
 
Standard ECMA-262 

3
rd

 Edit ion - December 1999 

  

S t a n d a r d i z i n g In fo r ma t i o n a n d C o mmu n i c a t i o n S ys t e ms 

 

Phone:  +41  22  849.60 .00  -  Fax:  +41  22   849 .60 .01  -  URL:  h t tp : / /www.ecma.c h -  In ternet :  he lpdes k@ecma.c h  

27 October 2008 

 

 

 

 

 

 

 

 

 

 

 

 

 

ECMAScript 3.1 Language 

Specification - DRAFT 
 

 

  



 
Standard ECMA-262 

3
rd

 Edit ion - December 1999 

  

S t a n d a r d i z i n g In fo r ma t i o n a n d C o mmu n i c a t i o n S ys t e ms 

 

Phone:  +41  22  849.60 .00  -  Fax:  +41  22   849 .60 .01  -  URL:  h t tp : / /www.ecma.c h -  In ternet :  he lpdes k@ecma.c h  

27 October 2008 

  



 
Standard ECMA-262 

3
rd

 Edit ion - December 1999 

  

S t a n d a r d i z i n g In fo r ma t i o n a n d C o mmu n i c a t i o n S ys t e ms 

 

Phone:  +41  22  849.60 .00  -  Fax:  +41  22   849 .60 .01  -  URL:  h t tp : / /www.ecma.c h -  In ternet :  he lpdes k@ecma.c h  

27 October 2008 

 

 

 

 

 

 

 

 

 

 

 

ECMAScript 3.1 Language 

Specification - DRAFT 
 

 

 

  



 

Phone:  +41  22  849.60 .00  -  Fax:  +41  22   849 .60 .01  -  URL:  h t tp : / /www.ecma.c h -  In ternet :  he lpdes k@ecma.c h  

27 October 2008 

 

Brief History  

 

 

 

This ECMA Standard is based on several originating technologies, the most well known being JavaScript (Netscape) 

and JScript (Microsoft). The language was invented by Brendan Eich at Netscape and first appeared in that companyôs 

Navigator 2.0 browser. It has appeared in all subsequent browsers from Netscape and in all browsers from Microsoft 

starting with Internet Explorer 3.0. 

The development of this Standard started in November 1996. The first edition of this ECMA Standard was adopted by 

the ECMA General Assembly of June 1997. 

That ECMA Standard was submitted to ISO/IEC JTC 1 for adoption under the fast-track procedure, and approved as 

international standard ISO/IEC 16262, in April 1998. The ECMA General Assembly of June 1998 approved the 

second edition of ECMA-262 to keep it fully aligned with ISO/IEC 16262. Changes between the first and the second 

edition are editorial in nature. 

The third edition of the Standard includes powerful regular expressions, better string handling, new control 

statements, try/catch exception handling, tighter definition of errors, formatting for numeric output and minor changes 

in anticipation of forthcoming internationalisation facilities and future language growth. The language documented by 

the third edition has come to be known as ECMAScript 3 or ES3. 

Work on the language is not complete.  The technical committee is working on significant enhancements, including 

mechanisms for scripts to be created and used across the Internet, and tighter coordination with other standards bodies 

such as groups within the World Wide Web Consortium and the Wireless Application Protocol Forum. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Deleted: current document defines the 

Deleted: and 

Deleted: This Standard has been adopted as 3rd Edition of 
ECMA-262 by the ECMA General Assembly in December, 

1999.



- i  -  

27 October 2008 

Table of contents 

1 Scope 1 

2 Conformance 1 

3 References 1 

4 Overview 1 

4.1 Web Scripting 2 

4.2 Language Overview 2 

4.2.1 Objects 2 

4.2.2 Voluntary Usage Language Subsets 3 

4.3 Definitions 4 

4.3.1 Type 4 

4.3.2 Primitive Value 4 

4.3.3 Object 4 

4.3.4 Constructor 4 

4.3.5 Prototype 4 

4.3.6 Native Object 4 

4.3.7 Built -in Object 4 

4.3.8 Host Object 5 

4.3.9 Undefined Value 5 

4.3.10 Undefined Type 5 

4.3.11 Null Value 5 

4.3.12 Null Type 5 

4.3.13 Boolean Value 5 

4.3.14 Boolean Type 5 

4.3.15 Boolean Object 5 

4.3.16 String Value 5 

4.3.17 String Type 5 

4.3.18 String Object 5 

4.3.19 Number Value 5 

4.3.20 Number Type 5 

4.3.21 Number Object 5 

4.3.22 Infinity  6 

4.3.23 NaN 6 

4.3.24 Function 6 

4.3.25 Property 6 

4.3.26 Method 6 

4.3.27 Attribute 6 

4.3.28 Own Property 6 

4.3.29 Inherited Property 6 

4.3.30 Built -in Method 6 

4.3.31 Decimal Value 6 

4.3.32 Decimal Type 6 

4.3.33 Decimal Object 6 

5 Notational Conventions 7 



- i i  -  

27 October 2008 

5.1 Syntactic and Lexical Grammars 7 

5.1.1 Context-Free Grammars 7 

5.1.2 The Lexical and RegExp Grammars 7 

5.1.3 The Numeric String Grammar 7 

5.1.4 The Syntactic Grammar 7 

5.1.5 Grammar Notation 8 

5.2 Algorithm Conventions 10 

6. Source Text 11 

7 Lexical Conventions 12 

7.1 Unicode Format-Control Characters 12 

7.2 White Space 12 

7.3 Line Terminators 13 

7.4 Comments 14 

7.5 Tokens 15 

7.5.1 Reserved Words 15 

7.5.2 Keywords 15 

7.5.3 Future Reserved Words 15 

7.6 Identifiers 15 

7.7 Punctuators 17 

7.8 Literals 17 

7.8.1 Null Literals 17 

7.8.2 Boolean Literals 17 

7.8.3 Numeric Literals 17 

7.8.4 String Literals 19 

7.8.5 Regular Expression Literals 22 

7.9 Automatic Semicolon Insertion 23 

7.9.1 Rules of Automatic Semicolon Insertion 23 

7.9.2 Examples of Automatic Semicolon Insertion 24 

8 Types 25 

8.1 The Undefined Type 25 

8.2 The Null Type 25 

8.3 The Boolean Type 25 

8.4 The String Type 25 

8.5 The Number Type 26 

8.6 The Object Type 27 

8.6.1 Property Attributes 27 

8.6.2 Internal Properties and Methods 28 

8.7 The Reference Type 33 

8.7.1 GetValue (V) 34 

8.7.2 PutValue (V, W, Throw) 34 

8.8 The List Type 34 

8.9 The Completion Type 34 

8.10 The Property Descriptor and Property Identifier Types 34 

8.10.1 IsAccessorDescriptor ( Desc ) 35 

8.10.2 IsDataDescriptor ( Desc ) 35 



- i i i  -  

27 October 2008 

8.10.3 IsGenericDescriptor ( Desc ) 35 

8.10.4 FromPropertyDescriptor ( Desc ) 35 

8.10.5 ToPropertyDescriptor ( Desc ) 36 

9 Type Conversion and Testing 36 

9.1 ToPrimitive 36 

9.2 ToBoolean 37 

9.3 ToNumber 37 

9.3.1 ToNumber Applied to the String Type 37 

9.4 ToInteger 40 

9.5 ToInt32: (Signed 32 Bit Integer) 40 

9.6 ToUint32: (Unsigned 32 Bit Integer) 40 

9.7 ToUint16: (Unsigned 16 Bit Integer) 41 

9.8 ToString 41 

9.8.1 ToString Applied to the Number Type 41 

9.9 ToObject 42 

9.10 IsCallable 43 

10 Execution Contexts 43 

10.1 Definitions 43 

10.1.1 Function Objects 43 

10.1.2 Types of Executable Code 43 

10.1.3 Environment Bindings Instantiation 44 

10.1.4 Scope Chain and Identifier Resolution 45 

10.1.5 Global Object 46 

10.1.6 Activation Object 46 

10.1.7 This 46 

10.1.8 Arguments Object 46 

10.2 Entering An Execution Context 47 

10.2.1 Global Code 47 

10.2.2 Eval Code 47 

10.2.3 Function Code 47 

10.2.4 Lexical Block Code 48 

11 Expressions 48 

11.1 Primary Expressions 48 

11.1.1 The this  Keyword 48 

11.1.2 Identifier Reference 48 

11.1.3 Literal Reference 48 

11.1.4 Array Initialiser 48 

11.1.5 Object Initialiser 49 

11.1.6 The Grouping Operator 51 

11.2 Left-Hand-Side Expressions 51 

11.2.1 Property Accessors 52 

11.2.2 The new Operator 53 

11.2.3 Function Calls 53 

11.2.4 Argument Lists 53 

11.2.5 Function Expressions 54 



- iv  -  

27 October 2008 

11.3 Postfix Expressions 54 

11.3.1 Postfix Increment Operator 54 

11.3.2 Postfix Decrement Operator 54 

11.4 Unary Operators 55 

11.4.1 The delete  Operator 55 

11.4.2 The void  Operator 55 

11.4.3 The typeof  Operator 55 

11.4.4 Prefix Increment Operator 56 

11.4.5 Prefix Decrement Operator 56 

11.4.6 Unary + Operator 56 

11.4.7 Unary -  Operator 57 

11.4.8 Bitwise NOT Operator ( ~ ) 57 

11.4.9 Logical NOT Operator ( !  ) 57 

11.5 Multiplicative Operators 57 

11.5.1 Applying the *  Operator 58 

11.5.2 Applying the /  Operator 58 

11.5.3 Applying the % Operator 58 

11.6 Additive Operators 59 

11.6.1 The Addition operator ( + ) 59 

11.6.2 The Subtraction Operator ( -  ) 60 

11.6.3 Applying the Additive Operators ( +, -  ) to Numbers 60 

11.7 Bitwise Shift Operators 60 

11.7.1 The Left Shift Operator ( << ) 60 

11.7.2 The Signed Right Shift Operator ( >> ) 61 

11.7.3 The Unsigned Right Shift Operator ( >>>  ) 61 

11.8 Relational Operators 61 

11.8.1 The Less-than Operator ( < ) 62 

11.8.2 The Greater-than Operator ( > ) 62 

11.8.3 The Less-than-or-equal Operator ( <= ) 62 

11.8.4 The Greater-than-or-equal Operator ( >=  ) 63 

11.8.5 The Abstract Relational Comparison Algorithm 63 

11.8.6 The instanceof operator 64 

11.8.7 The in operator 64 

11.9 Equality Operators 64 

11.9.1 The Equals Operator ( == ) 65 

11.9.2 The Does-not-equals Operator ( !=  ) 65 

11.9.3 The Abstract Equality Comparison Algorithm 65 

11.9.4 The Strict Equals Operator ( ===  ) 66 

11.9.5 The Strict Does-not-equal Operator ( !==  ) 66 

11.9.6 The Strict Equality Comparison Algorithm 66 

11.10 Binary Bitwise Operators 67 

11.11 Binary Logical Operators 67 

11.12 Conditional Operator ( ?:  )  68 

11.13 Assignment Operators 69 

11.13.1 Simple Assignment ( = ) 69 



- v -  

27 October 2008 

11.13.2 Compound Assignment ( op=  ) 70 

11.14 Comma Operator ( ,  )  70 

12 Statements 71 

12.1 Block 71 

12.1.1 Usage Subset Restrictions 72 

12.2 Variable statement 72 

12.3 Empty Statement 73 

12.4 Expression Statement 73 

12.5 The if  Statement 74 

12.6 Iteration Statements 74 

12.6.1 The do -while  Statement 74 

12.6.2 The while  statement 75 

12.6.3 The for  Statement 75 

12.6.4 The for -in  Statement 76 

12.7 The continue  Statement 77 

12.8 The break  Statement 77 

12.9 The return  Statement 77 

12.10 The with  Statement 78 

12.10.1 Usage Subset Restrictions 78 

12.11 The switch  Statement 78 

12.12 Labelled Statements 80 

12.13 The throw  statement 80 

12.14 The try  statement 80 

12.15 Constant  statement 81 

13 Function Definition  82 

13.1 Definitions 83 

13.2 Creating Function Objects 83 

13.2.1 [[Call]]  84 

13.2.2 [[Construct]] 84 

14 Program 85 

15 Native ECMAScript Objects 87 

15.1 The Global Object 87 

15.1.1 Value Properties of the Global Object 88 

15.1.2 Function Properties of the Global Object 88 

15.1.3 URI Handling Function Properties 90 

15.1.4 Constructor Properties of the Global Object 94 

15.1.5 Other Properties of the Global Object 95 

15.2 Object Objects 95 

15.2.1 The Object Constructor Called as a Function 95 

15.2.2 The Object Constructor 95 

15.2.3 Properties of the Object Constructor 95 

15.2.4 Properties of the Object Prototype Object 98 

15.2.5 Properties of Object Instances 99 



- vi  -  

27 October 2008 

15.3 Function Objects 99 

15.3.1 The Function Constructor Called as a Function 99 

15.3.2 The Function Constructor 99 

15.3.3 Properties of the Function Constructor 100 

15.3.4 Properties of the Function Prototype Object 100 

15.3.5 Properties of Function Instances 101 

15.4 Array Objects 102 

15.4.1 The Array Constructor Called as a Function 102 

15.4.2 The Array Constructor 102 

15.4.3 Properties of the Array Constructor 103 

15.4.4 Properties of the Array Prototype Object 103 

15.4.5 Properties of Array Instances 118 

15.5 String Objects 119 

15.5.1 The String Constructor Called as a Function 119 

15.5.2 The String Constructor 119 

15.5.3 Properties of the String Constructor 119 

15.5.4 Properties of the String Prototype Object 119 

15.5.5 Properties of String Instances 127 

15.6 Boolean Objects 128 

15.6.1 The Boolean Constructor Called as a Function 128 

15.6.2 The Boolean Constructor 128 

15.6.3 Properties of the Boolean Constructor 128 

15.6.4 Properties of the Boolean Prototype Object 128 

15.6.5 Properties of Boolean Instances 129 

15.7 Number Objects 129 

15.7.1 The Number Constructor Called as a Function 129 

15.7.2 The Number Constructor 129 

15.7.3 Properties of the Number Constructor 130 

15.7.4 Properties of the Number Prototype Object 130 

15.7.5 Properties of Number Instances 134 

15.8 The Math Object 134 

15.8.1 Value Properties of the Math Object 134 

15.8.2 Function Properties of the Math Object 135 

15.9 Date Objects 139 

15.9.1 Overview of Date Objects and Definitions of Internal Operators 139 

15.9.2 The Date Constructor Called as a Function 144 

15.9.3 The Date Constructor 144 

15.9.4 Properties of the Date Constructor 145 

15.9.5 Properties of the Date Prototype Object 146 

15.9.6 Properties of Date Instances 152 

15.10 RegExp (Regular Expression) Objects 152 

15.10.1 Patterns 153 

15.10.2 Pattern Semantics 155 

15.10.3 The RegExp Constructor Called as a Function 166 

15.10.4 The RegExp Constructor 166 

15.10.5 Properties of the RegExp Constructor 167 

15.10.6 Properties of the RegExp Prototype Object 167 



- vi i  -  

27 October 2008 

15.10.7 Properties of RegExp Instances 168 

15.11 Error Objects 169 

15.11.1 The Error Constructor Called as a Function 169 

15.11.2 The Error Constructor 169 

15.11.3 Properties of the Error Constructor 169 

15.11.4 Properties of the Error Prototype Object 169 

15.11.5 Properties of Error Instances 170 

15.11.6 Native Error Types Used in This Standard 170 

15.11.7 NativeError Object Structure 170 

15.12 JSON 172 

15.12.1 parse ( text, reviver ) 172 

15.12.2 stringify ( value, replacer, space ) 172 

15.13 Decimal 174 

15.13.1 Overview of Decimal Objects and Definitions of Internal Operators 174 

15.13.2 The Decimal Constructor Called as a Function 174 

15.13.3 The Decimal Constructor 174 

15.13.4 Properties of the Decimal constructor 175 

15.13.5 Properties of the Decimal Prototype Object 176 

15.13.6 Properties of Decimal Instances 177 

16 Errors  178 

Annex A 179 

A.1 Lexical Grammar  179 

A.2 Number Conversions 184 

A.3 Expressions 185 

A.4 Statements 190 

A.5 Functions and Programs 192 

A.6 Universal Resource Identifier Character Classes 193 

A.7 Regular Expressions 193 

Annex B 197 

Compatibility  197 

B.1 Additional Syntax 197 

B.1.1 Numeric Literals 197 

B.1.2 String Literals 197 

B.2 Additional Properties 198 

B.2.1 escape (string) 198 

B.2.2 unescape (string) 199 

B.2.3 String.prototype.substr (start, length) 199 

B.2.4 Date.prototype.getYear ( ) 200 

B.2.5 Date.prototype.setYear (year) 200 



- vi i i  -  

27 October 2008 

B.2.6 Date.prototype.toGMTString ( ) 200 

Annex C 201 

Usage Subsets 201 

C.1 The strict  Subset 201 

C.1.1 Excluded Features 201 

C.1.2 Additional Execution Exceptions 201 

Annex D 202 

Correction and Clarifications in Edition 3.1 with Possible Compatability Impact 202 

Annex E 203 

Additions and Changes in Edition 3.1 which Introduce Incompatabilities with Edition 3. 203 

 

 



- 1 -  

27 October 2008 

1 Scope 

This Standard defines the ECMAScript scripting language. 

2 Conformance 

A conforming implementation of ECMAScript must provide and support all the types, values, objects, 

properties, functions, and program syntax and semantics described in this specification. 

A conforming implementation of this International standard shall interpret characters in conformance with the 

Unicode Standard, Version 3.0 or later, and ISO/IEC 10646-1 with either UCS-2 or UTF-16 as the adopted 

encoding form, implementation level 3. If the adopted ISO/IEC 10646-1 subset is not otherwise specified, it is 

presumed to be the BMP subset, collection 300. If the adopted encoding form is not otherwise specified, it 

presumed to be the UTF-16 encoding form. 

A conforming implementation of ECMAScript is permitted to provide additional types, values, objects, 

properties, and functions beyond those described in this specification. In particular, a conforming 

implementation of ECMAScript is permitted to provide properties not described in this specification, and 

values for those properties, for objects that are described in this specification. 

A conforming implementation of ECMAScript is permitted to support program and regular expression syntax 

not described in this specification. In particular, a conforming implementation of ECMAScript is permitted to 

support program syntax that makes use of the ñfuture reserved wordsò listed in 7.5.3 of this specification. 

3 References 

ISO/IEC 9899:1996 Programming Languages ï C, including amendment 1 and technical corrigenda 1 and 2. 

ISO/IEC 10646-1:1993 Information Technology -- Universal Multiple-Octet Coded Character Set (UCS) plus 

its amendments and corrigenda. 

The Unicode Consortium. The Unicode Standard, Version 3.0, defined by: The Unicode Standard, Version 3.0 

(Boston, MA, Addison-Wesley, 2000. ISBN 0-201-61635-5). 

Unicode Inc. (1998), Unicode Technical Report #15: Unicode Normalization Forms. 

ANSI/IEEE Std 754-1985: IEEE Standard for Binary Floating-Point Arithmetic. Institute of Electrical and 

Electronic Engineers, New York (1985). 

4 Overview 

This section contains a non-normative overview of the ECMAScript language. 

ECMAScript is an object-oriented programming language for performing computations and manipulating 

computational objects within a host environment. ECMAScript as defined here is not intended to be 

computationally self-sufficient; indeed, there are no provisions in this specification for input of external data 

or output of computed results. Instead, it is expected that the computational environment of an ECMAScript 

program will provide not only the objects and other facilities described in this specification but also certain 

environment-specific host objects, whose description and behaviour are beyond the scope of this specification 

except to indicate that they may provide certain properties that can be accessed and certain functions that can 

be called from an ECMAScript program. 

A scripting language is a programming language that is used to manipulate, customise, and automate the 

facilities of an existing system. In such systems, useful functionality is already available through a user 

interface, and the scripting language is a mechanism for exposing that functionality to program control. In this 

way, the existing system is said to provide a host environment of objects and facilities, which completes the 

capabilities of the scripting language. A scripting language is intended for use by both professional and non-

professional programmers. To accommodate non-professional programmers, some aspects of the language are 

defined to be tolerant of programmer mistakes. However, such tolerance can easily result in programs 

containing undiscovered errors that professional programmers would wish to discover and correct. To 

facilitate such error detection script can be explicitly be declared to use a ñstrictò subset of the full 

ECMAScript language that provides enhanced error detection as well. 

ECMAScript was originally designed to be a Web scripting language, providing a mechanism to enliven Web 

pages in browsers and to perform server computation as part of a Web-based client-server architecture. 

Deleted: 2.1

Deleted: Unicode Inc. (1996), The Unicode 

Standard, Version 2.0. ISBN: 0-201-48345-9, 
Addison-Wesley Publishing Co., Menlo Park, 

California.

Deleted: Unicode Inc. (1998), Unicode 

Technical Report #8: The Unicode Standard, 
Version 2.1.¶

Deleted:  may be somewhat less strict



- 2 -  

27 October 2008 

ECMAScript can provide core scripting capabilities for a variety of host environments, and therefore the core 

scripting language is specified in this document apart from any particular host environment. 

Some of the facilities of ECMAScript are similar to those used in other programming languages; in particular 

Java , Self, and Scheme as described in: 

 Gosling, James, Bill Joy and Guy Steele. The Java Language Specification. Addison Wesley Publishing 

Co., 1996. 

 Ungar, David, and Smith, Randall B. Self: The Power of Simplicity. OOPSLA '87 Conference 

Proceedings, pp. 227ï241, Orlando, FL, October 1987. 

 IEEE Standard for the Scheme Programming Language. IEEE Std 1178-1990. 

4.1 Web Scripting 

A web browser provides an ECMAScript host environment for client-side computation including, for 

instance, objects that represent windows, menus, pop-ups, dialog boxes, text areas, anchors, frames, history, 

cookies, and input/output. Further, the host environment provides a means to attach scripting code to events 

such as change of focus, page and image loading, unloading, error and abort, selection, form submission, 

and mouse actions. Scripting code appears within the HTML and the displayed page is a combination of 

user interface elements and fixed and computed text and images. The scripting code is reactive to user 

interaction and there is no need for a main program. 

A web server provides a different host environment for server-side computation including objects 

representing requests, clients, and files; and mechanisms to lock and share data. By using browser-side and 

server-side scripting together, it is possible to distribute computation between the client and server while 

providing a customised user interface for a Web-based application. 

Each Web browser and server that supports ECMAScript supplies its own host environment, completing the 

ECMAScript execution environment. 

4.2 Language Overview 

The following is an informal overview of ECMAScriptðnot all parts of the language are described. This 

overview is not part of the standard proper. 

ECMAScript is object-based: basic language and host facilities are provided by objects, and an 

ECMAScript program is a cluster of communicating objects. An ECMAScript object is an unordered 

collection of properties each with zero or more attributes that determine how each property can be usedð

for example, when the Writable attribute for a property is set to false, any attempt by executed 

ECMAScript code to change the value of the property fails. Properties are containers that hold other 

objects, primitive values, or methods. A primitive value is a member of one of the following built-in types: 

Undefined, Null , Boolean, Number, and String; an object is a member of the remaining built-in type 

Object; and a method is a function associated with an object via a property. 

ECMAScript defines a collection of built-in objects that round out the definition of ECMAScript entities. 

These built-in objects include the Global object, the Object object, the Function object, the Array  object, 

the String  object, the Boolean object, the Number object, the Math  object, the Date object, the RegExp 

object, the JSON object, the Decimal object, and the Error objects Error, EvalError , RangeError, 

ReferenceError, SyntaxError, TypeError and URIError . 

ECMAScript also defines a set of built-in operators. ECMAScript operators include various unary 

operations, multiplicative operators, additive operators, bitwise shift operators, relational operators, 

equality operators, binary bitwise operators, binary logical operators, assignment operators, and the comma 

operator. 

ECMAScript syntax intentionally resembles Java syntax. ECMAScript syntax is relaxed to enable it to 

serve as an easy-to-use scripting language. For example, a variable is not required to have its type declared 

nor are types associated with properties, and defined functions are not required to have their declarations 

appear textually before calls to them. 

4.2.1 Objects 

ECMAScript does not contain classes such as those in C++, Smalltalk, or Java, but rather, supports 

constructors which create objects by executing code that allocates storage for the objects and initialises 

all or part of them by assigning initial values to their properties. All constructors are objects, but not all 

Deleted:  and

Deleted: ReadOnly 

Deleted: true

Deleted: has no effect

Deleted:  that may not be, strictly speaking, functions 
or methods

Deleted: proper 



- 3 -  

27 October 2008 

objects are constructors. Each constructor has a property named ñprototype ò that is used to 

implement prototype-based inheritance and shared properties. Objects are created by using constructors 

in new expressions; for example, new String("A String")  creates a new String object. Invoking a 

constructor without using new has consequences that depend on the constructor. For example, 

String("A String")  produces a primitive string, not an object. 

ECMAScript supports prototype-based inheritance. Every object created by a constructor has an implicit 

reference (called the objectôs prototype) to the value of its constructorôs ñprototype ò property. 

Furthermore, a prototype may have a non-null implicit reference to its prototype, and so on; this is called 

the prototype chain. When a reference is made to a property in an object, that reference is to the property 

of that name in the first object in the prototype chain that contains a property of that name. In other 

words, first the object mentioned directly is examined for such a property; if that object contains the 

named property, that is the property to which the reference refers; if that object does not contain the 

named property, the prototype for that object is examined next; and so on. 

In a class-based object-oriented language, in general, state is carried by instances, methods are carried by 

classes, and inheritance is only of structure and behaviour. In ECMAScript, the state and methods are 

carried by objects, and structure, behaviour, and state are all inherited. 

All objects that do not directly contain a particular property that their prototype contains share that 

property and its value. The following diagram illustrates this: 

CF is a constructor (and also an object). Five objects have been created by using new expressions: cf1, 

cf2, cf3, cf4, and cf5. Each of these objects contains properties named q1 and q2. The dashed lines 

represent the implicit prototype relationship; so, for example, cf3ôs prototype is CFp. The constructor, 

CF, has two properties itself, named P1 and P2, which are not visible to CFp, cf1, cf2, cf3, cf4, or cf5. The 

property named CFP1 in CFp is shared by cf1, cf2, cf3, cf4, and cf5 (but not by CF), as are any properties 

found in CFpôs implicit prototype chain that are not named q1, q2, or CFP1. Notice that there is no 

implicit prototype link between CF and CFp. 

Unlike class-based object languages, properties can be added to objects dynamically by assigning values 

to them. That is, constructors are not required to name or assign values to all or any of the constructed 

objectôs properties. In the above diagram, one could add a new shared property for cf1, cf2, cf3, cf4, and 

cf5 by assigning a new value to the property in CFp. 

4.2.2 Voluntary Usage Language Subsets 

The ECMAScript Language recognizes the possibility that some users of the language may wish to 

restrict their usage of some features available in the language.  They might do so in the interests of 

security, to avoid what they consider to be error prone features, to get better error checking, or for other 

reasons of their choosing. In support of this possibility, ECMAScript defines the concept of usage 

 

 cf5 

 q1 

 q2  

 cf4 

 q1 

 q2  

 cf3 

 q1 

 q2  

 CFp 

 CFP1 

 CF 

 prototype  

 P1 

 P2 

 cf1 

 q1 

 q2  

 cf2 

 q1 

 q2  

implicit prototype link 

explicit prototype property 

Comment [pL1]: Rationale: 
Consider window.document. It is an object (typeof 

document should be óobjectô), but it not a constructor 
(does not support the [[Construct]] property. 

Comment [pL2]: From AWB: Need to make 
typography consistent. 

Deleted: Prototype property 

Deleted: constructor has an associated 

prototype, and every 

Deleted: that 

Deleted: to the prototype 

Deleted: associated with its constructor

Deleted: Cfp

Deleted: link



- 4 -  

27 October 2008 

subsets of the language. A usage subset is simply a specified subset of the ECMAScript language.  A 

usage subset may exclude specific syntactic and semantic features of the full ECMAScript language and 

may identify additional error conditions that could be reported by throwing error exceptions in situations 

that are not specified as errors by the full language. 

A usage subset is not intended as a means of enabling implementations of subsets of ECMAScript.  To 

conform to this specification, an ECMAScript implementation must implement the full language as 

defined by this specification. Instead, a usage subset is simply a way for a user of the language to state 

their intent to voluntarily restrict themselves so a well specified subset of the language. Implementations 

of ECMAScript may treat such statements of intent as a request from a user that they would like the 

implementation to help them ensure that they have actually adhered to the limitations of a subset. An 

implementation should honour such a request by reporting violations of a subsetôs syntactic and semantic 

restrictions and by detecting any additional error conditions and throwing the appropriate error 

exception. Because usage subsets are selected at the level of a syntactic program unit they may only 

impose restriction that would have local effect within such a syntactic program unit.  They may not 

restrict the ECMAScript semantics that must operate consistently across all program units. 

With one exception, an ECMAScript program that is voluntarily  limited to a usage subset  and which 

executes without error under the subsetôs restrictions will behave identically if executed without on any 

usage subset restrictions. The exception is any situation where the operation of such a program depends 

upon the actual occurrence and subsequent handling of additional error conditions that are part of the 

subset. 

ECMAScript defines a single usage subset, named strict which implementations must support to be 

in compliance with this specification. Other usage subsets may be defined by future versions of the 

ECMAScript language. 

4.3 Definitions 

The following are informal definitions of key terms associated with ECMAScript. 

4.3.1 Type 

A type is a set of data values. 

4.3.2 Primitive Value  

A primitive value is a member of one of the types Undefined, Null , Boolean, Number, Decimal or 

String . A primitive value is a datum that is represented directly at the lowest level of the language 

implementation. 

4.3.3 Object 

An object is a member of the type Object. It is a collection of properties. 

4.3.4 Constructor  

A constructor is a Function object that creates and initialises objects. The value of a constructorôs 

ñprototype ò property is a prototype object that is used to implement inheritance and shared 

properties. 

4.3.5 Prototype 

A prototype is an object used to implement structure, state, and behaviour inheritance in ECMAScript. 

When a constructor creates an object, that object implicitly references the constructorôs ñprototype ò 

property for the purpose of resolving property references. The constructorôs ñprototype ò property can 

be referenced by the program expression constructor .proto type , and properties added to an 

objectôs prototype are shared, through inheritance, by all objects sharing the prototype. 

4.3.6 Native Object 

A native object is any object supplied by an ECMAScript implementation independent of the host 

environment. Standard native objects are defined in this specification. Some native objects are built-in; 

others may be constructed during the course of execution of an ECMAScript program. 

4.3.7 Built -in Object 

A built-in object is any object supplied by an ECMAScript implementation, independent of the host 

environment, which is present at the start of the execution of an ECMAScript program. Standard built-in 

Deleted:  It is an unordered collection of properties 
each of which contains a primitive value, object, or 

function. A function stored in a property of an object is 
called a method.

Deleted: Each constructor has an associated

Deleted: associated prototype

Deleted: associated prototype



- 5 -  

27 October 2008 

objects are defined in this specification, and an ECMAScript implementation may specify and define 

others. Every built-in object is a native object. A built-in constructor is a built-in object that is also a 

constructor. 

4.3.8 Host Object 

A host object is any object supplied by the host environment to complete the execution environment of 

ECMAScript. Any object that is not native is a host object. 

4.3.9 Undefined Value 

The undefined value is a primitive value used when a variable has not been assigned a value. 

4.3.10 Undefined Type 

The type Undefined has exactly one value, called undefined. 

4.3.11 Null Value 

The null value is a primitive value that represents the null, empty, or non-existent reference. 

4.3.12 Null Type 

The type Null  has exactly one value, called null . 

4.3.13 Boolean Value 

A boolean value is a member of the type Boolean and is one of two unique values, true  and false. 

4.3.14 Boolean Type 

The type Boolean represents a logical entity and consists of exactly two unique values. One is called 

true  and the other is called false. 

4.3.15 Boolean Object 

A Boolean object is a member of the type Object and is an instance of the built-in Boolean object. That 

is, a Boolean object is created by using the Boolean constructor in a new expression, supplying a 

boolean as an argument. The resulting object has an implicit (unnamed) property that is the boolean. A 

Boolean object can be coerced to a boolean value. 

4.3.16 String Value 

A string value is a member of the type String  and is a finite ordered sequence of zero or more 16-bit 

unsigned integer values. 

NOTE 

Although each value usually represents a single 16-bit unit of UTF-16 text, the language does not place 

any restrictions or requirements on the values except that they be 16-bit unsigned integers. 

4.3.17 String Type 

The type String  is the set of all string values. 

4.3.18 String Object 

A String object is a member of the type Object and is an instance of the built-in String object. That is, a 

String object is created by using the String constructor in a new expression, supplying a string as an 

argument. The resulting object has an implicit (unnamed) property that is the string. A String object can 

be coerced to a string value by calling the String constructor as a function (15.5.1). 

4.3.19 Number Value 

A number value is a member of the type Number and is a direct representation of a number. 

4.3.20 Number Type 

The type Number is a set of values representing numbers. In ECMAScript, the set of values represents 

the double-precision 64-bit format IEEE 754 values including the special ñNot-a-Numberò (NaN) values, 

positive infinity, and negative infinity. 

4.3.21 Number Object 

A Number object is a member of the type Object and is an instance of the built-in Number object. That 

is, a Number object is created by using the Number constructor in a new expression, supplying a number 



- 6 -  

27 October 2008 

as an argument. The resulting object has an implicit (unnamed) property that is the number. A Number 

object can be coerced to a number value by calling the Number constructor as a function (15.7.1). 

4.3.22 Infinity  

The primitive value Infinity  represents the positive infinite number value. This value is a member of the 

Number type. 

4.3.23 NaN 

The primitive value NaN represents the set of IEEE Standard ñNot-a-Numberò values. This value is a 

member of the Number type. 

4.3.24 Function 

A function is a member of the type Object that may be invoked as a subroutine. In addition to its named 

properties, a function contains executable code and state that determine how it behaves when invoked. A 

functionôs code may or may not be written in ECMAScript. 

4.3.25 Property  

A property is an association between a name and a value. Depending upon the form of the property the 

value may be represented either directly as a data value (a primitive value, an object, or a function) or 

indirectly by a pair of accessor functions. 

4.3.26 Method 

A method is a function that is the value of a property. 

4.3.27 Attribute  

An attribute is an internal value that defines some characteristic of a property. 

4.3.28 Own Property 

An own property of an object is a property that is directly present on that object. 

4.3.29 Inherited Property  

An inherited property is a property of an object that is not one of its own properties but is a property 

(either own or inherited) of the objectôs prototype. 

4.3.30 Built -in Method 

A built-in method is any method supplied by an ECMAScript implementation, independent of the host 

environment. Standard built-in methods are defined in this specification, and an ECMAScript 

implementation may specify and define others. 

4.3.31 Decimal Value 

A decimal value is a member of the type Decimal and is a direct representation of a number. 

4.3.32 Decimal Type 

The type Decimal is a set of values representing numbers. In ECMAScript, the set of values represents 

the quad-precision 128-bit format IEEE 754-2008 values including the special ñNot-a-Numberò (NaN) 

values, positive infinities, and negative infinities. 

4.3.33 Decimal Object 

A Decimal object is a member of the type Object and is an instance of the built-in Number object. That 

is, a Decimal object is created by using the Decimal constructor in a new expression, supplying a 

number as an argument. The resulting object has an implicit (unnamed) property that is the number. A 

Decimal object can be coerced to a decimal value by calling the Decimal constructor as a function 

(15.7.1). 

 



- 7 -  

27 October 2008 

5 Notational Conventions 

5.1 Syntactic and Lexical Grammars 

This section describes the context-free grammars used in this specification to define the lexical and 

syntactic structure of an ECMAScript program. 

5.1.1 Context-Free Grammars 

A context-free grammar consists of a number of productions. Each production has an abstract symbol 

called a nonterminal as its left-hand side, and a sequence of zero or more nonterminal and terminal 

symbols as its right-hand side. For each grammar, the terminal symbols are drawn from a specified 

alphabet. 

Starting from a sentence consisting of a single distinguished nonterminal, called the goal symbol, a given 

context-free grammar specifies a language, namely, the (perhaps infinite) set of possible sequences of 

terminal symbols that can result from repeatedly replacing any nonterminal in the sequence with a right-

hand side of a production for which the nonterminal is the left-hand side. 

5.1.2 The Lexical and RegExp Grammars 

A lexical grammar for ECMAScript is given in clause 7. This grammar has as its terminal symbols the 

characters of the Unicode character set. It defines a set of productions, starting from the goal symbol 

InputElementDiv or InputElementRegExp, that describe how sequences of Unicode characters are 

translated into a sequence of input elements. 

Input elements other than white space and comments form the terminal symbols for the syntactic 

grammar for ECMAScript and are called ECMAScript tokens. These tokens are the reserved words, 

identifiers, literals, and punctuators of the ECMAScript language. Moreover, line terminators, although 

not considered to be tokens, also become part of the stream of input elements and guide the process of 

automatic semicolon insertion (7.9). Simple white space and single-line comments are discarded and do 

not appear in the stream of input elements for the syntactic grammar. A MultiLineComment (that is, a 

comment of the form ñ/* é*/ ò regardless of whether it spans more than one line) is likewise simply 

discarded if it contains no line terminator; but if a MultiLineComment contains one or more line 

terminators, then it is replaced by a single line terminator, which becomes part of the stream of input 

elements for the syntactic grammar. 

A RegExp grammar for ECMAScript is given in 15.10. This grammar also has as its terminal symbols 

the characters of the Unicode character set. It defines a set of productions, starting from the goal symbol 

Pattern, that describe how sequences of Unicode characters are translated into regular expression 

patterns. 

Productions of the lexical and RegExp grammars are distinguished by having two colons ñ:: ò as 

separating punctuation. The lexical and RegExp grammars share some productions. 

5.1.3 The Numeric String Grammar 

A second grammar is used for translating strings into numeric values. This grammar is similar to the part 

of the lexical grammar having to do with numeric literals and has as its terminal symbols the characters 

of the Unicode character set. This grammar appears in 9.3.1. 

Productions of the numeric string grammar are distinguished by having three colons ñ::: ò as 

punctuation. 

5.1.4 The Syntactic Grammar 

The syntactic grammar for ECMAScript is given in clauses 11, 12, 13 and 14. This grammar has 

ECMAScript tokens defined by the lexical grammar as its terminal symbols (5.1.2). It defines a set of 

productions, starting from the goal symbol Program, that describe how sequences of tokens can form 

syntactically correct ECMAScript programs. 

When a stream of Unicode characters is to be parsed as an ECMAScript program, it is first converted to a 

stream of input elements by repeated application of the lexical grammar; this stream of input elements is 

then parsed by a single application of the syntax grammar. The program is syntactically in error if the 

tokens in the stream of input elements cannot be parsed as a single instance of the goal nonterminal 

Program, with no tokens left over. 

Deleted: 7.8.5



- 8 -  

27 October 2008 

Productions of the syntactic grammar are distinguished by having just one colon ñ: ò as punctuation. 

The syntactic grammar as presented in sections 11, 12, 13 and 14 is actually not a complete account of 

which token sequences are accepted as correct ECMAScript programs. Certain additional token 

sequences are also accepted, namely, those that would be described by the grammar if only semicolons 

were added to the sequence in certain places (such as before line terminator characters). Furthermore, 

certain token sequences that are described by the grammar are not considered acceptable if a terminator 

character appears in certain ñawkwardò places. 

5.1.5 Grammar Notation  

Terminal symbols of the lexical and string grammars, and some of the terminal symbols of the syntactic 

grammar, are shown in fixed width  font, both in the productions of the grammars and throughout 

this specification whenever the text directly refers to such a terminal symbol. These are to appear in a 

program exactly as written. All nonterminal characters specified in this way are to be understood as the 

appropriate Unicode character from the ASCII range, as opposed to any similar-looking characters from 

other Unicode ranges. 

Nonterminal symbols are shown in italic type. The definition of a nonterminal is introduced by the name 

of the nonterminal being defined followed by one or more colons. (The number of colons indicates to 

which grammar the production belongs.) One or more alternative right-hand sides for the nonterminal 

then follow on succeeding lines. For example, the syntactic definition: 

WhileStatement : 

while  (  Expression )  Statement 

states that the nonterminal WhileStatement represents the token while , followed by a left parenthesis 

token, followed by an Expression, followed by a right parenthesis token, followed by a Statement. The 

occurrences of Expression and Statement are themselves nonterminals. As another example, the syntactic 

definition: 

ArgumentList : 

AssignmentExpression 

ArgumentList , AssignmentExpression 

states that an ArgumentList may represent either a single AssignmentExpression or an ArgumentList, 

followed by a comma, followed by an AssignmentExpression. This definition of ArgumentList is 

recursive, that is, it is defined in terms of itself. The result is that an ArgumentList may contain any 

positive number of arguments, separated by commas, where each argument expression is an 

AssignmentExpression. Such recursive definitions of nonterminals are common. 

The subscripted suffix ñoptò, which may appear after a terminal or nonterminal, indicates an optional 

symbol. The alternative containing the optional symbol actually specifies two right-hand sides, one that 

omits the optional element and one that includes it. This means that: 

VariableDeclaration : 

Identifier Initialiseropt 

is a convenient abbreviation for: 

VariableDeclaration : 

Identifier 

Identifier Initialiser 

and that: 

IterationStatement : 

for (  ExpressionNoInopt ;  Expressionopt ;  Expressionopt )  Statement 

is a convenient abbreviation for: 

IterationStatement : 

for ( ;  Expressionopt ;  Expressionopt ) Statement 

for (  ExpressionNoIn ;  Expressionopt ;  Expressionopt )  Statement 

which in turn is an abbreviation for: 

Deleted: 0, 0, 0 and 0

Deleted: WithStatement 

Deleted: with  

Deleted: WithStatement 

Deleted: with



- 9 -  

27 October 2008 

IterationStatement : 

for ( ; ;  Expressionopt )  Statement 

for ( ;  Expression ;  Expressionopt )  Statement 

for (  ExpressionNoIn ; ;  Expressionopt )  Statement 

for (  ExpressionNoIn ;  Expression ;  Expressionopt )  Statement 

which in turn is an abbreviation for: 

IterationStatement : 

for ( ; ; ) Statement 

for ( ; ; Expression ) Statement 

for ( ; Expression ; ) Statement 

for ( ; Expression ; Expression ) Statement 

for ( ExpressionNoIn ; ; ) Statement 

for ( ExpressionNoIn ; ; Expression ) Statement 

for ( ExpressionNoIn ; Expression ; ) Statement 

for ( ExpressionNoIn ; Expression ; Expression ) Statement 

so the nonterminal IterationStatement actually has eight alternative right-hand sides. 

If the phrase ñ[empty]ò appears as the right-hand side of a production, it indicates that the production's 

right-hand side contains no terminals or nonterminals. 

If the phrase ñ[lookahead  set]ò appears in the right-hand side of a production, it indicates that the 

production may not be used if the immediately following input terminal is a member of the given set. 

The set can be written as a list of terminals enclosed in curly braces. For convenience, the set can also be 

written as a nonterminal, in which case it represents the set of all terminals to which that nonterminal 

could expand. For example, given the definitions 

DecimalDigit ::  one of 

0  1  2  3  4  5  6  7  8  9 

DecimalDigits ::  

DecimalDigit 

DecimalDigits DecimalDigit 

the definition 

LookaheadExample ::  

n [lookahead  { 1, 3, 5, 7, 9}]  DecimalDigits 

DecimalDigit  [lookahead  DecimalDigit ] 

matches either the letter n followed by one or more decimal digits the first of which is even, or a decimal 

digit not followed by another decimal digit. 

If the phrase ñ[no LineTerminator here]ò appears in the right-hand side of a production of the syntactic 

grammar, it indicates that the production is a restricted production: it may not be used if a 

LineTerminator occurs in the input stream at the indicated position. For example, the production: 

ReturnStatement : 

return [no LineTerminator here] Expressionopt ;  

indicates that the production may not be used if a LineTerminator occurs in the program between the 

return  token and the Expression. 

Unless the presence of a LineTerminator is forbidden by a restricted production, any number of 

occurrences of LineTerminator may appear between any two consecutive tokens in the stream of input 

elements without affecting the syntactic acceptability of the program. 

When the words ñone ofò follow the colon(s) in a grammar definition, they signify that each of the 

terminal symbols on the following line or lines is an alternative definition. For example, the lexical 

grammar for ECMAScript contains the production: 



- 10 -  

27 October 2008 

NonZeroDigit :: one of 

1  2  3  4  5  6  7  8  9 

which is merely a convenient abbreviation for: 

NonZeroDigit ::  
1 

2 

3 

4 

5 

6 

7 

8 

9 

When an alternative in a production of the lexical grammar or the numeric string grammar appears to be 

a multi-character token, it represents the sequence of characters that would make up such a token. 

The right-hand side of a production may specify that certain expansions are not permitted by using the 

phrase ñbut notò and then indicating the expansions to be excluded. For example, the production: 

Identifier ::  

IdentifierName but not ReservedWord 

means that the nonterminal Identifier may be replaced by any sequence of characters that could replace 

IdentifierName provided that the same sequence of characters could not replace ReservedWord. 

Finally, a few nonterminal symbols are described by a descriptive phrase in roman type in cases where it 

would be impractical to list all the alternatives: 

SourceCharacter ::  

any Unicode character 

5.2 Algorithm Conventions 

The specification often uses a numbered list to specify steps in an algorithm. These algorithms are used to 

clarify semantics. In practice, there may be more efficient algorithms available to implement a given 

feature. 

When an algorithm is to produce a value as a result, the directive ñreturn xò is used to indicate that the 

result of the algorithm is the value of x and that the algorithm should terminate. The notation Result(n) is 

used as shorthand for ñthe result of step nò. Type(x) is used as shorthand for ñthe type of xò. 

For clarity of expression, algorithm steps may be subdivided into sequential substeps. Substeps are indented 

and may themselves be further  divided into indented substeps.  Outline numbering conventions are used to 

identify substeps with the first level of substeps labeled with lower case alphabetic characters and the 

second level of substeps labelled with lower case roman numerals.  If more than three levels are required 

these rules repeat with the fourth level using numeric labels. For example: 

1. Top-level step 

a. Substep. 

b. Substep  

i. Subsubstep. 

ii.  Subsubstep. 

1. Subsubsubstep 

a. Subsubsubsubstep 

A step or substep may be written as a predicate that conditions its substeps.  In this case, the substeps are 

only applied if the predicate is true. If a step or substep begins with the word ñelseò it is a predicate that is 

the negation of the preceding predicate step at the same level. If ñelseò is immediately followed by a 

parenthesized  step or substep label then it is a predicate that is the negation of that labelled predicate. 

Deleted:  one of



- 11 -  

27 October 2008 

A step my specify the iterative application of its substeps. 

Mathematical operations such as addition, subtraction, negation, multiplication, division, and the 

mathematical functions defined later in this section should always be understood as computing exact 

mathematical results on mathematical real numbers, which do not include infinities and do not include a 

negative zero that is distinguished from positive zero. Algorithms in this standard that model floating-point 

arithmetic include explicit steps, where necessary, to handle infinities and signed zero and to perform 

rounding. If a mathematical operation or function is applied to a floating-point number, it should be 

understood as being applied to the exact mathematical value represented by that floating-point number; 

such a floating-point number must be finite, and if it is +0 or 0 then the corresponding mathematical value 

is simply 0. 

The mathematical function abs(x) yields the absolute value of x, which is x if x is negative (less than zero) 

and otherwise is x itself. 

The mathematical function sign(x) yields 1 if x is positive and 1 if x is negative. The sign function is not 

used in this standard for cases when x is zero. 

The notation ñx modulo yò (y must be finite and nonzero) computes a value k of the same sign as y (or zero) 

such that abs(k) < abs(y) and x k = q  y for some integer q. 

The mathematical function floor(x) yields the largest integer (closest to positive infinity) that is not larger 

than x. 

NOTE 

floor(x) = x (x modulo 1). 

If an algorithm is defined to ñthrow an exceptionò, execution of the algorithm is terminated and no result is 

returned. The calling algorithms are also terminated, until an algorithm step is reached that explicitly deals 

with the exception, using terminology such as ñIf an exception was thrownéò. Once such an algorithm step 

has been encountered the exception is no longer considered to have occurred. 

6. Source Text 

ECMAScript source text is represented as a sequence of characters in the Unicode character encoding, version 

3.0 or later, using the UTF-16 transformation format. The text is expected to have been normalised to Unicode 

Normalised Form C (canonical composition), as described in Unicode Technical Report #15. Conforming 

ECMAScript implementations are not required to perform any normalisation of text, or behave as though they 

were performing normalisation of text, themselves. 

SourceCharacter ::  

any Unicode character 

ECMAScript source text can contain any of the Unicode characters. All Unicode white space characters are 

treated as white space. Only the carriage return and line feed characters are treated as line separators. Non-

Latin Unicode characters are allowed in identifiers, string literals, regular expression literals and comments. 

Throughout the rest of this document, the phrase ñcode pointò and the word ñcharacterò will be used to refer 

to a 16-bit unsigned value used to represent a single 16-bit unit of UTF-16 text. The phrase ñUnicode 

characterò will be used to refer to the abstract linguistic or typographical unit represented by a single Unicode 

scalar value (which may be longer than 16 bits and thus may be represented by more than one code point). 

This only refers to entities represented by single Unicode scalar values: the components of a combining 

character sequence are still individual ñUnicode characters,ò even though a user might think of the whole 

sequence as a single character. 

In string literals, regular expression literals and identifiers, any character (code point) may also be expressed 

as a Unicode escape sequence consisting of six characters, namely \ u plus four hexadecimal digits. Within a 

comment, such an escape sequence is effectively ignored as part of the comment. Within a string literal or 

regular expression literal, the Unicode escape sequence contributes one character to the value of the literal. 

Within an identifier, the escape sequence contributes one character to the identifier. 

NOTE 1 

Deleted: 2.1

Deleted: , and all Unicode line/paragraph 
separators



- 12 -  

27 October 2008 

Although this document sometimes refers to a ñtransformationò between a ñcharacterò within a ñstringò and 

the 16-bit unsigned integer that is the UTF-16 encoding of that character, there is actually no transformation 

because a ñcharacterò within a ñstringò is actually represented using that 16-bit unsigned value. 

NOTE 2 

ECMAScript differs from the Java programming language in the behaviour of Unicode escape sequences. In a 

Java program, if the Unicode escape sequence \ u000A , for example, occurs within a single-line comment, it 

is interpreted as a line terminator (Unicode character 000A  is line feed) and therefore the next character is 

not part of the comment. Similarly, if the Unicode escape sequence \ u000A  occurs within a string literal in a 

Java program, it is likewise interpreted as a line terminator, which is not allowed within a string literalðone 

must write \ n instead of \ u000A  to cause a line feed to be part of the string value of a string literal. In an 

ECMAScript program, a Unicode escape sequence occurring within a comment is never interpreted and 

therefore cannot contribute to termination of the comment. Similarly, a Unicode escape sequence occurring 

within a string literal in an ECMAScript program always contributes a character to the string value of the 

literal and is never interpreted as a line terminator or as a quote mark that might terminate the string literal. 

7 Lexical Conventions 

The source text of an ECMAScript program is first converted into a sequence of input elements, which are 

either tokens, line terminators, comments, or white space. The source text is scanned from left to right, 

repeatedly taking the longest possible sequence of characters as the next input element. 

There are two goal symbols for the lexical grammar. The InputElementDiv symbol is used in those syntactic 

grammar contexts where a division (/ ) or division-assignment (/= ) operator is permitted. The 

InputElementRegExp symbol is used in other syntactic grammar contexts. 

Note that contexts exist in the syntactic grammar where both a division and a RegularExpressionLiteral are 

permitted by the syntactic grammar; however, since the lexical grammar uses the InputElementDiv goal 

symbol in such cases, the opening slash is not recognised as starting a regular expression literal in such a 

context. As a workaround, one may enclose the regular expression literal in parentheses. 

Syntax  

InputElementDiv ::  

WhiteSpace 

LineTerminator 

Comment 

Token 

DivPunctuator 

InputElementRegExp ::  

WhiteSpace 

LineTerminator 

Comment 

Token 

RegularExpressionLiteral 

7.1 Unicode Format-Control Characters 

The Unicode format-control characters (i.e., the characters in category ñCfò in the Unicode Character 

Database such as LEFT-TO-RIGHT MARK or RIGHT-TO-LEFT MARK) are control codes used to control the 

formatting of a range of text in the absence of higher-level protocols for this (such as mark-up languages). 

It is useful to allow these in source text to facilitate editing and display. 

The format control characters may be used in identifiers, within comments, and within string literals and 

regular expression literals. 

7.2 White Space 

White space characters are used to improve source text readability and to separate tokens (indivisible 

lexical units) from each other, but are otherwise insignificant. White space may occur between any two 

tokens, and may occur within strings (where they are considered significant characters forming part of the 

literal string value), but cannot appear within any other kind of token. 

Deleted: can occur

Deleted: anywhere in the source text of an 

ECMAScript program. These characters are removed 
from the source text before applying the lexical 

grammar. Since these characters are removed before 

processing string and regular expression literals, one 
must use a. Unicode escape sequence (see 7.6) to 

include a Unicode format-control character inside a 

string or regular expression literal



- 13 -  

27 October 2008 

The following characters are considered to be white space: 

 

Code Point Value Name Formal Name 

\ u0009  Tab <TAB> 

\ u000B Vertical Tab <VT> 

\ u000C Form Feed <FF> 

\ u0020  

\ u0085  

Space 

Next Line 

<SP> 

<NEL> 

\ u00A0 No-break space <NBSP> 

\ u200B Zero width space <ZWSP> 

\ uFEFF 

Other category ñZsò 

Byte Order Mark 

Any other Unicode 

ñspace separatorò 

<BOM> 

<USP> 

 

 

ECMAScript implementations must recognize all of the white space characters defined in Unicode 3.0. 

Later editions of the Unicode Standard may define other white space characters. ECMAScript 

implementations may recognize white space characters from later editions of the Unicode Standard. 

Syntax 

WhiteSpace ::  

<TAB> 

<VT> 

<FF>  

<SP> 

<NEL> 

<NBSP> 

<ZWSP> 

<BOM> 

<USP> 

7.3 Line Terminators  

Like white space characters, line terminator characters are used to improve source text readability and to 

separate tokens (indivisible lexical units) from each other. However, unlike white space characters, line 

terminators have some influence over the behaviour of the syntactic grammar. In general, line terminators 

may occur between any two tokens, but there are a few places where they are forbidden by the syntactic 

grammar. A line terminator cannot occur within any token, except that line terminators that are preceded by 

an escape sequence may occur within a string literal token. Line terminators also affect the process of 

automatic semicolon insertion (7.9). 

Line terminators are included in the set of white space characters that are matched by the \s class in regular 

expressions. 

The following characters are considered to be line terminators: 

 

Code Point Value Name Formal Name 

\ u000A Line Feed <LF> 

\ u000D Carriage Return  <CR> 

\ u2028  Line separator <LS> 

\ u2029  Paragraph separator <PS> 

 

Deleted: not even a string

Deleted: 7.8.5



- 14 -  

27 October 2008 

Only the characters in the above table are treated as line terminators. Other new line or line breaking 

characters are treated as white space but not as line terminators. The character sequence <CR><LF> 

is treated as a single line terminator. 

Syntax 

LineTerminator ::  

<LF>  

<CR> 

<LS> 

<PS> 

<CR><LF>  

7.4 Comments 

Description 

Comments can be either single or multi-line. Multi-line comments cannot nest. 

Because a single-line comment can contain any character except a LineTerminator character, and because 

of the general rule that a token is always as long as possible, a single-line comment always consists of all 

characters from the //  marker to the end of the line. However, the LineTerminator at the end of the line is 

not considered to be part of the single-line comment; it is recognised separately by the lexical grammar and 

becomes part of the stream of input elements for the syntactic grammar. This point is very important, 

because it implies that the presence or absence of single-li ne comments does not affect the process of 

automatic semicolon insertion (7.9). 

Comments behave like white space and are discarded except that, if a MultiLineComment contains a line 

terminator character, then the entire comment is considered to be a LineTerminator for purposes of parsing 

by the syntactic grammar. 

Syntax  

Comment ::  

MultiLineComment 

SingleLineComment 

MultiLineComment ::  

/*  MultiLineCommentCharsopt */  

MultiLineCommentChars ::  

MultiLineNotAsteriskChar MultiLineCommentCharsopt 

*  PostAsteriskCommentCharsopt 

PostAsteriskCommentChars ::  

MultiLineNotForwardSlashOrAsteriskChar MultiLineCommentCharsopt 

*  PostAsteriskCommentCharsopt 

MultiLineNotAsteriskChar ::  

SourceCharacter but not asterisk *  

MultiLineNotForwardSlashOrAsteriskChar ::  

SourceCharacter but not forward-slash /  or asterisk *  

SingleLineComment ::  

//  SingleLineCommentCharsopt 

SingleLineCommentChars ::  

SingleLineCommentChar SingleLineCommentCharsopt 

SingleLineCommentChar ::  

SourceCharacter but not LineTerminator 



- 15 -  

27 October 2008 

7.5 Tokens 

Syntax  
Token ::  

ReservedWord 

Identifier 

IdentifierName 

Punctuator 

NumericLiteral 

StringLiteral 

7.5.1 Reserved Words 

Description 

Reserved words cannot be used as identifiers. 

Syntax  
ReservedWord ::  

Keyword 

FutureReservedWord 

NullLiteral 

BooleanLiteral 

7.5.2 Keywords 

The following tokens are ECMAScript keywords and may not be used as identifiers in ECMAScript 

programs. 

Syntax  
Keyword ::  one of 

break  else  new var  

case  finally  return  void  

catch  for  switch  while  

continue  function  this  with  

default  if  throw  debugger  

delete  in  try  const  

do instanceof  typeof   

 

7.5.3 Future Reserved Words 

The following words are used as keywords in proposed extensions and are therefore reserved to allow for 

the possibility of future adoption of those extensions. 

Syntax  
FutureReservedWord :: one of 

abstract  enum int  short  

boolean  export  interface  static  

byte  extends  long  super  

char  final  native  synchronized  

class  float  package  throws  

 goto  private  transient  

 implements  protected  volatile  

double  import  public   

 

7.6 Identifiers  

Description 

Identifiers are interpreted according to the grammar given in Section 5.16 of the Unicode standard, with 

some small modifications. This grammar is based on both normative and informative character categories 

specified by the Unicode Standard. The characters in the specified categories in version 3.0 of the Unicode 

standard must be treated as in those categories by all conforming ECMAScript implementations. 

Comment [pL3]: From AWB: 
ReservedWord and Identifier can be deleted as they 
are IdentifierNames. 

Deleted: Break

Comment [pL4]: Specify that its normative 
semantics is simply a noop, but advise in an annex 

that it causes a breakpoint when run under a 
debugger. 

Comment [pL5]: From AWB: 
Does it get defined as a statement or as something 

that can occur in an expression.  Wouldnôt defining it 
as a ñgetteròproperty of the global object accomplish 

the same thing without reserving it. 

Deleted: const

Deleted: debugger

Comment [pL6]: This table needs to be repacked 
to get rid of the holes. 

Deleted: upcoming version 3.0 of the 

Deleted: standard

Deleted: 2.1

Deleted: ; however, conforming ECMAScript 
implementations may allow additional legal 

identifier characters based on the category 

assignment from later versions of Unicode



- 16 -  

27 October 2008 

This standard specifies specific character additions: The dollar sign ($) and the underscore (_) are permitted 

anywhere in an identifier. 

Unicode escape sequences are also permitted in identifiers, where they contribute a single character to the 

identifier, as computed by the CV of the UnicodeEscapeSequence (see 7.8.4). The \  preceding the 

UnicodeEscapeSequence does not contribute a character to the identifier. A UnicodeEscapeSequence 

cannot be used to put a character into an identifier that would otherwise be illegal. In other words, if a \  

UnicodeEscapeSequence sequence were replaced by its UnicodeEscapeSequence's CV, the result must still 

be a valid Identifier that has the exact same sequence of characters as the original Identifier. 

Two identifiers that are canonically equivalent according to the Unicode standard are not equal unless they 

are represented by the exact same sequence of code points (in other words, conforming ECMAScript 

implementations are only required to do bitwise comparison on identifiers). The intent is that the incoming 

source text has been converted to normalised form C before it reaches the compiler. 

ECMAScript implementations may recognize identifier characters defined in later editions of the Unicode 

Standard. If portability is a concern, programmers should only employ identifier characters defined in 

Unicode 3.0. 

Syntax  
Identifier :: 

IdentifierName but not ReservedWord 

IdentifierName :: 

IdentifierStart 

IdentifierName IdentifierPart 

IdentifierStart :: 

UnicodeLetter 
$ 

_ 

\  UnicodeEscapeSequence 

IdentifierPart :: 

IdentifierStart 

UnicodeCombiningMark 

UnicodeDigit 

UnicodeConnectorPunctuation 

\  UnicodeEscapeSequence 

UnicodeLetter 

any character in the Unicode categories ñUppercase letter (Lu)ò, ñLowercase letter (Ll)ò, ñTitlecase letter (Lt)ò, 

ñModifier letter (Lm)ò, ñOther letter (Lo)ò, or ñLetter number (Nl)ò. 

UnicodeCombiningMark 

any character in the Unicode categories ñNon-spacing mark (Mn)ò or ñCombining spacing mark (Mc)ò 

UnicodeDigit 

any character in the Unicode category ñDecimal number (Nd)ò 

UnicodeConnectorPunctuation 

any character in the Unicode category ñConnector punctuation (Pc)ò 

UnicodeEscapeSequence 

see 7.8.4. 

HexDigit :: one of 
0  1  2  3  4  5  6  7  8  9  a  b  c  d  e  f  A  B  C  D  E  F  

Deleted: one departure from the grammar given in the 
Unicode standard

Deleted:  The dollar sign is intended for use only in 
mechanically generated code.



- 17 -  

27 October 2008 

7.7 Punctuators 

Syntax  
Punctuator ::  one of 

{  }  (  )  [  ]  

.  ;  ,  < > <= 

>= == !=  === !==   

+ -  *  % ++ --  

<< >> >>> & |  ^  

!  ~ && ||  ? :  

= += - = *=  %= <<= 

>>= >>>= &= |=  ^=   

DivPunctuator ::  one of 
/  /=      

7.8 Literals  

Syntax  
Literal ::  

NullLiteral 

BooleanLiteral 

NumericLiteral 

StringLiteral 

7.8.1 Null Literals  

Syntax  
NullLiteral ::  

null  

Semantics 

The value of the null literal null  is the sole value of the Null type, namely null . 

7.8.2 Boolean Literals 

Syntax  
BooleanLiteral ::  

true  

false  

Semantics 

The value of the Boolean literal true  is a value of the Boolean type, namely true . 

The value of the Boolean literal false  is a value of the Boolean type, namely false. 

7.8.3 Numeric Literals  

Syntax  

NumericLiteral ::  

DecimalLiteral 

HexIntegerLiteral 

DecimalLiteral ::  

DecimalIntegerLiteral .  DecimalDigitsopt   ExponentPartopt 

.  DecimalDigits ExponentPartopt 

DecimalIntegerLiteral ExponentPartopt 



- 18 -  

27 October 2008 

DecimalIntegerLiteral ::  
0 

NonZeroDigit DecimalDigitsopt 

DecimalDigits ::  

DecimalDigit 

DecimalDigits DecimalDigit 

DecimalDigit :: one of 
0  1  2  3  4  5  6  7  8  9  

NonZeroDigit :: one of 
1  2  3  4  5  6  7  8  9  

ExponentPart ::  

ExponentIndicator SignedInteger 

ExponentIndicator :: one of 
e  E  

SignedInteger ::  

DecimalDigits 

+ DecimalDigits 

-  DecimalDigits 

HexIntegerLiteral ::  

0x  HexDigit 

0X HexDigit 

HexIntegerLiteral HexDigit 

The source character immediately following a NumericLiteral must not be an IdentifierStart or 

DecimalDigit. 

NOTE 

For example: 

3in  

is an error and not the two input elements 3 and in . 

Semantics 

A numeric literal stands for a value of the Number type. This value is determined in two steps: first, a 

mathematical value (MV) is derived from the literal; second, this mathematical value is rounded as 

described below. 

The MV of NumericLiteral ::  DecimalLiteral is the MV of DecimalLiteral. 

The MV of NumericLiteral ::  HexIntegerLiteral is the MV of HexIntegerLiteral. 

The MV of DecimalLiteral :: DecimalIntegerLiteral .  is the MV of DecimalIntegerLiteral. 

The MV of DecimalLiteral :: DecimalIntegerLiteral .  DecimalDigits is the MV of DecimalIntegerLiteral plus 

(the MV of DecimalDigits times 10
ïn

), where n is the number of characters in DecimalDigits. 

The MV of DecimalLiteral :: DecimalIntegerLiteral .  ExponentPart is the MV of DecimalIntegerLiteral times 

10
e
, where e is the MV of ExponentPart. 

The MV of DecimalLiteral :: DecimalIntegerLiteral .  DecimalDigits ExponentPart is (the MV of 

DecimalIntegerLiteral plus (the MV of DecimalDigits times 10
ïn

)) times 10
e
, where n is the number of 

characters in DecimalDigits and e is the MV of ExponentPart. 

The MV of DecimalLiteral :: .  DecimalDigits is the MV of DecimalDigits times 10
ïn

, where n is the number of 

characters in DecimalDigits. 

The MV of DecimalLiteral :: .  DecimalDigits ExponentPart is the MV of DecimalDigits times 10
eïn

, where n is 

the number of characters in DecimalDigits and e is the MV of ExponentPart. 



- 19 -  

27 October 2008 

The MV of DecimalLiteral :: DecimalIntegerLiteral is the MV of DecimalIntegerLiteral. 

The MV of DecimalLiteral :: DecimalIntegerLiteral ExponentPart is the MV of DecimalIntegerLiteral times 

10
e
, where e is the MV of ExponentPart. 

The MV of DecimalIntegerLiteral ::  0 is 0. 

The MV of DecimalIntegerLiteral ::  NonZeroDigit DecimalDigits is (the MV of NonZeroDigit times 10
n
) plus 

the MV of DecimalDigits, where n is the number of characters in DecimalDigits. 

The MV of DecimalDigits ::  DecimalDigit is the MV of DecimalDigit. 

The MV of DecimalDigits ::  DecimalDigits DecimalDigit is (the MV of DecimalDigits times 10) plus the MV of 

DecimalDigit. 

The MV of ExponentPart :: ExponentIndicator SignedInteger is the MV of SignedInteger. 

The MV of SignedInteger :: DecimalDigits is the MV of DecimalDigits. 

The MV of SignedInteger :: + DecimalDigits is the MV of DecimalDigits. 

The MV of SignedInteger :: -  DecimalDigits is the negative of the MV of DecimalDigits. 

The MV of DecimalDigit ::  0 or of HexDigit ::  0 is 0. 

The MV of DecimalDigit ::  1 or of NonZeroDigit ::  1 or of HexDigit ::  1 is 1. 

The MV of DecimalDigit ::  2 or of NonZeroDigit ::  2 or of HexDigit ::  2 is 2. 

The MV of DecimalDigit ::  3 or of NonZeroDigit ::  3 or of HexDigit ::  3 is 3. 

The MV of DecimalDigit ::  4 or of NonZeroDigit ::  4 or of HexDigit ::  4 is 4. 

The MV of DecimalDigit ::  5 or of NonZeroDigit ::  5 or of HexDigit ::  5 is 5. 

The MV of DecimalDigit ::  6 or of NonZeroDigit ::  6 or of HexDigit ::  6 is 6. 

The MV of DecimalDigit ::  7 or of NonZeroDigit ::  7 or of HexDigit ::  7 is 7. 

The MV of DecimalDigit ::  8 or of NonZeroDigit ::  8 or of HexDigit ::  8 is 8. 

The MV of DecimalDigit ::  9 or of NonZeroDigit ::  9 or of HexDigit ::  9 is 9. 

The MV of HexDigit ::  a or of HexDigit ::  A is 10. 

The MV of HexDigit ::  b or of HexDigit ::  B is 11. 

The MV of HexDigit ::  c  or of HexDigit ::  C is 12. 

The MV of HexDigit ::  d or of HexDigit ::  D is 13. 

The MV of HexDigit ::  e or of HexDigit ::  E is 14. 

The MV of HexDigit ::  f  or of HexDigit ::  F is 15. 

The MV of HexIntegerLiteral ::  0x  HexDigit is the MV of HexDigit. 

The MV of HexIntegerLiteral ::  0X HexDigit is the MV of HexDigit. 

The MV of HexIntegerLiteral ::  HexIntegerLiteral HexDigit is (the MV of HexIntegerLiteral times 16) plus the 

MV of HexDigit. 

Once the exact MV for a numeric literal has been determined, it is then rounded to a value of the Number 

type. If the MV is 0, then the rounded value is +0; otherwise, the rounded value must be the number 

value for the MV (in the sense defined in 8.5), unless the literal is a DecimalLiteral and the literal has 

more than 20 significant digits, in which case the number value may be either the number value for the 

MV of a literal produced by replacing each significant digit after the 20th with a 0 digit or the number 

value for the MV of a literal produced by replacing each significant digit after the 20th with a 0 digit and 

then incrementing the literal at the 20th significant digit position. A digit is significant if it is not part of 

an ExponentPart and 

it is not 0; or 

there is a nonzero digit to its left and there is a nonzero digit, not in the ExponentPart, to its right. 

7.8.4 String Literals  

A string literal is zero or more characters enclosed in single or double quotes. Each character may be 

represented by an escape sequence. All Unicode characters may appear literally in a string literal except 

for the closing quote character, backslash, carriage return, and line feed. Any character may appear in the 

form of an escape sequence. 

Syntax  



- 20 -  

27 October 2008 

StringLiteral ::  

"  DoubleStringCharactersopt "  

'  SingleStringCharactersopt  '  

DoubleStringCharacters ::  

DoubleStringCharacter DoubleStringCharactersopt 

SingleStringCharacters ::  

SingleStringCharacter SingleStringCharactersopt 

DoubleStringCharacter ::  

SourceCharacter but not double-quote "  or backslash \  or LineTerminator 

\  EscapeSequence 

LineContinuation 

SingleStringCharacter ::  

SourceCharacter but not single-quote '  or backslash \  or LineTerminator 

\  EscapeSequence 

LineContinuation 

LineContinuation ::  

\  LineTerminator 

EscapeSequence ::  

CharacterEscapeSequence 
0  [lookahead  DecimalDigit] 

HexEscapeSequence 

UnicodeEscapeSequence 

CharacterEscapeSequence ::  

SingleEscapeCharacter 

NonEscapeCharacter 

SingleEscapeCharacter ::  one of 
'  "  \   b  f  n  r  t  v  

NonEscapeCharacter ::  

SourceCharacter but not EscapeCharacter or LineTerminator 

EscapeCharacter ::  

SingleEscapeCharacter 

DecimalDigit 
x  

u 

HexEscapeSequence ::  

x HexDigit HexDigit 

UnicodeEscapeSequence ::  

u HexDigit HexDigit HexDigit HexDigit 

The definitions of the nonterminal HexDigit is given in section 7.8.3. SourceCharacter is described in 

sections 2 and 6. 

A string literal stands for a value of the String type. The string value (SV) of the literal is described in 

terms of character values (CV) contributed by the various parts of the string literal. As part of this 

process, some characters within the string literal are interpreted as having a mathematical value (MV), as 

described below or in section 7.8.3. 

The SV of StringLiteral ::  ""  is the empty character sequence. 

Comment [pL7]: From DEC: 

Do we really want to do this? 

Comment [pL8]: 4/4 browsers support this. 



- 21 -  

27 October 2008 

The SV of StringLiteral ::  ''  is the empty character sequence. 

The SV of StringLiteral ::  "  DoubleStringCharacters "  is the SV of DoubleStringCharacters. 

The SV of StringLiteral ::  '  SingleStringCharacters '  is the SV of SingleStringCharacters. 

The SV of DoubleStringCharacters ::  DoubleStringCharacter is a sequence of one character, the CV of 

DoubleStringCharacter. 

The SV of DoubleStringCharacters ::  DoubleStringCharacter DoubleStringCharacters is a sequence of the CV 

of DoubleStringCharacter followed by all the characters in the SV of DoubleStringCharacters in order. 

The SV of SingleStringCharacters ::  SingleStringCharacter is a sequence of one character, the CV of 

SingleStringCharacter. 

The SV of SingleStringCharacters ::  SingleStringCharacter SingleStringCharacters is a sequence of the CV of 

SingleStringCharacter followed by all the characters in the SV of SingleStringCharacters in order. 

The SV of LineContinuation ::  \  LineTerminator is the empty character sequence. 

The CV of DoubleStringCharacter ::  SourceCharacter but not double-quote "  or backslash \  or 

LineTerminator is the SourceCharacter character itself. 

The CV of DoubleStringCharacter ::  \  EscapeSequence is the CV of the EscapeSequence. 

The CV of SingleStringCharacter ::  SourceCharacter but not single-quote '  or backslash \  or LineTerminator 

is the SourceCharacter character itself. 

The CV of SingleStringCharacter :: \  EscapeSequence is the CV of the EscapeSequence. 

The CV of EscapeSequence ::  CharacterEscapeSequence is the CV of the CharacterEscapeSequence. 

The CV of EscapeSequence ::  0  [lookahead  DecimalDigit]is a <NUL> character (Unicode value 0000). 

The CV of EscapeSequence ::  HexEscapeSequence is the CV of the HexEscapeSequence. 

The CV of EscapeSequence ::  UnicodeEscapeSequence is the CV of the UnicodeEscapeSequence. 

The CV of CharacterEscapeSequence ::  SingleEscapeCharacter is the character whose code point value is 

determined by  the SingleEscapeCharacter according to the following table: 

 

Escape Sequence Code Point Value Name Symbol 

\ b \ u0008  backspace <BS> 

\ t  \ u0009  horizontal tab <HT> 

\ n \ u000A  line feed (new line) <LF> 

\ v  \ u000B vertical tab <VT> 

\ f  \ u000C form feed <FF> 

\ r  \ u000D carriage return <CR> 

\ "  \ u0022  double quote "  

\ '  \ u0027  single quote '  

\ \  \ u005C backslash \  

 

The CV of CharacterEscapeSequence ::  NonEscapeCharacter is the CV of the NonEscapeCharacter. 

The CV of NonEscapeCharacter ::  SourceCharacter but not EscapeCharacter or LineTerminator is the 

SourceCharacter character itself. 

The CV of HexEscapeSequence ::  x  HexDigit HexDigit is the character whose code point value is (16 times the 

MV of the first HexDigit) plus the MV of the second HexDigit. 

The CV of UnicodeEscapeSequence ::  u HexDigit HexDigit HexDigit HexDigit is the character whose code 

point value is (4096 (that is, 16
3
) times the MV of the first HexDigit) plus (256 (that is, 16

2
) times the MV of 

the second HexDigit) plus (16 times the MV of the third HexDigit) plus the MV of the fourth HexDigit. 

NOTE 

A 'LineTerminator' character cannot appear in a string literal, except when preceded by a backslash \  

as a óLineContinuationô to produce the empty character sequence. The correct way to cause a line 

terminator character to be part of the string value of a string literal is to use an escape sequence such as 

\ n or \ u000A . 

Deleted: even if 



- 22 -  

27 October 2008 

7.8.5 Regular Expression Literals 

A regular expression literal is an input element that is converted to a RegExp object (section 15.10) each 

time the literal is evaluated. Two regular expression literals in a program evaluate to regular expression 

objects that never compare as === to each other even if the two literals' contents are identical. A RegExp 

object may also be created at runtime by new RegExp  (section 15.10.4) or calling the RegExp 

constructor as a function (section 15.10.3). 

The productions below describe the syntax for a regular expression literal and are used by the input 

element scanner to find the end of the regular expression literal. The strings of characters comprising the 

RegularExpressionBody and the RegularExpressionFlags are passed uninterpreted to the regular 

expression constructor, which interprets them according to its own, more stringent grammar. An 

implementation may extend the regular expression constructor's grammar, but it should not extend the 

RegularExpressionBody and RegularExpressionFlags productions or the productions used by these 

productions. 

Syntax  

RegularExpressionLiteral ::  

/  RegularExpressionBody /  RegularExpressionFlags 

RegularExpressionBody ::  

RegularExpressionFirstChar RegularExpressionChars 

RegularExpressionChars ::  
[empty] 
RegularExpressionChars RegularExpressionChar 

RegularExpressionFirstChar ::  

NonTerminator but not *  or \  or /  

BackslashSequence 

RegularExpressionChar ::  

NonTerminator but not \  or /  

BackslashSequence 

BackslashSequence ::  

\  NonTerminator 

NonTerminator ::  

SourceCharacter but not LineTerminator 

RegularExpressionFlags ::  
[empty] 
RegularExpressionFlags IdentifierPart 

NOTE 

Regular expression literals may not be empty; instead of representing an empty regular expression 

literal, the characters //  start a single-line comment. To specify an empty regular expression, use 

/(?:)/ . 

Semantics 

A regular expression literal evaluates to a value of the RegExp type. This value is determined in two 

steps: first, the characters comprising the regular expression's RegularExpressionBody and 

RegularExpressionFlags production expansions are collected uninterpreted into two strings Pattern and 

Flags, respectively. Then each time the literal is evaluated, a new object is created as if by the expression 

new RegExp ( Pattern, Flags )  where RegExp is the standard built-in constructor with that name. 

The newly constructed object becomes the value of the RegularExpressionLiteral. If the call to new 

RegExp would generate an error, the error must be reported while scanning the program. 

Deleted: when it is scanned

Comment [pL9]: From AWB: 
Because of this change RegularExpressionLiteral arguably 
should be moved to section 11.1. However, I am not 

actually  proposing we do so. 

Deleted: The object is created before evaluation of 
the containing program or function begins. Evaluation 
of the literal produces a reference to that object; it does 

not create a new object. 

Comment [pL10]: All browser currently support 

/[/]/ and /(.(/ as regexp literals so need to fix grammar. 

Deleted: stands for 

Deleted: Object 

Deleted: constructor is called with two arguments 
Pattern and Flags and t

Deleted: result

Deleted: becomes the value of the 
RegularExpressionLiteral

Deleted: If 

Deleted: s

Deleted: an implementation may, at its discretion, 

either report the error immediately while scanning the 
program, or it may defer the error until the regular 

expression literal is evaluated in the course of program 

execution

Comment [pL11]: Note that both IE and FF detect early 
(testcase below). 

 
<script>  
     var falsy = function(){return 0}();  
     re = /[/]/;  
     alert(re);  
     if (falsy) {  
         re2 = /(/;  
         alert(re2);  
     }  
</script>  



- 23 -  

27 October 2008 

7.9 Automatic Semicolon Insertion 

Certain ECMAScript statements (empty statement, variable statement, expression statement, do -while  

statement, continue  statement, break  statement, return  statement, and throw  statement) must be 

terminated with semicolons. Such semicolons may always appear explicitly in the source text. For 

convenience, however, such semicolons may be omitted from the source text in certain situations. These 

situations are described by saying that semicolons are automatically inserted into the source code token 

stream in those situations. 

7.9.1 Rules of Automatic Semicolon Insertion 

 When, as the program is parsed from left to right, a token (called the offending token) is encountered 

that is not allowed by any production of the grammar, then a semicolon is automatically inserted 

before the offending token if one or more of the following conditions is true: 

1. The offending token is separated from the previous token by at least one LineTerminator. 

2. The offending token is } . 

 When, as the program is parsed from left to right, the end of the input stream of tokens is 

encountered and the parser is unable to parse the input token stream as a single complete 

ECMAScript Program, then a semicolon is automatically inserted at the end of the input stream. 

 When, as the program is parsed from left to right, a token is encountered that is allowed by some 

production of the grammar, but the production is a restricted production and the token would be the 

first token for a terminal or nonterminal immediately following the annotation ñ[no LineTerminator 

here]ò within the restricted production (and therefore such a token is called a restricted token), and 

the restricted token is separated from the previous token by at least one LineTerminator, then a 

semicolon is automatically inserted before the restricted token. 

However, there is an additional overriding condition on the preceding rules: a semicolon is never 

inserted automatically if the semicolon would then be parsed as an empty statement or if that semicolon 

would become one of the two semicolons in the header of a for  statement (section 12.6.3). 

NOTE 

These are the only restricted productions in the grammar: 

PostfixExpression : 

LeftHandSideExpression [no LineTerminator here] ++ 

LeftHandSideExpression [no LineTerminator here] --  

ContinueStatement : 

continue [no LineTerminator here] Identifieropt ;  

BreakStatement : 

break [no LineTerminator here] Identifieropt ;  

ReturnStatement : 

return [no LineTerminator here] Expressionopt ;  

ThrowStatement : 

throw  [no LineTerminator here] Expression ;  

The practical effect of these restricted productions is as follows: 

 When a ++ or --  token is encountered where the parser would treat it as a postfix operator, and at 

least one LineTerminator occurred between the preceding token and the ++ or --  token, then a 

semicolon is automatically inserted before the ++ or --  token. 

 When a continue , break , return , or throw  token is encountered and a LineTerminator is 

encountered before the next token, a semicolon is automatically inserted after the continue , 

break , return , or throw  token. 

The resulting practical advice to ECMAScript programmers is: 

 A postfix ++ or --  operator should appear on the same line as its operand. 



- 24 -  

27 October 2008 

 An Expression in a return  or throw  statement should start on the same line as the return  or 

throw  token. 

 A label in a break  or continue  statement should be on the same line as the break  or 

continue  token. 

7.9.2 Examples of Automatic Semicolon Insertion 

The source 

{ 1 2 } 3  

is not a valid sentence in the ECMAScript grammar, even with the automatic semicolon insertion rules. 

In contrast, the source 

{ 1  

2 } 3  

is also not a valid ECMAScript sentence, but is transformed by automatic semicolon insertion into the 

following: 

{ 1  

;2 ;} 3;  

which is a valid ECMAScript sentence. 

The source 

for (a; b  

)  

is not a valid ECMAScript sentence and is not altered by automatic semicolon insertion because the 

semicolon is needed for the header of a for  statement. Automatic semicolon insertion never inserts one 

of the two semicolons in the header of a for  statement. 

The source 

return  

a + b  

is transformed by automatic semicolon insertion into the following: 

return;  

a + b;  

NOTE 

The expression a + b  is not treated as a value to be returned by the return  statement, because a 

'LineTerminator' separates it from the token return . 

The source 

a = b  

++c  

is transformed by automatic semicolon insertion into the following: 

a = b;  

++c;  

NOTE 

The token ++ is not treated as a postfix operator applying to the variable b, because a 'LineTerminator' 

occurs between b and ++. 

The source 

if (a > b)  

else c = d  



- 25 -  

27 October 2008 

is not a valid ECMAScript sentence and is not altered by automatic semicolon insertion before the else  

token, even though no production of the grammar applies at that point, because an automatically inserted 

semicolon would then be parsed as an empty statement. 

The source 

a = b + c  

(d + e).print()  

is not transformed by automatic semicolon insertion, because the parenthesised expression that begins 

the second line can be interpreted as an argument list for a function call: 

a = b + c(d +  e).print()  

In the circumstance that an assignment statement must begin with a left parenthesis, it is a good idea for 

the programmer to provide an explicit semicolon at the end of the preceding statement rather than to rely 

on automatic semicolon insertion. 

8 Types 

A value is an entity that takes on one of eleven types. There are eleven types (Undefined, Null, Boolean, 

String, Number, Object, Reference, List, Completion, Property Descriptor, and Property Identifier). Values of 

type Reference, List, and Completion are used only as intermediate results of expression evaluation and 

cannot be stored as properties of objects. 

8.1 The Undefined Type 

The Undefined type has exactly one value, called undefined. Any variable that has not been assigned a 

value has the value undefined. 

8.2 The Null Type 

The Null type has exactly one value, called null . 

8.3 The Boolean Type 

The Boolean type represents a logical entity having two values, called true and false. 

8.4 The String Type 

The String type is the set of all finite ordered sequences of zero or more 16-bit unsigned integer values 

(ñelementsò). The String type is generally used to represent textual data in a running ECMAScript program, 

in which case each element in the string is treated as a code point value (see section 6). Each element is 

regarded as occupying a position within the sequence. These positions are indexed with nonnegative 

integers. The first element (if any) is at position 0, the next element (if any) at position 1, and so on. The 

length of a string is the number of elements (i.e., 16-bit values) within it. The empty string has length zero 

and therefore contains no elements. 

When a string contains actual textual data, each element is considered to be a single UTF-16 unit. Whether 

or not this is the actual storage format of a String, the characters within a String are numbered as though 

they were represented using UTF-16. All operations on Strings (except as otherwise stated) treat them as 

sequences of undifferentiated 16-bit unsigned integers; they do not ensure the resulting string is in 

normalised form, nor do they ensure language-sensitive results. 

NOTE 

The rationale behind these decisions was to keep the implementation of Strings as simple and high-

performing as possible. The intent is that textual data coming into the execution environment from outside 

(e.g., user input, text read from a file or received over the network, etc.) be converted to Unicode 

Normalised Form C before the running program sees it. Usually this would occur at the same time incoming 

text is converted from its original character encoding to Unicode (and would impose no additional 

overhead). Since it is recommended that ECMAScript source code be in Normalised Form C, string literals 

are guaranteed to be normalised (if source text is guaranteed to be normalised), as long as they do not 

contain any Unicode escape sequences. 

Deleted: nine 

Deleted: nine 

Deleted: and 

Comment [pL12]: From AWB: 
May need to rework this whole paragraph. 



- 26 -  

27 October 2008 

8.5 The Number Type 

The Number type has exactly 18437736874454810627 (that is, 2
64

2
53

+3) values, representing the double-

precision 64-bit format IEEE 754 values as specified in the IEEE Standard for Binary Floating-Point 

Arithmetic, except that the 9007199254740990 (that is, 2
53
2) distinct ñNot-a-Numberò values of the IEEE 

Standard are represented in ECMAScript as a single special NaN value. (Note that the NaN value is 

produced by the program expression NaN, assuming that the globally defined variable NaN has not been 

altered by program execution.) In some implementations, external code might be able to detect a difference 

between various Non-a-Number values, but such behaviour is implementation-dependent; to ECMAScript 

code, all NaN values are indistinguishable from each other. 

There are two other special values, called positive Infinity  and negative Infinity . For brevity, these values 

are also referred to for expository purposes by the symbols +  and , respectively. (Note that these two 

infinite number values are produced by the program expressions +Infinity  (or simply Infinity ) and 

- Infinity , assuming that the globally defined variable Infinity  has not been altered by program 

execution.) 

The other 18437736874454810624 (that is, 2
64

2
53

) values are called the finite numbers. Half of these are 

positive numbers and half are negative numbers; for every finite positive number there is a corresponding 

negative number having the same magnitude. 

Note that there is both a positive zero and a negative zero. For brevity, these values are also referred to for 

expository purposes by the symbols +0 and 0, respectively. (Note that these two zero number values are 

produced by the program expressions +0  (or simply 0) and - 0.) 

The 18437736874454810622 (that is, 2
64

2
53

2) finite nonzero values are of two kinds: 

18428729675200069632 (that is, 2
64

2
54

) of them are normalised, having the form 

s  m  2
e
 

where s is +1 or 1, m is a positive integer less than 2
53

 but not less than 2
52

, and e is an integer ranging 

from 1074 to 971, inclusive. 

The remaining 9007199254740990 (that is, 2
53

2) values are denormalised, having the form 

s  m  2
e
 

where s is +1 or 1, m is a positive integer less than 2
52

, and e is 1074. 

Note that all the positive and negative integers whose magnitude is no greater than 2
53

 are representable in 

the Number type (indeed, the integer 0 has two representations, +0  and - 0). 

A finite number has an odd significand if it is nonzero and the integer m used to express it (in one of the 

two forms shown above) is odd. Otherwise, it has an even significand. 

In this specification, the phrase ñthe number value for xò where x represents an exact nonzero real 

mathematical quantity (which might even be an irrational number such as ) means a number value chosen 

in the following manner. Consider the set of all finite values of the Number type, with 0 removed and with 

two additional values added to it that are not representable in the Number type, namely 2
1024

 (which is +1  

2
53

  2
971

) and 2
1024

 (which is 1  2
53

  2
971

). Choose the member of this set that is closest in value to x. 

If two values of the set are equally close, then the one with an even significand is chosen; for this purpose, 

the two extra values 2
1024

 and 2
1024

 are considered to have even significands. Finally, if 2
1024

 was chosen, 

replace it with + ; if 2
1024

 was chosen, replace it with ; if +0 was chosen, replace it with 0 if and only 

if x is less than zero; any other chosen value is used unchanged. The result is the number value for x. (This 

procedure corresponds exactly to the behaviour of the IEEE 754 ñround to nearestò mode.) 

Some ECMAScript operators deal only with integers in the range 2
31

 through 2
31

1, inclusive, or in the 

range 0 through 2
32

1, inclusive. These operators accept any value of the Number type but first convert 

each such value to one of 2
32

 integer values. See the descriptions of the ToInt32 and ToUint32 operators in 

sections 9.5 and 9.6, respectively. Deleted: 0 

Deleted: 0



- 27 -  

27 October 2008 

8.6 The Object Type 

An Object is a collection of properties. Each property is either a named data property, a named accessor  

property, or an internal property. 

 A named data property associates a name with a value and a set of boolean attributes. 

 A named accessor property associates a name with a getter method, a setter method, and a set of 

boolean attributes. 

 An internal property has no name and is not directly accessible via the property accessor operators. 

Internal properties exist purely for specification purposes. How and when some of these properties are 

used is specified by the language specification below. 

8.6.1 Property Attributes  

Attributes are used in this specification to define and explain the state of named properties. A named 

data property associates a name with the following attributes: 

Table 1 Attributes of a Named Data Property  

Attribute Name Value 

Domain 

Description 

[[Value]]  any The value retrieved by reading the property. 

[[Writ able]]  boolean If true, attempts by ECMAScript code to assign the 

propertyôs value will succeed. 

[[Enumerable]] boolean If true, the property will be enumerated by a for-in 

enumeration (section 12.6.4). Otherwise, the property is said 

to be non-enumerable. 

[[Configurable]]  boolean If true, attempts to delete the property, change the property 

to being an accessor property, or change its attributes will 

succeed. See the description of the delete operator in section 

11.4.1, and the reflective Object methods. 

 

A named accessor property associates a name with the following attributes: 

Table 2 Attributes of a Named Accessor Property  

Attribute Name Value Domain Description 

[[Getter]] function or undefined A method that to be called each time the property is 

read, to retrieve the current value of the property. 

[[Setter]] function or  undefined A method to be called each time the property is 

assigned to, in order to define the current value of the 

property. 

[[Enumerable]] boolean If true, the property is to be enumerated by a for-in 

enumeration (section 12.6.4). Otherwise, the property 

is said to be non-enumerable. 

[[Configurable]]  boolean If true, attempts to delete the property, change the 

property to a data property, or change its attributes 

will succeed. See the description of the delete 

operator in section 11.4.1, and the reflective Object 

methods . 

If the value of an attribute is not explicitly specified for a named property, the default value as defined in 

the following table is used: 

Table 3 Default Attribute Values 

Deleted: an unordered

Deleted: consists of a name, a value and a set 
of attributes.

Deleted: A property can have zero or more 

attributes from the following set:¶
¶

Attribute ...

Comment [pL13]: This whole table may get 

removed soon. 



- 28 -  

27 October 2008 

Attribute 

Name 

Default Value 

[[Value]] undefined 

[[Getter]] undefined 

[[Setter]] undefined 

[[Writable]] false 

[[Enumerable]] false 

[[Configurable]]  false 

 

Property descriptors, defined in section 8.10, are internal types used within this specification to describe 

manipulations of property attributes. 

8.6.2 Internal Properties and Methods 

Internal properties and methods are not part of the language. They are defined by this specification 

purely for expository purposes. An implementation of ECMAScript must behave as if it produced and 

operated upon internal properties in the manner described here. For the purposes of this document, the 

names of internal properties are enclosed in double square brackets [[ ]]. When an algorithm uses an 

internal property of an object and the object does not implement the indicated internal property, a 

TypeError  exception is thrown. 

There are two types of access for normal (non-internal) properties: get and put, corresponding to 

retrieval and assignment, respectively. 

All ECMAScript objects have an internal property called [[Prototype]]. The value of this property is 

either null  or an object and is used for implementing inheritance. Named data properties of the 

[[Prototype]] object are inherited (are visible as properties of the child object) for the purposes of get 

access, but not for put access. Named accessor properties are inherited for both get access and put 

access. 

The following table summarises the internal properties used by this specification that are applicable to 

all ECMAScript objects. The description indicates their behaviour for native ECMAScript objects, unless 

stated otherwise in this document for particular types of ECMAScript objects. In particular, Array 

objects have a slightly different definition of the [[ThrowablePut]] method (see 15.4.5.1) and String 

objects have a different definition of the [[GetOwnProperty]] method. Host objects may support these 

internal properties with any implementation-dependent behaviour, or it may be that a host object 

supports only some internal properties and not others. 

Deleted: Native 

Deleted: Properties 

Comment [pL14]: From MSM: 
Not technically true, since read-only prevents an overriding 
put. 

Comment [pL15]: From AWB: 
It is not obvious how to clarify Markôs subtle point. I think 

it is fine as written. 

Deleted: implement 

Deleted: methods 

Deleted: implements 

Deleted: methods 



- 29 -  

27 October 2008 

Property Value Domain Description 

[[Prototype]] Object | null  The prototype of this object. Must be null or an Object. 

[[Class]] string A string value indicating the kind of this object. 

[[PrimitiveValue]] primitive Internal state information associated with this object. 

[[Extensible]] boolean If true, own properties may be added to the object. 

[[Get]] function(PropertyName) Ÿ 

any 

Returns the value of the named property. 

[[GetOwnProperty]] function(PropertyName) Ÿ 

undefined or Property 

Descriptor 

Returns the Property Descriptor of the named own 

property of this object, or undefined if absent. 

[[GetProperty]] function(PropertyName) Ÿ 

undefined or Property 

Descriptor 

Returns the Property Descriptor of the named property 

of this object, or undefined if absent. 

[[Put]] function(PropertyName, any) Sets the specified named property to specified value. 

[[CanPut]] function(PropertyName) Ÿ 

boolean 

Returns a boolean value indicating whether a [[Put]] 

operation with PropertyName can be performed. 

[[HasProperty]] function(PropertyName) Ÿ 

boolean 

Returns a boolean value indicating whether the object 

already has a property with the given name. 

[[Delete]] function(PropertyName, 

boolean) Ÿ boolean 

Removes the specified named own property from the 

object. The flag controls failure handling. 

[[DefaultValue]] function(Hint) Ÿ any Returns a default value for the object, which should be 

a primitive value (not an object or reference). 

[[DefineOwnProperty]] function(PropertyName, 

PropertyDesriptorc, boolean) 

Creates or alters the named own property to have the 

state described by a Property Descriptor. The flag 

controls failure handling. 

[[ThrowablePut]] function(PropertyName, any, 

boolean) 

Sets the specified named property to Value. The flag 

controls failure handling. 

[[Construct]] function(a list of argument 

values provided by the caller) 

Ÿ Object 

Constructs an object. Invoked via the new operator. 

Objects that implement this internal method are called 

constructors. 

[[Call]]  function(a list of argument 

values provided by the caller) 

Ÿ any 

Executes code associated with the object. Invoked via a 

function call expression. Objects that implement this 

internal method are called functions. 

[[HasInstance]] function(any) Ÿ boolean Returns a boolean value indicating whether Value 

delegates behaviour to this object. Of the native 

ECMAScript objects, only Function objects implement 

[[HasInstance]]. 

[[Scope]]  A scope chain that defines the environment in which a 

Function object is executed. 

[[Match]] function(string, index) Ÿ 

MatchResult 

Tests for a regular expression match and returns a 

MatchResult value (see section 15.10.2.1). 

 

Every object (including host objects) must implement the [[Prototype]], [[Class]], and [[Extensible]] 

internal data properties and the [[Get]], [[GetProperty]], [[GetOwnProperty]], [[ DefineOwnProperty]], 

[[Put]], [[CanPut]], [[HasProperty]], [[Delete]], and [[DefaultValue]] internal methods. (Note, however, 

that the [[DefaultValue]] method may, for some objects, simply throw a TypeError  exception.) 

The value of the [[Prototype]] property must be either an object or null , and every [[Prototype]] chain 

must have finite length (that is, starting from any object, recursively accessing the [[Prototype]] property 

must eventually lead to a null  value). Whether or not a native object can have a host object as its 

[[Prototype]] depends on the implementation. 

The value of the [[Class]] property is defined by this specification for every kind of built-in object. The 

value of the [[Class]] property of a host object may be any value, even a value used by a built-in object 

for its [[Class]] property. The value of a [[Class]] property is used internally to distinguish different 

kinds of built-in objects. Note that this specification does not provide any means for a program to access 

that value except through Object.prototype.toString  (see 15.2.4.2). 

Deleted: Parameters

Deleted: none

Deleted: none

Deleted: none

Comment [pL16]: From AWB: 
 
Note that any really isnôt correct, its really any 

ECMAScript language value but excluding internal 

types. 

Deleted: Value

Deleted:  Value

Deleted: will succeed

Deleted: member 

Comment [pL17]: Divide the table into two; one 
is properties of all objects, and the other is properties 

that apply to only some objects. 

Deleted: Value

Deleted: None

Deleted: String

Deleted: Index

Deleted:  and



- 30 -  

27 October 2008 

For native objects the [[Get]], [[Put]], [[CanPut]], [[HasProperty]], [[Delete]] and [[DefaultValue]] 

methods behave as described in described in 8.6.2.1, 8.6.2.2, 8.6.2.3, 8.6.2.4, 8.6.2.5 and 8.6.2.6, 

respectively, except that Array objects have a slightly different implementation of the [[Put]] method 

(see 15.4.5.1). Host objects may implement these methods in any manner unless specified otherwise; for 

example, one possibility is that [[Get]] and [[Put]] for a particular host object indeed fetch and store 

property values but [[HasProperty]] always generates false. 

In the following algorithm descriptions, assume O is a native ECMAScript object, P is a string, Desc is 

an internal property description record, and Throw is a boolean flag. 

8.6.2.1 [[Get]] (P)  

When the [[Get]] method of O is called with property name P, the following steps are taken: 

1. Call the [[GetProperty]] method of O with property name P. 

2. If Result(1) is undefined, return undefined. 

3. If IsDataDescriptor(Result(1)) is true, return Result(1).[[Value]]. 

4. Otherwise, IsAccessorDescriptor(Result(1)) must be true so, get Result(1).[[Getter]]. 

5. If Result(4) is undefined, return undefined. 

6. Call the [[Call]] method of Result(4) providing O as the this value and providing no arguments. 

7. Return Result(6). 

8.6.2.2 [[Put]] (P, V)  

[[Put]] is primarily used in the specification of built-in methods. Algorithms that require explicit 

control over the handling of invalid property store should call [[ThrowablePut]] directly. 

When the [[Put]] method of O is called with property P and value V, the following steps are taken: 

1. Call the [[ThrowablePut]] method of O with arguments P, V, and false. 

2. Return. 

Note, however, that if O is an Array object, it has a more elaborate [[Put]] method (15.4.5.1). 

8.6.2.3 [[CanPut]] (P)  

When the [[CanPut]] method of O is called with property name P, the following steps are taken: 

1. Call the [[GetOwnProperty]] method of O with argument P. 

2. If Result(1) is not undefined, then 

a. If IsAccessorDescriptor(Result(1)) is true , then 

i. If Result(1).[[Setter]] is undefined, then return false. 

ii.  Else return true . 

b. Otherwise, Result(1) must be a DataDescriptor so return the value of 

Result(1).[[Writable]]. 

3. Get the internal [[Prototype]] property of O. 

4. If Result(3) is null , then return the value of the [[Extensible]] property of O. 

5. Call the [[GetProperty]] method of Result(3) with property name P. 

6. If Result(5) is undefined,  return the value of the [[Extensible]] property of O. 

7. If IsAccessorDescriptor(Result(5)) is true , then 

a. If Result(5).[[Setter]] is undefined, then return false. 

b. Else return true . 

8. Else, Result(5) must be a DataDescriptor 

a. If the [[Extensible]] property of O is false, return false. 

b. Else return the value of Result(5).[[Writable]]. 

NOTE 

Host objects may define additional constraints upon [[Put]] operations. If possible, host objects should 

not allow [[Put]] operations in situations where this definition of [[CanPut]] returns false. 

8.6.2.4 [[HasProperty]] (P)  

When the [[HasProperty]] method of O is called with property name P, the following steps are taken: 

1. Call the [[GetProperty]] method of O with property name P. 

2. If Result(1) is undefined, then return false. 

3. Else return true . 

Deleted:  and

Comment [pL18]: Need to make consistent with above 
table(s). 

Deleted: If O doesnôt have a property with name P, 
go to step 4.¶

Get the value of the property.¶
Return Result(2).¶

If the [[Prototype]] of O is null , return undefined.¶

Call the [[Get]] method of [[Prototype]] with property 
name P.¶

Return Result(5).¶

Deleted: <#>Call the [[CanPut]] method of O with 
name P.¶
<#>If Result(1) is false, return.¶

<#>If O doesnôt have a property with name P, go to 

step 6.¶
<#>Set the value of the property to V. The attributes of 

the property are not changed.¶

<#>Return.¶
<#>Create a property with name P, set its value to V 

and give it empty attributes.¶

<#>Return.¶
Note, however, that if O is an Array object, it has a 

more elaborate [[Put]] method (15.4.5.1).¶

Deleted: The [[CanPut]] method is used only by the 
[[Put]] method.¶

Deleted: If O doesnôt have a property with name P, 
go to step 4.¶

If the property has the ReadOnly attribute, return false.¶

Return true.¶
If the [[Prototype]] of O is null , return true.¶

Call the [[CanPut]] method of [[Prototype]] of O with 

property name P.¶
Return Result(5).

Deleted: <#>¶



- 31 -  

27 October 2008 

. 

8.6.2.5 [[Delete]] (P, Throw ) 

When the [[Delete]] method of O is called with property name P and the boolean flag Throw, the 

following steps are taken: 

1. Call the [[GetOwnProperty]] method of O with property name P. 

2. If Result(1) is undefined, then return true . 

3. If Result(1).[[Configurable]]  is true, then 

a. Remove the own property with name P from O. 

b. Return true . 

4. Else if Throw, then throw a TypeError  exception. 

5. Return false. 

8.6.2.6 [[DefaultValue]] (hint)  

When the [[DefaultValue]] method of O is called with hint String, the following steps are taken: 

1. Call the [[Get]] method of object O with argument "toString ". 

2. If Result(1) is not an object, go to step 5. 

3. Call the [[Call]] method of Result(1), with O as the this value and an empty argument list. 

4. If Result(3) is a primitive value, return Result(3). 

5. Call the [[Get]] method of object O with argument "valueOf ". 

6. If Result(5) is not an object, go to step 9. 

7. Call the [[Call]] method of Result(5), with O as the this value and an empty argument list. 

8. If Result(7) is a primitive value, return Result(7). 

9. Throw a TypeError  exception. 

When the [[DefaultValue]] method of O is called with hint Number, the following steps are taken: 

1. Call the [[Get]] method of object O with argument "valueOf" . 

2. If Result(1) is not an object, go to step 5. 

3. Call the [[Call]] method of Result(1), with O as the this value and an empty argument list. 

4. If Result(3) is a primitive value, return Result(3). 

5. Call the [[Get]] method of object O with argument "toString" . 

6. If Result(5) is not an object, go to step 9. 

7. Call the [[Call]] method of Result(5), with O as the this value and an empty argument list. 

8. If Result(7) is a primitive value, return Result(7). 

9. Throw a TypeError  exception. 

When the [[DefaultValue]] method of O is called with no hint, then it behaves as if the hint were 

Number, unless O is a Date object (see 15.9), in which case it behaves as if the hint were String. 

The above specification of [[DefaultValue]] for native objects can return only primitive values. If a 

host object implements its own [[DefaultValue]] method, it must ensure that its [[DefaultValue]] 

method can return only primitive values. 

8.6.2.7 [[GetProperty]] (P)  

When the [[GetProperty]] method of O is called with property name P, the following steps are taken: 

1. Call the [[GetOwnProperty]] method of O with property name P. 

2. If Result(1) is not undefined, return Result(1). 

3. If the [[Prototype]] of O is null ,  return undefined. 

4. Call the [[GetProperty]] method of [[Prototype]] with property name P. 

5. Return Result(4). 

8.6.2.8 [[GetOwnProperty]] (P)  

When the [[GetOwnProperty]] method of O is called with property name P, the following steps are 

taken: 

1. If  O doesnôt have an own property with name P, return undefined. 

2. Let D be a newly created Property Descriptor (Section 8.10) with no fields. 

3. Let X be Oôs own property named P. 

Deleted: If O has a property with name P, return 
true.¶

If the [[Prototype]] of O is null , return false.¶
Call the [[HasProperty]] method of 

[[Prototype]] with property name P.¶

Return Result(3).

Deleted: ¶
If O doesnôt have a property with name P, 

return true.¶

If the property has the DontDelete attribute, 
return false.¶

Remove the property with name P from O.¶

Return true.



- 32 -  

27 October 2008 

4. If X is a data property, then 

a. Set D.[[Value]] to the value of Xôs [[Value]] attribute. 

b. Set D.[[Writable]] to the value of Xôs [[Writable]] attribute 

5. Else X is an accessor property, so 

a. Set D.[[Getter]] to the value of Xôs [[Getter]] attribute. 

b. Set D.[[Setter]] to the value of Xôs [[Setter]] attribute. 

6. Set D.[[Enumerable]] to the value of Xôs [[Enumerable]] attribute. 

7. Set D.[[Configurable]] to the value of Xôs [[Configurable]] attribute. 

8. Return D. 

Note, however, that if O is a String object it has a more elaborate [[GetOwnProperty]] method 

(15.5.5.2). 

8.6.2.9 [[DefineOwnProperty]] (P, Desc, Throw) 

In the following algorithm, the term ñRejectò means ñIf Throw is true , then throw a TypeError  

exception, otherwise return.ò 

When the [[DefineOwnProperty]] method of O is called with property name P, property descriptor 

Desc, and boolean flag Throw, the following steps are taken: 

1. Call the [[GetOwnProperty]] method of O with property name P. 

2. Get the [[Extensible]] internal property of O. 

3. If Result(1) is undefined and Result(2) is false, then Reject. 

4. If Result(1) is undefined and Result(2) is true , then 

a. If  IsGenericDescriptor(Desc) or IsDataDescriptor(Desc) is true , then 

i. Create an own data property named P of object O whose [[Value]], [[Writable]], 

[[Enumerable]] and [[Configurable]] attribute values are described by Desc. If 

the value of an attribute field of Desc is absent, the attribute of the newly created 

property is set to its default value. 

b. Else, Desc must be an accessor Property Descriptor so, 

i. Create an own accessor property named P of object O whose [[Getter]], 

[[Setter]], [[Enumerable]] and [[Configurable]] attribute values are described by 

Desc. If the value of an attribute field of Desc is absent, the attribute of the newly 

created property is set to its default value. 

c. Return. 

5. Return, if  the value of every field in Desc is absent. 

6. Return, if every field in Desc also occurs in Result(1) and the value of every field in Desc is the 

same value as the corresponding field in Result(1). 

7. If the [[Configurable]] field of Result(1) is false then 

a. Reject, if the [[Configurable]] field of Desc is true. 

b. Reject, if the [[Enumerable]] field of Result(1) and Desc are the Boolean negation of each 

other. 

8. If IsGenericDescriptor(Desc) is true , then no further validation is required. 

9. Else, if IsDataDescriptor(Result(1)) and IsDataDescriptor(Desc) have different results, then 

a. Reject, if the [[Configurable]] field of Result(1) is false.  

b. If IsDataDescriptor(Result(1)) is true, then 

i. Convert the property named P of object O from a data property to an accessor 

property. Preserve the existing values of the converted propertyôs 

[[Configurable]] and [[Enumerable]] attributes and set the the rest of the 

propertyôs attributes to their default values. 

c. Else, 

i. Convert the property named P of object O from an accessor property to a data 

property. Preserve the existing values of the converted propertyôs 

[[Configurable]] and [[Enumerable]] attributes and set the the rest of the 

propertyôs attributes to their default values. 

10. Else, if IsDataDescriptor(Result(1)) and IsDataDescriptor(Desc) are both true , then 

a. If the [[Configurable]] field of Result(1) is false, then 

i. Reject, if the [[Writable]] field of Result(1) is false  and the [[Writable]] field of 

Desc is true . 

ii.  If the [[Writable]] field of Result(1) is false, then 



- 33 -  

27 October 2008 

1. Reject, if the [[Value]] field of Desc is presnt and 

SameValue(Desc.[[Value]], Result(1).[[Value]]) is false.  

b. else, the [[Configurable]] field of Result(1) is true , so any change is acceptable. 

11. Else, IsAccessorDescriptor(Result(1)) and IsAccessorDescriptor(Desc) are both true so, 

a. If the [[Configurable]] field of Result(1) is false, then 

i. Reject, if the [[Setter]] field of Desc is present and SameValue(Desc.[[Setter]], 

Result(1).[[Setter]] is false. 

ii.  Reject, if the [[Getter]] field of Desc is present and SameValue(Desc.[[Getter]], 

Result(1).[Getter]]) is false. 

12. For each attribute field of Desc that is present, set the correspondingly named attribute of the 

property named P of object O to the value of the field. 

13. Return. 

8.6.2.10 [[ ThrowablePut]] ( P, V, Throw ) 

When the [[ThrowablePut]] method of O is called with property P, value V, and boolean flag Throw 

the following steps are taken: 

1. Call the [[GetOwnProperty]]  method of O with argument P. 

2. If Result(1) is undefined, then throw a ReferenceError exception. 

3. Call the [[CanPut]] method of O with argument P. 

4. If Result(3) is false, then 

a. If Throw is true , then throw a TypeError  exception. 

b. Else return. 

5. If IsDataDescriptor(Result(1)) is true, then 

a. Set the [[Value]] attribute of property P of O to V. 

b. Return. 

6. Call the [[GetProperty]] method of O with argument P. 

7. If IsAccessorDescriptor(Result(6)) is true , then 

a. Get Result(1).[[Setter]] which cannot be undefined. 

b. Call the [[Call]] method of Result(7a) providing O as the this value and providing V as 

the sole argument. 

8. Else, create a named data property named P on object O whose attributes are: 

a. [[Value]]: V, 

b. [[Writable]]: true , 

c. [[Enumerable]]: true , 

d. [[Configurable]]: true . 

9. Return. 

Note, however, that if O is an Array object, it has a more elaborate [[ThrowablePut]] method 

(15.4.5.1). 

8.7 The Reference Type 

The internal Reference type is not a language data type. It is defined by this specification purely for 

expository purposes. An implementation of ECMAScript must behave as if it produced and operated upon 

references in the manner described here. However, a value of type Reference is used only as an 

intermediate result of expression evaluation and cannot be stored as the value of a variable or property. 

The Reference type is used to explain the behaviour of such operators as delete , typeof , and the 

assignment operators. For example, the left-hand operand of an assignment is expected to produce a 

reference. The behaviour of assignment could, instead, be explained entirely in terms of a case analysis on 

the syntactic form of the left-hand operand of an assignment operator, but for one difficulty: function calls 

are permitted to return references. This possibility is admitted purely for the sake of host objects. No built-

in ECMAScript function defined by this specification returns a reference and there is no provision for a 

user-defined function to return a reference. (Another reason not to use a syntactic case analysis is that it 

would be lengthy and awkward, affecting many parts of the specification.) 

Another use of the Reference type is to explain the determination of the this value for a function call. 

A Reference is a reference to a property of an object. A Reference consists of two components, the base 

object and the property name. 

The following abstract operations are used in this specification to access the components of references: 

Comment [pL19]: Need to define this function. 

Comment [pL20]: From AWB: 
 

Consider renaming to ThrowingPut. 

Deleted: ¶

Comment [pL21]: We wanted to remove this , 

but have decided to leave it in as this could 
potentially break web applications. 



- 34 -  

27 October 2008 

 GetBase(V). Returns the base object component of the reference V. 

 GetPropertyName(V). Returns the property name component of the reference V. 

The following abstract operations are used in this specification to operate on references: 

8.7.1 GetValue (V) 

1. If Type(V) is not Reference, return V. 

2. Call GetBase(V). 

3. If Result(2) is null , throw a ReferenceError exception. 

4. Call the [[Get]] method of Result(2), passing GetPropertyName(V) for the property name. 

5. Return Result(4). 

8.7.2 PutValue (V, W, Throw ) 

1. If Type(V) is not Reference, throw a ReferenceError exception. 

2. Call GetBase(V). 

3. If Result(2) is null , then 

a. If Throw is true , then throw a ReferenceError exception. 

b. Call the [[ThrowablePut]] method for the global object, passing GetPropertyName(V) for the 

property name, W for the value, and false for the Throw flag. 

c. Return 

4. Else 

a. Call the [[ThrowablePut]] method of Result(2), passing GetPropertyName(V) for the property 

name, W for the value, and Throw for the Throw flag. 

b. Return. 

8.8 The List Type 

The internal List type is not a language data type. It is defined by this specification purely for expository 

purposes. An implementation of ECMAScript must behave as if it produced and operated upon List values 

in the manner described here. However, a value of the List type is used only as an intermediate result of 

expression evaluation and cannot be stored as the value of a variable or property. 

The List type is used to explain the evaluation of argument lists (see 11.2.4) in new expressions and in 

function calls. Values of the List type are simply ordered sequences of values. These sequences may be of 

any length. 

8.9 The Completion Type 

The internal Completion type is not a language data type. It is defined by this specification purely for 

expository purposes. An implementation of ECMAScript must behave as if it produced and operated upon 

Completion values in the manner described here. However, a value of the Completion type is used only as 

an intermediate result of statement evaluation and cannot be stored as the value of a variable or property. 

The Completion type is used to explain the behaviour of statements (break , continue , return  and 

throw ) that perform nonlocal transfers of control. Values of the Completion type are triples of the form 

(type, value, target), where type is one of normal , break, continue, return , or throw , value is any 

ECMAScript value or empty, and target is any ECMAScript identifier or empty. 

The term ñabrupt completionò refers to any completion with a type other than normal . 

8.10 The Property Descriptor and Property Identifier Types 

The internal Property Descriptor and Property Identifier types are not language data types. They are defined 

by this specification purely for expository purposes. An implementation of ECMAScript must behave as if 

it produced and operated upon Property Descriptor and Property Identifier values in the manner described 

here. However, values of these types are used only as an intermediate result of expression evaluation and 

cannot be stored as the value of a variable or property. 

The Property Descriptor type is used to explain the manipulation and reification of named property 

attributes. Values of the Property Descriptor type are records composed of named fields where each fieldôs 

name is an attribute name and its value is a corresponding attribute value. In addition, any field may be 

present or absent. 

Property Descriptor values may be further classified as data property descriptors and accessor property 

descriptors based upon the existence or use of certain fields. A data property descriptor is one that includes 

Deleted: <#>If Type(V) is not Reference, throw a 
ReferenceError exception.¶

<#>Call GetBase(V).¶
<#>If Result(2) is null , go to step 6.¶

<#>Call the [[Put]] method of Result(2), passing 

GetPropertyName(V) for the property name and W for 
the value.¶

<#>Return.¶

<#>Call the [[Put]] method for the global object, 
passing GetPropertyName(V) for the property name 

and W for the value.¶

<#>Return.¶

Comment [pL22]: Stored descriptors are always 
complete. Only delta descriptors may have absent fields. 



- 35 -  

27 October 2008 

any fields named either [[Value]], or [[Writable]]. An accessor property descriptor is one that includes any 

fields named either [[Getter]], or [[Setter]]. Any property descriptor may have fields named 

[[Enumerable]], and [[Configurable]].  

For notational convenience within this specification, an object literal-like syntax can be used to define a 

property descriptor value.  For example, Property Descriptor { value: 42, writable: false, configurable: true} 

defines a data property descriptor.  The order of listing fields names is not significant. Any fields that are 

not explicitly listed are considered to be absent. 

In specification text and algorithms, dot notation may be used to refer to a specific field of a Property 

Descriptor. For example, if D is a property descriptor then D.[[Value]] is short hand for ñthe field of D 

named ñvalueò. 

The Property Identifier type is used to associate a property name with a Property Descriptor.  Values of the 

Property Identifier type are pairs of the form (name, descriptor), where name is a string and descriptor is a 

Property Descriptor value.  

The following abstract operations are used in this specification to operate upon Property Descriptor values: 

8.10.1 IsAccessorDescriptor ( Desc ) 

When the internal IsAccessorDescriptor function is called with property descriptor Desc the following 

steps are taken: 

1. If Desc is undefined, then return false. 

2. If both Desc.[[Getter]] and Desc.[[Setter]] are absent, then return false. 

3. Return true. 

8.10.2 IsDataDescriptor ( Desc ) 

When the internal IsDataDescriptor function is called with property descriptor Desc the following steps 

are taken: 

1. If Desc is undefined, then return false. 

2. If both Desc.[[Value]] and Desc.[[Writable]] are absent, then return false. 

3. Return true. 

8.10.3 IsGenericDescriptor ( Desc ) 

When the internal IsGenericDescriptor function is called with property descriptor Desc the following 

steps are taken: 

1. If Desc is undefined, then return false. 

2. If IsAccessorDescriptor(Desc) and IsDataDescriptor(Desc) are both false, then return true. 

3. Return false. 

8.10.4 FromPropertyDescriptor (  Desc ) 

When the internal FromPropertyDescriptor function is called with property descriptor Desc the following 

steps are taken:, the following steps are taken: 

1. If Desc is undefined, then return undefined. 

2. Create a new object as if by the expression new Object() where Object is the standard built-in constructor 

with that name. 

3. If IsDataDescriptor(Desc) is true, then  

a. Call the [[Put]] method of Result(2) with arguments ñvalueò and Desc.[[Value]]. 

b. Call the [[Put]] method of Result(2) with arguments ñwritableò and Desc.[[Writable]].  

4. Else, IsAccessorDescriptor(Desc) must be true, so 

a. Call the [[Put]] method of Result(2) with arguments ñgetterò and Desc.[[Getter]].  

b. Call the [[Put]] method of Result(2) with arguments ñsetterò and Desc.[[Setter]].  

5. Call the [[Put]] method of Result(2) with arguments ñenumerableò and Desc.[[Enumerable]].  

6. Call the [[Put]] method of Result(2) with arguments ñconfigurableò and Desc.[[Configurable]].  

7. Return Result(2). 

NOTE 

The above algorithm assumes that Desc is a fully populated Property Descriptor, such as that returned 

from [[GetOwnProperty]]. 



- 36 -  

27 October 2008 

8.10.5 ToPropertyDescriptor ( Desc ) 

When the internal ToPropertyDescriptor function is called with object Desc, the following steps are 

taken: 

1. If Desc is undefined, then return undefined. 

2. Call ToObject(Desc). 

3. Create a new Property Descriptor that initially has no fields. 

4. Call the [[HasProperty]]  method of Result(2) with argument ñenumerableò. 

5. If Result(4) is true , then 

a. Call the [[Get]] method of Desc with ñenumerableò. 

b. Call ToBoolean(Result(5a)). 

c. Set the [[Enumerable]] field of Result(3) to Result(5b). 

6. Call the [[HasProperty]]  method of Result(2) with argument ñconfigurableò. 

7. If Result(6) is true , then 

a. Call the [[Get]] method of Result(2) with argument ñconfigurableò. 

b. Call ToBoolean(Result(7a)). 

c. Set the [[Configurable]] field of Result(3) to Result(7b) 

8. Call the [[HasProperty]]  method of Result(2) with argument ñvalueò. 

9. If Result(8) is true , then 

a. Call the [[Get]] method of Result(2) with argument ñvalueò. 

b. Set the [[Value]] field of Result(3) to Result(9a). 

10. Call the [[HasProperty]]  method of Result(2) with argument ñwritableò. 

11. If Result(10) is true, then 

a. Call the [[Get]] method of Result(2) with argument ñwritableò. 

b. Call ToBoolean(Result(11a)). 

c. Set the [[Writable]] field of Result(3) to Result(11b). 

12. Call the [[HasProperty]]  method of Result(2) with argument ñgetterò. 

13. If Result(12) is true, then 

a. Call the [[Get]] method of Result(2) with argument ñgetterò. 

b. Call IsCallable(Result(13a)) 

c. If Result(13b) is false and Result(13a) is not undefined, then throw a TypeError  exception. 

d. Set the [[Getter]] field of Result(3) to Result(13a). 

14. Call the [[HasProperty]]  method of Result(2) with argument ñsetterò. 

15. If Result(14) is true, then 

a. Call the [[Get]] method of Result(2) with argument ñsetterò. 

b. Call IsCallable(Result(15a)) 

c. If Result(15b) is false and Result(15a) is not undefined, then throw a TypeError  exception. 

d. Set the [[Setter]] field of Result(3) to Result(15a). 

16. If either Result(3).[[Getter]] or Result(3).[[Setter]] are present, then 

a. If either Result(3).[[Value]] or Result(3).[[Writable]] are present, then throw a TypeError 

exception. 

17. Return Result(3). 

9 Type Conversion and Testing 

The ECMAScript runtime system performs automatic type conversion as needed. To clarify the semantics of 

certain constructs it is useful to define a set of conversion operators. These operators are not a part of the 

language; they are defined here to aid the specification of the semantics of the language. The conversion 

operators are polymorphic; that is, they can accept a value of any standard type, but not of type Reference, 

List, Completion, or PropertyDescriptor (the internal types). 

9.1 ToPrimitiv e 

The operator ToPrimitive takes a Value argument and an optional argument PreferredType. The operator 

ToPrimitive converts its value argument to a non-Object type. If an object is capable of converting to more 

than one primitive type, it may use the optional hint PreferredType to favour that type. Conversion occurs 

according to the following table: 

 

Deleted: or 



- 37 -  

27 October 2008 

Input Type Result 

Undefined The result equals the input argument (no conversion). 

Null The result equals the input argument (no conversion). 

Boolean The result equals the input argument (no conversion). 

Number The result equals the input argument (no conversion). 

String The result equals the input argument (no conversion). 

Object Return a default value for the Object. The default value of an object is retrieved by 

calling the internal [[DefaultValue]] method of the object, passing the optional 

hint PreferredType. The behaviour of the [[DefaultValue]] method is defined by 

this specification for all native ECMAScript objects (8.6.2.6). 

 

9.2 ToBoolean 

The operator ToBoolean converts its argument to a value of type Boolean according to the following table: 

Input Type Result 

Undefined false 

Null false 

Boolean The result equals the input argument (no conversion). 

Number The result is false if the argument is +0, 0, or NaN; otherwise the result is true. 

 

String The result is false if the argument is the empty string (its length is zero); otherwise 

the result is true. 

Object true 

 

9.3 ToNumber 

The operator ToNumber converts its argument to a value of type Number according to the following table: 

Input Type Result 

Undefined NaN 

Null +0 

Boolean The result is 1 if the argument is true. The result is +0 if the argument is false. 

Number The result equals the input argument (no conversion). 

String See grammar and note below. 

Object Apply the following steps: 

1. Call ToPrimitive(input argument, hint Number). 

2. Call ToNumber(Result(1)). 

3. Return Result(2). 

 

9.3.1 ToNumber Applied to the String Type 

ToNumber applied to strings applies the following grammar to the input string. If the grammar cannot 

interpret the string as an expansion of StringNumericLiteral, then the result of ToNumber is NaN. 

 

StringNumericLiteral :::  

StrWhiteSpaceopt 

StrWhiteSpaceopt StrNumericLiteral StrWhiteSpaceopt 



- 38 -  

27 October 2008 

StrWhiteSpace :::  

StrWhiteSpaceChar StrWhiteSpaceopt 

StrWhiteSpaceChar :::  

WhiteSpace 

LineTerminator 

StrNumericLiteral :::  

StrDecimalLiteral 

HexIntegerLiteral 

StrDecimalLiteral :::  

StrUnsignedDecimalLiteral 

+ StrUnsignedDecimalLiteral 

-  StrUnsignedDecimalLiteral 

StrUnsignedDecimalLiteral :::  
Infinity  

 DecimalDigits .  DecimalDigitsopt ExponentPartopt 

.  DecimalDigits ExponentPartopt 

DecimalDigits ExponentPartopt 

DecimalDigits :::  

DecimalDigit 

DecimalDigits DecimalDigit 

DecimalDigit ::: one of 
0  1  2  3  4  5  6  7  8  9  

ExponentPart :::  

ExponentIndicator SignedInteger 

ExponentIndicator ::: one of 
e  E  

SignedInteger :::  

DecimalDigits 

+ DecimalDigits 

-  DecimalDigits 

HexIntegerLiteral :::  

0x  HexDigit 

0X HexDigit 

HexIntegerLiteral HexDigit 

HexDigit ::: one of 
0  1  2  3  4  5  6  7  8  9  a  b  c  d  e  f  A  B  C  D  E  F  

Some differences should be noted between the syntax of a StringNumericLiteral and a NumericLiteral 

(see 7.8.3): 

 A StringNumericLiteral may be preceded and/or followed by white space and/or line terminators. 

 A StringNumericLiteral that is decimal may have any number of leading 0 digits. 

 A StringNumericLiteral that is decimal may be preceded by + or -  to indicate its sign. 

 A StringNumericLiteral that is empty or contains only white space is converted to +0. 

The conversion of a string to a number value is similar overall to the determination of the number value 

for a numeric literal (see 7.8.3), but some of the details are different, so the process for converting a 

string numeric literal to a value of Number type is given here in full. This value is determined in two 

Deleted: <TAB>
<SP>

<NBSP>
<FF>

<VT>

<CR>
<LF>

<LS>

<PS>

Deleted: <USP>



- 39 -  

27 October 2008 

steps: first, a mathematical value (MV) is derived from the string numeric literal; second, this 

mathematical value is rounded as described below. 

 The MV of StringNumericLiteral :::  [empty] is 0. 

 The MV of StringNumericLiteral :::  StrWhiteSpace is 0. 

 The MV of StringNumericLiteral :::  StrWhiteSpaceopt StrNumericLiteral StrWhiteSpaceopt is the MV 

of StrNumericLiteral, no matter whether white space is present or not. 

 The MV of StrNumericLiteral :::  StrDecimalLiteral is the MV of StrDecimalLiteral. 

 The MV of StrNumericLiteral :::  HexIntegerLiteral is the MV of HexIntegerLiteral. 

 The MV of StrDecimalLiteral :::  StrUnsignedDecimalLiteral is the MV of 

StrUnsignedDecimalLiteral. 

 The MV of StrDecimalLiteral:::  + StrUnsignedDecimalLiteral is the MV of 

StrUnsignedDecimalLiteral. 

 The MV of StrDecimalLiteral:::  -  StrUnsignedDecimalLiteral is the negative of the MV of 

StrUnsignedDecimalLiteral. (Note that if the MV of StrUnsignedDecimalLiteral is 0, the negative of 

this MV is also 0. The rounding rule described below handles the conversion of this sign less 

mathematical zero to a floating-point +0 or 0 as appropriate.) 

 The MV of StrUnsignedDecimalLiteral::: Infinity  is 10
10000

 (a value so large that it will round to 

+ ). 

 The MV of StrUnsignedDecimalLiteral::: DecimalDigits.  is the MV of DecimalDigits. 

 The MV of StrUnsignedDecimalLiteral::: DecimalDigits.  DecimalDigits is the MV of the first 

DecimalDigits plus (the MV of the second DecimalDigits times 10
n
), where n is the number of 

characters in the second DecimalDigits. 

The MV of StrUnsignedDecimalLiteral::: DecimalDigits.  ExponentPart is the MV of DecimalDigits times 10
e
, 

where e is the MV of ExponentPart. 

The MV of StrUnsignedDecimalLiteral::: DecimalDigits.  DecimalDigits ExponentPart is (the MV of the first 

DecimalDigits plus (the MV of the second DecimalDigits times 10
n
)) times 10

e
, where n is the number of 

characters in the second DecimalDigits and e is the MV of ExponentPart. 

The MV of StrUnsignedDecimalLiteral::: .  DecimalDigits is the MV of DecimalDigits times 10
n
, where n is 

the number of characters in DecimalDigits. 

The MV of StrUnsignedDecimalLiteral::: .  DecimalDigits ExponentPart is the MV of DecimalDigits times 

10
e n

, where n is the number of characters in DecimalDigits and e is the MV of ExponentPart. 

The MV of StrUnsignedDecimalLiteral::: DecimalDigits is the MV of DecimalDigits. 

The MV of StrUnsignedDecimalLiteral::: DecimalDigits ExponentPart is the MV of DecimalDigits times 10
e
, 

where e is the MV of ExponentPart. 

The MV of DecimalDigits :::  DecimalDigit is the MV of DecimalDigit. 

The MV of DecimalDigits :::  DecimalDigits DecimalDigit is (the MV of DecimalDigits times 10) plus the MV 

of DecimalDigit. 

The MV of ExponentPart ::: ExponentIndicator SignedInteger is the MV of SignedInteger. 

The MV of SignedInteger ::: DecimalDigits is the MV of DecimalDigits. 

The MV of SignedInteger ::: + DecimalDigits is the MV of DecimalDigits. 

The MV of SignedInteger ::: -  DecimalDigits is the negative of the MV of DecimalDigits. 

The MV of DecimalDigit :::  0 or of HexDigit :::  0 is 0. 

The MV of DecimalDigit :::  1 or of HexDigit :::  1 is 1. 

The MV of DecimalDigit :::  2 or of HexDigit :::  2 is 2. 

The MV of DecimalDigit :::  3 or of HexDigit :::  3 is 3. 

The MV of DecimalDigit :::  4 or of HexDigit :::  4 is 4. 

The MV of DecimalDigit :::  5 or of HexDigit :::  5 is 5. 

The MV of DecimalDigit :: : 6 or of HexDigit :::  6 is 6. 

The MV of DecimalDigit :::  7 or of HexDigit :::  7 is 7. 

The MV of DecimalDigit :::  8 or of HexDigit :::  8 is 8. 

The MV of DecimalDigit :::  9 or of HexDigit :::  9 is 9. 

The MV of HexDigit :::  a or of HexDigit :::  A is 10. 

The MV of HexDigit :::  b or of HexDigit :::  B is 11. 



- 40 -  

27 October 2008 

The MV of HexDigit :::  c  or of HexDigit :::  C is 12. 

The MV of HexDigit :::  d or of HexDigit :::  D is 13. 

The MV of HexDigit :::  e or of HexDigit :::  E is 14. 

The MV of HexDigit :::  f  or of HexDigit :::  F is 15. 

The MV of HexIntegerLiteral :::  0x  HexDigit is the MV of HexDigit. 

The MV of HexIntegerLiteral :::  0X HexDigit is the MV of HexDigit. 

The MV of HexIntegerLiteral :::  HexIntegerLiteral HexDigit is (the MV of HexIntegerLiteral times 16) plus the 

MV of HexDigit. 

Once the exact MV for a string numeric literal has been determined, it is then rounded to a value of the 

Number type. If the MV is 0, then the rounded value is +0 unless the first non white space character in 

the string numeric literal is ó-ô, in which case the rounded value is 0. Otherwise, the rounded value 

must be the number value for the MV (in the sense defined in 8.5), unless the literal includes a 

StrUnsignedDecimalLiteral and the literal has more than 20 significant digits, in which case the number 

value may be either the number value for the MV of a literal produced by replacing each significant digit 

after the 20th with a 0 digit or the number value for the MV of a literal produced by replacing each 

significant digit after the 20th with a 0 digit and then incrementing the literal at the 20th digit position. A 

digit is significant if it is not part of an ExponentPart and 

it is not 0; or 

there is a nonzero digit to its left and there is a nonzero digit, not in the ExponentPart, to its right. 

9.4 ToInteger 

The operator ToInteger converts its argument to an integral numeric value. This operator functions as 

follows: 

1. Call ToNumber on the input argument. 

2. If Result(1) is NaN, return +0. 

3. If Result(1) is +0, 0, + , or , return Result(1). 

4. Compute sign(Result(1)) * floor(abs(Result(1))). 

5. Return Result(4). 

9.5 ToInt32: (Signed 32 Bit Integer) 

The operator ToInt32 converts its argument to one of 2
32

 integer values in the range 2
31

 through 2
31

1, 

inclusive. This operator functions as follows: 

1. Call ToNumber on the input argument. 

2. If Result(1) is NaN, +0, 0, + , or , return +0. 

3. Compute sign(Result(1)) * floor(abs(Result(1))). 

4. Compute Result(3) modulo 2
32

; that is, a finite integer value k of Number type with positive sign and 

less than 2
32

 in magnitude such the mathematical difference of Result(3) and k is mathematically an 

integer multiple of 2
32

. 

5. If Result(4) is greater than or equal to 2
31

, return Result(4) 2
32

, otherwise return Result(4). 

NOTE 

Given the above definition of ToInt32: 

The ToInt32 operation is idempotent: if applied to a result that it produced, the second application leaves that value 

unchanged. 

ToInt32(ToUint32(x)) is equal to ToInt32(x) for all values of x. (It is to preserve this latter property that +  and  

are mapped to +0.) 

ToInt32 maps 0 to +0. 

9.6 ToUint32: (Unsigned 32 Bit Integer) 

The operator ToUint32 converts its argument to one of 2
32

 integer values in the range 0 through 2
32

1, 

inclusive. This operator functions as follows: 

1. Call ToNumber on the input argument. 

2. If Result(1) is NaN, +0, 0, + , or , return +0. 



- 41 -  

27 October 2008 

3. Compute sign(Result(1)) * floor(abs(Result(1))). 

4. Compute Result(3) modulo 2
32

; that is, a finite integer value k of Number type with positive sign and 

less than 2
32

 in magnitude such the mathematical difference of Result(3) and k is mathematically an 

integer multiple of 2
32

. 

5. Return Result(4). 

 

NOTE 

Given the above definition of ToUInt32: 

Step 5 is the only difference between ToUint32 and ToInt32. 

The ToUint32 operation is idempotent: if applied to a result that it produced, the second application leaves that value 

unchanged. 

ToUint32(ToInt32(x)) is equal to ToUint32(x) for all values of x. (It is to preserve this latter property that + and  

are mapped to +0.) 

ToUint32 maps 0 to +0. 

9.7 ToUint16: (Unsigned 16 Bit Integer) 

The operator ToUint16 converts its argument to one of 2
16

 integer values in the range 0 through 2
16

1, 

inclusive. This operator functions as follows: 

1. Call ToNumber on the input argument. 

2. If Result(1) is NaN, +0, 0, + , or , return +0. 

3. Compute sign(Result(1)) * floor(abs(Result(1))). 

4. Compute Result(3) modulo 2
16

; that is, a finite integer value k of Number type with positive sign and 

less than 2
16

 in magnitude such the mathematical difference of Result(3) and k is mathematically an 

integer multiple of 2
16

. 

5. Return Result(4). 

NOTE 

Given the above definition of ToUint16: 

The substitution of 216 for 232 in step 4 is the only difference between ToUint32 and ToUint16. 

ToUint16 maps 0 to +0. 

9.8 ToString  

The operator ToString converts its argument to a value of type String according to the following table: 

 

Input Type Result 

Undefined "undefined"  

Null "null"  

Boolean If the argument is true, then the result is "true" . 

If the argument is false, then the result is "false" . 

Number See note below. 

String Return the input argument (no conversion) 

Object Apply the following steps: 

1. Call ToPrimitive(input argument, hint String). 

2. Call ToString(Result(1)). 

3. Return Result(2). 

 

9.8.1 ToString Applied to the Number Type 

The operator ToString converts a number m to string format as follows: 

1. If m is NaN, return the string "NaN" . 



- 42 -  

27 October 2008 

2. If m is +0 or 0, return the string "0" . 

3. If m is less than zero, return the string concatenation of the string " - "  and ToString( m). 

4. If m is infinity, return the string "Infinity" . 

5. Otherwise, let n, k, and s be integers such that k  1, 10
k 1

  s < 10
k
, the number value for s  10

n k
 is 

m, and k is as small as possible. Note that k is the number of digits in the decimal representation of s, 

that s is not divisible by 10, and that the least significant digit of s is not necessarily uniquely 

determined by these criteria. 

6. If k  n  21, return the string consisting of the k digits of the decimal representation of s (in order, 

with no leading zeroes), followed by n k occurrences of the character ó0ô. 

7. If 0 < n  21, return the string consisting of the most significant n digits of the decimal representation 

of s, followed by a decimal point ó. ô, followed by the remaining k n digits of the decimal 

representation of s. 

8. If 6 < n  0, return the string consisting of the character ó0ô, followed by a decimal point ó. ô, 

followed by n occurrences of the character ó0ô, followed by the k digits of the decimal 

representation of s. 

9. Otherwise, if k = 1, return the string consisting of the single digit of s, followed by lowercase 

character óeô, followed by a plus sign ó+ô or minus sign óô according to whether n 1 is positive or 

negative, followed by the decimal representation of the integer abs(n 1) (with no leading zeros). 

10. Return the string consisting of the most significant digit of the decimal representation of s, followed 

by a decimal point ó.ô, folloarwed by the remaining k 1 digits of the decimal representation of s, 

followed by the lowercase character óeô, followed by a plus sign ó+ô or minus sign óô according to 

whether n 1 is positive or negative, followed by the decimal representation of the integer abs(n1) 

(with no leading zeros). 

NOTE 

The following observations may be useful as guidelines for implementations, but are not part of the normative 

requirements of this Standard: 

If x is any number value other than 0, then ToNumber(ToString(x)) is exactly the same number value as x. 

The least significant digit of s is not always uniquely determined by the requirements listed in step 5. 

For implementations that provide more accurate conversions than required by the rules above, it is recommended 

that the following alternative version of step 5 be used as a guideline: 

Otherwise, let n, k, and s be integers such that k  1, 10k 1  s < 10k, the number value for s  10n k is m, and k is 

as small as possible. If there are multiple possibilities for s, choose the value of s for which s  10n k is closest in 

value to m. If there are two such possible values of s, choose the one that is even. Note that k is the number of 

digits in the decimal representation of s and that s is not divisible by 10. 

Implementors of ECMAScript may find useful the paper and code written by David M. Gay for binary-to-decimal 

conversion of floating-point numbers: 

Gay, David M. Correctly Rounded Binary-Decimal and Decimal-Binary Conversions. Numerical Analysis 

Manuscript 90-10. AT&T Bell Laboratories (Murray Hill, New Jersey). November 30, 1990. Available as 

http://cm.bell - labs.com/cm/cs/doc/90/4 - 10.ps.gz . Associated code available as 

http://cm.bell - labs.com/netlib/fp/dtoa.c.gz  and as http://cm.bell -

labs.com/netlib/fp/g_fmt.c.gz  and may also be found at the various netlib  mirror sites. 

9.9 ToObject 

The operator ToObject converts its argument to a value of type Object according to the following table: 

Input Type Result 

Undefined Throw a TypeError  exception. 

Null Throw a TypeError  exception. 

Boolean Create a new Boolean object whose [[PrimitiveValue]] property is set to the value 

of the boolean. See 15.6 for a description of Boolean objects. 

Number Create a new Number object whose [[PrimitiveValue]] property is set to the value 

of the number. See 15.7 for a description of Number objects. 

Decimal Create a new Decimal object whose [[PrimitiveValue]] property is set to the value 

Deleted: value

Deleted: value



- 43 -  

27 October 2008 

of the decimal. See 15.7 for a description of Decimal objects. 

String Create a new String object whose [[PrimitiveValue]] property is set to the value of 

the string. See 15.5 for a description of String objects. 

Object The result is the input argument (no conversion). 

9.10 IsCallable 

The operator IsCallable determines if its argument is a callable function Object according to the following 

table: 

Input Type Result 

Undefined Return false. 

Null Return false. 

Boolean Return false. 

Number Return false. 

Decimal Return false. 

String Return false. 

Object If the argument object has an internal [[Call]] method, then return true, otherwise 

return false. 

10 Execution Contexts 

When control is transferred to ECMAScript executable code, control is entering an execution context. Active 

execution contexts logically form a stack. The top execution context on this logical stack is the running 

execution context. 

10.1 Definitions 

10.1.1 Function Objects 

There are two types of Function objects: 

Program functions are defined in source text by a FunctionDeclaration or created dynamically either by 

using a FunctionExpression or by using the built-in Function  object as a constructor. 

Internal functions are built-in objects of the language, such as parseInt  and Math.exp . An 

implementation may also provide implementation-dependent internal functions that are not described 

in this specification. These functions do not necessarily contain executable code defined by the 

ECMAScript grammar, in which case they are excluded from this discussion of execution contexts. 

10.1.2 Types of Executable Code 

There are five types of ECMAScript executable code: 

Global code is source text that is treated as an ECMAScript Program. The global code of a particular 

Program does not include any source text that is parsed as part of a Block or a FunctionBody except 

that it does include the code of any VariableDeclaration that is parsed as part of such a Block or as 

part of a Block nested at any level within such a Block. 

Eval code is the source text supplied to the built-in eval  function. More precisely, if the parameter to 

the built-in eval  function is a string, it is treated as an ECMAScript Program. The eval code for a 

particular invocation of eval  is the global code portion of the string parameter. The eval code for a 

particular invocation of eval  does not include any source text that is parsed as part of a Block or a 

FunctionBody except that it does include the code of any VariableDeclaration that is parsed as part of 

such a Block or as part of a Block nested at any level within such a Block. 

Function code is source text that is parsed as part of a FunctionBody. The function code of a particular 

FunctionBody does not include any source text that is parsed as part of a Block or a FunctionBody 

except that it does include the code of any VariableDeclaration that is parsed as part of such a Block 

or as part of a Block nested at any level within such a Block. 

Deleted: value

Deleted: so 

Deleted: three 

Deleted: FunctionBody.

Deleted: The function code of a particular 
FunctionBody does not include any source text 

that is parsed as part of a nested FunctionBody. 



- 44 -  

27 October 2008 

Function code also denotes the source text supplied when using the built-in Function  object as a 

constructor. More precisely, the last parameter provided to the Function  constructor is converted to 

a string and treated as the FunctionBody. If more than one parameter is provided to the Function  

constructor, all parameters except the last one are converted to strings and concatenated together, 

separated by commas. The resulting string is interpreted as the FormalParameterList for the 

FunctionBody defined by the last parameter. The function code for a particular instantiation of a 

Function  does not include any source text that is parsed as part of a nested FunctionBody. The 

function code for a particular instantiation of a Function  does not include any source text that is 

parsed as part of a Block or a FunctionBody except that it does include the code of any 

VariableDeclaration that is parsed as part of such a Block or as part of a Block nested at any level 

within such a Block. 

Lexical Block code is the source code that that is parsed as the StatementList of a Block. The lexical 

block  code of a particular StatementList does not include any source text that is parsed as part of a 

nested FunctionBody or Block. 

10.1.2.1 Applying Usage Subsets to Executable code 

Each occurence of one of these types of code may be restricted to use a defined subset of the complete 

ECMAScript language. 

 Global code and function code supplied as the last argument to the Function constructor are 

unrestricted unless the Program that defines the code includes a UseSubsetDirective. 

 Eval code inherits the restrictions of the execution context in which the eval operator appears, 

but its execution context may be further restricted if the Program that defines the eval code 

includes a UseSubsetDirective. In that case, the restrictions of the execution context are the union 

of the restrictions of the inherited execution context and the restrictions specified by the 

UseSubsetDirective. Such a unioning of restrictions is the equivalent of intersecting the specified 

usage subsets. 

 Function code made by evaluating a FunctionDeclaration or a FunctionExpression, and lexical 

block code all inherit the restrictions of the execution context in which the evaluation occurs. 

10.1.3 Environment Bindings Instantiation  

Every execution context has associated with it a environment object. For all kinds of execution contexts, 

constants and functions declared in the source text are added as properties of the environment object. For 

global code, eval code, and function code variables declared in the source text are also added as 

properties of the environment object. For function code, parameters are added as properties of the 

environment object. 

Which object is used as the environment object and what attributes are used for the properties depends 

on the type of code, but the remainder of the behaviour is generic. On entering an execution context, the 

properties are bound to the environment object in the following order: 

For function code: for each formal parameter, as defined in the FormalParameterList, create a named 

data property of the environment object whose name is the Identifier and whose attributes are 

determined by the type of code. The values of the parameters are supplied by the caller as arguments 

to [[Call]]. If the caller supplies fewer parameter values than there are formal parameters, the extra 

formal parameters have value undefined. If two or more formal parameters share the same name, 

hence the same property, the corresponding property is given the value that was supplied for the last 

parameter with this name. If the value of this last parameter was not supplied by the caller, the value 

of the corresponding property is undefined. 

For lexical block code: if the lexical block has any block parameters, create for each block parameter a 

named data property of the environment object whose name, value, are determined by evaluation 

context of the Block and whose attributes are {[[Writable]]: true , [[Enumerable]]: false, 

[[Configurable: false]]}. Only a TryStatement creates lexical block contexts with block parameters. 

For all of the FunctionDeclaration and ConstantDeclaration in the code perform the following 

algorithm. Semantically, this step must follow the creation of FormalParameterList or block 

parameter properties. 

Deleted: Variable 

Deleted: variable 

Deleted: Variables 

Deleted: variable 

Deleted: variable 

Deleted: variable 

Deleted: variable 

Deleted: variable 

Comment [pL23]: From AWB: 
Should duplicate formal parameter names be restricted in 

the cautious subset? 

Deleted: each FunctionDeclaration in the code, in 

source text order

Deleted: variable 

Deleted:  is the Identifier in the 
FunctionDeclaration, whose value is the result 

returned by creating a Function object as described in 
13, and whose attributes are determined by the type of 

code. If the variable object already has a property with 

this name, replace its value and attributes



- 45 -  

27 October 2008 

1. Let CTX be the current execution context and its associated environment object. 

2. For each FunctionDeclaration and ConstantDeclaration, D in the code in source code order, 

a. Let N  be the Identifier in D. 

b. If D is a ConstantDeclaration then 

i. If CTX already contains a property named N, throw a SyntaxError  exception. 

ii.  Create a named data property in CTX whose name is N, whose [[Const]] attribute is 

Unitialized , whose [[Writable]] attribute is false,  and whose value is set to 

undefined. 

c. If D is a FunctionDeclaration then  

i. If CTX already contains a property named N, then 

1. If CTX is the execution context of a Block, throw a SyntaxError exception. 

2. If the existing property has a [[Const]] attribute, throw a SyntaxError  

exception otherwise the value and attributes of the existing property will be 

replaced by the actions of step 2cii below. 

ii.  Create a named data property in CTX whose name is N and whose value is the result 

returned by creating a Function object as described in 13. 

d. Other attributes of the named data property are determined by the type of code 

For execution contexts that are not lexical blocks: For each VariableDeclaration or 

VariableDeclarationNoIn in the code (including VariableDeclarations contained within Blocks that 

are within the code), create a property of the environment object whose name is the Identifier in the 

VariableDeclaration or VariableDeclarationNoIn, whose value is undefined and whose attributes 

are determined by the type of code. If there is already a property of the environment object with the 

name of a declared variable and the property has a [[Const]] attribute throw a SyntaxError  

exception, otherwise, the value of the existing property and its attributes are not changed. 

Semantically, this step must follow the creation of the FormalParameterList and the 

FunctionDeclaration and ConstantDeclaration properties. In particular, if a declared variable has the 

same name as a declared function or formal parameter, the variable declaration does not disturb the 

existing property. 

10.1.3.1 Usage Subset Restrictions 

When defined within an execution context subset restricted to the strict  subset, a function may not 

have two or more formal parameters that have the same name. An attempt to create a such a function 

with conflicting parameters names will fail, either statically, if expressed as a FunctionDeclaration or 

FunctionExpression, or dynamically by throwing a SyntaxError  exception, if expressed in a call to 

the Function  constructor. 

10.1.4 Scope Chain and Identifier Resolution 

Every execution context has associated with it a scope chain. A scope chain is a list of objects that are 

searched when evaluating an Identifier. When control enters an execution context, a scope chain is 

created and populated with an initial set of objects, depending on the type of code. During execution 

within an execution context, the scope chain of the execution context is affected only by Blocks, with  

statements (see 12.10) and catch  clauses (see 12.14). 

During execution, the syntactic production PrimaryExpression : Identifier is evaluated using the 

following algorithm: 

1. Get the next object in the scope chain. If there isn't one, go to step 5. 

2. Call the [[HasProperty]] method of Result(1), passing the Identifier as the property name. 

3. If Result(2) is true , return a value of type Reference whose base object is Result(1) and whose 

property name is the Identifier. 

4. Go to step 1. 

5. Return a value of type Reference whose base object is null  and whose property name is the 

Identifier. 

The result of evaluating an identifier is always a value of type Reference with its member name 

component equal to the identifier string. 

Comment [pL24]: From MSM: 
 

Actually, this error must be reported at scan time. 

Deleted: variable 

Deleted: variable 



- 46 -  

27 October 2008 

10.1.5 Global Object 

There is a unique global object (15.1), which is created before control enters any execution context. 

Initially the global object has the following properties: 

Standard built-in objects such as Math, String, Date, parseInt, etc. These have attributes {  

[[Enumerable]]: false }.  

Additional host defined properties. This may include a property whose value is the global object itself; 

for example, in the HTML document object model the window  property of the global object is the 

global object itself. 

As control enters execution contexts, and as ECMAScript code is executed, additional properties may be 

added to the global object and the initial properties may be changed. 

10.1.6 Activation Object  

When control enters an execution context for function code or a lexical block, an object called the 

activation object is created and associated with the execution context. 

If the execution context is for function code, the activation object is initialised with a property with name 

arguments  and attributes { [[Writable]]: true, [[Enumerable]]: false, [[Configurable]]: false }. The 

initial value of this property is the arguments object described below. 

The activation object is then used as the environment object for the purposes of environment bindings 

instantiation. 

The activation object is purely a specification mechanism. It is impossible for an ECMAScript program 

to access the activation object. It can access members of the activation object, but not the activation 

object itself. When the call operation is applied to a Reference value whose base object is an activation 

object, null  is used as the this value of the call. 

10.1.6.1 Usage Subset Restrictions 

For functions defined within an execution subset restricted to the strict subset, the activation 

object is only initialized with an ñargumentsò property if the function mentions ñargumentsò freely in 

its body. In which case the ñargumentsò property is initialized with attributes {[[Writable]]: false, 

[[Enumerable]]: false, [[Configurable]]: false}.  

10.1.7 This 

There is a this value associated with every active execution context. The this value depends on the caller 

and the type of code being executed and is determined when control enters the execution context. The 

this value associated with an execution context is immutable. 

10.1.8 Arguments Object 

When control enters an execution context for function code, an arguments object is created (see above) 

and initialised as follows: 

The value of the internal [[Prototype]] property of the arguments object is the original Array prototype 

object, the one that is the initial value of Array .prototype  (see 15.4.3.1). 

The value of the internal [[Class]] property is "Object" . 

A property is created with the name constructor  and attributes { [[Writable]]: true , [[Enumerable]]: 

false, [[Configurable]]: true}.  The initial value of this property is the standard builtin function 

named Object.A property is created with name callee  and property attributes { [[Writable]]: false, 

[[Enumerable]]: false, [[Configurable]]: false }. The initial value of this property is the Function 

object being executed. This allows anonymous functions to be recursive. 

A property is created with name length  and property attributes { [[Enumerable]]: false }. The initial 

value of this property is the number of actual parameter values supplied by the caller. 

For each non-negative integer, arg, less than the value of the length  property, a property is created 

with name ToString(arg) and property attributes { [[Writable]]: true, [[Enumerable]]: false, 

[[Configurable]]: false }. The initial value of this property is the value of the corresponding actual 

parameter supplied by the caller. The first actual parameter value corresponds to arg = 0, the second 

to arg = 1, and so on. In the case when arg is less than the number of formal parameters for the 

Function object, this property shares its value with the corresponding property of the activation 

Deleted: Built-in

Comment [pL25]: Need a normative list. 

Comment [pL26]: From AWB: 
It would desirable to also make this [[Writable]]: false, and 

[[Flexible]]:false but that may be too incompatable of a 

change. 

Deleted: DontEnum 

Deleted:  The

Deleted: DontDelete 

Deleted: variable 

Deleted: variable 

Comment [pL27]: From AWB: 
ñmentions freelyò needs to be more clearly defined. 

Comment [pL28]: ALP says: Deviations doc §2.4 raises 
concern over the representation of arguments.toString(). 

ES4 specifies Object.prototype.toString() here (see 

incompatibilities.pdf §3.4. 

Deleted: Object 

Comment [pL29]: This change is still creating 
controversy from the ES4 designers. 

Deleted: Object

Deleted: 2

Comment [pL30]: From AWB: 
This appears to be an observable change from ES3. Is that 

OK? 

Comment [pL31]: From AWB: 
This appears to be an observable change from ES3. Is that 

OK? 

Deleted: DontEnum 

Deleted: DontEnum 

Comment [pL32]: From AWB: 
Should other attributes also be specified like for callee? 

Comment [pL33]: From AWB: 
I assume tht it must be writable for backwards 

compatability. 

Deleted: DontEnum

Comment [pL34]: From AWB: 

This is a change ES3. Is it OK? 



- 47 -  

27 October 2008 

object. This means that changing this property changes the corresponding property of the activation 

object and vice versa. 

10.1.8.1 Usage Subset Restrictions 

For functions defined within an execution subset restricted to the strict subset, an arguments 

object is only created if the function mentions ñargumentsò freely in its body.  

If a arguments object is created, a callee  property is not created. 

The arguments object does not share properties with the activation object. Changing the value of a 

arguments object property does not change the value of the corresponding activation object property 

and vice versa. 

10.2 Entering An Execution Context 

Every function and constructor call enters a new execution context, even if a function is calling itself 

recursively. Every evalution of a Block enters enters a new execution context which is exited when the 

block evaluation completes. Every return exits an execution context. A thrown exception may also exit one 

or more execution contexts. 

When control enters an execution context, the scope chain is created and initialised, environment bindings  

instantiation is performed, and the this value is determined. 

The initialisation of the scope chain, variable instantiation, and the determination of the this value depend 

on the type of code being entered. 

10.2.1 Global Code 

The scope chain is created and initialised to contain the global object and no others. 

Environment bindings instantiation is performed using the global object as the environment object and 

using property attributes { [[Writable]]: true, [[Enumerable]]: true, [[Configurable]]: false }.  

The this value is the global object. 

10.2.2 Eval Code 

When control enters an execution context for eval code, the previous active execution context, referred 

to as the calling context, is used to determine the scope chain, the environment object, and the this value. 

If there is no calling context, then initialising the scope chain, environment bindings instantiation, and 

determination of the this value are performed just as for global code. 

The scope chain is initialised to contain the same objects, in the same order, as the calling context's 

scope chain. This includes objects added to the calling context's scope chain by Blocks, with  

statements and catch  clauses. 

Environment bindings instantiation is performed using the calling context's environment object and using 

the property attributes { [[Writable]]: true, [[Enumerable]]: true, [[Configurable]]: true } . 

The this value is the same as the this value of the calling context. 

10.2.2.1 Usage Subset Restrictions 

If either the execution context for the eval code or the execution context in which the eval operator 

was executed is subset restricted to the strict subset, the eval code cannot instantiate variables, 

functions, or constants in the lexical context of its eval operator. 

Instead, a new environment object is created and appended to the head of the calling contextôs scope 

chain and that environment object is used for environment bindings instantiation of the eval code. 

10.2.3 Function Code 

The scope chain is initialised to contain the activation object followed by the objects in the scope chain 

stored in the [[Scope]] property of the Function object. 

Environment bindings instantiation is performed using the activation object as the environment object 

and using property attributes { [[Writable]]: true, [[Enumerable]]: true, [[Configurable]]: false }.  

The caller provides the this value. 

Comment [pL35]: From AWB: 
There are two  better alternatives for defining this 

algorithmicly.  Either define is parameter property as 
a getter/setter pair or provided an alternative 

definition of the [[TrhowablePut]] in ternal property. 

Comment [pL36]: From AWB: 
ñmentions freelyò needs to be more clearly defined. 

Deleted: , if not caught,

Deleted: variable 

Deleted: Variable 

Deleted: variable 

Deleted: DontDelete 

Deleted: variable 

Deleted: variable 

Deleted: Variable 

Deleted: variable 

Deleted: empty 

Deleted: Variable 

Deleted: variable 

Deleted: DontDelete 

Deleted:  If the this value provided by the 

caller is not an object (including the case where 

it is null ), then the this value is the global 

object.



- 48 -  

27 October 2008 

10.2.4 Lexical Block Code 

A new activation object is created for use as the environment object. The scope chain is initialised to 

contain the new activation object followed by the objects in the current execution contextôs scope chain. 

Environment bindings instantiation is performed using the new object as the environment object and 

using property attributes { [[Writable]]: false, [[Enumerable]]: false, [[Configurable]]: false }. 

The this value is the same as the this value of the previously current context. 

11 Expressions 

11.1 Primary Expressions 

Syntax  

PrimaryExpression : 
this  

Identifier 

Literal 

ArrayLiteral 

ObjectLiteral 

(  Expression )  

11.1.1 The this  Keyword  

The this  keyword evaluates to the this value of the execution context. 

11.1.2 Identifier Reference 

An Identifier is evaluated using the scoping rules stated in 10.1.4. The result of evaluating an Identifier 

is always a value of type Reference. 

11.1.3 Literal Reference 

A Literal is evaluated as described in 7.8. 

11.1.4 Array Initialiser  

An array initialiser is an expression describing the initialisation of an Array object, written in a form of a 

literal. It is a list of zero or more expressions, each of which represents an array element, enclosed in 

square brackets. The elements need not be literals; they are evaluated each time the array initialiser is 

evaluated. 

Array elements may be elided at the beginning, middle or end of the element list. Whenever a comma in 

the element list is not preceded by an AssignmentExpression (i.e., a comma at the beginning or after 

another comma), the missing array element contributes to the length of the Array and increases the index 

of subsequent elements. Elided array elements are not defined. If an element is elided at the end of an 

array, that element does not contribute to the length of the Array. 

Syntax  

ArrayLiteral : 

[ Elisionopt ]  

[ ElementList ]  

[ ElementList , Elisionopt ]  

ElementList : 

Elisionopt AssignmentExpression 

ElementList , Elisionopt AssignmentExpression 

Elision : 

, 

Elision , 

Semantics 

The production  ArrayLiteral :  [ Elisionopt ]   is evaluated as follows: 

Comment [pL37]: From MSM: 
 

Fix this according to the Redmond agreement. 

Comment [pL38]: From AWB: 
This really should be specified in the grammar if it isnôt 

already. 



- 49 -  

27 October 2008 

1. Create a new object as if by the expression new Array()  where Array is the standard built-in 

constructor with that name. 

2. Evaluate Elision; if not present, use the numeric value zero. 

3. Call the [[Put]] method of Result(1) with arguments " length "  and Result(2). 

4. Return Result(1). 

The production  ArrayLiteral :  [ ElementList ]   is evaluated as follows: 

1. Evaluate ElementList. 

2. Return Result(1). 

The production  ArrayLiteral : [ ElementList , Elisionopt ]   is evaluated as follows: 

1. Evaluate ElementList. 

2. Evaluate Elision; if not present, use the numeric value zero. 

3. Call the [[Get]] method of Result(1) with argument " length " . 

4. Call the [[Put]] method of Result(1) with arguments " length "  and (Result(2)+Result(3)). 

5. Return Result(1). 

The production  ElementList :   Elisionopt AssignmentExpression  is evaluated as follows: 

1. Create a new object as if by the expression new Array()  where Array is the standard built-in 

constructor with that name. 

2. Evaluate Elision; if not present, use the numeric value zero. 

3. Evaluate AssignmentExpression. 

4. Call GetValue(Result(3)). 

5. Call the [[Put]] method of Result(1) with arguments Result(2) and Result(4). 

6. Return Result(1) 

The production  ElementList :   ElementList , Elisionopt AssignmentExpression  is evaluated as follows: 

1. Evaluate ElementList. 

2. Evaluate Elision; if not present, use the numeric value zero. 

3. Evaluate AssignmentExpression. 

4. Call GetValue(Result(3)). 

5. Call the [[Get]] method of Result(1) with argument " length " . 

6. Call the [[Put]] method of Result(1) with arguments (Result(2)+Result(5)) and Result(4). 

7. Return Result(1) 

The production  Elision :  ,  is evaluated as follows: 

1. Return the numeric value 1. 

 

The production  Elision :  Elision ,  is evaluated as follows: 

Evaluate Elision. 

2. Return (Result(1)+1). 

NOTE: 

The use of [[Put]] rather than [[ThrowablePut]] in this section is intentional as there are no situations 

where these [[Put]] operations should fail. 

11.1.5 Object Initialiser  

An object initialiser is an expression describing the initialisation of an Object, written in a form 

resembling a literal. It is a list of zero or more pairs of property names and associated values, enclosed in 

curly braces. The values need not be literals; they are evaluated each time the object initialiser is 

evaluated. 

Syntax  

Deleted: array 

Deleted: array 



- 50 -  

27 October 2008 

ObjectLiteral : 
{ }  

{ PropertyNameAndValueList }  

{ PropertyNameAndValueList , }  

PropertyNameAndValueList : 

PropertyAssignment 

PropertyNameAndValueList ,  PropertyAssignment 

PropertyAssignment : 

PropertyName : AssignmentExpression 

get PropertyName ( ) { FunctionBody } 

set PropertyName ( PropertySetParameterList ) { FunctionBody } 

PropertyName : 

IdentifierName 

StringLiteral 

NumericLiteral 

PropertySetParameterList : 

Identifier 

Semantics 

The production  ObjectLiteral :   {  }   is evaluated as follows: 

1. Create a new object as if by the expression new Object()  where Object  is the standard built-in 

constructor with that name. 

2. Return Result(1). 

The productions ObjectLiteral :  {  PropertyNameAndValueList }  and {  PropertyNameAndValueList , }  

are evaluated as follows: 

1. Evaluate PropertyNameAndValueList. 

2. Return Result(1); 

The production 

     PropertyNameAndValueList :  PropertyAssignment 

is evaluated as follows: 

1. Create a new object as if by the expression new Object()  where Object  is the standard built-in 

constructor with that name. 

2. Evaluate PropertyAssignment. 

3. Call the [[DefineOwnProperty]] method of Result(1) with arguments Result(2).name, 

Result(2).descriptor, false. 

4. Return Result(1). 

The production 

     PropertyNameAndValueList :  PropertyNameAndValueList , PropertyAssignment 

is evaluated as follows: 

1. Evaluate PropertyNameAndValueList. 

2. Evaluate PropertyAssignment. 

3. Call the [[DefineOwnProperty]] method of Result(1) with arguments (Result(2).name, 

Result(2).descriptor, false). 

4. Return Result(1). 

The production  PropertyAssignment :  PropertyName : AssignmentExpression is evaluated as follows: 

1. Evaluate PropertyName. 

2. Evaluate AssignmentExpression. 

Deleted: PropertyName : AssignmentExpression

Deleted: PropertyName : AssignmentExpression

Deleted: is 

Deleted: PropertyName : AssignmentExpression

Deleted: PropertyName

Deleted: <#>Evaluate AssignmentExpression.¶

Comment [pL39]: Object literal property definition 
should never cause [[DefineProperty]] to throw; so, false is 
fine here. 

Deleted: GetValue(Result(3))

Deleted: <#>Call the [[Put]] method of Result(1) 
with arguments Result(2) and Result(4).¶

Deleted: PropertyName : AssignmentExpression

Deleted: PropertyName

Deleted: <#>Evaluate AssignmentExpression.¶

Deleted: GetValue(Result(3))

Deleted: <#>Call the [[Put]] method of Result(1) 
with arguments Result(2) and Result(4).¶



- 51 -  

27 October 2008 

3. Call GetValue(Result(2)). 

4. Create Property Descriptor{[[Value]]: Result(2), [[Writable]]: true , [[Enumerable]]: true , 

[[ Configurable]]: true}  

5. Return Property Identifer (Result(1), Result(4)). 

The production  PropertyAssignment : get PropertyName ( ) { FunctionBody } is evaluated as follows: 

1. Evaluate PropertyName. 

2. Create a new Function object as specified in 13.2 with an empty parameter list and body specified by 

FunctionBody. Pass in the scope chain of the running execution context as the Scope. 

3. Create Property Descriptor{[[Getter]]: Result(2), [[Enumerable]]: true , [[Configurable]]: true}  

4. Return Property Identifier (Result(1), Result(3)). 

The production  PropertyAssignment :  set PropertyName ( PropertySetParameterList ) { FunctionBody } 

is evaluated as follows: 

1. Evaluate PropertyName. 

2. Create a new Function object as specified in 13.2 with parameters specified by 

PropertySetParameterList and body specified by FunctionBody. Pass in the scope chain of the 

running execution context as the Scope. 

3. Create Property Descriptor{[[Setter]]: Result(2), [[Enumerable]]: true , [[Configurable]]: true}  

4. Return Property Identifier (Result(1), Result(3)). 

The production  PropertyName :  IdentifierName  is evaluated as follows: 

1. Form a string literal containing the same sequence of characters as the IdentifierName. 

2. Return Result(1). 

The production  PropertyName :  StringLiteral  is evaluated as follows: 

1. Return the value of the StringLiteral. 

 

The production  PropertyName : NumericLiteral  is evaluated as follows: 

1. Form the value of the NumericLiteral. 

2. Return ToString(Result(1)). 

11.1.6 The Grouping Operator 

The production PrimaryExpression :  (  Expression )  is evaluated as follows: 

1. Evaluate Expression. This may be of type Reference. 

2. Return Result(1). 

NOTE 

This algorithm does not apply GetValue to Result(1). The principal motivation for this is so that 

operators such as delete  and typeof  may be applied to parenthesised expressions. 

11.2 Left -Hand-Side Expressions 

Syntax  

MemberExpression : 

PrimaryExpression 

FunctionExpression 

MemberExpression [  Expression ]  

MemberExpression .  IdentifierName 

new MemberExpression Arguments 

NewExpression : 

MemberExpression 

new NewExpression 



- 52 -  

27 October 2008 

CallExpression : 

MemberExpression Arguments 

CallExpression Arguments 

CallExpression [  Expression ]  

CallExpression .  IdentifierName 

Arguments : 
(  )  

(  ArgumentList  )  

ArgumentList : 

AssignmentExpression 

ArgumentList ,  AssignmentExpression 

LeftHandSideExpression : 

NewExpression 

CallExpression 

11.2.1 Property Accessors 

Properties are accessed by name, using either the dot notation: 

MemberExpression .  IdentifierName 

CallExpression .  IdentifierName 

or the bracket notation: 

MemberExpression [  Expression ]  

CallExpression [  Expression ]  

The dot notation is explained by the following syntactic conversion: 

MemberExpression .  IdentifierName 

is identical in its behaviour to 

MemberExpression [  <identifier-name-string> ]  

and similarly 

CallExpression .  IdentifierName 

is identical in its behaviour to 

CallExpression [  <identifier-name-string> ]  

where <identifier-name-string> is a string literal containing the same sequence of characters as the 

IdentifierName. 

The production MemberExpression : MemberExpression [  Expression ]  is evaluated as follows: 

1. Evaluate MemberExpression. 

2. Call GetValue(Result(1)). 

3. Evaluate Expression. 

4. Call GetValue(Result(3)). 

5. Call ToObject(Result(2)). 

6. Call ToString(Result(4)). 

7. Return a value of type Reference whose base object is Result(5) and whose property name is 

Result(6). 

The production CallExpression : CallExpression [  Expression ]  is evaluated in exactly the same 

manner, except that the contained CallExpression is evaluated in step 1. 



- 53 -  

27 October 2008 

11.2.2 The new Operator  

The production NewExpression : new NewExpression is evaluated as follows: 

1. Evaluate NewExpression. 

2. Call GetValue(Result(1)). 

3. If Type(Result(2)) is not Object, throw a TypeError  exception. 

4. If Result(2) does not implement the internal [[Construct]] method, throw a TypeError  exception. 

5. Call the [[Construct]] method on Result(2), providing no arguments (that is, an empty list of 

arguments). 

6. Return Result(5). 

The production MemberExpression : new MemberExpression Arguments is evaluated as follows: 

1. Evaluate MemberExpression. 

2. Call GetValue(Result(1)). 

3. Evaluate Arguments, producing an internal list of argument values (11.2.4). 

4. If Type(Result(2)) is not Object, throw a TypeError  exception. 

5. If Result(2) does not implement the internal [[Construct]] method, throw a TypeError  exception. 

6. Call the [[Construct]] method on Result(2), providing the list Result(3) as the argument values. 

7. Return Result(6). 

11.2.3 Function Calls 

The production CallExpression : MemberExpression Arguments is evaluated as follows: 

1. Evaluate MemberExpression. 

2. Call GetValue(Result(1)). 

3. Evaluate Arguments, producing an internal list of argument values (see 11.2.4). 

4. If Type(Result(2)) is not Object, throw a TypeError  exception. 

5. If IsCallable(Result(2)) is false,, throw a TypeError  exception. 

6. If Type(Result(1)) is Reference, Result(6) is GetBase(Result(1)). Otherwise, Result(6) is null . 

7. If Result(6) is an activation object, Result(7) is null . Otherwise, Result(7) is the same as Result(6). 

8. Call the [[Call]] method on Result(2), providing Result(7) as the this value and providing the list 

Result(3) as the argument values. 

9. Return Result(8). 

The production CallExpression :  CallExpression Arguments  is evaluated in exactly the same manner, 

except that the contained CallExpression is evaluated in step 1. 

NOTE 

Result(8) will never be of type Reference if Result(2) is a native ECMAScript object. Whether calling a 

host object can return a value of type Reference is implementation-dependent. 

11.2.4 Argument Lists 

The evaluation of an argument list produces an internal list of values (see 8.8). 

The production Arguments : ( )  is evaluated as follows: 

1. Return an empty internal list of values. 

The production Arguments : ( ArgumentList )  is evaluated as follows: 

1. Evaluate ArgumentList. 

2. Return Result(1). 

The production ArgumentList :  AssignmentExpression is evaluated as follows: 

1. Evaluate AssignmentExpression. 

2. Call GetValue(Result(1)). 

3. Return an internal list whose sole item is Result(2). 

The production ArgumentList :  ArgumentList , AssignmentExpression is evaluated as follows: 

Deleted: <#>Call GetValue(Result(1)).¶

Deleted: 3

Deleted: 3

Deleted:  does not implement the internal 
[[Call]] method

Deleted: 3

Deleted: 2

Deleted: 3

Comment [pL40]: We wanted to remove this  
possibility but have not done so because this could 

break bridging to VBScript. Cannot afford to do that 
as VBScript is still used in the intranet. 



- 54 -  

27 October 2008 

1. Evaluate ArgumentList. 

2. Evaluate AssignmentExpression. 

3. Call GetValue(Result(2)). 

4. Return an internal list whose length is one greater than the length of Result(1) and whose items are 

the items of Result(1), in order, followed at the end by Result(3), which is the last item of the new 

list. 

11.2.5 Function Expressions 

The production MemberExpression : FunctionExpression is evaluated as follows: 

1. Evaluate FunctionExpression. 

2. Return Result(1). 

11.3 Postfix Expressions 

Syntax  

PostfixExpression : 

LeftHandSideExpression 

LeftHandSideExpression [no LineTerminator here] ++ 

LeftHandSideExpression [no LineTerminator here] --  

11.3.1 Postfix Increment Operator 

The production PostfixExpression :  LeftHandSideExpression [no LineTerminator here] ++ is evaluated as 

follows: 

1. Evaluate LeftHandSideExpression. 

2. Call GetValue(Result(1)). 

3. If Type(Result(2)) is Decimal, then 

a. Perform IEEE 754-2008 Decimal addition with arguments Result(2) and the decimal value 

1m. 

b. Call PutValue(Result(1), Result(3a), false). 

c. Return Result(1). 

4. Call ToNumber(Result(2)). 

5. Add the value 1 to Result(4), using the same rules as for the + operator (see 11.6.3). 

6. Call PutValue(Result(1), Result(5), false). 

7. Return Result(5). 

11.3.1.1 Usage Subset Restrictions 

When a postfix increment operator occurs within an execution context that is subset restricted to the 

strict subset, its LeftHandSide must not be a reference to a property with the attribute value 

{[[Writable]]:  false}  nor to a non-existent property of an object whose [[Extensible]] property has the 

value false. In these cases a TypeError  exception is thrown. This is accomplished by replacing steps 

3b and 6 of the above algorithm with the following: 

3b. Call PutValue(Result(1), Result(3a), true). 

6.   Call PutValue(Result(1), Result(5), true). 

11.3.2 Postfix Decrement Operator 

The production PostfixExpression :  LeftHandSideExpression [no LineTerminator here] --  is evaluated as 

follows: 

1. Evaluate LeftHandSideExpression. 

2. Call GetValue(Result(1)). 

3. If Type(Result(2)) is Decimal, then 

a. Perform IEEE 754-2008 Decimal subtractaction with arguments Result(2) and the decimal 

value 1m. 

b. Call PutValue(Result(1), Result(3a), false). 

c. Return Result(1). 

4. Call ToNumber(Result(2)). 

5. Subtract the value 1 from Result(4), using the same rules as for the -  operator (11.6.3). 

Deleted: 3

Deleted: 4

Deleted: 3

Deleted: 3



- 55 -  

27 October 2008 

6. Call PutValue(Result(1), Result(5), false). 

7. Return Result(5). 

11.3.2.1 Usage Subset Restrictions 

The same restrictions apply as specified in section 11.3.1.1 for the postfix increment operator. 

11.4 Unary Operators 

Syntax  

UnaryExpression : 

PostfixExpression 

delete UnaryExpression 

void UnaryExpression 

typeof UnaryExpression 

++ UnaryExpression 

--  UnaryExpression 

+ UnaryExpression 

-  UnaryExpression 

~ UnaryExpression 

!  UnaryExpression 

11.4.1 The delete  Operator  

The production UnaryExpression :  delete  UnaryExpression is evaluated as follows: 

1. Evaluate UnaryExpression. 

2. If Type(Result(1)) is not Reference, return true . 

3. Call GetBase(Result(1)). 

4. Call GetPropertyName(Result(1)). 

5. Call the [[Delete]] method on Result(3), providing (Result(4), false) as the arguments. 

6. Return Result(5). 

11.4.1.1 Usage Subset Restrictions 

When a delete  operator occurs within an execution context that is subset restricted to the strict 

subset, its UnaryExpression is further limited to being a MemberExpression. In addition, if the 

property to be deleted is has the attribute { [[Configurable]]: false } , a TypeE rror exception is 

thrown. This is accomplished by replacing step 5 of the above algorithm with the following: 

5. Call the [[Delete]] method on Result(3), providing (Result(4), true) as the arguments. 

11.4.2 The void  Operator  

The production UnaryExpression :  void  UnaryExpression is evaluated as follows: 

1. Evaluate UnaryExpression. 

2. Call GetValue(Result(1)). 

3. Return undefined. 

11.4.3 The typeof  Operator  

The production UnaryExpression :  typeof  UnaryExpression is evaluated as follows: 

1. Evaluate UnaryExpression. 

2. If Type(Result(1)) is not Reference, go to step 4. 

3. If GetBase(Result(1)) is null , return "undefined" . 

4. Call GetValue(Result(1)). 

5. Return a string determined by Type(Result(4)) according to the following table: 

Deleted: 4

Deleted: 3

Deleted:  as the property name to delete



- 56 -  

27 October 2008 

Type Result 

Undefined "undefined"  

Null "object"  

Boolean "boolean"  

Number "number"  

Decimal "decimal"  

String "string"  

Object (native and 

doesnôt implement 

[[Call]])  

"object"  

Object (native and 

implements [[Call]]) 

"function"  

Object (host) Implementation-dependent 

11.4.4 Prefix Increment Operator  

The production UnaryExpression : ++ UnaryExpression is evaluated as follows: 

1. Evaluate UnaryExpression. 

2. Call GetValue(Result(1)). 

3. If Type(Result(2)) is Decimal, then 

a. Perform IEEE 754-2008 Decimal addition with arguments Result(2) and the decimal value 

1m. 

b. Call PutValue(Result(1), Result(3a), false). 

c. Return Result(1). 

4. Call ToNumber(Result(2)). 

5. Add the value 1 to Result(4), using the same rules as for the + operator (see 11.6.3). 

6. Call PutValue(Result(1), Result(5), false). 

7. Return Result(5). 

11.4.4.1 Usage Subset Restrictions 

The same restrictions apply as specified in section 11.3.1.1 for the postfix increment operator.  

11.4.5 Prefix Decrement Operator 

The production UnaryExpression : --  UnaryExpression is evaluated as follows: 

1. Evaluate UnaryExpression. 

2. Call GetValue(Result(1)). 

3. If Type(Result(2)) is Decimal, then 

a. Perform IEEE 754-2008 Decimal subtraction with arguments Result(2) and the decimal 

value 1m. 

b. Call PutValue(Result(1), Result(3a), false). 

c. Return Result(3a). 

4. Call ToNumber(Result(2)). 

5. Subtract the value 1 from Result(4), using the same rules as for the -  operator (see 11.6.3). 

6. Call PutValue(Result(1), Result(5), false). 

7. Return Result(5). 

11.4.5.1 Usage Subset Restrictions 

The same restrictions apply as specified in section 11.3.1.1 for the postfix increment operator.  

11.4.6 Unary + Operator  

The unary + operator converts its operand to Number type. 

The production UnaryExpression : + UnaryExpression is evaluated as follows: 

1. Evaluate UnaryExpression. 

2. Call GetValue(Result(1)). 

3. If Type(Result(2)) is Decimal, then 

Deleted: 3

Deleted: 4

Deleted: 4

Deleted: 3

Deleted: 4

Deleted: 4



- 57 -  

27 October 2008 

a. Return Result(2). 

4. Call ToNumber(Result(2)). 

5. Return Result(4). 

11.4.7 Unary -  Operator  

The unary -  operator converts its operand to Number type and then negates it. Note that negating +0 

produces 0, and negating 0 produces +0. 

The production UnaryExpression :  -  UnaryExpression is evaluated as follows: 

1. Evaluate UnaryExpression. 

2. Call GetValue(Result(1)). 

3. If Type(Result(2)) is Decimal, then 

a. Perform IEEE 754-2008 Decimal negation with argument Result(2). 

b. Return Result(3a). 

4. Call ToNumber(Result(2)). 

5. If Result(4) is NaN, return NaN. 

6. Negate Result(4); that is, compute a number with the same magnitude but opposite sign. 

7. Return Result(6). 

11.4.8 Bitwise NOT Operator ( ~ ) 

The production UnaryExpression :  ~ UnaryExpression is evaluated as follows: 

1. Evaluate UnaryExpression. 

2. Call GetValue(Result(1)). 

3. Call ToInt32(Result(2)). 

4. Apply bitwise complement to Result(3). The result is a signed 32-bit integer. 

5. Return Result(4). 

11.4.9 Logical NOT Operator ( !  ) 

The production UnaryExpression :  !  UnaryExpression is evaluated as follows: 

1. Evaluate UnaryExpression. 

2. Call GetValue(Result(1)). 

3. Call ToBoolean(Result(2)). 

4. If Result(3) is true , return false. 

5. Return true . 

11.5 Multiplicative Operators  

Syntax  

MultiplicativeExpression : 

UnaryExpression 

MultiplicativeExpression *  UnaryExpression 

MultiplicativeExpression /  UnaryExpression 

MultiplicativeExpression % UnaryExpression 

Semantics 

The production MultiplicativeExpression :  MultiplicativeExpression @ UnaryExpression, where @ stands 

for one of the operators in the above definitions, is evaluated as follows: 

1. Evaluate MultiplicativeExpression. 

2. Call GetValue(Result(1)). 

3. Evaluate UnaryExpression. 

4. Call GetValue(Result(3)). 

5. If Type(Result(2)) is Decimal and Type(Result(4)) is Decimal, then 

a. Perform the corresponding Decimal method (multiplication, division, remainder) with 

arguments Result(2) and Result(4). 

b. Return Result(5a). 

6. Call ToNumber(Result(2)). 

Deleted: 3

Deleted: 3

Deleted: 3

Deleted: 5



- 58 -  

27 October 2008 

7. Call ToNumber(Result(4)). 

8. Apply the specified operation (*, /, or %) to Result(6) and Result(7). See the notes below (11.5.1, 

11.5.2, 11.5.3). 

9. Return Result(8). 

11.5.1 Applying the *  Operator  

The *  operator performs multiplication, producing the product of its operands. Multiplication is 

commutative. Multiplication is not always associative in ECMAScript, because of finite precision. 

The result of a floating-point multiplication is governed by the rules of IEEE 754 double-precision 

arithmetic: 

If either operand is NaN, the result is NaN. 

The sign of the result is positive if both operands have the same sign, negative if the operands have 

different signs. 

Multiplication of an infinity by a zero results in NaN. 

Multiplication of an infinity by an infinity results in an infinity. The sign is determined by the rule 

already stated above. 

Multiplication of an infinity by a finite non-zero value results in a signed infinity. The sign is determined 

by the rule already stated above. 

In the remaining cases, where neither an infinity or NaN is involved, the product is computed and 

rounded to the nearest representable value using IEEE 754 round-to-nearest mode. If the magnitude is 

too large to represent, the result is then an infinity of appropriate sign. If the magnitude is too small 

to represent, the result is then a zero of appropriate sign. The ECMAScript language requires support 

of gradual underflow as defined by IEEE 754. 

11.5.2 Applying the /  Operator  

The /  operator performs division, producing the quotient of its operands. The left operand is the 

dividend and the right operand is the divisor. ECMAScript does not perform integer division. The 

operands and result of all division operations are double-precision floating-point numbers. The result of 

division is determined by the specification of IEEE 754 arithmetic: 

If either operand is NaN, the result is NaN. 

The sign of the result is positive if both operands have the same sign, negative if the operands have 

different signs. 

Division of an infinity by an infinity results in NaN. 

Division of an infinity by a zero results in an infinity. The sign is determined by the rule already stated 

above. 

Division of an infinity by a non-zero finite value results in a signed infinity. The sign is determined by 

the rule already stated above. 

Division of a finite value by an infinity results in zero. The sign is determined by the rule already stated 

above. 

Division of a zero by a zero results in NaN; division of zero by any other finite value results in zero, 

with the sign determined by the rule already stated above. 

Division of a non-zero finite value by a zero results in a signed infinity. The sign is determined by the 

rule already stated above. 

In the remaining cases, where neither an infinity, nor a zero, nor NaN is involved, the quotient is 

computed and rounded to the nearest representable value using IEEE 754 round-to-nearest mode. If 

the magnitude is too large to represent, the operation overflows; the result is then an infinity of 

appropriate sign. If the magnitude is too small to represent, the operation underflows and the result is 

a zero of the appropriate sign. The ECMAScript language requires support of gradual underflow as 

defined by IEEE 754. 

11.5.3 Applying the % Operator  

The % operator yields the remainder of its operands from an implied division; the left operand is the 

dividend and the right operand is the divisor. 

NOTE 

Deleted: 5

Deleted: 6

Deleted: 7



- 59 -  

27 October 2008 

In C and C++, the remainder operator accepts only integral operands; in ECMAScript, it also accepts 

floating-point operands. 

The result of a floating-point remainder operation as computed by the % operator is not the same as the 

ñremainderò operation defined by IEEE 754. The IEEE 754 ñremainderò operation computes the 

remainder from a rounding division, not a truncating division, and so its behaviour is not analogous to 

that of the usual integer remainder operator. Instead the ECMAScript language defines % on floating-

point operations to behave in a manner analogous to that of the Java integer remainder operator; this may 

be compared with the C library function fmod. 

The result of a ECMAScript floating-point remainder operation is determined by the rules of IEEE 

arithmetic: 

If either operand is NaN, the result is NaN. 

The sign of the result equals the sign of the dividend. 

If the dividend is an infinity, or the divisor is a zero, or both, the result is NaN. 

If the dividend is finite and the divisor is an infinity, the result equals the dividend. 

If the dividend is a zero and the divisor is finite, the result is the same as the dividend. 

In the remaining cases, where neither an infinity, nor a zero, nor NaN is involved, the floating-point 

remainder r from a dividend n and a divisor d is defined by the mathematical relation r = n  (d * q) 

where q is an integer that is negative only if n/d is negative and positive only if n/d is positive, and 

whose magnitude is as large as possible without exceeding the magnitude of the true mathematical 

quotient of n and d. 

11.6 Additive Operators 

Syntax  

AdditiveExpression : 

MultiplicativeExpression 

AdditiveExpression + MultiplicativeExpression 

AdditiveExpression -  MultiplicativeExpression 

11.6.1 The Addition operator ( + ) 

The addition operator either performs string concatenation or numeric addition. 

The production AdditiveExpression :  AdditiveExpression + MultiplicativeExpression is evaluated as 

follows: 

1. Evaluate AdditiveExpression. 

2. Call GetValue(Result(1)). 

3. Evaluate MultiplicativeExpression. 

4. Call GetValue(Result(3)). 

5. If Type(Result(2)) is Decimal and Type(Result(4)) is Decimal, then 

a. Perform IEEE 754-2008 Decimal addition with arguments Result(2) and Result(4). 

b. Return Result(5a). 

6. Call ToPrimitive(Result(2)). 

7. Call ToPrimitive(Result(4)). 

8. If Type(Result(6)) is String or Type(Result(7)) is String, then 

a. Call ToString(Result(6)). 

b. Call ToString(Result(7)). 

c. Concatenate Result(8a) followed by Result(8b). 

d. Return Result(8c). 

9. Call ToNumber(Result(6)). 

10. Call ToNumber(Result(7)). 

11. Apply the addition operation to Result(9) and Result(10). See the note below (11.6.3). 

12. Return Result(11). 

NOTE   

No hint is provided in the calls to ToPrimitive in steps 5 and 6. All native ECMAScript objects except 

Date objects handle the absence of a hint as if the hint Number were given; Date objects handle the 

Deleted: 5

Deleted: 6

Deleted: go to step 12. (Note that this step 
differs from step 3 in the comparison algorithm 
for the relational operators, by using or instead 

of and.)

Deleted: 5

Deleted: 6

Deleted: 8

Deleted: 9

Deleted: 10

Deleted: <#>Call ToString(Result(5)).¶

<#>Call ToString(Result(6)).¶
<#>Concatenate Result(12) followed by 

Result(13).¶

<#>Return Result(14).¶



- 60 -  

27 October 2008 

absence of a hint as if the hint String were given. Host objects may handle the absence of a hint in some 

other manner. 

11.6.2 The Subtraction Operator ( -  ) 

The production AdditiveExpression : AdditiveExpression -  MultiplicativeExpression is evaluated as 

follows: 

1. Evaluate AdditiveExpression. 

2. Call GetValue(Result(1)). 

3. Evaluate MultiplicativeExpression. 

4. Call GetValue(Result(3)). 

5. If Type(Result(2)) is Decimal and Type(Result(4)) is Decimal, then 

a. Perform IEEE 754-2008 Decimal subtraction with arguments Result(2) and Result(4). 

b. Return Result(5b). 

6. Call ToNumber(Result(2)). 

7. Call ToNumber(Result(4)). 

8. Apply the subtraction operation to Result(6) and Result(7). See the note below (11.6.3). 

9. Return Result(8). 

11.6.3 Applying the Additive Operators ( +, -  ) to Numbers 

The + operator performs addition when applied to two operands of numeric type, producing the sum of 

the operands. The -  operator performs subtraction, producing the difference of two numeric operands. 

Addition is a commutative operation, but not always associative. 

The result of an addition is determined using the rules of IEEE 754 double-precision arithmetic: 

If either operand is NaN, the result is NaN. 

The sum of two infinities of opposite sign is NaN. 

The sum of two infinities of the same sign is the infinity of that sign. 

The sum of an infinity and a finite value is equal to the infinite operand. 

The sum of two negative zeros is 0. The sum of two positive zeros, or of two zeros of opposite sign, is 

+0. 

The sum of a zero and a nonzero finite value is equal to the nonzero operand. 

The sum of two nonzero finite values of the same magnitude and opposite sign is +0. 

In the remaining cases, where neither an infinity, nor a zero, nor NaN is involved, and the operands have 

the same sign or have different magnitudes, the sum is computed and rounded to the nearest 

representable value using IEEE 754 round-to-nearest mode. If the magnitude is too large to represent, 

the operation overflows and the result is then an infinity of appropriate sign. The ECMAScript 

language requires support of gradual underflow as defined by IEEE 754. 

The -  operator performs subtraction when applied to two operands of numeric type, producing the 

difference of its operands; the left operand is the minuend and the right operand is the subtrahend. Given 

numeric operands a and b, it is always the case that aïb produces the same result as a+( ïb) . 

11.7 Bitwise Shift Operators 

Syntax  

ShiftExpression : 

AdditiveExpression 

ShiftExpression << AdditiveExpression 

ShiftExpression >> AdditiveExpression 

ShiftExpression >>> AdditiveExpression 

11.7.1 The Left Shift Operator ( << ) 

Performs a bitwise left shift operation on the left operand by the amount specified by the right operand. 

The production ShiftExpression : ShiftExpression << AdditiveExpression is evaluated as follows: 

1. Evaluate ShiftExpression. 

Deleted: 5

Deleted: 6

Deleted: 7



- 61 -  

27 October 2008 

2. Call GetValue(Result(1)). 

3. Evaluate AdditiveExpression. 

4. Call GetValue(Result(3)). 

5. Call ToInt32(Result(2)). 

6. Call ToUint32(Result(4)). 

7. Mask out all but the least significant 5 bits of Result(6), that is, compute Result(6) & 0x1F. 

8. Left shift Result(5) by Result(7) bits. The result is a signed 32 bit integer. 

9. Return Result(8). 

11.7.2 The Signed Right Shift Operator ( >> ) 

Performs a sign-filling bitwise right shift operation on the left operand by the amount specified by the 

right operand. 

The production ShiftExpression : ShiftExpression >> AdditiveExpression is evaluated as follows: 

1. Evaluate ShiftExpression. 

2. Call GetValue(Result(1)). 

3. Evaluate AdditiveExpression. 

4. Call GetValue(Result(3)). 

5. Call ToInt32(Result(2)). 

6. Call ToUint32(Result(4)). 

7. Mask out all but the least significant 5 bits of Result(6), that is, compute Result(6) & 0x1F. 

8. Perform sign-extending right shift of Result(5) by Result(7) bits. The most significant bit is 

propagated. The result is a signed 32 bit integer. 

9. Return Result(8). 

11.7.3 The Unsigned Right Shift Operator ( >>>  ) 

Performs a zero-filling bitwise right shift operation on the left operand by the amount specified by the 

right operand. 

The production ShiftExpression : ShiftExpression >>>  AdditiveExpression is evaluated as follows: 

1. Evaluate ShiftExpression. 

2. Call GetValue(Result(1)). 

3. Evaluate AdditiveExpression. 

4. Call GetValue(Result(3)). 

5. Call ToUint32(Result(2)). 

6. Call ToUint32(Result(4)). 

7. Mask out all but the least significant 5 bits of Result(6), that is, compute Result(6) & 0x1F. 

8. Perform zero-filling right shift of Result(5) by Result(7) bits. Vacated bits are filled with zero. The 

result is an unsigned 32 bit integer. 

9. Return Result(8). 

11.8 Relational Operators 

Syntax  

RelationalExpression : 

ShiftExpression 

RelationalExpression < ShiftExpression 

RelationalExpression > ShiftExpression 

RelationalExpression <= ShiftExpression 

RelationalExpression >= ShiftExpression 

RelationalExpression instanceof  ShiftExpression 

RelationalExpression in  ShiftExpression 

Deleted: 11.4



- 62 -  

27 October 2008 

RelationalExpressionNoIn : 

ShiftExpression 

RelationalExpressionNoIn < ShiftExpression 

RelationalExpressionNoIn > ShiftExpression 

RelationalExpressionNoIn <= ShiftExpression 

RelationalExpressionNoIn >= ShiftExpression 

RelationalExpressionNoIn instanceof  ShiftExpression 

NOTE 

The 'NoIn' variants are needed to avoid confusing the in  operator in a relational expression with the in  

operator in a for  statement. 

Semantics 

The result of evaluating a relational operator is always of type Boolean, reflecting whether the relationship 

named by the operator holds between its two operands. 

The RelationalExpressionNoIn productions are evaluated in the same manner as the RelationalExpression 

productions except that the contained RelationalExpressionNoIn is evaluated instead of the contained 

RelationalExpression. 

11.8.1 The Less-than Operator ( < ) 

The production RelationalExpression :  RelationalExpression < ShiftExpression is evaluated as follows: 

1. Evaluate RelationalExpression. 

2. Call GetValue(Result(1)). 

3. Evaluate ShiftExpression. 

4. Call GetValue(Result(3)). 

5. If Type(Result(2)) is Decimal and Type(Result(4)) is Decimal, then 

a. If IEEE 754-2008 Decimal isNaN(Result(2)) or isNaN(Result(4)), return false. 

b. Call the IEEE 754-2008 Decimal compareQuietLess method with arguments Result(2) and 

Result(4). 

c. Return Result(5b). 

6. Perform the comparison Result(2) < Result(4). (see 11.8.5) 

7. If Result(6) is undefined, return false. Otherwise, return Result(6). 

11.8.2 The Greater-than Operator ( > ) 

The production RelationalExpression :  RelationalExpression > ShiftExpression is evaluated as follows: 

1. Evaluate RelationalExpression. 

2. Call GetValue(Result(1)). 

3. Evaluate ShiftExpression. 

4. Call GetValue(Result(3)). 

5. If Type(Result(2)) is Decimal and Type(Result(4)) is Decimal, then 

a. If IEEE 754-2008 Decimal isNaN(Result(2)) or isNaN(Result(4)) return false. 

b. Call the IEEE 754-2008 Decimal compareQuietGreater method with arguments Result(2) 

and Result(4). 

c. Return Result(5b). 

6. Perform the comparison Result(4) < Result(2) with LeftFirst equal to false. (see 11.8.5). 

7. If Result(6) is undefined, return false. Otherwise, return Result(6). 

11.8.3 The Less-than-or-equal Operator ( <= ) 

The production RelationalExpression :  RelationalExpression <= ShiftExpression is evaluated as follows: 

1. Evaluate RelationalExpression. 

2. Call GetValue(Result(1)). 

3. Evaluate ShiftExpression. 

4. Call GetValue(Result(3)). 

5. If Type(Result(2)) is Decimal and Type(Result(4)) is Decimal, then 

a. If IEEE 754-2008 Decimal isNaN(Result(2)) or isNaN(Result(4)) return false. 

Deleted: 5

Deleted: 5

Deleted: 5

Deleted: 5



- 63 -  

27 October 2008 

b. Call the IEEE 754-2008 Decimal compareQuietLessEqual method with arguments Result(2) 

and Result(4). 

c. Return Result(5b). 

6. Perform the comparison Result(4) < Result(2) with LeftFirst equal to false. (see 11.8.5). 

7. If Result(6) is true or undefined, return false. Otherwise, return true . 

11.8.4 The Greater-than-or-equal Operator ( >= ) 

The production RelationalExpression :  RelationalExpression >= ShiftExpression is evaluated as follows: 

1. Evaluate RelationalExpression. 

2. Call GetValue(Result(1)). 

3. Evaluate ShiftExpression. 

4. Call GetValue(Result(3)). 

5. If Type(Result(2)) is Decimal and Type(Result(4)) is Decimal, then 

a. If IEEE 754-2008 Decimal isNaN(Result(2)) or isNaN(Result(4)) return false. 

b. Call the IEEE 754-2008 Decimal compareQuietGreaterEqual method with arguments 

Result(2) and Result(4). 

c. Return Result(5b). 

6. Perform the comparison Result(2) < Result(4). (see 11.8.5). 

7. If Result(6) is true or undefined, return false. Otherwise, return true . 

11.8.5 The Abstract Relational Comparison Algorithm 

The comparison x < y, where x and y are values, produces true , false, or undefined (which indicates that 

at least one operand is NaN). In addition to x and y the algorithm takes a boolean flag named LeftFirst as 

a parameter. The flag is used to control the order in which operations with potentially visible side-effects 

are performed upon x and y. It is necessary because ECMAScript specifies left to right evaluation of 

expressions. The default value of LeftFirst is true  and indicates that the x paramenter corresponds to an 

expression that occurs to the left of the y parameters corresponding expression. If LeftFirst is false, the 

reverse is the case and operations must be performed upon y before x. Such a comparison is performed as 

follows: 

1. If the LeftFirst flag is true, then 

a. Let px be the result of calling ToPrimitive(x, hint Number). 

b. Let py be the result of calling ToPrimitive(y, hint Number). 

2. Else the order of evaluation needs to be reversed to preserve left to right evaluation 

a. Let py be the result of calling ToPrimitive(y, hint Number). 

b. Let px be the result of calling ToPrimitive(x, hint Number). 

3. If Type(px) is String or Type(py) is String, go to step 16. (Note that this step differs from step 7 in 

the algorithm for the addition operator + in using and instead of or.) 

4. Let nx be the result of calling ToNumber(px). Because of px and py are primitive values evaluation 

order is not important. 

5. Let ny be the result of calling ToNumber(py). 

6. If nx is NaN, return undefined. 

7. If ny is NaN, return undefined. 

8. If nx and ny are the same number value, return false. 

9. If nx is +0 and ny is 0, return false. 

10. If nx is 0 and ny is +0, return false. 

11. If nx is + , return false. 

12. If ny is + , return true . 

13. If ny is , return false. 

14. If nx is , return true. 

15. If the mathematical value of nx is less than the mathematical value of ny ðnote that these 

mathematical values are both finite and not both zeroðreturn true . Otherwise, return false. 

16. If py is a prefix of px, return false. (A string value p is a prefix of string value q if q can be the result 

of concatenating p and some other string r. Note that any string is a prefix of itself, because r may be 

the empty string.) 

17. If px is a prefix of py, return true . 

Deleted: 5

Deleted: 5

Deleted: Call 

Deleted: Call 

Deleted: Result(1)

Deleted: and 

Comment [pL41]: See Deviations doc item 2.8 

Deleted: Result(2)

Deleted: Call 

Deleted: Result(1)

Deleted: Call ToNumber

Deleted: Result(2)

Deleted: Result(4)

Deleted: Result(5) 

Deleted: Result(4)

Deleted: Result(5)

Deleted: Result(4)

Deleted: Result(5)

Deleted: Result(4)

Deleted: Result(5)

Deleted: Result(4)

Deleted: Result(5)

Deleted: Result(5)

Deleted: Result(4)

Deleted: Result(4)

Deleted: Result(5)

Deleted: Result(2)

Deleted: Result(1)

Deleted: Result(1)

Deleted: Result(2)



- 64 -  

27 October 2008 

18. Let k be the smallest nonnegative integer such that the character at position k within px is different 

from the character at position k within py. (There must be such a k, for neither string is a prefix of the 

other.) 

19. Let m be the integer that is the code point value for the character at position k within px. 

20. Let n be the integer that is the code point value for the character at position k within py. 

21. If m < n, return true . Otherwise, return false. 

NOTE 

The comparison of strings uses a simple lexicographic ordering on sequences of code point value values. 

There is no attempt to use the more complex, semantically oriented definitions of character or string 

equality and collating order defined in the Unicode specification. Therefore strings that are canonically 

equal according to the Unicode standard could test as unequal. In effect this algorithm assumes that 

both strings are already in normalised form. 

11.8.6 The instanceof operator 

The production RelationalExpression: RelationalExpression instanceof  ShiftExpression is evaluated 

as follows: 

1. Evaluate RelationalExpression. 

2. Call GetValue(Result(1)). 

3. Evaluate ShiftExpression. 

4. Call GetValue(Result(3)). 

5. If Result(4) is not an object, throw a TypeError  exception. 

6. If Result(4) does not have a [[HasInstance]] method, throw a TypeError  exception. 

7. Call the [[HasInstance]] method of Result(4) with parameter Result(2). 

8. Return Result(7). 

11.8.7 The in operator 

The production RelationalExpression :  RelationalExpression in  ShiftExpression is evaluated as follows: 

1. Evaluate RelationalExpression. 

2. Call GetValue(Result(1)). 

3. Evaluate ShiftExpression. 

4. Call GetValue(Result(3)). 

5. If Result(4) is not an object, throw a TypeError  exception. 

6. Call ToString(Result(2)). 

7. Call the [[HasProperty]] method of Result(4) with parameter Result(6). 

8. Return Result(7). 

11.9 Equality Operators 

Syntax  

EqualityExpression : 

RelationalExpression 

EqualityExpression == RelationalExpression 

EqualityExpression !=  RelationalExpression 

EqualityExpression === RelationalExpression 

EqualityExpression !==  RelationalExpression 

EqualityExpressionNoIn : 

RelationalExpressionNoIn 

EqualityExpressionNoIn == RelationalExpressionNoIn 

EqualityExpressionNoIn !=  RelationalExpressionNoIn 

EqualityExpressionNoIn === RelationalExpressionNoIn 

EqualityExpressionNoIn !==  RelationalExpressionNoIn 

Semantics 

The result of evaluating an equality operator is always of type Boolean, reflecting whether the relationship 

named by the operator holds between its two operands. 

Deleted: Result(1)

Deleted: Result(2)

Deleted: Result(1)

Deleted: Result(2)



- 65 -  

27 October 2008 

The EqualityExpressionNoIn productions are evaluated in the same manner as the EqualityExpression 

productions except that the contained EqualityExpressionNoIn and RelationalExpressionNoIn are evaluated 

instead of the contained EqualityExpression and RelationalExpression, respectively. 

11.9.1 The Equals Operator ( == ) 

The production EqualityExpression : EqualityExpression == RelationalExpression is evaluated as 

follows: 

1. Evaluate EqualityExpression. 

2. Call GetValue(Result(1)). 

3. Evaluate RelationalExpression. 

4. Call GetValue(Result(3)). 

5. Perform the comparison Result(4) == Result(2). (see 11.9.3). 

6. Return Result(5). 

11.9.2 The Does-not-equals Operator ( !=  ) 

The production EqualityExpression :  EqualityExpression !=  RelationalExpression is evaluated as 

follows: 

1. Evaluate EqualityExpression. 

2. Call GetValue(Result(1)). 

3. Evaluate RelationalExpression. 

4. Call GetValue(Result(3)). 

5. Perform the comparison Result(4) == Result(2). (see 11.9.3). 

6. If Result(5) is true , return false. Otherwise, return true . 

11.9.3 The Abstract Equality Comparison Algorithm  

The comparison x == y, where x and y are values, produces true  or false. Such a comparison is 

performed as follows: 

1. If Type(x) is different from Type(y), go to step 15. 

2. If Type(x) is Undefined, return true . 

3. If Type(x) is Null, return true . 

4. If Type(x) is Decimal or Type(y) is Decimal, then 

a. If IEEE 754-2008 Decimal isNaN(x) or isNaN(y) return false. 

b. Return the result of IEEE 754-2008 Decimal.compareQuietEqual(x, y). 

5. If Type(x) is not Number, go to step 12. 

6. If x is NaN, return false. 

7. If y is NaN, return false. 

8. If x is the same number value as y, return true. 

9. If x is +0 and y is 0, return true . 

10. If x is 0 and y is +0, return true . 

11. Return false. 

12. If Type(x) is String, then return true  if x and y are exactly the same sequence of characters (same 

length and same characters in corresponding positions). Otherwise, return false. 

13. If Type(x) is Boolean, return true  if x and y are both true  or both false. Otherwise, return false. 

14. Return true  if x and y refer to the same object. Otherwise, return false. 

15. If x is null  and y is undefined, return true . 

16. If x is undefined and y is null , return true . 

17. If Type(x) is Number, and Type(y) is String, 

return the result of the comparison x == ToNumber(y). 

18. If Type(x) is String and Type(y) is Number, 

return the result of the comparison ToNumber(x) == y. 

19. If Type(x) is Decimal and Type(y) is Decimal then 

a. If IEEE 754-2008 Decimal isNaN(x) or isNaN(y) return false. 

b. Return the result of IEEE 754-2008 Decimal.compareQuietEqual(x, y). 

20. If Type(x) is Boolean, return the result of the comparison ToNumber(x) == y. 

21. If Type(y) is Boolean, return the result of the comparison x == ToNumber(y). 

Deleted: 14

Deleted: 11

Deleted:  or if they refer to objects joined to 
each other (see 13.1.2)



- 66 -  

27 October 2008 

22. If Type(x) is either String or Number and Type(y) is Object, 

return the result of the comparison x == ToPrimitive(y). 

23. If Type(x) is Object and Type(y) is either String or Number, 

return the result of the comparison ToPrimitive(x) == y. 

24. Return false. 

NOTE 

Given the above definition of equality: 

String comparison can be forced by: "" + a == "" + b . 

Numeric comparison can be forced by: a -  0 == b -  0. 

Boolean comparison can be forced by: !a == !b . 

The equality operators maintain the following invariants: 

A !=  B is equivalent to !(A  == B) . 

A == B is equivalent to B == A, except in the order of evaluation of A and B. 

The equality operator is not always transitive. For example, there might be two distinct String objects, 

each representing the same string value; each String object would be considered equal to the string 

value by the == operator, but the two String objects would not be equal to each other. 

Comparison of strings uses a simple equality test on sequences of code point value values. There is no 

attempt to use the more complex, semantically oriented definitions of character or string equality and 

collating order defined in the Unicode 2.0 specification. Therefore strings that are canonically equal 

according to the Unicode standard could test as unequal. In effect this algorithm assumes that both 

strings are already in normalised form. 

11.9.4 The Strict Equals Operator ( ===  ) 

The production EqualityExpression :  EqualityExpression ===  RelationalExpression is evaluated as 

follows: 

1. Evaluate EqualityExpression. 

2. Call GetValue(Result(1)). 

3. Evaluate RelationalExpression. 

4. Call GetValue(Result(3)). 

5. Perform the comparison Result(4) === Result(2). (See below.) 

6. Return Result(5). 

11.9.5 The Strict Does-not-equal Operator ( !==  ) 

The production EqualityExpression :  EqualityExpression !==  RelationalExpression is evaluated as 

follows: 

1. Evaluate EqualityExpression. 

2. Call GetValue(Result(1)). 

3. Evaluate RelationalExpression. 

4. Call GetValue(Result(3)). 

5. Perform the comparison Result(4) === Result(2). (See below.) 

6. If Result(5) is true , return false. Otherwise, return true . 

11.9.6 The Strict Equality Comparison Algorithm  

The comparison x === y, where x and y are values, produces true  or false. Such a comparison is 

performed as follows: 

1. If Type(x) is different from Type(y), return false. 

2. If Type(x) is Undefined, return true . 

3. If Type(x) is Null, return true . 

4. If Type(x) is not Number, go to step 11. 

5. If x is NaN, return false. 

6. If y is NaN, return false. 

7. If x is the same number value as y, return true. 



- 67 -  

27 October 2008 

8. If x is +0 and y is 0, return true . 

9. If x is 0 and y is +0, return true . 

10. Return false. 

11. If Type(x) is String, then return true  if x and y are exactly the same sequence of characters (same 

length and same characters in corresponding positions); otherwise, return false. 

12. If Type(x) is Boolean, return true  if x and y are both true  or both false; otherwise, return false. 

13. If Type(x) is Decimal, then 

a. If IEEE 754-2008 Decimal isNaN(x) or isNaN(y) then return false. 

b. Return the result of IEEE 754-2008 Decimal.compareQuietEqual(x, y). 

14. Return true  if x and y refer to the same object. Otherwise, return false. 

11.10 Binary Bitwise Operators 

Syntax  

BitwiseANDExpression : 

EqualityExpression 

BitwiseANDExpression & EqualityExpression 

BitwiseANDExpressionNoIn : 

EqualityExpressionNoIn 

BitwiseANDExpressionNoIn & EqualityExpressionNoIn 

BitwiseXORExpression : 

BitwiseANDExpression 

BitwiseXORExpression ^  BitwiseANDExpression 

BitwiseXORExpressionNoIn : 

BitwiseANDExpressionNoIn 

BitwiseXORExpressionNoIn ^  BitwiseANDExpressionNoIn 

BitwiseORExpression : 

BitwiseXORExpression 

BitwiseORExpression |  BitwiseXORExpression 

BitwiseORExpressionNoIn : 

BitwiseXORExpressionNoIn 

BitwiseORExpressionNoIn |  BitwiseXORExpressionNoIn 

Semantics 

The production A :  A @ B, where @ is one of the bitwise operators in the productions above, is evaluated 

as follows: 

1. Evaluate A. 

2. Call GetValue(Result(1)). 

3. Evaluate B. 

4. Call GetValue(Result(3)). 

5. Call ToInt32(Result(2)). 

6. Call ToInt32(Result(4)). 

7. Apply the bitwise operator @ to Result(5) and Result(6). The result is a signed 32 bit integer. 

8. Return Result(7). 

11.11 Binary Logical Operators 

Syntax  

LogicalANDExpression : 

BitwiseORExpression 

LogicalANDExpression && BitwiseORExpression 

Deleted:  or if they refer to objects joined to 
each other (see 13.1.2)



- 68 -  

27 October 2008 

LogicalANDExpressionNoIn : 

BitwiseORExpressionNoIn 

LogicalANDExpressionNoIn && BitwiseORExpressionNoIn 

LogicalORExpression : 

LogicalANDExpression 

LogicalORExpression ||  LogicalANDExpression 

LogicalORExpressionNoIn : 

LogicalANDExpressionNoIn 

LogicalORExpressionNoIn ||  LogicalANDExpressionNoIn 

Semantics 

The production LogicalANDExpression :  LogicalANDExpression && BitwiseORExpression is evaluated as 

follows: 

1. Evaluate LogicalANDExpression. 

2. Call GetValue(Result(1)). 

3. Call ToBoolean(Result(2)). 

4. If Result(3) is false, return Result(2). 

5. Evaluate BitwiseORExpression. 

6. Call GetValue(Result(5)). 

7. Return Result(6). 

The production LogicalORExpression : LogicalORExpression ||  LogicalANDExpression is evaluated as 

follows: 

1. Evaluate LogicalORExpression. 

2. Call GetValue(Result(1)). 

3. Call ToBoolean(Result(2)). 

4. If Result(3) is true , return Result(2). 

5. Evaluate LogicalANDExpression. 

6. Call GetValue(Result(5)). 

7. Return Result(6). 

The LogicalANDExpressionNoIn and LogicalORExpressionNoIn productions are evaluated in the same 

manner as the LogicalANDExpression and LogicalORExpression productions except that the contained 

LogicalANDExpressionNoIn, BitwiseORExpressionNoIn and LogicalORExpressionNoIn are evaluated 

instead of the contained LogicalANDExpression, BitwiseORExpression and LogicalORExpression, 

respectively. 

NOTE 

The value produced by a && or ||  operator is not necessarily of type Boolean. The value produced will 

always be the value of one of the two operand expressions. 

11.12 Conditional Operator (  ?:  )  

Syntax  

ConditionalExpression : 

LogicalORExpression 

LogicalORExpression ? AssignmentExpression :  AssignmentExpression 

ConditionalExpressionNoIn : 

LogicalORExpressionNoIn 

LogicalORExpressionNoIn ? AssignmentExpression :  AssignmentExpressionNoIn 

Semantics 

The production ConditionalExpression :  LogicalORExpression ? AssignmentExpression :  

AssignmentExpression is evaluated as follows: 



- 69 -  

27 October 2008 

1. Evaluate LogicalORExpression. 

2. Call GetValue(Result(1)). 

3. Call ToBoolean(Result(2)). 

4. If Result(3) is false, go to step 8. 

5. Evaluate the first AssignmentExpression. 

6. Call GetValue(Result(5)). 

7. Return Result(6). 

8. Evaluate the second AssignmentExpression. 

9. Call GetValue(Result(8)). 

10. Return Result(9). 

The ConditionalExpressionNoIn production is evaluated in the same manner as the ConditionalExpression 

production except that the contained LogicalORExpressionNoIn, AssignmentExpression and 

AssignmentExpressionNoIn are evaluated instead of the contained LogicalORExpression, first 

AssignmentExpression and second AssignmentExpression, respectively. 

NOTE 

The grammar for a ConditionalExpression in ECMAScript is a little bit different from that in C and Java, 

which each allow the second subexpression to be an Expression but restrict the third expression to be a 

ConditionalExpression. The motivation for this difference in ECMAScript is to allow an assignment 

expression to be governed by either arm of a conditional and to eliminate the confusing and fairly useless 

case of a comma expression as the centre expression. 

11.13 Assignment Operators 

Syntax  

AssignmentExpression : 

ConditionalExpression 

LeftHandSideExpression AssignmentOperator AssignmentExpression 

AssignmentExpressionNoIn : 

ConditionalExpressionNoIn 

LeftHandSideExpression AssignmentOperator AssignmentExpressionNoIn 

AssignmentOperator : one of 
= *=  /=  %= += - = <<= >>= >>>= &= ^=  |=  

 

Semantics 

The AssignmentExpressionNoIn productions are evaluated in the same manner as the AssignmentExpression 

productions except that the contained ConditionalExpressionNoIn and AssignmentExpressionNoIn are 

evaluated instead of the contained ConditionalExpression and AssignmentExpression, respectively. 

11.13.1 Simple Assignment ( = ) 

The production AssignmentExpression :  LeftHandSideExpression = AssignmentExpression is evaluated 

as follows: 

1. Evaluate LeftHandSideExpression. 

2. Evaluate AssignmentExpression. 

3. Call GetValue(Result(2)). 

4. Call PutValue(Result(1), Result(3), false). 

5. Return Result(3). 

11.13.1.1 Usage Subset Restrictions 

When a simple assignment occurs within an execution context that is subset restricted to the strict 

subset, its LeftHandSide must not evaluate to a Reference whose base is null . If it does a 

ReferenceError exception is thrown. The LeftHandSide also may not be a reference to a property 

with the attribute value {[[Writable]]:false}  nor to a non-existent property of an object whose 

[[Extensible]] property has the value false. In these cases a TypeError  exception is thrown. This is 

accomplished by replacing step 4 of the above algorithm with the following: 



- 70 -  

27 October 2008 

4. Call PutValue(Result(1), Result(3), true). 

11.13.2 Compound Assignment ( op=  ) 

The production AssignmentExpression :  LeftHandSideExpression @ = AssignmentExpression, where @ 

represents one of the operators indicated above, is evaluated as follows: 

1. Evaluate LeftHandSideExpression. 

2. Call GetValue(Result(1)). 

3. Evaluate AssignmentExpression. 

4. Call GetValue(Result(3)). 

5. Apply operator @ to Result(2) and Result(4). 

6. Call PutValue(Result(1), Result(5), false). 

7. Return Result(5). 

11.13.2.1 Usage Subset Restrictions 

The same restrictions apply as specified in 11.13.1.1 except that the algorithm change is: 

6. Call PutValue(Result(1), Result(5), true). 

11.14 Comma Operator (  ,  )  

Syntax  

Expression : 

AssignmentExpression 

Expression ,  AssignmentExpression 

ExpressionNoIn : 

AssignmentExpressionNoIn 

ExpressionNoIn ,  AssignmentExpressionNoIn 

Semantics 

The production Expression :  Expression ,  AssignmentExpression is evaluated as follows: 

1. Evaluate Expression. 

2. Call GetValue(Result(1)). 

3. Evaluate AssignmentExpression. 

4. Call GetValue(Result(3)). 

5. Return Result(4). 

The ExpressionNoIn production is evaluated in the same manner as the Expression production except that 

the contained ExpressionNoIn and AssignmentExpressionNoIn are evaluated instead of the contained 

Expression and AssignmentExpression, respectively. 



- 71 -  

27 October 2008 

12 Statements 

Syntax  

Statement : 

SubStatement 

ConstantStatement 

VariableStatement 

FunctionDeclaration 

SubStatement : 

Block 

EmptyStatement 

ExpressionStatement 

IfStatement 

IterationStatement 

ContinueStatement 

BreakStatement 

ReturnStatement 

WithStatement 

LabelledStatement 

SwitchStatement 

ThrowStatement 

TryStatement 

Semantics 

A Statement can be part of a LabelledStatement, which itself can be part of a LabelledStatement, and so on. 

The labels introduced this way are collectively referred to as the ñcurrent label setò when describing the 

semantics of individual statements. A LabelledStatement has no semantic meaning other than the introduction 

of a label to a label set. The label set of an IterationStatement or a SwitchStatement initially contains the 

single element empty. The label set of any other statement is initially empty. 

12.1 Block 

Syntax  

Block : 

{  StatementListopt }  

StatementList : 

Statement 

StatementList Statement 

Semantics 

The production Block :  {  }  is evaluated as follows: 

1. Return (normal , empty, empty). 

The production Block :  {  StatementList } is evaluated as follows: 

1. Establish a new lexical block execution context using any contextually supplied block parameters. 

2. Evaluate StatementList using the new execution context. 

3. Exit the execution context established in step 1, restoring the previous execution context. 

4. Return Result(2). 

NOTE 

No matter how control leaves the embedded Block, whether normally or by some form of abrupt completion 

or exception, the execution context is always restored to its former state. 

The production StatementList : Statement is evaluated as follows: 

1. Evaluate Statement. 

Deleted: VariableStatement

Comment [pL42]: Note this means that 
VariableStatements cannot be used as ñpseudo-

blocksò. This is a change from ES3. 

Comment [pL43]: Mark (and perhaps others) 
think this should be a substatement. However, that 
would be a breaking syntactic change from ES3. 

Need to start a discussion list thread on whether or 

not this is really acceptable. Another alternative is to 
only make this change in strict mode code. 

Deleted: 1

Comment [pL44]: From AWB: 
 

Needs to be rewritten for new lexical scoping model. 



- 72 -  

27 October 2008 

2. If an exception was thrown, return (throw , V, empty) where V is the exception. (Execution now 

proceeds as if no exception were thrown.) 

3. Return Result(1). 

The production StatementList : StatementList Statement is evaluated as follows: 

1. Evaluate StatementList. 

2. If Result(1) is an abrupt completion, return Result(1). 

3. Evaluate Statement. 

4. If an exception was thrown, return (throw , V, empty) where V is the exception. (Execution now 

proceeds as if no exception were thrown.) 

5. If Result(3).value is empty, let V = Result(1).value, otherwise let V = Result(3).value. 

6. Return (Result(3).type, V, Result(3).target). 

12.1.1 Usage Subset Restrictions 

A VariableStatement within an execution context that is subset restricted to the str ict subset, may 

not occur as the StatementList of a Block. The occurrence of a VariableStatement in such a context must 

be treated as a syntax error. 

12.2 Variable statement 

Syntax  

VariableStatement : 

var  VariableDeclarationList ;  

VariableDeclarationList : 

VariableDeclaration 

VariableDeclarationList ,  VariableDeclaration 

VariableDeclarationListNoIn : 

VariableDeclarationNoIn 

VariableDeclarationListNoIn ,  VariableDeclarationNoIn 

VariableDeclaration : 

Identifier Initialiseropt 

VariableDeclarationNoIn : 

Identifier InitialiserNoInopt 

Initialiser : 

= AssignmentExpression 

InitialiserNoIn : 

= AssignmentExpressionNoIn 

Description 

If the variable statement occurs inside a FunctionDeclaration or FunctionExpression, the variables are 

defined with function-local scope in that function, as described in 10.1.3. Otherwise, they are defined with 

global scope (that is, they are created as members of the global object, as described in 10.1.3) using 

property attributes { [[Writable]]: true , [[Enumerable]]: true , [[Configurable]]: false }. Variables are 

created when the execution scope is entered. A Block does not define a new execution scope for variables 

declared using a VariableDeclaration. Only Program, FunctionDeclaration and FunctionExpression 

produce a new scope for variables declared using a VariableStatement. Such variables are initialised to 

undefined when created. A variable with an Initialiser is assigned the value of its AssignmentExpression 

when the VariableStatement is executed, not when the variable is created. 

Semantics 

The production VariableStatement : var  VariableDeclarationList ;  is evaluated as follows: 

Deleted: s

Comment [pL45]: From MSM: 

What about a variable declaration at top level of a Program 
being evaled by an eval operator within a function, or by a 

strict eval operator, or by a strict eval operator within a 
function? 

Deleted: DontDelete 

Deleted:  and

Deleted: Variables 



- 73 -  

27 October 2008 

1. Evaluate VariableDeclarationList. 

2. Return (normal , empty, empty). 

The production VariableDeclarationList :VariableDeclaration is evaluated as follows: 

1. Evaluate VariableDeclaration. 

The production VariableDeclarationList : VariableDeclarationList ,  VariableDeclaration is evaluated as 

follows: 

1. Evaluate VariableDeclarationList. 

2. Evaluate VariableDeclaration. 

The production VariableDeclaration : Identifier is evaluated as follows: 

1. Return a string value containing the same sequence of characters as in the Identifier. 

The production VariableDeclaration : Identifier Initialiser is evaluated as follows: 

1. Evaluate Identifier as described in 11.1.2. 

2. Evaluate Initialiser. 

3. Call GetValue(Result(2)). 

4. Call PutValue(Result(1), Result(3), false). 

5. Return a string value containing the same sequence of characters as in the Identifier. 

The production Initialiser : = AssignmentExpression is evaluated as follows: 

1. Evaluate AssignmentExpression. 

2. Return Result(1). 

The VariableDeclarationListNoIn, VariableDeclarationNoIn and InitialiserNoIn productions are evaluated 

in the same manner as the VariableDeclarationList, VariableDeclaration and Initialiser productions except 

that the contained VariableDeclarationListNoIn, VariableDeclarationNoIn, InitialiserNoIn and 

AssignmentExpressionNoIn are evaluated instead of the contained VariableDeclarationList, 

VariableDeclaration, Initialiser and AssignmentExpression, respectively. 

12.3 Empty Statement 

Syntax  

EmptyStatement : 
;  

Semantics 

The production EmptyStatement : ;  is evaluated as follows: 

1. Return (normal , empty, empty). 

12.4 Expression Statement 

Syntax  

ExpressionStatement : 

[lookahead  { {, function }]  Expression ;  

Note that an ExpressionStatement cannot start with an opening curly brace because that might make it 

ambiguous with a Block. Also, an ExpressionStatement cannot start with the function  keyword because 

that might make it ambiguous with a FunctionDeclaration. 

Semantics 

The production ExpressionStatement : [lookahead  { {, function }]  Expression;  is evaluated as follows: 

1. Evaluate Expression. 

2. Call GetValue(Result(1)). 

Comment [pL46]: From MSM: 
 

Since it seems so mysterious, we should either 

remove these ñreturnòs or include a note explaining 
why theyôre there. 

Comment [pL47]: From AWB: 
 

Canôt remove them without changing parts of the 
spec. that depend on them. 

Comment [pL48]: From AWB: 
 

This will probably change with the rewrite of chapter 
10. 



- 74 -  

27 October 2008 

3. Return (normal , Result(2), empty). 

12.5 The if  Statement 

Syntax  

IfStatement : 

if  (  Expression )  SubStatement  else  SubStatement 

if  (  Expression )  SubStatement 

Each else  for which the choice of associated if  is ambiguous shall be associated with the nearest 

possible if  that would otherwise have no corresponding else . 

Semantics 

The production IfStatement : if  (  Expression )  SubStatement else  SubStatement is evaluated as follows: 

1. Evaluate Expression. 

2. Call GetValue(Result(1)). 

3. Call ToBoolean(Result(2)). 

4. If Result(3) is false, go to step 7. 

5. Evaluate the first SubStatement. 

6. Return Result(5). 

7. Evaluate the second SubStatement. 

8. Return Result(7). 

The production IfStatement : if  (  Expression )  SubStatement is evaluated as follows: 

1. Evaluate Expression. 

2. Call GetValue(Result(1)). 

3. Call ToBoolean(Result(2)). 

4. If Result(3) is false, return (normal , empty, empty). 

5. Evaluate SubStatement. 

6. Return Result(5). 

12.6 Iteration  Statements 

An iteration statement consists of a header (which consists of a keyword and a parenthesised control 

construct) and a body (which consists of a Statement). 

Syntax  

IterationStatement : 

do SubStatement while  (  Expression );  

while  (  Expression )  SubStatement 

for  ( ExpressionNoInopt;  Expressionopt ;  Expressionopt )  SubStatement 

for  (  var  VariableDeclarationListNoIn;  Expressionopt ;  Expressionopt )  SubStatement 

for  (  LeftHandSideExpression in  Expression )  SubStatement 

for  (  var  VariableDeclarationNoIn in  Expression )  SubStatement 

12.6.1 The do -while  Statement 

The production do  SubStatement while  (  Expression );  is evaluated as follows: 

1. Let V = empty. 

2. Evaluate SubStatement. 

3. If Result(2).value is not empty, let V = Result(2).value. 

4. If Result(2).type is continue and Result(2).target is in the current label set, go to step 7. 

5. If Result(2).type is break and Result(2).target is in the current label set, return (normal , V, empty). 

6. If Result(2) is an abrupt completion, return Result(2). 

7. Evaluate Expression. 

8. Call GetValue(Result(7)). 

9. Call ToBoolean(Result(8)). 

10. If Result(9) is true , go to step 2. 



- 75 -  

27 October 2008 

11. Return (normal, V, empty); 

12.6.2 The while  statement 

The production IterationStatement : while  (  Expression )  SubStatement is evaluated as follows: 

1. Let V = empty. 

2. Evaluate Expression. 

3. Call GetValue(Result(2)). 

4. Call ToBoolean(Result(3)). 

5. If Result(4) is false, return (normal , V, empty). 

6. Evaluate SubStatement. 

7. If Result(6).value is not empty, let V = Result(6).value. 

8. If Result(6).type is continue and Result(6).target is in the current label set, go to 2. 

9. If Result(6).type is break and Result(6).target is in the current label set, return (normal , V, empty). 

10. If Result(6) is an abrupt completion, return Result(6). 

11. Go to step 2. 

12.6.3 The for  Statement 

The production IterationStatement : for  ( ExpressionNoInopt ;  Expressionopt ;  Expressionopt)  

SubStatement is evaluated as follows: 

1. If ExpressionNoIn is not present, go to step 4. 

2. Evaluate ExpressionNoIn. 

3. Call GetValue(Result(2)). (This value is not used.) 

4. Let V = empty. 

5. If the first Expression is not present, go to step 10. 

6. Evaluate the first Expression. 

7. Call GetValue(Result(6)). 

8. Call ToBoolean(Result(7)). 

9. If Result(8) is false, go to step 19. 

10. Evaluate SubStatement. 

11. If Result(10).value is not empty, let V = Result(10).value 

12. If Result(10).type is break and Result(10).target is in the current label set, go to step 19. 

13. If Result(10).type is continue and Result(10).target is in the current label set, go to step 15. 

14. If Result(10) is an abrupt completion, return Result(10). 

15. If the second Expression is not present, go to step 5. 

16. Evaluate the second Expression. 

17. Call GetValue(Result(16). (This value is not used.) 

18. Go to step 5. 

19. Return (normal, V, empty). 

The production IterationStatement : for  (  var  VariableDeclarationListNoIn ;  Expressionopt ;  

Expressionopt )  SubStatement is evaluated as follows: 

1. Evaluate VariableDeclarationListNoIn. 

2. Let V = empty. 

3. If the first Expression is not present, go to step 8. 

4. Evaluate the first Expression. 

5. Call GetValue(Result(4)). 

6. Call ToBoolean(Result(5)). 

7. If Result(6) is false, go to step 17. 

8. Evaluate SubStatement. 

9. If Result(8).value is not empty, let V = Result(8).value. 

10. If Result(8).type is break and Result(8).target is in the current label set, go to step 17. 

11. If Result(8).type is continue and Result(8).target is in the current label set, go to step 13. 

12. If Result(8) is an abrupt completion, return Result(8). 

13. If the second Expression is not present, go to step 3. 

14. Evaluate the second Expression. 

15. Call GetValue(Result(14)). (This value is not used.) 

Deleted: the first Expression

Deleted: 14



- 76 -  

27 October 2008 

16. Go to step 3. 

17. Return (normal, V, empty). 

12.6.4 The for -in  Statement 

The production IterationStatement :  for  (  LeftHandSideExpression in  Expression )  SubStatement is 

evaluated as follows: 

1. Evaluate the Expression. 

2. Call GetValue(Result(1)). 

3. If Result(2) is null  or undefined, return (normal , V, empty). 

4. Call ToObject(Result(2)). 

5. Let V = empty. 

6. Get the name of the next property of Result(4) whose [[Enumerable]] attribute is true . If there is no 

such property, go to step 15. 

7. Evaluate the LeftHandSideExpression ( it may be evaluated repeatedly). 

8. Call PutValue(Result(6), Result(7), false). 

9. Evaluate SubStatement. 

10. If Result(9).value is not empty, let V = Result(9).value. 

11. If Result(9).type is break and Result(9).target is in the current label set, go to step 15. 

12. If Result(9).type is continue and Result(9).target is in the current label set, go to step 6. 

13. If Result(9) is an abrupt completion, return Result(9). 

14. Go to step 6. 

15. Return (normal, V, empty). 

The production IterationStatement : for  (  var  VariableDeclarationNoIn in  Expression )  

SubStatement is evaluated as follows: 

 

1. Evaluate VariableDeclarationNoIn. 

2. Evaluate Expression. 

3. Call GetValue(Result(2)). 

4. If Result(3) is null  or undefined, return (normal , V, empty). 

5. Call ToObject(Result(3)). 

6. Let V = empty. 

7. Get the name of the next property of Result(5) whose [[Enumerable]] attribute is true . If there is no 

such property, go to step 16. 

8. Evaluate Result(1) as if it were an Identifier; see step 7 from the previous algorithm (it may be 

evaluated repeatedly). 

9. Call PutValue(Result(7), Result(8), false). 

10. Evaluate SubStatement. 

11. If Result(10).value is not empty, let V = Result(10).value. 

12. If Result(10).type is break and Result(10).target is in the current label set, go to step 16. 

13. If Result(10).type is continue and Result(10).target is in the current label set, go to step 7. 

14. If Result(9) is an abrupt completion, return Result(9). 

15. Go to step 7. 

16. Return (normal , V, empty). 

Properties of the object being enumerated may be deleted during enumeration. If a property that has not 

yet been visited during enumeration is deleted, then it will not be visited. If new properties are added to 

the object being enumerated during enumeration, the newly added properties are guaranteed not to be 

visited in the active enumeration. 

Enumerating the properties of an object includes enumerating properties of its prototype, and the 

prototype of the prototype, and so on, recursively; but a property of a prototype is not enumerated if it is 

ñshadowedò because some previous object in the prototype chain has a property with the same name. 

12.6.4.1 Usage Subset Restrictions 

The same restrictions apply as specified in section 11.13.1.1 except that the algorithm change for the 

first algorithm is: 

8. Call PutValue(Result(6), Result(7), true). 

Deleted: 3

Deleted: that doesnôt have the DontEnum attribute

Deleted: 14

Deleted: 5

Deleted: 8

Deleted: 8

Deleted: 8

Deleted: 8

Deleted: 14

Deleted: 8

Deleted: 8

Deleted: 5

Deleted: 8

Deleted: 8

Deleted: 5

Deleted: 4

Deleted: that doesnôt have the DontEnum attribute

Deleted: 15

Deleted: 0

Comment [pL49]: From AWB: 
 
I donôt see what value this phrase adds. It just adds a spot 

where step numbering can get out of whack. 

Deleted: yes, 

Deleted: 6

Deleted: 9

Deleted: 9

Deleted: 9

Deleted: 9

Deleted: 15

Deleted: 9

Deleted: 9

Deleted: 6

Deleted: 8

Deleted: 8

Deleted: 6

Deleted: The mechanics of enumerating the 
properties (step 5 in the first algorithm, step 6 in the 

second) is implementation dependent. The order of 
enumeration is defined by the object. 

Comment [pL50]: We considered specifying the 
enumeration order but there were too many issues with 

existing implementations that optimize the representation of 
arrays. 

Deleted: not 

Comment [pL51]: Mark wants to delete this, but it isnôt 
obvious that this is a requirement that we can (or should) 

force upon implementations. 



- 77 -  

27 October 2008 

The change for the second algorithm is: 

9. Call PutValue(Result(7), Result(8), true) 

12.7 The continue  Statement 

Syntax  

ContinueStatement : 

continue [no LineTerminator here] Identifieropt ;  

Semantics 

A program is considered syntactically incorrect if either of the following are true: 

The program contains a continue  statement without the optional Identifier, which is not nested, directly 

or indirectly (but not crossing function boundaries), within an IterationStatement. 

The program contains a continue  statement with the optional Identifier, where Identifier does not appear 

in the label set of an enclosing (but not crossing function boundaries) IterationStatement. 

A ContinueStatement without an Identifier is evaluated as follows: 

1. Return (continue, empty, empty). 

A ContinueStatement with the optional Identifier is evaluated as follows: 

1. Return (continue, empty, Identifier). 

12.8 The break  Statement 

Syntax  

BreakStatement : 

break [no LineTerminator here] Identifieropt ;  

Semantics 

A program is considered syntactically incorrect if either of the following are true: 

The program contains a break  statement without the optional Identifier, which is not nested, directly or 

indirectly (but not crossing function boundaries), within an IterationStatement or a SwitchStatement. 

The program contains a break  statement with the optional Identifier, where Identifier does not appear in 

the label set of an enclosing (but not crossing function boundaries) Statement. 

A BreakStatement without an Identifier is evaluated as follows: 

1. Return (break, empty, empty). 

A BreakStatement with an Identifier is evaluated as follows: 

1. Return (break, empty, Identifier). 

12.9 The return  Statement 

Syntax  

ReturnStatement : 

return [no LineTerminator here] Expressionopt ;  

Semantics 

An ECMAScript program is considered syntactically incorrect if it contains a return  statement that is not 

within a FunctionBody. A return  statement causes a function to cease execution and return a value to the 

caller. If Expression is omitted, the return value is undefined. Otherwise, the return value is the value of 

Expression. 

The production ReturnStatement : return [no LineTerminator here] Expressionopt ;  is evaluated as: 

Comment [pL52]: From AWB: 
 

Need to consider whether this should be 
SubStatement. 



- 78 -  

27 October 2008 

1. If the Expression is not present, return (return , undefined, empty). 

2. Evaluate Expression. 

3. Call GetValue(Result(2)). 

4. Return (return , Result(3), empty). 

12.10 The with  Statement 

Syntax  

WithStatement : 

with  (  Expression )  SubStatement 

Description 

The with statement adds a computed object to the front of the scope chain of the current execution 

context, then executes a statement with this augmented scope chain, then restores the scope chain. 

Semantics 

The production WithStatement : with  (  Expression )  SubStatement is evaluated as follows: 

1. Evaluate Expression. 

2. Call GetValue(Result(1)). 

3. Call ToObject(Result(2)). 

4. Add Result(3) to the front of the scope chain. 

5. Evaluate SubStatement using the augmented scope chain from step 4. 

6. Let C be Result(5). If an exception was thrown in step 5, let C be (throw , V, empty), where V is the 

exception. (Execution now proceeds as if no exception were thrown.) 

7. Remove Result(3) from the front of the scope chain. 

8. Return C. 

NOTE 

No matter how control leaves the embedded 'SubStatement', whether normally or by some form of abrupt 

completion or exception, the scope chain is always restored to its former state. 

12.10.1 Usage Subset Restrictions 

An execution context that is subset restricted to the strict subset, may not execute a WithStatement. 

The occurrence of a WithStatement in such a context must be treated as a syntax error. 

12.11 The switch  Statement 

Syntax  

SwitchStatement : 

switch  (  Expression )  CaseBlock 

CaseBlock : 

{  CaseClausesopt }  

{  CaseClausesopt DefaultClause CaseClausesopt }  

CaseClauses : 

CaseClause 

CaseClauses CaseClause 

CaseClause : 

case  Expression :  StatementListopt 

DefaultClause : 

default  :  StatementListopt 

Semantics 

The production SwitchStatement : switch  (  Expression )  CaseBlock is evaluated as follows: 



- 79 -  

27 October 2008 

1. Evaluate Expression. 

2. Call GetValue(Result(1)). 

3. Evaluate CaseBlock, passing it Result(2) as a parameter. 

4. If Result(3).type is break and Result(3).target is in the current label set, return (normal , 

Result(3).value, empty). 

5. Return Result(3). 

The production CaseBlock : {  CaseClausesopt }  is given an input parameter, input, and is evaluated as follows: 

1.  Let V = empty. 

2.  Let A be the list of CaseClause items in source text order. 

3.  Let C be the next CaseClause in A. If there is no such CaseClause, then go to step 16. 

4.  Evaluate C. 

5.  If input is not equal to Result(4) as defined by the !==  operator, then go to step 3. 

6.  If C does not have a StatementList, then go to step 10. 

7.  Evaluate Côs StatementList and let R be the result. 

8.  If R is an abrupt completion, then return R. 

9.  Let V = R.value. 

10.  Let C be the next CaseClause in A. If there is no such CaseClause, then go to step 16. 

11.  If C does not have a StatementList, then go to step 10. 

12.  Evaluate Côs StatementList and let R be the result. 

13.  If R.value is not empty, then let V = R.value. 

14.  If R is an abrupt completion, then return (R.type, V, R.target). 

15.  Go to step 10. 

16.  Return (normal, V, empty). 

The production CaseBlock : {  CaseClausesopt DefaultClause CaseClausesopt }  is given an input parameter, input, and 

is evaluated as follows: 

1.  Let V = empty. 

2.  Let A be the list of CaseClause items in the first CaseClauses, in source text order. 

3.  Let C be the next CaseClause in A. If there is no such CaseClause, then go to step 11. 

4.  Evaluate C. 

5.  If input is not equal to Result(4) as defined by the !==  operator, then go to step 3. 

6.  If C does not have a StatementList, then go to step 20. 

7.  Evaluate Côs StatementList and let R be the result. 

8.  If R is an abrupt completion, then return R. 

9.  Let V = R.value. 

10.  Go to step 20. 

11.  Let B be the list of CaseClause items in the second CaseClauses, in source text order. 

12.  Let C be the next CaseClause in B. If there is no such CaseClause, then go to step 26. 

13.  Evaluate C. 

14.  If input is not equal to Result(13) as defined by the !==  operator, then go to step 12. 

15.  If C does not have a StatementList, then go to step 31. 

16.  Evaluate Côs StatementList and let R be the result. 

17.  If R is an abrupt completion, then return R. 

18.  Let V = R.value. 

19.  Go to step 31. 

20.  Let C be the next CaseClause in A. If there is no such CaseClause, then go to step 26. 

21.  If C does not have a StatementList, then go to step 20. 

22.  Evaluate Côs StatementList and let R be the result. 

23.  If R.value is not empty, then let V = R.value. 

24.  If R is an abrupt completion, then return (R.type, V, R.target). 

25.  Go to step 20. 

26.  If the DefaultClause does not have a StatementList, then go to step 30. 

27.  Evaluate the DefaultClauseôs StatementList and let R be the result. 

28.  If R.value is not empty, then let V = R.value. 

29.  If R is an abrupt completion, then return (R.type, V, R.target). 

30.  Let B be the list of CaseClause items in the second CaseClauses, in source text order. 

31.  Let C be the next CaseClause in B. If there is no such CaseClause, then go to step 37. 



- 80 -  

27 October 2008 

32.  If C does not have a StatementList, then go to step 31. 

33.  Evaluate Côs StatementList and let R be the result. 

34.  If R.value is not empty, then let V = R.value. 

35.  If R is an abrupt completion, then return (R.type, V, R.target). 

36.  Go to step 31. 

37.  Return (normal, V, empty). 

The production CaseClause : case  Expression :  StatementListopt is evaluated as follows: 

1. Evaluate Expression. 

2. Call GetValue(Result(1)). 

3. Return Result(2). 

NOTE 

Evaluating CaseClause does not execute the associated StatementList. It simply evaluates the Expression 

and returns the value, which the CaseBlock algorithm uses to determine which StatementList to start 

executing. 

12.12 Labelled Statements 

Syntax  

LabelledStatement : 

Identifier :  Statement 

Semantics 

A Statement may be prefixed by a label. Labelled statements are only used in conjunction with labelled 

break  and continue  statements. ECMAScript has no goto  statement. 

An ECMAScript program is considered syntactically incorrect if it contains a LabelledStatement that is 

enclosed by a LabelledStatement with the same Identifier as label. This does not apply to labels appearing 

within the body of a FunctionDeclaration that is nested, directly or indirectly, within a labelled statement. 

The production Identifier :  Statement is evaluated by adding Identifier to the label set of Statement and 

then evaluating Statement. If the LabelledStatement itself has a non-empty label set, these labels are also 

added to the label set of Statement before evaluating it. If the result of evaluating Statement is (break, V, L) 

where L is equal to Identifier, the production results in (normal , V, empty). 

Prior to the evaluation of a LabelledStatement, the contained Statement is regarded as possessing an empty 

label set, except if it is an IterationStatement or a SwitchStatement, in which case it is regarded as 

possessing a label set consisting of the single element, empty. 

12.13 The throw  statement 

Syntax  

ThrowStatement : 

throw [no LineTerminator here] Expression ; 

Semantics 

The production ThrowStatement :  throw  [no LineTerminator here] Expression ;  is evaluated as: 

1. Evaluate Expression. 

2. Call GetValue(Result(1)). 

3. Return (throw , Result(2), empty). 

12.14 The try  statement 

Syntax  

TryStatement : 

try  Block Catch 
try  Block Finally 

try  Block Catch Finally 

Deleted: The production CaseBlock : {  CaseClauses 

DefaultClause CaseClauses }  is given an input 

parameter, input, and is evaluated as follows:¶

<#>Let A be the list of CaseClause items in the first 
CaseClauses, in source text order.¶

<#>For the next CaseClause in A, evaluate 
CaseClause. If there is no such CaseClause, go to step 

7.¶

<#>If input is not equal to Result(2), as defined by the 

!==  operator, go to step 2.¶

<#>Evaluate the StatementList of this CaseClause.¶
<#>If Result(4) is an abrupt completion then return 

Result(4).¶

<#>Go to step 13.¶
<#>Let B be the list of CaseClause items in the second 

CaseClauses, in source text order.¶

<#>For the next CaseClause in B, evaluate 
CaseClause. If there is no such CaseClause, go to step 

15.¶

<#>If input is not equal to Result(8), as defined by the 

!==  operator, go to step 8.¶

<#>Evaluate the StatementList of this CaseClause.¶
<#>If Result(10) is an abrupt completion then return 

Result(10)¶

<#>Go to step 18.¶
<#>For the next CaseClause in A, evaluate the 

StatementList of this CaseClause. If there is no such 

CaseClause, go to step 15.¶
<#>If Result(13) is an abrupt completion then return 

Result(13).¶

<#>Execute the StatementList of DefaultClause.¶
<#>If Result(15) is an abrupt completion then return 

Result(15)¶

<#>Let B be the list of CaseClause items in the second 
CaseClauses, in source text order.¶

<#>For the next CaseClause in B, evaluate the 
StatementList of this CaseClause. If there is no such 

CaseClause, return (normal, empty, empty).¶

<#>If Result(18) is an abrupt completion then return 
Result(18).¶

<#>Go to step 18.¶

Comment [pL53]: There is a debate regarding whether 
this should be SubStatement. See comment in section 12.0. 

Comment [pL54]: Same as the above comment. 



- 81 -  

27 October 2008 

Catch : 

catch  ( Identifier )  Block 

Finally : 

finally  Block 

Description 

The try statement encloses a block of code in which an exceptional condition can occur, such as a 

runtime error or a throw  statement. The catch  clause provides the exception-handling code. When a 

catch clause catches an exception, its Identifier  is bound to that exception. 

Semantics 

The production TryStatement :  try  Block Catch is evaluated as follows: 

1. Evaluate Block. 

2. If Result(1).type is not throw , return Result(1). 

3. Evaluate Catch with parameter Result(1). 

4. Return Result(3). 

The production TryStatement :  try  Block Finally is evaluated as follows: 

1. Evaluate Block. 

2. Evaluate Finally. 

3. If Result(2) .type is normal , return Result(1). 

4. Return Result(2). 

The production TryStatement :  try  Block Catch Finally is evaluated as follows: 

1. Evaluate Block. 

2. Let C = Result(1). 

3. If Result(1).type is not throw , go to step 6. 

4. Evaluate Catch with parameter Result(1). 

5. Let C = Result(4). 

6. Evaluate Finally. 

7. If Result(6).type is normal, return C. 

8. Return Result(6). 

The production Catch : catch  ( Identifier )  Block is evaluated as follows: 

1. Let C be the parameter that has been passed to this production. 

2. Evaluate Block with a block parameter whose name is Identifier and whose value is C.value. 

3. Return Result(2). 

The production Finally : finally  Block is evaluated as follows: 

 

1. Evaluate Block. 

2. Return Result(1). 

12.15 Constant  statement 

Syntax  

ConstantStatement : 

const  ConstantDeclarationList ;  

ConstantDeclarationList : 

ConstantDeclaration 

ConstantDeclarationList ,  ConstantDeclaration 

ConstantDeclaration : 

Identifier Initialiser 

Comment [pL55]: Work still needs to be done to 
give catch blocks real lexical scoping. 

Deleted: If Result(4).type is not normal, 

Deleted: Create a new object as if by the 

expression new Object() .¶

<#>Create a property in the object Result(2). 

The property's name is Identifier, value is 

C.value, and attributes are { DontDelete }.¶
<#>Add Result(2) to the front of the scope 

chain.¶

<#>Evaluate Block.¶
Remove Result(2) from the front of the scope 

chain

Deleted: 5



- 82 -  

27 October 2008 

Description 

If the constant statement occurs directly inside a FunctionDeclaration, the constants are defined with 

function-local scope in that function, as described in s10.1.3. If a constant statement occurs inside a Block, 

the constants are defined with block-local scope. Otherwise, they are defined with global scope (that is, 

they are created as members of the global object, as described in 10.1.3) using property attributes { 

[[Writable]]: false, [[Enumerable]]: true , [[Configurable]]: false }. Constants are created when the 

execution scope is entered. Constants have no value when created. A constant is assigned the value of the 

AssignmentExpression of itôs Initialiser when the ConstantStatement is executed, not when the constant is 

created. Any attempts to access the value of a constant before it is assigned a value throws a 

ReferenceError exception. 

Semantics 

The production ConstantStatement : const  ConstantDeclarationList ;  is evaluated as follows: 

1. Evaluate ConstantDeclarationList. 

2. Return (normal , empty, empty). 

The production ConstantDeclarationList :ConstantDeclaration is evaluated as follows: 

1. Evaluate ConstantDeclaration. 

The production ConstantDeclarationList :  ConstantDeclarationList ,  ConstantDeclaration is evaluated as 

follows: 

1. Evaluate ConstantDeclarationList. 

2. Evaluate ConstantDeclaration. 

The production ConstantDeclaration : Identifier Initialiser is evaluated as follows: 

1. Evaluate Identifier as described in 11.1.2. 

2. Evaluate Initialiser. 

3. Call GetValue(Result(2)). 

4. Call GetBase(Result(1)). 

5. Call GetPropertyName(Result(1)). 

6. Call the [[GetOwnProperty]] method of Result(4) with argument Result(5). 

7. If Result(6).[[Const]] is not Uninitialized  then throw a SyntaxError exception. 

8. Update the own property P of Result(4) with attributes [[Value]]: Result(2) and [[Const]]:Initialized . 

This update is preformed irrespective of the current values of the properties [[Writable]] and 

[[Configurable]] attributes. 

9. Return a string value containing the same sequence of characters as in the Identifier. 

13 Function Definition  

Syntax  

FunctionDeclaration : 

function  Identifier (  FormalParameterListopt )  {  FunctionBody }  

FunctionExpression : 

function  Identifieropt (  FormalParameterListopt )  {  FunctionBody }  

FormalParameterList : 

Identifier 

FormalParameterList ,  Identifier 

FunctionBody : 

SourceElements 

Semantics 

Comment [pL56]: From MSM: 
 

Whatever this is trying to prevent, it should be a static scan-

time error. 



- 83 -  

27 October 2008 

The production FunctionDeclaration : function  Identifier (  FormalParameterListopt )  {  FunctionBody }  is 

processed for function declarations as follows: 

1. Create a new Function object as specified in 13.2 with parameters specified by FormalParameterListopt, 

and body specified by FunctionBody. Pass in the scope chain of the running execution context as the 

Scope. 

2. Create a property of the current environment object (as specified in 10.1.3) with name Identifier and value 

Result(1). 

The production FunctionExpression : function  (  FormalParameterListopt )  {  FunctionBody }  is evaluated 

as follows: 

1. Create a new Function object as specified in 13.2 with parameters specified by FormalParameterListopt 

and body specified by FunctionBody. Pass in the scope chain of the running execution context as the 

Scope. 

2. Return Result(1). 

The production FunctionExpression :  function  Identifier (  FormalParameterListopt )  {  FunctionBody }  is 

evaluated as follows: 

1. Create a new object as if by the expression new Object()  where Object  is the standard built-in 

constructor with that name. 

2. Add Result(1) to the front of the scope chain. 

3. Create a new Function object as specified in 13.2 with parameters specified by FormalParameterListopt 

and body specified by FunctionBody. Pass in the scope chain of the running execution context as the 

Scope. 

4. Create a property in the object Result(1). The property's name is Identifier, value is Result(3), and 

attributes are { [[Writable]]: false, [[Enumerable]]: true , [[Configurable]]: false }.  

5. Remove Result(1) from the front of the scope chain. 

6. Return Result(3). 

NOTE 

The Identifier in a FunctionExpression can be referenced from inside the FunctionExpression's FunctionBody 

to allow the function to call itself recursively. However, unlike in a FunctionDeclaration, the Identifier in a 

FunctionExpression cannot be referenced from and does not affect the scope enclosing the 

FunctionExpression. 

The production FunctionBody :  SourceElements  is evaluated as follows: 

1. Process SourceElements for function declarations. 

2. Evaluate SourceElements. 

3. Return Result(2). 

13.1 Definitions 

This section is no longer used. 

13.2 Creating Function Objects 

Given an optional parameter list specified by FormalParameterList, a body specified by FunctionBody, and 

a scope chain specified by Scope, a Function object is constructed as follows: 

1. Create a new native ECMAScript object and let F be that object. 

2. Set the [[Class]] property of F to "Function" . 

3. Set the [[Prototype]] property of F to the original Function prototype object as specified in 15.3.3.1. 

4. Set the [[Call]] property of F as described in 13.2.1. 

5. Set the [[Construct]] property of F as described in 13.2.2. 

6. Set the [[Scope]] property of F to a new scope chain (10.1.4) that contains the same objects as Scope. 

7. Set the length  property of F to the number of formal parameters specified in FormalParameterList. If 

no parameters are specified, set the length  property of F to 0. This property is given attributes as 

specified in 15.3.5.1. 

8. Set the [[Extensible]] property of F to true. 

9. Create a new object as would be constructed by the expression new Object() where Object  is the 

standard built-in constructor with that name. 

Deleted: variable 

Deleted: 2

Comment [pL57]: From MSM: 

 
Replace with proper activation language. But no 

matter what, MUST FIX THIS SCOPE-LEAKAGE 

BUG! 

Comment [pL58]: Mark: is this observable? 
Lars: yes it is! 

Deleted: DontDelete, ReadOnly

Comment [pL59]: From AWB: 
Fix scoping issues é 

Deleted: A couple of definitions are needed to 
describe the process of creating function objects:

Deleted: ¶
13.1.1 Equated Grammar Productions¶

Two uses of the FunctionBody grammar 
production are defined to be equated when one of 

the following is true:¶

Both uses obtained their FunctionBody from the 
same location in the source text of the same 

ECMAScript program. This source text consists 

of global code and any contained function codes 
according to the definitions in 10.1.2.¶

Both uses obtained their FunctionBody from the 

same location in the source text of the same call 
to eval (15.1.2.1). This source text consists of 

eval code and any contained function codes 

according to the definitions in 10.1.2.¶
NOTE¶

Two uses of FunctionBody obtained from a call 

to the Function constructor 15.3.1 and 15.3.2) are 
never equated. Also, two uses of FunctionBody 

obtained from two different calls to eval are 

never equated, even if those two calls to eval 
were passed the same argument.¶

13.1.2 Joined Objects¶
When two or more Function objects are joined, 

they have the following special behaviours:¶

Any time a non-internal property of an object O 
is created or set, the corresponding property is 

immediately also created or set with the same 

value and attributes in all objects joined with O.¶
Any time a non-internal property of an object O 

is deleted, the corresponding property is 

immediately also deleted in all objects joined 
with O.¶

If objects O and P are joined, they compare as == 

and === to each other.¶
Joining is transitive and symmetric, so that if 

objects O and P are joined and objects P and Q 

are joined, then objects O and Q are also 
automatically joined.¶

NOTE  ¶

Two or more objects joined to each other are 
effectively indistinguishable except that they may 

have different internal properties. The only such 

internal property that may differ in this 
specification is [[Scope]].¶ ...

Deleted: <#>If there already exists an object 
E that was created by an earlier call to this 

section's algorithm, and if that call to this 
section's algorithm was given a FunctionBody 

that is equated to the FunctionBody given now, 

then go to step 13. (If there is more than one ...

Deleted: properties 

Deleted: .



- 84 -  

27 October 2008 

10. Set the constructor  property of Result(9) to F. This property has attributes { [[Writable]]: true , 

[[Enumerable]]: false, [[Configurable]]: true  }.  

11. Set the prototype  property of F to Result(9). This property is given attributes as specified in 

15.3.5.2. 

12. Return F. 

 

NOTE 

A prototype  property is automatically created for every function, to allow for the possibility that the 

function will be used as a constructor. 

13.2.1 [[Call]]  

When the [[Call]] property for a Function object F is called, the following steps are taken: 

1. Establish a new execution context using F's FormalParameterList, the passed arguments list, and the 

this value as described in 10.2.3. 

2. Evaluate F's FunctionBody. 

3. Exit the execution context established in step 1, restoring the previous execution context. 

4. If Result(2).type is throw  then throw Result(2).value. 

5. If Result(2).type is return  then return Result(2).value. 

6. (Result(2).type must be normal .) Return undefined. 

13.2.2 [[Construct]]  

When the [[Construct]] property for a Function object F is called, the following steps are taken: 

1. Create a new native ECMAScript object. 

2. Set the [[Class]] property of Result(1) to "Object" . 

3. Set the [[Extensible]] property of Result(1) to true . 

4. Get the value of the prototype  property of F. 

5. If Result(4) is an object, set the [[Prototype]] property of Result(1) to Result(4). 

6. If Result(4) is not an object, set the [[Prototype]] property of Result(1) to the original Object 

prototype object as described in 15.2.3.1. 

7. Invoke the [[Call]] property of F, providing Result(1) as the this value and providing the argument 

list passed into [[Construct]] as the argument values. 

8. If Type(Result(7)) is Object then return Result(7). 

9. Return Result(1). 

Deleted: is given 

Deleted: DontEnum 

Deleted: <#>At the implementation's discretion, go 
to either step 2 or step 14.¶

<#>Create a new native ECMAScript object joined to 

E and let F be that object. Copy all non-internal 
properties and their attributes from E to F so that all 

non-internal properties are identical in E and F.¶

<#>Set the [[Class]] property of F to "Function" .¶

<#>Set the [[Prototype]] property of F to the original 
Function prototype object as specified in 15.3.3.1.¶

<#>Set the [[Call]] property of F as described in 

13.2.1.¶
<#>Set the [[Construct]] property of F as described in 

13.2.2.¶

<#>Set the [[Scope]] property of F to a new scope 
chain (10.1.4) that contains the same objects as Scope.¶

Return F.

Deleted: Step 1 allows an implementation to optimise 
the common case of a function A that has a nested 
function B where B is not dependent on A. In this case 

the implementation is allowed to reuse the same object 

for B instead of creating a new one every time A is 
called. Step 13 makes this optimisation optional; an 

implementation that chooses not to implement it will go 

to step 2.¶
For example, in the code¶

function A() {

  function B(x) {return x*x;}
  return B;

}

function C() {

  return eval("(function (x) {return x*x;})");

}

var b1 = A();

var b2 = A();
function  b3(x) {return x*x;}

function  b4(x) {return x*x;}

var b5 = C();
var b6 = C();¶

an implementation is allowed, but not required, to join 

b1  and b2. In fact, it may make b1 and b2  the same 

object because there is no way to detect the difference 
between their [[Scope]] properties. On the other hand, 

an implementation must not join b3 and b4 because 

their source codes are not equated (13.1.1). Also, an 

implementation must not join b5 and b6 because they 

were produced by two different calls to eval  and 

therefore their source codes are not equated.¶
In practice it's likely to be productive to join two 

Function objects only in the cases where an 

implementation can prove that the differences between 
their [[Scope]] properties are not observable, so one 

object can be reused. By following this policy, an 

implementation will only encounter the vacuous case of 
an object being joined with itself.¶

Deleted: the 

Deleted: 3

Deleted: 3

Deleted: 3

Deleted: 6

Comment [pL60]: Herman Venter says: shouldnôt this 

be ñis an Object?ò 

Deleted: 6



- 85 -  

27 October 2008 

14 Program 

Syntax  

Program : 

UseSubsetDirectiveopt SourceElements 

UseSubsetDirectiveopt  : 

"use SubsetListopt " ;  

SubsetList : 

Subset 

SubsetList, Subset 

Subset : one of 
strict  

SourceElements : 

SourceElement 

SourceElements SourceElement 

SourceElement : 

Statement 

Semantics 

The production Program : UseSubsetDirectiveopt SourceElements is evaluated as follows: 

1. If the optional UseSubsetDirective is not present, the set of usage subsets for the Program is the empty 

set. 

2. Else 

a. Evaluate SourceElements. 

3. The set of usage subsets for the Program is elements of the internal list that is Result(2a). 

4. Process SourceElements for function declarations. 

5. Evaluate SourceElements. 

6. Return Result(5). 

The production SourceElements :  SourceElement is processed for function declarations as follows: 

1. Process SourceElement for function declarations. 

The production SourceElements :  SourceElement is evaluated as follows: 

1. Evaluate SourceElement. 

2. Return Result(1). 

The production SourceElements : SourceElements SourceElement is processed for function declarations as 

follows: 

1. Process SourceElements for function declarations. 

2. Process SourceElement for function declarations. 

The production SourceElements :  SourceElements SourceElement is evaluated as follows: 

1. Evaluate SourceElements. 

2. If Result(1) is an abrupt completion, return Result(1) 

3. Evaluate SourceElement. 

4. Return Result(3). 

The production SourceElement :  Statement is processed for function declarations by taking no action. 

The production SourceElement :  Statement is evaluated as follows: 

1. Evaluate Statement. 

2. Return Result(1). 

Deleted: 
FunctionDeclaration

Deleted: 2



- 86 -  

27 October 2008 

The production SourceElement : FunctionDeclaration is processed for function declarations as follows: 

1. Process FunctionDeclaration for function declarations (see clause 13). 

The production SourceElement : FunctionDeclaration is evaluated as follows: 

1. Return (normal , empty, empty). 

The production UseSubsetDirectiveopt  : "  use SubsetList "  ;  is evaluated as follows: 

1. Evaluate SubsetList 

2. Return Result(1) 

The production SubsetList  : Subset  is evaluated as follows: 

1. If Subset is not the name of a usage subset that is supported by this ECMAScript implementation, return 

an empty internal list. 

2. Return an internal list containing one element which is the Subset.  

The production SubsetList  : SubsetList ,  Subset is evaluated as follows: 

1. Evaluate SubsetList. 

2. If Subset is not the name of a usage subset that is supported by this ECMAScript implementation, return 

Result(1) 

3. If Subset is already an element of Result(1), return Result(1) 

4. Return an internal list whose length is one greater than the length of Result(1) and whose items are the 

items of Result(1), in order, followed at the end by Subset, which is the last item of the new list. 



- 87 -  

27 October 2008 

15 Native ECMAScript Objects 

There are certain built-in objects available whenever an ECMAScript program begins execution. One, the 

global object, is in the scope chain of the executing program. Others are accessible as initial properties of the 

global object. 

Unless specified otherwise, the [[Class]] property of a built-in object is "Function"  if that built-in object 

has a [[Call]] property, or "Object"  if that built-in object does not have a [[Call]] property. Unless specified 

otherwise, the [[Extensible]] property of a built-in object has the value true . 

Many built-in objects are functions: they can be invoked with arguments. Some of them furthermore are 

constructors: they are functions intended for use with the new operator. For each built-in function, this 

specification describes the arguments required by that function and properties of the Function object. For each 

built-in constructor, this specification furthermore describes properties of the prototype object of that 

constructor and properties of specific object instances returned by a new expression that invokes that 

constructor. 

Unless otherwise specified in the description of a particular function, if a function or constructor described in 

this section is given fewer arguments than the function is specified to require, the function or constructor shall 

behave exactly as if it had been given sufficient additional arguments, each such argument being the 

undefined value. 

Unless otherwise specified in the description of a particular function, if a function or constructor described in 

this section is given more arguments than the function is specified to allow, the additional arguments are 

ignored. 

NOTE 

Implementations that add additional capabilities to the set of built-in functions are encouraged to do so by 

adding new functions rather than adding new parameters to existing functions. 

Every built-in function and every built-in constructor has the Function prototype object, which is the initial 

value of the expression Function.prototype  (15.3.2.1), as the value of its internal [[Prototype]] 

property. 

Every built-in prototype object has the Object prototype object, which is the initial value of the expression 

Object.prototype  (15.3.2.1), as the value of its internal [[Prototype]] property, except the Object 

prototype object itself. 

None of the built-in functions described in this section shall implement the internal [[Construct]] method 

unless otherwise specified in the description of a particular function. None of the built-in functions described 

in this section shall initially have a prototype  property unless otherwise specified in the description of a 

particular function. Every built-in Function object described in this sectionðwhether as a constructor, an 

ordinary function, or bothðhas a length  property whose value is an integer. Unless otherwise specified, this 

value is equal to the largest number of named arguments shown in the section headings for the function 

description, including optional parameters. 

NOTE 

For example, the Function object that is the initial value of the slice  property of the String prototype object 

is described under the section heading ñString.prototype.slice (start , end)ò which shows the two named 

arguments start and end; therefore the value of the length  property of that Function object is 2. 

In every case, the length  property of a built-in Function object described in this section has the attributes 

{  [[Writable]]: false, [[Enumerable]]: false, [[Configurable]]: false } (and no others). Every other property 

described in this section has the attribute { [[Writable]]: true , [[Enumerable]]: false, [[Configurable]]: true  } 

unless otherwise specified. 

15.1 The Global Object 

The global object does not have a [[Construct]] property; it is not possible to use the global object as a 

constructor with the new operator. 

The global object does not have a [[Call]] property; it is not possible to invoke the global object as a 

function. 

The values of the [[Prototype]] and [[Class]] properties of the global object are implementation-dependent. 

Deleted: behaviour of the function or 
constructor is undefined. In particular, an 

implementation is permitted (but not required) to 

throw a TypeError  exception in this case

Comment [pL61]: Breaking change!! 
Lars asks for the motivation of this change? Herman 

Venter says: I am not totally sure that this is OK, 

since the language was added before my time and 
presumably was required to allow either Navigator 

or IE to claim to be compliant with the standard 

while extending it. TODO: figure out if this issue is 
discussed anywhere. 

Deleted: ReadOnly, DontDelete, DontEnum

Deleted: DontEnum

Deleted: (and no others) 



- 88 -  

27 October 2008 

15.1.1 Value Properties of the Global Object 

15.1.1.1 NaN 

The initial value of NaN is NaN (8.5). This property has the attributes { [[Writable]]: false, 

[[Enumerable]]: false, [[Configurable]]: false }.  

15.1.1.2 Infinity  

The initial value of Infinity  is +  (8.5). This property has the attributes { [[Writable]]: false, 

[[Enumerable]]: false, [[Configurable]]: false }.  

15.1.1.3 undefined 

The initial value of undefined  is undefined (8.1). This property has the attributes { [[Writable]]: 

false, [[Enumerable]]: false, [[Configurable]]: false }.  

15.1.2 Function Properties of the Global Object 

15.1.2.1 eval (x) 

When the eval  function is called with one argument x, the following steps are taken: 

1. If x is not a string value, return x. 

2. Parse x as a Program. If the parse fails, throw a SyntaxError  exception (but see also clause 16). 

3. Evaluate the program from step 2. 

4. If Result(3).type is normal and its completion value is a value V, then return the value V. 

5. If Result(3).type is normal and its completion value is empty, then return the value undefined. 

6. Result(3).type must be throw . Throw Result(3).value as an exception. 

If the value of the eval  property is used in any way other than a direct call (that is, other than by the 

explicit use of its name as an Identifier which is the MemberExpression in a CallExpression), or if the 

eval  property is assigned to, an EvalError  exception may be thrown. 

15.1.2.1.1 Usage Subset Restrictions 

If  an execution context that is subset restricted to the strict subset uses the value of the eval  

property any way other than a direct call (that is, other than by the explicit use of its name as an 

Identifier which is the MemberExpression in a CallExpression), or if the eval  property is assigned 

to, an EvalError  exception is thrown. 

15.1.2.2 parseInt (string , radix)  

The parseInt  function produces an integer value dictated by interpretation of the contents of the 

string argument according to the specified radix. Leading white space in the string is ignored. If radix 

is undefined or 0, it is assumed to be 10 except when the number begins with the character pairs 0x  

or 0X, in which case a radix of 16 is assumed. Any radix-16 number may also optionally begin with 

the character pairs 0x  or 0X. 

When the parseInt  function is called, the following steps are taken: 

1. Call ToString(string). 

2. Let S be a newly created substring of Result(1) consisting of the first character that is not a 

StrWhiteSpaceChar and all characters following that character. (In other words, remove leading 

white space.) 

3. Let sign be 1. 

4. If S is not empty and the first character of S is a minus sign - , let sign be 1. 

5. If S is not empty and the first character of S is a plus sign + or a minus sign - , then remove the 

first character from S. 

6. Let R = ToInt32(radix). 

7. If R = 0, go to step 11. 

8. If R < 2 or R > 36, then return NaN. 

9. If R = 16, go to step 13. 

10. Go to step 14. 

11. Let R = 10. 

12. If the length of S is at least 1 and the first character of S is ñ0ò, then at the implementation's 

discretion either let R = 8 or leave R unchanged. 

Comment [pL62]: This is an intentional incompatible 
change from ES3. 

Deleted: DontEnum, DontDelete

Deleted: DontEnum, DontDelete

Deleted: DontEnum, DontDelete

Comment [pL63]: From AWB: 
Need to do additional spec work to make eval act like an 

operator but without reserving the eval identifier. 



- 89 -  

27 October 2008 

13. If the length of S is at least 2 and the first two characters of S are either ñ0xò or ñ0Xò, then 

remove the first two characters from S and let R = 16. 

14. If S contains any character that is not a radix-R digit, then let Z be the substring of S consisting of 

all characters before the first such character; otherwise, let Z be S. 

15. If Z is empty, return NaN. 

16. Compute the mathematical integer value that is represented by Z in radix-R notation, using the 

letters A-Z and a-z  for digits with values 10 through 35. (However, if R is 10 and Z contains more 

than 20 significant digits, every significant digit after the 20th may be replaced by a 0 digit, at 

the option of the implementation; and if R is not 2, 4, 8, 10, 16, or 32, then Result(16) may be an 

implementation-dependent approximation to the mathematical integer value that is represented by 

Z in radix-R notation.) 

17. Compute the number value for Result(16). 

18. Return sign  Result(17). 

NOTE 

parseInt  may interpret only a leading portion of the string as an integer value; it ignores any 

characters that cannot be interpreted as part of the notation of an integer, and no indication is given 

that any such characters were ignored. 

When radix is 0 or undefined and the string's number begins with a 0 digit not followed by an x  or X, 

then the implementation may, at its discretion, interpret the number either as being octal or as being 

decimal. Implementations are encouraged to interpret numbers in this case as being decimal. 

15.1.2.3 parseFloat (string) 

The parseFloat  function produces a number value dictated by interpretation of the contents of the 

string argument as a decimal literal. 

When the parseFloat  function is called, the following steps are taken: 

1. Call ToString(string). 

2. Compute a substring of Result(1) consisting of the leftmost character that is not a 

StrWhiteSpaceChar and all characters to the right of that character.(In other words, remove 

leading white space.) 

3. If neither Result(2) nor any prefix of Result(2) satisfies the syntax of a StrDecimalLiteral (see 

9.3.1), return NaN. 

4. Compute the longest prefix of Result(2), which might be Result(2) itself, which satisfies the 

syntax of a StrDecimalLiteral. 

5. Return the number value for the MV of Result(4). 

NOTE 

parseFloat  may interpret only a leading portion of the string as a number value; it ignores any 

characters that cannot be interpreted as part of the notation of an decimal literal, and no indication is 

given that any such characters were ignored. 

15.1.2.4 isNaN (number) 

Returns true  if the result is NaN, and otherwise returns false. 

1. Call GetValue(number). 

2. If Type(Result(1)) is Decimal, then 

a. Call the IEEE 754-2008 Decimal isFinite method with argument Result(1). 

b. Return Result(2a). 

3. Call ToNumber(Result(2)). 

4. If Result(4) is NaN, return true . 

5. Return false. 

15.1.2.5 isFinite (number) 

Returns false if the result is NaN, + , or , and otherwise returns true . 

1. Call GetValue(number). 

2. If  Type(Result(1)) is Decimal, then 

a. Call the IEEE 754-2008 Decimal isFinite method with argument Result(1). 

b. Return Result(2a). 

Deleted: 0

Deleted: Applies ToNumber to its argument, 
then returns

Deleted: Applies ToNumber to its argument, 
then returns



- 90 -  

27 October 2008 

3. Call ToNumber(Result(2)). 

4. If Result(4) is NaN, + , or , return false. 

5. Return true. 

15.1.3 URI Handling Function Properties 

Uniform Resource Identifiers, or URIs, are strings that identify resources (e.g. web pages or files) and 

transport protocols by which to access them (e.g. HTTP or FTP) on the Internet. The ECMAScript 

language itself does not provide any support for using URIs except for functions that encode and decode 

URIs as described in 15.1.3.1, 15.1.3.2, 15.1.3.3 and 15.1.3.4. 

NOTE 

Many implementations of ECMAScript provide additional functions and methods that manipulate web 

pages; these functions are beyond the scope of this standard. 

A URI is composed of a sequence of components separated by component separators. The general form 

is: 

     Scheme :  First /  Second ;  Third ? Fourth 

where the italicised names represent components and the ñ: ò, ñ/ ò, ñ; ò and ñ?ò are reserved characters 

used as separators. The encodeURI  and decodeURI  functions are intended to work with complete 

URIs; they assume that any reserved characters in the URI are intended to have special meaning and so 

are not encoded. The  encodeURIComp onent  and decodeURIComponent  functions are intended to 

work with the individual component parts of a URI; they assume that any reserved characters represent 

text and so must be encoded so that they are not interpreted as reserved characters when the component 

is part of a complete URI. 

The following lexical grammar specifies the form of encoded URIs. 

uri :::  

uriCharactersopt 

uriCharacters :::  

uriCharacter uriCharactersopt 

uriCharacter :::  

uriReserved 

uriUnescaped 

uriEscaped 

uriReserved :::  one of 
;  /  ?  :   @  &  =  +  $  ,  

uriUnescaped :::  

uriAlpha 

DecimalDigit 

uriMark 

uriEscaped :::  

% HexDigit HexDigit 

uriAlpha :::  one of 
a  b  c  d  e  f  g  h  i  j  k  l  m  n  o  p  q  r  s  t  u  v  w  x  y  z  

A  B  C  D  E  F  G  H  I  J  K  L  M  N  O  P  Q  R  S  T   U  V  W  X  Y  Z  

uriMark :::  one of 
-   _  .  !  ~  *  '  (  )  

When a character to be included in a URI is not listed above or is not intended to have the special 

meaning sometimes given to the reserved characters, that character must be encoded. The character is 

first transformed into a sequence of octets using the UTF-8 transformation, with surrogate pairs first 

transformed from their UCS-2 to UCS-4 encodings. (Note that for code points in the range [0,127] this 



- 91 -  

27 October 2008 

results in a single octet with the same value.) The resulting sequence of octets is then transformed into a 

string with each octet represented by an escape sequence of the form ñ%xxò. 

The encoding and escaping process is described by the hidden function Encode taking two string 

arguments string and unescapedSet. This function is defined for  expository purpose only. 

1. Compute the number of characters in string. 

2. Let R be the empty string. 

3. Let k be 0. 

4. If k equals Result(1), return R. 

5. Let C be the character at position k within string. 

6. If C is not in unescapedSet, go to step 9. 

7. Let S be a string containing only the character C. 

8. Go to step 24. 

9. If the code point value of C is not less than 0xDC00 and not greater than 0xDFFF, throw a 

URIError  exception. 

10. If the code point value of C is less than 0xD800 or greater than 0xDBFF, let V be the code point 

value of C and go to step 16. 

11. Increase k by 1. 

12. If k equals Result(1), throw a URIError  exception. 

13. Get the code point value of the character at position k within string. 

14. If Result(13) is less than 0xDC00 or greater than 0xDFFF, throw a URIError  exception. 

15. Let V be (((the code point value of C) ï 0xD800) * 0x400 + (Result(13) ï 0xDC00) + 0x10000). 

16. Let Octets be the array of octets resulting by applying the UTF-8 transformation to V, and let L be 

the array size. 

17. Let j  be 0. 

18. Get the value at position j  within Octets. 

19. Let S be a string containing three characters ñ%XYò where XY are two uppercase hexadecimal digits 

encoding the value of Result(18). 

20. Let R be a new string value computed by concatenating the previous value of R and S. 

21. Increase j  by 1. 

22. If j  is equal to L, go to step 25. 

23. Go to step 18. 

24. Let R be a new string value computed by concatenating the previous value of R and S. 

25. Increase k by 1. 

26. Go to step 4. 

The unescaping and decoding process is described by the hidden function Decode taking two string 

arguments string and reservedSet. This function is defined for  expository purpose only. 

1. Compute the number of characters in string. 

2. Let R be the empty string. 

3. Let k be 0. 

4. If k equals Result(1), return R. 

5. Let C be the character at position k within string. 

6. If C is not ó%ô, go to step 40. 

7. Let start be k. 

8. If k + 2 is greater than or equal to Result(1), throw a URIError  exception. 

9. If the characters at position (k+1) and (k + 2) within string do not represent hexadecimal digits, 

throw a URIError  exception. 

10. Let B be the 8-bit value represented by the two hexadecimal digits at position (k + 1) and (k + 2). 

11. Increment k by 2. 

12. If the most significant bit in B is 0, let C be the character with code point value B and go to step 37. 

13. Let n be the smallest non-negative number such that (B << n) & 0x80 is equal to 0. 

14. If n equals 1 or n is greater than 4, throw a URIError  exception. 

15. Let Octets be an array of 8-bit integers of size n. 

16. Put B into Octets at position 0. 

17. If k + (3 * (n ï 1)) is greater than or equal to Result(1), throw a URIError  exception. 

18. Let j  be 1. 

19. If j  equals n, go to step 29. 



- 92 -  

27 October 2008 

20. Increment k by 1. 

21. If the character at position k is not ó%ô, throw a URIError  exception. 

22. If the characters at position (k +1) and (k + 2) within string do not represent hexadecimal digits, 

throw a URIError  exception. 

23. Let B be the 8-bit value represented by the two hexadecimal digits at position (k + 1) and (k + 2). 

24. If the two most significant bits in B are not 10, throw a URIError  exception. 

25. Increment k by 2. 

26. Put B into Octets at position j. 

27. Increment j  by 1. 

28. Go to step 19. 

29. Let V be the value obtained by applying the UTF-8 transformation to Octets, that is, from an array of 

octets into a 32-bit value. 

30. If V is less than 0x10000, go to step 36. 

31. If V is greater than 0x10FFFF, throw a URIError  exception. 

32. Let L be (((V ï 0x10000) & 0x3FF) + 0xDC00). 

33. Let H be ((((V ï 0x10000) >> 10) & 0x3FF) + 0xD800). 

34. Let S be the string containing the two characters with code point values H and L. 

35. Go to step 41. 

36. Let C be the character with code point value V. 

37. If C is not in reservedSet, go to step 40. 

38. Let S be the substring of string from position start to position k included. 

39. Go to step 41. 

40. Let S be the string containing only the character C. 

41. Let R be a new string value computed by concatenating the previous value of R and S. 

42. Increase k by 1. 

43. Go to step 4. 

NOTE 1 

The syntax of Uniform Resource Identifiers is given in RFC2396. 

NOTE 2 

A formal description and implementation of UTF-8 is given in the Unicode Standard, Version 2.0, 

Appendix A. 

In UTF-8, characters are encoded using sequences of 1 to 6 octets. The only octet of a "sequence" of one 

has the higher-order bit set to 0, the remaining 7 bits being used to encode the character value. In a 

sequence of n octets, n>1, the initial octet has the n higher-order bits set to 1, followed by a bit set to 0. 

The remaining bits of that octet contain bits from the value of the character to be encoded. The following 

octets all have the higher-order bit set to 1 and the following bit set to 0, leaving 6 bits in each to 

contain bits from the character to be encoded. The possible UTF-8 encodings of ECMAScript characters 

are: 

 

Code Point Value Representation 1
st
 Octet 2

nd
 Octet 3

rd
 Octet 4

th
 Octet 

0x0000 -  0x007F  00000000  0zzzzzzz  0zzzzzzz     

0x0080 -  0x07FF  00000 yyy yyzzzzzz  110yyyyy  10zzzzzz    

0x0800 -  0xD7FF xxxxyyyy yyzzzzzz  1110 xxxx  10yyyyyy  10zzzzzz   

0xD800 -  0xDBFF 

followed by 

0xDC00 ï 0xDFFF 

110110 vv vvwwwwxx  

followed by 

110111 yy yyzzzzzz  

 

11110 uuu  

 

10uuwwww 

 

10xxyyyy  

 

10zzzzzz  

0xD800 -  0xDBFF 

not followed by 

0xDC00 ï 0xDFFF 

 

causes URIError  

    

0xDC00 ï 0xDFFF causes URIError      

0xE000 -  0xFFFF  xxxxyyyy yyzzzzzz  1110 xxxx  10yyyyyy  10zzzzzz   




