Standard ECMA262

3'Y Edition - December 199¢

ECMA

Standardizing Information and Communication Systems

ECMAScript 3.1Language
Specification- DRAFT

Phone: +41 22 849.60.00 - Fax: +41 22 849.60.01 - URL: http://www.ecma.ch - Internet: helpdesk@ecma.ch
13 October 2008

Standard ECMA262

3'Y Edition - December 199¢

ECMA

Standardizing Information and Communication Systems

Phone: +41 22 849.60.00 - Fax: +41 22 849.60.01 - URL: http://www.ecma.ch - Internet: helpdesk@ecma.ch
13 October 2008

Standard ECMA262

3'Y Edition - December 199¢

ECMA

Standardizing Information and Communication Systems

ECMAScript 3.1Language
Specification- DRAFT

Phone: +41 22 849.60.00 - Fax: +41 22 849.60.01 - URL: http://www.ecma.ch - Internet: helpdesk@ecma.ch
13 October 2008

Brief History

This ECMA Standard is based on several originating technologies, the most well known being JavaScript (Netscape)
and JScript (Microsoft). The language was invented by Brendan Eichldet scape and first appe:
Navigator 2.0 browser. It has appeared in all subsequent browsers from Netscape and in all browsers from Microsoft
starting with Internet Explorer 3.0.

The development of this Standard started in Novembe6.19Be first edition of this ECMA Standard was adopted by
the ECMA General Assembly of June 1997.

That ECMA Standard was submitted to ISO/IEC JTC 1 for adoption under thé&rdaktprocedure, and approved as
international standard ISO/IEC 16262, in Apfif98. The ECMA General Assembly of June 1998 approved the
second edition of ECMA62 to keep it fully aligned with ISO/IEC 16262. Changes between the first and the second
edition are editorial in nature.

The third edition of the Standargncludes powerful regular expressions, better string handling, new control{ peleted: current document defines the
statements, try/catch exception handling, tighter definition of errors, formatting for numeric output and minor chang
in anticipation of forthconmg internationalisation facilities and future language growthe language documented by
the third edition has come to be known as ECMAScript 3 or ES3.

[Deleted: and

Work on the language is not complete. The technical committee is working on significant enhancemnkrisg
mechanisms for scripts to be created and used across the Internet, and tighter coordination with other standards bodies
such as groups within the World Wide Web Consortium and the Wireless Application Protocol Forum.

Deleted: This Standard has been adopted as 3rd Edif
ECMA-262 by the ECMA General Assembly in Decen
1999.

Phone: +41 22 849.60.00 - Fax: +41 22 849.60.01 - URL: http://www.ecma.ch - Internet: helpdesk@ecma.ch
13 October 2008

1 Scope

2 Conformance

3 References

4 Overview

4.1 Web Scripting

4.2 Language Overview
4.2.1 Objects
4.2.2

4.3 Definitions
4.3.1 Type
4.3.2 Primitive Value
4.3.3 Object
4.3.4 Constructor
4.3.5 Prototype
4.3.6 Native Object
4.3.7 Built-in Object
4.3.8 Host Object
4.3.9 Undefined Value
4.3.10 Undefined Type
4.3.11 Null Value
4.3.12 Null Type
4.3.13 Boolean Value
4.3.14 Boolean Type
4.3.15 Boolean Object
4.3.16 String Value
4.3.17 String Type
4.3.18 String Object
4.3.19 Number Value
4.3.20 Number Type
4.3.21 Number Object
4.3.22 Infinity
4.3.23 NaN
4.3.24 Function
4.3.25 Property
4.3.26 Method
4.3.27 Attribute
4.3.29 Own Property
4.3.28 Inherited Property
4.3.29 Built-in Method
4.3.30 Decimal Value
4.3.31 Decimal Type
4.3.32 Decimal Object

5 Notational Conventions

Table of contents

Voluntary Usage Language Subsets

13 October 2008

=

O o000 o000 000 O 0ol ooolooooooo oD DMDAMAEDMDMWONMNNDMNNE P

~

5.1
5.1.1
5.1.2
5.1.3
5.1.4
5.1.5

5.2

Syntactic and Lexical Grammars
ContextFree Grammars
The Lexical and RegExp Grammars
The Numeric String Grammar
The Syntactic Grammar
Grammar Notation

Algorithm Conventions

6. Source Text

7 Lexical Conventions

7.1
7.2
7.3
7.4
7.5
7.5.1
7.5.2
7.5.3
7.6
7.7
7.8
7.8.1
7.8.2
7.8.3
7.8.4
7.8.5
7.9
7.9.1
7.9.2

Unicode FormaiControl Characters
White Space
Line Terminators
Comments
Tokens

Reserved Words

Keywords

Future Reserved Words
Identifiers
Punctuators
Literals

Null Literals

Boolean Literals

Numeric Literals

String Literals

Regular Expression Literals
Automatic Semicolon Insertion

Rules of Automatic Semicolon Insertion

Examples of Automatic Semicolon Insertion

8 Types

8.1
8.2
8.3
8.4
8.5
8.6
8.6.1
8.6.2
8.7
8.7.1
8.7.2
8.8
8.9

8.10 The Property Descriptor and Property Identifier Types

8.10.1
8.10.2

The Undefined Type
The Null Type
The Boolean Type
The String Type
The Number Type
The Object Type
Property Attributes
Internal Properties and Methods
The Reference Type
GetValue (V)
PutValue (V, W, Throw)
The List Type
The Completion Type

IsAccessorDescriptor (Desc)
IsDataDescriptor (Desc)

13 October 2008

0 N ~N NN~

10

11

12
12
12
13
14
15
15
15
15
15
17
17
17
17
17
19
22
23
23
24

25
25
25
25
25
26
27
27
28
33
34
34
34
34
34
35
35

8.10.3 IsGenericDescriptor (Desc)
8.10.4 FromPropertyDescriptr (Desc)
8.10.5 ToPropertyDescriptor (Desc)
9 Type Conversion and Testing
9.1 ToPrimitive
9.2 ToBoolean
9.3 ToNumber
9.3.1 ToNumber Applied to the String Type
9.4 Tolnteger
9.5 Tolnt32: (Signed 32 Bit Integer)
9.6 ToUint32: (Unsigned 32 Bit Integer)
9.7 ToUint16: (Unsigned 16 Bit Integer)
9.8 ToString
9.8.1 ToString Applied to the Number Type
9.9 ToObject
9.10 IsCallable

10 Execution Contexts

10.1
10.1.1
10.1.2
10.1.3
10.1.4
10.1.5
10.1.6
10.1.7
10.1.8

10.2
10.2.1
10.2.2
10.2.3
10.2.4

Definitions
Function Objects
Types of Executable Code
Environment Bindings Instantiation
Scope Chain and ldentifier Resolution
Global Object
Activation Object
This
Arguments Object

Entering An Execution Context
Global Code
Eval Code
Function Code
Lexical Block Code

11 Expressions

11.1
11.1.1
11.1.2
11.1.3
11.1.4
11.1.5
11.1.6

11.2
11.2.1
11.2.2
11.2.3
11.2.4
11.2.5

Primary Expressions
Thethis Keyword
Identifier Reference
Literal Reference
Array Initialiser
Object Initialiser
The Grouping Operator

Left-Hand Side Expressions
Property Accessors
Thenew Operator
Function Calls
Argument Lists
Function Expressions

13 October 2008

35
35
36

36
36
37
37
37
40
40
40
41
41
41
42
43

43
43
43
43
44
45
46
46
46
46
47
47
47
47
48

48
48
48
48
48
48
49
51
51
52
53
53
53
54

11.3 Postfix Expressions
11.3.1 Postfix Increment Operator
11.3.2 Postfix Decrement Operator
11.4 Unary Operators
11.4.1 Thedelete Operator
11.4.2 Thevoid Operator
11.4.3 Thetypeof Operator
11.4.4 Prefix Increment Operator
11.4.5 Prefix Decrement Operator
11.4.6 Unary+ Operator
11.4.7 Unary- Operator
11.4.8 Bitwise NOT Operator ¢)
11.4.9 Logical NOT Operator {)
115 Multiplicative Operators
11.5.1 Applying the* Operator
11.5.2 Applying the/ Operator
11.5.3 Applying the%Operator
11.6 Additive Operators
11.6.1 The Addition operator ¢)
11.6.2 The Subtraction Operator-()
11.6.3 Applying the Additive Operators<, -) to Numbers
11.7 Bitwise Shift Operators
11.7.1 The Left Shift Operator €<)
11.7.2 The Signed Right Shift Operator>¢)
11.7.3 The Unsigned Right Shift Operator>)
11.8 Relational Operators
11.8.1 The Lessthan Operator €)
11.8.2 The Greatetthan Opeator (>)
11.8.3 The Lessthanor-equal Operator €=)
11.8.4 The Greateithanor-equal Operator $=)
11.8.5 The Abstract Relational Comparison Algthm
11.8.6 The instanceof operator
11.8.7 The in operator
11.9 Equality Operators
11.9.1 The Equals Operator£=)
11.9.2 The Doesnot-equals Operator I)
11.9.3 The Abstract Equality Comparison Algorithm
11.9.4 The Strict Equals Operat (===
11.9.5 The Strict Doesnot-equal Operator (==
11.9.6 The Strict Equality Comparison Algorithm
11.10 Binary Bitwise Operators
11.11 Binary Logical Operators
11.12 Conditional Operator (?:)
11.13 Assignment Operators
11.13.1 Simple Assignment €)

13 October 2008

54
54
54
55
55
55
55
56
56
56
57
57
57
57
58
58
58
59
59
60
60
60
60
61
61
61
62
62
62
63
63
64
64
64
65
65
65
66
66
66
67
67
68
69
69

11.13.2 Compound Assignmentdp=)
11.14 Comma Operator ()

12 Statements
12.1 Block
12.1.1 Usage Subset cautious Restrictions
12.2 Variable statement
12.3 Empty Statement
12.4 Expression Statement
12.5 Theif Statement
12.6 Iteration Statements
12.6.1 Thedo-while Statement
12.6.2 Thewhile statement
12.6.3 Thefor Statement
12.6.4 Thefor -in Statement
12.7 Thecontinue Statement
12.8 Thebreak Statement
12.9 Thereturn Statement
12.10 Thewith Statement
12.10.1 Usage Subseautious Restrictions
12.11 Theswitch Statement
12.12 Labelled Statements
12.13 Thethrow statement
12.14 Thetry statement
12.15 Constant statement

13 Function Definition
13.1 Definitions
13.2 Creating Function Objects
13.2.1 [[Call]]
13.2.2 [[Construct]]

14 Program

15 Native ECMAScript Objects

15.1 The Global Object
15.1.1 Value Properties of the Global Object
15.1.2 Function Properties of the Global Object
15.1.3 URI Handling Function Properties
15.1.4 Constructor Properties of the Global Object
15.1.5 Other Properties of the Global Objec

15.2 Object Objects
15.2.1 The Object Constructor Called aganction
15.2.2 The Object Constructor
15.2.3 Properties othe Object Constructor
15.2.4 Properties of the Object Prototype Object
15.2.5 Properties of Object Instances

13 October 2008

70
70

71
71
72
72
73
73
74
74
74
75
75
76
7
77
77
78
78
78
80
80
81
82

82
83
84
84
84

85

87
87
88
88
90
94
95
95
95
95
95
99
100

- Vi -

15.3 Function Objects
15.3.1 The Function Constructor Called as a Function
15.3.2 The Function Constructor
15.3.3 Properties of the Function Constructor
15.3.4 Properties of the Function Prototype Object
15.3.5 Properties of Function Instances

15.4 Array Objects
15.4.1 The Array Constructor Called as a Fion
15.4.2 The Array Constructor
15.4.3 Properties of thé\rray Constructor
15.4.4 Properties of the Array Prototype Object
15.4.5 Properties of Array Instances

15.5 String Objects
15.5.1 The String Constructor Called as a Function
15.5.2 The String Constructor
15.5.3 Properties of the String Constructor
15.5.4 Properties of the String Prototype Object
15.5.5 Properties of String Instances

15.6 Boolean Objects
15.6.1 The Boolean Constructor Called as a Ftiowe
15.6.2 The Boolean Constructor
15.6.3 Properties of thé8oolean Constructor
15.6.4 Properties of the Boolean Prototype Object
15.6.5 Properties of Boolean Instances

15.7 Number Objects
15.7.1 The Number Constructor Called as a Function
15.7.2 The Number Constructor
15.7.3 Properties of the Number Constructor
15.7.4 Properties of the Number Prototype Object
15.7.5 Properties of Number Instances

15.8 The Math Object
15.8.1 Value Properties of the Math Object
15.8.2 Function Properties of the Math Object

15.9 Date Objects
15.9.1 Overview of Date Objects and Definitions of Internal Operators
15.9.2 The Date Constructor Called as a Function
15.9.3 The Date Constructor
15.9.4 Properties of the Date Constructor
15.9.5 Properties of the Date Prototype Object
15.9.6 Properties of Date Instances

15.10 RegExp (Regular Expression) Objects
15.10.1 Patterns
15.10.2 Pattern Semantics
15.10.3 The RegExp Constructor Called as a Function
15.10.4 The RegExp Constructor
15.10.5 Properties of the RegExp Constructor
15.10.6 Properties of the RegExp Prototype Object

13 October 2008

100
100
100
101
101
102
103
103
103
104
104
119
120
120
120
120
120
128
129
129
129
129
129
130
130
130
130
130
131
134
134
135
135
140
140
145
145
146
147
153
153
153
155
167
167
167
167

- vii -

15.10.7 Properties of RegExp Instances

15.11 Error Objects
15.11.1 The EBror Constructor Called as a Function
15.11.2 The Error Constructor
15.11.3 Properties of the Error Constructor
15.11.4 Properties of the Error Prototype Object
15.11.5 Properties of Error Instances
15.11.6 Native Error Types Used in This Standard
15.11.7 NativeError Object Structure

15.12 JSON
15.12.1 parse (texteviver)
15.12.2 stringify (value, replacer, space)

15.13 Decimal

15.13.1 Overview of Decimal Objects and Definitions of Internal Operators
15.13.2 The Decimal Constructor Called as a Function

15.13.3 The Decimal Constructor

15.13.4 Properties of the Decimal constructor
15.13.5 Properties of the Decimal Prototype Object
15.13.6 Properties of Decimal Instances

16 Errors

Annex A

A.l Lexical Grammar

A.2 Number Conversions
A.3 Expressions

A.4 Statements

A.5 Functions and Programs
A.6 Universal Resource Identifier Character Classes
A.7 Regular Expressions
Annex B

Compatibility

B.1 Additional Syntax
B.1.1 Numeric Literals
B.1.2 String Literals

B.2 Additional Properties
B.2.1 escape (string)
B.2.2 unescape (string)
B.2.3 String.prototype.substr (start, length)
B.2.4 Date.prototype.getYear ()
B.2.5 Date.prototype.setYear (year)

13 October 2008

169
169
169
169
170
170
170
170
171
172
172
173
174
174
174
175
175
176
178

179

180

180

185

186

191

193

194

194

198

198

198
198
198

199
199
200
200
201
201

- viii -

B.2.6 Date.prototype.toGMTString ()
Annex C

Usage Subsets
C.1 The cautious Subset
C.1.1 Excluded Features
Cc.1.2 Additional Execution Exceptions

Annex D
Correction and Clarifications in Edition 3.1 with Possible Compatability Impact

Annex E

Additions and Changes in Edition 3.1 which Introduce Incompatabilities with Edition 3.

13 October 2008

201

202

202
202
202
203

204

204

205

205

Scope
This Standard defines the ECMAScript scripting language.

Conformance

A conforming implementation of E@AScript must provide and support all the types, values, objects,
properties, functions, and program syntax and semantics described in this specification.

A conforming implementation of this International standard shall interpret characteosfiormancewith the

Unicode Standard, VersigB.0 or later, and ISO/IEC 10646 with either UCS2 or UTF16 as the adopted [Deleted: 2.1

encoding form, implementation level 3. If the adopted ISO/IEC 10b646bset is not otherwise specified, it is
presumed to be the BMP subset, collection 300. If the adopted encfmtimgis not otherwise specified, it
presumed to be the UTE6 encoding form.

A conforming implementation of ECMAScript is permitted to provide additional types, values, objects,
properties, and functions beyond those described in this specificationpaiticular, a conforming
implementation of ECMAScript is permitted to provide properties not described in this specification, anc
values for those properties, for objects that are described in this specification.

A conforming implementation of ECMAScrips ipermitted to support program and regular expression syntax
not described in this specification. In particular, a conforming implementation of ECMAScript is permitted tc
support program syntax that makes usofthipdpecifidaton. i f ut u

References
ISO/IEC 9899:1996 Programming Language®, including amendment 1 and technical corrigenda 1 and 2.

ISO/IEC 106461:1993 Information Technology Universal MultipleOctet Coded Character Set (UCS) plus
its amendmentsral corrigenda.

The Unicode Consortium. The Unicode Standard, Ver8i6n defined by: The Unicode Standard, Versi®@

Deleted: Unicode Inc. (1996), The Unicode
Standard, Version 2.0. ISBN: £01-483459,

WMnicode Inc. (1998), Unicode Technical Report #15: Unicode Normalization Forms. AddisonWesley Publishing Co., Menlo Park,
ANSI/IEEE Std 7541985: IEEE Standardor Binary FloatingPoint Arithmetic. Institute of Electrical and California.
Electronic Engineers, New York (1985). Deleted: Unicode Inc. (1998), Unicode
Technical Report #8: The Unicode Standard
. Version 2.1y
Overview

This section contains a narormative overview of the ECMAScript language.

ECMAScript is an objeebriented programming language for perfongn computations and manipulating
computational objects within a host environment. ECMAScript as defined here is not intended to b
computationally selkufficient; indeed, there are no provisions in this specification for input of external data
or outputof computed results. Instead, it is expected that the computational environment of an ECMAScrig
program will provide not only the objects and other facilities described in this specification but also certail
environmenispecifichostobjects, whose des@tion and behaviour are beyond the scope of this specification
except to indicate that they may provide certain properties that can be accessed and certain functions that
be called from an ECMAScript program.

A scripting languageis a programming langge that is used to manipulate, customise, and automate the
facilities of an existing system. In such systems, useful functionality is already available through a use¢
interface, and the scripting language is a mechanism for exposing that functionglipgtam control. In this

way, the existing system is said to provide a host environment of objects and facilities, which completes tl
capabilities of the scripting language. A scripting language is intended for use by both professional-and no

professionhprogrammers. To accommodate nprofessional programmers, some aspects of the langaiagy [Deleted: may be somewhat less strict

defined tobe tolerant of programmer mistakeslowever, such tolerance can easily result in programs

containing undiscovered errors that professional programmers would wish to discover and coorect. T
facilitate such error detection script can be explicitly declarel t o us e aubsecd tetfullojus
ECMAScript language that provides enhanced error detection as well

ECMAScript was originally designed to beeb scripting languageproviding a mechanism to enliven Web
pages in browsers and to perform server computation as part of ab¥éeld dent-server architecture.

13 October 2008

4.1

4.2

ECMAScript can provide core scripting capabilities for a variety of host environments, and therefore the core
scripting language is specified in this document apart from any particular host environment.

Some of the facilities of EMAScript are similar to those used in other programming languages; in particular

Javd”, Self, and Schemas described in: [Deleted: and

* Gosling, James, Bill Joy and Guy Steele. The Javanguage Specification. Addison Wesley Publishing
Co., 1996.

®* Ungar, David, andSmith, Randall B. Self: The Power of Simplicity. OOPSLA '87 Conference
Proceedings, pp. 22241, Orlando, FL, October 1987.

* |EEE Standard for the Scheme Programming Language. IEEE Std1R0(3

Web Scripting

A web browser provides an ECMAScript hostvironment for clienside computation including, for
instance, objects that represent windows, menus;upsp dialog boxes, text areas, anchors, frames, history,
cookies, and input/output. Further, the host environment provides a means to attachgscagg to events

such as change of focus, page and image loading, unloading, error and abort, selection, form submission,
and mouse actions. Scripting code appears within the HTML and the displayed page is a combination of
user interface elements and ftkand computed text and images. The scripting code is reactive to user
interaction and there is no need for a main program.

A web server provides a different host environment for seside computation including objects
representing requests, clients, dilds; and mechanisms to lock and share data. By using bresiderand
serverside scripting together, it is possible to distribute computation between the client and server while
providing a customised user interface for a \Wetsed application.

Each Wé browser and server that supports ECMAScript supplies its own host environment, completing the
ECMAScript execution environment.

Language Overview
The following is an informal overview of ECMAScriptnot all parts of the language are described. This
overview is not part of the standard proper.

ECMAScript is objectbased: basic language and host facilities are provided by objects, and an
ECMAScript program is a cluster of communicating objects. An ECMASooipiect is an unordered
collection ofproperties each with zero or morattributesthat determine how each property can be dsed

Deleted: ReadOnly

ECMAScript code to change the value of the propégeys. Properties are containers that hold other [

Deleted: true

objects,primitive values or methods A primitive value is a member of one of the following baiittypes:
Undefined, Null, Boolean, Number, and String; an object is a member of the remaining biilttype [

Deleted: has no effect

Object; and a method is a function associated with an object via a property.

ECMAScript defines a collection djuilt-in objectsthat round out the definition of ECMAScript entities.
These builtin objects include th&lobal object, theObject object, theFunction object, theArray object,
the String object, theBoolean object, theNumber object, theMath object, theDate object, theRegExp
object the JSON object, the Decimal object, and the Error object&rror, EvalError , RangeError,
ReferenceError, SyntaxError, TypeError andURIError .

ECMAScript also defines a set of built operators ECMAScript operators include various unary
operations, multiplicative operatorsgdditive operators, bitwise shift operators, relational operators,

Deleted: thatmay not be, strictly speakinfynctions
or methods

equality operators, binary bitwise operators, binary logical operators, assignment operators, and the comma
operator.

ECMAScript syntax intentionally resembles Java syntB&MAScript synta is relaxed to enable it to

serve as an eagyp-use scripting language. For example, a variable is not required to have its type declared
nor are types associated with properties, and defined functions are not required to have their declarations
appear tetually before calls to them.

4.2.1 Objects

ECMAScript does not contaiglasses such as those in C++, Smalltalk, or Java, but rather, supports{

Deleted: proper

constructorswhich create objects by executing code that allocates storage for the objects and initialises
all or part of them by assigning initial values to their properd}’dsconstructors are objects, but not all

13 October 2008

objects are construct¢rsEach constructor has property namedﬁprototype
implementprototypebasedinheritance andshared propertiesObjects are created by using constructors

in new expressions; for examplaew String("A String")

String("A String")

ECMAScript supportgrototypebased inheritanceEverypbject created by constructor has an implici

creates a new String object. Invoking a
constructor without usingnew has consequences that depend on the constructor.ekample,
produces a primitive string, not an object.

reference(called theobj ect 6s) jpor ott lod ypal ue

Furthermore, a prototype may have a fmrl implicit reference to its prototype, and so on; this is called
the prototype chainWhen areference is made to a property in an object, that reference is to the property
of that name in the first object in the prototype chain that contains a property of that name. In othe[

b that is used to]

o fiprototype

OC poopesty

Comment [pL1]: Rationale:
Consider window.document. It is an object (type
document should
(does not support the [[Construct]] property.

b eonstrust

typography consistent.

{ Comment [pL2]: From AWB:Need to make
[Deleted: Prototype property

4
u-C

prototype, and every

Deleted: constructor has an associated

Deleted: that

words, first the object mentioned directly is examined for such a piypi that object contains the [Deleted: to the prototyp
named property, that is the property to which the reference refers; if that object does not contain tr[Deleted: associated with its constructor
named property, the prototype for that object is examined next; and so on.

In a classbased objeebriented languagenigeneral, state is carried by instances, methods are carried by
classes, and inheritance is only of structure and behaviour. In ECMAScript, the state and methods ¢
carried by objects, and structure, behaviour, and state are all inherited.

All objects that do not directly contain a particular property that their prototype contains share that
property and its value. The following diagram illustrates this:

implicit prototype link

explicit prototypeproperty

4 A
CF
prototype O IR .
p1 CFP1
o el o o | ; ofs
ql gl ql ql ql
a2 q2 g2 g2 q2

4.2.2

CF is a constructor (and also an object). Five objects have been created byewiegpressionscf;,
cf,, cfs, cfy, and c§. Each of these objects contains properties named ql and g2. The dashed line
represent the implicit prototype relationship; so, for exampled sf

CF, has two properties itself, named P1 and P2¢hvhare not visible to CF cf;, cf, cfs, cfy, or ck. The

| [Deleted: Cf,

‘ [Deleted: link

pr ot og Vhe eonstrisctorC F

property named CFP1 in GFs shared by ¢f cf,, cf;, cfs, and c§ (but not by CF), as are any properties

found in CFpbos

ihampthat ared rtot named 10 ¢2y @r €FP&. Notice thatet is no

implicit prototype link between CF ar@F,.

Unlike classbased object languages, properties can be added to objects dynamically by assigning valu

to them. That is, constructors are not required to name or assign values to all or any ofsthecteh

objectds properties. |

cfs by assigning a new value to the propertyOR,.

Voluntary UsagelLanguage Subseq
The ECMAScript Language recognizes the possibility that some users of the language may

restrict their usage ofomefeatures available in the language.
security, to avoid what they consider to be error proméufies,to get better error checkingy for other
reasons of their choosing. In support of this possibility, ECMAScript defines the concapage

n the

13 October 2008

above

d icfa, gf3, efzmcf,, andn e

Comment [pL3]: Needs to be reworked to

ish.nharmonnzeo

as

strict

They might do so in the interes{s of

subsetsof the language. A usage subset is simply a specified subset of the ECMAScript language. A
usagesubset may exclude specific syntactic and semantic features of the full ECMAScript language and
may identify additional error conditions that could be reported by throwing error exceptions in situations
that are not specified as errors by the full language

A usage subset is not intended as a means of enabling implementations of subsets of ECMAScript. To
conform to this specification, an ECMAScript implementation must implement the full language as
defined by this specification. Instead, a usage subssitriply a way for a user of the language to state

their intent to voluntarily restrict themselves so a well specified subset of the language. Implementations
of ECMAScript may treat such statements of intent as a request from a user that they would like the
implementation to help them ensure that they have actually adhered to the limitations of a subset. An
implementatiorshouldhonaur such a request by reporting violat.i
restrictions and by detecting any additionairor conditions and throwing the appropriate error
exception. Because usage subsets are selected at the level of a syntactic program unit they may only
impose restriction that would have local effect within such a syntactic program unit. They may not
redrict the ECMAScript semantics that must operate consistently across all program units.

With one exception, an ECMAScript program that is voduily limited to a usage subset and which
executes without err or u hbehave iégnticaly it exdristecwitiiost omamys t r i c
usage subset restrictions. The exception is any situation where the operation of such a program depends
upon the actual occurrence and subsequent handling of additional error conditions that are part of the
subset.

ECMAScript defines a single usage subset, nageatious which implementationsnust support to
be in compliance with this specification. Other usage subsets may be defined by future versions of the
ECMAScript language

4.3 Definitions
The following are informbdefinitions of key terms associated with ECMAScript.
4.3.1 Type
A typeis a set of data values.
4.3.2 Primitive Value

A primitive valueis a member of one of the typéidefined, Null, Boolean Number, Decimal or
String. A primitive value is a datum thats represented directly at the lowest level of the language
implementation.

4.3.3 Object

An objectis a member of the typ@bject. It is a collection of properties. Deleted: Itis an unordered collection of propertie
each of which contains a primitive value, atjeor
4.3.4 Constructor function. A function stored in a property of an obje
A constructor is a Function object that creates and initialises objeEle value of a costructord s called a method.
fiprototype O property is aprototype object that is used to implement inheritance and shared [Deleted: Each constructor has an associated
properties.

4.3.5 Prototype
A prototypeis an object used to implement structure, state, and behaviour inheritance in ECMAScript.
When a constructor creates an object, thgt ebc t i mplicitly r efiaogpmec &s t he
propertyf or the purpose of resol vi ng fpatotypee roprygpertyeah e r { Deleted: associated prototype
be referenced by the program expressmmstructor .proto type , and properties added to an
objectds prototype are shared, through inherit a|£|

4.3.6 Native Object

A native objectis any object supplied by an ECMAScript implementation independent of the host
environment. Staratd native objects are defined in this specification. Some native objects arénbuilt
others may be constructed during the course of execution of an ECMAScript program.

4.3.7 Built-in Object

A built-in objectis any object supplied by an ECMAScript impientation, independent of the host
environment, which is present at the start of the execution of an ECMAScript program. Standair built

Deleted: associated prototype
CE

13 October 2008

4.3.8

4.3.9

4.3.10

4.3.11

4.3.12

4.3.13

4.3.14

4.3.15

4.3.16

4.3.17

4.3.18

4.3.19

4.3.20

4.3.21

objects are defined in this specification, and an ECMAScript implementation may specify and defint
others. Every buttin object is a native object built-in constructoris abuilt-in object that is also
constructor.

Host Object

A host objectis any object supplied by the host environment to complete the execution environment o
ECMAScript. Any object that is not native is a host object.

Undefined Value

Theundefined valueis a primitive value used when a variable has not been assigreddea

Undefined Type
The typeUndefined has exactly one value, calleshdefined.

Null Value
Thenull value is a primitive value that represents the null, empty, or-existent reference.

Null Type
The typeNull has exactly one valyeallednull.

Boolean Value
A boolean valueis a member of the typBooleanand is one of two unique valudsye andfalse

Boolean Type

The typeBooleanrepresents a logical entity and consists of exactly two unique values. One is callec
true and the other is callefhlse

Boolean Object

A Boolean objects a member of the typ®bject and is an instance of the built Boolean object. That

is, a Boolean object is created by using the Boolean constructor niewaexpression, supplying
boolean as an argument. The resulting object has an implicit (unnamed) property that is the boolean.
Boolean object can be coerced to a boolean value.

String Value

A string valueis a member of the typ8tring and is a finite ordered sequenciezero or more 16it
unsigned integer values.

NOTE

Although each value usually represents a singlebitunit of UTR16 text, the language does not place
any restrictions or requirements on the values except that they-b& L@signed integers.

String Type

The typeString is the set of all string values.

String Object

A String objectis a member of the typ@®bject and is an instance of the buift String object. That is, a
String object is created by using the String constructor imew expression, supplying a string as an
argument. The resulting object has an implicit (unnamed) property that is the string. A String object ca
be coerced to a string value by calling the String constructor as a function (15.5.1).

Number Value

A number valueis a member of the typdumber and is a direct representation of a number.

Number Type

The typeNumber is a set of values representing numbers. In ECMAScript, the set of values represent
the doubleprecision 64bit format IEEE 754 valuesiic | udi ng t h-eNsmplkeei @l (RANNY)
positive infinity, and negative infinity.

Number Object

A Number objectis a member of the typ®bject and is an instance of the buitt Number object. That
is, a Number object is created by using the Number constructon@waexpression, supplying a number

13 October 2008

as an argument. The resulting object has an implicit (unnamed) property that is the nunhaenbAr
object can be coerced to a number value by calling the Number constructor as a function (15.7.1).

4.3.22 Infinity
The primitive valuenfinity represents the positive infinite number value. This value is a member of the
Number type.

4.3.23 NaN
The pimitive valueNaNr epr esents t he set-aNdUmbleEEEE vSatlaunedsa.r dT hfiiN
member of the Number type.

4.3.24 Function
A function is a member of the typ®bject that may be invoked as a subroutime addition to its named
properties, adnction contain®xecutablecode and state that determine how it behaves when invoked. A
funct i on 6a maynatbewrittenin ECMAScript.

4.3.25 Property
A propertyis an association between a name and a value. Depending upon the form of the property the
value may beepresentectitherdirectly asa data value (a primitive value, an object, or a function) or
indirectly bya pair ofaccessofunctions.

4.3.26 Method
A methodis a function that is the value of a property.

4.3.27 Attribute
An attribute is an internal value that defines some characteristic of a property.

4.3.288 Own Property
An own property of an object is a property that is direptlgsent orthat object

4.3.9 Inherited Property
An inherited propertyis a property of an object that is not one of its own properties but is a property
(either own or inherited) of the objectds prototyp
4.330 Built-in Method
A built-in methodis any method supplied by an ECMAScript implementation, independent of the host
environment. Standard builh methods are defined in this specification, and an ECMAScript
implementation may specify and define others.
4.3.31 ' Decimal Value
A decimal valueis a member of the typBecimal and is a direct representation of a number.

4.3.2 Decimal Type
The typeDecimal is a set of values representing numbers. In ECMAScript, the set of values represents
the quadprecision 128bit format IEEE 7542008 valuesincudi ng t he-aBlpmbérnd @{GNal
values, positive infinities, and negative infinities.

4.3.33 Decimal Object
A Decimal objectis a member of the typ®bject and is an instance of the built Number object. That
is, a Decimal object is created by using the Decimal constructor meva expression, supplying a
number as an argument. The resulting object has an implicit (unnamed) property that is the number. A
Decimal object can be coerced to a decimal value by calling the Decimal constructor as a function
(15.7.1).

13 October 2008

5 Notational Conventions

5.1

5.1.1

5.1.2

5.1.3

5.1.4

Syntactic and Lexical Grammars

This section describes the contdrte grammars used in this specification to defihe texical and
syntactic structure of an ECMAScript program.

Context-Free Grammars

A contextfree grammarconsists of a number gfroductions Each production has an abstract symbol
called anonterminalas itsleft-hand side and a sequence of zere more nonterminal anderminal
symbols as itgight-hand side For each grammar, the terminal symbols are drawn from a specified
alphabet.

Starting from a sentence consisting of a single distinguished nonterminal, callgdatheymbal a given
contextfree grammar specifies language namely, the (perhaps infinite) set of possible sequences of
terminal symbols that can result from repeatedly replacing any nonterminal in the sequence with a rigr
hand side of a production for which the nonterminal isléffiehand side.

The Lexical and RegExp Grammars

A lexical grammarfor ECMAScript is given in clause 7. This grammar has as its terminal symbols the
characters of the Unicode character set. It defines a set of productions, starting from the gadl symk
InputElementDivor InputElementRegExpthat describe how sequences of Unicode characters are
translated into a sequence of input elements.

Input elements other than white space and comments form the terminal symbols for the syntact
grammar for ECMASdpt and are called ECMAScriptokens These tokens are the reserved words,
identifiers, literals, and punctuators of the ECMAScript language. Moreover, line terminators, althougt
not considered to be tokens, also become part of the stream of input elendrgside the process of

not appear in the stream of input elements for the syntactic grammpliul_.ineComment(that is, a
comment of /*éeW® fremmaridl ess of whet her it spans |
discarded if it contains no line terminator; but if MultiLineCommentcontains one or more line
terminators, then it is replaced by a single line terminator, which becomes pidm sfream of input
elements for the syntactic grammar.

A RegExp grammafor ECMAScript is given in 15.10. This grammar also has as its terminal symbols
the characters of the Unicode character set. It defines a set of productions, starting from tlyengohl s
Pattern that describe how sequences of Unicode characters are translated into regular expressi
patterns.

Producti ons of the Il exical and RegExp gr:atnmass
separating punctuation. The lexical and RegEsangnars share some productions.

The Numeric String Grammar

A second grammar is used for translating strings into numeric values. This grammar is similar to the pe
of the lexical grammar having to do with numeric literals and has as its termindlosythe characters
of the Unicode character set. This grammar appears in 9.3.1.

Productions of t he numeric string gr ammard arse
punctuation.

The Syntactic Grammar

The syntactic grammarfor ECMAScript is gven in clauses 11, 12, 13 and 14. This grammar has
ECMAScript tokens defined by the lexical grammar as its terminal symbols (5.1.2). It defines a set o
productions, starting from the goal symhb@togram that describe how sequences of tokens can form
syntactically correct ECMAScript programs.

When a stream of Unicode characters is to be parsed as an ECMAScript program, it is first converted tc
stream of input elements by repeated application of the lexical grammar; this stream of input elements
then mrsed by a single application of the syntax grammar. The program is syntactically in error if the
tokens in the stream of input elements cannot be parsed as a single instance of the goal nontermi
Program with no tokens left over.

13 October 2008

[

Deleted:

785

Productions of thesynact i ¢ gr ammar ar e di st i ngouiassh epdu nbcyt uhaatvii o

The syntactic grammar as presented in sectjinsl2, 13 and 14s actually not a complete account of [Deleted: 0, 0,0and0

which token sequences are accepted as correct ECMAScript programs. Certain additional token
sequences are also accepted, namely, those that would be described by the grammar if only semicolons
were added to the sequmEnin certain places (such as before line terminator characters). Furthermore,
certain token sequences that are described by the grammar are not considered acceptable if a terminator
character appears in certain fiawkwardo places.

5.1.5 Grammar Notation

Teminal symbols of the lexical and string grammars, and some of the terminal symbols of the syntactic
grammar, are shown ifixed width font, both in the productions of the grammars and throughout
this specification whenever the text directly refers to sadierminal symbol. These are to appear in a
program exactly as written. All nonterminal characters specified in this way are to be understood as the
appropriate Unicode character from the ASCII range, as opposed to any dooikémg characters from
otherUnicode ranges.

Nonterminal symbols are shown italic type. The definition of a nonterminal is introduced by the name

of the nonterminal being defined followed by one or more colons. (The number of colons indicates to
which grammar the production bela®y One or more alternative rightand sides for the nonterminal
then follow on succeeding lines. For example, the syntactic definition:

WhileStatement Deleted: WithStatement

while (Expressior) Statement

Deleted: WithStatement

,,,,,,,,,,,,,,,,,,,,,, [Deleted: with
token, followed by arExpression followed by a right parenthesis token, followed bg@@tementThe %

Deleted: with

occurrences oExpressiorand Statemenare themselves nonterminals. As another example, the syntactic
definition:

ArgumentList

AssignmentExpression
ArgumentList, AssignmentExpression

states that arArgumentListmay represent either a singhssignmentExpressioar an ArgumentList
followed by a comma, followed by amssignmentExpressionThis definition of ArgumentListis
recursive that is, it is defined in terms of itself. The result is thatAagumentListmay contain any
positive number of arguments, separated by commas, where each emtguErpression is an
AssignmentExpressiosuch recursive definitions of nonterminals are common.

The subscrioptd,edwhiudh imayl appear after a tomionali nal
symbol The alternative containing the optional symbotually specifies two righhand sides, one that
omits the optional element and one that includes it. This means that:

VariableDeclaration:
Identifier Initialisery

is a convenient abbreviation for:

VariableDeclaration:
Identifier
Identifier Initialiser

and that:

IterationStatement
for (ExpressionNolg, ; Expressiog, ; Expressiog;) Statement

is a convenient abbreviation for:

IterationStatement
for (; Expressiog, ; Expressiop,) Statement
for (ExpressionNoln; Expressiop, ; Expressiog,) Statement

which in turn is an abbreviation for:

13 October 2008

IterationStatement
for (;; Expressiogy) Statement
for (; Expression; Expressiog,) Statement
for (ExpressionNoln; ; Expressiog,) Statement

for (ExpressionNoln; Expression; Expressiog,) Statement

which in turn is an abbreviation for:

IterationStatement

for (;;) Statement

for (;; Expression) Statement

for (; Expression;) Statement

for (; Expression; Expression) Statement

for (ExpressionNoln;) Statement

for (ExpressionNoln; Expression) Statement

for (ExpressionNoln Expression;) Statement

for (ExpressionNoln Expression; Expression) Statement

so the nontermindterationStatemenactually has eight alternative rightand sides.

I f t he [eppl0 aad gp dar s -hansl sidetoea produgtion, it indicates that the production's
right-hand side contains no terminals or nonterminals.

I f t h e [lopkhhéadezss€l0 flap pear s -hamd sitehod a prodgction, it indicates that the
productionmay not be used if the immediately following input terminal is a member of the geen
Thesetcan be written as a list of terminals enclosed in curly braces. For convenience, the set can also
written as a nonterminal, in which case it represengssit of all terminals to which that nonterminal
could expand. For example, given the definitions

DecimalDigit:: one of
0123456789

DecimalDigits::
DecimalDigit
DecimalDigits DecimalDigit

the definition

LookaheadExample
N [lookaheads {1, 3,5, 7, 9}] DecimalDigits
DecimalDigit [lookaheade DecimalDigit]

matches either the letterfollowed by one or more decimal digits the first of which is even, or a decimal
digit not followed by another decimal digit.

I f t h e h@uUneTansngorhdiep ap p ear s -hamd sidehoé a pradgction of the syntactic
grammar, it indicates that the production & restricted production it may not be used if a
LineTerminatoroccurs in the input stream at the indicated position. Fomgke, the production:

ReturnStatement
return [no LineTerminatothere] EXpreSSiOQm)

indicates that the production may not be used IfimeTerminatoroccurs in the program between the
return token and thé&xpression

Unless the presence of kineTermirator is forbidden by a restricted production, any number of
occurrences ofineTerminatormay appear between any two consecutive tokens in the stream of input
elements without affecting the syntactic acceptability of the program.

When t heonevobrfalew thie colon(s) in a grammar definition, they signify that each of the
terminal symbols on the following line or lines is an alternative definition. For example, the lexical
grammar for ECMAScript contains the production:

13 October 2008

- 10 -

NonZeroDigit:: one of
123456789

which is merely a convenient abbreviation for:

NonZeroDigit::, [Deleted: one of

1

Co~NoOUThWN

When an alternative in a production of the lexical grammar or the numeric string grammar appears to be
a multi-character token, it represents thesence of characters that would make up such a token.

The righthand side of a production may specify that certain expansions are not permitted by using the
phr abstemotdi and then indicating the expansions to be
Identifier ::

IdentifierNamebut not ReservedWord

means that the nonterminkdentifier may be replaced by any sequence of characters that could replace
IdentifierNameprovided that the same sequence of characters could not répdseevedWord

Finally, a fav nonterminal symbols are described by a descriptive phrase in roman type in cases where it
would be impractical to list all the alternatives:

SourceCharacter.

any Unicode character

Algorithm Conventions

The specification often uses a numbered lisspecify steps in an algorithm. These algorithms are used to
clarify semantics. In practice, there may be more efficient algorithms available to implement a given
feature.

When an algorithm is to produce x Vv allteiedicatesthatnther e s ul
result of the algorithm is the value wfand that the algorithm should terminate. The notation Reguk(
used as short handnof.orTxyfiptehfe urseesdu lats osfh osxdtehpand f or At |

For clarity of expressiomalgorithm steps may be subdivided into sequential substeps. Substeps are indented
and may themselves be further divided into indented substeps. Outline numbering conventions are used to
identify substeps with the first level of substeps labeled with tovase alphabetic characters and the
second level of substeps labelled with lower case roman numerals. If more than three levels are required
these rules repeat with the fourth level using numeric labels. For example:

1. Top-level step

a. Substep.

b. Substep
i. Subsubstep.
ii. Subsubstep.

1. Subsubsubstep
a. Subsubsubsubstep

A step or substep may be written as a predicate that conditions its substeihés dase, the substeps are
only applied if the predicate i s tr ueisapreflicate thatisep o1
the negation of the preceding predicaetydollowddebpa a't t
parenthesized step or substep labehtiiés a predicate that is the negation of that labelled predicate.

13 October 2008

-11 -

A step my specify théerative application of its substeps.

Mathematical operations such as addition, subtraction, negation, multiplication, division, and tht
mathematical functions defined later in this section should always be understood as computing exs
mathematical redts on mathematical real numbers, which do not include infinities and do not include a
negative zero that is distinguished from positive zero. Algorithms in this standard that model ffo@itihg
arithmetic include explicit steps, where necessary, to leantfinities and signed zero and to perform
rounding. If a mathematical operation or function is applied to a flogimigt number, it should be
understood as being applied to the exact mathematical value represented by that-floatingumber;

such afloating-point number must be finite, and if it # or —0 then the corresponding mathematical value

is simply 0.

The mathematical function abg(yields the absolute value &f which is—x if x is negative (less than zero)
and otherwise ix itself.

The mathematical function sigk(yields 1 ifx is positive and-1 if x is negative. The sign function is not
used in this standard for cases wheis zero.

T he n o kmadiloyiny iffust be finite and nonzero) computes a vddwé the same sign as(or zero)
such that ab&j < abs§) andx—k = q > y for some integeq.

The mathematical function floot) yields the largest integer (closest to positive infinity) that is not larger
thanx.

NOTE

floor(x) = x—(x modulo 1).

If an algorithm is definedtdt hr ow an exceptionbo, execution of t
returned. The calling algorithms are also terminated, until an algorithm step is reached that explicitly dea
with the exception, using teg mi mrodwmgé&o.su@rhc e ss WidH

has been encountered the exception is no longer considered to have occurred.
Source Text

ECMAScript source text is represented as a sequence of characters in the Unicode character encoding, ver

Deleted: 2.1

ECMAScript implementations are not required to performy aormalisation of text, or behave as though they
were performing normalisation of text, themselves.

SourceCharacter.
any Unicode character

ECMAScript source text can contain any of the Unicode characters. All Unicode white space characters &

Latin Unicode characters are allowed in identifiers, string literals, regular expression literals and comments.

Deleted: , and all Unicode line/paragraph
separators

Throughout the rest of this document, the phrase
to a 16bit unsigned value used to represent a singlebit6unit of UTF1 6 t ext . The phr
charactero wildl b eract Imguidtic brdypagrapghieal unit represemted by & single Unicode

scalar value (which may be longer than 16 bits and thus may be represented by more than one code poi
This only refers to entities represented by single Unicode scalar values: thmmems of a combining
character sequence are stildl individual AUni code
sequence as a single character.

In string literals, regular expression literals and identifiers, any character (code poinglsnalye expressed

as a Unicode escape sequence consisting of six characters, namplys four hexadecimal digits. Within a
comment, such an escape sequence is effectively ignored as part of the comment. Within a string literal
regular expression ktral, the Unicode escape sequence contributes one character to the value of the litere
Within an identifier, the escape sequence contributes one character to the identifier.

NOTE 1

13 October 2008

-12 -

Al t hough this document someti mesfahdreact erod awifitthriamn sa
the 16bit unsigned integer that is the UTE6 encoding of that character, there is actually no transformation

because a fAcharactero within a f s-bitunsiggedvalus. actual |y

NOTE 2

ECMASCcipt differs from the Java programming language in the behaviour of Unicode escape sequences. In a
Java program, if the Unicode escape sequeng@00A, for example, occurs within a singlmme comment, it

is interpreted as a line terminator (Unicode charact0A is line feed) and therefore the next character is

not part of the comment. Similarly, if the Unicode escape sequar@@0A occurs within a &ing literal in a

Java program, it is likewise interpreted as a line terminator, which is not allowed within a string ditenal

must write\ n instead of\ uOOOA to cause a line feed to be part of the string value of a string literal. In an
ECMAScript prgram, a Unicode escape sequence occurring within a comment is never interpreted and
therefore cannot contribute to termination of the comment. Similarly, a Unicode escape sequence occurring
within a string literal in an ECMAScript program always contribsite character to the string value of the
literal and is never interpreted as a line terminator or as a quote mark that might terminate the string literal.

7 Lexical Conventions
The source text of an ECMAScript program is first converted into a sequenio@uif elements, which are
either tokens, line terminators, comments, or white space. The source text is scanned from left to right,
repeatedly taking the longest possible sequence of characters as the next input element.
There are two goal symbols for thexical grammar. ThénputElementDivsymbol is used in those syntactic
grammar contexts where a division/)(or divisionassignment /€) operator is permitted. The
InputElementRegExpymbol is used in other syntactic grammar contexts.
Note that contexts ést in the syntactic grammar where both a division arf@egularExpressionLiteraare
permitted by the syntactic grammar; however, since the lexical grammar usdaptit&lementDivgoal
symbol in such cases, the opening slash is not recognised as stant@gylar expression literal in such a
context. As a workaround, one may enclose the regular expression literal in parentheses.
Syntax
InputElementDiv:
WhiteSpace
LineTerminator
Comment
Token
DivPunctuator
InputElementRegExp
WhiteSpace
LineTerminator
Comment
Token

7.1

7.2

RegularExpressionLiteral

Unicode Format-Control Characters

The Unicode format ont r ol characters (i.e., the characters
Database such asEFT-TO-RIGHT MARK Or RIGHT-TO-LEFT MARK) are control codesised to control the
formatting of a range of text in the absence of higleeel protocols for this (such as mauwk languages).

It is useful to allow these in source text to facilitate editing and display.

The format control characteysay be ugdjn identifiers, within comments, and within string literals and [Deleted: can occur

regular expression literals Deleted: anywhere in the source text of an

H ECMAScript program. These characters are remov
White Space from the source text before applying the lexical
White space characterseaused to improve source text readability and to separate tokens (indivisible| grammar. Since these characters are removed bef
lexical units) from each other, but are otherwise insignificant. White space may occur between any t processing string and regular expression literals, o

el . . L . must use aJnicode escape sequence (see 7.6) to
tokens, and may occur within strings (where they are considered signitibardcters forming part of the include a Unicode formatontrol character inside a

literal string value), but cannot appear within any other kind of token. string or regular expression literal

13 October 2008

- 13-

The following characters are considered to be white space:

Code Point Value Name Formal Name

\ u0009 Tab <TAB>

\ u000B Vertical Tab <VT>

\ u000C FormFeed <FF>

\ u0020 Space <SP>

\ u0085 Next Line <NEL>

\ UOOAO No-break space <NBSP>

\ u200B Zero width space <ZWSP>

\ UFEFF Byte Order Mark <BOM>

Ot her cat eg Any other Unicode <Usp>
Aspace sepa

ECMAScript implementations must recognize afl the white space characters defined in Unicode 3.0.
Later editions of the Unicode Standard may define other white space characters. ECMAScrif
implementations may recognize white space characters from later editions of the Unicode Standard.

Syntax

Whiteace::
<TAB>
<VT>
<FF>
<SP>
<NEL> |
<NBSP>
<ZWSP>
<BOM>
<UspP>

7.3 Line Terminators

Like white space characters, line terminator characters are used to improve source text readability and
separate tokens (indivisible lexical units) from each other. However, unlike white space characters, lir
terminators have some influence over théadngour of the syntactic grammar. In general, line terminators

may occur between any two tokens, but there are a few places where they are forbidden by the syntac

grammar. A line terminator cannot occur within any tokexgept that lie terminators that are preceded hyy [Deleted: not even a string

an escape sequence may occur within a string literal tokieme terminators also affect the process pf

automatic semicolon insertiof.Q). [Deleted: 7.8.5

Line terminators are included in the set of white space characters thaatrked by thés class in regular
expressions.

The following characters are considered to be line terminators:

Code Point Value Name Formal Name
\ uOOOA Line Feed <LF>
\ u000D Carriage Return <CR>
\ u2028 Line separator <LS>
\ u2029 Paragraph separator <PS>

13 October 2008

14 -

Only the characters in the above table aeated as line terminators. Other new line or line breaking
characters are treated as white space but not as line terminBbersharacter sequence <CR><LF>
is treated as a single line terminator.

Syntax

LineTerminator.:
<LF>
<CR>
<LS>
<PS>
<CR><LF>

7.4 Comments
Description

Comments can be either single or muliltie. Multi-line comments cannot nest.

Because a singiBne comment can contain any character exceptn@Terminatorcharacter, and because

of the general rule that a token is always as long as possible, a-Bmgleomment always consists of all
characters from th# marker to the end of the line. However, th@eTerminatorat the end of the line is

not consideredo be part of the singléne comment; it is recognised separately by the lexical grammar and
becomes part of the stream of input elements for the syntactic grammar. This point is very important,
because it implies that the presence or absence of simgecomments does not affect the process of
automatic semicolon insertion (7.9).

Comments behave like white space and are discarded except tha#uitinineCommentcontains a line
terminator character, then the entire comment is considered td_bee&eminator for purposes of parsing
by the syntactic grammar.

Syntax

Comment:
MultiLineComment
SingleLineComment

MultiLineComment:
/* MultiLineCommentChagsg; */

MultiLineCommentChars
MultiLineNotAsteriskChar MultiLineCommentChgys
* PostAsteriskComemtChargp,

PostAsteriskCommentChars
MultiLineNotForwardSlashOrAsteriskChar MultiLineCommentChars
* PostAsteriskCommentChags

MultiLineNotAsteriskChar:
SourceCharactebut not asterisk*

MultiLineNotForwardSlashOrAsteriskChar
SourceCharactebut not forward-slash/ or asterisk*

SingleLineComment
/I SingleLineCommentChays

SingleLineCommentChars
SingleLineCommentChaingleLineCommentChags

SingleLineCommentChar
SourceCharactebut not LineTerminator

13 October 2008

- 15-

7.5 Tokens
Syntax
Token::
Reservedword
Identifier
IdentifierNamé
Punctuator
NumericLiteral
StringLiteral
7.5.1 Reserved Words
Description
Reserved words cannot be used as identifiers.
Syntax
ReservedWord
Keyword
FutureReservedWord
NullLiteral
BooleanLiteral
7.5.2 Keywords
The following tokens are ECMAScript keywords and may not be used as identifiers in ECMAScript
programs.
Syntax
Keyword:: one of
Jpreak eglse new ~var
case finally return void
catch for switch while
continue function this with
default if throw debugger |
delete in try const
do instanceof typeof
7.5.3 Future Reserved Words
The following words are used as keywords in proposed extensions and are therefore reserved to allow
the possibility of future adoption of those extensions.
Syntax

FutureResrvedWord: one of

7.6

abstract enum int short
boolean export interface static
byte extends long super
char final native synchronized
class float package throws
. goto private transient ‘
. implements | protected volatile
double import public
Identifiers
Description

Identifiers are interpreted according to the grammar given in Section 5.16 gfrticede standard, with|

some small modifications. This grammar is based on both normative and informative character categori

specified by the Unicod8tandard The characters in the specified categories in ver3iorf the Unicode
standard must be treated as in those categories by all conforming ECMAScript implementations

13 October 2008

Comment [pL4]: From AWB:
ReservedWord and Identifier can be deleted as
are |dentifierNames.

[Deleted: Break

Comment [pL5]: Specify thaits normative
semantics is simply a noop, but advise in an an
that it causes a breakpoint when run under a
debugger.

Comment [pL6]: From AWB:
Does it get defined as a statement or as somett
that can occur in an

as a f geatydfthe giblpmlrobjert accomp
the same thing without reserving it.

Deleted: const

Comment [pL7]: This table needs to be repac

to get rid of the holes.

Deleted: upcoming version 3.0 of the

Deleted: standard

f
[Deleted: debugger
(
[
[Deleted: 2.1

Deleted: ; however, conforming ECMAScri
implementations may allow additional legal
identifier characters based on the category
assignment from later versis of Unicode

- 16 -

This standard specifiegpecific character additionhe dollar sign$) and the underscore (_) are permitted
anywhere in an identifigr.

Deleted: one departure from the grammar given ir
Unicode standard

Unicode escape sequences are also permitted in identifiers, where they contribute a single character to
identifier, as computed by the CV of thénicodeEscapeSequendsee 7.8.4). Thd preceding the

Deleted: The dollar sign is intended for use only i
mechanically generated code.

UnicodeEscapeSequenaes not contribute a character to the identifier.UAicodeEscapeSequence
cannot be used to put a character into an identifier that would otherwise be illegal. In other words, if a
UnicodeEscapeSequensequence were replaced by UsicodeEscapeSequesis CV, the result must still

be a validldentifier that has the exact same sequence of characters as the oldgimidier.

Two identifiers that are canonically equivalent according to the Unicode standandtagual unless they
are represented by ehexact same sequence of code points (in other words, conforming ECMAScript

implementations are only required to do bitwise comparison on identifiers). The intent is that the incoming
source text has been converted to normalised form C before it reaehesntipiler.

ECMAScript implementations may recognize identifier characters defined in later editions of the Unicode
Standard. If portability is a concern, programmers should only employ identifier characters defined in

Unicode 3.0.

Syntax
Identifier ::
IdentifierNamebut not ReservedWord

IdentifierName ::
IdentifierStart
IdentifierName IdentifierPart

IdentifierStart ::
UnicodeLetter
$

\ UnicodeEscapeSequence

IdentifierPart ::
IdentifierStart
UnicodeCombiningMark
UnicodeDigit
UnicodeConnectorPunctuation
\ UnicodeEscapeSequence

UnicodeLetter

any <character in the Unicode categories fAUppercase |

AModi fier letter (Lm)o, fAOther |l etter (Lo)o, or fiLette
UnicodeCombiningMark

anychara@r i n the UnicegdactagemarkesMiNOnor fACombining sp.
UnicodeDigit

any character in the Unicode category fdADeci mal number
UnicodeConnectorPunctuation

any character in the Unicode category fAConnector punct
UnicodeEscapeSequence

see 7.8.4.

HexDigit:: one of
0123456789abcdefABCDETF

13 October 2008

-17 -

7.7 Punctuators

Syntax
Punctuator:: one of
{ } () []
, y < > <=
>= == 1= === |I==
+ - * % ++ -
<< >> >>> & | N
! ~ && I ?
= += -= *= %= <<=
>>= >>>= &= |: A=

DivPunctuator:: one of
/=

7.8 Literals

Syntax

Literal ::
NullLiteral
BooleanLiteral
NumericLiteral
StringLiteral

7.8.1 Null Literals

Syntax
NullLiteral ::
null

Semantics
The value of the null literahull is the sole value of the Null type, namelyll.

7.8.2 Boolean Literals

Syntax

BooleanLiteral:
true
false

Semantics
The value of the Boolean litertue is a value of the Boolean type, nameélye.
The value of the Boolean literédlse is a value of the Boolean type, namédyse.

7.8.3 Numeric Literals
Syntax
NumericLiteral::

DecimallLiteral
HexlIntegerLiteral

DecimallLiteral::
DecimalintegerLiteral DecimalDigits, ExponentPag;
. DecimalDigits ExponentPay
DecimalintegerLiteal ExponentPag,

13 October 2008

- 18-

DecimalintegerLiterat:
0
NonZeroDigit DecimalDigitg;

DecimalDigits::
DecimalDigit
DecimalDigits DecimalDigit

DecimalDigit:: one of
0123456789

NonZeroDigit:: one of
123456789

ExponentPart:
Exponetindicator Signedinteger

Exponentindicator: one of
e E

SignedInteger:
DecimalDigits
+ DecimalDigits
- DecimalDigits

HexlIntegerLiteral:
0x HexDigit
0X HexDigit
HexIntegerLiteral HexDigit

The source character immediately following NumericLiteral must not be anldentifierStart or
DecimalDigit

NOTE
For example:

3in
is an error and not the two input elemetandin.

Semantics

A numeric literal stands for a value of the Number type. This value is determined in two steps: first, a
mathematical vale (MV) is derived from the literal; second, this mathematical value is rounded as
described below.

The MV of NumericLiteral:: DecimalLiteralis the MV ofDecimalLiteral

The MV of NumericLiteral:: HexIntegerLiterais the MV ofHexIntegerLiteral

The MV of DecimalLiteral:: DecimalintegerLiteral is the MV ofDecimalintegerLiteral

The MV of DecimalLiteral:: DecimallntegerLiteral DecimalDigitsis the MV of DecimallntegerLiteralplus
(the MV of DecimalDigitstimes 10"), wheren is the number of charactersirecimalDigit.

The MV of DecimalLiteral:: DecimallntegerLiteral ExponentParis the MV of DecimallntegerLiterakimes
1C°, whereeis the MV of ExponentPart

The MV of DecimalLiteral :: DecimallntegerLiteral . DecimalDigts ExponentPartis (the MV of
DecimallntegerLiteralplus (the MV ofDecimalDigitstimes 10") times 16, wheren is the number of
characters ifDecimalDigits andeis the MV of ExponentPart

The MV of DecimalLiteral::. DecimalDigitsis the MV of DecimalDgits times 16", wheren is the number of
characters ifDecimalDigits.

The MV of DecimalLiteral::. DecimalDigits ExponentPais the MV of DecimalDigitstimes 16", wheren is
the number of characters ecimalDigits andeis the MV ofExponentPart

13 October 2008

7.8.4

Syntax

- 19-

The MV of DecimalLiteral:: DecimallntegerLiterais the MV of DecimallntegerLiteral

The MV of DecimalLiteral :: DecimallntegerLiteral ExponentPais the MV of DecimalintegerLiteraltimes
10°, whereeis the MV of ExponentPart

The MV of DecimallntegerLtieral :: 0 is 0.

The MV of DecimalintegerLiteral:: NonZeroDigitDecimalDigitsis (the MV of NonZeroDigittimes 10) plus
the MV of DecimalDigits wheren is the number of charactersrecimalDigits

: DecimalDigitis the MV of DecimalDigit

: DecimalDigitsDecimalDigitis (the MV ofDecimalDigitstimes 10) plus the MV of

The MV of DecimalDigits:
The MV of DecimalDigits:

DecimalDigit

The MV of ExponentPart:
The MV of Signedinteger:
The MV of Signedinteger:
The MV of Signedinteger:

The MV of DecimalDigit::
The MV of DecimalDigit::
The MV of DecimalDigit::
The MV of DecimalDigit::
The MV of DecimalDigit::
The MV of DecimalDigit::
The MV of DecimalDigit::
The MV of DecimalDigit::
The MV of DecimalDigit::
The MV of DecimalDigit::
The MV of HexDigit ::
The MV of HexDigit ::
The MV of HexDigit ::
The MV of HexDigit ::
The MV of HexDigit ::

a or of HexDigit ::
b or of HexDigit ::
c or of HexDigit ::
d or of HexDigit :
e or of HexDigit ::
The MV of HexDigit:: f or of HexDigit ::

Exponentindicator Signedintegirthe MV ofSignedinteger
DecimalOgits is the MV of DecimalDigits

+ DecimalDigitsis the MV of DecimalDigits

- DecimalDigitsis the negative of the MV ddecimalDigits
0 or of HexDigit:: 0 is 0.

1 or of NonZeroDigit:
2 or of NonZeroDigit:
3 or of NonZeroDigit:
4 or of NonZeroDigit:
5 or of NonZeroDigit:
6 or of NonZeroDigit:
7 or of NonZeroDigit:
8 or of NonZeroDigit:
9 or of NonZeroDigit:
Ais 10.
Bis 11.
Cis 12.
Dis 13.
Eis 14.
Fis 15.

: 1 or of HexDigit:: 1 is 1.
: 2 or of HexDigit:: 2 is 2.
: 3 or of HexDigit:: 3 is 3.
: 4 or of HexDigit:: 4 is 4.
: 5 or of HexDigit:: 5 is 5.
: 6 or of HexDigit:: 6 is 6.
: 7 or of HexDigit:: 7 is 7.
: 8 or of HexDigit:: 8 is 8.
: 9 or of HexDigit:: 9 is 9.

The MV of HexIntegerLieral :: Ox HexDigitis the MV ofHexDigit
The MV of HexIntegerLiterak: 0X HexDigitis the MV ofHexDigit
The MV of HexIntegerLiteral:: HexIntegerLiteraHexDigitis (the MV of HexIntegerLiteraltimes 16) plus the

MV of HexDigit

Once the exact MV for a numeric literal has been determined, it is then rounded to a value of the Numb
type. If the MV is 0, then the rounded value+8; otherwise, the rounded value must the number
value for the MV (in the sense defined in 8.5),agd the literal is ®ecimallLiteraland the literal has
more than 20 significant digits, in which case the number value may be either the number value for tt
MV of a literal produced by replacing each significant digit after the 20th withdégit or thenumber
value for the MV of a literal produced by replacing each significant digit after the 20th Withgit and

then incrementing the literal at the 20th significant digit position. A digsigsificantif it is not part of

an ExponentPariand

itisnotO; or

there is a nonzero digit to its left and there is a nonzero digit, not iBxpenentPartto its right.

String Literals

A string literal is zero or more characters enclosed in single or double quotes. Each character may
represented bgn escape sequenckll Unicode characters may appear literally in a string literal excgpt

for the closing quote character, backslash, carriage return, and line feed. Any character may appear in
form of an escape sequence.

13 October 2008

-20-

StringLiteral::
" DoubleStringCharactegs; "
' SingleStringCharactegs '

DoubleStringCharacters
DoubleStringCharacteDoubleStringCharactegg

SingleStringCharacters
SingleStringCharacte8ingleStringCharacters

DoubleStringCharacter.

SourceCharactebut not double-quote” or backslash or LineTerminator

\ EscapeSequence
LineContinuation

SingleStringCharacter.

SourceCharactebut not singlequote' or backslash or LineTerminator

\ EscapeSequence
LineContinuation

LineContinuatiorn:
\' [LineTerminatdr

EscapeSequence
CharacterEscapeSequence
0 [lookaheadz DecimalDigif
HexEscapeSequence
UnicodeEscapeSequence

CharacterEscapeSequence
SingleEscapeCharacter
NonEscapeCharacter

SingleEscapeCharacter one of
" bfnrtv

NonEscapeCharacte:
SourceCharactebut not EscapeCharacteor LineTerminator

EscapeCharacter.
SingleEscapeCharacter
DecimalDigit
X
u

HexEscapeSequence
x HexDigit HexDigit

UnicodeEscapeSequence
u HexDigit HexDigit HexDigit HexDigit

The definitions of the nontermindlexDigit is given in section 7.8.3SourceCharacteis described in

sections 2 and 6.

Comment [pL8]: From DEC:
Do we really want to do this?

[Comment [pL9]: 4/4 browsers support this.

A string literal stands for a value of the String type. The string value (SV) of the literal is described in

terms of character valueCV) contributed by the various parts of the string literal. As part of this

process, some characters within the string literal are interpreted as having a mathematical value (MV), as

described below or in section 7.8.3.

The SV ofStringLiteral:: ™ is the empty character sequence.

13 October 2008

- 21 -

The SV ofStringLiteral:: " is the empty character sequence.

The SV ofStringLiteral:: " DoubleStringCharacter’ is the SV ofDoubleStringCharacters

The SV ofStringLiteral:: ' SingleStringCharacters is the SV ofSingleStringCharacters

The SV of DoubleStringCharacters: DoubleStringCharactelis a sequence of one character, the CV of
DoubleStringCharacter

The SV ofDoubleStringCharacters DoubleStringCharacteDoubleStringCharacters a sequence of the CV
of DoubleStringCharactefollowed by all the characters in the SV@bubleStringCharacters order.

The SV of SingleStringCharacters: SingleStringCharactelis a sequence of one character, the CV of
SingleStringCharacter

The SV ofSingleStringCharacters SingleStringCharactegingleStringCharacters a sequence of the CV of
SingleStringCharactefollowed by all the characters in the SVSihgleStringCharacteris order.

The SV ofLineContinuatiort: \ LineTerminatoris the empty character sequence

The CV of DoubleStringCharacter:: SourceCharacterbut not doublequote " or backslash\ or
LineTerminatoris theSourceCharactecharacter itself.

The CV ofDoubleStringCharacter. \ EscapeSequenégthe CV of theEscapeSequence

The CV ofSingleStringCharacter. SourceCharactebut not singlequote' or backslash or LineTerminator
is theSourceCharactecharacter itself.

The CV ofSingleStringCharacter. \ EscapeSequendgthe CV of theEscapeSequence

The CV ofEscapeSequenceCharacterEscapeSequeniethe CV of theCharacterEscapeSequence

The CV ofEscapeSequence0 [lookaheade DecimalDigifis @ <NUL> character (Unicode value 0000).

The CV ofEscapeSequenceHexEscapeSequentsethe CV of theHexEscapeSequence

The CV ofEs@apeSequence UnicodeEscapeSequenisghe CV of thdJnicodeEscapeSequence

The CV of CharacterEscapeSequence SingleEscapeCharactes the character whose code point value is
determined by th8ingleEscapeCharactexccording to the following table:

Escape Sequence Code Point Value Name Symbol

\b \ u0008 backspace <BS>
\'t \ ud009 horizontal tab <HT>
\n \ uOOOA line feed (new line) <LF>
\'v \ uo00B vertical tab <VT>
\ f \ uoooC form feed <FF>
\'r \ uo00D carriage return <CR>
\" \ u0022 double quote "

\! \ u0027 single quote '

\\ \ u005C backslash \

The CV ofCharacterEscapeSequenceNonEscapeCharactés the CV of theNonEscapeCharacter

The CV of NonEscapeCharacter: SourceCharactetbut not EscapeCharacteor LineTerminatoris the
SourceCharactecharacter itself.

The CV ofHexEscapeSequencex HexDigit HexDigitis the character whose code point value is (16 times the
MV of the firstHexDigit) plus the MV of the secoridexDigit

The CV of UnicodeEscapeSequenceu HexDigit HexDigit HexDigit HexDigit is the character whose code
point value is (4096 (that is, J&imes the MV of the firsHexDigit) plus (256 (that is, B times the MV of
the secondHexDigit) plus (16 times the MV of the thitdexDigif) plus the MV of the fourttdexDigit

NOTE

A 'LineTerminator' character cannot appear in a string litergkcept wherpreceded by a backslas\hnL [Deleted: even if
asa OLineContinuationd to pr odTheeorréecthveay te causeya lingh a

terminator character to be part of the string value of a string literal is to use an escape sequence such i

\'n or\ uOOOA.

13 October 2008

7.8.5

Syntax

RRegularExpressionLiteral

-22 -

Regular Expression Literals

A regular expression literal is an input element that is condedea RegExp object (section 15.&ch [

Deleted: when it is scanned

time the literal is evaluatéd’wo regular expression literals in a program evaluate to regular expression
objects that never compare as= to each other even if the two literals' contents are identical. A RegExp
object may also be created at runtime mgw RegExp (section 15.10.4) or calling th®egExp
constructor as a function (section 15.10.3).

Comment [pL10]: From AWB:

Because of this change RegularExpressiondlizrguably
should be moved to section 11.1. However, | am not
actually proposing we do so.

The productions below describe the syntax for a regular expression literal and are used by the in
element scanner to find the end of the regular expression literal. The strings of characters comprising
RegularExpressionBodyand the RegularExpressionFlagsare passed uninterpreted to the regular

Deleted: The object is created before evaluation
the containing program or function begins. Evalua
of the literal produces a reference to that object; it
not aeate a new object.

expression constructor, which interprets them according to its own, more stringent grammar. An
implementation may extend the regular expression constructor's grammar, but it should not lestend t
RegularExpressionBodynd RegularExpressionFlagproductions or the productions used by these
productions.

| RegularExpressionBody RegularExpressionFlags

Comment [pL11]: All browser currently support
[}/ and /(.(/ as regexp literals so need to fix grammar

RegularExpressionBody
RegularExpressionFirstChd&egulaExpressionChars

RegularExpressionChars
[empty]
RegularExpressionChars RegularExpressionChar

RegularExpressionFirstChar
NonTerminatoibut not * or\ or/
BackslashSequence

RegularExpressionChar
NonTerminatobut not\ or/
BackslashSequence

BackslahSequence

\ NonTerminator

NonTerminator:
SourceCharactebut not LineTerminator

RegularExpressionFlags
[empty]
RegularExpressionFlags IdentifierPart

Deleted: stands for

Deleted: Object

Deleted: constructor is called with twarguments
Pattern and Flags and t

Deleted: result

Deleted: becomes the value of the
RegularExpressionLiteral

Y Y

NOTE

Deleted: If

Regular expression literals may not be empty; instead of representing an empty regular expressidg
literal, the characters// start a singleline comment. To specify an empty regular expression, use
1(?:)/

Semantics

A regular expression litergtvaluates taa value of thgRegExptype. This value is determined in two
steps: first, the characters comprising the regular expressi®egularExpressionBodyand

RegularExpressionFlagproduction expansions are collected uninterpreted into twingstrPattern and
Flags, respectively. Themach time the literal is evaluates new object is created as if the expression

Comment [pL12]: Note that both IE and FF detect €
(testcase below).

<script>
var falsy = function(){return 0}();
re = /[/]/;
alert(re);
if (falsy) {
re2 = /(/;
alert(re2);

</script>

new RegExp (Pattern, Flags) where RegExps the standard butith constructor with that name, [

Deleted: s

Jhe newly constructed objedbecomes the value of the RegularExpressionLijelifajhe call tonew/
RegExp would generatgan errorl’;he error must be reported while scanning the probram

Deleted: an implementation may, at its digtion,
either report the error immediately while scanning
program, or it may defer the error until the regular
expression literal is evaluated in the course of proi
execution

13 October 2008

7.9

7.9.1

- 23-

Automatic Semicolon Insertion

Certain ECMAScript statements (empty statement, variable statement, expression statermehtile
statementcontinue statementbreak statementreturn statement, andhrow statement) must be
terminated with semicolons. Such semicadomay always appear explicitly in the source text. For
convenience, however, such semicolons may be omitted from the source text in certain situations. The
situations are described by saying that semicolons are automatically inserted into the sourtakeonde
stream in those situations.

Rules of Automatic Semicolon Insertion

* When, as the program is parsed from left to right, a token (calledfterding tokenis encountered
that is not allowed by any production of the grammar, then a semicolant@natically inserted
before the offending token if one or more of the following conditions is true:

1. The offending token is separated from the previous token by at leastimgiBerminator
2. The offending token i$.

* When, as the program is parsed fronit léo right, the end of the input stream of tokens is
encountered and the parser is unable to parse the input token stream as a single compl
ECMAScript Program then a semicolon is automatically inserted at the end of the input stream.

* When, as the pragm is parsed from left to right, a token is encountered that is allowed by some
production of the grammar, but the production isestricted productiorand the token would be the
first token for a terminal or nonterminal immediately following the annotatrino LiheTerminator
herep wi thin the restricted production (and thei
the restricted token is separated from the previous token by at leadtimeiBerminator then a
semicolon is automatically insed before the restricted token.

However, there is an additional overriding condition on the preceding rules: a semicolon is neve
inserted automatically if the semicolon would then be parsed as an empty statement or if that semicol
would become one ohe two semicolons in the header ofoa statement (section 12.6.3).

NOTE
These are the only restricted productions in the grammar:
PostfixExpression
LeftHandSideExpressiofno LineTerminatomere] ++
LeftHandSideExpressioino LineTerminatothere] --

ContinueStatement
continue [no LineTerminatotere] Identifiery, ;

BreakStatement
break [no LineTerminatothere] Identifieryy ;

ReturnStatement
return [no LineTerminatothere] EXpressiogy;

ThrowStatement
throw [no LineTerminatothere] Expression

The practical effect of these restricted productions is as follows:

* When a++ or -- token is encountered where the parser would treat it as a postfix operator, and a
least oneLineTerminatoroccurred between the preceding token and theor -- token, then a
semicolon is automatically inserted before thieor -- token.

* When acontinue , break , return , or throw token is encountered andLlaneTerminatoris
encountered before the next token, a semicolon is automatically inserted afteoritieue
break , return , orthrow token.

The resulting practical advice to ECMAScript programmers is:

* A postfix ++ or-- operator should appear on the same line as its operand.

13 October 2008

24 -

* An Expressionin areturn or throw statement should start on the same linehesréturn or
throw token.
* A label in abreak or continue statement should be on the same line as ltheak or
continue token.
7.9.1.1 Usage Subsetautious Restrictions

In a Programthat containscautious in its set of usage subsets or is evaluated witlrirexecution
context that is subset restricted to tteutious subset if automatic semicolon insertioresults in
6 d e a d pa sgntaxiezror is detecte8pecifically, aReturnStatemerfollowed by aLineTerminator
followed by aStatementauses th&tatemento be deemed dead code, and shall cause a syntax error.

7.9.2 Examples of Automatic Semicolon Insertion
The source
{12}3
is not a valid sentence in the ECMAScript grammar, even with the automatic semicolon insertion rules.
In contrast, the soce
{1
213
is also not a valid ECMAScript sentence, but is transformed by automatic semicolon insertion into the
following:
{1
2313
which is a valid ECMAScript sentence.
The source
for (a; b
)

is not a valid ECMAScript sentence and is not altered by automatic semicolon insertion because the
semicolon is needed for the header dba statement. Automatic semicolon insertion never inserts one
of the two semicolons in the header dfoa statement

The source
return
a+b
is transformed by automatic semicolon insertion into the following:
return;
a+b;

NOTE
The expressiom + b is not treated as a value to be returned by theurn statement, because a
‘LineTerminator' separates it from the tokesturn

The source
a=b
++C
is transformed by automatic semicolon insertion into the following:

a=b;
++C;

NOTE

13 October 2008

8.1

8.2

8.3

8.4

- 25-

The tokent++ is not treated as a postfix operator applying to the varidbldecause a 'LineTerminator’
occurs betweeb and ++.

The source
if(a>b)
elsec=d

is not a valid ECMAScript sentence and is not altered by automatic semicolon insertion befelsethe
token, even though no production of the grammar applies at that point, because an automatically insert
semicolon would then be peged as an empty statement.

The source
a=b+c
(d + e).print()
is not transformed by automatic semicolon insertion, because the parenthesised expression that beg
the second line can be interpreted as an argument list for a function call:
a=b+c(d+ e).print()
In the circumstance that an assignment statement must begin with a left parenthesis, it is a good idea

the programmer to provide an explicit semicolon at the end of the preceding statement rather than to re
on automatic semicolon insertion

Types

LA value is an entity that takes on one gtventypes. There argleventypes (Undefined, Null, Boolean Deleted: nine

String, Number, Object, Reference, Li§tompletion Property Descriptor, and Property IdentijieValues of Deleted: nine

type Referencelist, and Completion are used only as intermediate results of expression evaluation-an

Comment [pL13]: From AWB:
May need to rework this whole paragraph.

[

[

[Deleted: and
The Undefined Type {

The Undefined type has exactly one value, calledefined. Any variable that has not been assigred
value has the valuendefined.

The Null Type
The Null type has exactly one value, calledl.

The Boolean Type
The Boolean type represents a logical entity having two values, dallecandfalse.

The String Type

The String type is the seif all finite ordered sequences of zero or morebit6unsigned integer values
(el ement so) . The String type is generally used t
in which case each element in the string is treated as a code pdiret (see section 6). Each element is
regarded as occupying a position within the sequence. These positions are indexed with nonnegati
integers. The first element (if any) is at position 0, the next element (if any) at position 1, and so on. Tt
length d a string is the number of elements (i.e.;Hdi6 values) within it. The empty string has length zero
and therefore contains no elements.

When a string contains actual textual data, each element is considered to be a sindl@ Wit Whether

or not ths is the actual storage format of a String, the characters within a String are numbered as thou:
they were represented using UIB. All operations on Strings (except as otherwise stated) treat them as
sequences of undifferentiated -b& unsigned integer, they do not ensure the resulting string is in
normalised form, nor do they ensure languagesitive results.

NOTE

The rationale behind these decisions was to keep the implementation of Strings as simple and hig
performing as possible. The intent isathtextual data coming into the execution environment from outside
(e.g., user input, text read from a file or received over the network, etc.) be converted to Unicod
Normalised Form C before the running program sees it. Usually this would occur atrtedise incoming

13 October 2008

8.5

- 26-

text is converted from its original character encoding to Unicode (and would impose no additional
overhead). Since it is recommended that ECMAScript source code be in Normalised Form C, string literals
are guaranteed to be normalised (ifusce text is guaranteed to be normalised), as long as they do not
contain any Unicode escape sequences.

The Number Type

The Number type has exactly 18437736874454810627 (thaf“s2°3+3) values, representing the double
precision 64bit format IEEE 754 values as specified in the IEEE Standard for Binary FloRioigt
Arithmetic, except that the 9007199254740990 (thati%2) di st-aMwrmb d&irNotval ues of
Standard are represented in ECMAScript as a single spbi@hl value. (Note thatthe NaN value is
produced by the program expressiN@aN, assuming that the globally defined variaiNaN has not been

altered by program execution.) In some implementations, external code might be able to detect a difference
between various Nea-Number \alues, but such behaviour is implementattependent; to ECMAScript

code, all NaN values are indistinguishable from each other.

There are two other special values, calpasitive Infinity andnegative Infinity. For brevity, these values
are also referretio for expository purposes by the symbet® and—w«, respectively. (Note that these two

infinite number values are produced by the program expressibimity (or simply Infinity) and
- Infinity , assuming that the globally defined variabidinity has not been altered by program
execution.)

The other 18437736874454810624 (that {%-2°%) values are called the finite numbers. Half of these are
positive numbers and half are negative numbers; for every finite positive number there is a corresponding
negative number having the same magnitude.

Note that there is both positive zeroand anegative zero For brevity, these values are also referred to for
expository purposes by the symbal® and -0, respectively. (Note that these two zero number vabres
produced by the program expressiceis (or simply0) and- 0.)

The 18437736874454810622 (that i§+2°*-2) finite nonzero values are of two kinds:
18428729675200069632 (that i$/2°%) of them are normalised, having the form

sxmx2°
wheresis +1 or -1, mis a positive integer less thai’but not less than®3, ande is an integer ranging
from —1074 to 971, inclusive.
The remaining 9007199254740990 (that i¥-2) values are denormalised, having the form

sxmx2°
wheresis +1 or—1, mis a positive integer less thar?2andeis —1074.

Note that all the positive and negative integers whose magnitude is no greatePtham r2presentable in
the Number type (indeed, the integer 0 has two representatiorend- 0).

A finite number las anodd significandif it is nonzero and the integen used to express it (in one of the
two forms shown above) is odd. Otherwise, it hageen significand

I'n this specification, t hxé w he repesentsi anhexact manzebeal r val
mathematical quantity (which might even be an irrational number suéf means a number value chosen

in the following manner. Consider the set of all finite values of the Number type—@itemoved and with

two additional values added to it thaeanot representable in the Number type, namé§*2which is +1x

258 x 2971 and-21°2* (which is—1 * 2°% x 2°7%, Choose the member of this set that is closest in value to

If two values of the set are equally close, then the one with an evefficagul is chosen; for this purpose,

the two extra values'?* and—-2'**are considered to have even significands. Finally!{#“avas chosen,

replace it with+o; if —2'°**was chosen, replace it witho; if +0 was chosen, replace it witkD if and only

if xis less than zero; any other chosen value is used unchanged. The result is the number xa(Téifor
procedure corresponds exactly to the behaviour of t

Some ECMAScript operators deal only witheégers in the range2®! through 3'-1, inclusive, or in the
range O through %-1, inclusive. These operators accept any value of the Number type but first convert

13 October 2008

- 27 -

each such value to one of?anteger values. See the descriptions of the ToInt32 and T8Riaperators in
sectiongd.5andQ.6, respectively.

8.6 The Object Type

An Object isa collection of propertiesEach propertyis either a named data property, a namedessor
property, or an internal property.

A named data propertgssociates a name with a value and a set of boolean attributes.

A namedaccessor property associates a name with a getter method, a setter method, and a
booleanattributes.

An internal propertyhas no name and is not directly accessible via the property accessor ope
Internal properties exist purely fapecificationpurposes. How and when some of these properties
used is specified by the language specification below.

8.6.1 Property Attributes

Attributes are used in this specification to define and explainstage of named propertied. named
data property associates a name with the follovattgbutes

Table 1 Attributes of a Named Data Property

Attribute Name Value Description
Domain
[[Value]] any The value retrieved by reading the property.
[[Writ able]] boolean If true, attempts by ECMAScript code to assign the
propertydos value will suc
[[Enumerable]] | boolean If true, the property will be enumerated by a-ffior

enumeration (section 12.6.4). Otherwise, the property is
to benon-enumerable.

[[Configurabld] | boolean If true, attempts to delete the propertange the property
to being an accessor propeny,change its attributes will
succeed. See the description of the delete operator in sd
11.4.1, and the reflective Object methods.

A namedaccessoproperty associates a name with the followattributes

Table 2 Attributes of a Named AccessorProperty

Attribute Name Value Domain Description

[[Getter]] functionor undefined | A method that to be called each time the property
read, to retrieve the current value of the property.

[[Setter]] functionor undefined | A method to be called each time the property is
assigned to, in order ttefine the current value of th
property

[[Enumerable]] | boolean If true, the property is to be enumerated by aiffior

enumeration (section 12.6.4). Otherwise, the prop|
is saidto be norenumerable.

[[Configurablg] | boolean If true, attempts to delete the properthange the
property to a data propertgr change its attributes
will succeed. See the description of the delete
operator in section 11.4.1, and the reflective Obje
methods

13 October 2008

set ¢

ators
are

Deleted: 0

Deleted: 0

Deleted: an unordered

Deleted: consists of a name, a value and
of attributes.

1

Deleted: A property can have zero or more
attributes from the following séf:

Attribute (.

8.6.2

If the value of an attribute is neplicitly specified for a named property, the default value as defined in

the following table is used:

[Table 3 Default Attribute Values|

- 28-

Comment [pL14]: This whole table may get remove

soon.

Attribute Default Value
Name
[[Value]] undefined
[[Getter]] undefined
[[Setter]] undefined
[[writable]] false
[[Enumerable]] | false
[[Configurablg] | false

Property descriptors, defined in section 8.10, are internal types used within this specifioat&stribe
manipulations of property attributes.

Internal Properties and Methods

Internal properties and methods are not part of the language. They are defined by this specification
purely for expository purposes. An implementation of ECMAScript must behave as if it produced and
operated upon internal properties in the manner desciileee. For the purposes of this document, the
names of internal properties are enclosed in double square brackets [[]]. When an algorithm uses an
internal property of an object and the object does not implement the indicated internal property, a
TypeError exception is thrown.

There are two types of access for normal @wernal) propertiesiget and put, corresponding to
retrieval and assignment, respectively.

All ECMAScript objects have an internal property called [[Prototype]]. The value ofptivigerty is [Deleted: Native

either null or an object and is used for implementing inheritandemed data mperties of the { Deleted: Properties

[[Prototype]] objectare inherited dre visible as properties of the child objefdr the purposes of get

access,ft/)utﬁnot for put acceissNamed accessormproperties are inherited for both get access and put —{ comment[pL15]: From MSM:

access. Not technically true, since reashly prevents an overridi
put.

The foIIowmg tablt_e summarises th |nt_ern_al properties use_d by thl_s spemflchao!are appllcable to Comment [pL16]: _ From AWB:

all ECMAScript objectsThe description indicates their behavioar hative ECMAScript objectsunless (i is not obvieus hew &

stated otherwise in this document for particular types of ECMAScript objects. In particular, Array| itis fine as written.

objects have a slightly differerdefinition of the [[Throwabld>ut]] method (see 15.4.5.8nd String

,,,,,,,,,,,,,,,,,,,,,,,,,, Deleted: implement

internal propertieswith any implementatiordependent behaviour, or it may be that a host object
Supportsonly sone internalpropertiesand not others.

Deleted: implements

(
[Deleted: methods
[
(

Deleted: methods

13 October 2008

- 29-

Property Value Domain Description
[[Prototype]] DObject| null The prototype of this objedtdust benull or an Object.
[[Class]] String A string value indicating the kind of this object.
[[PrimitiveValue]] Jprimitive Internal state information associated with this object
[[Extensible]] boolean If true, own properties may be added to the object.
[[Get]] lfunctior(PropertyNam)3\"(Returns the value of theamedproperty.
an
[[GetOwnProperty]] function(PropertyNamg Y Returns the Property Descriptor of the named owi
undefined or Property property of this object, arndefined if absent.
Descriptor
[[GetProperty]] functionPropertyNamgY Returnsthe Property Descriptorof the named propert
undefined or Property of this object, oundefined if absent.
Descriptor
[[Put]] function(PropertyNamegany) | Sets the specifiedamedproperty tpspecified value
[[CanPut]] function(PropertyNamgY. Returns a boolean value indicating whether a [[P
boolean operation withPropertyNamgan be performed
[[HasProperty]] function(PropertyNamg Y Returns a boolean value indicating whether the ok
boolean already has aropertywith thegiven name.
[[Delete]] function(PropertyName Removes the specifiedamed ownproperty from the
boolear) Y boolean object.The flag controls failure handling.
[[DefaultValue]] function(Hint) Y any Returns a default value for the object, which shoulg
aprimitive value (not an object or reference).
[[DefineOwnProperty]] | function(PropertyName, Creates or alters the named own property to have
PropertyDegiptorc, boolear) | state describedby a Property DescriptorThe flag
controls failure handling
[[ThrowablePut]] function(PropertyNameany, | Sets the specified named propertyMalue The flag
boolear) controls failure handling.
[[Construct]] function(a list of argument | Constructs an object. Invoked via thew operator.

values provided by the calle
Y Object

Objects that implement this internal method are ca
constructors

[[Calll]

function(a list of argument
values provided by the calle
Y any

Executes code associated with the object. Invoked
function call expression. Objects that implement
internal method are callddnctions

[[HasInstance]]

function(@any) Y. boolean

Returns a boolean value indicating whethéalue

delegates behaviour to this object. Of the na
ECMAScript objects, only Function objects implemg
[[HasInstance]].

[[Scope]] . A scope chain that defines the environment in whic
Function object is executed.
[[Match]] function(string, jndex ¥ Tests for a regular expression match and retur
MatchResult MatchResult value (see section 15.10.2.1).

internal dataproperties and the [[Get]][[GetProperty]], [[GetOwnProperty]][[DefineOwnPr
[[Put]], [[CanPut]], [[HasProperty]], [[Delete]], and [[DefaultValuelhternal methods. (Note, however
that the [[DefaultValue]] method may, for some objects, simphpw aTypeError exception.)

The value of the [[Prototype]] property must be either an objectudl, and every [[Prototype]] chain
must have finite length (that is, starting from any object, recursively accessing the [[Prototype]] propert
must eventuldy lead to anull value). Whether or not a native object can have a host object as its

[[Prototype]] depends on the implementation.

The value of the [[Class]] property is defined by this specification for every kind of-inudbject. The
value of the [Class]] property of a host object may be any value, even a value used by-m mbject

for its [[Class]] property. The value of a [[Class]] property is used internally to distinguish different
kinds of builtin objects. Note that this specification doeot provide any means for a program to access
that value except througBbject.prototype.toString

(see 15.2.4.2).

13 October 2008

Deleted:

Parameters

Deleted:

none

none

[
[
[Deleted:
(

Deleted:

none

Comment [pL17]:

Not e

From AWB:

that any really

ECMAScript language value but exding internal

types

Deleted:

Value

Deleted:

Value

will succeed

Deleted:

[
[
[Deleted:
[

member

Comment [pL18]:
is properties of all objects, and the other is prop
that apply to only some objects.

Divide the table into two; o

[Deleted:

Value

Deleted:

None

Deleted:

String

Index

Deleted: and

[
[
[Deleted:
[

-30-

For native objects the [[Get]], [[Put]], [[CanPut]], [[HasProperty]], [[Delete]] and [[DefaultValue]]
methods behave as described in destfibn 8.6.2.1, 8.6.2.2, 8.6.2.3, 8.6.2.4, 8.6.2.5 and 8.6.2.6,
respectively, except that Array objects have a slightly different implementation of the [[Put]] method
(see 15.4.5.1). Host objects may implement these methods in any manner unless spéefiedeat for
example, one possibility is that [[Get]] and [[Put]] for a particular host object indeed fetch and store
property values but [[HasProperty]] always generdtdse.

Deleted: and

Comment [pL19]: Need to make consistent with abe
table(s).

Deleted: fOdoesndét have aPp
go to step 4]

Get the value of the properfy.

Return Result(2).

If the [[Prototype]] ofO is null, returnundefined.|
Call the [[Get]] method of [[Prototype]] with proper
nameP.{

Return Result(5%

Deleted: <#>Call the [[CanPut]] method d® with
nameP.q

<#>If Result(1) isfalse, return
<#3fOdoesndt have aPmgoto,]
step 61

<#>Set the value of the property ¥ The attributes
the property are not chang®d.

<#>Returnf

<#>Create a property with nanfe set its value t&/
and give it empty attributefs.

<#>Returnf

Note, however, that iD is an Array object, it has a
more elaborate [[Put]] method (15.4.51L).

Deleted: The [[CanPut]] method is used only by
[[Put]] method{

Deleted: IfOdoesn6t have a phR
go to step 4]
If the property has the ReadOnly attribute, refaise
Returntrue.
If the [[Prototype]] ofO is null, returntrue.|
Call the [[CanPut]] method of [[Prototype]] &f with
property namé.q

Return Result(5).

In the following algorithm descriptions, assur®es a native ECMAScript objecP is a string Descis [
an internal property description record, afftrowis a boolearflag,| [
8.6.2.1 [[Get]] (P)
When the [[Get]] method oD is called with property name, the following steps are taken:
1. Call the [[GetProperty]] method d with property nameP.
2. If Result(1) isundefined, returnundefined.
3. If IsDataDescriptoiResult(1) is true, returnResult(1)[[Value]].
4. Otherwise, IsAccessorDescriptor(Result(1)) must be trygsbResult(1][Getter]].
5. If Result@) is undefined, returnundefined.
6. Call the[[Call]] method ofResult(4)providing O as thethis value and providingno arguments.
7. Return Resul®).
B8.6.2.2 [[Put]] (P, V)
[[Put]] is primarily used in the specification of built methods.Algorithms that require explicit
control over the handling of invalid property stafeouldcall [[ThrowablePut]] directly
When the [[Put]] method oD is called with property and valueV, the following steps are taken:
1. Call the [[ThrowablePut]] methodf O with argumentd, V, andfalse.
2. Return
Note, however, that if O is an Array object, it has a more elaborate [[Put]] method (15.4.5.1).
B8.6.2.3 [[CanPut]] (P)
When the [[CanPut]] method @ is called with propertypameP, the following steps are taken:
1. Call the [[GetOwnProperty]] method of O withrgumentP.
2. If Result(1) is noundefined, then
a. If IsAccessorDescriptor(Result(1)) teue, then
i. If Result(1).[[Setter]] isundefined, then returrfalse.
ii. Else returrtrue.
b. Otherwise, Result(1) must beDmtaDescriptor so return the value of
Result(1).[[Writable]]
3. Get the internal [[Prototype]] property &f.
4. If Result@) is null, then returrthe value of the [[Extensible]] property &f.
5. Call the [[GetProperty]] method of Resu8j(with propertynameP.
6. If Result) is undefined, returnthe value of the [[Extensible]] property &f.
7. If IsAccessorDescriptor(Resuf) is true, then
a. If Result(5).[[Setter]] isundefined, then returrfalse.
b. Else returrtrue.
8. Else, Result(5must be a DataDescriptor
a. If the [[Extensible]] property 00 is false, returnfalse.
b. Else returrthe value of Result(5).[[Writable]]
NOTE
Host objects may define additional constraints upon [[Put]] operations. If possible, host objects should
not allow [[Put]] operations in situations where this definition of [[CanPut]] retéefss.
B.6.2.4 [[HasProperty]] (P) (

Deleted: <#>

When the [[HasProperty]] mkbd of O is called with property name, the following steps are taken:

1. Callthe [[GetProperty]] method of O with property name P.
2. If Result(1) is undefined, then return false.
3. Else returrtrue.

13 October 2008

8.6.2.5

8.6.2.6

8.6.2.7

8.6.2.8

-31-

v

[[Delete]] (P, Throw)

When the [[Delete]] method o® is called with property nam@ and thebooleanflag Throw, the

following steps are taken:

1. Call the [[GetOwnProperty]] method & with property namé®.
2. If Result(1) isundefined, then returrtrue.
3. If Result@).[[Configurabld] is true, then
a. Remove the own property with narRefrom O.
b. Returntrue.
4. Else if Throw, then throwa TypeError exception
5. Returnfalse

[[Defaultvalue]] (hint)
When the [[DefaultValue]] method @ is called with hint String, the following steps are taken:

Call the [[Get]] method of objedD with argument toString ".

If Result(1) is not an object, go to step 5.

Call the [[Call]] method of Result(1), wit® as thethis value and an empty argument list.
If Result(3) is a primitive value, return Result(3).

Call the [[Get]] method of objedD with argument ValueOf ".

If Result(5) is not an object, go to step 9.

Call the [[Call]] method of Result(5), wit® as hethis value and an empty argument list.
If Result(7) is a primitive value, return Result(7).

Throw aTypeError exception.

©COoNOOR~WONE

When the [[DefaultValue]] method @ is called with hint Number, the following steps are taken:

Call the [[Get]] method of objedD with argument'valueOf"

If Result(1) is not an object, go to step 5.

Call the [[Call]] method of Result(1), wit® as thethis value and an empty argument list.
If Result(3) is a primitive value, return Result(3).

Call the [[Get]] method of objedD with argument'toString"

If Result(5) is not an object, go to step 9.

Call the [[Call]] method of Result(5), wit® as thethis value and an empty argument list.
If Result(7) is a primitive value, return Result(7).

Throw aTypeError exception.

©Co~NOarWONE

When the [[DefaultValue]] method oD is called with no hint, then it behaves as if the hint were
Number, unles® is a Date object (see 15.9), in which case it behaves as if the hint were String.

The above specification of [[DefaultValue]] for native offig can return only primitive values. If a
host object implements its own [[DefaultValue]] method, it must ensure that its [[DefaultValue]]

method can return only primitive values.
[[GetProperty]] (P)

When the [[GetProperty]] method & is called with property name, the following steps are taken:

Call the [[GetOwnProperty]] method & with property namé®.

If Result(1) is noundefined, return Result(1).

If the [[Prototype]] ofO is null, returnundefined.

Call the [[GetProperty]] minod of [[Prototype]] with property name.
Return Result(4).

[[GetOwnProperty]] (P)

arwdE

When the [[GetOwnProperty]] method & is called with property namP, the following steps are

taken:

1. fOdoesnodt have an ownretpnudefieedt v wi t h name
2. LetD be a newly created Property Descriptor (Section 8.10) with no fields.
3. LetXbeObs own proBerty named

13 October 2008

Deleted: If O has a property with nanf return
true.|
If the [[Prototype]] ofO is null, returnfalsef|
Call the [[HasProperty]] method of
[[Prototype]] with property namBe.{
Return Result(3).

Deleted: 1

lfOdoesndt have aPpr
returntrue .|

If the property has the DontDelete attribute
returnfalsef

Remove the property with nanffrom O.
Returntrue.

8.6.29

-32-

4. If Xis a data property, then
a. SetD.[[Value]]tothevalueoXds [[Val ue]] attribute.
b. SetD.[[Writable]] to the value oX6 s [[|&Yraitribaeb

5. ElseXis an accessor property, so

a. SetD.[[Getter]]tothevalueokKbés [[Getter]] attribute.
b. SetD.[[Setter]] tothevalueokés [[Setter]] attribute.
6. SetD.[[Enumerable]] tothevalueof6 s [[Enumer abl e]] attribute

7. SetD.[[Configurable]]tothevalueokds [[Confi gurabl e]] attribute.
8. ReturnD.

Note, however, that ifO is a Stringobject it has a more elaborate [[GetOwnProperty]] method
(15.5.5.2).

[[DefineOwnProperty]] (P, Desc, Throw)

In the following algorithmt he t er m f R dfjTarow i® truenehem throwhaTypeError
exception, otherwise retur

When the [[DefineOwnProperty]] method & is called withproperty nameP, propertydescriptor
Desc and boolean flaghrow, the followingsteps are taken:

Fill in this section number.

1. Call the [[GetOwnProperty]] method @ with property name.
2. Get the [[Extensible]] internal property €.
3. If Result(1) isundefined and Result(2) isalse, then Reject.
4. If Result(1) isundefined and Result(2) isrue, then
a. If IsGenericDescriptofjesq or IsDataDescriptofjesq is true, then
i. Create an own data property nanfedf objectO whose[[Value]], [[Writable]],
[[Enumerable]] and [[Configurable]] attribute values aescribed byDesc If
the value of an attribute field diescis absentthe attribute of the newly created
propertyis set toits default value.
b. Else,Descmust be a accessoPropertyDescriptor so,
i. Create an own accessor property narRemf objectO whose[[Getter]],
[[Setter]], [[Enumerable]] and [[Configurable]] attribeitvalues arelescribed by
Desc If the value of an attribute field descis absentthe attribute of the newly
created propertis set toits default value.
c. Return.
5. Return, if the value of every field iDescis absent
6. Return, if every field inDescalso occurs in Result(1) and the value of every fiel®@scis the
same valugas defined in Sextiojxx) as the corresponding field in Result(1). ~{ comment [pL20]:
7. |If the [[Configurabld] field of Result(1) isfalsethen
a. Reject, if the [Configurabld] field of Descis true.
b. Reject, if the [[Enumerable]] field of Result(1) abescare theBoolean negation of each
other.
8. If IsGenericDescriptoiesq is true, then no further validation is required.
9. Else, if IsDataDescriptor(Result(1)) and IsDataDescrifegq have dfferent results, then

a. Reject, if the [Configurabld] field of Result(1) isfalse.
b. If IsDataDescriptor(Result(1)) isue, then

i. Convert the property nameRiof objectO to from a data property to an accessor
property. Preserve the existing values o
[[Configurabld] and [[Enumerable]] attributes and set the the rest of the
propertyo6s attributes to their default v

c. Else,

i. Convert the propertpamedP of objectO to from an accessor property to an data
property. Preserve the existing values o
[[Configurablg] and [[Enumerable]] attributes and set the the rest of the
propertyo6s attributes to their default v

10. Else, f IsDataDescriptor(Result(1)) and IsDataDescripb®$qg are bothtrue, then
a. If the [[Configurabld] field of Result(1) isfalse, then

i. Reject, if the [[Writable]] field of Result(1) ialse and the [[Wrigble]] field of
Descis true.

ii. If the [[Writable]] field of Result(1) isalse, then

13 October 2008

- 33-

1. Reject, if the [[Value]] field ofDescis presntand
[sameValugDesc[[Value]], Result(1).[[Value]]) isfalse. [Comment [pL21]: Need to define this functiol
b. else, the [Configurabld] field of Result(1) istrue, soany change is acceptable.
11. Else,IsAccessorDescriptor(Result(1)) and IsAccessorDescripts@ are bothtrue so,
a. If the [[Configurabld] field of Result(1) isfalse, then
i. Reject, if the [[Setter]] field oDescis present and SameValugésc[[Setter]],
Result(1).[[Setter]] idalse.
ii. Reject, if the [[Getter]] field oDescis presentand SameValueesc[[Getter]],
Result(1).[Getter]]) idalse
12. For each attribute field dbescthatis presentset the correspondingly named attribute of the
property namedP of objectO to the value oftie field.
13. Return.

8.6.210 [[[ThrowablePut]] (P, V, Throw) Comment [pL22]: From AWB:

When the [[ThrowablePut]] method @ is called with property, valueV, andboolean flagThrow
the following steps are taken:

1. Call the[[GetOwnPropert})} method ofO with argumentP.
2. If Result(1) isundefined, thenthrow aReferenceError exception.
3. Call the [[CanPut]] method d® with argumentP.
4. If Result@) is false, then
a. If Throw istrue, then throwa TypeError exception
b. Else return.
5. If IsDataDescriptor(Result)) is true, then
a. Set the [[Value]] attribute of property of O to V.
b. Return.
6. Call the [[GetProperty]] method @ with argumentP.
7. If IsAccessorDescriptoResultg)) is true, then
a. GetResut(1).[[Setter]] which cannot beindefined.
b. Call the [[Call]] method ofResult{a) providing O as thethis value and providing/ as
the sole argument
8. Else, ceate a named data property nanfedn objectO whose attributes are:
a. [[Value]]: V,
b. [[Writable]]: true,
[Enumerable]]:true,
[

Consider renaming to ThrowingPut.

c. [
d. [[Configurabld]: true.
9. Return.
Note, however, that ifO is an Array objectit has a more elaborate [[ThrowablePut]] meth¢d
(15.4.5.1).
8.7 The Reference Type Deleted: 1

The internal Reference type is not a language data typeis defined by this specification purely for
expository purposes. An implementation of ECMAScript must behave as if it produced and operated upc
references in the manner described here. However, a value of Rgperenceis used only as an
intermediateresult of expression evaluation and cannot be stored as the value of a variable or property.

The Reference type is used to explain the behaviour of such operatasleds , typeof , and the

assignment operators. For example, the-heftd operand of an dgeament is expected to produce a

reference. The behaviour of assignment could, instead, be explained entirely in terms of a case analysis

the syntactic form of the leftand operand of an assignment operator, but for one difficulty: function calls

are prmitted to return reference8his possibility is admitted purely for the sake of host objets built- Comment [pL23]: We wanted to remove this
in ECMAScript function defined by this specification returns a reference and there is no provision for ¢ buthave decided to leave it in as this could
userdefined function to return a referemc(Another reason not to use a syntactic case analysis is that it Potentially break web applications.

would be lengthy and awkward, affecting many parts of the specification.)

Another use of the Reference type is to explain the determination d¢fithealue for a function call.

A Reference is a reference to a property of an object. A Reference consists of two componeriias¢he
objectand theproperty name.

The following abstract operations are used in this specification to access the components of references:

13 October 2008

-34-

* GetBase(V). Returns the bmsbject component of the reference V.
* GetPropertyName(V). Returns the property name component of the reference V.

The following abstract operations are used in this specification to operate on references:

Deleted: <#>If Type(V) is not Reference, throw ¢
ReferenceError exceptionf
<#>Call GeBasey).1
<#>If Result(2) isnull, go to step &
<#>Call the [[Put]] method of Result(2), passing
GetPropertyNam&f) for the property namandW fo
the valuef
<#>Returnf
<#>Call the [[Put]] method for the global object,
passing GetPropertyNamg(for the property name
andW for the value]

<#>Returnf

8.7.1 GetValue (V)
1. If Type(V) is not Reference, tern V.
2. Call GetBaseX).
3. If Result(2) isnull, throw aReferenceError exception.
4. Call the [[Get]] method of Result(2), passing GetPropertyNaMmé&fr the property name.
5. Return Result(4).
8.7.2 PutValue (V, W, Throw)
1. If Type(V) is not Reference, throwReferenceError exception.
2. Call GetBaseX).
3. If Result(2) isnull, then
a. If Throwis true, then throw eReferenceError exception.
b. Call the [[ThrowablePut]] method for the global object, passing GetPropertyNarfaa(the
property nameW for the value, andalse for the Throwflag.
c. Return
4. Else
a. Call the [[ThrowablePut]] method of Result(2), passing GetPropertyNénfe(the property
name,W for the value, and hrowfor the Throw flag.
b. Return.
8.8 The List Type
The internal List type is not a language data typi is defined by this specification purely for expository
purposes. An implementation of ECMAScript must behave as if it produced and operated uponusst val
in the manner described here. However, a value of the List type is used only as an intermediate result
expression evaluation and cannot be stored as the value of a variable or property.
The List type is used to explain the evaluation of argumets lisee 11.2.4) imew expressions and in
function calls. Values of the List type are simply ordered sequences of values. These sequences may bg
any length.
8.9 The Completion Type

The internal Completion type is not a language data typeis definedby this specification purely for
expository purposes. An implementation of ECMAScript must behave as if it produced and operated upon

Completion values in the manner described here. However, a value of the Completion type is used only as

an intermediate =mlt of statement evaluation and cannot be stored as the value of a variable or property.

The Completion type is used to explain the behaviour of statembrgsl(, continue , return and
throw) that perform nonlocal transfers of control. Values of @@mmpletion type are triples of the form
(type value target), wheretype is one ofnormal, break, continue, return, or throw, value is any
ECMAScript value oempty, andtargetis any ECMAScript identifier oempty.

The term fAabrupt completionodo refenosnalt o any

8.10 The Property Descriptorand Property ldentifier Types

The internal Property Descriptor and Property Identifier types are not language data types. They are defined

by this specification purely for expository purposes. An implementation of ECMAScript must behave as if

it produced and operated upon Property Descriptor and Property Identifier values in the manner described

here. However, values of these types are used aslgn intermediate result of expression evaluation and
cannot be stored as the value of a variable or property.

The Property Descriptor type is used to explain the manipulation and reification of named property

compl et

attributes. Values of the Property Descriptot ype are records composed of n
name is an attribute name and its value is a corresponding attribute value. In adkhydl‘reld maybe
present or absént Comment [pL24]: Stored descriptors are always

complete. Only delta descriptors may have absent fiel

Property Descriptor values may be further classified as dataeproplescriptors and accessor property
descriptors based upon the eriste or use of certain fields. A data property descriptor is one that includes

13 October 2008

8.101

8.102

8.103

8.104

- 35-

any fields named either [[Value]], or [[Writable]].mAaccessor property descriptor is one that includes
fields named either [[Getter]], or [[Setter]]JAny property descriptor may have fields namg
[[Enumerable]], and [Configurabld].

For notational conenience within this specification, an object ligdike syntax can be used to define
property descriptor value. For example, Property Descrifptatue: 42 writable: false configurable true}
defines a data property descriptor. The order of listing fields names is not signiffaanfields thatare
not explicitly listedare considered to be absent

In specification text and algorithms, dot notation may be used to refer to a specific field of a Pr
Descriptor. For exampl e, if D is a pr op e figldyof i
namedi & | ue o .

The Property Identitr type is used to associate a property name with a Property Descriptor. Values
Property Identifier type are pairs of the form (name, descriptor), where name is a string and descrip)
Property Dscriptor value.

The following abstract operations are used in this specification to operate upon Property Descriptor |

IsAccessorDescriptor (Desc)

When the internalsAccessorDescriptofunction is calledwith propertydescriptorDescthe following
steps are taken:

1. If Descis undefined, thenreturnfalse
2. If bothDescl[Gettel] and Desc[[Sette}] are absenthen returrfalse
3. Returntrue.

IsDataDescriptor (Desc)

When the internalsDataDescriptofunction is calledwith propertydescriptorDescthe following steps
are taken:

1. If Descis undefined, thenreturnfalse
2. If bothDesc|[Valu€]] and Desc[[Writable]] are absenthen returrfalse
3. Returntrue.

IsGenericDescriptor (Desc)

When the internalsGenericDescriptofunction is calledwith property descriptorDesc the following
steps are taken:

1. If Descis undefined, thenreturnfalse
2. If IsAccessorDescriptoBlesg and IsDataDescriptdbesq arebothfalse then returrirue.
3. Returnfalse

FromPropertyDescriptor (Desc)

When the internaFromPropertyDescriptofiunction is calledwith propertydescriptorDescthe following
steps are takenthe following steps are taken:

1. If Descis undefined, then returrundefined.

2. Create a new object as if by the expressiew Object() whereObject is the standard buiih constructor
with that name.

3. If IsDataDescriptoi@esq is true, then

a. Call the [[Put]] method of Result(2) wi

b. Call the [[Put]] method of mDess[[Witah{gR) wi
4. Else,IsAccessorDescriptobesg must betrue, so

a Call the [[Put]] method of Re®Geteil (2) wi

b. Call the [[Put]] method of Result(2)iwt h ar gument s Seteftt er 0 a
5. Call the [[Put]] method of ReDBResc[[Bnnrpblfwi t h ar g
6. Call the [[Put]] met hocdnfiguiabléR eabast[[Canfygrabili t h ar g
7. Return Result(2).

NOTE
The above algorithm assumes that Desc is a fully populated Property Descriptor, such as that re
from [[GetOwnProperty]].

hny

[

pert
'S C

of th
or is

alue:

nd
um
um

furne

13 October 2008

- 36 -

8.105 ToPropertyDescriptor (Desc)
When the internalToPropertyDescriptoffunction is calledwith object Desc the following steps are
taken:
1. If Descis undefined, then returrundefined.
2. Call ToObjectDesq.
3. Create a new Property Descriptbat initially has no fields
4. Cal | the [[HasProperty]] met hod of Result(2)
5. If Result(4) istrue, then
a. Call the [[Get]] method oDescwi t h fienumer abl eo.
b. Call ToBoolean(Result(5a)).
c. Setthe [[Enumerable]] field of Result(3) to Result(5b).
6. Cal | the [[HasPropertyl]] monfighrab® .of Resul t (2)
7. If Result(6) istrue, then
a. Call the [[Get]] method oResult(2)with argumenticonfigurable .
b. Call ToBoolean(Result(7a)).
c. Set the [Configurabld] field of Result(3) to Result(7b)
8. Call the [[HasPropertyl]] met hod of Result (2)
9. If Result(8) istrue, then
a. Call the [[Get]] method ofResult(2)with argumentiivalued .
b. Set the [[Value]] field of Result(3) to Resuld®
10.Cal | the [[HasPropertyl]] met hod of Result (2)
11. If Result(10) igtrue, then
a. Call the [[Get]] method oResult(2)with argumentfiwritableod .
b. Call ToBoolean(Result(11a)).
c. Set the [[Writable]] field of Result(3) to Result(11b).
12.Call | the [[HasPropertyl]] met hod of Result (2)
13. If Result(12) igrue, then
a. Call the [[Get]] method oResult(2)with argumentfigetteo .
b. Call IsCallable(Result(13a))
c. If Result(13b) isfalse and Result(13a) is natndefined, then throw arypeError exception
d. Set the [[Getter]] field of Result(3) to Result@3
14.Cal | the [[HasProperty]] met hod of Result (2)
15. If Result(#) is true, then
a. Call the [[Get]] method oResult(2)with argumentisetteo .
b. Call IsCallable(Result(15a))
c. If Result(15b) isfalse and Result(15a) is naindefined, then throw al'ypeError exception
d. Setthe [[Setter]] field of Result(3) to Resulté5
16. If either Result(3).[[Getter]] or Result(3).[[Settedle presentthen
a. |If either Result(3).[[Value]] or Result(3).[[WritableHre presentthen throw arypeError
exception.
17. Return Result(3).
Type Conversionand Testing

9.1

The ECMAScript runtime system performs automatic type conversion as needed. To clarify the semantics of
certain constructs it is useful to define a set of conversion operators. These operators are not a part of the

language; they are defined here to ai@ #pecification of the semantics of the language. The conversion

operators are polymorphic; that is, they can accept a value of any standard type, but not of type Reference,
List, Completion or PropertyDescriptofthe internal types).

ToPrimitive
The operator ToPrimitive takes a Value argument and an optional argiRneferredType The operator

ToPrimitive converts its value argument to a f@hject type. If an object is capable of converting to more

than one primitive type, it may use the optiohait PreferredTypeto favour that type. Conversion occurs
according to the following table:

13 October 2008

Deleted:

or

-37-

Input Type Result

Undefined The result equals the input argument (no conversion).

Null The result equals the input argument (no conversion).

Boolean The resuliequals the input argument (no conversion).

Number The result equals the input argument (no conversion).

String The result equals the input argument (no conversion).

Object Return a default value for the Object. The default value of an object is estrigy
calling the internal [[DefaultValue]] method of the object, passing the opti
hint PreferredType The behaviour of the [[DefaultValue]] method is defined
this specification for all native ECMAScript objects (8.6.2.6).

9.2 ToBoolean
The operatr ToBoolean converts its argument to a value of type Boolean according to the following table:

Input Type Result

Undefined false

Null false

Boolean The result equals the input argument (no conversion).

Number The result idalseif the argument is-0, -0, or NaN; otherwise the result tsue.

String The result idalseif the argument is the empty string (its length is zero); othen|
the result igrue.

Object true

9.3 ToNumber
The operator ToNumber converts its argument to a value ofNypeber according to the following table:

Input Type Result
Undefined NaN
Null +0
Boolean The result isl if the argument isrue. The result is+0 if the argument ialse
Number The result equals the input argument (no conversion).
String Seegrammar and note below.
Object Apply the following steps:
1. Call ToPrimitive(input argument, hint Number).
2. Call ToNumber(Result(1)).
3. Return Result(2).

9.3.1 ToNumber Applied to the String Type

ToNumber applied to strings applies the following grammar to the input string. If the grammar canno
interpret the string as an expansionStfingNumericLiteral then the result of ToNumber MaN.

StringNumericLiteral::
StrWhiteSpacg;
StrWhiteSpacg; StrNumericLiteral StrWhiteSpage

13 October 2008

- 38 -

StrWhiteSpace:
StrWhiteSpaceChar StrWhiteSpgce

StrwhiteSpaceChar:
WhiteSpace
JLineTerminator

StrNumericLiteral::
StrDecimalLiteral
HexlIntegerLiteral

StrDecimalLiteral:::
StrUnsignedDecimalLiteral
+ StrUnsignedDecimalLiteral
- StrUnsignedDecimalLiteral

StrUnsignedDecimalLiterat:
Infinity
DecimalDigits. DecimalDigits,: ExponentPag
. DecimalDigits ExponentPay
DecimalDigits ExponentPayg;

DecimalDigits:::
DecimalDigit
DecimalDigits DecimalDigit

DecimalDigit::: one of
0123456789

ExponentPart::
Exponentindicator Signedinteger

Exponentindicator:: one of
e E

Signedinteger::
DecimalDigits
+ DecimalDigits
- DecimalDigits

HexIntegerLiterat::
0x HexDigit
0X HexDigit
HexIntegerLiteral HexDigit

HexDigit::: one of
0123456789abcdefABCDEF

Some differences should be noted between the syntaxSifiagNumericLiteraland aNumericLiteral
(see 7.8.3):

* A StringNumericLiteralmay be preceded and/or followed by white space and/or line terminators.

* A StringNumericLiterakhat is decimal may have any number of leadindjigits.
* A StringNumericLiteralthat is decimal may be preceded-byr - to indicate its sign.
* A StringNumericLiteralthat is empty or contains only white space is convertetDto

The conversion of a string to a number value is similar overall to the determination of the number value
for a numeric literal (see 7.8.3), but some of the details are different, so the process for converting a
string numeric literal to a value of Number type is given here in full. This value is determined in two

13 October 2008

Deleted: <TAB>
<SP>

<NBSP>

<FF>

<VT>

<CR>

<LF>

<LS>

<PS>

Deleted: <USP>

-39-

steps: first, a mathematical value (MV) is ded from the string numeric literal; second, this
mathematical value is rounded as described below.

* The MV of StringNumericLiteral:: [empty]is O.

* The MV of StringNumericLiteral:: StrWhiteSpaces 0.

* The MV of StringNumericLiteral:: StrWhiteSpacg: StrNumericLiteral StrWhiteSpaggis the MV
of StrNumericLitera) no matter whether white space is present or not.

* The MV of StrNumericLiteral::: StrDecimalLiteralis the MV of StrDecimalLiteral.

* The MV of StrNumericLiteral::: HexIntegerLiteralis theMV of HexIntegerLiteral

* The MV of StrDecimalLiteral :: StrUnsignedDecimalLiteral is the MV of
StrUnsignedDecimalLiteral

* The MV of StrDecimallLiteral:: + StrUnsignedDecimalLiteral is the MV of
StrUnsignedDecimalLiteral

* The MV of StrDecimalLiteral:: - StrUnsignedDecimalLiteralis the negative of the MV of
StrUnsignedDecimalLiteral(Note that if the MV ofStrUnsignedDecimalLiterails 0, the negative of
this MV is also 0. The rounding rule described below handles the conversion of this sign les:
mathematial zero to a floatingoint +0 or —0 as appropriate.)

* The MV of StrUnsignedDecimalLiteral: Infinity is 10'°°%° (a value so large that it will round to
+00).

* The MV of StrUnsignedDecimalLiteral: DecimalDigits is the MV of DecimalDigits

* The MV of StrUnsignedDecimalLiteral: DecimalDigits DecimalDigitsis the MV of the first
DecimalDigits plus (the MV of the secon®ecimalDigitstimes 10"), wheren is the number of
characters in the secomecimalDigits.

The MV of StrUnsignedDecimalLiterat DedmalDigits. ExponentParts the MV of DecimalDigitstimes 16,
whereeis the MV of ExponentPart

The MV of StrUnsignedDecimalLiterat DecimalDigits DecimalDigits ExponentPaiis (the MV of the first
DecimalDigitsplus (the MV of the seconBecimalDigitstimes 10") times 16, wheren is the number of
characters in the secobcimalDigits andeis the MV of ExponentPart

The MV of StrUnsignedDecimalLiterat . DecimalDigitsis the MV of DecimalDigitstimes 10", wheren is
the number of characters DecimalDigits.

The MV of StrUnsignedDecimalLiterat. DecimalDigits ExponentParts the MV of DecimalDigits times
107", wheren is the number of charactersecimalDigits andeis the MV of ExponentPart

The MV of StrUndgnedDecimalLiterat: DecimalDigitsis the MV ofDecimalDigits

The MV of StrUnsignedDecimalLiterat DecimalDigitsExponentParis the MV of DecimalDigitstimes 16,
whereeis the MV ofExponentPart

The MV of DecimalDigits::: DecimalDigitis the MV d DecimalDigit

The MV of DecimalDigits::: DecimalDigitsDecimalDigitis (the MV of DecimalDigitstimes 10) plus the MV
of DecimalDigit

The MV of ExponentPart:: Exponentindicator Signedintegisrthe MV ofSignedinteger

The MV of Signedinteger:: DecimalDigitsis the MV of DecimalDigits

The MV of Signedinteger:: + DecimalDigitsis the MV of DecimalDigits

The MV of Signedinteger:: - DecimalDigitsis the negative of the MV ddecimalDigits

The MV of DecimalDigit::: 0 or of HexDigit::: 0 is Q.

The MV of DecimalDigit::: 1 or of HexDigit::: 1is 1.

The MV of DecimalDigit::: 2 or of HexDigit::: 2 is 2.

The MV of DecimalDigit::: 3 or of HexDigit::: 3is 3.

The MV of DecimalDigit::: 4 or of HexDigit::: 4 is 4.

The MV of DecimalDigit::: 5 or of HexDigit::: 5 is 5.

The MV of DecimalDigit::: 6 or of HexDigit::: 6 is 6.

The MV of DecimalDigit::: 7 or of HexDigit::: 7 is 7.

The MV of DecimalDigit::: 8 or of HexDigit::: 8 is 8.

The MV of DecimalDigit::: 9 or of HexDigit::: 9is 9.

TheMV of HexDigit::: a or of HexDigit::: Ais 10.

The MV of HexDigit ::: b or of HexDigit::: Bis 11.

13 October 2008

- 40 -

The MV of HexDigit ::: ¢ or of HexDigit::: Cis 12.
The MV of HexDigit ::: d or of HexDigit::: Dis 13.
The MV of HexDigit::: e or of HexDigit::: Eis 14.
The MV of HexDigit::: f or of HexDigit::: Fis 15.
The MV of HexIntegerLiterat:: Ox HexDigitis the MV ofHexDigit
The MV of HexIntegerLiteral:: 0X HexDigitis the MV ofHexDigit

The MV of HexIntegerLiteral::: HexIntegerLiteraHexDigitis (the MV ofHexIntegerLiteratimes 16) plus the
MV of HexDigit

Once the exact MV for a string numeric literal has been determined, it is then rounded to a value of the
Number type. If the MV is 0, then the rounded value is +0 unless the first noe gfhéice character in
the string nuheria Wwhiehalcaiss —@ Btherwise, the doended vaduk u e
must be the number value for the MV (in the sense defined in 8.5), unless the literal includes a
StrUnsignedDecimalLiteraand the iteral has more than 20 significant digits, in which case the number
value may be either the number value for the MV of a literal produced by replacing each significant digit
after the 20th with a 0 digit or the number value for the MV of a literal prodiunereplacing each
significant digit after the 20th with a 0 digit and then incrementing the literal at the 20th digit position. A
digit is significantif it is not part of anExponentPar&and

it is notO; or
there is a nonzero digit to its left and thésea nonzero digit, not in thExponentPartto its right.

Tolnteger

The operator Tolnteger converts its argument to an integral numeric value. This operator functions as
follows:

Call ToNumber on the input argument.

If Result(1) isNaN, return+0.

If Result(1) ist+0, -0, +o, or —oo, return Result(1).
Compute sign(Result(1)) * floor(abs(Result(1))).
Return Result(4).

Tolnt32: (Signed 32 Bit Integer)

The operator Tolnt32 converts its argument to one %firkeger values in the range2®! through 31,
inclusive. This operator functions as follows:

agrwNE

1. Call ToNumber on the input argument.

2. If Result(1) isNaN, +0, —0, +e0, or—oo, return +0.

3. Compute sign(Result(1)) * floor(abs(Result(1))).

4. Compute Result(3) modulo®? that is, a finite integer value k dfumber type with positive sign and
less than % in magnitude such the mathematical difference of Result(3) and k is mathematically an
integer multiple of 2.

5. If Result(4) is greater than or equal t& Zeturn Result(4) 2°%, otherwise return Result(4).

NOTE
Given the above definition of ToInt32:

The Tolnt32 operation is idempotent: if applied to a result that it produced, the second application leaves that value
unchanged.

Tolnt32(ToUint32(x)) is equal to TolInt32(x) for all values of x. (It is to presehis latter property that d and —«
are mapped to +0.)

TolInt32 maps-0 to +0.

ToUint32: (Unsigned 32 Bit Integer)

The operator ToUint32 converts its argument to one %fiteger values in the range 0 throug#-2,
inclusive. This operator functis as follows:

1. Call ToNumber on the input argument.
2. If Result(1) isNaN, +0, -0, +w, or —c, return +0.

13 October 2008

- 41 -

3. Compute sign(Result(1)) * floor(abs(Result(1))).

4. Compute Result(3) modulo®? that is, a finite integer value k of Number type with positive sign and
less than % in magnitude such the mathematical difference of Result(3) and k is mathematically ar
integer multiple of 2

5. Return Result(4).

NOTE

Given the above definition of ToUInt32:

Step 5 is the only difference between ToUint32 and Tolnt32.

TheToUint32 operation is idempotent: if applied to a result that it produced, the second application leaves that valut
unchanged.

ToUint32(Tolnt32(x)) is equal to ToUint32(x) for all values of x. (It is to preserve this latter property éhahe —«
are mappd to +0.)

ToUint32 maps-0 to +0.

9.7 ToUintl6: (Unsigned 16 Bit Integer)

The operator ToUint16 converts its argument to one ‘Sfiteger values in the range 0 through-2,
inclusive. This operator functions as follows:

1. Call ToNumber on the input arguent.

2. If Result(1) isNaN, +0, -0, +w0, or —eo, return +0.

3. Compute sign(Result(1)) * floor(abs(Result(1))).

4. Compute Result(3) modulo'2 that is, a finite integer valule of Number type with positive sign and
less than # in magnitude such the mathematiafifference of Result(3) and is mathematically an
integer multiple of 2.

5. Return Result(4).

NOTE

Given the above definition of ToUint16:

The substitution of*2 for 2°2in step 4 is the only difference between ToUint32 and ToUint16.

ToUintl6 maps-0 to +0.

9.8 ToString
The operator ToString converts its argument to a value of type String according to the following table:

Input Type Result

Undefined "undefined"

Null “null”

Boolean If the argument isrue, then the result i&rue”
If the argument ifalse then the result i¥alse"

Number See note below.

String Return the input argument (no conversion)

Object Apply the following steps:

1. Call ToPrimitive(input argument, hint String).
2. Call ToString(Result(1)).
3. Return Result(2).

9.8.1

ToString Applied to the Number Type
The operator ToString converts a numhbeto string format as follows:

1. If mis NaN, return the stringNaN" .

13 October 2008

42 -

If mis +0 or -0, return the string0" .
If mis less than zero, return the string concatenation of the striigand ToStringtm).
If mis infinity, return the strindInfinity"
. Otherwise, len, k, ands be integers such that> 1, 107! < s < 1, the number value fos* 10"* is
m, andk is as small as possible. Note that the number of digits in the decimal representatios, of
thatsis not divisible by 10, and that the least significant digis & not necessarily uniquely
determined by these criteria.
6. If k<n<21, return the string consisting of tkaligits of the decimal representation of s (in order,
with no leading zeroes), followed bykoccur rences db.the character 0
7. 1f 0 < n= 21, return the string consisting of the most significadigits of the decimal representation
of s, followed by a decimal poin. 66, foll owed Ikyndigith & the deeimaal ni ng
representation aof.
8. If 6<n<0, return the string06corfwildtoiweg ddfydtah e ech ama:
followed by-noccurrences b, t hel t bldiyitofthe decitnal
representation aof.
9. Otherwise, ifk = 1, return the string consisting of the single digispfollowed by lowercase
char aeét ef o061 owed +byora mi w8 sascscigogrndd onrg-1 is positivenoe t h e r
negative, folowed by the decimal representation of the integerratig((with no leading zeros).
10.Return the string consisting of the most significant digit of the decimal representation of s, followed
by a deci mal point 6. 6 ,1digislof he decima prdsentatioh & s,r e ma i n
foll owed by the | owercase charact er —606 eadc, c ofrod il nogw et
whether 1 is positive or negative, followed by the decimal representation of the integer-aps(n
(with no leading zeros).

aswN

NOTE
The following observations may be useful as guidelines for implementations, but are not part of the normative
requirements of this Standard:

If X is any number value other tha#®), then ToNumber(ToString(x)) is exactly the same number value as x.
Theleast significant digit of s is not always uniquely determined by the requirements listed in step 5.

For implementations that provide more accurate conversions than required by the rules above, it is recommended
that the following alternative version ofep 5 be used as a guideline:

Otherwise, let n, k, and s be integers such thatlk 10 <s < 10¢, the number value for s 10" *is m, and k is

as small as possible. If there are multiple possibilities for s, choose the value of s for whi€fi§is closest in

value to m. If there are two such possible values of s, choose the one that is even. Note that k is the number of
digits in the decimal representation of s and that s is not divisible by 10.

Implementors of ECMAScript may find useful the grapnd code written by David M. Gay for binatg-decimal
conversion of floatingpoint numbers:

Gay, David M. Correctly Rounded Binafyecimal and DecimaBinary Conversions. Numerical Analysis
Manuscript 9010. AT&T Bell Laboratories (Murray Hill, New Jsey). November 30, 1990. Available as

http://cm.bell - labs.com/cm/cs/doc/90/4 -10.ps.gz . Associated code available as
http://cm.bell - labs.com/netlib/fp/dtoa.c.gz andas http://cm.bell -
labs.com/netlib/fp/g_fmt.c.gz and may also be found at the variowstlib ~ mirror sites.

ToObject

The operator ToObject converts its argument to a value of type Object according to the following table:

13 October 2008

Input Type Result

Undefined Throw aTypeError exception.

Null Throw aTypeError exception.

Boolean Create a new Booleasbject whose JPrimitiveValug] property is set to the valu [Deleted: value
of the boolean. See 15.6 for a description of Boolean objects.

Number Create a new Number object whog@r[fnitiveValud] property is set to the valu [Deleted: value
of the number. See 15.7 for a deption of Number objects.

Decimal Create a new Decimal object whose [[PrimitiveValue]] property is set to the |

- 43 -

of thedecimal. See 15.7 for a description of Decimal objects.

String Create a new String object whosgrjnitiveValud] propertyis set to the value o [Demed; value
the string. See 15.5 for a description of String objects.

Object The result is the input argument (no conversion).

9.10 IsCallable
The operatorlsCallable determines if its argument is a callable function Object according toltbeifg

table:

Input Type Result

Undefined Returnfalse

Null Returnfalse

Boolean Returnfalse

Number Returnfalse

Decimal Returnfalse

String Returnfalse

Object If the argumenbbjecthas annternal [[Call]] methodthenreturntrue, otherwise|
returnfalse

10 Execution Contexts

When control is transferred to ECMAScript executable code, control is enteriegemuition contextActive
execution contexts logically form a stack. The top execution context on this logical stack igntiiegr
execution context.

10.1 Definitions
10.1.1 Function Objects
There are two types of Function objects:

Program functions are defined in source text biyuactionDeclarationor created dynamically either by
using aFunctionExpressiomr by using the buitin Function object as a constructor.

Internal functions are buiin objects of the language, such aarselnt and Math.exp . An
implementation may also provide implementatependent internal functions that are not described
in this specification. These functions do no¢cessarilycontain executable code defined by the
ECMAScript grammarjn which casehey are excludeffom this discussion of execution contexts. [Deleted: so

10.1.2 Types of Executable Code
There ardive types of ECMAScript executable code: [Deleted: three

Global codeis source text that is treated as an ECMAScRpogram The global code of a particular
Programdoes not inalde any source text that is parsed as part Bfoak or a FunctionBodyexcept [Deleted: FunctionBody
thatit does include the code of anfariableDeclarationthat is parsed as part of suctBbckor as
part of aBlock nestedat any level within such Block

Eval codeis the source text supplied to the biiiiteval function. More precisely, if the parameter to
the builtin eval function is a string, it is treated as an ECMAScigbgram The eval code for a
particular invocation oeval is the global code portionf the string parameteihe eval code for a
particular invocation okval does not include any source text that is parsed as parBtdck or a
FunctionBodyexcept thait does include the code of aMariableDeclarationthat is parsed as part of
such aBlockor as part of 8locknested at any level within suchBidock

Function codeis source text that is parsed as part dfumctionBody I'he function codeof a particular Deleted: Thefunction codef a particular
FunctionBodydoes not include any source text that is parsed as partBédck or a FunctionBody FunctionBodydoes not include any source |
except thait does include the code of aMariableDeclarationthat is parsed as part of suclBeck that is parsed as part of a neskenhctionBod

or as part of 8locknested at any level within suchBiock

13 October 2008

- 44 -

Function codealso denotes the source text supplied when using the-ibuRunction object as a
constructor. More precisely, the last parameter providetthe Function constructor is converted to
a string and treated as tlr@inctionBody If more than one parameter is provided to Fhuection

constructor, all parameters except the last one are converted to strings and concatenated together,

separated by ammas. The resulting string is interpreted as farmalParameterListfor the
FunctionBodydefined by the last parameter. Thenction codefor a particular instantiation of a
Function does not include any source text that is parsed as part of a restetionBody The
function codefor a particular instantiation of Bunction does not include any source text that is
parsed as part of @lock or a FunctionBody except thatit does include the code of any
VariableDeclarationthat is parsed as part of suclBbock or as part of @lock nested at any level
within such aBlock

Lexical Block codds the source code that that is parsed asSteementLisbf a Block The lexical
block codeof a particularStatementListloes not include any source text that &sged as part of a
nestedrFunctionBodyor Block

10.1.21 Applying Usage Subsets to Executable code

10.1.3

Eachoccutence of one of these types of code may be restricted to use a defined afutheetomplete
ECMAScript language

* Global codeand function code supplied as the last argument to the Function constructor are

unrestrictedunlessthe Programthat defines the code includadJseSubsetDirective

* Eval code inheritghe restrictions othe executioncontext in which the eval operator agaps,
but its execution context may be further restriciédhe Program that defines the eval code
includes aUseSubsetDirectiven that case, the restrictions of the execution context are the union
of the restrictions of the inherited execution contextd the restrictions specified by the
UseSubsetDirectiveSuch a unioning of restrictions is the equivalent of inteisgdhe specified
usage subsets

* Function code made by evaluatingFanctionDeclarationor a FunctionExpressionand lexical
block code alinherit the restrictions of the execution context in whtbke evaluation occurs

Environment Bindings Instantiation
Every execution context has associated withgnhaironmentobject.for all kinds of execution contexts,

global code, eval code, and function code variables declared in the source text are also added
properties & the environment objectFor function code, parameters are added as properties of the
environmenipbject.

Which object is used as thenvironmenfobject and what attributes are used for the properties depends

on the type of code, but the remainder of the behaviour is generic. On entering an execution context, the

properties are bound to t@vironmenfpbject in the following order:

For furction code: for each formal parameter, as defined inRbemalParameterList create anamed
data property of theenvironmentpbject whose name is thilentifier and whose attributes are
determined by the type of code. The values of the paramatersupplied by the caller as arguments

to [[Call]]. If the caller supplies fewer parameter values than there are formal parameters, the extra

formal parameters have valumdefined. |f two or more formal parameters share the same name,

hence the same pperty, the corresponding property is given the value that was supplied for the last

O

Deleted: Variable

Deleted: variable

Deleted: Variables

Deleted: variable

Deleted: variable

Deleted: variable

Deleted: variable

Deleted: variable

parameter with this naméf the value of this last parameter was not supplied by the caller, the value
of the corresponding property ismdefined.

Comment [pL25]): From AWB:
Should duplicate formal parameter names be restricte
the cautious subset?

For lexical block co@: if the lexical block has any block paramejesgeatefor each block parametex

named datgroperty of theenvironmentobject whose namevalue, are determined by evaluation {

Deleted: eachFunctionDeclaratiorin the code, in
source text order

context of the Block and whose attributes are {[[Writable]]true, [[Enumerable]]: false [

Deleted: variable

[[Configurable fals€]]}. Only a TryStatementreates lexical block contexts with block parameters.

For all of the FunctionDeclaration and ConstantDeclarationin the code perform the following

algorithny Semantically, this step must follow the creation BdrmalParameterListor block
parameteproperties.

Deleted: is theldentifierin the
FunctionDeclarationwhose value is the result
returned by creating a Function object as describ
13, and whose attributes are determined by the t
code. If the variable objeefready has a property v
this name, replace its value and attributes

13 October 2008

10.1.3.1 Usage Subset Restrictions

10.1.4

- 45 -

1. Let CTXbe the current execution context and its associated environment object.
2. For eachFunctionDeclarationand ConstantDeclarationD in the code in source code order,
a. LetN be theldentifierin D.
b. If Dis aConstantDeclaratiorthen
i. If CTXalready contains a property namsdthrow aSyntaxError exception
ii. Create a named data propertyGi Xwhose name i8l, whose [[Const]] attribute is
Unitialized, whose [[Writable]] attribute ifalse, and whose value is set to
undefined.
c. If Dis aFunctionDeclarationthen
i. If CTXalready contains a property namidthen
1. If CTXis the execution context ofBlock, throw a SyntaxError exception.
2. If the existing property has a [[Const]] attribute, thro@yntaxError

exception otherwise the value and attributes of the existing property will be

replaced by the actions of step 2cii below.

ii. Create a named data propertyGi Xwhose name il and whose value is the resul
returned by creating a Function object as describeiB.

d. Otherattributes of the named data property are determined by the type of code

For execution contexts that are not lexical blocksFor each VariableDeclaration or
VariableDeclarationNolnin the code(including VariableDeclarationscontained withinBlocks that
are within the code)create a property of thenvironmentobject whose name is tHdentifier in the
VariableDeclarationor VariableDeclarationNoln whose value isindefined and whose attributes

name of a declared variablend the property has a [[Const]] attribute throwSgntaxError

exception, otherwisethe value © the existing property and its attributes are not changed.

Semantically, this step must follow the creation of tHermalParameterList and the

FunctionDeclarationand ConstantDeclaratiorproperties. In particular, if a declared variable has the
same namas a declared function or formal parameter, the variable declaration does not disturb th

existing property.

When defined within an execution context subset restricted tedh&ous subset, a function may
not have two o more formal parameters thaave thesame nameAn attempt to create auch a
function with conflicting parameters names will fail, either statically, if expressed ag
FunctionDeclarationor FunctionExpressionor dynamically by throwing SyntaxError exception
if expressed in a call to tifeunction constructor.

Scope Chain and ldentifier Resolution

Comment [pL26]): From MSM:

Actually, this error must be reported at scan tim

Deleted: variable

Deleted: variable

Every execution context has associated with it a scope chain. A scope chain is a list of objects that ¢
searched when evaluating adentifier. When control enters an execution context, a scope chain is
created and populated with an initial set of objects, depending on the type of code. During executic
within an execution context, the scope chain of the execution context is affected oBlydkg, with

statements (see 12.10) acatch clauses (see 12.14).

During execution, the syntactic productidPrimaryExpression: Identifier is evaluated using the
following algorithm:

1.
2.
3.
4.
5. Return a value of typReference whose base objechidl and whose property name is the

Get the next object in the scope chain. If there isn't one, go to step 5.

Call the [[HasProperty]] method of Result(1), passingltdentifier as the propertmame

If Result(2) istrue, return a value of type Reference whose base object is Result(1) and whose
property name is thilentifier.

Go to step 1.

Identifier.

The result of evaluating an identifier is always a value of type Reference with its member nam
component equal to the identifier string.

13 October 2008

10.1.5

10.1.6

- 46 -

Global Object

There is a uniqueglobal object(15.1), which is created before control enters any execution context.
Initially the global object has the following properties:

Standard builin objects such as Math, String, Date, parselbtc| These havelattributes [(Comment [pL27): Need a normative list.

[[Enymerable]]:falsg}. : . : : . \ Comment [pL28]: From AWB:

Additional host defined properties. This may include a property whose value is the global object itself it would desirable to also make this [[Writable]]: false,
for example, in the HTML document object model thandow property of the global object is the [[r'T|'3><'b|e]]1fa|se but that may be too incompatable of a
global object itself. change.

(Deleted: Built-in
As control enters execution contexts, and as ECMAScript code is executed, additional properties may [Deleted: DontEnum
added to the global object and the initial properties may be changed.

Activation Object

When control enters an execution context for function code lexical block an object called the
activation object is created and associated with the execution context.

Deleted: The

arguments and attributes {[[Writable]]: true, [[Enumerable]] false, [[Configurablg]: false}. The %

Deleted: DontDelete

initial value of this property is the arguments object described below.

Deleted: variable

instantiation. [Deleted: variable

The activation object is purely a specification mechanism. It is impossible for an ECMAScript program
to access the activation object. It can access members of the activation object, but not the activation
object itself.When the call operation is applied to a Reference value whose base object is an activation
object,null is used as ththis value of the call.

10.1.6.1 Usage Subset cautious Restrictions

10.1.7

10.1.8

For functions defined within an execution subset restricted tocthgious subset,the activaion

object is only initializedw t h an far gument s o hpernaderntsy fiafr guhme V[Comment[pLZQ]: From AWB:

its body In which caset he@ar § u ment s o0s intialiped &ithtattributes {[[Writable]]:false, fimentions freelyo needs
[[Enumerable]]:false, [[Configurabld]: false}.

This Comment [pL30]: ALP says: Deviations do82.4 rais
X X i X) X concern over the representation of arguments.toString
There is ahis value associated with every active execution context.tfitsevalue depends on the caller ES4 specifies Object.prototype.toString() here (see

and the type of code being executed and is determined when control enters the execution context. T incompatibilities.pd&3.4.

this value associated with an execution context is immutable. R T R p——
Arguments Object controversy from the ES4 designers.

When control enters an execution context for function code, an arguments object is ¢seatethove) Deleted: Object

The value of the internal [[Prototypefiroperty of the arguments object is the origipiatay jprototype Deleted: 2

object, the one that is the initial value®dfray .prototype (see 1¥4.3.1).

The value of the internal [[Class]] property"i®bject" .

A property is created with the nansenstructor and attributes { [[Writable]]true, [[Enumerable]]:
false, [[Configurabld]: true}. The initial value of this property is the standard builtin function
namedObject.A property is created with nantallee and property attributes ffWritable]]: alsé
[[Enumerable]]: false [[Configurabld]: ffalsel} The initial value of this property is the Function
object being executed. This allows anonymous functions to be recursive.

A property is created with namength and property attributes mEnumerablﬁ: false }. The initial
value of this property is the number of actual parameter values supplied by the caller.

[For each nomegative integerarg, less than the value of tHength property, a propertysi created
with name ToStringfrg) and property attributes {[[Writable]]: frud, [[Enumerable]]: false
[[Configurablé]: }false[}. The initial value of this property is the value of the corresponding actual
parameter supplied by the caller. The first actual parameter value correspaargs=®, the second i

Comment [pL32]: From AWB:
This appears to be an obseneathange from ES3. Is th:
OK?

Comment [pL33]: From AWB:
This appears to be an observable change from ES3. I
OK?

and initialised as follows: [Deleted: Object

[Deleted: DontEnum
{ Comment [pL34]: From AWB:

Should other attributes also be specified like for callee

Deleted: DontEnum

Comment [pL35]: From AWB:
| assume tht it must be writable for backwards
compatability.

Comment [pL36]: From AWB:
This is a change ES3. Is it OK?

to arg = 1, and so on. In the case wharg is less than the number of foahparameters for the
Function object, this property shares its value with the corresponding property of the activatio[

Deleted: DontEnum

13 October 2008

10.1.8.1

10.2

- 47 -

object. This means that changing this property changes the corresponding property of the activatic

object and vice versa.

Usage Subsetautious Restrictions

For functions defined within an execution subset restricted tocthdious

object is only createdf the function[me ntions HAar gnitmleodyt so freely

If a arguments object is createdcallee property is not created.

The arguments object does not share properties with the activation object. Changing the val
arguments object property does not change the value of the corresponding activation object p
and vice versa.

Entering An Execution Context

Every function and constructor call enters a new execution context, even if a function is calling
recursively.Every evalution of aBlock enters enters a new execution context which is exited when

or

When control enters an execution context, the scope chain is created and initjafisednment bindings|

subset, an argument

more execution contexts.

instantation is performed, and théis value is determined.

The initialisation of the scope chain, variable instantiation, and the determination tfishealue depend

on the type of code being entered.

10.2.1

10.2.2

10.2.2.1 Usage Subsetautious

If either the execution context for the eval code or the execution context in which the eval op|
subset, the eval code cannot instantiate variab

10.2.3

Global Code
The scope chain is created and ifisiad to contain the global object and no others.
Environment bindingdnstantiation is performed using the global object asgheironmentobject and

Thethis value is the global object.

Eval Code

When control enters an execution context for eval code, the previous active execution context, referr

to as thecalling context is used to determine the scope chain,gheironmentobject, and thehis value.

If there is no calling context, then initialising the scope chagimyironment bindingsnstantiation, and

determination of thé¢his value are performed just as for global code.

Comment [pL37]:

From AWB:

There are two better alternatives for defining th
algorithmicly. Either define is parameter proper
a getter/setter pair or provided an alternative

definition of the [[TrhowablePut]] in ternal prope

Comment [pL38]:
fimentions

From AWB:

freelyodo nee

e of
opel

itsel
the

{

Deleted: , if not caught,

[

Deleted: variable

Deleted: Variable

Deleted: variable

Deleted: DontDelete

Deleted: variable

[
[

Deleted: variable

The scope chain is initi@ed to contain the same objects, in the same order, as the calling context's

scope chain. This includes objects added to the calling context's scope cha&hodkg with
statements andatch clauses.

Environment bindinggnstantiation is performed using the calling contertisironmenfpbject and using

theproperty attributeg [[Writable]]: true, [[Enumerable]]true, [[Configurabld]: true}.

Thethis value is the same as thigis value of the calling caext.

Restrictions

was executed is subset restricted to ¢hetious
functions, or constants in the lexical context of its eval operator.

Instead, a nevenvironmentobject iscreated anhppended t o the head
chain and thaenvironmentobjectis used forenvironment binding&stantiationof the eval code.

Function Code

The scope chain is initialised to contain the activation object followed by the objects in the scope cha

stored in the [[Scope]] property of the Function object.
Environment bindingdnstantiation is performed using the activation object asgimeéronmentobject

o f

Deleted: Variable

Deleted: variable

Deleted: empty

leratc

es,

and using property attributes[fWritable]]: true, [[Enumerable]]itrue, [[Configurabld]: false}.

Deleted: Variable

Deleted: variable

Deleted: DontDelete

The caller provides ththis value,

13 October 2008

——

Deleted: If the this value provided by the
caller is not an objectr(cluding the case wh
itisnull), then thethis value is the global
object.

10.2.4

- 48 -

Lexical Block Code

A new activation object is created for use as the environment object. The sltajpeis initialised to
contain the new activation object followed by the

Environment bindings instantiation is performed using the new object as the environment object and
using property attributes fWritable]]: false, [[Enumerable]]: false, §onfigurabld]: false }.

Thethis value is the same as tlies value of the previously current context.

11 Expressions

11.1 Primary Expressions
Syntax
PrimaryExpression
this
Identifier
Literal
ArrayLiteral
ObjectLiteral
(Expression
11.1.1 IThe this Keyword\ 77777777777777777 Comment [pL39]: From MSM:
Thethis keyword evaluates to thhis value of the execution context. Fix this according to the Redmond agreement,
11.1.2 Identifier Reference
An Identifier is evaluated using the scoping rules stated in 10.1.4. The result of evaluatidgnaifier
is always a value of type Reference.
11.1.3 Literal Reference
A Literal is evaluated as described in 7.8.
11.1.4 Array Initialiser
An array initialiser is an expression describing the initialisation of an Array object, written in a form of a
literal. It is a list of zero or more expressions, each of which represents an array element, enclosed in
square brackets. The elements need not be literals; they are evaluated each time the array initialiser is
evaluated.
Array elements may be elided at theginning, middle or end of the element list. Whenever a comma in
the element list is not preceded by AssignmentExpressiofi.e., a comma at the beginning or after
another comma), the missing array element contributes to the length of the Array aabéscthe index
of subsequent elements. Elided array elements are not dehfnad.element is elided at the end of an
array, that element does not contribute to the length of the lArray Comment [pL40]: From AWB:
This really should be sp
Syntax already.
ArrayLiteral :
[Elisiongy]

[ElementList]
[ElementLis, Elisiong]

ElementList

Elision,,; AssignmentExpression
ElementList Elision,,; AssignmentExpression

Elision:

Elision,

Semantics

The productionArrayLiteral : [Elisiony,] is evaluated as follows:

13 October 2008

11.1.5

Syntax

- 49 -

1. Create a newbjectas if by the expressiomew Array() where Array s the standard buiin
constructor with that name

2. EvaluateElision; if not present, use the numeric value zero.

3. Call the [[Put]] method of Result(1) with argumentgngth " and Result(2).

4. Return Result(1).

The productionArrayLiteral : [ElementList] is evaluated as follows:

1. EvaluateElementList
2. Return Result(1).

The productionArrayLiteral : [ElementList, Elisiony,] is evaluated as follows:

EvaluateElementList

EvaluateElision; if not presentuse the numeric value zero.

Call the [[Get]] method of Result(1) with argumerength .

Call the [[Put]] method of Result(1) with argumentength " and (Result(2)+Result(3)).
Return Result(1).

agrLNE

The productionElementList Elisiony, AssignmentExpressiois evaluated as follows:

1. Create a newbjectas if by the expressiomew Array() where Array is the standard buiin
constructor with that name

EvaluateElision; if not present, use the numeric value zero.

EvaluateAssignmentExpression

Call GetValue(Result(3)).

Call the [[Put]] method of Result(1) with arguments Result(2) and Result(4).

Return Result(1)

coukrnun

The productionElementList ElementList, Elisiony, AssignmentExpressiois evaluated as follows:

EvaluateElementList

EvaluateElision; if not present, use the numeric value zero.
EvaluateAssignmentExpression

Call GetValue(Result(3)).

Call the [[Get]] method of Result(1) with argumenength

Call the [[Put]] method of Result(1) with arguments (Result(2)siR®5)) and Result(4).
Return Result(1)

NogrwNE

The productionElision: , is evaluatedas follows:
1. Return the numeric value

The productionElision: Elision, is evaluated as follows:

EvaluateElision.
2. Return (Result(1)+1).

NOTE:

[Deleted: array

‘ [Deleted: array

The use of [[Put]]rather than [[ThrowablePut]] in this section is intentional as there are no situations

where these [[Put]] operations should fail.

Object Initialiser

An object initialiser is an expression describing the initialisation of an Object, written forna

resembling a literal. It is a list of zero or more pairs of property names and associated values, enclosed
curly braces. The values need not be literals; they are evaluated each time the object initialiser

evaluated.

13 October 2008

-50-

ObjectLiteral:

{}
{ PropertyNameAndValueLis}
{ PropertyNameAndValueList }

PropertyNameAndValueList
PropertyAssignment [Deleted: PropertyName AssignmentExpression
PropertyNameAndValueList PropertyAssignment

[Deleted: PropertyName AssignmentExpression

PropertyAssignment
PropertyName AssignmentExpression
get PropertyNamg) { FunctionBody}
setPropertyName PropertySetParameterLi$t{ FunctionBody}

PropertyName
IdentifieName
StringLiteral
NumericLiteral

PropertySetParameterList
Identifier

Semantics
The productionObjectLiteral: { } is evaluated as follows:

1. Create a new object as if by the expressiew Object() whereObject is the standard buin
construcor with that name
2. Return Result(1).

The productior ObjectLiteral: { PropertyNameAndValueLigt and{ PropertyNameAndValueList}
Areevaluated as follows: [Deleted: is

1. EvaluatePropertyNameAndValueList
2. Return Result(1);

The production
PropertyNameAndValueList PropertyAssignment [Deleted: PropertyName AssignmentExpression
is evaluated as follows:

1. Create a new object as if by the expressiew Object() whereObject is the standard buin
construcor with that name

2. EvaluatePropertyAssignment [Deleted: PropertyName
3. Callthe [[DefineOwnProperty]] method of Result(&jth arguments Result(2).name, [Deleted: <#>EvaluateAssignmentExpressiah
Result(2).descriptoffalse, :

Comment [pL41]: Object literal property definition
should never caugfDefineProperty]] to throw; so, false
fine here.

4. Return Result(1).

The production
PropertyNameAndValueList PropertyNameAndValueLisiPropertyAssignment
is evaluated as follows:

Deleted: GetValue(Result(3))

Deleted: <#>Call the [[Put]] method of Result(1)
with arguments Result(ZndResult(4)1

1. EvaluatePropertyNameAndValuelList

2. EvaluatePropertyAssignment

3. Callthe [DefineOwnProperty]] method of Result(1) with argumefResult(2).name,
Result(2).descriptorfalse).

4. Return Result(1).

Deleted: PropertyName AssignmentExpression

Deleted: PropertyName

Deleted: <#>EvaluateAssignmentExpressidh
Deleted: GetValue(Result(3))

The productionPropertyAssignment PropertyName AssignmentExpresside evaluated as follows: Deleted: <#>Call the [[Put]] method of Result(1)

with arguments Result(ZndResult(4)1

— N

1. EvaluatePropertyName
2. EvaluateAssignmentExpression

13 October 2008

-51-

3. Call GetValue(Result(2)).

4. Create Property Descriptor{[[Value]]: Result(2), [[Writableftue, [[Enumerable]]itrue,
[[Configurablg]: true}

5. ReturnProperty Identifer (Result(1), Result(4)).

The productionPropertyAssignmentget PropertyNamg) { FunctionBody} is evaluated as follows:

1. EvaluatePropertyName

2. Create a new Function object as specified in 13.2 with an empty parameter list and body specifled b
FunctionBody Pass in the scope chain of the running execution context &ctpe

3. Create Property Descriptor{[[Getter]]: Result(2), [[Enumerabléjje, [[Configurabld]: true}

4. Return Property Identiér (Result(1), Resul8)).

The production PropertyAssignment setPropertyName(PropertySetParameterLigt{ FunctionBody}
is evaluated as follows:

1. EvaluatePropertyName

2. Create a new Function object as specified in 13.2 with parameters specified by
PropertySetParameterListnd body specified bifunctionBody Pass in the scope chain of the
running execution context as tiSeope

3. Create Property Descriptor{[[Setter]]: Res@}, [[Enumerable]]true, [[Configurabld]: true}

4. Return Property Identiér (Result(1), Resul®)).

The productionPropertyName IdentifierName is evaluated as follows:

1. Form a string literal containing the same sequence of characters laethiéier Name
2. Return Result(1).

The productionPropertyName StringLiteral is evaluated as follows:

1. Return the value of th8tringLiteral

The productionPropertyName NumericLiteral is evaluated as follows:

1. Form the value of th&lumericLiteral
2. ReturnToString(Result(1)).

11.1.6 The Grouping Operator
The productiorPrimaryExpression (Expression) is evaluated as follows:

1. EvaluateExpression This may be of type Reference.
2. Return Result(1).

NOTE
This algorithm does not apply GetValue to Result(1). The principal motivation for this is so that
operators such adelete andtypeof may be applied to parenthesised expressions.

11.2 Left-Hand-Side Expressions
Syntax

MemberExpression
PrimaryExpression
FunctionExpression
MemberExpressioh Expression
MemberExpression IdentifieiName
new MemberExpressiomArguments

NewExpression

MemberExpression
new NewEXxpression

13 October 2008

-52-

CallExpression
MemberExpressiomArguments
CallExpression Arguments
CallExpressiorf Expression]
CallExpression IdentifieiName

Arguments
(ArgumentList)

ArgumentList
AssignmentExpression
ArgumentList AssignmentExpression

LeftHandSideExpressian
NewExpression
CallExpression

11.2.1 Property Accessors
Properties are accessed tgme, using either the dot notation:
MemberExpression IdentifieiName
CallExpression IdentifiedName
or the bracket notation:
MemberExpressioph Expressior]
CallExpressiorf Expressior]
The dot notation is explained by the following syntactic conversio

MemberExpression IdentifieiName

is identical in its behaviour to

MemberExpressiop <identifier-namestring>]

and similarly

CallExpression IdentifieiName

is identical in its behaviour to

CallExpressior] <identifier-namestring>]

where <identifiernamestring> is a string literal containing the same sequence of characters as the
IdentifierName

The productiorMemberExpression MemberExpressiofi Expression is evaluated as follows:

EvaluateMemberExpressiaon

Call GetValue(Result(1)).

EvaluateExpression

Call GetValue(Result(3)).

Call ToObject(Result(2)).

Call ToString(Result(4)).

Return a value of type Reference whose base object is Result(5) and whose property name is
Result(6).

NogrwnhpE

The productionCallExpression: CallExpression[Expression] is evaluated in exactly the same
manner, except that the contain@dllExpressions evaluated in step 1.

13 October 2008

11.2.2

11.2.3

11.2.4

- 53-

The new Operator
The productiorNewExpression new NewExpressioims evaluated as follows:

. EvaluateNewExpression

. Call GetValue(Result(1)).

. If Type(Result(2)) is not Object, throwTgypeError exception.

. If Result(2) does not implement the internal [[Construct]] method, thra@wpeeError exception.

. Call the [[Construct]] method on Result(2), providing no arguments (that is, an empty list of
argumers).

6. Return Result(5).

O WOWNPEFP

The productioMemberExpressionnew MemberExpression Argumentsevaluated as follows:

EvaluateMemberExpressian

Call GetValue(Result(1)).

EvaluateArguments producing an internal list of argument values (11.2.4).

If Type(Result(2)) is not Object, throwTypeError exception.

If Result(2) does not implement the internal [[Construct]] method, thr@wpeError exception.
Call the [[Construct]] method on Result(2), providing the list Result(3) as the argument values.
Return Result(6).

NogoswWNE

Function Calls
The productiorCallExpression MemberExpressioArgumentss evaluated as follows:

. EvaluateMemberExpressian

. EvaluateArguments producing an internal list of argument values (see 11.2.4).

. Call GetValue(Result(1)).

. If Type(Result(3)) is not Object, throwTypeError exception.

. If Type(Result(1)) is Reference, Result(6) is GetBase(Result(1)). Otherwise, Resuh(#).is

. If Result(6) is an activation object, Result(7)nigll. Otherwise, Result(7) is the same as Result(6).

. Call the [[Call]] method on Result(3), providing Resilt@s thethis value and providing the list
Result(2) as the argument values.

9. Return Result(8).

BN AWN P

The productionCallExpression: CallExpression Argumentss evaluated in exactly the same manner,
except that the containgdallExpressions evaluated in step.

NOTE
[Result(S) will never be of type Reference if Result(3) is a native ECMAScript object. Whether calling
host object can return a value of type Reference is implemen{deipendenh.

Argument Lists
The evaluation of an argument listoduces an internal list of values (see 8.8).

The productioPArguments () is evaluated as follows:

1. Return an empty internal list of values.

The productioPArguments (ArgumentList) is evaluated as follows:

1. EvaluateArgumentList
2. Return Result(1).

The productionArgumentList AssignmentExpressioms evaluated as follows:

1. EvaluateAssignmentExpression
2. Call GetValue(Result(1)).
3. Return an internal list whose sole item is Result(2).

The productioPArgumentList ArgumentList, AssignmentExpressiois evaluated as follows:

13 October 2008

Deleted: does not implement the internal
[[Call]] method

Comment [pL42]: We wanted to remove this
possibility but have not done so because this cc
break bridging to VBScript. Cannot afford to do
as VBScript is still used in the intranet.

- 54 -

. EvaluateArgumentList

. EvaluateAssignmentExpression

. Call GetValue(Result(2)).

. Return an internal list whose length is one greater than the length of Result(1) and whose items are
the items of Result(1), in order, followed at the drydResult(3), which is the last item of the new
list.

A WNPE

11.2.5 Function Expressions
The productioriMemberExpression FunctionExpressioims evaluated as follows:

1. EvaluateFunctionExpression
2. Return Result(1).

11.3 Postfix Expressions
Syntax

PostfixExpression
LeftHandSideExpression
LeftHandSideExpressiomo LineTerminatotere] ++
LeftHandSideExpressiofno LineTerminatothere] --

11.3.1 Postfix Increment Operator

The productionPostfixExpression LeftHandSideExpressiofino LineTerminatorhere] ++ is evaluated as
follows:

1. Evaluate LeftHandSideExpression.
2. Call GetValue(Result(1)).
3. If Type(ResultQ)) is Decimal, then
a. Perform IEEE 7542008Decimaladditionwith arguments Result(2) and the decimal value
Im.
b. Call PutValue(Result(1), Result(3dglse).
c. Return Result(1).

4. Call ToNumber(Result(2)).
5. Add the valuel to Result@), using the same rules as for th@perator (see 11.6.3). [Deleted: 3
6. Call PutValue(Result(1), Resy#y, false). [Deleted: 4
7. Return Resulf). [Delotod: 3
eleted:
11.3.1.1 Usage Subsetautious Restrictions

When a postfix increment operator occurs within an execution context that is subset restricted to the
cautious subset, itsLeftHandSidemust not be a referenceo a property with the attribute value
{[[Writable]]: false} nor to a norexistent property of mobject whose [[Extensible]] property has the
valuefalse In these cases BypeError exceptionis thrown. This is accomplished by replacing step

3b and 6of the aboe algorithm with the following:

3b. Call PutValue(Result(1), Result(3djue).
6. Call PutValuéResult(1), Resulf), true).

11.3.2 Postfix Decrement Operator
The productionPostfixExpression LeftHandSideExpressiofino LineTerminatorhere] -- is evaluated as
follows:

1. Evaluate LeftHandSideExpression.
2. Call GetValue(Result(1)).
3. If TypeResult@)) is Decimal, then
a. Perform IEEE 7542008Decimal subtraetctionwith arguments Result(2) and the decimal
value 1m.
b. Call PutValue(Result(1), Result(3dglse).
c. Return Result(1).
4. Call ToNumber(Result(2)).

5. Subtract the valué from Result#), usingthe same rules as for theoperator (11.6.3). [Deleted: 3

13 October 2008

- 55-

6. Call PutValue(Result(1), Resy#y, false). [Deleted: 4

7. Return Resulff). (Deleted: 3

11.3.2.1 Usage Subsetautious Restrictions
The same restrictions apply as specified in section 11.3.1.1 for the postfix increment operator.

11.4 Unary Operators
Syntax

UnaryExpression
PostfixExpression
delete UnaryExpression
void UnaryExpression
typeof UnaryExpression
++ UnaryExpression
-- UnaryExpression
+ UnaryExpression
- UnaryExpression
~ UnaryExpression
I UnaryExpression

11.4.1 Thedele te Operator
The productiorlJnaryExpression delete UnaryExpressions evaluated as follows:

EvaluateUnaryExpression

If Type(Result(1)) is not Reference, returoe.
Call GetBase(Result(1)).

Call GetPropertyName(Result(1)).

Call the [[Delete]] method oResult(3), providingResult(4) false) as the arguments | [Deleted: as the property name to delete

oukrwbhpE

Return Result(5).

11.4.1.1 Usage Subsetautious Restrictions

When adelete operator occurs within an execution context that is subset restricted to |the
cautious subset, itdUnaryExpresmon is further limited to being MemberExpressianin addition,

if the property to be deleted is has the attribufgGonfigurablg]:false}, aTypeError exception

is thrown. This is accomplished by replacing step 5 of the abhlmaithm with the following:

5. Call the [[Delete]] method on Result(3), providing (Resultf4)e) as the arguments.
11.4.2 Thevoid Operator
The productiorlnaryExpression void UnaryExpressions evaluated as follows:

1. EvaluateUnaryExpression
2. Call GetValue(Result(1)).
3. Returnundefined.

11.4.3 The typeof Operator
The productiorlJnaryExpression typeof UnaryExpressions evaluated as follows:

EvaluateUnaryExpression

If Type(Result(1)) is not Reference, go to step 4.

If GetBase(Result(1)) iaull, return"undefined"

Call GetValue(Result(1)).

Return a string determined by Type(Result(4)) according to the following table:

arwbE

13 October 2008

11.4.4

- 56 -

implements [[Call]])

Type Result
Undefined "undefined"
Null "object”
Boolean "boolean”
Number "number”
Decimal "decimal”
String "string"
Object (native and "object”
doesnot

[[Calll])

Object (native and "function”

Object (host)

Implementatiordependent

Prefix Increment Operator

The productioJnaryExpression ++ UnaryExpressions evaluated as follows:

1. Evaluate UnaryExpression.
2. Call GetValue(Result(1)).
3. If TypeResult(2) is Decimal, then

a. Perform IEEE 7542008Decimal addion with arguments Result(2) and the decimal value

im.

b. Call PutValue(Result(1), Result(3&glse).
c. ReturnResult(1).
Call ToNumber(Result(2)).

~No g b
>
o
a
-
=
o
<
L
B
-
o
e
®
n
=
<
c
o,
=)
Q
pr
5
I
»
o
3
)
=
=
I}
7
®
n
_,,
o
=
F
8
S
I}
=
o
=4
o
=
—
n
®
o
N
=
o
w
N

Return Resulff).

11.4.4.1 Usage Subsetautious Restrictions

11.45

The same restrictionapply as specified in section 11.3.1.1 for the postfix increment operator.

Prefix Decrement Operator

The productiorlJnaryExpression --

1. Evaluate UnaryExpression.
2. Call GetValue(Result(1)).
3. If TypeResult(2) is Decimal, then

a. PerformlEEE 7542008Decimal subtra¢on with arguments Result(2) and the decimal

value 1m.

b. Call PutValue(Result(1), Result(3dplse).
c. Return Result(3a).

Noas

Return Resulf).

Call ToNumber(Result(2)).
Subtract the valué from Result#), using the same rules as for th@perator (see 11.6.3).
Call PutValue(Result(1), Resyfly, false).

11.4.5.1 Usage Subsetautious Restrictions

11.4.6

The same restrictions apply as specified in section 11.3.1.1 for the postfix increpeeatos.

Unary + Operator

The unary + operator converts its operand to Number type.

The productioJnaryExpression + UnaryExpressions evaluated as follows:

1. Evaluate UnaryExpression.
2. Call GetValue(Result(1)).

13 October 2008

UnaryExpressiors evaluated as follows:

Deleted: 3

Deleted: 4

Deleted: 4

Deleted: 3

Deleted: 4

Deleted: 4

-57-

3. If TypeResult(2) is Decimal, then
a. Return Result(2).
4. Call ToNumber(Result(2)).

5. Return Resuly). | ([Deleted: 3

11.4.7 Unary - Operator

The unary- operator converts its operand to Number type and then negates it. Note that ne@ating
produces-0, and negating0 producestO.

The productiorlJnaryExpres®n : - UnaryExpressions evaluated as follows:

1. Evaluate UnaryExpression.

2. Call GetValue(Result(1)).

3. If TypeResult(2) is Decimal, then
a. PerformlEEE 7542008Decimal negdbn with argument Result(2).
b. Return Result(3a).

4. Call ToNumber(Result(2)).

5. If Result@) is NaN, returnNaN. ([Deleted: 3
6. Negate Resulf); that is, compute a number with the same magnitude but opposite sign. [Deleted: 3
7. Return Resulf).

,,,,,,,,,,,,,,,,,,,, [Deleted: 5

11.4.8 Bitwise NOT Operator (~)
The productioJnaryExpression ~ UnaryExpressions evaluated as follows:

EvaluateUnaryExpression

Call GetValue(Result(1)).

Call ToInt32(Result(2)).

Apply bitwise complement to Result(3). The result is a signeti8ihteger.
Return Result(4).

arobPE

11.4.9 Logical NOT Operator (!)
The productioJnaryExpression | UnaryExpressions evaluated as follows:

EvaluateUnaryExpression
Call GetValue(Result(1)).
Call ToBoolean(Result(2)).

If Result(3) istrue, returnfalse.
Returntrue.

arwhPE

11.5 Multiplicative Operators
Syntax

MultiplicativeExpression
UnaryExpression
MultiplicativeExpressin* UnaryExpression
MultiplicativeExpressiort UnaryExpression
MultiplicativeExpressiofUnaryExpression

Semantics

The productionMultiplicativeExpression MultiplicativeExpression @ UnaryExpressiowhere @ stands
for one of the operators in the abadefinitions, is evaluated as follows:

Evaluate MultiplicativeExpression.
Call GetValue(Result(1)).
Evaluate UnaryExpression.
Call GetValue(Result(3)).
If TypeResult(2) is Decimal andType(Result(4) is Decimal, then
a. Performthe corresponding Decimal method (muligaltion, division, remainder) with
arguments RBsult@) and Resuly).
b. Return Result(5a).

agrLNPE

13 October 2008

- 58 -

6. Call ToNumber(Result(2)).

7. Call ToNumber(Result(4)).

8. Apply the specified operation (*, /, or %) to Resfi)tend Resulf{). See the notes below (11.5.1, [Deleted: 5
11.5.2, 11'5'3 [Deleted: 6

9. Return Resulg).

[Deleted: 7

11.5.1 Applying the * Operator

The * operator performs multiplication, producing the product of its operands. Multiplication is
commutative. Multiplication is not always associative in E&€8£ript, because of finite precision.

The result of a floatingoint multiplication is governed by the rules of IEEE 754 doyiecision
arithmetic:

If either operand idNaN, the result idNaN.

The sign of the result is positive if both operands havesdmae sign, negative if the operands have
different signs.

Multiplication of an infinity by a zero results iNaN.

Multiplication of an infinity by an infinity results in an infinity. The sign is determined by the rule
already stated above.

Multiplication of an infinity by a finite nonzero value results in a signed infinity. The sign is determined
by the rule already stated above.

In the remaining cases, where neither an infinity or NaN is involved, the product is computed and
rounded to the nearest repretgble value using IEEE 754 rowtd-nearest mode. If the magnitude is
too large to represent, the result is then an infinity of appropriate sign. If the magnitude is too small
to represent, the result is then a zero of appropriate sign. The ECMAScpialge requires support
of gradual underflow as defined by IEEE 754.

11.5.2 Applying the / Operator

The / operator performs division, producing the quotient of its operands. The left operand is the
dividend and the right operand is the divisor. ECMAScripees not perform integer division. The
operands and result of all division operations are dopbéeision floatingpoint numbers. The result of
division is determined by the specification of IEEE 754 arithmetic:

If either operand idNaN, the result isNaN.

The sign of the result is positive if both operands have the same sign, negative if the operands have
different signs.

Division of an infinity by an infinity results ifNaN.

Division of an infinity by a zero results in an infinity. The sign is determibgdhe rule already stated
above.

Division of an infinity by a norzero finite value results in a signed infinity. The sign is determined by
the rule already stated above.

Division of a finite value by an infinity results in zero. The sign is determinethéyule already stated
above.

Division of a zero by a zero results NaN; division of zero by any other finite value results in zero,
with the sign determined by the rule already stated above.

Division of a nonzero finite value by a zero results in igrsed infinity. The sign is determined by the
rule already stated above.

In the remaining cases, where neither an infinity, nor a zero,N&\ is involved, the quotient is
computed and rounded to the nearest representable value using IEEE 754c-oeacst mode. If
the magnitude is too large to represent, the operation overflows; the result is then an infinity of
appropriate sign. If the magnitude is too small to represent, the operation underflows and the result is
a zero of the appropriate sign. Th€®AScript language requires support of gradual underflow as
defined by IEEE 754.

11.5.3 Applying the %Operator

The % operator yields the remainder of its operands from an implied division; the left operand is the
dividend and the right operand is the dioi.

13 October 2008

-59-

NOTE
In C and C++, the remainder operator accepts only integral operands; in ECMAScript, it also accepts
floating-point operands.

The result of a floatingroint remainder operation as computed by $heperator is not the same as the
Airemainderonopdefaned by | EEE 754. The | EEE 75
remainder from a rounding division, not a truncating division, and so its behaviour is not analogous t
that of the usual integer remainder operator. Instead the ECMAScript langlediges% on floating

point operations to behave in a manner analogous to that of the Java integer remainder operator; this n
be compared with the C library function fmod.

The result of a ECMAScript floatingoint remainder operation is determined by thées of IEEE

arithmetic:

If either operand iNaN, the result isNaN.

The sign of the result equals the sign of the dividend.

If the dividend is an infinity, or the divisor is a zero, or both, the resuitaiN.

If the dividend is finite and the divisas an infinity, the result equals the dividend.

If the dividend is a zero and the divisor is finite, the result is the same as the dividend.

In the remaining cases, where neither an infinity, nor a zero,Na is involved, the floatingpoint
remainder rfrom a dividend n and a divisor d is defined by the mathematical relation r &r* q)
where q is an integer that is negative only if n/d is negative and positive only if n/d is positive, anc
whose magnitude is as large as possible without exceedinghdélgaitude of the true mathematical
quotient of n and d.

11.6 Additive Operators
Syntax

AdditiveExpression
MultiplicativeExpression
AdditiveExpressior MultiplicativeExpression
AdditiveExpression MultiplicativeExpression

11.6.1 The Addition operator (+)
The addition operator either performs string concatenation or numeric addition.

The productionAdditiveExpression AdditiveExpression+ MultiplicativeExpressionis evaluated as

follows:
1. Evaluate AdditiveExpression.
2. Call GetVale(Result(1)).
3. Evaluate MultiplicativeExpression.
4. Call GetValue(Result(3)).
5. If TypeResult(2) is Decimal andTypeResult(4) is Decimal, then [Deleted: 5
a. Perform IEEE 7542008Decimal addion with argumentsResult@) and Resul). [Deleted: 6
b. R_etqr_n Result(5a). Deleted: go to step 12. (Note that this ste
6. Call ToPr!m!t!ve(Result(Z)). differs l‘romg step 3 i?l the comparison algor
7. Call ToPrimitive(Result(4)). for the relational operators, by using or ins
8. If Type(Resultf)) is String or Type(Resulf}) is String,ther of and.)
a. Call ToString(Result(6)). Deleted: 5
b. Call ToString(Result(7)).
c. Concatenate Result(8a) followed by Result(8b). Deleted: 6
d. Return Result(8c). Deleted: 8
. Deleted: 9
10. Call ToNumber(Resulff)).
Deleted: 10

11. Apply the addition operation to Resi#@j(and Resul{{0). See the note below (11.6.3).
12. Return Resulj(1).

NOTE

Deleted: <#>Call ToString(Result(5)J
<#>Call ToString(Result(6).
<#>Concatenate Result(12) followed by
Result(13)f

<#>Return Result(14y.

[
[
9. Call ToNumber(Resulg)). %
(

13 October 2008

- 60 -

No hint is provided in the calls to ToPrimitive in steps 5 and 6. All native ECMAScript objects except
Date objects handle the absence of a hint as if the hint Number were given; Date objects handle the
absence of a hint as if the hint String were given. Host objects may handle the absence of a hint in some
other manner.

11.6.2 The Subtraction Operator (-)

The production AdditiveExpression. AdditiveExpression MultiplicativeExpressionis evaluated as
follows:

Evaluate AdditiveExpression.

Call GetValue(Result(1)).

Evaluate MultiplicativeExpression.

Call GetValue(Result(3)).

If TypeResult(2) is Decimal andTypeResult(4) is Decimal, then
a. Perform IEEE 754008Decimal subtradbn with argumentfResult(2) and ResuHj.
b. Return Result(5b).

agrwhE

6. Call ToNumber(Result(2)).

7. Call ToNumber(Result(4)).

8. Apply the subtraction operation to Resg)t@nd Resulf{). See thenote below (11.6.3). [Deleted: 5

9. ReturnResul. [Deleted: 6
11.6.3 Applying the Additive Operators (+, -) to Numbers [Deleted: 7

The + operator performs addition when applied to two operands of numeric type, producing the sum of
the operands. The operator performs subtraction, prodogithe difference of two numeric operands.

Addition is a commutative operation, but not always associative.
The result of an addition is determined using the rules of IEEE 754 duébtésion arithmetic:

If either operand iNaN, the result ifNaN.

The sum of two infinities of opposite signfi&N.

The sum of two infinities of the same sign is the infinity of that sign.

The sum of an infinity and a finite value is equal to the infinite operand.

The sum of two negative zeros+§€. The sum of two posive zeros, or of two zeros of opposite sign, is
+0.

The sum of a zero and a nonzero finite value is equal to the nonzero operand.

The sum of two nonzero finite values of the same magnitude and opposite s@n is

In the remaining cases, where neitheriimity, nor a zero, nor NaN is involved, and the operands have
the same sign or have different magnitudes, the sum is computed and rounded to the nearest
representable value using IEEE 754 rodnéhearest mode. If the magnitude is too large to represent
the operation overflows and the result is then an infinity of appropriate sign. The ECMAScript
language requires support of gradual underflow as defined by IEEE 754.

The - operator performs subtraction when applied to two operands of numeric type, im@dbe
difference of its operands; the left operand is the minuend and the right operand is the subtrahend. Given
numeric operanda andb, it is always the case that b produces the same resultas(i b) .
11.7 Bitwise Shift Operators
Syntax
ShiftExpresion :
AdditiveExpression
ShiftExpressior< AdditiveExpression
ShiftExpressior> AdditiveExpression
ShiftExpressior>> AdditiveExpression

11.7.1 The Left Shift Operator (<<)
Performs a bitwise left shift operation on the left operand by the amounfisgdy the right operand.

The productiorShiftExpression ShiftExpressiork< AdditiveExpressiofs evaluated as follows:

13 October 2008

CONoOrLNE

-61-

EvaluateShiftExpression

Call GetValue(Result(1)).

EvaluateAdditiveExpression

Call GetValue(Result(3)).

Call ToInt32(Result(2)).

Call ToUint32(Result(4)).

Mask out all but the least significant 5 bits of Result(6), that is, compute Result(6) & Ox1F.
Left shift Result(5) by Result(7) bits. The result is a signed 32 bit integer.

Return Result(8).

11.7.2 The Signed Right Shift Operator(>>)

Performs a sigiiilling bitwise right shift operation on the left operand by the amount specified by the
right operand.

The productiorShiftExpression ShiftExpression> AdditiveExpressiofis evaluated as follows:

Nooh~wNE

9.

EvaluateShiftExpression

Call GetValue(Result(1)).

EvaluateAdditiveExpression

Call GetValue(Result(3)).

Call ToInt32(Result(2)).

Call ToUint32(Result(4)).

Mask out all but the least significant 5 bits of Result(6), that is, compute Result(6) & Ox1F.
Perform sigrextending right shifof Result(5) by Result(7) bits. The most significant bit is
propagated. The result is a signed 32 bit integer.

Return Result(8).

11.7.3 The Unsigned Right Shift Operator (>>>)

Performs a zerdilling bitwise right shift operation on the left operand thetamount specified by the
right operand.

The productiorShiftExpression ShiftExpressior>> AdditiveExpressiofis evaluated as follows:

o GRG0 N =

©

EvaluateShiftExpression

Call GetValue(Result(1)).

EvaluateAdditiveExpression

Call GetValue(Result(3)).

Call ToUint32(Result(2)).

Call ToUint32(Result(4)).

Mask out all but the least significant 5 bits of Result(6), that is, compute Result(6) & Ox1F.
Perform zerefilling right shift of Result(5) by Result(7) bits. Vacated bits are filled with zero. The
result isan unsigned 32 bit integer.

Return Result(8).

11.8 Relational Operators |

Syntax

RelationalExpression
ShiftExpression
RelationalExpressior ShiftExpression
RelationalExpressior ShiftExpression
RelationalExpressior= ShiftExpression
RelationalExpresion>= ShiftExpression
RelationalExpressioimstanceof ShiftExpression
RelationalExpressiom ShiftExpression

13 October 2008

[

Deleted:

11.4

-62-

RelationalExpressionNoin
ShiftExpression
RelationalExpressionNola ShiftExpression
RelationalExpressionNoln ShiftExpression
RelationalExpresionNoln<= ShiftExpression
RelationalExpressionNo= ShiftExpression
RelationalExpressionNolimstanceof ShiftExpression

NOTE
The 'Noln' variants are needed to avoid confusingitheoperator in a relational expression with thie
operator in afor statement.

Semantics

The result of evaluating a relational operator is always of type Boolean, reflecting whether the relationship
named by the operator holds between its two operands.

The RelationalExpressionNolproductions are evaluated in the same marasetheRelationalExpression
productions except that the contain®elationalExpressionNolris evaluated instead of the contained
RelationalExpression

11.8.1 The Lessthan Operator (<)
The productiorRelationalExpression RelationalExpressior ShiftExpressions evaluated as follows:

Evaluate RelationalExpression.
Call GetValue(Result(1)).
Evaluate ShiftExpression.
Call GetValue(Result(3)).
If TypeResult(2) is Decimal andType(Result(4) is Decimal, then
a. If IEEE 7542008DecimalisNaN(Result(9) or isNaNResult(4), returnfalse.
b. Call thelEEE 7542008Decimal compar@uietLessmethod with arguments ResWj(and
Resultd).
c. ReturnResult(®).
6. Perform the comparison Result(2) < Result(4). (see 11.8.5)

aghrwbpE

7. If Result() isundefined, returnfalse. Otherwise, return Resufi). [Deleted: 5

11.8.2 The Greater-than Operator (>) [Deleted: 5

The productiorRelationalExpression RelationalExpressior ShiftExpressions evaluated as follows:

Evaluate RelationalExpression.
Call GetValue(Result(1)).
Evaluate ShiftExpression.
Cadl GetValue(Result(3)).
If TypeResult(2) is Decimal andTypeResult(4) is Decimal, then
a. If IEEE 7542008DecimalisNaN(Result(2) or isNaN(Result(4)yeturnfalse.
b. Call thelEEE 7542008Decimal compar@uietGreatemethod witharguments ResulRj
andResultd).
c. ReturnResult(®).
6. Perform the comparison Result(4) < Result@)h LeftFirstequal tofalse. (see 11.8.5).

arwhkE

7. If Resultf) is undefined, returnfalse. Otherwise, return Resufy. [Deleted: 5

11.8.3 The Lessthan-or-equal Operator (<=) [Deleted: 5

The productiorRelationalExpression RelationalExpressior= ShiftExpressions evaluated as follows:

Evaluate RelationalExpression.
Call GetValue(Result(1)).
Evaluate ShiftExpression.
Call GetValue(Result(3)).
If TypeResult(2) is Decimal andType(Result(4) is Decimd, then
a. If IEEE 7542008DecimalisNaN(Result(2)) or isNaN(Result(4)) retufalse.

aghwbhpeE

13 October 2008

11.8.4

11.8.5

- 63 -

b. Call thelEEE 7542008Decimal compar@uietLessEquamethod with arguments Resu)(
and Resuly).
c. ReturnResult(®).
6. Perform the comparison Result(4) < Result{@)h LeftFirst equal tofalse. (see 11.8.5).
7. If Result) is true or undefined, returnfalse. Otherwise, returitrue.

The Greater-than-or-equal Operator (>=)
The productiorRelationalExpression RelationalExpressior= ShiftExpressions evaluated afollows:

Evaluate RelationalExpression.
Call GetValue(Result(1)).
Evaluate ShiftExpression.
Call GetValue(Result(3)).
If Type(Result(2) is Decimal andType(Result(4) is Decimal, tfen
a. If IEEE 7542008DecimalisNaN(Result(2)) or isNaN(Result(4)) retufalse.
b. Call thelEEE 7542008Decimal compar@uietGreaterEquahethod with arguments
Result@) and Resuly).
c. ReturnResult(®).
6. Perform the comparison Result(2) < Result(4). (see 11.8.5).
7. If Result@®) istrue or undefined, returnfalse. Otherwise, returtirue. |

agprwhE

The Abstract Relational Comparison Algorithm

The comparisox <y, wherex andy are values, producedsue, false, or undefined (which indicates that
at least one operand MaN). In addition tox andy the algorithm takes a booledlag named_eftFirst as
a parameter. The flag is used to control the order in which operations with potentially visibidfsicis
are performed upom andy. It is necessary because ECMAScript specifies left to right ewelo of
expressions. The default value loéftFirst is true and indicates that the paramenter corresponds to g
expression that occurs to the left of th@arameters corresponding expressibdnLeftFirst is false, the
reverse is the case and operasionust be performed upgrbeforex. Such a comparison is performed 4§
follows:

1. If the LeftFirstflag is true, then
a. Letpxbe the result of callingoPrimitive, hint Number).
b. JLetpybe the result of calling oPrimitive(y, hint Number).

2. Else theorder of evaluation needs to be reversed to preserve left to right evaluation
a. Letpybe the result of calling ToPrimitivg(hint Number).

%]

{

Deleted:

5

Deleted:

5

Deleted: Call

Deleted: Call

Comment [pL43]: See Deviations doc item 2.

Deleted:

Result(1)

Deleted:

and

Deleted:

Result(2)

Deleted:

Call

Deleted:

Result(1)

Deleted:

Call ToNumber

b. Letpxbe the result of calling ToPrimitive(hint Number). ’ [Deleted: Result(2)
3. If Type(p) is Stringbi Type(oy) is String, go to step 16. (Note that this step differs from step 7 in| | |/ [Deleted: Resul(4)
the algorithm for the addition operatérin usingandinstead ofor.) [Deleted: Result(5)
4.) etnxbe the result of callingoNumberpx). Because opx andpy are primitive valuegvaluation -
order is not important. [Deleted: Result(4)
5. Let ny be the result of callinfoNumbe(py). { Deleted: Result(5)
6. If nxis NaN, returnundefined. [Deleted: Result(4)
7. If nyis NaN, returnundefined. -
8. If hxandpny are the same number value, retfafse [Deleted: ResulS)
9. If pxis +0 andpyis =0, returnfalse. , (_ Deleted: Resuli(9
10. If pxis—0 andnyis +0, returnfalse. : [Deleted: Result(5)
11. h; nxis +oo, returnfalse. [Deleted: Result(4)
12. If ny,is +, returntrue.] -
13. If ny,is —o, returnfalse. [Deleted: Result(S)
14. If nxis —oo, returntrue. (Deleted: Resul(s)
15. If the mathematical value gfxis less than the mathematical valuengfd note that these [Deleted: Result(4)
mathematical values are both finite and not both @e®turntrue. Otherwise, returfalse. [Deleted: Result(4)
16. If pyis a prefix ofpx, returnfalse. (A string valuep is a prefix of string valug if g can be the result | :
of concatenating and some other string Note that any string is a prefix of itself, because r may be (_ Deleted: Resul(s)
the empty string.) ~ [Deleted: Resul(2)
17. If pxis a prefix ofpy, returntrue. | [Deleted: Result(1)
AN [Deleted: Result(1)
[Deleted: Result(2)

13 October 2008

11.8.6

11.8.7

11.9
Syntax

- 64 -

. Let k be the smallest nonnegative integer such that the character at p&sitititin px is different

from the character at positidowithin py. (There must be suchka for neither string is a prefix of the
other.)

. Let mbe the nteger that is the code point value for the character at poditiathin px.
. Let n be the integer that is the code point value for the character at polsitiihin py.
. If m<n, returntrue. Otherwise, returfialse.

NOTE
The comparisp of strings uses a simple lexicographic ordering on sequences of code point value values.
There is no attempt to use the more complex, semantically oriented definitions of character or string

equality and collating order defined in the Unicode specifmwatiTherefore strings that are canonically

Deleted:

Result(1)

Deleted:

Result(2)

Deleted:

Result(1)

Deleted:

Result(2)

equal according to the Unicode standard could test as unequal. In effect this algorithm assumes that
both strings are already in normalised form.

The instanceof operator

The productionRelationalExpressianRelationalExpressiomnstanceof ShiftExpressions evaluated
as follows:

ONoGOrWNE

EvaluateRelationalExpression

Call GetValue(Result(1)).

EvaluateShiftExpression

Call GetValue(Result(3)).

If Result(4) is not an object, throwTeypeError exception.

If Result(4)does not have a [[HasInstance]] method, throWwypeError exception.
Call the [[HasInstance]] method of Result(4) with parameter Result(2).

Return Result(7).

The in operator

The productiorRelationalExpression RelationalExpressioin ShiftExpressions evaluated as follows:

ONoOGO~WNE

EvaluateRelationalExpression

Call GetValue(Result(1)).

EvaluateShiftExpression

Call GetValue(Result(3)).

If Result(4) is not an object, throwTeypeError exception.

Call ToString(Result(2)).

Call the [[HasPropey]] method of Result(4) with parameter Result(6).
Return Result(7).

Equality Operators

EqualityExpression
RelationalExpression
EqualityExpressior= RelationalExpression
EqualityExpressioft= RelationalExpression
EqualityExpressior== RelaionalExpression
EqualityExpressiot== RelationalExpression

EqualityExpressionNoln
RelationalExpressionNoln
EqualityExpressionNols= RelationalExpressionNoln
EqualityExpressionNoli+ RelationalExpressionNoln
EqualityExpressionNolr== RelationalExpregenNoln
EqualityExpressionNolbF= RelationalExpressionNoln

Semantics

13 October 2008

The result of evaluating an equality operator is always of type Boolean, reflecting whether the relationship
named by the operator holds between its two operands.

11.9.1

11.9.2

11.9.3

- 65 -

The EqualityExpressiondIn productions are evaluated in the same manner asEthelityExpression
productions except that the containgdualityExpressionNolandRelationalExpressionNolare evaluated
instead of the containddqualityExpressiorand RelationalExpressionrespedtely.

The Equals Operator (==

The production EqualityExpression: EqualityExpression== RelationalExpressionis evaluated as
follows:

1. EvaluateEqualityExpression

Call GetValue(Result(1)).

EvaluateRelationalExpression

Call GetValue(Result(3)).

Perform the comparison Result(4) == Result(2). (see 11.9.3).
Return Result(5).

oukrunN

The Doesnot-equals Operator (!=)

The production EqualityExpression: EqualityExpression!= RelationalExpressionis evaluated as
follows:

EvaluateEqualityExpression

Call GetValue(Result(1)).

EvaluateRelationalExpression

Call GetValue(Result(3)).

Perform the comparison Result(4) == Result(2). (see 11.9.3).
If Result(5) istrue, returnfalse. Otherwise, returitrue.

ouhrhwhE

The Abstract Equality Comparison Algorithm

The comparisonx ==y, where x and y are values, producesue or false. Such a comparison is
performed as follows:

If Type(x) is Undefined, returtrue.
If Type(x) is Null, returntrue.
If Type(x) is Decimalor Typefy) is Decimal then

a. If IEEE 7542008DecimalisNaN() or isNaNf) returnfalse.

b. Return the result ofEEE 7542008 Decimal.compar@uietEqua(x, Y).
5. If Type(x) is not Number, go to stgp2
6. If xis NaN, returnfalse.
7
8

PR

If yis NaN, returnfalse.
. If xis the same number value gsreturntrue.

9. If xis +0andy is -0, returntrue.

10. If xis—0 andy is +0, returntrue.

11. Returnfalse.

12. If Type(x) is String, then returtrue if x andy are exactly the same sequence of characters (same
length and same characters in corresponding positions). Otherwise, fiadgan

13. If Type(x) is Boolean, returtrue if x andy are bothtrue or bothfalse. Otherwise, returiialse.

14. Returntrue if x andy refer to the same objedDtherwise, returfialse. | {

15. If xis null andy is undefined, returntrue.
16. If xis undefined andy is null, returntrue.
17. If Type(x) is Number and Typey) is String, |
returnthe result of the comparison== ToNumbery).
18. If Type(x) is String and Typs/) is Number,
return the result of the comparison ToNumbgK=y.
19. If Type(x) is Decimaland Typey) is Decimal then
a. If IEEE 7542008 DecimaisNaN() or isNaNf) returnfalse.
b. Return the result of IEEE 752008 Decimal.compareQuietEqual().
20. If Type(x) is Boolean, return the result of the comparison ToNumder€y.
21. If Type(y) is Boolean, return the result of the comparigor= ToNumbery).

13 October 2008

Deleted: 14

Deleted: 11

Deleted: or if they refer to objects joined
each other (see 13.1.2)

11.9.4

11.9.5

11.9.6

- 66 -

22. If Type(x) is either String oNumber and Typs/) is Object,
return the result of the comparis@rr= ToPrimitivefy).

23. If Type(x) is Object and Typej is either String or Number,
return the result of the comparison ToPrimitije€=y.

24. Returnfalse.

NOTE

Given the above definition efquality:

String comparison can be forced BY:+a==""+b

Numeric comparison can be forced lay:- 0 == - 0.

Boolean comparison can be forced bg:== b

The equality operators maintain the following invariants:

Al= Bis equivalent td(A ==B).

A== Bis equivalent td == A, except in the order of evaluation Afand B.

The equality operator is not always transitive. For example, there might be two distinct String objects,
each representing the same string value; each String object would be considered equal to the string
value by the== operator, but the two String objectvould not be equal to each other.

Comparison of strings uses a simple equality test on sequences of code point value values. There is no
attempt to use the more complex, semantically oriented definitions of character or string equality and
collating orde defined in the Unicode 2.0 specification. Therefore strings that are canonically equal
according to the Unicode standard could test as unequal. In effect this algorithm assumes that both
strings are already in normalised form.

The Strict Equals Operator (===)

The productionEqualityExpression: EqualityExpression=== RelationalExpressions evaluated as
follows:

EvaluateEqualityExpression

Call GetValue(Result(1)).

EvaluateRelationalExpression

Call GetValue(Result(3)).

Perform the comparisoneRult(4) === Result(2). (See below.)
Return Result(5).

ouprwONE

The Strict Doesnot-equal Operator (!==

The productionEqualityExpression: EqualityExpression!==RelationalExpressions evaluated as
follows:

EvaluateEqualityExpression

Call GetValue(Reslt(1)).

EvaluateRelationalExpression

Call GetValue(Result(3)).

Perform the comparison Result(4) === Result(2). (See below.)
If Result(5) istrue, returnfalse. Otherwise, returitrue.

oukrwbdpE

The Strict Equality Comparison Algorithm

The comparisorx ===y, wherex andy are values, produceSue or false Such a comparison is
performed as follows:

If Type(x) is different from Typey), returnfalse.
If Type(X) is Undefined, returtrue.

If Type(x) is Null, returntrue.

If Type(X) is not Number, go to stepl.

If xis NaN, returnfalse.

If yis NaN, returnfalse

If X is the same number value gsreturntrue.

NourwNE

13 October 2008

- 67 -

8. If xis +0 andy is —0, returntrue.
9. If xis—0 andy is +0, returntrue.
10. Returnfalse.
11. If Type(X) is String, then returtrue if x andy are exactly the same sequence of characters (same
length and same characters in corresponding positions); otherwise, fiadgen
12. If Type(x) is Boolean, returtrue if x andy are bothtrue or bothfalse; otherwise, returrialse.
13. If Type(x) is Decimal, hen
a. If IEEE 7542008DecimalisNaN(x) or isNaN(y) then returfalse.
b. Return the result ofEEE 7542008 Decimal.compar@uietEqua(x,).

14. Returntrue if x andy refer to the same objedDtherwise, returfialse. Deleted: or if they refer to objects joined
each other (see 13.1.2)

11.10 Binary Bitwise Operators
Syntax

BitwiseANDEXxpression
EqualityExpression
BitwiseANDExpressio& EqualityExpression

BitwiseANDEXxpressionNoln
EqualityExpressionNoln
BitwiseANDEXxpressionNol& EqualityExpressionNoln

BitwiseXOREXxpression
BitwiseANDEXxpression
Bitwise XORExpressioh BitwiseANDEXxpression

BitwiseXORExpressionNotn
BitwiseANDEXxpressionNoln
Bitwise XORExpressionNoMm BitwiseANDExpressionNoln

BitwiseORExpression
BitwiseXOREXxpression
BitwiseORExpressioh Bitwise XORExpression

BitwiseORExpressionNotn
BitwiseXORExpressionNoln
BitwiseORExpressionNoln BitwiseXORExpressionNoIn

Semantics

The productionA : A @ B where @ is one of the bitwise operators in the productions above, is evaluatec
as follows:

EvaluateA.

Call GetValue(Result(1)).

EvaluateB.

Call GetValue(Result(3)).

Call ToInt32(Result(2)).

Call ToInt32(Result(4)).

Apply the bitwise operator @ to Result(5) and Result(6). The result is a signed 32 bit integer.
Return Result(7).

NGO ~WNE

11.11 Binary Logical Operators
Syntax

LogicalANDExpression
BitwiseORExpression
LogicalANDEXxpressio&.& BitwiseORExpression

13 October 2008

- 68 -

LogicalANDExpressionNoln
BitwiseORExpressionNoln
LogicalANDExpressionNol&& BitwiseORExpressionNoln

LogicalORExpression
LogicalANDExpression
LogicdORExpressiorl| LogicalANDExpression

LogicalORExpressionNoin
LogicalANDExpressionNolIn
LogicalORExpressionNoljp LogicalANDExpressionNoln

Semantics

The productionLogicalANDExpression LogicalANDEXxpressior&& BitwiseORExpressiois evaluated as
follows:

1. EvaluateLogical ANDExpression

2. Call GetValue(Result(1)).

3. Call ToBoolean(Result(2)).

4. If Result(3) isfalse, return Result(2).

5. EvaluateBitwiseORExpressian

6. Call GetValue(Result(5)).

7. Return Result(6).

The productionLogicalORExpression LogicalORExpressior)] LogicalANDEXxpressioris evaluated as
follows:

1. EvaluateLogical ORExpression

2. Call GetValue(Result(1)).

3. Call ToBoolean(Result(2)).

4. If Result(3) istrue, return Result(2).

5. EvaluateLogical ANDExpression

6. Call GetValie(Result(5)).

7. Return Result(6).

The LogicalANDExpressionNolrand LogicalORExpressionNolmproductions are evaluated in the same
manner as thd.ogicalANDExpressiorand LogicalORExpressiomproductions except that the contained
LogicalANDExpressionNoln BitwiseORExpressionNolnand LogicalORExpressionNolnare evaluated
instead of the contained.ogicalANDExpression BitwiseORExpressionand LogicalORExpression

respectively.
NOTE

The value produced by && or || operator is not necessarily of type Boolean. Theuegroduced will

always be the value of one of the two operand expressions.
11.12 Conditional Operator (?:)
Syntax

ConditionalExpression
Logical ORExpression
LogicalORExpressior? AssignmentExpressionAssignmentExpression

ConditionalExpressionNoln
LogicalORExpressionNoln
Logical ORExpressionNolr? AssignmentExpressionAssignmentExpressionNoln
Semantics

The productiorConditionalExpression LogicalORExpressiof? AssignmentExpressian
AssignmentExpressias evaluated as follows:

13 October 2008

- 69 -

EvaluatelLogical ORExpression

Call GetValue(Result(1)).

Call ToBoolean(Result(2)).

If Result(3) isfalse, go to step 8.

Evaluate the firsAssignmentExpression
Call GetValue(Result(5)).

Return Result(6).

Evaluate the seconéissignmentExpression
Call GetValue(Redt(8)).

0. Return Result(9).

ROo®~NoOh~wWNE

The ConditionalExpressionNolproduction is evaluated in the same manner asCiveditionalExpression
production except that the contained.ogicalORExpressionNoln AssignmentExpressionand
AssignmentExpressionNolnare evaluated instead of the containddogicalORExpression first
AssignmentExpressiand secondssignmentExpressiomespectively.

NOTE

The grammar for a ConditionalExpression in ECMAScript is a little bit different from that in C and Java,
which eachallow the second subexpression to be an Expression but restrict the third expression to be
ConditionalExpression. The motivation for this difference in ECMAScript is to allow an assignment
expression to be governed by either arm of a conditional andindrate the confusing and fairly useless
case of a comma expression as the centre expression.

11.13 Assignment Operators
Syntax

AssignmentExpression
ConditionalExpression
LeftHandSideExpression AssignmentOperator AssignmentExpression

AssignmentExpressidloin:
ConditionalExpressionNoln
LeftHandSideExpression AssignmentOperator AssignmentExpressionNoln

AssignmentOperatarone of
= *= /= %= += -= <<= >>= >>>= &= A= =

Semantics

The AssignmentExpressionNoproductions are evaluated in the same manner aAghignmentExpression
productions except that the contain&@bnditionalExpressionNoln and AssignmentExpressionNaie
evaluated instead of the contain€dnditionalExpressiomnd AssignmentExpressiomespectively.

11.13.1 Simple Assignment (=)

The productionAssignmentExpression LeftHandSideExpression AssignmentExpressiois evaluated
as follows:

EvaluatelL eftHandSideExpression
EvaluateAssignmentExpression

Call GetValue(Result(2)).

Call PutValue(Result(1), Result(3)alse).
Return Result(3).

abwhPE

11.13.1.1 Usage Subsetautious Restrictions

When a simple assignmentoccurs within an execution context that is subset restricted to |the
cautious subset, itd eftHandSidemustnot evaluate to a Referenaghose base isull. If it does a
ReferenceError exception is thrown. ThéeftHandSidealso may not be a referente a property
with the attribute value {[[Writable]false} nor to a norexistent property of an object whos
[[Extensible]] property has the valualse. In these cases BypeError exception is thrown. This ig|
accomplished by replacing stdpf the above algorithm with the following:

13 October 2008

-70-

4. Call PutValue(Result(1), &ult(3),true).

11.13.2 Compound Assignment (op=)

The productionAssignmentExpressionLeftHandSideExpression @ AssignmentExpressipmwhere @
represents one of the operators indicated above, is evaluated as follows:

EvaluateLeftHandSideExpression

Call GetValue(Result(1)).
EvaluateAssignmentExpression

Call GetValue(Result(3)).

Apply operator @ to Result(2) and Result(4).
Call PutValue(Result(1), Result(5halse).
Return Result(5).

NoghwhpE

11.13.2.1 Usage Subsetautious Restrictions
The same restrictionspply as specified in 11.13.1.1 except that the algorithm change is:

6. Call PutValue(Result(1), Result(Srue).

11.14 Comma Operator (,)
Syntax

Expression
AssignmentExpression
Expression AssignmentExpression

ExpressionNoln
AssignmentExpressionhio
ExpressionNoln AssignmentExpressionNoln

Semantics
The productiorExpression Expression AssignmentExpressids evaluated as follows:

EvaluateExpression

Call GetValue(Result(1)).
EvaluateAssignmentExpression
Call GetValue(Result(3)).
ReturnResult(4).

aghRwdE

The ExpressionNolmproduction is evaluated in the same manner asEttiessionproduction except that
the containedExpressionNolnand AssignmentExpressionNolare evaluated instead of the contained
Expressiorand AssignmentExpressipmespectiely.

13 October 2008

- 71 -

12
Syntax

Statements

Statement
SutStatement
ConstantStatement
VariableStatement
FunctionDeclaration

SutStatement
Block

IfStatement
IterationStatement
ContinueStatement
BreakStatement
ReturnStatement
WithStatement
LabelledStatement
SwitchStatement
ThrowStatement
TryStatement

Semantics

The labels introduced this way are collecg | y

referred to as t he

Acurre

semantics of individual statements.LAbelledStatemerttas no semantic meaning other than the introduction

of a label to alabel set The label set of afterationStatemenbr a SwitchStatem# initially contains the
single elemenempty. The label set of any other statement is initially empty.

12.1 Block

Syntax
Block:
{ StatementLig; }

StatementList
Statement
StatementList Statement
Semantics
The productiorBlock: { } is evaluated asoflows:

1. Return formal, empty, empty).

The productiorBlock: { StatementLis} is evaluated as follows:

1. [Establish a new lexicallock execution context using any contextually supplied block parameters

2. EvaluateStatementListising thenew execution context

3. Exit the execution context established in step 1, restoring the previous execution context
4. Return Result).

NOTE 1

Note that if thee are no contextually supplied block parameters and&sthgementListoes not contain any|
ConstanStatementor FunctionDeclaration statements the creation of a new execution context may
skipped.

NOTE2

13 October 2008

be

[

Deleted: VariableStatement

Comment [pL44]: Note this means that
Vari abl eStatements -ca
bl ockso. This is a ch

Comment [pL45]: Mark (and perhaps others)
think this should be a substatement. However, t
would be a breaking syntactic change from ES3
Need to start a discussitist thread on whether o
not this is really acceptable. Another alternative
only make this change in strict mode code.

Comment [pL46]): From AWB:

Needs to be rewritten for new lexical scoping m

[

Deleted: 1

-72 -

No matter how control leaves the embedded Block, whether normally or by some form of abrupt completion
or exception, thexecution contexis always restored tis former state.

The productiorStatementList Statements evaluated as follows:

1. EvaluateStatement

2. If an exception was thrown, returrth(ow, V, empty) whereV is the exception. (Execution now
proceeds as if no exception were thrown.)

3. Return Result(1)

The productiorStatementList StatementList Statemeistevaluated as follows:

1. EvaluateStatementList

2. If Result(1) is an abrupt completion, return Result(1).

3. EvaluateStatement

4. If an exception was thrown, returthtow, V, empty) whereV is the exception. (Execution now
proceeds as if no exception were thrown.)

If Result(3).value impty, letV = Result(1).value, otherwise let V = Result(3).value.

A VariableStatementvithin an execution context that is subset restricted tocthgious subset, may
not occur as theStatementLisbf a Block The occurrence of ¥ariableStatemenin such a contexmust

5.
6. Return (Result(3).typey, Result(3).target).
1211 Usage Subset cautious Restrictions
be treated as a syntax error.
12.2 Variable statement

Syntax

VariableStatement
var VariableDeclarationList

VariableDeclarationList
VariableDeclaration
VariableDeclarationList VariableDeclaration

VariableDeclarationListNoln
VariableDeclarationNoln
VariableDeclarationListNoln VariableDeclarationNoln

VariableDeclaration:
Identifier Initialiser,y

VariableDeclarationNoln
Identifier InitialiserNoln,

Initialiser :
= AssignmentExpression

InitialiserNoln :

= AssignmentExpressionNoln

Description

If the variable statement occurs insid&anctionDeclaration the variables are defined with functitocal

scope in that function, as describedlid.1.3. Otherwise, they are defined with global scope (that is, they

Deleted:

are created as members of the globlajlect, as described in 10.1.3) using property attributggv{itable]]:

true, [[Enumerable]]:true, [[Configurablg]: false}. Variables are created when the execution scope is

Deleted:

DontDelete

Only Program FunctionDeclarationand FunctionExpressiorproduce a new scoper variablesdeclared

Deleted:

and

entered. ABlockdoes not define a new execution scdpevariabkesdeclared using &ariableDeclaration [
using aVariableStatement{Such variablesare initialised toundefined when created. A variable with an [

Deleted:

Variables

13 October 2008

-73-

Initialiser is assigned the value of isssignmentExpressiowhen theVariableStatemenis executed, not
when the variable is created.

Semantics
The productiorVariableStatementvar VariableDeclarationList, is evaluatd as follows:

1. EvaluateVariableDeclarationList
2. Return formal, empty, empty).

The productiorvVariableDeclarationList VariableDeclarationis evaluated as follows:

1. EvaluateVariableDeclaration

The productionVariableDeclarationList: VariableDeclarationList, VariableDeclarationis evaluated as
follows:

1. EvaluateVariableDeclarationList

2. EvaluateVariableDeclaration

The productiorvariableDeclaration: Identifieris evaluated as follows:

1. \ReturnH string value containing the samsequence of characters as in ttentifier. Comment [pL47]: From MSM:

The productionvariableDeclaration: Identifier Initialiseris evaluated as follows: Since it seems so mysterious, we should either
removet hes e Areturnos or

1. Evaluateldentifier as described in 11.1.2. why theyodre there.

2. Evaluatelnitialiser. Comment [pL48]: From AWB:

3. Call GetValue(Result(2)). .)

4. [call PutValue(Result(1), Result(3plse). canot remove t hem wit

5. Return a string value containing the same sequence of characters asdentifger. pec. s :
Comment [pL49]: From AWB:

The productionnitialiser : = AssignmentExpressias evaluated as follows: This will probably change with the rewrite of ch:
10.

1. EvaluateAssignmentExpression
2. Return Result(1).

The VariableDeclarationListNah, VariableDeclarationNolnand InitialiserNoln productions are evaluated
in the same manner as thariableDeclarationList VariableDeclarationand Initialiser productions except
that the contained VariableDeclarationListNolp VariableDeclarationNoln InitialiserNoln and
AssignmentExpressionNolnare evaluated instead of the containeWariableDeclarationList
VariableDeclaration Initialiser and AssignmentExpressionespectively.

12.3 Empty Statement
Syntax
EmptyStatement
Semantics
The productiorEmptyStatement ; is evaluated as follows:
1. Return formal, empty, empty).
12.4 Expression Statement
Syntax

ExpressionStatement
[lookaheadz {{, function 3 Expression

Note that anExpressionStatemergannot start with an opening curly brace because that might make it
ambiguous with &lock Also, anExpressionStatemerannot start with théunction keyword because
that might make it ambiguous withFaunctionDeclaration

13 October 2008

- 74 -

Semantics
The productiorExpressionStatemen{lookaheade {{, function 31 Expression is evaluated as follows:

1. EvaluateExpression
2. Call GetValue(Result(1)).
3. Return formal, Result(2),empty).

12.5 Theif Statement
Syntax
IfStatement

if (Expressior) SulStatementelse SulStaement
if (Expressior) SulStatement

Each else for which the choice of associatdfl is ambiguous shall be associated with the nearest
possibleif that would otherwise have no correspondaige .

Semantics
The productionfStatement if (Expression SulStatemenelse SulStatements evaluated as follows:

EvaluateExpression

Call GetValue(Result(1)).

Call ToBoolean(Result(2)).

If Result(3) isfalse, go to step 7.
Evaluate the firsBulStatement
Return Result(5).

Evaluate the seconfulStatement
ReturnResult(7).

ONokrwNE

The productionfStatement if (Expression SulStatements evaluated as follows:

1. EvaluateExpression
2. Call GetValue(Result(1)).
3. Call ToBoolean(Result(2)).
4. If Result(3) isfalse, return formal, empty, empty).
| 5. EvaluateSulStatement
6. Return Reult(5).
12.6 lteration Statements
An iteration statement consists ofheader (which consists of a keyword and a parenthesised control
construct) and dody(which consists of &tatement
Syntax
IterationStatement
do SulStatementwhile (Expression;
while (Expressior) SulStatement
for (ExpressionNolg; Expressiogy; Expressiop,) SulStatement
for (var VariableDeclarationListNoln Expressiog,; Expressiog,) SulStatement

for
for

12.6.1

(LeftHandSideExpressian Expressior) SulStatement
(var VariableDeclarationNolrin Expressior) SulStatement

The do-while Statement
The productiordo SutStatementwhile (Expressior); is evaluated as follows:

LetV = empty.

EvaluateSulStatement

If Result(2).value is noémpty, letV = Result(2).value

If Result(2).type iscontinue and Result(2).target is in the current label set, go to step 7.

If Result(2).type isbreak and Result(2).target is in the current label set, retnomfal, V, empty).

agrwbhpE

13 October 2008

- 75-

If Result(2) is an abrupt completion, return Result(2).
EvaluateExpression

Call GetValue(Result(7)).

Call ToBoolean(Result(8)).

10 If Result(9) istrue, go to step 2.

11.Return formal, V, empty);

©® N

12.6.2 The while statement
The productiorterationStatement while (Expression SulStatements evaluated as follows:

LetV = empty.

EvaluateExpressio.

Call GetValue(Result(2)).

Call ToBoolean(Result(3)).

If Result(4) isfalse, return formal, V, empty).

EvaluateSulStatement |
If Result(6).value is noémpty, letV = Result(6).value.

If Result(6).type icontinue and Result(6).target is in the current label set, go to 2.

If Result(6).type isreak and Result(6).target is in the current label set, retnomfal, V, empty).
10 If Result(6) is an abrupt completion, return Result(6).

11.Go to dep 2.

CONDURENE

12.6.3 The for Statement

The production IterationStatement: for (ExpressionNolg,: ; Expressiop, ; Expressiogy)
SulStatements evaluated as follows:

If ExpressionNoljis not present, goto step 4. [Deleted: the firstExpression

EvaluateExpressionNoln

Call GetValue(Result(2)). (This value is not used.)

LetV = empty.

If the first Expressions not present, go to step 10.

Evaluate the firsExpressio.

Call GetValue(Result(6)).

Call ToBoolean(Result(7)).

If Result(8) isfalse, go to step 19.

10.EvaluateSulStatement

11.1f Result(10).value is nogémpty, letV = Result(10).value

12.1f Result(10).type idreak and Result(10).target is in the current label set, go to step 19.
13.1f Result(10).type izontinue and Result(10).target is in the current label set, go to Esep
14.1f Result(10) is an abrupt completion, return Result(10).

15.1f the secondExpressiornis not present, go to step 5.

16.Evaluate the seconixpressio.

17.Call GetValue(Result(16). (This value is not used.)

18.Go to step 5.

19.Return fiormal, V, empty).

CNoTR~ONE

The production IterationStatement: for (var VariableDeclarationListNoln; Expressiogy ;
Expressiop,) SulStatements evaluated as follows:

1. EvaluateVariableDeclarationListNoln
. Let V =empty.
. If the first Expressions not present, go to step 8.
. Evauate the firstExpression
. Call GetValue(Result(4)).

. If Result(6) isfalse, go to stepl7. [Deleted: 14
. EvaluateSulStatement
If Result(8).value is noémpty, let V = Result(8).value.

2

3

4

5

6. Call ToBoolean(Result(5)).

7

8

9.

10.1f Result(8).type ishreak and Result(8).target is in the current label set, go to step 17.

13 October 2008

-76-

11.1f Result(8).type iscontinue and Result(8).target is in the current label set, go to step 13.
12.1f Result(8) is an abrupt completion, return Result(8).

13.1f the seconcExpressionis not presentgo to step 3.

14.Evaluate the seconfixpression

15.Call GetValue(Result(14)). (This value is not used.) [Deleted: 3
16.Go to step 3. - - ;
17.Return formal, V, empty). [Deleted: t hat d o the DodtEnunh atribete
[Deleted: 14
12.6.4 Thefor -in Statement [Deleted: 5
The productioniterationStatement for (LeftHandSideExpressioim Expression) SulStatemenis [Deleted: 8
evaluated as follows: [Deleted: 8
1. Evaluate theéExpression [Deleted: 8
2. Call Getvalue(Result(1)). [Deleted: 8
3. If Result(2) isnull or undefined, return formal, V, empty). cleted:
4. Call ToObject(Result(2)). (Deleted: 14
5. LetV =empty. [Deleted: 8
6. Get the name of the next property of Regylgfhose [[Enumerable]] attribute isue. If there is no [-
Deleted: 8
such property, gotost¢gp.
7. Evaluate thd eftHandSideExpressiopit may be evaluated repeatedly). [Deleted: 5
8. Call Putvalue(Result(6), ResyR, falsg). [Deleted: 8
9. EvaluateSulStatement [Deleted: 8
10.1f Resuk(Q).value is noempty, letV = Resultf).value. / .
11.1f Result).type isbreak and Resul§).target is in the current label set, go to stép / [Deleted: 5
12.1f Result().type iscontinue and Resulf§).target is in the current label set, go to gfep [Deleted: 4
Deleted: t h GtEnurh at
14.Go to step. [eleted: t hat d o ¢heDodtEnun atnbete
15.Return pormal, V, empty). [Deleted: 15

Comment [pL50]: From AWB:
The production IterationStatement: for (var VariableDeclarationNoln in Expression)

SulStatementis evaluated as follows: I dondt s disphmteadds. it jast adds a sy

where step numbering can get out of whack.

1. EvaluateVariableDeclarationNoln [Deleted: 0
2. EvaluateExpression [Deleted: yes,
3. Call GetValue(Result(2)). [Deleted: 6
4. If Result(3) isnull or undefined, return formal, V, empty). :
5. Call ToObject(Result(3)). (Deleted: o
6. Let V = empty. ([Deleted: 9
7. Get the name of the next property of Regi)ltfhose [[Enumerable]] attribute tsue, If there is no | [Deleted: 9
such property, go to stefs.
8. Evaluate Result(1) as if it were an Identifier; §ep 7 from the previous algorith¢it may be [Deleted: 9
evaluated repeatedly). [Deleted: 15
9. Call PutValue(Result(7), Resyf, false). [Deleted: 9
10.EvaluateSultStatement
11.If Result(10).value is noempty, let V = Result{0).value. [Deleted: 9
12.If Result(10).type isbreak and Resul{{0).target is in the current label set, go teglé. [Deleted: 6
13.If Result(10).type iscontinue and Resul{{0).target is in the current label set, go to sfep [Deleted: 8
14.1f Result() is an abrupt completion, return Resg)t(
15.Go to stefy. [Deleted: 8
16.Return formal, V, empty). [Deleted: 6
. - [Deleted: 5
The mechanicsand orderof enumerating the properties (stgpin the first algorithm, stefy in the
second) is implementation dependent. The order of enumeration is defined by the [Bhjpetties of [Deleted: 6

the object being enumerated may be deleted during enumeration. Ifpargrahat has not yet been Comment [pL51]: We considered specifying the
visited during enumeration is deleted, then it will not be visited. If new properties are added to the obje(enumeration order but there were too many issues wit
being enumerated during enumeration, the newly added propertigetgearanteed to be visited in the | $X°119 A ETEETRS el epimEe e fEpEsenE
active enureration. e

Comment [pL52]: Mark wants to delete h i s ,
obvious that this is a requirement that we can (or shot
force upon implementations.

13 October 2008

- 77 -

Enumerating the properties of an object includes enumerating properties of its prototype, and tt
prototype of the prototype, and so on, recursively; but a property of a prototype is not enumerated if it
fishadowedod becaus e inshe pr@otyper chanihasa properbyjwithahte same name.

12.6.4.1 Usage Subsefautious Restrictions

The same restrictianapply as specified in section 11.13.1.1 except that the algorithm change fdr the
first algorithm is:

8. Call PutValue(Result(6)Result), true).
The change for the second algorithm is:
9. Call PutValue(Resul#), Resultg), true)

12.7 The continue Statement
Syntax
ContinueStatement
continue [noLineTerminatotere] ldentifieryy ;
Semantics
A program is considered syntacticallycorrect if either of the following are true:

The program contains eontinue statement without the option&dentifier, which is not nested, directly
or indirectly (but not crossing function boundaries), withinltemationStatement

The program containa continue statement with the optionédlentifier, whereldentifier does not appear
in the label set of an enclosing (but not crossing function boundatézajionStatement

A ContinueStatementithout anldentifieris evaluated as follows:

1. Return continue, empty, empty).

A ContinueStatementith the optionaldentifier is evaluated as follows:

1. Return €ontinue, empty, ldentifier).

12.8 The break Statement
Syntax

BreakStatement
break [no LineTerminatothere] ldentifier,y;
Semantics
A program isconsidered syntactically incorrect if either of the following are true:

The program contains lreak statement without the option&dentifier, which is not nested, directly or
indirectly (but not crossing function boundaries), withinlerationStatemenor a SwitchStatement
The program contains lareak statement with the optionadientifier, whereldentifier does not appear in

the label set of an enclosing (but not crossing function boundéﬁta@med}t
A BreakStatemenwithout anldentifieris evaluated as follows:

1. Return preak, empty, empty).

A BreakStatemenwith anldentifier is evaluated as follows:
1. Return preak, empty, Identifier).

12.9 Thereturn Statement
Syntax

13 October 2008

Comment [pL53]: From AWB:

Need to consider whether this should be
SubStatement.

-78-

ReturnStatement
return [no LineTerminatothere] Expressiogp,)

Semartics

An ECMAScript program is considered syntactically incorrect if it containstarn statement that is not
within aFunctionBody A return statement causes a function to cease execution and return a value to the
caller. If Expressionis omitted, the return value isndefined. Otherwise, the return value is the value of
Expression

The productiorReturnStatementreturn [no LineTerminatorhere] EXpressiogy; is evaluated as:

If the Expressions not present, returrréturn, undefined, empty).
EvaluateExpression

Call GetValue(Result(2)).

Return ¢eturn, Result(3),empty).

PonNE

12.10 The with Statement
Syntax
WithStatement
with (Expression) SulStatement
Description

The with statement adds a computed object to the front ofsttepe chain of the current execution
context, then executes a statement with this augmented scope chain, then restores the scope chain.

Semantics

The productiorWithStatement with (Expression) SutStatements evaluated as follows:

1. EvaluateExpression

2. Call GetValue(Result(1)).

3. Call ToObject(Result(2)).

4. Add Result(3) to the front of the scope chain.

5. EvaluateSulStatementising the augmented scope chain from step 4.

6. Let C be Result(5). If an exception was thrown in step 5Qdie throw, V, empty), wher V is the
exception. (Execution now proceeds as if no exception were thrown.)

7. Remove Result(3) from the front of the scope chain.

8. ReturnC.

NOTE

No matter how control leaves the embeddediStatement’, whether normally or by some form of abrupt
completion or exception, the scope chain is always restored to its former state.

12.10.1 Usage Subsefautious Restrictions

An execution context that is subset restricted to twutious subset, may not execute a
WithStatementThe occurrence of WithStatemenin such a contextnustbe treated as a syntax error.

12.11 The switch Statement
Syntax
SwitchStatement

switch (Expressior) CaseBlock

CaseBlock
{ CaseClauseg }
{ CaseClausgg; DefaultClause CaseClausgs

13 October 2008

-79-

CaseClauses
CaseClause
CaseClauses CaseClause

CaseClause
case Expression StatementLig

DefaultClause
default : StatementLig;

Semantics

The productiorSwitchStatementswitch (Expression) CaseBlocks evaluated as follows:

EvaluateExpression
Call GetValue(Result(1)).

1
2.
3. EvaluateCaseBlockpassing it Result(2) as a parameter.
4

If Result(3).type is break and Result(3).target is in the current label set, retunorrfal,
Result(3).valueempty).

5. Return Result(3).

The production CaseBlocK :CaseClausgg } is given an input parameténput, and is evaluated as follows:

O©CO~NOO O WNEP

. LetV=-empty.

. Let Abe the list of CaseClause items in source text order.

. Let C be the next CaseClauseAnlf there is no such CaseClause, then go to step 16.
. EvaluateC.

. If inputis not equal to Result(4) as defined by the operator, then go to step 3.

. If C does not have a StatementList, then go to step 10.

. EvaluateC6 s St at e meRbethérssult. and | et

. If Ris an abrupt completion, then reti®n

. LetV=Ruvalue.

10. Let C be the next CaseClauseAnl|f there is no such CaseClause, then go to step 16.
11. If C does not have a StatementList, then go to step 10.

12. EvaluateC6 s St at e meRbethérssult. and | et

13. If Rvalue is noempty, then letV = Rvalue.

14. If Ris an abrupt completion, then retuRtype,V, Rtarget).

15. Go to step 10.

16. Return qormal, V, empty).

The production CaseBlocK : CaseClausgg DefaultClause CaseClaugg$ is given an input parameténput, and
is evaluated as follows:

. LetV =-empty.

. Let A be the list of CaseClause items in the first CaseClauses, in source text order.
. Let C be the next CaseClauseAnlf there is no such CaseClause, then go to step 11.
. EvaluateC.

. If inputis not equal to Result(4) as defined by the operator, then go to step 3.

. If C does not have a StatementList, then go to step 20.

. EvaluateC6s St at e meRHbethérssult. and | et

. If Ris an abrupt completion, then retu®n

LetV = Rvalue.

. Go to step 20.

. Let B be the list of CaseClause items in the second CaseClauses, in source text order.
. Let C be the next CaseClauseBnlf there is no such CaseClause, then go to step 26.

. EvaluateC.

. If inputis not equal to Result(13) as defined by the operator, then go to step 12.

. If Cdoes not have a StatementList, then go to step 31.

.EvaluateC6 s St at e meRbethéerssult. and | et

. If Ris an abrupt completion, then rettRn

. LetV=Rvalue.

13 October 2008

- 80 -

19. Go to step 31.

20. Let C be the next CaseClauseAnlf there is no such CaseClause, then go to step 26.
21. If Cdoes not have a StatementList, then go to step 20.

22. EvaluateC6 s St at e meRhbethérssult. and | et

23. If Rvalue is noempty, then letv = Rvalue.

24. If Ris an abrupt completion, then retuRt¢pe,V, Rtarget).

25. Go to step 20.

26. If the DefaultClause does not have a StatementList, then go to step 30.

27.Eval uate the Def audantl&@Rbethsresalts St at ementLi s
28. If Rvalue is noempty, then letV = R.value.

29. If Ris an abrupt completion, then retuft¢pe,V, Rtarget).

30. Let B be the list of CaseClause items in the second CaseClauses, in source text order.
31. Let C be he next CaseClause B If there is no such CaseClause, then go to step 37.
32. If C does not have a StatementList, then go to step 31.

33. EvaluateCO s St at e meRbethérssult. and | et

34. If Rvalue is noempty, then letV = Rvalue.

35. If Ris an abrupt completion, then retuft¢pe,V, Rtarget).

36. Go to step 31.

37. Return formal, V, empty).

1. EvaluateExpression
2. Call GetVvalue(Result(1)).
3. Return Result(2).

NOTE

Evaluating Cas€lause does not execute the associated StatementList. It simply evaluates the Expressi
and returns the value, which the CaseBlock algorithm uses to determine which StatementList to stg

executing.
12.12 Labelled Statements
Syntax

LabelledStatement
Identifier: Statement

Semantics

break andcontinue statements. ECMAScript has goto statement.

12.13 The throw statement

Syntax

ThrowStatement
thr ow [no LineTerminatothere] Expression ;

An ECMAScript program is considered syntacticaihcorrect if it contains d.abelledStatementhat is
enclosed by d.abelledStatemenwith the samddentifier as label. This does not apply to labels appearing
within the body of &unctionDeclarationthat is nested, directly or indirectly, within a laleel statement.

The productionidentifier : Statemenis evaluated by addintdentifier to the label set oStatementand
then evaluatingStatementIf the LabelledStatemeritself has a norempty label set, these labels are also
added to the label set 8fatementbefore evaluating it. If the result of evaluatiBtatements (break, V, L)
wherelL is equal toldentifier, the production results imérmal, V, empty).

Prior to the evaluation of habelledStatementhe containe®tatements regarded as possessing an empty
label set, except if it is aiterationStatementor a SwitchStatementin which case it is regarded as
possessing a label set consisting of the single elerrenity.

Semantics

13 October 2008

Deleted: The productiorCaseBlock { CaseClause
DefaultClause CaseClausgds given an input
parameterinput, and is evaluated as folloWs:
<#>Let Abethe list ofCaseClauséems in the first
CaseClausesn source text ordef.
<#>For the nexCaseClausén A, evaluate
CaseClauself there is no sucfaseClausgego to ste
79
<#>If inputis not equal to Result(2), as defined by
== operator, go to stepf®.
<#>Evaluate th&StatementLisof this CaseClausd
<#>If Result(4) is an abrupt completion then retur
Result(4)1
<#>Go to step 1.
<#>Let B be the list ofCaseClauséems in the seco
CaseClausesn source text ordef.
<#>For the nexCaseClausén B, evaluate
CaseClase If there is no sucltaseClausego to ste
159
<#>If inputis not equal to Result(8), as defined by
== operator, go to stepB.
<#>Evaluate th&StatementListf this CaseClausd
<#>If Result(10) is an abrupt completion then retu
Result(10y
<#>Go to step 18.
<#>For the nexCaseClausén A, evaluate the
StatementLisof this CaseClauself there is no such
CaseClausgego to step 15.
<#>If Result(13) is an abrupt completion then retu
Result(13)]
<#>Execute theStatementLisdf DefaultClause]
<#>If Result(15) is an abrumompletion then return
Result(15Y
<#>Let B be the list ofCaseClauséems in the seco
CaseClausesn source text ordef.
<#>For the nexCaseClausén B, evaluate the
StatementLisof this CaseClauself there is no such
CaseClausereturn fiormal, empty, enpty).{
<#>If Result(18) is an abrupt completion then retu
Result(18)f
<#>Go to step 18

|

Comment [pL54]: There is a debate regarding whet
this should be SubStatement. See commentcitiose12.0

[Comment [pL55]: Same as the above comment.

-81-

The productioriThrowStatement throw [no LineTerminatorhere] Expression is evaluated as:

1. EvaluateExpression
2. Call GetValue(Result(1)).
3. Return throw, Result(2),empty).

12.14 Thetry statement

Syntax

TryStatement
try Block Catch
try Block Finally
try Block Catch Finally

Catch:

catch (Identifier) Block

Finally :

finally Block

Description

The try statement encloses a block of code in which an exceptional condition can occur, such as
runtime error or ahrow statement. Theatch clause provides the exceptidrandling code. When a

catch clause catches an exception]dentifieris bound to that>xception.

ISemantics$

The productionTryStatement try Block Catchis evaluated as follows:

1. EvaluateBlock

2. If Result(1).type is nothrow, return Result(1).
3. EvaluateCatchwith parameter Result(1).

4. Return Result(3).

The productionTryStatement try Block Finally is evaluated as follows:

1. EvaluateBlock

2. EvaluateFinally.

3. If Result(2) typeis normal, return Result(1).
4. Return Result(2).

The productionTryStatement try Block CatchFinally is evaluated as follows:

EvaluateBlock

Let C = Result(1).

If Result(1).type is nothrow, go to step 6.
EvaluateCatchwith parameter Result(1).
JLet C = Result(4).
EvaluateFinally.
If Result(6).type imormal, returnC.
Return Result(6).

ONoGarwWD PR

The productionCatch: catch (Identifier) Blockis evaluated as follows:

1. LetC be the parameter that has been passed to this production.

2. EvaluateBlockwith a block parameter whose name is Identifier and whose valOs/édug
3. Return Reslt().

The productiorFinally : finally Blockis evaluated as follows:

1. EvaluateBlock

13 October 2008

Comment [pL56]: Work still needs to be done
give catch blocks real lexical scoping.

Deleted: If Result(4).types notnormal,

Deleted: Create a new object as if by the
expressiomew Object() .1

<#>Create a property in the object Result(2
The property's name Identifier, value is
C.value, and attributes are { DontDelet§ }.
<#>Add Result(2) to the front of the scope
chainf

<#>EvaluateBlock

Remove Result(2) from the front of the sco
chain

Deleted: 5

-82-

2. Return Result(1).

12.15 Constant statement
Syntax

ConstantStatement
const ConstantDeclarationList

ConstantDeclarationList
ConstantDeclaration
ConstantDeclarationList ConstantDeclaration

ConstantDeclaration
Identifier Initialiser

Description

If the constant statement occudsrectly inside aFunctionDeclaration the constants are defined with
function-local scope in that function, as descdbi@ s10.1.3. If a constant statement occurs insiéoak

the constants are defined with blekdcal scope. Otherwise, they are defined with global scope (that is,
they are created as members of the global object, as described in 10.1.3) using patipiniyes {
[[Writable]]: false, [[Enumerable]]: true, [[Configurabld]: false }. Constants are created when the
execution scope is entered. Constants have no value when created. A constant is assigned the value of the
AssignmentExpressiom f linitiafiser when theConstantStatemens executed, not when the constant is
created. Any attempts to access the value of a constant before it is assigned a value throws a
ReferenceError exception.

Semantics

The productionConstantStatementconst ConstanDeclarationList; is evaluated as follows:
1. EvaluateConstantDeclarationList

2. Return formal, empty, empty).

The productionConstantDeclarationListConstantDeclarations evaluated as follows:

1. EvaluateConstantDeclaration

The productionConstantDeclarationList ConstantDeclarationList ConstantDeclaratioris evaluated as
follows:

1. EvaluateConstantDeclarationList

2. EvaluateConstantDeclaration

The productiorConstantDeclaration Identifier Initialiseris evaluated as follows:

Evaluateldentifier as described in 11.1.2.

Evaluatelnitialiser.

Call GetValue(Result(2)).

Call GetBase(Result(1)).

Call GetPropertyName(Result(1)).

Call the [[GetOwnProperty]] method of Result(4) with argument Result(5).

\If Result(6).[[Const]] is notUninitialized then throw a SyntaxError exceptibn. Comment [pL57]: From MSM:
Update the own property P of Result(4) with attributes [[Value]]: Result(2) and [[Cdn#tiBlized .

This update is preformed irrespective of the current values of the properties [[Writable]] an
[[Configurabld] attributes.

ONoGar~wNE

Whatever this is trying to prevent, it should be a static
time error.

9. Return a string value containing the same sequence of characters asdentifeer.

13 Function Definition
Syntax

13 October 2008

- 83-

FunctionDeclaration [Deleted: variable
function Identifier (FormalParameterLis},) { FunctionBody} [Deloted: 2
FunctionExpression Comment [pL58]: From MSM:

function

Identifier,y (FormalParameterList,) { FunctionBody}

FormalParameterList

13.1

Replace with proper activation languaget no
matter what, MUST FIX THIS SCOREEAKAGE
BUG!

Identifier

. . Comment [pL59]: Mark: is this observable?
FormalParameterList Identifier Lars: yes it is!
i Comment [pL60]: From AWB:
FunctionBody. Fix scoping issues &
SourceElements [Deleted: DontDelete, ReadOnly
Semantics Deleted: A couple of definitions are needed
describe the process of creating function obj

The productiorFunctionDeclaration: function
processed for function declarations as follows:

Identifier (FormalParameterLisf,;) { FunctionBody} is

1. Create a new Function object as specified in 13.2 with parameters specifiearioplParameterLisy,, |
and body specified byunctionBody Pass in the scope chain of the running execution context as the
Scope.

Result(1).

The productiorFunctionExpression function
as follows:

(FormalParameterlLisf,;) { FunctionBody} is evaluated

1. Create a new Function object as specified in 13.2 with parameters specifiedriplParameterLisfy
and body specified byunctionBody Pass in the scope chain of the running execution context as the
Scope

2. Return Resul{l).
Identifier (FormalParameterLigs;) { FunctionBody} is

The productionFunctionExpression function
evaluated as follows:

1. \Create a new object as if by the expressimw Object()
constructor with that nandje

2. |Add Result(1) tathe front of the scope chain.

3. Create a new Function object as specified in 13.2 with parameters specifiedringlParameterLisy

and body specified byunctionBody Pass in the scope chain of the running execution context as the

Scope

Create a propertyn the object Result(1). The property's nameldentifier, value is Result(3), an

attributes are {[Writable]]: false, [Enumerable]]true| [[Configurabld]: falsg}.|

5. Remove Result(1) from the front of the scope chain.

6. ReturnResult(3).

NOTE

The Identifier in a FunctionExpression can be referenced from inside the FunctionExpression's FunctionBoc
to allow the function to call itself recursively. However, unlike in a FunctionDeclaration, the Identifier in a
FunctionExpression annot be referenced from and does not affect the scope enclosing | the
FunctionExpression.

where Object is the standard buklin {

The productiorFunctionBody. SourceElementss evaluated as follows:

1. ProcessSourceElementfor function declarations. |
2. EvaluateSourceElements |
3. Return Result(2). |
Definitions ‘
JThis section is no longer usgd. |

Deleted: 1

13.1.1 Equated Grammar Productidhs

Two uses of the FunctionBody grammar
production are defined to be equated when ¢
thefollowing is truef

Both uses obtained their FunctionBody from
same location in the source text of the same
ECMAScript program. This source text consi
of global code and any contained function cc
according to the definitions in 10.192.

Both usesbtained their FunctionBody from tl
same location in the source text of the same
to eval (15.1.2.1). This source text consists ¢
eval code and any contained function codes
according to the definitions in 10.192.
NOTEY

Two uses of FunctionBody obtaihéom a call
to the Function constructor 15.3.1 and 15.3.:
never equated. Also, two uses of FunctionBc
obtained from two different calls to eval are
never equated, even if those two calls to eva
were passed the same argunfent.

13.1.2 Joined Object

When two or more Function objects are joine
they have the following special behaviofirs:
Any time a norinternal property of an object !
is created or set, the corresponding property
immediately also created or set with the sam
value and attributesiiall objects joined with @
Any time a norinternal property of an object !
is deleted, the corresponding property is
immediately also deleted in all objects joined
with Of

If objects O and P are joined, they compare |
and === to each othér.

Joining b transitive and symmetric, so that if
objects O and P are joined and objects P an
are joined, then objects O and Q are also
automatically joined}

NOTE |

Two or more objects joined to each other are
effectively indistinguishable except that they
hawe different internal properties. The only st
internal property that may differ in this
specification is [[Scopelf.

Joined objects are used as a tool for precise
specification technique in this standard. The
not meant to be used as a guideline to how
Function objects are implemented in practice
Rather, in practice an implementation may d
when the differences in the [[Scope]] propert
of two or more joined Function objects are n
externally observable and in those cases ret
same Functioobject rather than making a se
joined Function objects. This is a legal (.

13 October 2008

13.2

13.2.1

13.2.2

-84 -

Creating Function Objects

Given an optional parameter list specified BbyrmalParameterLista body specified bfFunctionBody and
a scope chain specified [8cope a Function object is constructed as follows:

1. Create a new native ECMASpt object and leF be that object.

2. Set the [[Class]] property df to "Function”

3. Set the [[Prototype]] property df to the original Function prototype object as specified in 15.3.3.1.

4. Set the [[Call]] property of as described in 13.2.1.

5. Set the [[Construct]] property df as described in 13.2.2.

6. Set the [[Scope]] property df to a new scope chain (10.1.4) that contains the same objeStps

7. Setthelength property ofF to the number of formglarameterspecified inFormaParameterList If
no parameters are specified, set taegth property ofF to 0. This property is given attributes as
specified in 15.3.5.1.

8. Set the [[Extensible]] property df to true.

9. Create a new object as would be constructed by the expressionObject() where Object is the
standard builin constructor with that name.

10. Set theconstructor property of Result(9) td=. This propertyhasattributes {[[Writable]]: true,
[[Enumerable]]:false, [[Configurabld]: trueg.

11. Set theprototy pe property of F to Result(9). This property is given attributes as specified in
15.3.5.2.

12. ReturnF.

2 EEEEE————TmRRDREEERRERE———————————— . mm———m——

NOTE

A prototype property is automatically created for every function, to allow for the possibility that the
function will be used as a constructor.

acamypy
When the [[Call]] property for a Function objeltis called, the following steps are taken:

1. Establish a new execution context usiilg FormalParametekist, the passed arguments list, and the
this value as described in 10.2.3.

EvaluateF's FunctionBody

Exit the execution context established in step 1, restoring the previous execution context.

If Result(2).type ighrow then throw Result(2).value.

If Result(2).type isreturn then return Result(2).value.

(Result(2).type must beormal.) Returnundefined.

[[Construct]]
When the [[Construct]] property for a Function objécis called, the following steps are taken:

SaA®ON

Create a new native ECMAScript obje

Set the [[Class]] property of Result(1) t@bject”
Set the [[Extensible]] property of Result(1) truie.
Get the value of thprototype property ofF.

ok, whpE

prototype object as described in 15.2.3.1.

Invoke the [[Call]] property of~, providing Result(1) as théhis value and providing the argument
list passed intg[Construct]] as the argument values.

If Type(Result])) is[ObjecJthen return Resulf).

Return Result(1).

N

©®

13 October 2008

Deleted: <#>If there already exists an objd€that
was created by an earlier call to this section's
algorithm, and if that catb this section's algorithm
was given dunctionBodythat is equated to the
FunctionBodygiven now, then go to step 13. (If the
is more than one objeEtsatisfying these criteria,
choose one at the implementation's discretfon.)

Deleted: properties

Deleted: .

Deleted: is given

Deleted: DontEnum

Deleted: <#>At the implementation's discretion, ¢
to either step 2 or step 4.
<#>Create a new native ECMAScript object joinec
E and letF be that object. Copy all neinternal
properties and their attributes frdfto F so that all
norrinternal properties are identical EhandF.{
<#>Set the [[Class]] property d¢f to "Function" .
<#>Set the [[Prototype]] property &f to the original
Function preotype object as specified in 15.3.3.1.
<#>Set the [[Call]] property oF as described in
13.2.19
<#>Set the [[Construct]] property &f as described i
13.2.21
<#>Set the [[Scope]] property éfto a new scope
chain (10.1.4) that contains the same objecBcape
ReturnF.

Deleted: Step 1 allows an implementation to optil
the common case of a function A that has a neste
function B where B is not dependent on A. In this «
the implementation is allowed to reuse the same ¢
for B instead of creating a new one every time A is
called. Step 13 makes this optimisation optional; g
implementation that chooses not to impéehit will g
to step 2
For example, in the cofle
function A() {

function B(x) {return x*x;}

return B;

}

function C() {
return eval(“(function (x) {return x*x;})");

var bl = A();

var b2 = A();

function b3(x) {return x*x;}

function b4(x) {retun x*x;}

var b5 = C();

var b6 = C()f

an implementation is allowed, but not required, to
bl andb2. In fact, it may maké1l andb2 the same
object because there is no way to detect the differ
between their [[Scope]] properties. On the other h:
animplementation must not join3 andb4 because

their source codes are not equated (13.1.1). Alf

Deleted: the

Deleted: 3

Deleted: 3

Deleted: 3

omment [pL61]: Her man Venter s
e fiis an Object?o0

Deleted: 6

(
(
(
(
B
(
[

Deleted: 6

- 85 -

14 Program
Syntax
Program:
UseSubsetDirectiyg SourceElements

|UseSubsetDirecti\5§ :
"use strict useExtensiofn: " ;

useExtension
, DoubleStringCharactegs; |

SourceElements
SourceElement
SourceElements SourceElement

SourceElement
Statemept |

Semantics
The productiorProgram: UseSubsetDirectiyg SourceElementss evaluated as follows:

1. If the optionalUseSubsetDirectivis not present, the set of usage subsets foPtbgramis the empty
set.
Else

a. EvaluateSourceElements
The set of usage subsets for the Program is elements of the internal list that is Result(2a).
ProcessSourceElement®r function declarations.
EvaluateSourceElements

N

o0sw

The productiorSourceElementsSourceElemenis processed for function declarations as follows:
1. ProcessSourceElemenfior function declarations.

The productiorSourceElementsSourceElemenis evaluated as follows:

1. EvaluateSourceElement

2. Return Result(1).

The productionSourceElements SourceElements SourceElemastprocessed for function declarations as
follows:

1. ProcessSourceElement®r function declarations.

2. ProcessSourceElemenfor function declarations.

The productiorSourceElementsSourceElements SourceElemenevaluated as follows:

1. EvaluateSourceElements

2. If Result(1) is an abrupt completion, return Result(1)

3. EvaluateSourceElement

4. Return Result(3).

The productiorSourceElement Statements processed for function declarations by taking no action.
The productiorSourceElement Statementis evaluated as follows:

1. EvaluateStatement

2. Return Result(1).

The productiorSourceElement FunctionDeclarationis processed for function declarations as follows:

1. Procesd-unctionDeclarationfor function declarations (see clause 13).

13 October 2008

[Comment [AWB62]:

Need to add semantics

Deleted:
FunctionDeclaration

[Deleted: 2

- 86 -

The productiorSourceElement FunctionDeclarationis evaluated as follows:
1. Return formal, empty, empty).

The productiorUseSubsetDeéctive,, : " use subset |SubsetList ; isevaluated as follows:

Comment [pL63]: Need
1. EvaluateSubsetList

s u b s e tsentire sectionh i

t

[0}

f

X

al

2. Return Result(1)

The productiorSubsetList: Identifier is evaluated as follows:

1. If Identifieris not the name of a usage subset that is supported bE@NEAScript implementation,
return an empty internal list.

2. Return an internal list containing one element which isldestifier.

The productiorBubsetList: SubsetList Identifieris evaluated as follows:
1. EvaluateSubsetList

2. If Identifieris not the mme of a usage subset that is supported by this ECMAScript implementation,
return Result(1)

3. If Identifieris already an element of Result(1), return Result(1)
4. Return an internal list whose length is one greater than the length of Result(1) and whose items are the
items of Result(1), in order, followed at the endldgntifier, which is the last item of the new list.

13 October 2008

15

15.1

-87-

Native ECMAScript Objects

There are certai built-in objects available whenever an ECMAScript program begins execution. One, the
global object, is in the scope chain of the executing program. Others are accessible as initial properties of -
global object.

Unless specified otherwise, the [[Clakspfoperty of a builkin object is"Function" if that built-in object
has a [[Call]] property, ofObject" if that built-in object does not have a [[Call]] propertynless specified
otherwise, the [[Extensible]] property of a buift object has the valugue.

Many built-in objects are functions: they can be invoked with arguments. Some of them furthermore ar
constructors: they are functions intended for use with ibe operator. For each builb function, this
specification describes the argumentsuiegd by that function and properties of the Function object. For each
built-in constructor, this specification furthermore describes properties of the prototype object of tha
constructor and properties of specific object instances returned hgwaexpression that invokes that
constructor.

Unless otherwise specified in the description of a particular function, if a function or constructor described i
this section is given fewer arguments than the function is specified to require, the function or ¢tonstralt
behave exactly as if it had been given sufficient additional arguments, each such argument being t
undefined value.

Unless otherwise specified in the description of a particular function, if a function or constructor described i
this section $ given more arguments than the function is specified to aIIowhdnﬁetional arguments are‘
ignored

NOTE
Implementations that add additional capabilities to the set of fimifunctions are encouraged to do so by
adding new functions rather than adding new parameters to existing functions.

Every builtin function and every buHin constructor has the Function prototype object, which is the initial
value of the expressiorfrunction.prototype (15.3.2.1), as the value of its internal [[Prototype]]
property.

Every builtin prototype object hashé Object prototype object, which is the initial value of the expression
Object.prototype (15.3.2.1), as the value of its internal [[Prototype]] property, except the Object
prototype object itself.

None of the builkin functions described in this sectiomadl implement the internal [[Construct]] method
unless otherwise specified in the description of a particular function. None of thdarbfilctions described

in this section shall initially have prototype property unless otherwise specified in thesctéption of a
particular function. Every buHin Function object described in this secidowhether as a constructor, an
ordinary function, or botéh has alength property whose value is an integer. Unless otherwise specified, this
value is equal to the lgest number of named arguments shown in the section headings for the functior
description, including optional parameters.

NOTE

For example, the Function object that is the initial value ofgliee property of the String prototype object

is described unde t he section heading fAString.prototype.s
arguments start and end; therefore the value oflémgth property of that Function object &.

In every case, théength property of a builin Function object desdsed in this section has the attributes
{ [[Writable]]: false, [[Enumerable]]:false, [[Configurablg]: falsg} (and no others). Every other propert
described in this section has the attributgWritable]]: true, [[Enumerabé]]: false, [[Configurablg]: true }
Junless otherwise specified.
The Global Object
The global object does not have a [[Construct]] property; it is not possible to use the global object as
constructor with thenew operator.
The global object does not have a [[Call]] property; it is not possible to invoke the global object as ¢
function.

The values of the [[Prototype]] and [[Class]] properties of the global object are implemerndependent.

13 October 2008

Deleted: behaviour of the function or
constructor is undefined. In particular, an
implementation is permitted (but not required
throw aTypeError exception in this case

Comment [pL64]: Breaking change!!

Lars asks for the motivation of this change? He
Venter says: | am not totally sure that this is OK
since the language was added before my time &
presumably was required to allow either Naviga
or IE to claim tabe compliant with the standard
while extending it. TODO: figure out if this issue
discussed anywhere.

[Deleted: ReadOnly, DontDelete, DontEnum

[Deleted: DontEnum

[Deleted: (and no others)

15.1.1
15.1.1.1

15.1.1.2

15.1.1.3

15.1.2
15.1.2.1

- 88 -

Value Properties of the Glokal Object

NaN

The initial value of NaN is NaN (8.5). This property has the attributes [fWritable]]: false,
[[Enumerable]]:false, [[Configurabld]: false}.

Infinity

The initial value ofInfinity is +wo (8.5). This property has the attributes[{Writable]]: false,
[[Enumerable]]:false, [[Configurabld]: false}.

undefined

The initial value ofundefined is undefined (8.1). This property has the attributed[{Vritable]]:
false, [[Enumerable]]false, [[Configurabld]: false}.

Function Properties of the Global Object

eval (x)
When theeval function is called with one argumexrtthe following steps are taken:

If xis not a string value, retox.

Evaluate the program from step 2.

If Result(3).type ismormal and its completion value is a vali¥e then return the valu¥.

If Result(3).type immormal and its completion value smpty, then return the valuendefined.
Result(3).type must béarow. Throw Result(3).value as an exception.

oakrwbpE

|If the value of theeval property is used in any way other than a direct call (that is, other than by the

explicit useof its name as aftdentifier which is theMemberExpressiom a CallExpressiof, or if the
eval property is assigned to, &wvalError exception may be throWn

15.1.2.1.1 Usage Subsetautious Restrictions

15.1.2.2

If an execution context that is subset restricted tocengious subset uses the value of teeal

Parsex as aProgram If the parse fails, throw SyntaxError exception (but see also clause 16).

Comment [pL65]: This is an intentional incompatible
change from ES3.

[Deleted: DontEnum, DontDelete

[Deleted: DontEnum, DontDelete

[Deleted: DontEnum, DontDelete

Comment [pL66]: From AWB:
Need to do additional spec work to make eval act like
operator but without reseng the eval identifier.

property any way other than a direct call (that is, other than by the explicit use of its name as an

Identifier which is theMemberExpressiom a CallExpression, or if theeval property is assigned

to, anEvalError exception is thrown.

parselnt (string , radix)

The parselnt function produces an integer value dictated by interpretation of the contents of the

string argument according to the specifieatlix. Leading whitespace in the string is ignored. rkidix

is undefined or 0, it is assumed to be 10 except when the number begins with the charactéxpairs
or 0X, in which case a radix of 16 is assumed. Any rabixnumber may also optionally begin with

the character pai@x or OX.
When theparselnt function is called, the following steps are taken:
1. Call ToStringétring).

2. Let S be a newly created substring of Result(1) consisting of the first character that & not
StrWhiteSpaceChaand all characters following that character. (In other words, remove leading

white space.)
3. Letsignbe 1.
4. If Sis not empty and the first character®fs a minus sign , letsignbe —1.

5. If Sis not empty and the first character ®fs a plus sign+ or a minus sign , then remove the

first character fronS.
6. LetR= Tolnt32fadix).
7. If R=0, go to step 11.
8. If R< 2 orR> 36, then returmNaN.
9. If R=16, go to step 13.
10. Go to step 14.
11. LetR=10.

12. If the length ofSis at least 1 and the first character®f s00fi t hen at t he

discretion either leR = 8 or leaveR unchanged.

13 October 2008

mp

15.1.2.3

15.1.2.4

15.1.2.5

-89 -

13. If the length ofSis at least 2 and the first two charactersSodr e e Oxb h ®0X0 i t he
remove the first two characters frosand letR = 16.

14. If Scontains any character that is not a raRigigit, then letZ be the substring 0% consisting of
all characters before the first such character; otherwis&, betS.

15. If Zis empty, retirn NaN.

16. Compute the mathematical integer value that is representedl ihyradix-R notation, using the
lettersA-Z anda-z for digits with values 10 through 35. (HoweverRfis 10 andZ contains more
than 20 significant digits, every significant digifter the 20th may be replaced byla digit, at
the option of the implementation; andRfis not 2, 4, 8, 10, 16, or 32, then Result(16) may be an
implementationdependent approximation to the mathematical integer value that is represented b’
Z in radix-R notation.)

17. Compute the number value for Result(16).

18. Returnsign> Result(17).

NOTE

parselnt may interpret only a leading portion of the string as an integer value; it ignores any
characters that cannot be interpreted as part of the notation of an integerno indication is given
that any such characters were ignored.

When radix is 0 oundefinedand the string's number begins witlDadigit not followed by arx or X,
then the implementation may, at its discretion, interpret the number either as be&lgoets being
decimal. Implementations are encouraged to interpret numbers in this case as being decimal.

parseFloat (string)

TheparseFloat function produces a number value dictated by interpretation of the contents of the
string argument as aatimal literal.

When theparseFloat function is called, the following steps are taken:

1. Call ToStringétring).

2. Compute a substring of Result(l) consisting of the leftmost character that is not a
StrWhiteSpaceChaand all characters to the right of that character.(In other words, remove
leading white space.)

3. If neither Result(2) nor any prefix of Result(2) satisfies the syntax StrBecimallLiteral(see

4. Compute the longest prefix of Result(2), which might be Result(2) itself, which satisfies the
syntax of aStrDecimalLiteral
5. Return the number value for the MV of Result(4).

NOTE

parseFloat may interpret only a leading portion of the string as a number value; it ignores any
characters that cannot be interpreted as part of the notation of an decimal literal, and no indication is
given that any such characters were ignored.

isNaN (number)

1. Call GetValue(number).

2. If Type(Result(1)) is Decimal, then
a. Callthe IEEE 7542008 Decimal isFinite method with argument Result(1).
b. Return Result(2a).

3. Call ToNumber(Result(2)).

4. If Result(4) isNaN, returntrue.

5. Return false.

isFinite (number)

Returnsfalseif the result isNaN, +w, or—w, and otherwise returrisue.
1. Call GetValue(mmber).

2. If Type(Result(1)) is Decimal, then

a. Callthe IEEE 7542008 Decimal isFinite method with argument Result(1).
b. Return Result(2a).

13 October 2008

Deleted: 0

Deleted: Applies ToNumber to its argume
then returns

Deleted: Applies ToNumber to its argume
then returns

15.1.3

uri

-90 -

3. Call ToNumber(Result(2)).
4. If Result(4) isNaN, +w, or—w, returnfalse.
5. Return true.

URI Handling Function Properties

Uniform Resource Identifiers, or URIs, are strings that identify resources (e.g. web pages or files) and
transport protocols by which to access them (e.g. HTTP or FTP) on the Internet. The ECMAScript
language itself does not provide any supgortusing URIs except for functions that encode and decode
URIs as described in 15.1.3.1, 15.1.3.2, 15.1.3.3 and 15.1.3.4.

NOTE
Many implementations of ECMAScript provide additional functions and methods that manipulate web
pages; these functions are beyothe scope of this standard.

A URI is composed of a sequence of components separated by component separators. The general form
is:

Scheme: First / Second; Third ? Fourth

where the italicised name:so,foefipdfieas Rh tairceo mpeosneer nvtesd ac
used as separators. TeacodeURI and decodeURI functions are intended to work with complete

URIs; they assume that any reserved characters in the URI are intended to have special meaning and so
are not encoded. ThencodeURIComponent anddecodeURIComponent functionsare intended to

work with the individual component parts of a URI; they assume that any reserved characters represent
text and so must be encoded so that they are not interpreted as reserved characters when tleatcompon

is part of a complete URI.

The following lexical grammar specifies the form of encoded URIs.

uriCharactergp

uriCharacters:::
uriCharacter uriCharactergy

uriCharacter:::
uriReserved
uriUnescaped
uriEscaped

uriReserved:: one of

ol ?

uriUnescaped::
uriAlpha
DecimalDigit
uriMark

uriEscaped::

%HexDigit HexDigit

uriAlpha::: one of

abcdefghijkl

rs VWXYZ

mnopgq tu
ABCDEFGHIJKLMNOPQRST UV WXYZ

uriMark ::: one of

=0

When a character to be included in a URI is not listed above or is not intended to have the special
meaning sometimes given to the reserved characters, that character must be encoded. The character is
first transformed into a sequence of octets using tiAd-8 transformation, with surrogate pairs first
transformed from their UG8 to UCS4 encodings. (Note that for code points in the range [0,127] this

13 October 2008

-91-

results in a single octet with the same value.) The resulting sequence of octets is then transformed int
string with each octet represefxoed by an escape

The encoding and escaping process is described by the hidden function Encode taking two strii
argumentsstring andunescapedSef his function is defined for expository purpasely.

Compute the number of characterssining.

Let R be the empty string.

Let k be 0.

If k equals Result(1), returR.

Let C be the character at positi&within string.

If Cis not inunescapedSggo to step 9.

Let Sbe a string containing only theharacterC.

Go to step 24.

If the code point value ofC is not less than 0xDCOO and not greater than OXxDFFF, throw a

URIError exception.

10. If the code point value o€ is less than 0xD800 or greater than OxDBFF,Vebe the code point
value ofC and go tostep 16.

11. Increasek by 1.

12. If k equals Result(1), throw dRIError exception.

13. Get the code point value of the character at positiasithin string.

14. If Result(13) is less than 0xDCOO or greater than OXDFFF, thraMREError exception.

15. Let V be (((the code @int value ofC) i 0xD800) * 0x400 + (Result(13) 0xDCO00) + 0x10000).

16. Let Octetsbe the array of octets resulting by applying the W Eansformation td/, and letL be
the array size.

17. Letj be O.

18. Get the value at positignwithin Octets

19. LetSheastr ng cont ai ni ng%X¥oh rwhee rceh aXYacaree st wio upper
encoding the value of Result(18).

20. Let Rbe a new string value computed by concatenating the previous vaRiarafS.

21. Increasg by 1.

22.1f jis equal toL, go to step 25.

23. Go to step 18.

24. Let Rbe a new string value computed by concatenating the previous vaRiarafS.

25. Increasek by 1.

26. Go to step 4.

The unescaping and decoding process is described by the hidden function Decode taking two stri
argumentsstring andreservelSet This function is defined for expository purpose only.

RN A~WNE

Compute the number of characterssining.

Let R be the empty string.

Letk be 0.

If k equals Result(1), returR.

Let C be the character at positidwithin string.

IfCis not O6%80. go to step

Let start bek.

If k + 2 is greater than or equal to Result(1), throWwRIError exception.

If the characters at positiork€1) and k + 2) within string do not represent hexadecimal digits,
throw aURIError exception.

10. Let B be the 8bit value represged by the two hexadecimal digits at positién+(1) and k + 2).

11. Incrementk by 2.

12. If the most significant bit iB is 0, letC be the character with code point valB@and go to step 37.
13. Let n be the smallest nenegative number such tha@ €< n) & 0x80 is equal to 0.

14. If nequals 1 onis greater than 4, throw@RIError exception.

15. Let Octetsbe an array of ®it integers of size.

16. PutB into Octetsat position 0.

17.1f k+ (8 * (nT 1)) is greater than or equal to Result(1), throWRIError exception.

18. Let| be 1.

19. If j equalsn, go to step 29.

NGO A~LNE

13 October 2008

-92-

20. Incrementk by 1.

21. If the character at positioki s not ¢ YRIErrot éxception. a

22. If the characters at positiork (1) and k + 2) within string do not represent hexadecimal digits,
throw aURIError exception.

23. Let B be the 8bit value represented by the two hexadecimal digits at posikienl) and k + 2).

24. If the two most significant bits iB are not 10, throw &RIError exception.

25. Incrementk by 2.

26. PutB into Octetsat positionj.

27. Increment by 1.

28. Go to step 19.

29. Let V be the value obtained by applying the UBRransformation t®ctets that is, from an array of
octets into a 3:it value.

30. If Vis less than 0x10000, go to step 36.

31. If Vis greater than Ox10FFFF, throwdRIError exception.

32. LetL be (((Vi 0x10000) & Ox3FF) + 0xDCO00).

33. Let H be ((((v i 0x10000) >> 10) & Ox3FF) + 0xD800).

34. Let Sbe the string containing the two characters with code point vadussdL.

35. Go to step 41.

36. Let C be the character with code point vaMe

37. If Cis not inresevedSetgo to step 40.

38. Let She the substring atring from positionstart to positionk included.

39. Go to step 41.

40. Let Sbe the string containing only the character

41. Let Rbe a new string value computed by concatenating the previous vaRiarafS.

42. Increasek by 1.

43. Go to step 4.

NOTE 1
The syntax of Uniform Resource Identifiers is given in RFC2396.

NOTE 2
A formal description and implementation of UBFis given in the Unicode Standard, Version 2.0,
Appendix A.

In UTF-8, characters are encoded usisgquences of 1 to 6 octets. The only octet of a "sequence" of one
has the higheworder bit set to 0, the remaining 7 bits being used to encode the character value. In a
sequence of n octets, n>1, the initial octet has the n higheer bits set to 1, fodlwed by a bit set to 0.

The remaining bits of that octet contain bits from the value of the character to be encoded. The following
octets all have the highesrder bit set to 1 and the following bit set to 0, leaving 6 bits in each to
contain bits from theharacter to be encoded. The possible LAEncodings of ECMAScript characters

are:

Code Point Value Representation 15" Octet 2" Octet 3%0ctet 4" Octet
0x0000 - Ox007F 00000000 0zzzzzzz 0zzzzz77
0x0080 - OxO7FF 00000 yyy yyzzzzzz 110yyyyy 10zzzzzz
0x0800 - OxD7FF XXXXYYYY YYZ22277 1110 XxXx 10yyyyyy 10zzzzzz
0xD800 - OxDBFF 110110 v VWWWWWXX
followed by followed by 11110 uuu 10uuwwww | 10xxyyyy 10zzzzzz
0xDCO0 i OxDFFF 110111 yy yyzzzzzz

0xD800 - OxDBFF

not followed by causes URIError
0xDCO00 i OxDFFF

0xDCO0 i OxDFFF causes URIError

OxEO000 - OxFFFF XXXXYYYY YYZ22277 1110 XxXXx 10yyyyyy 10zzzzzz

13 October 2008

