigDecimal as in the case of Java). 

Meeting adjourned. 

Ecma/TC39/2008/077 

http://www.ecma-international.org/

