

Ecma International Rue du Rhône 114 CH-1204 Geneva T/F: +41 22 849 6000/01 www.ecma-international.org

PC For Ecma use only

Minutes of the: Ecma TC39, ES3.1WG

held in: Phone conference

on: 30 October 2008

1 Roll call and logistics

1.1 Participants

Douglas Crockford (Yahoo!), Pratap Lakshman (Microsoft), Mark Miller (Google), Sam Ruby
(IBM) and Allen Wirfs-Brock (Microsoft)

2 Agenda

‘strict’ mode

closure on any remaining spec issues

3 Minutes

‘closure on any remaining spec issues

JSON

JSON.parse/stringify pseudo-code looks a little scary; overall, seems to be on the right track,
though - it is the json2 implementation translated directly to pseudo-code - perhaps we can
use the facility provided by the “Function” constructor to pass in the string representing the
JavaScript code for the function body; that would make the pseudo-code a little simpler, and
allow us to write the behaviour in JavaScript and use that in the specification; that is what we
have done for the MakeArgGetter/MakeArgSetter specification in 10.3.2 - can we leverage the
object initialize productions to specify the translation of text to objects ? say that if the text
conforms to the JSON grammar, it is evaluated as if it were an object literal, and the resulting
value is used in later steps - can’t do that because we didn’t change the status of the extra
line-breaking characters - JSON.parse does not explicitly tell what to do in the presence of
getters; it simply delegates that behaviour to Object.keys.

Should SubStatement be a part of LabelledStatement

Prefer LabelledStatement to only contain a SubStatement - but, worried about legacy, and
breaking existing code - not sure if this is a common case - need to raise this on the discuss
lists.

Function.prototype.bind

bind should only apply to objects whose [[Class]] is “Function” - what about DOM object,
then ? - RegExps are callable in some cases (?!) - isn’t that a deviation from the ES3 spec ?
Actually, no, chapter 16 allows implementations to define additional properties - does that
mean that RegExp.prototype has as its prototype Function.prototype, for those
implementations which have callable RegExps ? Also, browsers have callable host objects for
which typeof does not return “function” - what is a function ? and what is a callable ? - de-facto
standard: only function objects report typeof “function”, but host objects may be callable; or, all
function objects are callable but not all callables are function objects - functions seems to be
so broken.

Two simplifications for “bind” (1) typeof should be determined using Class and not “callability”
(2) curry over [[Call]] and not [[Construct]]; “bind should return a function that is callable but

Ecma/TC39/2008/096

http://www.ecma-international.org/
http://wiki.ecmascript.org/doku.php?id=meetings:class

2

not constructable - but that latter can be worked around by putting a try-catch around the
‘bind’.

Do we need a script accessible IsCallable ? - instead, do we need a way to get at the [[Class]]
property ?

for-in loop enumeration order

mention that the order “is not specified” - and, it is certainly not controlled by the object; we
delete that sentence from the spec - what about properties added to the object during
enumeration; is the requirement that they are guaranteed not to be visited I the active
enumeration required ? - can we condition that on strict mode ? - is it onerous on any
implementation to support ? - lets check on the discuss lists - if we retain that requirement
then it will need to be listed in the annexes too.

Meeting adjourned.

