

Ecma International Rue du Rhône 114 CH-1204 Geneva T/F: +41 22 849 6000/01 www.ecma-international.org

Ecma/TC39/2008/079
Ecma/GA/2008/160

Minutes of the 1st meeting of Ecma TC39 Special group on Secure
ECMAScript held in Sunnyvale, CA, USA on 28 August 2008

Attending*: Mr. Tyler Close (HP), Mr. Douglas Crockford (Yahoo), Mr. David-Sarah

Hopwood (Network Security), Mr. Scott Isaacs (Microsoft), Mr. Collin
Jackson (Stanford), Mr. Marcel Laverdet (Facebook), Mr. Mark Miller
(Google), Mr. Chip Morningstar (Yahoo), Mr. John Neumann (Ecma
International) and Mr. Allen Wirfs-Brock (Microsoft).

By phone: Mr. Adam Peller (IBM), Mr. David Simmons (Microsoft) and Mr. Kris Zyp

(Sitepen).

1 Opening, welcome and roll call
All conference papers are at SES.JSON.ORG.and attached to this report by reference.

1.1 Opening of the meeting (Mr. Crockford)
1.2 Introduction of the attendees
1.3 Host facilities, local logistics

2 Adoption of the agenda (2008/070)
Agenda adopted

3 Terms of Reference and goals/objectives
Doug Crockford outlined in his introductory remarks the purpose and goals of the meeting (see
Introduction below).

4 Technical presentations
Douglas Crockford: Introduction, Problem, and Opportunity

Allen Wirfs-Brock: ES3.1 Object Methods

Marcel Laverdet: FBJS

Mark Miller: Caja, Cajita, and E

David-Sarah Hopwood: Jacaranda

Kris Zyp: dojox.secure (via phone)

Douglas Crockford: JSON, ADsafe, and Misty

5 Discussion and draft plan
The biggest problem to adoption and deployment of a new language is perception by browser
manufacturers that there is no problem that needs fixing. This will likely change in the future
when their current hot buttons are solved (i.e.: performance). The goal is to get rid of
programs that can cause mischief on the web.

There are advantages to taking multiple approaches as outlined in the introduction as it will
increase the likelihood that one or all will be accepted.

PCC For Ecma use only

2

The problem needs to be clearly articulated and agreed. Then statements of possible
solutions can be judged.

Mr. Neumann stated that the first step is to clearly define the problem. To that end,
participants are invited to submit a contribution on this topic for the next meeting, particularly
those who gave presentations on proposed solutions. The intent will be to delineate the issues
surrounding security at the next meeting.

6 Any other business
None

7 Date and place of the next meeting(s)
The next meeting will be held in conjunction with the TC39 November meeting (November 18 –
Hawaii)

8 Closure
The meeting ended at 5:45 PM

ECMAScript
Name Subject To Change

Douglas Crockford
Yahoo!

The purpose of this workshop
is to consider the feasibility
and necessity of a secure

replacement for ECMAScript.

Security is our Number One
Problem

All websites are under attack.

Progress is being frustrated.

Mash Up We Must!

Three Possible Solutions

• Safe JavaScript Subset.
Timeframe: Immediate

• Communicating Vats.
Timeframe: Intermediate

• Secure Programming Language.
Timeframe: Distant

• All of the Above.

Safe JavaScript Subset

• Constrain the existing language by code
rewriting and runtime repression or by
static validation.

• The constrained language limits the
capabilities that are given by default to a
program.

• Good examples may inform the design of
Ses.

• It may be good to derive a standard, but
that is not the goal of this meeting.

Vats

• Secure containers for computation.

• Constrained intervat communication.

• First steps: Google's Gears Workerpools;
durable <iframe>, XDM.

• Ultimately, transmission of capabilities,
futures, distributed garbage collection.

• This is out of scope for today's meeting.

A New Language

• Similar, but not compatible.

• Retain the goodness of ECMAScript.

• Replace, repair, or remove the bad parts.

• JavaScript got a lot right.

• Minimize retraining.

• Capture programmers, not programs.

Goals

• A computation model that allows for
cooperation under mutual suspicion.

• As simple as possible. Simple systems are
easier to reason about.

• Approachable. The language must be
usable by ordinary web developers.

• Unsurprising. Not freaky.

• Avoid confusion, difficulty, unmanagability.

Confusion of Interest

Computer

System Mode

Confusion of Interest

System

System Mode

User

Confusion of Interest

System

System Mode

User User User

Confusion of Interest

CP/M MS-DOS MacOS Windows

System Mode

Confusion of Interest

CP/M MS-DOS MacOS Windows

System Mode
The System cannot distinguish the

interest of the user from the interest of
any program. This enables floppy-borne

viruses.

Confusion of Interest

CP/M MS-DOS MacOS Windows

System Mode

When networking is introduced, network-
borne viruses are enabled.

User

Confusion of Interest

Browser

System Mode

Site Site Site

The browser is a significant improvement,
able to distinguish the interests of users

and sites in some cases.

But within a page,
interests are confused.

An ad or a widget or an Ajax
library gets the same rights as the

site's own scripts.

JavaScript got close
to getting it right.

Except for the Global Object.

It can be repaired, becoming an
object capability language.

An Introduction to
Object Capabilities

A is an Object.

Object A has
state and
behavior.

Object A has a
reference to

Object B.
An object can have
references to other

objects.

has-a

...because it has
a reference to

Object B.

Object A can
communicate

with Object B...

Object B
provides an

interface that
constrains

access to its
own state and

references.

Object A does not get access
to Object B's innards.

Object A does not have a reference to
Object C, so Object A cannot
communicate with Object C.

In an Object Capability
System, an object can
only communicate with

objects that it has
references to.

An Object Capability System is
produced by constraining the

ways that references are
obtained.

A reference cannot be obtained
simply by knowing the name of a
global variable or a public class.

There are exactly three ways to
obtain a reference.

1. By Creation.

2. By Construction.

3. By Introduction.

1. By Creation

If a function creates an object, it
gets a reference to that object.

2. By Construction

An object may be endowed by its constructor
with references.

This can include references in the
constructor's context and inherited references.

3. By Introduction
A has a references to B and C.
B has no references, so it cannot communicate with A or C.
C has no references, so it cannot communicate with A or B.

3. By Introduction

A calls B, passing a reference to C.

3. By Introduction

B is now able to communicate with C.

It has the capability.

If references can only be
obtained by Creation,

Construction, or Introduction,
then you may have a safe

system.

If references can be
obtained in any other
way, you do not have

a safe system.

Potential weaknesses include

1. Arrogation.

2. Corruption.

3. Confusion.

4. Collusion.

1. Arrogation

• To take or claim for oneself without right.

• Global variables.

• public static variables.

• Standard libraries that grant powerful
capabilities like access to the file system
or the network or the operating system to
all programs.

• Address generation.

2. Corruption

It should not be possible to tamper
with or circumvent the system or

other objects.

3. Confusion

It should be possible to create
objects that are not subject to

confusion. A confused object can
be tricked into misusing its

capabilities.

4. Collusion

• It must not be possible for two objects to
communicate until they are introduced.

• If two independent objects can collude,
they might be able to pool their capabilities
to cause harm.

• For example, I can give gasoline to one
object, and matches to another. I need to
be confident that they cannot collude.

Rights Attenuation

• Some capabilities are too dangerous to
give to guest code.

• We can instead give those capabilities to
intermediate objects that will constrain the
power.

• For example, an intermediate object for a
file system might limit access to a
particular device or directory, or limit the
size of files, or the number of files, or the
longevity of files, or the types of files.

Ultimately, every object should
be given exactly the capabilities it

needs to do its work.

Capabilities should be granted on a
need-to-do basis.

Information Hiding - Capability Hiding.

Intermediate objects, or facets,
can be very light weight.

Class-free languages can be
especially effective.

Guest

DangerousFacet

The Facet object
limits the Guest

object's access to the
Dangerous object.

The Guest object
cannot tamper with
the Facet to get a
direct reference to

the Dangerous
object.

References are not revocable.

Once you introduce an object, you
can't ask it to forget it.

You can ask, but you should not
depend on your request being

honored.

The Guest object has a
reference to an Agency
object. The Guest asks
for an introduction to

the Dangerous object.

The Agency object makes a Facet,
and gives it to the Guest.

The Facet might be a simple pass
through.

When the Agency wants to revoke
the capability, it tells the Facet to

forget its capability.

The Facet is now useless to the Guest.

A Facet can mark requests so that
the Dangerous object can know
where the request came from.

Facets

• Very expressive.

• Easy to construct.

• Lightweight.

• Power Reduction.

• Revocation.

• Notification.

• Delegation.

• The best OO patterns are also capability
patterns

Good Object Capability
Design

is
Good Object Oriented Design

Secure ECMAScript Must Be
Incompatible With ES3

• If it were compatible, it would share the
weaknesses of ES3.

• Incompatibility gives us license to correct
many of the problems that ES3.1 must
preserve.

• Lacking compatibility in the design process
could lead to a lack of feature discipline.

Minimal

• An elegant, minimal language is easier to
reason about than an over-featured,
maximal language.

• Committees are generally unable to
produce minimal designs.

• We should avoid a Design-by-committee.

Competition

• We invite members to submit designs.

• We drafts rules for the competition, and
select a winner based on the criteria of
security, expressiveness, and minimalism.

• Over several rounds of evaluation and
influence, we may find either a clear
winner or convergence on an ideal
approach.

Review of Current Work

• ES3.1

• FBJS

• Caja, Cajita (and E)

• Jacaranda

• dojox.secure

• JSON, ADsafe (and Misty)

ECMAScript 3.1 Object Model

Allen Wirfs‐Brock

Microsoft

Value
Attributes

(ReadOnly,DontEnum,DontDelete)
Property
Name

[[Prototype]] Various internal properties.

"foo"

“2"

“1"

42.0

undefined

" doWork"

An Object

ECMAScript 3 Object Model

1

An Object

A Function
(closure)

Value
Attributes

(ReadOnly,DontEnum,DontDelete)
Property
Name

[[Prototype]] Various internal properties.

" constructor" DontEnum

" toString" DontEnum

A Prototype Object

" 1"

" prototype"

Value
Attributes

(ReadOnly,DontEnum,DontDelete)
Property
Name

[[Prototype]] Various internal properties.

ReadOnbly,DontEnum,DontDelete" length"

ReadOnbly,DontEnum,DontDelete

A Constructor Function

ES3.1 Object Model Changes

• Rename/repurpose attributes
– ReadOnly→ Writable
– DontEnum ‐> Enumerable
– DontDelete ‐> Configurable

• Attribute values are programmatically settable
and testable

• An object may be programmatically marked as
“nonExtensible” (properties may not be added)

• Accessor Properties (getter/setter)

Configurable Attribute
• The [[configurable]] attribute of a property controls

whether the definition of an attribute can be
programmatically changed:
– Delete the attribute
– Change the state of a property attribute: writable, enumerable,

configurable
– Change/delete the getter and/or setter function of an accessor

property.
– Convert a data property to an accessor property or visa versa.

• If Configurable attribute is false for a property
– None of the above can occur
– Writable can be change from true to false

Manipulating Properties and Attributes

• “Static” functions accessed via Object constructor
– Object.defineProperty(obj, propName, propDescriptor)

– Define a property:
Object.defineProperty(o, “length”, {

getter: function() {return this.computeLength()},
setter: function(value){this.changeLength(value)} });

Object.defineProperty(o, “1”, {value: 1,
enumerable: true, configurable: true});

– Modify property attributes
Object.defineProperty(Array.prototype, “forEach”,

{enumerable: false, writable:false, configurable: false});

Retrieving a Property Definition

– Object.getOwnPropertyDescriptor (obj, propName)

var desc = Object. getOwnPropertyDescriptor(o, “length));

– Return value isdescriptor with data properties
• value, writeable, enumerable, configurable

or

• getter, setter, enumerable, configurable

– Return value is usable as 3rd argument to Object.defineProperty

Object Lock‐down

• Prevent adding properties to an object
– Object.preventExtensions(obj)

• Prevent adding or reconfiguring properties
– Object.seal(obj)

• Prevent adding, reconfiguring, modify the value of
properties
– Object.freeze(obj)

Other Object Meta Methods

• Object.defineProperties(obj, propName, descriptorSet)

• Object.create(protoObj, descriptorSet);

• Object.getOwnPropertyNames(obj)

• Object.getPrototypeOf(obj)

• Object.isExtensible(obj)

• Object.isSealed(obj)

• Object.isFrozen(obj)

Example

// a Point “class”.

function Point(x, y) {

const self = Object.create(Point.prototype, {

toString: {value: Object.freeze(function() {

return '<' + self.getX() + ',' + self.getY() + '>')}},

enumerable: true},

getX: {value: Object.freeze(function() {return x}),

enumerable: true},

getY: {value: Object.freeze(function() {return y}),

enumerable: true}

});

return self;

}

Example
//Point as a non‐final non‐abstract root/mixin class where toString is a final method:

function PointMixin(self, x, y) {

Object.defineProperties(self, {

toString: {value: Object.freeze(function() { return'<' + self.getX() + ',' + self.getY() + '>')}},

enumerable: true},

getX: {value: Object.freeze(function() {return x}),

enumerable: true, flexible: true},

getY: {value: Object.freeze(function() {return y}),

enumerable: true, flexible: true}

});

}

function Point(x, y) {

const self = Object.create(Point.prototype); // only for instanceof

PointMixin(self, x, y);

return Object.freeze(self);

}

Object.freeze(PointMixin);

Object.freeze(Point.prototype);

Object.freeze(Point);

FBJS

A brief overview

marcel laverdet

Presenter
Presentation Notes
FBJS is Facebook’s sandbox implementation. It’s not the best it could be, but it works.

Goals

• Allow application developers to create
rich applications on Facebook.

• Don’t endanger our user’s privacy.

Presenter
Presentation Notes
The goals are simple.
Application developers want to write Javascript
And we don’t want to endanger our user’s privacy

Features

• Large subset of ECMA-262… except
– eval() and with(){}
– Prototypes of native objects [Objects, Array,

Number, etc]
– Several undocumented quirks

• DOM manipulation
– Non-standard getters: getChildNodes,

getFirstChild, setValue, etc. Most DOM attributes
are supported in some fashion.

– innerFBML, innerXHTML

Presenter
Presentation Notes
FBJS has a fairly reasonable set of features at this time. It’s mostly ECMA262-compliant except for a few things
eval and with are difficult to sanitize so we remove them.
Global objects are also tricky to implement.
Most of these limitations are imposed by the rudimentary rewritter currently in use. It is not a parser, it is a lexer… but more on that later
innerFBML and innerXHTML are non-standard properties. innerFBML takes an opaque string returned by AJAX and inserts it into the DOM. innerXHTML uses DOMParser (and Microsoft’s proprietary version) to wrap DOM creation. It’s simply a convenience wrapper to help developers who are used to innerHTML.

Features

• Facebook-specific host objects
– Ajax (XMLHttpRequest wrapper)

• Capable of returning blessed FBML strings
• Breaks same origin policies

– Animation
– Dialog

• Capable of extending an application’s DOM
authority

Presenter
Presentation Notes
We also implement a few Facebook-sepcific host objects.
All AJAX requests must go through our Ajax object. There is not an XMLHttpRequest object available. Requests are proxied through Facebook to allow the developer to receive blessed FBML strings, but this is optional. We break same-origin policies here, but implement destination restrictions in the proxy, so you can’t use Facebook as a free proxy. Non-proxied cross-domain requests are implemented with a Flash bridge and follow crossdomain.xml rules.
I’ll talk more about the Dialog object in a moment

DOM Authority

• Applications are granted authority to
entire DOM branches
– There are exceptions -- opaque nodes

• Host objects may grant authority to
more branches.

Presenter
Presentation Notes
- In FBJS there’s a concept of DOM authority. Basically applications are granted authority over certain pieces of the DOM and they must be restricted to those sections.

Presenter
Presentation Notes
This is a canvas page. Canvas pages are essentially an application’s home. The application is granted authority over most of the DOM. *click*
Anything in the highlighted area is under the influence of the application.

Presenter
Presentation Notes
Even though an application is granted authority over a branch of the DOM, there may be subnodes that contain information that the application is not allowed to see. *click*
These are opaque nodes. They show up to the developer as a single node even though they may contain children. You can clone them, move them, remove them, but they will retain their opaqueness. In this case the source of these images is privileged so we turn them into opaque nodes.

Presenter
Presentation Notes
There may be times where more than one application is present in a document instance. *click x3* Each application has a distinct environment and may not communicate with the applications around it.
Graffiti shouldn’t know what music I like and Last.fm shouldn’t know which Disney princess I am.

Presenter
Presentation Notes
Host objects may also grant authority over more DOM branches. In this case if I hit the “Play video” anchor, the application will invoke the Dialog object which creates a Facebook-sanctioned dialog in the browser.

Presenter
Presentation Notes
This dialog is a separate branch of the global DOM that the application now has authority over. *click* They may also invoke public methods on the Dialog class in order to add buttons or change the title of this Dialog.
I think this dialog was supposed to play a video but I had flash disabled or something when I took this screenshot.

Entry Points

• Canvas pages may execute Javascript
onDOMReady

• FBJS embedded on a profile must
receive an “active” DOM event before
being activated

Presenter
Presentation Notes
Canvas pages are owned by the application developer so they’re allowed to execute Javascript ondomready. This opens us up to an attack where a developer is capable of denial of service attacking the user’s browser, however this would present little payoff to the developer.
A denial of service attack on a profile may be a little more desirable, so it’s a concern. It’s infeasible to unambiguously detect or prevent browser DoS attacks, so we must do our best to defer them on pages not owned by applications. An application is not granted an entry point until a node under the application’s authority receives an active event. An active event is defined as onclick, onmousedown, onfocus, and so on, essentially anything a user won’t unwittingly trigger. Conversly a passive event is defined as onmouseover, onmouseout, and so on. After an application receives a single active event, they will be allowed to process passive events.

Implementation

• Lexer [not a parser :(]
– Namespaces identifiers by using a unique

application id
• Statically removes known evils:

– constructor, caller, __proto__, __parent__,
etc

• Run-time which also imposes the static
limitations

Presenter
Presentation Notes
I won’t go too much into implementation details as it’s not within the scope of this workshop, but here’s a little bit of insight…
It’s based around a Javascript lexer. It is not a full parser. This is what imposes many of the limitations of FBJS.
It uses the application’s id to namespace all identifiers into a virtual scope.
The FBJS run-time catches dynamic property access, makes sure the `this` pointer doesn’t reference the global object, and so on.

What We Don’t Address

• Communication between applications
• Information leakage: img.src, Ajax

(XMLHttpRequest)
• Method stealing, and mutability

Presenter
Presentation Notes
What we don’t address…
Applications may not communicate within the context of FBJS. This is simply not desierable for us. On Facebook multiple application contexts only exist on profiles, and profile boxes aren’t very interactive anyway.
Worth mentioning is that any information, with the exception of opaque nodes, that enters an application’s context should be considered exposed. There exists no way to taint an identifier as privileged and usable only for client-side processing and processing.
Any object that an FBJS application has a reference to may be mutated and no properties are considered private. Host objects are implemented with defensive coding practices, and a separate private variable data store that is not referenced from within the object.

The Future

• Secure and implicit getters and setters --
getParentNode is cumbersome

• Browser eccentricities be gone!
• Allow simulated mutability of native objects
• `eval(str)` and `new Function(str)` under

controlled circumstances
• Selected features from future iterations of

Javascript

Presenter
Presentation Notes
So obviously there’s a lot of room for improvement in FBJS. While building it we weren’t even sure if it would work, we just wanted to try it out without putting a lot of time in.
In the next iteration of FBJS we’re scrapping the old lexer in favor of abstract syntax tree mutation. This will break down all the walls around FBJS at this time.
We’re building implicit getters and setters which will allow us to implement standard DOM manipulation.
Since all DOM access is going through our wrappers anyway we want to simulate a utopian standards-compliant browser. All browser quirks that can be unambiguously translated into a standard will be fixed.
Each application will have a simulated copy of the native objects and they’ll be allowed to invoke all kinds of inheritance abominations if they so please.
In order to improve compatibility with existing libraries we want to open up eval and the function constructor where it is reasonable to do so. We will attempt to parse any data proxied over XMLHttpRequest as FBJS. If the parse is successful they’ll get back a blessed string that is capable of being eval’d. If eval receives a non-blessed string we will attempt to run JSON.parse on it and return the result. If all that fails then we’ll just throw a SyntaxError.
There are several useful features being added to Javascript and we have the ability to expose these to developers. Among these are userland getters and setters, access to the internal DontEnum flag via propertyIsEnumerable, JSON.parse and JSON.stringify. We want to implement new features to spec based on their feasibility and usefulness for developers.

Thanks

Presenter
Presentation Notes
Any questions?

When Two Languages Are
Simpler Than One

Lessons for SES from
Cajita, Original-Caja, and Valija

Mark S. Miller

Simultaneous Problems

D = Defensive code problem
O = Offensive code problem
T = Legacy tools problem
C = Legacy code problem

Simultaneous Solution?

D = Defensive code problem
O = Offensive code problem
T = Legacy tools problem
C = Legacy code problem

Original-Caja dOTc Secure Linux/Windows
Cajita DOT Secure microkernel OS

Don’t try this at home (or at all)

D = Defensive code problem
O = Offensive code problem
T = Legacy tools problem
C = Legacy code problem

Original-Caja dOTc Secure Linux/Windows
Cajita DOT Secure microkernel OS

Separate Solutions

D = Defensive code problem
O = Offensive code problem
T = Legacy tools problem
C = Legacy code problem

Cajita DOT Secure microkernel OS
Valija OTC Virtual Machine

Layered Solutions

D = Defensive code problem
O = Offensive code problem
T = Legacy tools problem
C = Legacy code problem
V = Virtualizability problem

Cajita* DOT V Secure microkernel OS
Valija OTC Virtual Machine

+ Valija on Cajita DOTCV VMM + policy glue logic

Lessons for SES

D = Defensive code problem
O = Offensive code problem
T = Legacy tools problem
C = Legacy code problem
V = Virtualizability problem

SES DOT V Secure microkernel OS
~Harmony-strict OTC Virtual Machine

+ Safer scripting DOTCV VMM + policy glue logic

Proposed SES Goals

SES is smallest secure subset of ~Harmony-
strict without loss of functionality.
SES is a good target for a multiply
instantiable embedding of ~Harmony-strict.

SES DOT V Secure microkernel OS
~Harmony-strict OTC Virtual Machine

+ Safer scripting DOTCV VMM + policy glue logic

Questions?

Freeze Primordials

Hide Sharp Objects = Cajita

Cajita + Implementation

Replace with per-gadget toy knives

Valija on Cajita Impl

Valija Impl on Cajita Impl

Jacaranda – language properties

• Statically verifiable subset of bug-fixed ES3.
• Object-capability language with strongly

encapsulated objects.
• Methods can use this, no need for closure-

based encapsulation.
• Strict lexical scoping (including this).
• Goals are “DOTCV” in MarkM’s terminology
• or “DOTCV” with a refactoring tool.

Specification approach

• Attribute the existing ES3 grammar.
• Attributes are computed bottom-up (see spec

introduction for advantages).
• If top-level ‘errors’ attribute is non-empty, reject,

otherwise run as ES3 code.
• Attribute rules are an executable specification.
• This approach may be applicable to other Secure

ECMAScript proposals, with some adaptation.

Disclaimer

• Can’t possibly cover all details in this
presentation.

• There are many details.
• The spec has detailed rationales for most of

them.

Unshadowable names

• Make implicitly imported names (Array,
String etc.) and names starting with $
unshadowable.

• Now the spec can assume that specific $
functions are provided by the Jacaranda
library.

• Simplifies other restrictions by providing
somewhere to stand.

GetValue problem

• obj.foo yields a “Reference”[[obj, obj#foo]]
• [[obj, obj#foo]](x) = obj.foo(x)
• OK so far.
• But var x = [[obj, obj#foo]] gives x =

obj#foo.
• Then obj#foo(x) = [[global, obj#foo]](x)

What happened?

• We implicitly threw away information.
• We broke substitutability.
• We broke preservation of authority

(reference to global came from nowhere).
• We broke object encapsulation (even when

global object is not accessed).

$get
• $get(obj, ‘foo’) = (obj#foo).bind(obj), when

obj#foo is a function.
• No loss of expressiveness.
• Can do automated translation of ‘.’ and ‘[]’ to $get

(works for programs that weren’t relying on the
broken ‘this’ semantics).

• Closures are not memoized (see rationale in spec).
• But still ugly and inefficient (no inlining =>

function calls are expensive).

Short-term fix (oversimplified)

• Expressions have “classes”.
• Result of property access is 2nd-class.
• GetValue degrades 2nd-class to 3rd-class.
• Can’t call a 3rd-class expression.
• Variables can only hold values of 1st-class

expressions.
• Some operations produce 1st-class (or stronger)

results regardless of their argument.
• Can chain property accesses or calls without

problems.

Words of wisdom from R5RS

“Programming languages should be designed not
by piling feature on top of feature, but by
removing the weaknesses and restrictions that
make additional features appear necessary.
Scheme demonstrates that a very small number of
rules for forming expressions, with no restrictions
on how they are composed, suffice to form a
practical and efficient programming language that
is flexible enough to support most of the major
programming paradigms in use today.”

Words of wisdom from R5RS

“Programming languages should be designed not
by piling feature on top of feature, but by
removing the weaknesses and restrictions that
make additional features appear necessary.
Scheme demonstrates that a very small number of
rules for forming expressions, with no restrictions
on how they are composed, suffice to form a
practical and efficient programming language that
is flexible enough to support most of the major
programming paradigms in use today.”

• Oops.

Long-term fix

• DependOnNewSemantics = true
• Make ‘.’ and ‘[]’ work like $get.
• Was already proposed for ES4.
• Must be opt-in to avoid breaking existing

code.
• Result of property access is 1st-class.
• No other specification changes needed

Support both

• So might as well specify both fixes:
• Short-term: $module(…)
• Long-term: $newmodule(…)

Object encapsulation
• Now ‘this’ behaves sensibly in the subset,

and we can use it to create protected objects
as in Original-Caja, but without rewriting.

• Properties starting or ending with _ are
protected.

• Protected properties can only be read via
this.

• No properties can be directly written.
• No other restrictions on calling functions.

Expressiveness problem

• ‘this’ is not in scope in nested functions
• Allow ‘const thisFoo = this;’,

then allow protected accesses via thisFoo.

Exposed properties
• Problem: can’t allow [] syntax because it might

access a non-public property, or it might access a
public property that is a function referring to this.

• But some expressions are guaranteed to be
numbers.

• Allow foo[numeric_expression].
• Would like to allow ‘+’ expressions, but it also

operates on strings.
• Exposed (0th-class) properties are always public,

and cannot hold functions that refer to this (can
relax that for modules using NewSemantics).

Modules
• $module(… blah … {

name: ‘Foo’,
imports: [‘YAHOO’],
powerbox: function (powersource, m) {
…
m.start();

},
start: function() { YAHOO.xyzzy();}

}…);

Modules (continued)

• $makeCaplet(‘Foo’, environment, powersource)
• Jacaranda itself doesn’t say anything about

what environment and powersource should
be granted.

• It’s sufficient that we can’t instantiate a
module with authority that we didn’t have.

• Can build a more sophisticated module
system on top of this in Jacaranda code.

Preventing access to globals

• Freely used identifiers must be listed in
module imports.

• Then can use ‘with’ to run module code
with a given set of imports (depends on
‘with’ being essentially lexically scoped).

Other rules – Lexical

• Limit valid code units to intersection of current
implementations.

• Don’t allow Jscript and Venkman extensions using
comments.

• Treat /*const*/ and /*fallthru*/ as tokens.
• No \v escape.
• <= 20 significant digits in decimal literals.
• No regexp literals.
• No semicolon insertion.

Other rules – Syntactic
• Const variables cannot be assigned to (can spell ‘const’ as

‘/*const*/ var’ for compatibility).
• Imports cannot be assigned to.
• Break/continue statements (labelled and unlabelled) must be used

correctly.
• No named function expressions (too inconsistent between

implementations).
• Some property names are “inaccessible” (similar to ADsafe blacklist) –

cannot be accessed or overridden.
• Some identifiers are reserved (mainly for forward compatibility with

ES-Harmony).
• Identifiers must be US-ASCII.
• This-variables must be initialised to ‘this’.
• Variables must not be multiply declared in a function body. (Would

like to specify block lexical scoping, but not compatible with ES3.)
• Probably missed some – see spec.

ES3F (if time permits)
• Mozilla and ES3.1 errata
• Add ‘const’
• Add ‘useNewSemantics’ to opt-in to new GetValue.
• Unicode 5.1
• Limit implementation-defined behaviour of internal

methods on reachable objects.
• [[DefaultValue]] bugfix
• Add Array.prototype and Date methods
• No undefined behaviour
• Make functions as opaque as possible
• Restrictions on extensions (don’t allow extra visible

properties on reachable objects).

Is Jacaranda practical?

• Probably too complicated in its current
form.

• But demonstrates that an object-capability
language subset that includes this is
possible using only static verification.

• ES3.1/Harmony changes could make it
practical.

Dojo Secure

Kris Zyp

Copyright SitePen, Inc. 2008. All Rights Reserved

http://www.sitepen.com/blog/2008/08/01/secure-mashups-with-dojoxsecure/

Dojo Secure

•Full framework for loading, validating, and providing a
safe set of library functions and safe access to the
DOM.
•Provides loading registry with different loading

mechanisms
•Uses ADsafe style language constraints
•Provides |this| within class constructors

Copyright SitePen, Inc. 2008. All Rights Reserved

Dojo Secure

•Provides access to the DOM (a facade), with the
standard API, that is restricted

•Provides a library API (with no namespacing, no
need in a global-less environment)

• All on the client side in JavaScript
• Full framework: loading, validation, and DOM

sandboxing

Copyright SitePen, Inc. 2008. All Rights Reserved

http://adsafe.org

ADsafe

•Disables features in JavaScript that prevent
containment/sandboxing
•Global variables
• [index], this, ==, !=
•Properties:

• apply,call,callee,caller,constructor,eval,
prototype,this,unwatch,valueOf,watch, and
anything starting with _

•with, eval

Copyright SitePen, Inc. 2008. All Rights Reserved

Dojo Secure differences from ADsafe

• |this| is allowed in Class method bodies
•Statically validated
•Dynamically bound methods

•Names ending with __
•Due to VBScript usage

Copyright SitePen, Inc. 2008. All Rights Reserved

Demo/Test Page

•Easy to test validation
• Load pages and scripts

http://www.sitepen.com/labs/code/secure/dojox/secure/tests/load.html

Copyright SitePen, Inc. 2008. All Rights Reserved

Dojo Secure

Copyright SitePen, Inc. 2008. All Rights Reserved

JSON,
ADsafe,
and Misty

Douglas Crockford
Yahoo!

JSON was the first safe subset

It starts with JavaScript array
literals and object literals, and

removes all behavior, yielding a
convenient data format.

http://www.JSON.org/

ADsafe

A system for safe web advertising.

http://www.ADsafe.org/

Static validation only,
no code rewriting.

No impact on performance.

JSLint is an ADsafe validator.

ADsafe
• ADsafe is a JavaScript subset that adds

capability discipline by deleting features that
cause capability leakage.

• No global variables or functions may be defined.
• No global variables or functions can be

accessed except the ADSAFE object.
• Use of the [] subscript operator is limited.
• These words cannot be used: apply
arguments call callee caller
constructor eval prototype unwatch
valueOf watch

• Words starting with _ cannot be used.

Impact on the programming model

• Use of [] for subscripting is extremely
limited. ADSAFE.get(name) and
ADSAFE.set(name, value) must be
used instead. This can be annoying.

• this cannot be used because it can be
made to bind to the global object.

• JavaScript is still quite useable without
this.

Constructor Recipe

1. Make an object.
• Object literal
• new

• Object.create

• call another constructor

Constructor Recipe

1. Make an object.
• Object literal, new, Object.create, call

another constructor

2. Define some variables and functions.

• These become private members and
private methods of the new object.

Constructor Recipe

1. Make an object.
• Object literal, new, Object.create, call

another constructor

2. Define some variables and functions.

• These become private members.

3. Augment the object with privileged
methods.

Constructor Recipe

1. Make an object.
• Object literal, new, Object.create, call

another constructor

2. Define some variables and functions.

• These become private members.

3. Augment the object with privileged
methods.

4. Return the object.

Step One

function myConstructor(x) {
var that = otherMaker(x);

}

Step Two

function myConstructor(x) {
var that = otherMaker(x);
var secret = f(x);

}

Step Three

function myConstructor(x) {
var that = otherMaker(x);
var secret = f(x);
that.priv = function () {

... secret x ...
};

}

• The methods should use neither this nor
that.

Step Four

function myConstructor(x) {
var that = otherMaker(x);
var secret = f(x);
that.priv = function () {

... secret x ...
};
return that;

}

Objects made with this pattern
do not need hardening.
Object tampering does not cause

confusion.

ADsafe does not allow access
to Date or random

This is to allow human evaluation of ad
content with confidence that behavior
will not change in the future. This is for
ad quality and contractual compliance,

not for security.

ADsafe DOM Interface

• Light weight.

• JQuery-like.

• Scope of queries is strictly limited to the
contents of a the widget's <div>.

• Guest code cannot get direct access to
any DOM node.

Widget Template
<div id="ADSAFEID_">

HTML content goes here.
<script>
"use strict";
ADSAFE.id("ADSAFEID_");
</script>
<script src="approvedlibrary.js"></script>
<script>
"use strict";
ADSAFE.go("ADSAFEID_", function (dom, lib) {

Application initialization goes here.
});
</script>
</div>

Library Template
"use strict";

ADSAFE.lib("libraryname", function () {

Create that library object

return that;

});

• The widget accesses the library object
with lib.libraryname.

ADsafe validation is not
destructive, so it can be

performed at any and every point
in the ad delivery pipeline.

It can even be done after
consumer delivery to test

compliance.

Multiple points of validation
provide greater confidence that

bad content will be blocked.

Dangers

• There may still be undiscovered
weaknesses in ECMAScript and its many
implementations.

• Those implementations are changing,
introducing new weaknesses.

• The wrappers must be flawless.

• We are still subject to XSS attacks.

An experimental object capability
language.

Goal: Correct every problem
in JavaScript

Reasonable people will disagree
on what the problems actually are.

Misty Objectives

• Make the language easier for beginners.

• Make the language unastonishing and low
cruft.

• Make the language an object capability
language.

http://www.crockford.com/misty/

Syntax
• := for assignment = for identity
• + for addition & for concatenation
• No semicolons. No blocks.

for i to length koda do

if koda[i].id is null then

raise 'misshapen'

fi

od

No Global Object

• Each compilation unit is a function body,
which gets the capability to return an
object that exposes an interface that can
be used by other compilation units.

• Compilation units share a vat, so
communication is very fast. They can
directly invoke methods. They can share
object references.

Misty Object Hardening
• The fix operator produces an immutable

reference. The original object is still mutable, but
it cannot be changed with the fixed reference.

define frozen := fix my_object

• frozen and my_object are references to the
same object, but the frozen reference is
attenuated.
my_object.works := true

frozen.works := false # raise 'fix'

Fixed References

• A fixed reference cannot be used to
modify an object.

• All references obtained with a fixed
reference will be fixed.

• This avoids the ICE-9 problem.
• Function values cannot be obtained with a

fixed reference. The functions can only be
invoked.

• This prevents confusion.

Methods

• A method can obtain a reference to the object of
interest with the $ operator.

• A function that uses $ can only be called as a
method.

• The $ operator can modify the object even if the
object was fixed.

$.status := true # succeeds

struct := $.struct # struct is fixed

return $ # returns fixed

$ could be viewed as a rights
amplification, but it is only

available to functions that are
added to the object before it is

fixed.

Simplicity

• Very simple operation. Just fix
references before handing objects to
strange code.

• Your own code is not inconvenienced by
fixing.

• This level of simplicity is required for
successful adoption.

	1 Opening, welcome and roll call
	1.1 Opening of the meeting (Mr. Crockford)
	1.2 Introduction of the attendees
	1.3 Host facilities, local logistics

	2 Adoption of the agenda (2008/070)
	3 Terms of Reference and goals/objectives
	4 Technical presentations
	5 Discussion and draft plan
	6 Any other business
	7 Date and place of the next meeting(s)
	8 Closure
	ECMAScript 3 1 Object model.pdf
	ECMAScript 3.1 Object Model
	ECMAScript 3 Object Model
	ES3.1 Object Model Changes
	Configurable Attribute
	Manipulating Properties and Attributes
	Retrieving a Property Definition
	Object Lock-down
	Other Object Meta Methods
	Example
	Example

	fbjs.pdf
	FBJS
	Goals
	Features
	Features
	DOM Authority
	Slide Number 6
	Slide Number 7
	Slide Number 8
	Slide Number 9
	Slide Number 10
	Entry Points
	Implementation
	What We Don’t Address
	The Future
	Thanks

	millerses.pdf
	When Two Languages Are Simpler Than One
	Simultaneous Problems
	Simultaneous Solution?
	Don’t try this at home (or at all)
	Separate Solutions
	Layered Solutions
	Lessons for SES
	Proposed SES Goals
	Questions?
	Freeze Primordials
	Hide Sharp Objects = Cajita
	Cajita + Implementation
	Replace with per-gadget toy knives
	Valija on Cajita Impl
	Valija Impl on Cajita Impl

	EcmaTopics-2007-06.pdf
	Jacaranda – language properties
	Specification approach
	Disclaimer
	Unshadowable names
	GetValue problem
	What happened?
	$get
	Short-term fix (oversimplified)
	Words of wisdom from R5RS
	Words of wisdom from R5RS
	Long-term fix
	Support both
	Object encapsulation
	Expressiveness problem
	Exposed properties
	Modules
	Modules (continued)
	Preventing access to globals
	Other rules – Lexical
	Other rules – Syntactic
	ES3F (if time permits)
	Is Jacaranda practical?

	json adsafe misty.pdf
	JSON, �ADsafe, �and Misty
	JSON was the first safe subset
	ADsafe
	Static validation only, �no code rewriting.
	ADsafe
	Impact on the programming model
	Constructor Recipe
	Constructor Recipe
	Constructor Recipe
	Constructor Recipe
	Step One
	Step Two
	Step Three
	Step Four
	Objects made with this pattern do not need hardening.
	ADsafe does not allow access to Date or random
	ADsafe DOM Interface
	Widget Template
	Library Template
	ADsafe validation is not destructive, so it can be performed at any and every point in the ad delivery pipeline.
	Multiple points of validation provide greater confidence that bad content will be blocked.
	Dangers
	Misty
	Goal: Correct every problem in JavaScript
	Misty Objectives
	Syntax
	No Global Object
	Misty Object Hardening
	Fixed References
	Methods
	$ could be viewed as a rights amplification, but it is only available to functions that are added to the object before it is fixed.�
	Simplicity

	sesintro.pdf
	Secure ECMAScript�Name Subject To Change
	The purpose of this workshop is to consider the feasibility and necessity of a secure replacement for ECMAScript.
	Security is our Number One Problem
	Three Possible Solutions
	Safe JavaScript Subset
	Vats
	A New Language
	Goals
	Confusion of Interest
	Confusion of Interest
	Confusion of Interest
	Confusion of Interest
	Confusion of Interest
	Confusion of Interest
	Confusion of Interest
	But within a page, �interests are confused.
	JavaScript got close �to getting it right.
	An Introduction to�Object Capabilities
	Slide Number 19
	has-a
	Slide Number 21
	Slide Number 22
	Slide Number 23
	An Object Capability System is produced by constraining the ways that references are obtained.
	There are exactly three ways to obtain a reference.
	1. By Creation
	2. By Construction
	3. By Introduction
	3. By Introduction
	3. By Introduction
	If references can only be obtained by Creation, Construction, or Introduction, then you may have a safe system.
	If references can be obtained in any other way, you do not have a safe system.
	Potential weaknesses include
	1. Arrogation
	2. Corruption
	3. Confusion
	4. Collusion
	Rights Attenuation
	Ultimately, every object should be given exactly the capabilities it needs to do its work.
	Intermediate objects, or facets, can be very light weight.
	Slide Number 41
	References are not revocable.
	Slide Number 43
	Slide Number 44
	Slide Number 45
	Slide Number 46
	Facets
	Good Object Capability Design �is �Good Object Oriented Design
	Secure ECMAScript Must Be Incompatible With ES3
	Minimal
	Competition
	Review of Current Work

	Untitled
	Dojo Secure.pdf
	Dojo Secure
	Dojo Secure
	Dojo Secure
	ADsafe
	Dojo Secure differences from ADsafe
	Demo/Test Page
	Dojo Secure

