
Secure
ECMAScript

Name Subject To Change

Douglas Crockford

Yahoo!

The purpose of this workshop
is to consider the feasibility
and necessity of a secure

replacement for ECMAScript.

Security is our Number One
Problem

All websites are under attack.

Progress is being frustrated.

Mash Up We Must!

Three Possible Solutions

•  Safe JavaScript Subset.
   Timeframe: Immediate

•  Communicating Vats.
   Timeframe: Intermediate

•  Secure Programming Language.
   Timeframe: Distant

•  All of the Above.

Safe JavaScript Subset

•  Constrain the existing language by code
rewriting and runtime repression or by
static validation.

•  The constrained language limits the
capabilities that are given by default to a
program.

•  Good examples may inform the design of
Ses.

•  It may be good to derive a standard, but
that is not the goal of this meeting.

Vats

•  Secure containers for computation.

•  Constrained intervat communication.
•  First steps: Google's Gears Workerpools;

durable <iframe>, XDM.

•  Ultimately, transmission of capabilities,
futures, distributed garbage collection.

•  This is out of scope for today's meeting.

A New Language

•  Similar, but not compatible.

•  Retain the goodness of ECMAScript.
•  Replace, repair, or remove the bad parts.

•  JavaScript got a lot right.

•  Minimize retraining.
•  Capture programmers, not programs.

Goals

•  A computation model that allows for
cooperation under mutual suspicion.

•  As simple as possible. Simple systems are
easier to reason about.

•  Approachable. The language must be
usable by ordinary web developers.

•  Unsurprising. Not freaky.

•  Avoid confusion, difficulty, unmanagability.

Confusion of Interest

Computer

System Mode

Confusion of Interest

System

System Mode

User

Confusion of Interest

System

System Mode

User User User

Confusion of Interest

CP/M MS-DOS MacOS Windows

System Mode

Confusion of Interest

CP/M MS-DOS MacOS Windows

System Mode
The System cannot distinguish the

interest of the user from the interest of
any program. This enables floppy-borne

viruses.

Confusion of Interest

CP/M MS-DOS MacOS Windows

System Mode

When networking is introduced, network-
borne viruses are enabled.

User

Confusion of Interest

Browser

System Mode

Site Site Site

The browser is a significant improvement,
able to distinguish the interests of users

and sites in some cases.

But within a page,
interests are confused.

An ad or a widget or an Ajax
library gets the same rights as the

site's own scripts.

JavaScript got close
to getting it right.

Except for the Global Object.

It can be repaired, becoming an
object capability language.

An Introduction to
Object Capabilities

A is an Object.

Object A has
state and
behavior.

A

Object A has a
reference to

Object B.

A

B

An object can have
references to other

objects.

has-a

...because it has
a reference to

Object B.

Object A can
communicate

with Object B...

A

B

Object B
provides an

interface that
constrains

access to its
own state and

references.

A

B

Object A does not get access
to Object B's innards.

Object A does not have a reference to
Object C, so Object A cannot
communicate with Object C.

A

B
In an Object Capability
System, an object can
only communicate with

objects that it has
references to.

C

An Object Capability System is
produced by constraining the

ways that references are
obtained.

A reference cannot be obtained
simply by knowing the name of a
global variable or a public class.

There are exactly three ways to
obtain a reference.

1.  By Creation.

2.  By Construction.

3.  By Introduction.

1. By Creation

If a function creates an object, it
gets a reference to that object.

2. By Construction

An object may be endowed by its constructor
with references.

This can include references in the
constructor's context and inherited references.

3. By Introduction

A

BC

A has a references to B and C.
B has no references, so it cannot communicate with A or C.
C has no references, so it cannot communicate with A or B.

3. By Introduction

A

BC

A calls B, passing a reference to C.

3. By Introduction

A

BC

B is now able to communicate with C.

It has the capability.

If references can only be
obtained by Creation,

Construction, or Introduction,
then you may have a safe

system.

If references can be
obtained in any other
way, you do not have

a safe system.

Potential weaknesses include

1.  Arrogation.

2.  Corruption.
3.  Confusion.

4.  Collusion.

1. Arrogation

•  To take or claim for oneself without right.

•  Global variables.
•  public static variables.

•  Standard libraries that grant powerful
capabilities like access to the file system
or the network or the operating system to
all programs.

•  Address generation.

2. Corruption

It should not be possible to tamper
with or circumvent the system or

other objects.

3. Confusion

It should be possible to create
objects that are not subject to

confusion. A confused object can
be tricked into misusing its

capabilities.

4. Collusion

•  It must not be possible for two objects to
communicate until they are introduced.

•  If two independent objects can collude,
they might be able to pool their capabilities
to cause harm.

•  For example, I can give gasoline to one
object, and matches to another. I need to
be confident that they cannot collude.

Rights Attenuation

•  Some capabilities are too dangerous to
give to guest code.

•  We can instead give those capabilities to
intermediate objects that will constrain the
power.

•  For example, an intermediate object for a
file system might limit access to a
particular device or directory, or limit the
size of files, or the number of files, or the
longevity of files, or the types of files.

Ultimately, every object should
be given exactly the capabilities it

needs to do its work.

Capabilities should be granted on a
need-to-do basis.

Information Hiding - Capability Hiding.

Intermediate objects, or facets,
can be very light weight.

Class-free languages can be
especially effective.

Guest

D angerousF acet

The Facet object
limits the Guest

object's access to the
Dangerous object.

The Guest object
cannot tamper with
the Facet to get a
direct reference to

the Dangerous
object.

References are not revocable.

Once you introduce an object, you
can't ask it to forget it.

You can ask, but you should not
depend on your request being

honored.

Guest

D angerous

Agency

The Guest object has a
reference to an Agency
object. The Guest asks
for an introduction to

the Dangerous object.

Guest

D angerousF acet

Agency

The Agency object makes a Facet,
and gives it to the Guest.

The Facet might be a simple pass
through.

Guest

D angerousF acet

Agency

When the Agency wants to revoke
the capability, it tells the Facet to

forget its capability.

The Facet is now useless to the Guest.

Guest

D angerousF acet

A Facet can mark requests so that
the Dangerous object can know
where the request came from.

Facets

•  Very expressive.

•  Easy to construct.

•  Lightweight.

•  Power Reduction.

•  Revocation.

•  Notification.

•  Delegation.

•  The best OO patterns are also capability
patterns

Good Object Capability
Design

is
Good Object Oriented Design

Secure ECMAScript Must Be
Incompatible With ES3

•  If it were compatible, it would share the
weaknesses of ES3.

•  Incompatibility gives us license to correct
many of the problems that ES3.1 must
preserve.

•  Lacking compatibility in the design process
could lead to a lack of feature discipline.

Minimal

•  An elegant, minimal language is easier to
reason about than an over-featured,
maximal language.

•  Committees are generally unable to
produce minimal designs.

•  We should avoid a Design-by-committee.

Competition

•  We invite members to submit designs.

•  We drafts rules for the competition, and
select a winner based on the criteria of
security, expressiveness, and minimalism.

•  Over several rounds of evaluation and
influence, we may find either a clear
winner or convergence on an ideal
approach.

Review of Current Work

•  ES3.1

•  FBJS
•  Caja, Cajita (and E)

•  Jacaranda

•  dojox.secure

•  JSON, ADsafe (and Misty)

