Standard ECMA262

3'Y Edition - December 199¢

ECMA

Standardizing Information and Communication Systems

ECMAScript 3.1Language
Specification- DRAFT

Phone: +41 22 849.60.00 - Fax: +41 22 849.60.01 - URL: http://www.ecma.ch - Internet: helpdesk@ecma.ch
27 October 2008

Standard ECMA262

3'Y Edition - December 199¢

ECMA

Standardizing Information and Communication Systems

Phone: +41 22 849.60.00 - Fax: +41 22 849.60.01 - URL: http://www.ecma.ch - Internet: helpdesk@ecma.ch
27 October 2008

Standard ECMA262

3'Y Edition - December 199¢

ECMA

Standardizing Information and Communication Systems

ECMAScript 3.1Language
Specification- DRAFT

Phone: +41 22 849.60.00 - Fax: +41 22 849.60.01 - URL: http://www.ecma.ch - Internet: helpdesk@ecma.ch
27 October 2008

Brief History

This ECMA Standard is based on several originating technologies, the most well known being JavaScript (Netscape)
and JScript (Microsoft). The language was invented by Brendan Eich at Netscapn d f i r st appeared i
Navigator 2.0 browser. It has appeared in all subsequent browsers from Netscape and in all browsers from Microsoft
starting with Internet Explorer 3.0.

The development of this Standard started in November 1996. Wteeflition of this ECMA Standard was adopted by
the ECMA General Assembly of June 1997.

That ECMA Standard was submitted to ISO/IEC JTC 1 for adoption under thé&rdaktprocedure, and approved as
international standard ISO/IEC 16262, in April 1998. TEBEMA General Assembly of June 1998 approved the
second edition of ECMA62 to keep it fully aligned with ISO/IEC 16262. Changes between the first and the second
edition are editorial in nature.

The third edition of the Standargncludes powerful regular expressions, better string handling, new control{ peleted: current document defines the
statements, try/catch exception handling, tighter definition of errors, formatting for numeric output and minor chang
in anticipation of forthconmg internationalisation facilities and future language growthe language documented by
the third edition has come to be known as ECMAScript 3 or ES3.

[Deleted: and

Work on the language is not complete. The technical committee is working on significant enhancemnkrisg
mechanisms for scripts to be created and used across the Internet, and tighter coordination with other standards bodies
such as groups within the World Wide Web Consortium and the Wireless Application Protocol Forum.

Deleted: This Standard has been adopted as 3rd Edif
ECMA-262 by the ECMA General Assembly in Decen
1999.

Phone: +41 22 849.60.00 - Fax: +41 22 849.60.01 - URL: http://www.ecma.ch - Internet: helpdesk@ecma.ch
27 October 2008

1 Scope

2 Conformance

3 References

4 Overview

4.1 Web Scripting

4.2 Language Overview
4.2.1 Objects
4.2.2

4.3 Definitions
4.3.1 Type
4.3.2 Primitive Value
4.3.3 Object
4.3.4 Constructor
4.3.5 Prototype
4.3.6 Native Object
4.3.7 Built-in Object
4.3.8 Host Object
4.3.9 Undefined Value
4.3.10 Undefined Type
4.3.11 Null Value
4.3.12 Null Type
4.3.13 Boolean Value
4.3.14 Boolean Type
4.3.15 Boolean Object
4.3.16 String Value
4.3.17 String Type
4.3.18 String Object
4.3.19 Number Value
4.3.20 Number Type
4.3.21 Number Object
4.3.22 Infinity
4.3.23 NaN
4.3.24 Function
4.3.25 Property
4.3.26 Method
4.3.27 Attribute
4.3.28 Own Property
4.3.29 Inherited Property
4.3.30 Built-in Method
4.3.31 Decimal Value
4.3.32 Decimal Type
4.3.33 Decimal Object

5 Notational Conventions

Table of contents

Voluntary Usage Language Subsets

27 October 2008

=

O o000 o000 000 O 0ol ooolooooooo oD DMDAMAEDMDMWONMNNDMNNE P

~

5.1
5.1.1
5.1.2
5.1.3
5.1.4
5.1.5

5.2

Syntactic and Lexical Grammars
ContextFree Grammars
The Lexical and RegExp Grammars
The Numeric String Grammar
The Syntactic Grammar
Grammar Notation

Algorithm Conventions

6. Source Text

7 Lexical Conventions

7.1
7.2
7.3
7.4
7.5
7.5.1
7.5.2
7.5.3
7.6
7.7
7.8
7.8.1
7.8.2
7.8.3
7.8.4
7.8.5
7.9
7.9.1
7.9.2

Unicode FormaiControl Characters
White Space
Line Terminators
Comments
Tokens

Reserved Words

Keywords

Future Reserved Words
Identifiers
Punctuators
Literals

Null Literals

Boolean Literals

Numeric Literals

String Literals

Regular Expression Literals
Automatic Semicolon Insertion

Rules of Automatic Semicolon Insertion

Examples of Automatic Semicolon Insertion

8 Types

8.1
8.2
8.3
8.4
8.5
8.6
8.6.1
8.6.2
8.7
8.7.1
8.7.2
8.8
8.9

8.10 The Property Descriptor and Property Identifier Types

8.10.1
8.10.2

The Undefined Type
The Null Type
The Boolean Type
The String Type
The Number Type
The Object Type
Property Attributes
Internal Properties and Methods
The Reference Type
GetValue (V)
PutValue (V, W, Throw)
The List Type
The Completion Type

IsAccessorDescriptor (Desc)
IsDataDescriptor (Desc)

27 October 2008

0 N ~N NN~

10

11

12
12
12
13
14
15
15
15
15
15
17
17
17
17
17
19
22
23
23
24

25
25
25
25
25
26
27
27
28
33
34
34
34
34
34
35
35

8.10.3 IsGenericDescriptor (Desc)
8.10.4 FromPropertyDescriptr (Desc)
8.10.5 ToPropertyDescriptor (Desc)
9 Type Conversion and Testing
9.1 ToPrimitive
9.2 ToBoolean
9.3 ToNumber
9.3.1 ToNumber Applied to the String Type
9.4 Tolnteger
9.5 Tolnt32: (Signed 32 Bit Integer)
9.6 ToUint32: (Unsigned 32 Bit Integer)
9.7 ToUint16: (Unsigned 16 Bit Integer)
9.8 ToString
9.8.1 ToString Applied to the Number Type
9.9 ToObject
9.10 IsCallable

10 Execution Contexts

10.1
10.1.1
10.1.2
10.1.3
10.1.4
10.1.5
10.1.6
10.1.7
10.1.8

10.2
10.2.1
10.2.2
10.2.3
10.2.4

Definitions
Function Objects
Types of Executable Code
Environment Bindings Instantiation
Scope Chain and ldentifier Resolution
Global Object
Activation Object
This
Arguments Object

Entering An Execution Context
Global Code
Eval Code
Function Code
Lexical Block Code

11 Expressions

11.1
11.1.1
11.1.2
11.1.3
11.1.4
11.1.5
11.1.6

11.2
11.2.1
11.2.2
11.2.3
11.2.4
11.2.5

Primary Expressions
Thethis Keyword
Identifier Reference
Literal Reference
Array Initialiser
Object Initialiser
The Grouping Operator

Left-Hand Side Expressions
Property Accessors
Thenew Operator
Function Calls
Argument Lists
Function Expressions

27 October 2008

35
35
36

36
36
37
37
37
40
40
40
41
41
41
42
43

43
43
43
43
44
45
46
46
46
46
47
47
47
47
48

48
48
48
48
48
48
49
51
51
52
53
53
53
54

11.3 Postfix Expressions
11.3.1 Postfix Increment Operator
11.3.2 Postfix Decrement Operator
11.4 Unary Operators
11.4.1 Thedelete Operator
11.4.2 Thevoid Operator
11.4.3 Thetypeof Operator
11.4.4 Prefix Increment Operator
11.4.5 Prefix Decrement Operator
11.4.6 Unary+ Operator
11.4.7 Unary- Operator
11.4.8 Bitwise NOT Operator ¢)
11.4.9 Logical NOT Operator {)
115 Multiplicative Operators
11.5.1 Applying the* Operator
11.5.2 Applying the/ Operator
11.5.3 Applying the%Operator
11.6 Additive Operators
11.6.1 The Addition operator ¢)
11.6.2 The Subtraction Operator-()
11.6.3 Applying the Additive Operators<, -) to Numbers
11.7 Bitwise Shift Operators
11.7.1 The Left Shift Operator €<)
11.7.2 The Signed Right Shift Operator>¢)
11.7.3 The Unsigned Right Shift Operator>)
11.8 Relational Operators
11.8.1 The Lessthan Operator €)
11.8.2 The Greatetthan Opeator (>)
11.8.3 The Lessthanor-equal Operator €=)
11.8.4 The Greateithanor-equal Operator $=)
11.8.5 The Abstract Relational Comparison Algthm
11.8.6 The instanceof operator
11.8.7 The in operator
11.9 Equality Operators
11.9.1 The Equals Operator£=)
11.9.2 The Doesnot-equals Operator I)
11.9.3 The Abstract Equality Comparison Algorithm
11.9.4 The Strict Equals Operat (===
11.9.5 The Strict Doesnot-equal Operator (==
11.9.6 The Strict Equality Comparison Algorithm
11.10 Binary Bitwise Operators
11.11 Binary Logical Operators
11.12 Conditional Operator (?:)
11.13 Assignment Operators
11.13.1 Simple Assignment €)

27 October 2008

54
54
54
55
55
55
55
56
56
56
57
57
57
57
58
58
58
59
59
60
60
60
60
61
61
61
62
62
62
63
63
64
64
64
65
65
65
66
66
66
67
67
68
69
69

11.13.2 Compound Assignmentdp=)
11.14 Comma Operator ()

12 Statements
12.1 Block
12.1.1 Usage Subset Restrictions
12.2 Variable statement
12.3 Empty Statement
12.4 Expression Statement
12.5 Theif Statement
12.6 Iteration Statements
12.6.1 Thedo-while Statement
12.6.2 Thewhile statement
12.6.3 Thefor Statement
12.6.4 Thefor -in Statement
12.7 Thecontinue Statement
12.8 Thebreak Statement
12.9 Thereturn Statement
12.10 Thewith Statement
12.10.1 Usage Subset Restrictions
12.11 Theswitch Statement
12.12 Labelled Statements
12.13 Thethrow statement
12.14 Thetry statement
12.15 Constant statement

13 Function Definition
13.1 Definitions
13.2 Creating Function Objects
13.2.1 [[Call]]
13.2.2 [[Construct]]

14 Program

15 Native ECMAScript Objects

15.1 The Global Object
15.1.1 Value Properties of the Global Object
15.1.2 Function Properties of the Global Object
15.1.3 URI Handling Function Properties
15.1.4 Constructor Properties of the Global Object
15.1.5 Other Properties of the Global Objec

15.2 Object Objects
15.2.1 The Object Constructor Called asranction
15.2.2 The Object Constructor
15.2.3 Properties othe Object Constructor
15.2.4 Properties of the Object Prototype Object
15.2.5 Properties of Object Instances

27 October 2008

70
70

71
71
72
72
73
73
74
74
74
75
75
76
7
77
77
78
78
78
80
80
80
81

82
83
83
84
84

85

87
87
88
88
90
94
95
95
95
95
95
98
99

- Vi -

15.3 Function Objects
15.3.1 The Function Constructor Called as a Function
15.3.2 The Function Constructor
15.3.3 Properties of the Function Constructor
15.3.4 Properties of the Function Prototype Object
15.3.5 Properties of Function Instances

15.4 Array Objects
15.4.1 The Array Constructor Called as a Fion
15.4.2 The Array Constructor
15.4.3 Properties of the Aay Constructor
15.4.4 Properties of the Array Prototype Object
15.4.5 Properties of Array Instances

15.5 String Objects
15.5.1 The String Constructor Called as a Funatio
15.5.2 The String Constructor
15.5.3 Properties of the Stng Constructor
15.5.4 Properties of the String Prototype Object
15.5.5 Properties of String Instances

15.6 Boolean Objects
15.6.1 The Boolean Constructor Called as a Function
15.6.2 The Boolean Constructor
15.6.3 Properties of the Boolean Constructor
15.6.4 Properties of théoolean Prototype Object
15.6.5 Properties of Boolean Instances

15.7 Number Objects
15.7.1 The Number Constructor Called as a Function
15.7.2 The Number Constructor
15.7.3 Properties of the Number Constructor
15.7.4 Properties of thé&dumber Prototype Object
15.7.5 Properties of Number Instances

15.8 The Math Object
15.8.1 Value Properties of the Math Object
15.8.2 Function Properties of the Math Object

15.9 Date Objects
15.9.1 Overview of Date Objects and Definitions of Internal Operators
15.9.2 The Date Constructor Called as a Function
15.9.3 The Date Constructor
15.9.4 Properties of the Date Constructor
15.9.5 Properties of the Date Prdipe Object
15.9.6 Properties of Date Instances

15.10 RegExp(Regular Expression) Objects
15.10.1 Patterns
15.10.2 PatternSemantics
15.10.3 The RegExp Constructor Called as a Function
15.10.4 The RegExp Constructor
15.10.5 Properties of the RegExp Constructor
15.10.6 Properties of the RegExp Prototype Object

27 October 2008

99

99

99
100
100
101
102
102
102
103
103
118
119
119
119
119
119
127
128
128
128
128
128
129
129
129
129
130
130
134
134
134
135
139
139
144
144
145
146
152
152
153
155
166
166
167
167

- vii -

15.10.7 Properties of RegExp Instances

15.11 Error Objects
15.11.1 The Error Constructor Called as a Function
15.11.2 The Error Constructor
15.11.3 Properties of the Error Constructor
15.11.4 Properties of the ErroPrototype Object
15.11.5 Properties of Error Instances
15.11.6 Native Error Types Used in This Standard
15.11.7 NativeError Object Structure

15.12 JSON
15.12.1 parse (text, reviver)
15.12.2 stringify (value, replacer, space)

15.13 Decimal

15.13.1 Overview of Decimal Objects and Definitions of Internal Operators
15.13.2 The Decimal Constructor Called as a Function

15.13.3 The Decimal Constructor

15.13.4 Properties of the Decimal constructor
15.13.5 Properties of the Decimal Prototype Object
15.13.6 Properties of Decimal Instances

16 Errors

Annex A

A.l Lexical Grammar

A.2 Number Conversions
A.3 Expressions

A.4 Statements

A.5 Functions and Programs
A.6 Universal Resource Identifier Character Classes
A.7 Regular Expressions
Annex B

Compatibility

B.1 Additional Syntax
B.1.1 Numeric Literals
B.1.2 String Literals

B.2 Additional Properties
B.2.1 escape (string)
B.2.2 unescape (string)
B.2.3 String.prototype.substr (start, length)
B.2.4 Date.prototype.getYear ()
B.2.5 Date.prototype.setYear (year)

27 October 2008

168
169
169
169
169
169
170
170
170
172
172
172
174
174
174
174
175
176
177

178

179

179

184

185

190

192

193

193

197

197

197
197
197

198
198
199
199
200
200

- viii -

B.2.6 Date.prototype.toGMTString ()
Annex C

Usage Subsets
C.1 The strict Subset
C.1.1 Excluded Features
Cc.1.2 Additional Execution Exceptions

Annex D
Correction and Clarifications in Edition 3.1 with Possible Compatability Impact

Annex E

Additions and Changes in Edition 3.1 which Introduce Incompatabilities with Edition 3.

27 October 2008

200

201

201
201
201
201

202

202

203

203

Scope
This Standard defines the ECMAScript scripting language.

Conformance

A conforming implementation of ECMAScript must provide and support all the types, values, objects,
properties, functions, and program syntax and semantics described in this specification.

A conforming implementation of this International standard shall interpret cteaisaiciconformance with the

Unicode Standard, VersigB.0 or later, and ISO/IEC 10646 with either UCS2 or UTF16 as the adopted [Deleted: 2.1

encoding form, implementation level 3. If the adopted ISO/IEC 10b646bset is not otherwise specified, it is
presumedd be the BMP subset, collection 300. If the adopted encoding form is not otherwise specified, i
presumed to be the UTE6 encoding form.

A conforming implementation of ECMAScript is permitted to provide additional types, values, objects,
properties, andfunctions beyond those described in this specification. In particular, a conforming
implementation of ECMAScript is permitted to provide properties not described in this specification, anc
values for those properties, for objects that are described isghigfication.

A conforming implementation of ECMAScript is permitted to support program and regular expression synta
not described in this specification. In particular, a conforming implementation of ECMAScript is permitted tc
support program syntaxtha makes wuse of the fAfuture reserved wo

References
ISO/IEC 9899:1996 Programming Language®, including amendment 1 and technical corrigenda 1 and 2.

ISO/IEC 106461:1993 Information Technology Universal Mutiple-Octet Coded Character Set (UCS) plus
its amendments and corrigenda.

The Unicode Consortium. The Unicode Standard, Ver8i6n defined by: The Unicode Standard, Versi®@

Deleted: Unicode Inc. (1996)The Unicode
Standard, Version 2.0. ISBN: £01-483459,

Wnicode Inc. (1998), Unicode Technical Report #15: Unicidemalization Forms. AddisonWesley Publishing Co., Menlo Park,
ANSI/IEEE Std 7541985: IEEE Standard for Binary FloatifRpint Arithmetic. Institute of Electrical and California.
Electronic Engineers, New York (1985). Deleted: Unicode Inc. (1998), Unicode
Technical Report #8: The Unicode Standard
. Version 2.1y
Overview

This section contains a narormative overview of the ECMAScript language.

ECMAScript is an objecbriented programming language for performing computations and manipulating
computational objects within a host environment. ECMAScript as defined here is not intended to b
computationally selkufficient; indeed, there are no provisioinsthis specification for input of external data

or output of computed results. Instead, it is expected that the computational environment of an ECMAScri
program will provide not only the objects and other facilities described in this specificaticaslutertain
environmenispecifichostobjects, whose description and behaviour are beyond the scope of this specificatiol
except to indicate that they may provide certain properties that can be accessed and certain functions that
be called from an ECMScript program.

A scripting languageis a programming language that is used to manipulate, customise, and automate tf
facilities of an existing system. In such systems, useful functionality is already available through a use¢
interface, and the scriptinignguage is a mechanism for exposing that functionality to program control. In this
way, the existing system is said to provide a host environment of objects and facilities, which completes tl
capabilities of the scripting language. A scripting languiagimtended for use by both professional and-non

professional programmers. To accommodate-pomfessional programmers, some aspects of the langaragy [Deleted: may be somewhat less strict

defined tobe tolerant of programmer mistakeslowever, such tolerance cagasily result in program
containing undiscovered errors that professional programmers would wish to discover and coorect. T
facilitate such error detection script can be explicidg declarel t o wisido subsetiiof the full
ECMAScript language thagirovides enhanced error detection as well

ECMAScript was originally designed to beeb scripting languageproviding a mechanism to enliven Web
pages in browsers and to perform server computation as part of ab¥éeld clienserver architecture.

27 October 2008

4.1

4.2

4.21

ECMAScript can provide core scripting capabilities for a variety of host environments, and therefore the core
scripting language is specified in this document apart from any particular host environment.

Some of the facilities of ECMAScript are similar to thassed in other programming languages; in particular

Javd”, Self, and Schemas described in: [Deleted: and

* Gosling, James, Bill Joy and Guy Steele. The Javanguage Specification. Addison Wesley Publishing
Co., 1996.

®* Ungar, David, and Smith, Randall B. Self: ThewRo of Simplicity. OOPSLA '87 Conference
Proceedings, pp. 22241, Orlando, FL, October 1987.

* |EEE Standard for the Scheme Programming Language. IEEE Std1R0(3

Web Scripting

A web browser provides an ECMAScript host environment for cledé conputation including, for
instance, objects that represent windows, menus;upsp dialog boxes, text areas, anchors, frames, history,
cookies, and input/output. Further, the host environment provides a means to attach scripting code to events
such as chargof focus, page and image loading, unloading, error and abort, selection, form submission,
and mouse actions. Scripting code appears within the HTML and the displayed page is a combination of
user interface elements and fixed and computed text and im@esscripting code is reactive to user
interaction and there is no need for a main program.

A web server provides a different host environment for seside computation including objects
representing requests, clients, and files; and mechanisms tatackhare data. By using browssde and
serverside scripting together, it is possible to distribute computation between the client and server while
providing a customised user interface for a \Wetsed application.

Each Web browser and server that supp&CMAScript supplies its own host environment, completing the
ECMAScript execution environment.

Language Overview
The following is an informal overview of ECMAScriptnot all parts of the language are described. This
overview is not part of the staart proper.

ECMAScript is objectbased: basic language and host facilities are provided by objects, and an
ECMAScript program is a cluster of communicating objects. An ECMASooipiect is an unordered
collection ofpropertieseach with zero or morattributesthat determine how each property can be dsed

Deleted: ReadOnly

ECMAScript code to change the value of the propégeys. Properties are containers that hold other [

Deleted: true

objects,primitive values or methods A primitive value is a member of one of the following baiittypes:
Undefined, Null, Boolean, Number, and String; an object is a member of the remaining biilttype [

Deleted: has no effect

Object; and a method is a function associated with an object via a property.

ECMAScript defines a collection djuilt-in objectsthat round out the definition of ECMAScript entities.
These builtin objects include th&lobal object, theObject object, theFunction object, theArray object,
the String object, theBoolean object, theNumber object, theMath object, theDate object, theRegExp
object the JSON object, the Decimal object, and the Error object&rror, EvalError , RangeError,
ReferenceError, SyntaxError, TypeError andURIError .

ECMAScript also defines a set of built operators ECMAScript operators include various unary
operations, multiplicative operators, additive operators, bitwise shpférators, relational operators,

Deleted: thatmay not be, strictly speakinfynctions
or methods

equality operators, binary bitwise operators, binary logical operators, assignment operators, and the comma
operator.

ECMAScript syntax intentionally resembles Java syntB&MAScript syntax is relaxed to enable it to

sere as an easto-use scripting language. For example, a variable is not required to have its type declared
nor are types associated with properties, and defined functions are not required to have their declarations
appear textually before calls to them.

Objects

ECMAScript does not contaiglasses such as those in C++, Smalltalk, or Java, but rather, supports{

Deleted: proper

constructorswhich create objects by executing code that allocates storage for the objects and initialises
all or part of them by assigningitial values to their propertie%ll constructors are objects, but not all

27 October 2008

objects are construct¢rsEach constructor has property namedﬁprototype \(‘) that is used to| Comment [pL1]: Rationale:

implementprototypebased inheritanceandshared propertiesObjects are created by using constructors | Consider window.document. It is an object (type
document should be 60

in new expressions; for _examplaew String("A String") creates a new String object. Invoking a (152 s ST e e e iy

constructor without usingnew has consequences that depend on the constructor. For example, : :

String("A String") prodices a primitive string, not an object. {C"mme”‘ [pL2]: From AWB:Need tomake
typography consistent.

—

Deleted: Prototype property

ECMAScript supportgrototypebased inheritanceEverypbject created by constructor has an implicit
reference(called theobj ect 6s) jpor ott lod ypal ue o fiprotiotype oOcpoopesty I u-¢ Deleted: constructor has an associated
Furthermore, a prototype may have a sl implicit reference to its prototype, and so on; this is called prototype, and every
the prototype chainWhen a reference is made to a propéntan object, that reference is to the property [Deleted that

(

of that name in the first object in the prototype chain that contains a property of that name. In othe
words, first the object mentioned directly is examined for such a property; if that object contains thi Deleted: to the prototype

named property, that is the property to which the reference refers; if that object does not contain tr[Deleted: associated with its constructor
named property, the prototype for that object is examined next; and so on.

In a classbased objeebriented language, in general, state is carried btaimces, methods are carried by
classes, and inheritance is only of structure and behaviour. In ECMAScript, the state and methods ¢
carried by objects, and structure, behaviour, and state are all inherited.

All objects that do not directly contain a pattlar property that their prototype contains share that
property and its value. The following diagram illustrates this:

L)
""""" CF implicit prototype link
prototype LEF ,,,,,,,, | [Deleted: Cf,
P1 CFP1 explicit prototypeproperty ‘ [Deleted: link
o ... o, o of, I i JUR ;i
ql ql q1 q1 q1
g2 q2 q2 a2 q2

4.2.2

CF is a constructor (and also an object). Five objects have been created byewiegpressionscf;,

cf,, cfs, cfy, and ci. Each ofthese objects contains properties named gl and g2. The dashed line:
represent the implicit prototype relationship; so, for examplgd) sf pr ot og Vhe eonsirsctorC F
CF, has two properties itself, named P1 and P2, which are not visible,t@igFf,, cfs, cfy, or ck. The
property named CFP1 in GFs shared by ¢f cf,, cf;, cf;, and c§ (but not by CF), as are any properties
found in CFp&s ihampthat ard riot npmed flo 2y @r €FP&. Notice that there is no
implicit prototype lirk between CF an@F,.

Unlike classbased object languages, properties can be added to objects dynamically by assigning valu
to them. That is, constructors are not required to name or assign values to all or any of the construct
obj ect 6 s pthecapower diagrans one tonld add a new shared properuffocf,, cfs, cfs, and

cfs by assigning a new value to the propertyOR,.

Voluntary UsagelLanguage Subset

The ECMAScript Language recognizes the possibility that some users of the language may wish -
restrict their usage ofomefeatures available in the language. They might do so in the interesis of
security, to avoid what they consider to be error proméufies,to get better error checkingy for other
reasons of their choosing. In support of this possibility, ECMAScript defines the concapage

27 October 2008

subsetsof the language. A usage subset is simply a specified subset of the ECMAScript language. A
usagesubset may exclude specific syntactic and semantic features of the full ECMAScript language and
may identify additional error conditions that could be reported by throwing error exceptions in situations
that are not specified as errors by the full language

A usage subset is not intended as a means of enabling implementations of subsets of ECMAScript. To
conform to this specification, an ECMAScript implementation must implement the full language as
defined by this specification. Instead, a usage subssitriply a way for a user of the language to state

their intent to voluntarily restrict themselves so a well specified subset of the language. Implementations
of ECMAScript may treat such statements of intent as a request from a user that they would like the
implementation to help them ensure that they have actually adhered to the limitations of a subset. An
implementatiorshouldhonaur such a request by reporting violat.i
restrictions and by detecting any additional oerrconditions and throwing the appropriate error
exception. Because usage subsets are selected at the level of a syntactic program unit they may only
impose restriction that would have local effect within such a syntactic program unit. They may not
restrict the ECMAScript semantics that must operate consistently across all program units.

With one exception, an ECMAScript program that is voduily limited to a usage subset and which
executes without er r or u hbehave idertadly ifsexelbutebwitiiost omramys t r i c 1
usage subset restrictions. The exception is any situation where the operation of such a program depends
upon the actual occurrence and subsequent handling of additional error conditions that are part of the
subset.

ECMAScript defines a single usage subset, nasteidt which implementationsnust support to be
in compliance with this specification. Other usage subsets may be defined by future versions of the
ECMAScript language

4.3 Definitions
The following are infomal definitions of key terms associated with ECMAScript.
4.3.1 Type
A typeis a set of data values.
4.3.2 Primitive Value

A primitive valueis a member of one of the typéidefined, Null, Boolean Number, Decimal or
String. A primitive value is a datum #i is represented directly at the lowest level of the language
implementation.

4.3.3 Object

An objectis a member of the typ@bject. It is a collection of properties. Deleted: Itis an unordered collection of propertie
each of which contains a primitive valuejeti, or
4.3.4 Constructor function. A function stored in a property of an obje
A constructor is a Function object that creates and initialises objeEle value of a costructord s called a method.
fiprototype O property is aprototype object that is used to implement inheritance and shared [Deleted: Each constructor has an associated
properties.

4.3.5 Prototype
A prototypeis an object used to implement structure, state, and behaviour inheritance in ECMAScript.
When a constructor creates an object, thgt ebc t i mplicitly r efiaogpmec &s t he
propertyf or the purpose of resol vi ng fpatotypee roprygpertyeah e r { Deleted: associated prototype
be referenced by the program expressmmstructor .proto type , and properties added to an
objectds prototype are shared, through inherit a|£|

4.3.6 Native Object

A native objectis any object supplied by an ECMAScript implementation independent of the host
environment. Staratd native objects are defined in this specification. Some native objects arénbuilt
others may be constructed during the course of execution of an ECMAScript program.

4.3.7 Built-in Object

A built-in objectis any object supplied by an ECMAScript impientation, independent of the host
environment, which is present at the start of the execution of an ECMAScript program. Standair built

Deleted: associated prototype
CE

27 October 2008

4.3.8

4.3.9

4.3.10

4.3.11

4.3.12

4.3.13

4.3.14

4.3.15

4.3.16

4.3.17

4.3.18

4.319

4.3.20

4.3.21

objects are defined in this specification, and an ECMAScript implementation may specify and defint
others. Every buttin object is a native object built-in constructoris abuilt-in object that is also
constructor.

Host Object

A host objectis any object supplied by the host environment to complete the execution environment o
ECMAScript. Any object that is not native is a host object.

Undefined Value

Theundefined valueis a primitive value used when a variable has not been assigreddea

Undefined Type
The typeUndefined has exactly one value, calleshdefined.

Null Value
Thenull value is a primitive value that represents the null, empty, or-existent reference.

Null Type
The typeNull has exactly one value, calledll.

Boolean Value
A boolean valueis a member of the typBooleanand is one of two unique valudsye andfalse

Boolean Type

The typeBoolean represents a logical entity and consists of exactly two unicaleeg. One is called
true and the other is callefhlse

Boolean Object

A Boolean objects a member of the typ®bject and is an instance of the built Boolean object. That
is, a Boolean object is created by using the Boolean constructor niewaexpression, supplying a
boolean as an argument. The resulting object has an implicit (unnamed) property that is the boolean.
Boolean object can be coerced to a boolean value.

String Value

A string valueis a member of the typ8tring and is a fiiite ordered sequence of zero or morehbl6
unsigned integer values.

NOTE

Although each value usually represents a singlebitunit of UTR16 text, the language does not place
any restrictions or requirements on the values except that they-b& L&sgned integers.

String Type

The typeString is the set of all string values.

String Object

A String objectis a member of the typ@®bject and is an instance of the buift String object. That is, a
String object is created by using the Striognstructor in anew expression, supplying a string as an
argument. The resulting object has an implicit (unnamed) property that is the string. A String object ca
be coerced to a string value by calling the String constructor as a function (15.5.1).

Number Value

A number valueis a member of the typdumber and is a direct representation of a number.

Number Type

The typeNumber is a set of values representing numbers. In ECMAScript, the set of values represent
the doubleprecision 64bit for ma t | EEE 754 val ues -aMuwrbuedrion g(NahNe)
positive infinity, and negative infinity.

Number Object

A Number objectis a member of the typ®bject and is an instance of the buitt Number object. That
is, a Number object is created by using the Number constructon@waexpression, supplying a number

27 October 2008

4.3.22

4.3.23

4.3.24

4.3.25

4.3.26

4.3.27

4.3.28

4.3.9

4.3.30

4.3.31

4.3.2

4.3.8

as an argument. The resulting object has an implicit (unnamed) property that is the numberb&r Num
object can be coerced to a number value by calling the Number constructor as a function (15.7.1).

Infinity

The primitive valuenfinity represents the positive infinite number value. This value is a member of the

Number type.
NaN

The prinitive valueNaNr epr esent s t he

member of the Number type.

Function

s e t-aNU mbl eErEOE vSat | aunedsa.r dT hiii N

A function is a member of the typ®bject that may be invoked as a subroutime addition to its named
properties, a function contairxecutablecode and state that determine how it behaves when invoked. A
funct i on 6a maynatbewrittenin ECMAScript.

Property

A propertyis an association between a name and laezaDepending upon the form of the property the
value may beepresentectitherdirectly asa data value (a primitive value, an object, or a function) or
indirectly bya pair ofaccessofunctions.

Method

A methodis a function that is the value afproperty.

Attribute

An attribute is an internal value that defines some characteristic of a property.

Own Property

An own property of an object is a property that is direptlgsent orthat object.

Inherited Property
An inherited property is a property of an object that is not one of its own properties but is a property

(either
Built-in Method

own

or

inherited)

of

t he

objectds prototyp

A built-in methodis any method supplied by an ECMAScript implementation, independetiteohost
environment. Standard builh methods are defined in this specification, and an ECMAScript
implementation may specify and define others.

Decimal Value

A decimal valueis a member of the typBecimal and is a direct representation of a number.

Decimal Type

The typeDecimal is a set of values representing numbers. In ECMAScript, the set of values represents
the quadprecision 12&bit format IEEE 7542 0 0 8
values, positive infinities, and negative infinities.

Decimal Object

v al

ues

ncl u-aNumige & h(eNaN)ec

A Decimal objectis a member of the typ®bject and is an instance of the built Number object. That
is, a Decimal object is created by using the Decimal constructor meva expression, supplying a
number as an argument. The resulting object has an implicit (unnamed) property that is the number. A
Decimal object can be coerced to a decimal value by calling the Decimal constructor as a function

(15.7.1).

27 October 2008

5 Notational Conventions

5.1

5.1.1

5.1.2

5.1.3

5.1.4

Syntactic and Lexical Grammars

This section describes the contdrte grammars used in this specification to defihe texical and
syntactic structure of an ECMAScript program.

Context-Free Grammars

A contextfree grammarconsists of a number gfroductions Each production has an abstract symbol
called anonterminalas itsleft-hand side and a sequence of zere more nonterminal anderminal
symbols as itgight-hand side For each grammar, the terminal symbols are drawn from a specified
alphabet.

Starting from a sentence consisting of a single distinguished nonterminal, callgdatheymbal a given
contextfree grammar specifies language namely, the (perhaps infinite) set of possible sequences of
terminal symbols that can result from repeatedly replacing any nonterminal in the sequence with a rigr
hand side of a production for which the nonterminal isléffiehand side.

The Lexical and RegExp Grammars

A lexical grammarfor ECMAScript is given in clause 7. This grammar has as its terminal symbols the
characters of the Unicode character set. It defines a set of productions, starting from the gadl symk
InputElementDivor InputElementRegExpthat describe how sequences of Unicode characters are
translated into a sequence of input elements.

Input elements other than white space and comments form the terminal symbols for the syntact
grammar for ECMASdpt and are called ECMAScriptokens These tokens are the reserved words,
identifiers, literals, and punctuators of the ECMAScript language. Moreover, line terminators, althougt
not considered to be tokens, also become part of the stream of input elendrgside the process of

not appear in the stream of input elements for the syntactic grammpliul_.ineComment(that is, a
comment of *éeWe® fremmaridl ess of whet her it spans |
discarded if it contains no line terminator; but if MultiLineCommentcontains one or more line
terminators, then it is replaced by a single line terminator, which becomes fpiduwe stream of input
elements for the syntactic grammar.

A RegExp grammafor ECMAScript is given in 15.10. This grammar also has as its terminal symbols
the characters of the Unicode character set. It defines a set of productions, starting from tyenpoal
Pattern that describe how sequences of Unicode characters are translated into regular expressi
patterns.

Producti ons of the Il exical and RegExp gr:atnmass
separating punctuation. The lexical and RegBrxmmmars share some productions.

The Numeric String Grammar

A second grammar is used for translating strings into numeric values. This grammar is similar to the pe
of the lexical grammar having to do with numeric literals and has as its termimdlo$y the characters
of the Unicode character set. This grammar appears in 9.3.1.

Productions of t he numeric string gr ammard arse
punctuation.

The Syntactic Grammar

The syntactic grammarfor ECMAScript is gven in clauses 11, 12, 13 and 14. This grammar has
ECMAScript tokens defined by the lexical grammar as its terminal symbols (5.1.2). It defines a set o
productions, starting from the goal symhb@togram that describe how sequences of tokens can form
syntactically correct ECMAScript programs.

When a stream of Unicode characters is to be parsed as an ECMAScript program, it is first converted tc
stream of input elements by repeated application of the lexical grammar; this stream of input elements
then parsed by a single application of the syntax grammar. The program is syntactically in error if the
tokens in the stream of input elements cannot be parsed as a single instance of the goal nontermi
Program with no tokens left over.

27 October 2008

[

Deleted:

785

Productions ofthesyt act i ¢ grammar are distinguiashednbyubéavio

The syntactic grammar as presented in sectjinsl2, 13 and 14s actually not a complete account of [Deleted: 0, 0,0and0

which token sequences are accepted as correct ECMAScript programs. Certain additional token
sequences are also accepted, namely, those that would be described by the grammar if only semicolons
were added to the sequmEnin certain places (such as before line terminator characters). Furthermore,
certain token sequences that are described by the grammar are not considered acceptable if a terminator
character appears in certain fiawkwardo places.

5.1.5 Grammar Notation

Teminal symbols of the lexical and string grammars, and some of the terminal symbols of the syntactic
grammar, are shown ifixed width font, both in the productions of the grammars and throughout
this specification whenever the text directly refers to sadierminal symbol. These are to appear in a
program exactly as written. All nonterminal characters specified in this way are to be understood as the
appropriate Unicode character from the ASCII range, as opposed to any dooikémg characters from
otherUnicode ranges.

Nonterminal symbols are shown italic type. The definition of a nonterminal is introduced by the name

of the nonterminal being defined followed by one or more colons. (The number of colons indicates to
which grammar the production bela®y One or more alternative rightand sides for the nonterminal
then follow on succeeding lines. For example, the syntactic definition:

WhileStatement Deleted: WithStatement

while (Expressior) Statement

Deleted: WithStatement

,,,,,,,,,,,,,,,,,,,,,, [Deleted: with
token, followed by arExpression followed by a right parenthesis token, followed bg@@tementThe %

Deleted: with

occurrences oExpressiorand Statemenare themselves nonterminals. As amatexample, the syntactic
definition:

ArgumentList

AssignmentExpression
ArgumentList, AssignmentExpression

states that arArgumentListmay represent either a singhssignmentExpressioar an ArgumentList
followed by a comma, followed by amssignmentExpressionThis definition of ArgumentListis
recursive that is, it is defined in terms of itself. The result is thatAagumentListmay contain any
positive number of arguments, separated by commas, where each argument expression is an
AssigmentExpressianSuch recursive definitions of nonterminals are common.

The subscrioptd,edwhiudh imayl appear after a tomionali nal
symbol The alternative containing the optional symbol actually specifies two-hght sides, one that
omits the optional element and one that includes it. This means that:

VariableDeclaration:
Identifier Initialisery

is a convenient abbreviation for:

VariableDeclaration:
Identifier
Identifier Initialiser

and that:

IterationStatemet :
for (ExpressionNolg, ; Expressiog, ; Expressiog;) Statement

is a convenient abbreviation for:

IterationStatement
for (; Expressiog, ; Expressiop,) Statement
for (ExpressionNoln; Expressiop, ; Expressiog,) Statement

which in turnis an abbreviation for:

27 October 2008

IterationStatement
for (;; Expressiogy) Statement
for (; Expression; Expressiog,) Statement
for (ExpressionNoln; ; Expressiog,) Statement

for (ExpressionNoln; Expression; Expressiog,) Statement

which in turnis an abbreviation for:

IterationStatement

for (;;) Statement

for (;; Expression) Statement

for (; Expression;) Statement

for (; Expression; Expression) Statement

for (ExpressionNoln;) Statement

for (ExpressionNoln; Expression) Statement

for (ExpressionNoln Expression;) Statement

for (ExpressionNoln Expression; Expression) Statement

so the nontermindterationStatemenactually has eight alternative rightand sides.

I f t he [epplyld ad e p dar s -hanslside bfea produgidnt it indicates that the production's
right-hand side contains no terminals or nonterminals.

I f t h e [lopkhhéadezss€l0 flap pear s -hamd sitehod a prodgction, it indicates that the
production may not be used if the immetily following input terminal is a member of the giveet
Thesetcan be written as a list of terminals enclosed in curly braces. For convenience, the set can also
written as a nonterminal, in which case it represents the set of all terminals tb thlaicnonterminal
could expand. For example, given the definitions

DecimalDigit:: one of
0123456789

DecimalDigits::
DecimalDigit
DecimalDigits DecimalDigit

the definition

LookaheadExample
N [lookaheads {1, 3,5, 7, 9})] DecimalDigits
DecimalDigit [lookaheade DecimalDigit]

matches either the letterfollowed by one or more decimal digits the first of which is even, or a decimal
digit not followed by another decimal digit.

I f t h e h@uUneTansngorhdiep ap p ear s -hamd sidehoé a pradgction of the syntactic
grammar, it indicates that the production & restricted production it may not be used if a
LineTerminatoroccurs in the input stream at the indicated position. For example, the production

ReturnStatement
return [no LineTerminatothere] EXpreSSiOQm)

indicates that the production may not be used IfimeTerminatoroccurs in the program between the
return token and thé&xpression

Unless the presence of laineTerminatoris forbidden bya restricted production, any number of
occurrences ofineTerminatormay appear between any two consecutive tokens in the stream of input
elements without affecting the syntactic acceptability of the program.

When t heonevofr dfso Ifil o w t haegrammadr definition), thdy rsignify that each of the
terminal symbols on the following line or lines is an alternative definition. For example, the lexical
grammar for ECMAScript contains the production:

27 October 2008

- 10 -

NonZeroDigit:: one of
123456789

which is merely a convenient abbreviation for:

NonZeroDigit::, [Deleted: one of

1

Co~NoOUThWN

When an alternative in a production of the lexical grammar or the numeric string grammar appears to be
a multicharacter token, it represents the sequence of characténsahld make up such a token.

The righthand side of a production may specify that certain expansions are not permitted by using the
phr abstemotdi and then indicating the expansions to be

Identifier ::

IdentifierNamebut not ReservedWord

means that the nonterminkdentifier may be replaced by any sequence of characters that could replace
IdentifierNameprovided that the same sequence of characters could not répdseevedWord

Finally, a few nontermial symbols are described by a descriptive phrase in roman type in cases where it
would be impractical to list all the alternatives:

SourceCharacter.

any Unicode character

Algorithm Conventions

The specification often uses a numbered list to sped¢dpssin an algorithm. These algorithms are used to
clarify semantics. In practice, there may be more efficient algorithms available to implement a given
feature.

When an algorithm is to produce x@ Val we eagdhatahern &g u k
result of the algorithm is the value wfand that the algorithm should terminate. The notation Reguk(
used as short handnof.orTxyfiptehfe urseesdu lats osfh osxdtehpand f or At |

For clarity of expression, algorithnteps may be subdivided into sequential substeps. Substeps are indented
and may themselves be further divided into indented substeps. Outline numbering conventions are used to
identify substeps with the first level of substeps labeled with lower casealspi characters and the
second level of substeps labelled with lower case roman numerals. If more than three levels are required
these rules repeat with the fourth level using numeric labels. For example:

1. Top-level step

a. Substep.

b. Substep
i. Subsubstep.
ii. Subsubstep.

1. Subsubsubstep
a. Subsubsubsubstep

A step or substep may be written as a predicate that conditions its substeihés dase, the substeps are
only applied if the predicate is true. | f teathakis ep o1
the negation of the preceding predicaetydollowddebpa a't t
parenthesized step or substep labehtiiés a predicate that is the negation of that labelled predicate.

27 October 2008

-11 -

A step my specify the iterativepplication of its substeps.

Mathematical operations such as addition, subtraction, negation, multiplication, division, and tht
mathematical functions defined later in this section should always be understood as computing exs
mathematical results on mathatical real numbers, which do not include infinities and do not include a
negative zero that is distinguished from positive zero. Algorithms in this standard that model ffo@itihg
arithmetic include explicit steps, where necessary, to handle infinérel signed zero and to perform
rounding. If a mathematical operation or function is applied to a flogimigt number, it should be
understood as being applied to the exact mathematical value represented by that-floatingumber;

such a floatingpoint number must be finite, and if it is0 or —0 then the corresponding mathematical value

is simply 0.

The mathematical function abg(yields the absolute value &f which is—x if x is negative (less than zero)
and otherwise ix itself.

The mathematical function sigr) yields 1 ifx is positive and-1 if x is negative. The sign function is not
used in this standard for cases wheis zero.

T he n o kmadiloyiny iffust be finite and nonzero) computes a vddwé the same sign as(or zero)
such that ab&j < abs§) andx—k = q > y for some integeq.

The mathematical function floot) yields the largest integer (closest to positive infinity) that is not larger
thanx.

NOTE
floor(x) = x—(x modulo 1).

I'f an algorithmains ekefeipne dntdbg ftxlkercawi on of the a
returned. The calling algorithms are also terminated, until an algorithm step is reached that explicitly dea
with the exception, using termwnebogpYnsecbkuaé® ahnf
has been encountered the exception is no longer considered to have occurred.

Source Text

ECMAScript source text is represented as a sequence of characters in the Unicode character encoding, ver

B-0or later, utng the UTF16 transformation format. The text is expected to have been normalised to Unlcode[Deleted: 2.1

Normalised Form C (canonical composition), as described in Unicode Technical Report #15. Conformin
ECMAScript implementations are not required to perform anymabisation of text, or behave as though they
were performing normalisation of text, themselves.

SourceCharacter.
any Unicode character

ECMAScript source text can contain any of the Unicode characters. All Unicode white space characters &

Latin Unicode characters are allowed in identifiers, string literals, regular expression literals and comments.

Thr oughout the rest of this document, the phrase @
to a 16bit unsigned value used to represent a singlebit6unit of UTF1 6 t ext . The phr
charactero wildl b e ulisgaidtic or typographieat unit represehted by dsingle Unicode

scalar value (which may be longer than 16 bits and thus may be represented by more than one code poi
This only refers to entities represented by single Unicode scalar values: the emtp@i a combining
character sequence are stildl individual AUni code
sequence as a single character.

In string literals, regular expression literals and identifiers, any character (code point) snayea¢xpressed

as a Unicode escape sequence consisting of six characters, namplys four hexadecimal digits. Within a
comment, such an escape sequence is effectively ignored as part of the comment. Within a string literal
regular expression litetathe Unicode escape sequence contributes one character to the value of the litera
Within an identifier, the escape sequence contributes one character to the identifier.

NOTE 1

27 October 2008

Deleted: , and all Unicode line/paragraph
separators

-12 -

Al t hough this document someti mesfahdreact erod awifitthriamn sa

the 16bit unsigned integer that is the UTE6 encoding of that character, there is actually no transformation

because a ficharactero within a f s-bitunsiggedvalus. act ual |
NOTE 2

y

ECMASCcipt differs from the Java programming language in the behaviour of Unicode escape sequences. In a

Java program, if the Unicode escape sequeng@00A, for example, occurs within a singlmme comment, it

is interpreted as a line terminator (Unicode charac000A is line feed) and therefore the next character is
not part of the comment. Similarly, if the Unicode escape sequar@@0A occurs within a string literal in a
Java program, it is likewise interpreted as a line terminator, which is not allowddnnat string literab one
must write\ n instead of\ uOOOA to cause a line feed to be part of the string value of a string literal. In an

ECMAScript program, a Unicode escape sequence occurring within a comment is never interpreted and
therefore cannot conifoute to termination of the comment. Similarly, a Unicode escape sequence occurring

within a string literal in an ECMAScript program always contributes a character to the string value of the
literal and is never interpreted as a line terminator or as atqumark that might terminate the string literal.

7 Lexical Conventions
The source text of an ECMAScript program is first converted into a sequence of input elements, which are
either tokens, line terminators, comments, or white space. The source texanisedcfrom left to right,
repeatedly taking the longest possible sequence of characters as the next input element.
There are two goal symbols for the lexical grammar. TiputElementDivsymbol is used in those syntactic
grammar contexts where a division/)(or divisionassignment /€) operator is permitted. The
InputElementRegExpymbol is used in other syntactic grammar contexts.
Note that contexts exist in the syntactic grammar where both a division Redj@arExpressionLiteraare
permitted by the symctic grammar; however, since the lexical grammar useslrthetElementDivgoal
symbol in such cases, the opening slash is not recognised as starting a regular expression literal in such a
context. As a workaround, one may enclose the regular expres$®imal In parentheses.
Syntax
InputElementDiv:
WhiteSpace
LineTerminator
Comment
Token
DivPunctuator
InputElementRegExp
WhiteSpace
LineTerminator
Comment
Token

7.1

7.2

RegularExpressionLiteral

Unicode Format-Control Characters

The Unicode formatontrol char act er s (i.e., the characters in
Database such asEFT-TO-RIGHT MARK Or RIGHT-TO-LEFT MARK) are control codes used to control the
formatting of a range of text in the absence of higleeel protocols for this (suchs markup languages).

It is useful to allow these in source text to facilitate editing and display.

The format control characteysay be usedn identifiers, within comments, and within string literals and
regular expression literals

White Space

White space characters are used to improve source text readability and to separate tokens (indivisi
lexical units) from each otr, but are otherwise insignificant. White space may occur between any two
tokens, and may occur within strings (where they are considered significant characters forming part of tl
literal string value), but cannot appear within any other kind of token.

27 October 2008

(

Deleted: can occur

Deleted: anywhere in the source text of an
ECMAScript program. These characters are remov
from the source testiefore applying the lexical
grammar. Since these characters are removed befi
processing string and regular expression literals, ol
must use aJnicode escape sequence (see 7.6) to
include a Unicode formatontrol character inside a
string or regular gxression literal

- 13-

The following characters are considered to be white space:

ECMAScript implementations must recognize all of the white space characters defined in Unicod|
Later editions of the Unicode Standard may definther white space characters.
implementations may recognize white space characters from later editions of the Unicode Standard.

Syntax
WhiteSpace:

7.3

<TAB>
<VT>
<FF>
<SP>
<NEL>
<NBSP>
<ZWSP>
<BOM>
<UspP>

Code Point Value Name Formal Name
\ u0009 Tab <TAB>

\ uo00B Vertical Tab <VT>

\ u000C Form Feed <FF>

\ u0020 Space <SP>

\ u0085 Next Line <NEL>

\ UOOAO No-break space <NBSP>

\ u200B Zero width space <ZWSP>

\ UFEFF Byte Order Mark <BOM>

Ot her cat eg Any other Unicode <Usp>

Aspace sepa

Line Terminators

Like white space characters, line terminator characters are used to improve source text readability and

e 3.(

pt

separate tokens (indivisible lexical units) from each other. However, unlike white space characters, lir

terminators have some influence over théadngour of the syntactic grammar. In general, line terminators

may occur between any two tokens, but there are a few places where they are forbidden by the syntac
grammar. A line terminator cannot occur within any tokexgept that lie terminators that are preceded hyy

an escape sequence may occur within a string literal tokieve terminators also affect the process
automatic semicolon insertiof.Q).

Line terminators are included in the set of white space characters thaatrked by thés class in regular

expressions.

The following characters are considered to be line terminators:

Code Point Value
\ UOOOA
\ u000D
\ u2028
\ u2029

Name

Line Feed
Carriage Return
Line separator

Paragraph separator

Formal Name
<LF>
<CR>
<LS>
<PS>

27 October 2008

f

[

Deleted: not even a string

Deleted: 7.8.5

14 -

Only the characters in the above table aeated as line terminators. Other new line or line breaking
characters are treated as white space but not as line terminBbersharacter sequence <CR><LF>
is treated as a single line terminator.

Syntax

LineTerminator.:
<LF>
<CR>
<LS>
<PS>
<CR><LF>

7.4 Comments
Description

Comments can be either single or muliltie. Multi-line comments cannot nest.

Because a singiBne comment can contain any character exceptn@Terminatorcharacter, and because

of the general rule that a token is always as long as possible, a-Bmgleomment always consists of all
characters from th# marker to the end of the line. However, th@eTerminatorat the end of the line is

not consideredo be part of the singléne comment; it is recognised separately by the lexical grammar and
becomes part of the stream of input elements for the syntactic grammar. This point is very important,
because it implies that the presence or absence of simgecomments does not affect the process of
automatic semicolon insertion (7.9).

Comments behave like white space and are discarded except tha#uitinineCommentcontains a line
terminator character, then the entire comment is considered td_bee&eminator for purposes of parsing
by the syntactic grammar.

Syntax

Comment:
MultiLineComment
SingleLineComment

MultiLineComment:
/* MultiLineCommentChagsg; */

MultiLineCommentChars
MultiLineNotAsteriskChar MultiLineCommentChgys
* PostAsteriskComemtChargp,

PostAsteriskCommentChars
MultiLineNotForwardSlashOrAsteriskChar MultiLineCommentChars
* PostAsteriskCommentChags

MultiLineNotAsteriskChar:
SourceCharactebut not asterisk*

MultiLineNotForwardSlashOrAsteriskChar
SourceCharactebut not forward-slash/ or asterisk*

SingleLineComment
/I SingleLineCommentChays

SingleLineCommentChars
SingleLineCommentChaingleLineCommentChags

SingleLineCommentChar
SourceCharactebut not LineTerminator

27 October 2008

- 15-

7.5 Tokens
Syntax
Token::
Reservedword
Identifier
IdentifierNamé
Punctuator
NumericLiteral
StringLiteral
7.5.1 Reserved Words
Description
Reserved words cannot be used as identifiers.
Syntax
ReservedWord
Keyword
FutureReservedWord
NullLiteral
BooleanLiteral
7.5.2 Keywords
The following tokens are ECMAScript keywords and may not be used as identifiers in ECMAScript
programs.
Syntax
Keyword:: one of
Jpreak eglse new ~var
case finally return void
catch for switch while
continue function this with
default if throw debugger |
delete in try const
do instanceof typeof
7.5.3 Future Reserved Words
The following words are used as keywords in proposed extensions and are therefore reserved to allow
the possibility of future adoption of those extensions.
Syntax

FutureResrvedWord: one of

7.6

abstract enum int short
boolean export interface static
byte extends long super
char final native synchronized
class float package throws
. goto private transient ‘
. implements | protected volatile
double import public
Identifiers
Description

Identifiers are interpreted according to the grammar given in Section 5.16 gfrticede standard, with|

some small modifications. This grammar is based on both normative and informative character categori

specified by the Unicod8tandard The characters in the specified categories in ver3iorf the Unicode
standard mst be treated as in those categories by all conforming ECMAScript implemengations

27 October 2008

Comment [pL3]: From AWB:
ReservedWord and Identifier can be deleted as
are |dentifierNames.

[Deleted: Break

Comment [pL4]: Specify that its normative
semantics is simply a noop, but advise in an an
that it causes a breakpoint when run under a
debugger.

Comment [pL5]: From AWB:

Does it get defined as a statent or as something
that can occur in an
as a figetteroproperty
the same thing without reserving it.

Deleted: const

Comment [pL6]: This table needs to be repac

to get rid of the holes.

Deleted: upcoming version 3.0 of the

Deleted: standard

f
[Deleted: debugger
(
[
[Deleted: 2.1

Deleted: ; however, conforming ECMAScri
implementations may allow additional legal
identifier characters based on the category
assignment from later versions of Unicode

- 16 -

This standat specifiesspecific character additionThe dollar sign$) and the underscore (_) are permitted
anywhere in an identifigr.

Deleted: one departure from the grammar given ir
Unicode standard

Unicode escape sequences are also permitted in identifiers, where they contribute a single character to
identifier, as computed by the CV of thénicodeEscapeSequendsee 7.8.4). Thd preceding the

Deleted: The dollar sign is intended for use only i
mechanically generated oad

UnicodeEscapeSequenaes not contribute a character to the identifier.UAicodeEscapeSequence
cannot be used to put a character into an identifier that would otherwise be illegal. In other words, if a
UnicodeEscapeSequensequence were replaced by UsicodeEscapeSequegis CV, the result must still

be a validldentifier that has the exact same sequence of characters as the oldgimidier.

Two identifiers that are canonically equivalent according to the Unicode standandtagual unless they
are represented byhé exact same sequence of code points (in other words, conforming ECMAScript

implementations are only required to do bitwise comparison on identifiers). The intent is that the incoming
source text has been converted to normalised form C before it redhesmpiler.

ECMAScript implementations may recognize identifier characters defined in later editions of the Unicode
Standard. If portability is a concern, programmers should only employ identifier characters defined in

Unicode 3.0.

Syntax
Identifier ::
IdentifierNamebut not ReservedWord

IdentifierName ::
IdentifierStart
IdentifierName IdentifierPart

IdentifierStart ::
UnicodeLetter
$

\ UnicodeEscapeSequence

IdentifierPart ::
IdentifierStart
UnicodeCombiningMark
UnicodeDigit
UnicodeConnectorPunctuation
\ UnicodeEscapeSequence

UnicodeLetter

any <character in the Unicode categories fAUppercase |

AModi fier letter (Lm)o, fAOther |l etter (Lo)o, or fiLette
UnicodeCombiningMark

anycharacter n t he Uni codepaategomaerk fMohpo or ACombining sp.
UnicodeDigit

any character in the Unicode category fdADeci mal number
UnicodeConnectorPunctuation

any character in the Unicode category fAConnector punct

UnicodeEscapeSequence
see 7.8.4.

HexDigit:: one of
0123456789abcdefABCDETF

27 October 2008

-17 -

7.7 Punctuators

Syntax
Punctuator:: one of
{ } () []
, y < > <=
>= == 1= === |I==
+ - * % ++ -
<< >> >>> & | N
! ~ && I ?
= += -= *= %= <<=
>>= >>>= &= |: A=

DivPunctuator:: one of
/=

7.8 Literals

Syntax

Literal ::
NullLiteral
BooleanLiteral
NumericLiteral
StringLiteral

7.8.1 Null Literals

Syntax
NullLiteral ::
null

Semantics
The value of the null literahull is the sole value of the Null type, namelyll.

7.8.2 Boolean Literals

Syntax

BooleanLiteral:
true
false

Semantics
The value of the Boolean litertue is a value of the Boolean type, nameélye.
The value of the Boolean literédlse is a value of the Boolean type, namédyse.

7.8.3 Numeric Literals
Syntax
NumericLiteral::

DecimallLiteral
HexlIntegerLiteral

DecimallLiteral::
DecimalintegerLiteral DecimalDigits, ExponentPag;
. DecimalDigits ExponentPay
DecimalintegerLiteal ExponentPag,

27 October 2008

- 18-

DecimalintegerLiterat:
0
NonZeroDigit DecimalDigitg;

DecimalDigits::
DecimalDigit
DecimalDigits DecimalDigit

DecimalDigit:: one of
0123456789

NonZeroDigit:: one of
123456789

ExponentPart:
ExponentindicatoSignedinteger

Exponentindicator: one of
e E

SignedInteger:
DecimalDigits
+ DecimalDigits
- DecimalDigits

HexlIntegerLiteral:
0x HexDigit
0X HexDigit
HexIntegerLiteral HexDigit

The source character immediately following NumericLiteral must not be anldentifierStart or
DecimalDigit

NOTE
For example:

3in
is an error and not the two input elemetandin.

Semantics

A numeric literal stands for a value of the Number type. This value is determined in two steps: first, a
mathematical value (MV) is derived from the literal; second, this mathematical value is rounded as
described below.

The MV of NumericLiteral:: DecimalLiteralis the MV ofDecimalLiteral

The MV of NumericLiteral:: HexIntegerLiterais the MV ofHexIntegerLiteral

The MV of DecimalLiteral:: DecimalintegerLiteral is the MV ofDecimalintegerLiteral

The MV of DecimalLiteral:: DecimallntegerLiteral DecimalDigitsis the MV of DecimallntegerLiteralplus
(the MV of DecimalDigitstimes 10"), wheren is the number of charactersirecimalDigit.

The MV of DecimalLiteral:: DecimallntegerLiteral ExponentParis the MV of DecimallntegerLiterakimes
1C°, whereeis the MV of ExponentPart

The MV of DecimalLiteral :: DecimallntegerLiteral . DecimalDgits ExponentPartis (the MV of
DecimallntegerLiteralplus (the MV ofDecimalDigitstimes 10") times 16, wheren is the number of
characters ifDecimalDigits andeis the MV of ExponentPart

The MV of DecimalLiteral::. DecimalDigitsis the MV of DecimdDigits times 16", wheren is the number of
characters ifDecimalDigits.

The MV of DecimalLiteral::. DecimalDigits ExponentPais the MV of DecimalDigitstimes 16", wheren is
the number of characters ecimalDigits andeis the MV ofExponentPart

27 October 2008

7.8.4

Syntax

- 19

The MV of DecimalLiteral:: DecimallntegerLiterais the MV of DecimallntegerLiteral

The MV of DecimalLiteral :: DecimallntegerLiteral ExponentPais the MV of DecimalintegerLiteraltimes
10°, whereeis the MV of ExponentPart

The MV of DecimallntegerLtieral :: 0 is 0.

The MV of DecimalintegerLiteral:: NonZeroDigitDecimalDigitsis (the MV of NonZeroDigittimes 10) plus
the MV of DecimalDigits wheren is the number of charactersrecimalDigits

: DecimalDigitis the MV of DecimalDigit

: DecimalDigitsDecimalDigitis (the MV ofDecimalDigitstimes 10) plus the MV of

The MV of DecimalDigits:
The MV of DecimalDigits:

DecimalDigit

The MV of ExponentPart:
The MV of Signedinteger:
The MV of Signedinteger:
The MV of Signedinteger:

The MV of DecimalDigit::
The MV of DecimalDigit::
The MV of DecimalDigit::
The MV of DecimalDigit::
The MV of DecimalDigit::
The MV of DecimalDigit::
The MV of DecimalDigit::
The MV of DecimalDigit::
The MV of DecimalDigit::
The MV of DecimalDigit::
The MV of HexDigit ::
The MV of HexDigit ::
The MV of HexDigit ::
The MV of HexDigit ::
The MV of HexDigit ::

a or of HexDigit ::
b or of HexDigit ::
c or of HexDigit ::
d or of HexDigit :
e or of HexDigit ::
The MV of HexDigit:: f or of HexDigit ::

Exponentindicator Signedintegirthe MV ofSignedinteger
DecimalDigitsis the MV of DecimalDigits

+ DecimalDigitsis the MV of DecimalDigits

- DecimalDigitsis the negative of the MV ddecimalDigits
0 or of HexDigit:: 0 is 0.

1 or of NonZeroDigit:
2 or of NonZeroDigit:
3 or of NonZeroDigit:
4 or of NonZeroDigit:
5 or of NonZeroDigit:
6 or of NonZeroDigit:
2 7 or of HexDigit:: 7 is 7.

7 or of NonZeroDigt

8 or of NonZeroDigit:
9 or of NonZeroDigit:
Ais 10.
Bis 11.
Cis 12.
Dis 13.
Eis 14.
Fis 15.

: 1 or of HexDigit:: 1 is 1.
: 2 or of HexDigit:: 2 is 2.
: 3 or of HexDigit:: 3 is 3.
: 4 or of HexDigit:: 4 is 4.
: 5 or of HexDigit:: 5 is 5.
: 6 or of HexDigit:: 6 is 6.

: 8 or of HexDigit:: 8 is 8.
: 9 or of HexDigit:: 9 is 9.

The MV of HexIntegerLiterat: Ox HexDigitis the MV ofHexDigit
The MV of HexIntegerLiterak: 0X HexDigitis the MV ofHexDigit
The MV of HexIntegerLiteral:: HexIntegerLiteraHexDigitis (the MV of HexIntegerLiteraltimes 16) plus the

MV of HexDigit

Once the exact MV for a numeric literal has been determined, it is then rounded to a value of the Numb
type. If the MV is 0, then the rounded value+8; otherwise, the rounded value must the number
value for the MV (in the sense defined in 8.5),agd the literal is ®ecimallLiteraland the literal has
more than 20 significant digits, in which case the number value may be either the number value for tt
MV of a literal produced by replacing each significant digit after the 20th withdégit or thenumber
value for the MV of a literal produced by replacing each significant digit after the 20th Withgit and

then incrementing the literal at the 20th significant digit position. A digsigsificantif it is not part of

an ExponentPariand

itisnotO; or

there is a nonzero digit to its left and there is a nonzero digit, not iBxpenentPartto its right.

String Literals

A string literal is zero or more characters enclosed in single or double quotes. Each character may
represented bgn escape sequenckll Unicode characters may appear literally in a string literal excgpt

for the closing quote character, backslash, carriage return, and line feed. Any character may appear in
form of an escape sequence.

27 October 2008

-20-

StringLiteral::
" DoubleStringCharactegs; "
' SingleStringCharactegs '

DoubleStringCharacters
DoubleStringCharacteDoubleStringCharactegg

SingleStringCharacters
SingleStringCharacte8ingleStringCharacters

DoubleStringCharacter.

SourceCharactebut not doublequote” or backslash or LineTerminator

\ EscapeSequence
LineContinuation

SingleStringCharacter.

SourceCharactebut not singlequote' or backslash or LineTerminator

\ EscapeSequence
LineContinuation

LineContinuatiorn:
\' [LineTerminatdr

EscapeSequence
CharacterEscapeSequence
0 [lookaheadz DecimalDigif
HexEscapeSequence
UnicodeEscapeSequence

CharacterEscapeSequence
SingleEscapeCharacter
NonEscapeCharacter

SingleEscapeCharacter one of
" bfnrtv

NonEscapeCharacter
SourceCharactebut not EscapeCharacteor LineTerminator

EscapeCharacter.
SingleEscapeCharacter
DecimalDigit
X
u

HexEscapeSequence
x HexDigit HexDigit

UnicodeEscapeSequence
u HexDigit HexDigit HexDigit HexDigit

The definitiors of the nonterminaHexDigit is given in section 7.8.3SourceCharacteis described in

sections 2 and 6.

Comment [pL7]: From DEC:
Do we really wantd do this?

[Comment [pL8]: 4/4 browsers support this.

A string literal stands for a value of the String type. The string value (SV) of the literal is described in

terms of character values (CV) contribdt by the various parts of the string literal. As part of this

process, some characters within the string literal are interpreted as having a mathematical value (MV), as

described below or in section 7.8.3.

The SV ofStringLiteral:: "™ is the empty charéer sequence.

27 October 2008

- 21 -

The SV ofStringLiteral:: " is the empty character sequence.

The SV ofStringLiteral:: " DoubleStringCharacter’ is the SV ofDoubleStringCharacters

The SV ofStringLiteral:: ' SingleStringCharacters is the SV ofSingleStringCharacters

The SV of DoubleStringCharacters: DoubleStringCharactelis a sequence of one character, the CV of
DoubleStringCharacter

The SV ofDoubleStringCharacters DoubleStringCharacteDoubleStringCharacters a sequence of the CV
of DoubleStringCharactefollowed by all the characters in the SV@bubleStringCharacters order.

The SV of SingleStringCharacters: SingleStringCharactelis a sequence of one character, the CV of
SingleStringCharacter

The SV ofSingleStringCharacters SingleStringCharactegingleStringCharacters a sequence of the CV of
SingleStringCharactefollowed by all the characters in the SVSihgleStringCharacteris order.

The SV ofLineContinuatiort: \ LineTerminatoris the empty character sequence

The CV of DoubleStringCharacter:: SourceCharacterbut not doublequote " or backslash\ or
LineTerminatoris theSourceCharactecharacter itself.

The CV ofDoubleStringCharacter. \ EscapeSequenégthe CV of theEscapeSequence

The CV ofSingleStringCharacter. SourceCharactebut not singlequote' or backslash or LineTerminator
is theSourceCharactecharacter itself.

The CV ofSingleStringCharacter. \ EscapeSequendgthe CV of theEscapeSequence

The CV ofEscapeSequenceCharacterEscapeSequeniethe CV of theCharacterEscapeSequence

The CV ofEscapeSequence0 [lookaheade DecimalDigifis @ <NUL> character (Unicode value 0000).

The CV ofEscapeSequenceHexEscapeSequentsethe CV of theHexEscapeSequence

The CV ofEscapeSequenceUnicodeEscapeSequenisghe CV of thdJnicodeEscapeSequence

The CV of CharacterEscapeSequence SingleEscapeCharactes the character whose code point value is
determined by th8ingleEscapeCharactexccording to the following table:

Escape Sequence Code Point Value Name Symbol

\b \ u0008 backspace <BS>
\'t \ ud009 horizontal tab <HT>
\n \ uOOOA line feed (new line) <LF>
\'v \ uo00B vertical tab <VT>
\ f \ uoooC form feed <FF>
\'r \ uo00D carriage return <CR>
\" \ u0022 double quote "

\! \ u0027 single quote '

\\ \ u005C backslash \

The CV ofCharacterEscapeSequenceNonEscapeCharactés the CV of theNonEscapeCharacter

The CV of NonEscapeCharacter: SourceCharactetbut not EscapeCharacteor LineTerminatoris the
SourceCharactecharacter itself.

The CV ofHexEscapeSequencex HexDigit HexDigitis the character whose code point value is (16 times the
MV of the firstHexDigit) plus the MV of the secoridexDigit

The CV of UnicodeEscapeSequenceu HexDigit HexDigit HexDigit HexDigit is the character whose code
point value is (4096 (that is, J&imes the MV of the firsHexDigit) plus (256 (that is, B times the MV of
the secondHexDigit) plus (16 times the MV of the thitdexDigif) plus the MV of the fourttdexDigit

NOTE

A 'LineTerminator' character cannot appear in a string literakcept wherpreceded by a backslaéhnL [Deleted: even if
asa OLineContinuationd to pr odTheeorréecthveay te causeya lingh a

terminator character to be part of the stringlua of a string literal is to use an escape sequence such as

\'n or\ uOOOA.

27 October 2008

-22 -

7.8.5 Regular Expression Literals

A regular expression literal is an input element that is converted to a RegExp object (sectiotipthlO)

Deleted: when it is scanned

time the literal is ealuatedj;l'wo regular expression literals in a program evaluate to regular expression
objects that never compare as= to each other even if the two literals' contents are identical. A RegExp
object may also be created at runtime mgw RegExp (section 15.10.4) orcalling the RegExp
constructor as a function (section 15.10.3).

Comment [pL9]: From AWB:

Because of this change RegularExpressionLiteral argt
should be moved to section 11.1. However, | am not
actually proposing we do so.

The productions below describe the syntax for a regular expression literal and are used by the in
element scanner to find the end of the regular expression literal. The strings of characters comprising
RegularExpressionBodyand the RegularExpressidflags are passed uninterpreted to the regular

Deleted: The object is created before evaluation
the containing program or function begins. Evalua
of the literal produces a reference to that object; it
not create a new object.

expression constructor, which interprets them according to its own, more stringent grammar. An
implementation may extend the regular expression constructor's grammar, but it should not extend th
RegularExpresesnBody and RegularExpressionFlagproductions or the productions used by these
productions.

Syntax

e

RRegularExpressionLiteral
| RegularExpressionBody RegularExpressionFlags

Comment [pL10]: All browser currently support
[}/ and /(.(/ as regexp literals s@ed to fix grammar

RegularExpressionBody
RegularExpressionFirstChd&egularExpressionChars

RegularExpressionChars
[empty]
RegularExpressionChars RegularExpressionChar

RegularExpressionFirstChar
NonTerminatoibut not * or\ or/
BackslashSequence

RegularExpressionChar
NonTerminatobut not\ or/
BackslashSequence

BackslashSequence

\ NonTerminator

Deleted: stands for

NonTerminator:

Deleted: Object

SourceCharactebut not LineTerminator

Deleted: constructor is called with two arguments
Pattern and Flags and t

RegularExpressionFlags

Deleted: result

[empty]
RegularExpressionFlags IdentifierPart

Deleted: becomes the value of the
RegularExpressionLiteral

Y Y

NOTE

Deleted: If

Regular expression literals may not be empty; instead of representing an empty regular expressidg
literal, the characters// start a singleline comment. To specify an empty regular expression, use

Comment [pL11]: Note that both IE and FF detect €

(testcase below).

1(?)/ <script>
i var falsy = function(){return 0}();
Semantics re = /[/}/;
. . i i X X alert(re);
A regular expression litergtvaluates taa value of theRegExptype. This value is determined in two If(falsy){_”.
steps: first, the charactercomprising the regular expression'RegularExpressionBodyand ;?gn‘(réz’);
RegularExpressionFlagproduction expansions are collected uninterpreted into two strings Pattern and)
Flags, respectively. Themach time the literal is evaluateal new object is created as if tye expression <Iscript>
new RegExp (Pattern, Flags) where RegExps the standard butith constructor with that name, [Deleted: s

Jhe newly constructed objedbecomes the vakiof the RegularExpressionLiteydif the call tonew /
RegExp would generatgan errorl’;he error must be reported while scanning the probram

Deleted: an implementation may, at its discretion
either report the error immediately while scanning
program, or it magefer the error until the regular
expression literal is evaluated in the course of proi
execution

27 October 2008

7.9

7.9.1

- 23-

Automatic Semicolon Insertion

Certain ECMAScript statements (empty statement, variable statement, expression statermehtile
statementcontinue statementbreak statementreturn statement, andhrow statement) must be
terminated with semicolons. Such semicolons may always apegplicitly in the source text. For
convenience, however, such semicolons may be omitted from the source text in certain situations. The
situations are described by saying that semicolons are automatically inserted into the source code tok
stream in thee situations.

Rules of Automatic Semicolon Insertion

* When, as the program is parsed from left to right, a token (calledfterding tokenis encountered
that is not allowed by any production of the grammar, then a semicolon is automaticalgdnser
before the offending token if one or more of the following conditions is true:

1. The offending token is separated from the previous token by at leastimgiBerminator
2. The offending token i$.

* When, as the program is parsed from left to right, the ehdhe input stream of tokens is
encountered and the parser is unable to parse the input token stream as a single compl
ECMAScript Program then a semicolon is automatically inserted at the end of the input stream.

* When, as the program is parsed froeitIto right, a token is encountered that is allowed by some
production of the grammar, but the production isestricted productiorand the token would be the
first token for a terminal or n ont €nob bmeTarminkor i mMi
herep wi thin the restricted production (and thei
the restricted token is separated from the previous token by at leadtimeiBerminator then a
semicolon is automatically inserted before the iettd token.

However, there is an additional overriding condition on the preceding rules: a semicolon is neve
inserted automatically if the semicolon would then be parsed as an empty statement or if that semicol
would become one of the two semicolonghiie header of for statement (section 12.6.3).

NOTE
These are the only restricted productions in the grammar:
PostfixExpression
LeftHandSideExpressiofno LineTerminatomere] ++
LeftHandSideExpressioino LineTerminatothere] --

ContinueStatement
continue [no LineTerminatotere] Identifiery, ;

BreakStatement
break [no LineTerminatothere] Identifieryy ;

ReturnStatement
return [no LineTerminatothere] EXpressiogy;

ThrowStatement
throw [no LineTerminatothere] Expression

The practicakffect of these restricted productions is as follows:

* When a++ or -- token is encountered where the parser would treat it as a postfix operator, and a
least oneLineTerminatoroccurred between the preceding token and theor -- token, then a
semicolonis automatically inserted before the or-- token.

* When acontinue , break , return , or throw token is encountered andLlaneTerminatoris
encountered before the next token, a semicolon is automatically inserted afteoritieue
break , return , orthrow token.

The resulting practical advice to ECMAScript programmers is:

* A postfix ++ or-- operator should appear on the same line as its operand.

27 October 2008

7.9.2

24 -

* An Expressionin areturn or throw statement should start on the same line asr¢iern or
throw token.
* A label in a break or continue statement should be on the same line as ltheak or
continue token.
Examples of Automatic Semicolon Insertion
The source
{12}3
is not a valid sentence in the ECMAScript grammar, even with the automatic semicolon inselesn
In contrast, the source
{1
213
is also not a valid ECMAScript sentence, but is transformed by automatic semicolon insertion into the
following:
{1
213

which is a valid ECMAScript sentence.
The source

for (a; b

)

is not a valid ECMAScript sentence and is not altered by automatic semicolon insertion because the
semicolon is needed for the header dba statement. Automatic semicolon insertion never inserts one
of the two semicolons in the header ofoa statement

The source
return
a+b
is transformed by automatic semicolon insertion into the following:
return;
a+b;

NOTE
The expressiom + b is not treated as a value to be returned by theurn statement, because a
‘LineTerminator' separates it from the tokegturn
The source

a=b

++C
is transformed by automatic semicolon insertion into the following:

a=b;

++C;

NOTE
The tokent+ is not treated as a postfix operator applying to the varidbldecause a ‘LineTerminator’
occurs betweeb and++.

The source
if (@ > b)
elsec=d

27 October 2008

- 25-

is not a valid ECMAScript sentence and is not altered by automatic semicolon insertion befelsethe
token, even though no production of the grammar applies at that point, because an automatically insert
semicolon would then be pged as an empty statement.

The source
a=b+c
(d + e).print()
is not transformed by automatic semicolon insertion, because the parenthesised expression that beg
the second line can be interpreted as an argument list for a function call:
a=b+c(d+ e).print()
In the circumstance that an assignment statement must begin with a left parenthesis, it is a good idea

the programmer to provide an explicit semicolon at the end of the preceding statement rather than to re
on automatic semicolon insertio

Types

LA value is an entity that takes on one@tventypes. There argleventypes (Undefined, Null, Boolean Deleted: nine

String, Number, Object, Reference, Li§tompletion Property Descriptor, and Property IdentijieValues of

X . H . = - Deleted: nine
type Referencelist, and Completion are used only as intermediate results of expression evaluation an

cannot be stored as properties of objécts.

Comment [pL12]: From AWB:

[Deleted: and
{ May need to rework this whole paragraph.

The Undefined Type

The Undefined type has exactly one value, caliedlefined. Any variable that has not been assigre
value has the valuendefined.

The Null Type
The Null type has exactly one value, calledl.

The Boolean Type
The Boolean type represents a logical entity having two values, dallecandfalse.

The String Type

The String type is the sef all finite ordered sequences of zero or morebit6unsigned integer values
(el ement so) . The String type is generally used t
in which case each element in the string is treated as a codevadiret (see section 6). Each element is
regarded as occupying a position within the sequence. These positions are indexed with nonnegati
integers. The first element (if any) is at position 0, the next element (if any) at position 1, and so on. Tt
lengthof a string is the number of elements (i.e.;Hi6 values) within it. The empty string has length zero
and therefore contains no elements.

When a string contains actual textual data, each element is considered to be a singl@ Wit Whether

or not ths is the actual storage format of a String, the characters within a String are numbered as thou
they were represented using UFIB. All operations on Strings (except as otherwise stated) treat them as
sequences of undifferentiated -b& unsigned integs; they do not ensure the resulting string is in
normalised form, nor do they ensure languagasitive results.

NOTE

The rationale behind these decisions was to keep the implementation of Strings as simple and hig
performing as possible. The intent gt textual data coming into the execution environment from outside
(e.g., user input, text read from a file or received over the network, etc.) be converted to Unicod
Normalised Form C before the running program sees it. Usually this would occur amntkeime incoming

text is converted from its original character encoding to Unicode (and would impose no additiona
overhead). Since it is recommended that ECMAScript source code be in Normalised Form C, string litera
are guaranteed to be normalised gdurce text is guaranteed to be normalised), as long as they do not
contain any Unicode escape sequences.

27 October 2008

8.5

- 26-

The Number Type

The Number type has exactly 18437736874454810627 (thaf%4s2°%+3) values, representing the double
precision 64bit format IEEE 754 values as specified in the IEEE Standard for Binary FloRioigt
Arithmetic, except that the 9007199254740990 (thati%;2) di st-aMwmb drNotval ues of
Standard are represented in ECMAScript as a single spdhl value. (Note thathe NaN value is
produced by the program expressiN@aN, assuming that the globally defined variaiNaN has not been

altered by program execution.) In some implementations, external code might be able to detect a difference
between various Nea-Numbervalues, but such behaviour is implementatdependent; to ECMAScript

code, all NaN values are indistinguishable from each other.

There are two other special values, calpesitive Infinity andnegative Infinity. For brevity, these values
are also referm to for expository purposes by the symbets and—w, respectively. (Note that these two
infinite number values are produced by the program expressibrimity (or simply Infinity) and

- Infinity , assuming that the globally defined variabiginity has not been altered by program
execution.)

The other 18437736874454810624 (that ¥-2%) values are called the finite numbers. Half of these are
positive numbers and half are negative numbers; for every finite positive number there is a corresponding
negdive number having the same magnitude.

Note that there is both positive zeroand anegative zero For brevity, these values are also referred to for
expository purposes by the symbal6 and -0, respectively. (Note that these two zero number values are
produced by the program expressior (or simply0) and- 0.)

The 18437736874454810622 (that i§-2°°-2) finite nonzero values are of two kinds:
18428729675200069632 (that i$-2°% of them are normalised, having the form
sxmx2°

wheres is +1 or—1, mis a positive integer less thaisut not less than®3, ande is an integer ranging
from —1074 to 971, inclusive.

The remaining 9007199254740990 (that i¥-2) values are denormalised, having the form
sxmx2°
wheresis +1 or—1, mis a positve integer less than"2 ande is —1074.

Note that all the positive and negative integers whose magnitude is no greatertham r2presentable in
the Number type (indeed, the integer O has two representatiorend- 0).

A finite number has amdd significandif it is nonzero and the integen used to express it (in one of the
two forms shown above) is odd. Otherwise, it hagaen significand

I'n this specification, t hxe w he nepesentsi anhexact manzebboereal v a |
mathematical quantity (which might even be an irrational number such) aseans a number value chosen

in the following manner. Consider the set of all finite values of the Number type—@itemoved and with

two additional values added to it that are notresentable in the Number type, namely?2(which is +1x

258 x 297 and-2'2% (which is -1 x 25% x 2°™), Choose the member of this set that is closest in value to

If two values of the set are equally close, then the one with an even significahdsisn; for this purpose,

the two extra values'®* and—2'%* are considered to have even significands. Finally!{##“avas chosen,

replace it with+owo; if —2'°%*was chosen, replace it witho; if +0 was chosen, replace it witk) if and only

if xis less than zero; any other chosen value is used unchanged. The result is the number xalTéi®r
procedure corresponds exactly to the behaviour of t

Some ECMAScript operators deal only with integers in the rar@fé through 2'-1, inclusive, or in the
range O through 3-1, inclusive. These operators accept any value of the Number type but first convert
each such value to one of?anteger values. See the descriptions of the Tolnt32 and ToUint32 operators in

sectims 9.5 andg.6, respectively. [Deleted:

[Deleted:

27 October 2008

8.6

8.6.1

The Object Type

An Object isa collection of propertiesEach propertyis either a named data property, a namedessor

- 27 -

property, or an internal property.

* A named data propertgssociates a name with a value and a set of boolean attributes.

®* A namedaccessorproperty associates a name with a getter method, a setter method, and a

booleanattributes.

An internal propertyhas no name and is not directly accessible via the property accessor ope
Internal properties exist purely f@pecificationpurposes. How and when some of these properties

used is specified by the language specification below.

Property Attributes

Attributes are used in this specification to define and explain the state of named propenised

data property associates a name with the follovattgbutes

Table 1 Attributes of a Named Data Property

Attribute Name Value Description
Domain

[[Value]] any The value retrieved by reading the property.

[[Writ able]] boolean If true, attempts by ECMAScript code to assign the
propertyods value will suc

[[Enumerable]] | boolean If true, the property will be enumerated by aifor
enumeration (section 12.6.4). Otherwise, the property is
to be norenumerable.

[[Configurablg] | boolean If true, attempts to delete the propertirange the property
to being an accessor propeny,change its attributes will
succeed. See the description of the delete operator in s¢
11.4.1, and the reflective Object methods.

A namedaccessoproperty associates a name with the followaitributes

Table 2 Attributes of a Named AccessorProperty

Attribute Name Value Domain Description

[[Getter]] functionor undefined | A method that to be called each time the property
read, to retrieve the current value of the property.

[[Setter]] functionor undefined | A method to be called each time the property is

assigned to, in order ttefine the current value of th
property

[[Enumerable]] | boolean If true, the property is to be enumerated by aitfior
enumeration (section 12.6.4). Otherwise, the prop|
is saidto be norenumerable.

[[Configurablg] | boolean If true, attempts to delete the properthange the

property to a data propertgr change its attributes
will succeed. See the description of the delete
operator in section 11.4.1, and the reflective Obje
methods

v

If the value of an attribute is netplicitly specified for a named property, the default value as define

the following table is used:
fTable 3 Default Attribute Values|

27 October 2008

[Deleted: an unordered
set ¢
ators
are
Deleted: consists of a name value and a s
of attributes.
Deleted: A property can have zero or more
Hin attributes from the following sét:
1
Attribute (.
Comment [pL13]: This whole table may get
removed soon.

8.6.2

- 28-

Attribute Default Value
Name
[[Value]] undefined
[[Getter]] undefined
[[Setter]] undefined
[[writable]] false
[[Enumerable]] | false
[[Configurablg] | false

Property descriptors, defined in section 8.10, are internal types used within this specifioat&stribe
manipulations of property attributes.

Internal Properties and Methods

Internal properties and methods are not part of the language. They are defined by this specification
purely for expository purposes. An implementation of ECMAScript must behave as if it produced and
operated upon internal properties in the manner desciileee. For the purposes of this document, the
names of internal properties are enclosed in double square brackets [[]]. When an algorithm uses an
internal property of an object and the object does not implement the indicated internal property, a
TypeError exception is thrown.

There are two types of access for normal @woiernal) properties:iget and put, corresponding to
retrieval and assignment, respectively.

either null or an object and is used for implementing inheritandemed data iperties of the {
[[Prototype]] objectare inherited dre visible as properties of the child objefdr the purposes of get
accessbut [not for put accessNamed accessomproperties are inherited for both get access and put

All ECMAScript objects have an internal property called [[Prototype]]. The value ofptioigerty is [Deleted: Native

Deleted: Properties

Comment [pL14]: From MSM:

access. Not technically true, since reamhly prevents an overridi
. . . . A - . . put.
The following table summarises the internal properties used by this specifichtiomre applicable to Comment [pL15]: _ From AWB:

all ECMAScript objects The description indicates their behavioar hative ECMAScript objectaunless
stated otherwise in this document for particular types of ECMAScript objects. In particular, Array
objects have a slightly differerdefinition of the [[ThrowabléPut]] method (see 15.4.5.8nd String
objects have a differerdefinition of the [[GetOwnProperty]] methodHost objects mapupportthese

It is not obvious how to
itis fine as written.

Deleted: implement

Deleted: methods

Deleted: implements

Deleted: methods

5.
5
@D
o
>
D

5
=
o

=]
@D
=
(0]
(7]
=)
=
=
Q
>
~=
3
=3
[}
3
@D
>
3
Q
=,
@D
=}
@D
=}
Q.
[0}
>
2
o
@
0
Q
<.
o
c
-
o
]
.
3
Q
~<
o
[©]
-
=0
Q
5
Q
>
o
w
9
o
=
[0}
(o]
o
VG N IR

27 October 2008

- 29-

Property Value Domain Description
[[Prototype]] DObject| null The prototype of this objedtdust benull or an Object.
[[Class]] String A string value indicating the kind of this object.
[[PrimitiveValue]] Jprimitive Internal state information associated with this object
[[Extensible]] boolean If true, own properties may be added to the object.
[[Get]] lfunctior(PropertyNam)3\"(Returns the value of theamedproperty.
an
[[GetOwnProperty]] function(PropertyNamg Y Returns the Property Descriptor of the named owi
undefined or Property property of this object, arndefined if absent.
Descriptor
[[GetProperty]] functionPropertyNamgY Returnsthe Property Descriptorof the named propert
undefined or Property of this object, oundefined if absent.
Descriptor
[[Put]] function(PropertyNamegany) | Sets the specifiedamedproperty tpspecified value
[[CanPut]] function(PropertyNamgY. Returns a boolean value indicating whether a [[P
boolean operation withPropertyNamgan be performed
[[HasProperty]] function(PropertyNamg Y Returns a boolean value indicating whether the ok
boolean already has aropertywith thegiven name.
[[Delete]] function(PropertyName Removes the specifiedamed ownproperty from the
boolear) Y boolean object.The flag controls failure handling.
[[DefaultValue]] function(Hint) Y any Returns a default value for the object, which shoulg
aprimitive value (not an object or reference).
[[DefineOwnProperty]] | function(PropertyName, Creates or alters the named own property to have
PropertyDegiptorc, boolear) | state describedby a Property DescriptorThe flag
controls failure handling
[[ThrowablePut]] function(PropertyNameany, | Sets the specified named propertyMalue The flag
boolear) controls failure handling.
[[Construct]] function(a list of argument | Constructs an object. Invoked via thew operator.

values provided by the calle
Y Object

Objects that implement this internal method are ca
constructors

[[Calll]

function(a list of argument
values provided by the calle
Y any

Executes code associated with the object. Invoked
function call expression. Objects that implement
internal method are callddnctions

[[HasInstance]]

function(@any) Y. boolean

Returns a boolean value indicating whethéalue

delegates behaviour to this object. Of the na
ECMAScript objects, only Function objects implemg
[[HasInstance]].

[[Scope]] . A scope chain that defines the environment in whic
Function object is executed.
[[Match]] function(string, jndex ¥ Tests for a regular expression match and retur
MatchResult MatchResult value (see section 15.10.2.1).

internal dataproperties and the [[Get]][[GetProperty]], [[GetOwnProperty]][[DefineOwnPr
[[Put]], [[CanPut]], [[HasProperty]], [[Delete]], and [[DefaultValuelhternal methods. (Note, however
that the [[DefaultValue]] method may, for some objects, simphpw aTypeError exception.)

The value of the [[Prototype]] property must be either an objectudl, and every [[Prototype]] chain
must have finite length (that is, starting from any object, recursively accessing the [[Prototype]] propert
must eventuldy lead to anull value). Whether or not a native object can have a host object as its

[[Prototype]] depends on the implementation.

The value of the [[Class]] property is defined by this specification for every kind of-inudbject. The
value of the [Class]] property of a host object may be any value, even a value used by-m mbject

for its [[Class]] property. The value of a [[Class]] property is used internally to distinguish different
kinds of builtin objects. Note that this specification doeot provide any means for a program to access
that value except througBbject.prototype.toString

(see 15.2.4.2).

27 October 2008

Deleted:

Parameters

Deleted:

none

none

[
[
[Deleted:
(

Deleted:

none

Comment [pL16]:

Not e

FromAWB:

that any really

ECMAScript language value but excluding inter

types

Deleted:

Value

Deleted:

Value

will succeed

Deleted:

[
[
[Deleted:
[

member

Comment [pL17]:
is properties of all objects, and the other is prop
that apply to only some objects.

Divide the table into two; o

[Deleted:

Value

Deleted:

None

Deleted:

String

Index

Deleted: and

[
[
[Deleted:
[

-30-

For native objects the [[Get]], [[Put]], [[CanPut]], [[HasProperty]], [[Delete]] and [[DefaultValue]]
methods behave as described in destfibn 8.6.2.1, 8.6.2.2, 8.6.2.3, 8.6.2.4, 8.6.2.5 and 8.6.2.6,
respectively, except that Array objects have a slightly different implementation of the [[Put]] method
(see 15.4.5.1). Host objects may implement these methods in any manner unless spéefiedeat for
example, one possibility is that [[Get]] and [[Put]] for a particular host object indeed fetch and store
property values but [[HasProperty]] always generdtdse.

Deleted: and

Comment [pL18]: Need to make consent with above
table(s).

Deleted: fOdoesndét have aPp
go to step 4]

Get the value of the properfy.

Return Result(2).

If the [[Prototype]] ofO is null, returnundefined.|
Call the [[Get]] method of [[Prototype]] with proper
nameP.{

Return Result(5%

Deleted: <#>Call the [[CanPut]] method d® with
nameP.q

<#>If Result(1) isfalse, return
<#3fOdoesndt have aPmgoto,]
step 61

<#>Set the value of the property ¥ The attributes
the property are not chang®d.

<#>Returnf

<#>Create a property with nanfe set its value t&/
and give it empty attributefs.

<#>Returnf

Note, however, that iD is an Array object, it has a
more elaborate [[Put]] method (15.4.51L).

Deleted: The [[CanPut]] method is used only by
[[Put]] method{

Deleted: IfOdoesn6t have a phR
go to step 4]
If the property has the ReadOnly attribute, refaise
Returntrue.
If the [[Prototype]] ofO is null, returntrue.|
Call the [[CanPut]] method of [[Prototype]] &f with
property namé.q

Return Result(5).

In the following algorithm descriptions, assur®es a native ECMAScript objecP is a string Descis [
an internal property description record, afftrowis a boolearflag,| [
8.6.2.1 [[Get]] (P)
When the [[Get]] method oD is called with property name, the following steps are taken:
1. Call the [[GetProperty]] method d with property nameP.
2. If Result(1) isundefined, returnundefined.
3. If IsDataDescriptoiResult(1) is true, returnResult(1)[[Value]].
4. Otherwise, IsAccessorDescriptor(Result(1)) must be trygsbResult(1][Getter]].
5. If Result@) is undefined, returnundefined.
6. Call the[[Call]] method ofResult(4)providing O as thethis value and providingno arguments.
7. Return Resul®).
B8.6.2.2 [[Put]] (P, V)
[[Put]] is primarily used in the specification of built methods.Algorithms that require explicit
control over the handling of invalid property stafeouldcall [[ThrowablePut]] directly
When the [[Put]] method oD is called with property and valueV, the following steps are taken:
1. Call the [[ThrowablePut]] methodf O with argumentd, V, andfalse.
2. Return
Note, however, that if O is an Array object, it has a more elaborate [[Put]] method (15.4.5.1).
B8.6.2.3 [[CanPut]] (P)
When the [[CanPut]] method @ is called with propertypameP, the following steps are taken:
1. Call the [[GetOwnProperty]] method of O withrgumentP.
2. If Result(1) is noundefined, then
a. If IsAccessorDescriptor(Result(1)) teue, then
i. If Result(1).[[Setter]] isundefined, then returrfalse.
ii. Else returrtrue.
b. Otherwise, Result(1) must beDmtaDescriptor so return the value of
Result(1).[[Writable]]
3. Get the internal [[Prototype]] property &f.
4. If Result@) is null, then returrthe value of the [[Extensible]] property &f.
5. Call the [[GetProperty]] method of Resu8j(with propertynameP.
6. If Result) is undefined, returnthe value of the [[Extensible]] property &f.
7. If IsAccessorDescriptor(Resuf) is true, then
a. If Result(5).[[Setter]] isundefined, then returrfalse.
b. Else returrtrue.
8. Else, Result(5must be a DataDescriptor
a. If the [[Extensible]] property 00 is false, returnfalse.
b. Else returrthe value of Result(5).[[Writable]]
NOTE
Host objects may define additional constraints upon [[Put]] operations. If possible, host objects should
not allow [[Put]] operations in situations where this definition of [[CanPut]] retéefss.
B.6.2.4 [[HasProperty]] (P) (

Deleted: <#>

When the [[HasProperty]] mkbd of O is called with property name, the following steps are taken:

1. Callthe [[GetProperty]] method of O with property name P.
2. If Result(1) is undefined, then return false.
3. Else returrtrue.

27 October 2008

8.6.2.5

8.6.2.6

8.6.2.7

8.6.2.8

-31-

v

[[Delete]] (P, Throw)

When the [[Delete]] method o® is called with property nam@ and thebooleanflag Throw, the

following steps are taken:

1. Call the [[GetOwnProperty]] method & with property namé®.
2. If Result(1) isundefined, then returrtrue.
3. If Result@).[[Configurabld] is true, then
a. Remove the own property with narRefrom O.
b. Returntrue.
4. Else if Throw, then throwa TypeError exception
5. Returnfalse

[[Defaultvalue]] (hint)
When the [[DefaultValue]] method @ is called with hint String, the following steps are taken:

Call the [[Get]] method of objedD with argument toString ".

If Result(1) is not an object, go to step 5.

Call the [[Call]] method of Result(1), wit® as thethis value and an empty argument list.
If Result(3) is a primitive value, return Result(3).

Call the [[Get]] method of objedD with argument ValueOf ".

If Result(5) is not an object, go to step 9.

Call the [[Call]] method of Result(5), wit® as hethis value and an empty argument list.
If Result(7) is a primitive value, return Result(7).

Throw aTypeError exception.

©COoNOOR~WONE

When the [[DefaultValue]] method @ is called with hint Number, the following steps are taken:

Call the [[Get]] method of objedD with argument'valueOf"

If Result(1) is not an object, go to step 5.

Call the [[Call]] method of Result(1), wit® as thethis value and an empty argument list.
If Result(3) is a primitive value, return Result(3).

Call the [[Get]] method of objedD with argument'toString"

If Result(5) is not an object, go to step 9.

Call the [[Call]] method of Result(5), wit® as thethis value and an empty argument list.
If Result(7) is a primitive value, return Result(7).

Throw aTypeError exception.

©Co~NOarWONE

When the [[DefaultValue]] method oD is called with no hint, then it behaves as if the hint were
Number, unles® is a Date object (see 15.9), in which case it behaves as if the hint were String.

The above specification of [[DefaultValue]] for native offig can return only primitive values. If a
host object implements its own [[DefaultValue]] method, it must ensure that its [[DefaultValue]]

method can return only primitive values.
[[GetProperty]] (P)

When the [[GetProperty]] method & is called with property name, the following steps are taken:

Call the [[GetOwnProperty]] method & with property namé®.

If Result(1) is noundefined, return Result(1).

If the [[Prototype]] ofO is null, returnundefined.

Call the [[GetProperty]] minod of [[Prototype]] with property name.
Return Result(4).

[[GetOwnProperty]] (P)

arwdE

When the [[GetOwnProperty]] method & is called with property namP, the following steps are

taken:

1. fOdoesnodt have an ownretpnudefieedt v wi t h name
2. LetD be a newly created Property Descriptor (Section 8.10) with no fields.
3. LetXbeObs own proBerty named

27 October 2008

Deleted: If O has a property with nanf return
true.|
If the [[Prototype]] ofO is null, returnfalsef|
Call the [[HasProperty]] method of
[[Prototype]] with property namBe.{
Return Result(3).

Deleted: 1

lfOdoesndt have aPpr
returntrue .|

If the property has the DontDelete attribute
returnfalsef

Remove the property with nanffrom O.
Returntrue.

-32-

4. If Xis a data property, then
a. SetD.[[Value]]tothevalueoXds [[Val ue]] attribute.
b. SetD.[[Writable]] to the value oX6 s [[|&Yraitribaeb

5. ElseXis an accessor property, so

a. SetD.[[Getter]]tothevalueokKbés [[Getter]] attribute.
b. SetD.[[Setter]] tothevalueokés [[Setter]] attribute.
6. SetD.[[Enumerable]] tothevalueof6 s [[Enumer abl e]] attribute

7. SetD.[[Configurable] tothevalueoX6s [[Conf i gurabl e]] attribute.
8. ReturnD.

Note, however, that ifO is a Stringobject it has a more elaborate [[GetOwnProperty]] method
(15.5.5.2).

8.6.29 [[DefineOwnProperty]] (P, Desc, Throw)

In the following algorithmt he t er m f R dfjTarow i® truenehem throwhaTypeError
exception, otherwise retur

When the [[DefineOwnProperty]] method & is called withproperty nameP, propertydescriptor
Desc and boolean flaghrow, the followingsteps are taken:

1. Call the [[GetOwnProperty]] method @ with property name.
2. Get the [[Extensible]] internal property €.
3. If Result(1) isundefined and Result(2) isalse, then Reject.
4. If Result(1) isundefined and Result(2) isrue, then
a. If IsGenericDescriptofjesq or IsDataDescriptofjesq is true, then
i. Create an own data property nanfedf objectO whose[[Value]], [[Writable]],
[[Enumerable]] and [[Configurable]] attribute values aescribed byDesc If
the value of an attribute field diescis absentthe attribute of the newly created
propertyis set toits default value.
b. Else,Descmust be a accessoPropertyDescriptor so,
i. Create an own accessor property narRemf objectO whose[[Getter]],
[[Setter]], [[Enumerable]] and [[Configurable]] attribeitvalues arelescribed by
Desc If the value of an attribute field descis absentthe attribute of the newly
created propertis set toits default value.
c. Return.
5. Return, if the value of every field iDescis absent
6. Return, if every field inDescalso occurs in Result(1) and the value of every fiel®@scis the
same valuas the corresponding field in Result(1).
7. |If the [[Configurabld] field of Result(1) isfalsethen
a. Reject, if the [Configurabld] field of Descis true.
b. Reject, if the [[Enumeable]] field of Result(1) an®escare theBoolean negation of each
other.
8. If IsGenericDescriptoiesq is true, then no further validation is required.
9. Else, if IsDataDescriptor(Result(1)) and IsDataDescrifegq have different results, then

a. Reject, ifthe [[Configurabld] field of Result(1) isfalse.
b. If IsDataDescriptor(Result(1)) isue, then

i. Convert the property nameRiof objectO from a data property to an accessor
property. Preserve the existing values
[[Configurabld] and [[Enumerable]] attributes and set the the rest of the
propertyo6s attributes to their defaul't

c. Else,

i. Convert the property name®lof objectO from an accessor property to a data
property. Preserve the existing values
[[Configurablg] and [[Enumerable]] attributes and set the the rest of the
propertyo6s attributes to their default

10. Else, if IsDataDescriptor(ReK(l)) and IsDataDescriptobesq are bothtrue, then
a. If the [[Configurabld] field of Result(1) isfalse, then

i. Reject, if the [[Writable]] field of Result(1) ialse and the [[Wrigble]] field of
Descis true.

ii. If the [[Writable]] field of Result(1) ifalse then

27 October 2008

- 33-

1. Reject, if the [[Value]] field ofDescis presntand
[sameValugDesc[[Value]], Result(1).[[Value]]) isfalse. [Comment [PL19]: Need to define this functiol
b. else, the [Configurabld] field of Result(1) istrue, soany change is acceptable.
11. Else, IsAccessorDescriptor(Result(1)) aséccessorDescriptof{esq are bothtrue so,
a. If the [[Configurabld] field of Result(1) isfalse, then
i. Reject, if the [[Setter]] field oDescis present and SameValugésc[[Setter]],
Result(1).[[Setter]] idalse.
ii. Reject, if the [[Getter]] field oDescis presentand SameValueesc[[Getter]],
Result(1).[Getter]]) idalse
12. For each attribute field dbescthatis presentset the correspondingly named attribute of the
property namedP of objectO to the value of the field.
13. Return.

8.6.210 [[[ThrowablePut]] (P, V, Throw) Comment [pL20]: From AWB:

When the [[ThrowablePut]] method @ is called with property, valueV, andboolean flagThrow
the following steps are taken:

1. Call the[[GetOwnPropert})} method ofO with argumentP.
2. If Result(1) isundefined, thenthrow aReferenceError exception.
3. Call the [[CanPut]] method d® with argumentP.
4. If Result@) is false, then
a. If Throw istrue, then throwa TypeError exception
b. Else return.
5. If IsDataDescriptor(Result)) is true, then
a. Set the [[Value]] attribute of property of O to V.
b. Return.
6. Call the [[GetProperty]] method @ with argumentP.
7. If IsAccessorDescriptoResultg)) is true, then
a. GetResut(1).[[Setter]] which cannot beindefined.
b. Call the [[Call]] method ofResult{a) providing O as thethis value and providing/ as
the sole argument
8. Else, ceate a named data property nanfedn objectO whose attributes are:
a. [[Value]]: V,
b. [[Writable]]: true,
[Enumerable]]:true,
[

Consider renaming to ThrowingPut.

c. [
d. [[Configurabld]: true.
9. Return.
Note, however, that ifO is an Array objectit has a more elaborate [[ThrowablePut]] meth¢d
(15.4.5.1).
8.7 The Reference Type Deleted: 1

The internal Reference type is not a language data typeis defined by this specification purely for
expository purposes. An implementation of ECBIgipt must behave as if it produced and operated upon
references in the manner described here. However, a value of Rgperenceis used only as an
intermediate result of expression evaluation and cannot be stored as the value of a variable or property.

The Reference type is used to explain the behaviour of such operatasleds , typeof , and the

assignment operators. For example, the-hefihd operand of an assignment is expected to produce a

reference. The behaviour of assignment could, instead, plaierd entirely in terms of a case analysis on

the syntactic form of the leftand operand of an assignment operator, but for one difficulty: function calls

are permitted to return referenc@#is possibility is admitted purely for the sake of host ofsjelo built- Comment [pL21]: We wanted to remove this
in ECMAScript function defined by this specification returns a reference and there is no provision for ¢ buthave decided to leave it in as this could
userdefined function to return a reference. (Another reason not to use a syntactic case analysis is thaf Potentially break web applications.

would be lengthy and awkwd, affecting many parts of the specification.)

Another use of the Reference type is to explain the determination d¢fithealue for a function call.

A Referenceis a reference to a property of an object. A Reference consists of two componerias¢he
objectand theproperty name.

The following abstract operations are used in this specification to access the components of references:

27 October 2008

-34-

* GetBase(V). Returns the base object component of the reference V.
* GetPropertyName(V). Returns the property naamomponent of the reference V.

The following abstract operations are used in this specification to operate on references:

8.7.1 GetValue (V)
1. If Type(V) is not Reference, retuii.
2. Call GetBaseX).
3. If Result(2) isnull, throw aReferenceError exception.
4. Callthe [[Get]] method of Result(2), passing GetPropertyNamégr the property name.
5. Return Result(4).
8.7.2 PutValue (V, W, Throw)
1. If Type(V) is not Reference, throwReferenceError exception.
2. Call GetBaseX).
3. If Result(2) isnull, then
a. If Throwis true, then throw eReferenceError exception.
b. Call the [[ThrowablePut]] method for the global object, passing GetPropertyNarfaa(the
property nameW for the value, andalse for the Throwflag.
c. Return
4. Else
a. Call the [[ThrowablePut]] method of Result(assing GetPropertyNamé(for the property
name,W for the value, and hrowfor the Throw flag.
b. Return.
8.8 The List Type

The internal List type is not danguage data typelt is defined by this specification purely for expository
purposes. An implementation of ECMAScript must behave as if it produced and operated upon List valug
in the manner described here. However, a value of the List type is used®mly intermediate result of
expression evaluation and cannot be stored as the value of a variable or property.

The List type is used to explain the evaluation of argument lists (see 11.2mwirexpressions and in
function calls. Values of the List tgpare simply ordered sequences of values. These sequences may be (¢
any length.

8.9 The Completion Type

The internal Completion type is not a language data typeis defined by this specification purely for
expository purposes. An implementation of ECMi®t must behave as if it produced and operated upon

Completion values in the manner described here. However, a value of the Completion type is used only as

an intermediate result of statement evaluation and cannot be stored as the value of a vapiaiplertyr.

The Completion type is used to explain the behaviour of statembrgsl(, continue , return and
throw) that perform nonlocal transfers of control. Values of the Completion type are triples of the form
(type value target), wheretype is one ofnormal, break, continue, return, or throw, value is any
ECMAScript value oempty, andtargetis any ECMAScript identifier oempty.

The term fAabrupt completionodo refenosnalt o any

8.10 The Property Descriptorand Property ldentifier Types

Deleted: <#>If Type(V) is not Reference, throw ¢
ReferenceError exceptionf
<#>Call GetBas&().1
<#>If Result(2) isnull, go to step &
<#>Call the [[Put]] method of Result{2passing
GetPropertyNam&f) for the property namandW fo
the valuef
<#>Returnf
<#>Call the [[Put]] method for the global object,
passing GetPropertyNamg(for the property name
andW for the value]

<#>Returnf

compl et

The internal Property Descriptor and Property Identifier types are not language data types. They are defined
by this specification purely for expository purposes. An implementation of ECMAScript must behave as if

it produced ad operated upon Property Descriptor and Property Identifier values in the manner described
here. However, values of these types are used only as an intermediate result of expression evaluation and
cannot be stored as the value of a variable or property.

The Property Descriptor type is used to explain the manipulation and reification of named property

attributes. Values of the Property Descriptor type
name is an attribute name and its value is a spoerding attribute value. In additiobny field maybe
present or absént Comment [pL22]: Stored descriptors are always

. e . complete. Oly delta descriptors may have absent field
Property Descriptor values may be further classified as data property descriptors and accessor propercy

descriptors based upon the eriste or use of certain fields. A data pesty descriptor is one that includes

27 October 2008

8.101

8.102

8.103

8.104

- 35-

any fields named either [[Value]], or [[Writable]].mAaccessor property descriptor is one that includes

fields named either [[Getter]], or [[Setter]]JAny property descriptor may have fields named

[[Enumerable]],and [[Configurablg].

For notational conenience within this specification, an object litedéde syntax can be used to define
property descriptor value. For example, Property Descrifptatue: 42 writable: false configurable true}
defines a dataroperty descriptor. The order of listing fields names is not significany fields that are
not explicitly listedare considered to be absent

In specification text and algorithms, dot notation may be used to refer to a specific field of a Pr
Dexriptor. For exampl e, i f D is a property des
namedi & | ue o .

The Property Identitr type is used to associate a property name with a Property Descriptor. Values
Property Identifier type arpairs of the form (name, descriptor), where name is a string and descripto
Property Desadptor value.

The following abstract operations are used in this specification to operate upon Property Descriptor |

IsAccessorDescriptor (Desc)

When the internalsAccessorDescriptofunction is calledwith propertydescriptorDescthe following
steps are taken:

1. If Descis undefined, thenreturnfalse
2. If bothDescl[Gettel] and Desc[[Sette}] are absenthen returrfalse
3. Returntrue.

IsDataDescriptor (Desc)

When the internalsDataDescriptofunction is calledwith propertydescriptorDescthe following steps
are taken:

1. If Descis undefined, thenreturnfalse
2. If bothDesc|[Valu€]] and Desc[[Writable]] are absenthen returrfalse
3. Returntrue.

IsGenericDescriptor (Desc)

When the internalsGenericDescriptofunction is calledwith property descriptorDesc the following
steps are taken:

1. If Descis undefined, thenreturnfalse
2. If IsAccessorDescriptoBlesg andisDataDescriptofesq arebothfalse then returrirue.
3. Returnfalse

FromPropertyDescriptor (Desc)

When the internaFromPropertyDescriptofiunction is calledwith propertydescriptorDescthe following
steps are takenthe following steps araken:

1. If Descis undefined, then returrundefined.

2. Create a new object as if by the expressiew Object() whereObject is the standard buiih constructor
with that name.

3. If IsDataDescriptoi@esq is true, then

a. Callthe [[Put]] method of Result(2) it ar gument s fivalued and
b. Call the [[Put]] method of mDess[[Witah{gR) wi
4. Else,IsAccessorDescriptobesg must betrue, so
a Call the [[Put]] method of Re®Geteil (2) wi
b. Call the [[Put]] method of ReSaiéf]t (2) wi
5. Call the [[Put]] method of ReDBResc[[Bnnrpblfwi t h ar g
6. Call the [[Put]] met hocdnfiguiabléR eabast[[Cchf@yrabldli t h ar g
7. Return Result(2).
NOTE

The above algorithm assumes that Desc is a fully populated Property Descriptor, such as that re
from [[GetOwnProperty]].

hny

[

pert
€ [

of th
isa

alue:

furne

27 October 2008

- 36 -

8.105 ToPropertyDescriptor (Desc)

9.1

When the internalToPropertyDescriptofunction is calledwith object Des¢ the following steps are

taken:

1. If Descis undefined, then returrundefined.

2. Call ToObjectDesq.

3. Create a new Property Descriptbat initially has no fields

4. Call the [[HasProperty]] method of Result(2) wihr g u me n t Afenumer abl eo.
5. If Result(4) istrue, then

a. Call the [[Get]] method oDescwi t h fienumer abl eo.

b. Call ToBoolean(Result(5a)).

c. Setthe [[Enumerable]] field of Result(3) to Result(5b).
6. Cal | the [[HasPropertyl]] monfighrabldd .of Resul t (2) wi
7. If Result(6) istrue, then

a. Call the [[Get]] method oResult(2)with argumenticonfigurable .

b. Call ToBoolean(Result(7a)).

c. Set the [Configurabld] field of Result(3) to Result(7b)
8. Call the [[HasPropertyl]] met hod of Result (2) wi
9. If Result(8) istrue, then

a. Call the [[Get]] method oResult(2)with argumentiivalued .

b. Set the [[Value]] field of Result(3) to Resuld®
10.Cal | the [[HasPropertyl]] met hod of Result (2) wi
11. If Result(10) igtrue, then

a. Call the [[Get]]method ofResult(2)with argumentfiwritableod .

b. Call ToBoolean(Result(11a)).

c. Set the [[Writable]] field of Result(3) to Result(11b).
12.Call | the [[HasPropertyl]] met hod of Result (2) wi
13. If Result(12) igrue, then

a. Call the [[Get]] method oResult(2)with argumentfigetteo .

b. Call IsCallable(Result(13a))

c. If Result(13b) isfalse and Result(13a) is natndefined, then throw arypeError exception

d. Set the [[Getter]] field of Result(3) to Result@3
14. Call the [[HasProperty]] method of Result(2)w h ar gument fAsettero.
15. If Result(#) is true, then

a. Call the [[Get]] method oResult(2)with argumentisetteo .

b. Call IsCallable(Result(15a))

c. If Result(15b) isfalse and Result(15a) is naindefined, then throw al'ypeError exception

d. Set the [[Setter]field of Result(3) to Result(1.
16. If either Result(3).[[Getter]] or Result(3).[[Settedle presentthen

a. |If either Result(3).[[Value]] or Result(3).[[WritableHre presentthen throw arypeError

exception.

17. Return Result(3).

Type Conversionand Testing

The ECMAScript runtime system performs automatic type conversion as needed. To clarify the semantics of
certain constructs it is useful to define a set of conversion operators. These operators are not a part of the
language; they are defined here to #li@ specification of the semantics of the language. The conversion

operators are polymorphic; that is, they can accept a value of any standard type, but not of type Reference,

List, Completion or PropertyDescriptofthe internal types). [Deleted:

or

ToPrimitiv e

The operator ToPrimitive takes a Value argument and an optional argiRneferredType The operator
ToPrimitive converts its value argument to a f@hject type. If an object is capable of converting to more
than one primitive type, it may use the optéd hint PreferredTypeto favour that type. Conversion occurs
according to the following table:

27 October 2008

-37-

Input Type Result

Undefined The result equals the input argument (no conversion).

Null The result equals the input argument (no conversion).

Boolean Theresult equals the input argument (no conversion).

Number The result equals the input argument (no conversion).

String The result equals the input argument (no conversion).

Object Return a default value for the Object. The default value of an objestrisved by|
calling the internal [[DefaultValue]] method of the object, passing the opti
hint PreferredType The behaviour of the [[DefaultValue]] method is defined
this specification for all native ECMAScript objects (8.6.2.6).

9.2 ToBoolean
Theoperator ToBoolean converts its argument to a value of type Boolean according to the following table:

Input Type Result

Undefined false

Null false

Boolean The result equals the input argument (no conversion).

Number The result idalseif the argument is-0, -0, or NaN; otherwise the result tsue.

String The result idalseif the argument is the empty string (its length is zero); othen|
the result igrue.

Object true

9.3 ToNumber

The operator ToNumber converts its arguminé value of type Number according to the following table:

Input Type Result
Undefined NaN
Null +0
Boolean The result isl if the argument isrue. The result is+0 if the argument ialse
Number The result equals the input argument (no conversion).
String See grammar and note below.
Object Apply the following steps:
1. Call ToPrimitive(input argument, hint Number).
2. Call ToNumber(Result(1)).
3. Return Result(2).

9.3.1 ToNumber Applied to the String Type

ToNumber applied to strings applies the following grammar to the input string. If the grammar canno
interpret the string as an expansionStfingNumericLiteral then the result of ToNumber MaN.

StringNumericLiteral::
StrWhiteSpacg;
StrWhiteSpacg; StrNumericLiteral StrWhiteSpage

27 October 2008

- 38 -

StrWhiteSpace:
StrWhiteSpaceChar StrWhiteSpgce

StrwhiteSpaceChar:
WhiteSpace
JLineTerminator

StrNumericLiteral::
StrDecimalLiteral
HexlIntegerLiteral

StrDecimalLiteral:::
StrUnsignedDecimalLiteral
+ StrUnsignedDecimalLiteral
- StrUnsignedDecimalLiteral

StrUnsignedDecimalLiterat:
Infinity
DecimalDigits. DecimalDigits,: ExponentPag
. DecimalDigits ExponentPay
DecimalDigits ExponentPayg;

DecimalDigits:::
DecimalDigit
DecimalDigits DecimalDigit

DecimalDigit::: one of
0123456789

ExponentPart::
Exponentindicator Signedinteger

Exponentindicator:: one of
e E

Signedinteger::
DecimalDigits
+ DecimalDigits
- DecimalDigits

HexIntegerLiterat::
0x HexDigit
0X HexDigit
HexIntegerLiteral HexDigit

HexDigit::: one of
0123456789abcdefABCDEF

Some differences should be noted between the syntaxSifiagNumericLiteraland aNumericLiteral
(see 7.8.3):

* A StringNumericLiteralmay be preceded and/or followed by white space and/or line terminators.

* A StringNumericLiterakhat is decimal may have any number of leadindjigits.
* A StringNumericLiteralthat is decimal may be precatlby + or - to indicate its sign.
* A StringNumericLiteralthat is empty or contains only white space is convertetDto

The conversion of a string to a number value is similar overall to the determination of the number value
for a numeric literal (see 7.3), but some of the details are different, so the process for converting a
string numeric literal to a value of Number type is given here in full. This value is determined in two

27 October 2008

Deleted: <TAB>
<SP>

<NBSP>

<FF>

<VT>

<CR>

<LF>

<LS>

<PS>

Deleted: <USP>

-39-

steps: first, a mathematical value (MV) is derived from the string numetérali second, this
mathematical value is rounded as described below.

* The MV of StringNumericLiteral:: [empty]is O.

* The MV of StringNumericLiteral:: StrWhiteSpaces 0.

* The MV of StringNumericLiteral:: StrWhiteSpacg: StrNumericLiteral StrWhiteSpag, is the MV
of StrNumericLitera) no matter whether white space is present or not.

* The MV of StrNumericLiteral::: StrDecimalLiteralis the MV of StrDecimalLiteral.

* The MV of StrNumericLiteral::: HexIntegerLiteralis the MV ofHexIntegerLiteral

* The MV of StrDecimalLiteral :: StrUnsignedDecimalLiteral is the MV of
StrUnsignedDecimalLiteral

* The MV of StrDecimallLiteral:: + StrUnsignedDecimalLiteral is the MV of
StrUnsignedDecimalLiteral

* The MV of StrDecimalLiteral:: - StrUnsignedDecimalLiteralis the negative of the MV of
StrUnsignedDecimalLiteral(Note that if the MV ofStrUnsignedDecimalLiterails 0, the negative of
this MV is also 0. The rounding rule described below handles the conversion of this sign les:
mathematical zero to a floatifmpint +0 or —0 as appropriate.)

* The MV of StrUnsignedDecimalLiteral: Infinity is 10'°°%° (a value so large that it will round to
+00).

* The MV of StrUnsignedDecimalLiteral: DecimalDigits is the MV of DecimalDigits

* The MV of StrUnsignedDecimalLiteral: DecimalDigits DecimalDigitsis the MV of the first
DecimalDigits plus (the MV of the secon®ecimalDigitstimes 10"), wheren is the number of
characters in the secomecimalDigits.

The MV of StrUnsignedDecimalLiterat DecimalDigits ExponentParis the MV of DecimalDigitstimes 16,
whereeis the MV of ExponentPart

The MV of StrUnsignedDecimalLiterat DecimalDigits DecimalDigits ExponentPaiis (the MV of the first
DecimalDigitsplus (the MV of the seconBecimalDigitstimes 10") times 16, wheren is the number of
characters in the secobcimalDigits andeis the MV of ExponentPart

The MV of StrUnsignedDecimalLiterat . DecimalDigitsis the MV of DecimalDigitstimes 10", wheren is
the number of characters DecimalDigits.

The MV of StrUnsignedDecimalLiterat. DecimalDigits ExponentParts the MV of DecimalDigits times
107", wheren is the number of charactersecimalDigits andeis the MV of ExponentPart

The MV of StrUnsignedDecimalLiterat DecimalDigitsis the MV of DecimalDigits

The MV of StrUnsignedDecimalLiterat DecimalDigitsExponentParis the MV of DecimalDigitstimes 16,
whereeis the MV ofExponentPart

The MV of DecimalDigits::: DecimalDigitis the MV of DecimalDigit

The MV of DecimalDigits::: DecimdDigits DecimalDigitis (the MV of DecimalDigitstimes 10) plus the MV
of DecimalDigit

The MV of ExponentPart:: Exponentindicator Signedintegisrthe MV ofSignedinteger

The MV of Signedinteger:: DecimalDigitsis the MV of DecimalDigits

The MV of Sgnedinteger.:: + DecimalDigitsis the MV of DecimalDigits

The MV of Signedinteger:: - DecimalDigitsis the negative of the MV ddecimalDigits

The MV of DecimalDigit::: 0 or of HexDigit::: 0 is 0.

The MV of DecimalDigit::: 1 or of HexDigit::: 1is 1.

The MV of DecimalDigit::: 2 or of HexDigit::: 2 is 2.

The MV of DecimalDigit::: 3 or of HexDigit::: 3is 3.

The MV of DecimalDigit::: 4 or of HexDigit::: 4 is 4.

The MV of DecimalDigit::: 5 or of HexDigit::: 5 is 5.

The MV of DecimalDigit::: 6 or of HexDigit::: 6 is 6.

The MV of DecimalDigit::: 7 or of HexDigit::: 7 is 7.

The MV of DecimalDigit::: 8 or of HexDigit::: 8 is 8.

The MV of DecimalDigit::: 9 or of HexDigit::: 9is 9.

The MV of HexDigit ::: a or of HexDigit::: Ais 10.

The MV of HexDigit ::: b or of HexDigit::: Bis 11.

27 October 2008

9.4

9.5

9.6

- 40 -

The MV of HexDigit ::: ¢ or of HexDigit::: Cis 12.
The MV of HexDigit ::: d or of HexDigit::: Dis 13.
The MV of HexDigit::: e or of HexDigit::: Eis 14.
The MV of HexDigit::: f or of HexDigit::: Fis 15.
The MV of HexIntegerLiterat:: Ox HexDigitis the MV ofHexDigit
The MV of HexIntegerLiteral:: 0X HexDigitis the MV ofHexDigit

The MV of HexIntegerLiteral::: HexIntegerLiteraHexDigitis (the MV ofHexIntegerLiteratimes 16) plus the
MV of HexDigit

Once the exact MV for a string numeric literal has been determined, it is then rounded to a value of the
Number type. If the MV is 0, then the rounded value is +0 unless the first non white space character in
the stringn u mer i ¢ ld,t eirm!l whischd c ase —Q Otherwise, the dended vaduk u e
must be the number value for the MV (in the sense defined in 8.5), unless the literal includes a
StrUnsignedDecimalLiteraand the literal has more than 20 signéfit digits, in which case the number
value may be either the number value for the MV of a literal produced by replacing each significant digit
after the 20th with a 0 digit or the number value for the MV of a literal produced by replacing each
significantdigit after the 20th with a 0 digit and then incrementing the literal at the 20th digit position. A
digit is significantif it is not part of anExponentPar&and

it is notO; or
there is a nonzero digit to its left and there is a nonzero digit, not iBxpenentPartto its right.

Tolnteger

The operator Tolnteger converts its argument to an integral numeric value. This operator functions as
follows:

Call ToNumber on the input argument.

If Result(1) isNaN, return+0.

If Result(1) is+0, -0, +o0, or —oo, return Result(1).
Compute sign(Result(1)) * floor(abs(Result(1))).
Return Result(4).

Tolnt32: (Signed 32 Bit Integer)

The operator Tolnt32 converts its argument to one %firkeger values in the range2®! through 31,
inclusive. This operator funtions as follows:

agrwNE

1. Call ToNumber on the input argument.

2. If Result(1) isNaN, +0, —0, +e0, or—oo, return +0.

3. Compute sign(Result(1)) * floor(abs(Result(1))).

4. Compute Result(3) modulo®? that is, a finite integer value k of Number type with positive sigd
less than % in magnitude such the mathematical difference of Result(3) and k is mathematically an
integer multiple of 2.

5. If Result(4) is greater than or equal t& Zeturn Result(4) 2°%, otherwise return Result(4).

NOTE
Given the aboveéefinition of ToInt32:

The Tolnt32 operation is idempotent: if applied to a result that it produced, the second application leaves that value
unchanged.

Tolnt32(ToUint32(x)) is equal to TolInt32(x) for all values of x. (It is to preserve this latter psogeat +eo and —o
are mapped to +0.)

TolInt32 maps-0 to +0.

ToUint32: (Unsigned 32 Bit Integer)

The operator ToUint32 converts its argument to one %fiteger values in the range 0 throug#-2,
inclusive. This operator functions as follows:

1. Call ToNumber on the input argument.
2. If Result(1) isNaN, +0, -0, +w, or —c, return +0.

27 October 2008

- 41 -

3. Compute sign(Result(1)) * floor(abs(Result(1))).

4. Compute Result(3) modulo®? that is, a finite integer value k of Number type with positive sign and
less than % in magnitue such the mathematical difference of Result(3) and k is mathematically an
integer multiple of 2

5. Return Result(4).

NOTE
Given the above definition of ToUInt32:

Step 5 is the only difference between ToUint32 and Tolnt32.

The ToUint32 operation islempotent: if applied to a result that it produced, the second application leaves that value
unchanged.

ToUint32(Tolnt32(x)) is equal to ToUint32(x) for all values of x. (It is to preserve this latter property éhahe —«
are mapped to +0.)

ToUint32 mas -0 to +0.

9.7 ToUintl6: (Unsigned 16 Bit Integer)

The operator ToUint16 converts its argument to one ‘Sfiteger values in the range 0 through-2,
inclusive. This operator functions as follows:

1. Call ToNumber on the input argument.

2. If Result(1) isNaN, +0, -0, +w0, or —eo, return +0.

3. Compute sign(Result(1)) * floor(abs(Result(1))).

4. Compute Result(3) modulo'2 that is, a finite integer valule of Number type with positive sign and
less than # in magnitude such the mathematical difference of Result(3)kaisdmathematically an
integer multiple of 2.

5. Return Result(4).

NOTE
Given the above definition of ToUint16:

The substitution of*2 for 232 in step 4 is the only difference between ToUira82 ToUint16.
ToUint1l6 maps-0 to +0.

9.8 ToString
The operator ToString converts its argument to a value of type String according to the following table:

Input Type Result

Undefined "undefined"

Null “null”

Boolean If the argument isrue, then the result i&rue”
If the argument ifalse then the result i¥alse"

Number See note below.

String Return the input argument (no conversion)

Object Apply the following steps:

1. Call ToPrimitive(input argument, hint String).
2. Call ToString(Result(1)).
3. Return Result(2).

9.8.1 ToString Applied to the Number Type
The operator ToString converts a numhbeto string format as follows:

1. If mis NaN, return the stringNaN" .

27 October 2008

42 -

If mis +0 or -0, return the string0" .
If mis less than zero, return the string concatenation of the striigand ToStringtm).
If mis infinity, return the strindInfinity"
. Otherwise, len, k, ands be integers such that> 1, 107! < s < 1, the number value fos* 10"* is
m, andk is as small as possible. Note that the number of digits in the decimal representatios, of
thatsis not divisible by 10, and that the least significant digis & not necessarily uniquely
determined by these criteria.
6. If k<n<21, return thetsing consisting of thé digits of the decimal representation of s (in order,
with no leading zeroes), followed bykoccur rences db.the character 0
7. 1f 0 < n= 21, return the string consisting of the most significadigits of the decimal represeian
of s, foll owed by.6a dfeoclilnoawe dp otiyndigitadef the decmaal ni n g
representation aof.
8. If 6<n<0, return the string06corfwildtoiweg ddfydtah e ech ama:
followed by—n occurrences of the chatae 06 , 6 f o | | okdaits oftthe decimal
representation aof.
9. Otherwise, ifk = 1, return the string consisting of the single digispfollowed by lowercase
char aeét ef o061 owed +byora mi w8 sascscigogrndd onrg-1 is positiveroe t h e r
negative, followed by the decimal representation of the integenabjs(with no leading zeros).
10.Return the string consisting of the most significant digit of the decimal representation of s, followed
by a deci mal p o i n fremaining k1 digdsl of thealecimnal deprbsgntatiom ef s,
foll owed by the | owercase charact er —606 eadc, c ofrod il nogw et
whether 1 is positive or negative, followed by the decimal representation of the integer-aps(n
(with no leading zeros).

aswN

NOTE
The following observations may be useful as guidelines for implementations, but are not part of the normative
requirements of this Standard:

If X is any number value other tha#®, then ToNumber(ToString(x)) is exactly teme number value as x.
The least significant digit of s is not always uniquely determined by the requirements listed in step 5.

For implementations that provide more accurate conversions than required by the rules above, it is recommended
that the followng alternative version of step 5 be used as a guideline:

Otherwise, let n, k, and s be integers such thatlk 10 <s < 10¢, the number value for s 10" *is m, and k is

as small as possible. If there are multiple possibilities for s, choose the wékifor which sc 10"* is closest in

value to m. If there are two such possible values of s, choose the one that is even. Note that k is the number of
digits in the decimal representation of s and that s is not divisible by 10.

Implementors of ECMAS@i may find useful the paper and code written by David M. Gay for bitmdecimal
conversion of floatingpoint numbers:

Gay, David M. Correctly Rounded Binafyecimal and DecimaBinary Conversions. Numerical Analysis
Manuscript 9010. AT&T Bell Laboratoies (Murray Hill, New Jersey). November 30, 1990. Available as

http://cm.bell - labs.com/cm/cs/doc/90/4 -10.ps.gz . Associated code available as
http://cm.bell - labs.com/netlib/fp/dtoa.c.gz andas http://cm.bell -
labs.com/netlib/fp/g_fmt.c.gz and may also be fmd at the variousetlib ~ mirror sites.

9.9 ToObject
The operator ToObject converts its argument to a value of type Object according to the following table:

Input Type Result

Undefined Throw aTypeError exception.

Null Throw aTypeError exception.

Boolean Create a new Boolean object whogerfinitiveVValug] property is set to the valu [Deleted: value
of the boolean. See 15.6 for a description of Boolean objects.

Number Create a new Number object whog@r[fnitiveValud] property is set to the valu [Deleted: value
of the number. See 15.7 for a description of Number objects.

Decimal Create a new Decimal object whose [[PrimitiveValue]] property is set to the |

27 October 2008

- 43 -

of thedecimal. See 15.7 for a description of Decimal objects.

String Create a new String object whosgrnitiveValud] property is set to the value ([Demed; value
the string. See 15.5 for a description of String objects.

Object The result is the input argument (no conversion).

9.10 IsCallable
The operatorlsCallable determines if its argument is a callable fiorcObject according to the following

table:

Input Type Result

Undefined Returnfalse

Null Returnfalse

Boolean Returnfalse

Number Returnfalse

Decimal Returnfalse

String Returnfalse

Object If the argumenbbjecthas annternal [[Call]] methodthenreturntrue, otherwise|
returnfalse

10 Execution Contexts

When control is transferred to ECMAScript executable code, control is enteriegemuition contextActive
execution contexts logically form a stack. The top exi@cucontext on this logical stack is the running
execution context.

10.1 Definitions
10.1.1 Function Objects
There are two types of Function objects:

Program functions are defined in source text biyuactionDeclarationor created dynamically either by
using aFunctionExpressiomr by using the buitin Function object as a constructor.

Internal functions are buiin objects of the language, such aarselnt and Math.exp . An
implementation may also provide implementatiependent internal functions that are not described
in this specification. These functions do no¢cessarilycontain executable code defined by the
ECMAScript grammarjn which casehey are excluded from this discussion of execution contexts [Deleted: so

10.1.2 Types of Executable Code
There ardive types of ECMAScript executable code: [Deleted: three

Global codeis source text that is treated as an ECMAScRpogram The global code of a particular
Programdoes not include any source text that is parsed as pargbfck or a FunctionBodyexcept [Deleted: FunctionBody
thatit does include the code of anfariableDeclarationthat is parsed as part of suctBbckor as
part of aBlock nestedat any level within such Block

Eval codeis the source text supplied to the biiiiteval function. More precisely, if the parameter to
the builtin eval function is a string, it is treated as an ECMAScigbgram The eval code for a
particular invocation oeval is the global code portion of the string parametére eval code for a
partticular invocation ofeval does not include any source text that is parsed as parBtdck or a
FunctionBodyexcept thait does include the code of aMariableDeclarationthat is parsed as part of
such aBlockor as part of 8locknested at any level within suchBidock

Function codeis source text that is parsed as part dfumctionBody I'he function wde of a particular Deleted: Thefunction codef a particular
FunctionBodydoes not include any source text that is parsed as partBédck or a FunctionBody FunctionBodydoes not include any source |
except thait does include the code of aMariableDeclarationthat is parsed as part of suclBeck that is parsed as part of a neskeshctionBod

or as part of 8locknested at any level within suchBiock

27 October 2008

- 44 -

Function codealso denotes the source text supplied when using the-ibuRunction object as a
constructor. More precisely, the last parameter provided té&timetion constructor is converted to
a string and treted as thd-unctionBody If more than one parameter is provided to Fuction

constructor, all parameters except the last one are converted to strings and concatenated together,

separated by commas. The resulting string is interpreted asFonealParaneterList for the
FunctionBodydefined by the last parameter. Thenction codefor a particular instantiation of a
Function does not include any source text that is parsed as part of a restetionBody The
function codefor a particular instantiationfea Function does not include any source text that is
parsed as part of @lock or a FunctionBody except thatit does include the code of any
VariableDeclarationthat is parsed as part of suclBbock or as part of @lock nested at any level
within such aBlock

Lexical Block codds the source code that that is parsed asSteementLisbf a Block The lexical
block codeof a particularStatementListioes not include any source text that is parsed as part of a
nestedrFunctionBodyor Block

10.1.21 Applying Usage Subsets to Executable code

10.1.3

Eachoccutence of one of these types of code may be restricted to use a defined afutheetomplete
ECMAScript language

* Global codeand function code supplied as the last argument to the Function constructor are

unrestrictedunlessthe Programthat defines the code includadJseSubsetDirective

* Eval code inheritghe restrictions othe executioncontext in which the eval operator agaps,
but its execution context may be further restriciédhe Program that defines the eval code
includes aUseSubsetDirectiven that case, the restrictions of the execution context are the union
of the restrictions of the inherited execution contextd the restrictions specified by the
UseSubsetDirectiveSuch a unioning of restrictions is the equivalent of inteisgdhe specified
usage subsets

* Function code made by evaluatingFanctionDeclarationor a FunctionExpressionand lexical
block code alinherit the restrictions of the execution context in whtbke evaluation occurs

Environment Bindings Instantiation
Every execution context has associated withgnhaironmentobject.for all kinds of execution contexts,

global code, eval code, and function code variables declared in the source text are also added
properties of the environment objedtor function code, parameters are added as properties of the
environmenipbject.

Which object is used as ¢tenvironmentobject and what attributes are used for the properties depends

on the type of code, but the remainder of the behaviour is generic. On entering an execution context, the

properties are bound to t@vironmenfpbject in the éllowing order:

For function code: for each formal parameter, as defined inFtrenalParameterList create anamed
data property of theenvironmentpbject whose name is thilentifier and whose attributes are

O

Deleted: Variable

Deleted: variable

Deleted: Variables

Deleted: variable

Deleted: variable

Deleted: variable

Deleted: variable

Deleted: variable

determined by the type of code. Thalwes of the parameters are supplied by the caller as arguments
to [[Call]]. If the caller supplies fewer parameter values than there are formal parameters, the extra
formal parameters have valumdefined. |f two or more formal parameters share the sarame

hence the same property, the corresponding property is given the value that was supplied for the last

parameter with this naméf the value of this last parameter was not supplied by the caller, the value
of the corresponding property ismdefined.

Comment [pL23]: From AWB:
Should duplicate formal parameter names be restricte
the cautious subset?

Deleted: eachFunctionDeclaratiorin the code, in
source text order

For lexical block code: if the lexical block has any block paramgtersatefor each block parameter
named datgroperty of theenvironmentobject whose namevalue, are determined bgvaluation
context of the Block and whose attributes are {[[Writable]]true, [[Enumerable]]: false [

Deleted: variable

[[Configurable fals€]]}. Only a TryStatementreates lexical block contexts with block parameters.

For all of the FunctionDeclaration and ConstantDeclarationin the code perform the following

algorithny Semantically, this step must follow the creation BdrmalParameterListor block
parameteproperties.

Deleted: is theldentifierin the
FunctionDeclarationwhose value is the result
returned by creating a Function object as describ
13, and whose attributes are determined by the t
code. If he variable object already has a property
this name, replace its value and attributes

27 October 2008

10.1.3.1 Usage Subset Restrictions

10.1.4

- 45 -

1. Let CTXbe the current execution context and its associated environment object.
2. For eachFunctionDeclarationand ConstantDeclarationD in the code in source code order,
a. LetN be theldentifierin D.
b. If Dis aConstantDeclaratiorthen
i. If CTXalready contains a property namsdthrow aSyntaxError exception
ii. Create a named data propertyGi Xwhose name i8l, whose [[Const]] attribute is
Unitialized, whose [[Writable]] attribute ifalse, and whose value is set to
undefined.
c. If Dis aFunctionDeclarationthen
i. If CTXalready contains a property namidthen
1. If CTXis the execution context ofBlock, throw a SyntaxError exception.
2. If the existing property has a [[Const]] attribute, thro@yntaxError

exception otherwise the value and attributes of the existing property will be

replaced by the actions of step 2cii below.

ii. Create a named data propertyGi Xwhose name il and whose value is the resul
returned by creating a Function object as describeiB.

d. Otherattributes of the named data property are determined by the type of code

For execution contexts that are not lexical blocksFor each VariableDeclaration or
VariableDeclarationNolnin the code(including VariableDeclarationscontained withinBlocks that
are within the code)create a property of thenvironmentobject whose name is tHdentifier in the
VariableDeclarationor VariableDeclarationNoln whose value isindefined and whose attributes

name of a declared variablend the property has a [[Const]] attribute throwSgntaxError

exception, otherwisethe value © the existing property and its attributes are not changed.

Semantically, this step must follow the creation of tHermalParameterList and the

FunctionDeclarationand ConstantDeclaratiorproperties. In particular, if a declared variable has the
same namas a declared function or formal parameter, the variable declaration does not disturb th

existing property.

When defined within an execution context subset restricted tsttio subset, a function may no
have two ormore formal parameters thhive thesame nameAn attempt to create such afunction
with conflicting parameters names will fail, either statically, if expressedFasnationDeclarationor
FunctionExpressionor dynamically by throwin@ SyntaxError exception if expressed in a call to|

the Function constructor.

Scope Chain and ldentifier Resolution

Comment [pL24]: From MSM:

Actually, this error must be reported at scan tim

Deleted: variable

Deleted: variable

Every execution context has associated with it a scope chain. A scope chain is a list of objects that ¢
searched when evaluating adentifier. When control enters an execution context, a scope chain is
created and populated with an initial set of objects, depending on the type of code. During executic
within an execution context, the scope chain of the execution context is affected oBlydkg, with

statements (see 12.10) acatch clauses (see 12.14).

During execution, the syntactic productidPrimaryExpression: Identifier is evaluated using the
following algorithm:

1.
2.
3.
4.
5. Return a value of typReference whose base objechidl and whose property name is the

Get the next object in the scope chain. If there isn't one, go to step 5.

Call the [[HasProperty]] method of Result(1), passingltdentifier as the propertmame

If Result(2) istrue, return a value of type Reference whose base object is Result(1) and whose
property name is thilentifier.

Go to step 1.

Identifier.

The result of evaluating an identifier is always a value of type Reference with its member nam
component equal to the identifier string.

27 October 2008

10.1.5

10.1.6

- 46 -

Global Object

There is a uniqueglobal object(15.1), which is created before control enters any execution context.
Initially the global object has the following properties:

Standard builin objects such as Math, String, Date, parselbtc| These havelattributes [(Comment [pL25]: Need a normative list.

[[Enymerable]]:falsg}. : . : : . \ Comment [pL26]: From AWB:

Additional host defined properties. This may include a property whose value is the global object itself it would desirable talso make this [[Writable]]: false, a
for example, in the HTML document object model thandow property of the global object is the [[r'T|'3><'b|e]]1fa|Se but that may be too incompatable of a
global object itself. change.

(Deleted: Built-in
As control enters execution contexts, and as ECMAScript code is executed, additional properties may [Deleted: DontEnum
added to the global object and the initial properties may be changed.

Activation Object

When control enters an execution context for function code lexical block an object called the
activation object is created and associated with the execution context.

Deleted: The

arguments and attributes {[[Writable]]: true, [[Enumerable]] false, [[Configurablg]: false}. The %

Deleted: DontDelete

initial value of this property is the arguments object described below.

Deleted: variable

instantiation. [Deleted: variable

The activation object is purely a specification mechanism. It is impossible for an ECMAScript program
to access the activation object. It can access members of the activation object, but not the activation
object itself.When the call operation is applied to a Reference value whose base object is an activation
object,null is used as ththis value of the call.

10.1.6.1 Usage Subset Restrictions

10.1.7

10.1.8

For functions defined within an execution subset restricted tosthet subset,the activaion

object is only initializedw t h an far gument s o hpernaderntsy fiafr guhme V[Comment[pL27]: From AWB:

its body In which caset he@ar § u ment s o0s intialiped &ithtattributes {[[Writable]]:false, fimentions freelyo needs
[[Enumerable]]:false, [[Configurabld]: false}.

This Comment [pL28]: ALP says: Deviations do82.4 rais
X X i X) X concern over the representation of argumentsitag)r
There is ahis value associated with every active execution context.tfitsevalue depends on the caller ES4 specifies Object.prototype.toString() here (see

and the type of code being executed and is determined when control enters the execution context. T incompatibilities.pd&3.4.

this value @sociated with an execution context is immutable. Comment [pL29]: This change is still creating
LArguments Objecd controversy from the ES4 designers.

When control enters an execution context for function code, an arguments object is ¢seatetbove) Deleted: Object

The value of the internal [[Prototype]] propery the arguments object is the origirfairay prototype Deleted: 2

object, the one that is the initial value®dfray .prototype (see 1¥4.3.1).

The value of the internal [[Class]] property"i®bject" .

A property is created with the nansenstructor and attributes { [[Writable]]true, [[Enumerable]]:
false, [[Configurabld]: true}. The initial value of this property is the standard builtin function
namedObject.A property is created with nantmallee and property attributes f[Writable]]: alsé
[[Enumerable]]: false [[Configurabld]: ffalsel} The initial value of this property is the Function
object being executed. This allows anonymous functions to be recursive.

A property is created with namength and property attributes mEnumerablﬁ: false }. The initial
value of this property is the number of actual parameter values supplied by the caller.

[For each nomegative integerarg, less than the value of tHength property, a property is created
with name ToStringfrg) and property attributes {[[Writable]]: frud, [[Enumerable]]: false
[[Configurablé]: }false[}. The initial value of this property is the value of the corresponding actual
parameter supplied by the caller. The first actual parameter value correspaargs=®, the second i

Comment [pL30]: From AWB:
This appears to be an observable change from ES3. I
OK?

Comment [pL31]: From AWB:
This appears to ben observable change from ES3. Is t
OK?

and initialised as follows: [Deleted: Object

[Deleted: DontEnum
{ Comment [pL32]: From AWB:

Should other attributes also be specified like for callee

Deleted: DontEnum

Comment [pL33]: From AWB:
| assume tht it must be writable for backwards
compatability.

Comment [pL34]: From AWB:
This is a change ES3. Is it OK?

to arg = 1, and so on. In the case wharg is less than the number of foahparameters for the
Function object, this property shares its value with the corresponding property of the activatio[

Deleted: DontEnum

27 October 2008

- 47 -

object. This means that changing this property changes the corresponding property of the activatic

object and vice versa.

10.1.8.1 Usage Subset Restrictions

For functions defined within an execution subset restricted tosthet subset, an argument
object is only createif the function[me ntions fAar bnuitmlmodyt so freely
If a arguments object is createdcallee property is not created.
The arguments object does not share properties with the activation object. Changing the val
arguments object property does not change the value of the corresponding activation object p
and vice versa.

10.2 Entering An Execution Context

Every function and constructor call enters a new execution context, even if a function is calling
recursively.Every evalution of aBlock enters enters a new execution context which is exited when

or more execution contexts.

When control enters an execution context, the scope chain is created and initjafisedpment bindings|
instantiation isperformed, and thehis value is determined.

The initialisation of the scope chain, variable instantiation, and the determination tfishealue depend

on the type of code being entered.

10.2.1

10.2.2

Global Code
The scope chain is created and initialisedaatain the global object and no others.
Environment bindingsnstantiation is performed using the global object asgheironmentobject and

Thethis value is the global object.

Eval Code

When control enters an execution context for eval code, the previous active execution context, referr

to as thecalling context is used to determine the scope chain,gheironmentobject, and thehis value.

If there is no calling context, then initialising the scope chaimyironment bindingsnstantiation, and

determination of thehis value are performed just as for global code.

The scope chain is initialised tmwtain the same objects, in the same order, as the calling context's

scope chain. This includes objects added to the calling context's scope chaodkg with
statements andatch clauses.

Environment bindinggnstantiation is performed using the calling contertisironmenipbject and using

theproperty attributes [[Writable]]: true [[Enumerable]]:true, [[Configurabléd]: true}.

Thethis value is the same as thi@s value of the calling camext.

10.2.2.1 Usage Subset Restrictions

10.2.3

If either the execution context for the eval code or the execution context in which the eval op|
was executed is subset restricted to s$hect subset, the eval code cannot instantiate variab
functions, orconstants in the lexical context of its eval operator.

Instead, a nevenvironmentobject iscreated andhppended t o the head of

chain and thaénvironmentobject is used foenvironment bindinginstantiationof the eval code.

e of
opel

itsel
the

eratc

es,

Function Code
The scope chain is initialised to contain the activation object followed by the objects in the scope chai

stored in the [[Scope]] property of the Function object.

Environment bindingdnstantiation is performed using the atiion object as th@nvironmentobject

The caller provides ththis value,

27 October 2008

Comment [pL35]:

From AWB:

There are twobetter alternatives for defining this
algorithmicly. Either define is parameter proper
a getter/setter pair or provided an alternative

definition of the [[TrhowablePut]] in ternal prope

Comment [pL36]:
fimentions

From AWB:
freel yod defiged.

{

A

[
(

Deleted: , if not caught,

Deleted: variable

Deleted: Variable

Deleted: variable

Deleted: DontDelete

Deleted: variable

Deleted: variable

Deleted: Variable

Deleted: variable

Deleted: empty

Deleted: Variable

Deleted: variable

Deleted: DontDelete

[
[
|

Deleted: If the this value provided by the
caller is not an objectr(cluding the case wh
itisnull), then thethis value is the global
object.

10.2.4

- 48 -

Lexical Block Code

A new activation object is created for use as the environment object. The scope chain is initialised to
contain the new activation object followedbyh e obj ects i n the current exe

Environment bindings instantiation is performed using the new object as the environment object and
using property attributes { [[Writable]]: false, [[Enumerable]]: falseCdhfigurabld]: false }.

Thethis value is the same as tlies value of the previously current context.

11 Expressions

11.1 Primary Expressions
Syntax
PrimaryExpression
this
Identifier
Literal
ArrayLiteral
ObjectLiteral
(Expression
11.1.1 IThe this Keyword\ 77777777777777777 Comment [pL37]: From MSM:
Thethis keyword evaluates to ththis value of the execution context. Fix this according to the Redmond agreement,
11.1.2 Identifier Reference
An Identifier is evaluated using the scoping rules stated in 10.1.4. The result of evaluatidgnaifier
is always a value of type Reference.
11.1.3 Literal Reference
A Literal is evaluated as described in 7.8.
11.1.4 Array Initialiser
An array initialiser is an expression describing the initialisation of an Array object, written in a form of a
literal. It is a list of zero or more expressions, each of which represangsray element, enclosed in
square brackets. The elements need not be literals; they are evaluated each time the array initialiser is
evaluated.
Array elements may be elided at the beginning, middle or end of the element list. Whenever a comma in
the elenent list is not preceded by akssignmentExpressiofi.e., a comma at the beginning or after
another comma), the missing array element contributes to the length of the Array and increases the index
of subsequent elements. Elided array elements are nmeniiehf an element is elided at the end of an
array, that element does not contribute to the length of the lArray Comment [pL38]: From AWB:
This really should be sp
Syntax already.
ArrayLiteral :
[Elisiongy]

[ElementList]
[ElementList Elisiongy]

ElementList

Elision,,; AssignmentExpression
ElementList Elision,,; AssignmentExpression

Elision:

Elision,

Semantics

The productionArrayLiteral : [Elisiony,] is evaluated as follows:

27 October 2008

11.1.5

Syntax

- 49 -

1. Create a newbjectas if by the expressiomew Array() where Array s the standard buiin
constructor withthat name

2. EvaluateElision; if not present, use the numeric value zero.

3. Call the [[Put]] method of Result(1) with argumentgngth " and Result(2).

4. Return Result(1).

The productionArrayLiteral : [ElementList] is evaluated as follows:

1. EvaluateElementist.
2. Return Result(1).

The productionArrayLiteral : [ElementList, Elisiony,] is evaluated as follows:

EvaluateElementList

EvaluateElision; if not present, use the numeric value zero.

Call the [[Get]] method of Result(1) with argumerength .

Call the [[Put]] method of Result(1) with argumentength " and (Result(2)+Result(3)).
Return Result(1).

agrLNE

The productionElementList Elisiony, AssignmentExpressiois evaluated as follows:

1. Create a newbjectas if by the expressiomew Array() where Array is the standard buiin
constructor with that name

EvaluateElision; if not present, use the numeric value zero.

EvaluateAssignmentExpression

Call GetValue(Result(3)).

Call the [[Put]] method of Result(1) with arguments Result(2) and R@3ul

Return Result(1)

coukrnun

The productionElementList ElementList, Elisiony, AssignmentExpressiois evaluated as follows:

EvaluateElementList

EvaluateElision; if not present, use the numeric value zero.
EvaluateAssignmentExpression

Call GetValue(Rsult(3)).

Call the [[Get]] method of Result(1) with argumenength

Call the [[Put]] method of Result(1) with arguments (Result(2)+Result(5)) and Result(4).
Return Result(1)

NogrwNE

The productionElision: , is evaluatedas follows:
1. Return the numeric value

The productionElision: Elision, is evaluated as follows:

EvaluateElision.
2. Return (Result(1)+1).

NOTE:

[Deleted: array

‘ [Deleted: array

The use of [[Put]] rather than [[ThrowablePut]] in this section is intentional as there are no situgtions

where thes¢[Put]] operations should fail.

Object Initialiser

An object initialiser is an expression describing the initialisation of an Object, written in a form

resembling a literal. It is a list of zero or more pairs of property names and associated ematlesed in

curly braces. The values need not be literals; they are evaluated each time the object initialiser

evaluated.

27 October 2008

-50-

ObjectLiteral:

{}
{ PropertyNameAndValueLis}
{ PropertyNameAndValueList }

PropertyNameAndValueList
PropertyAssignment [Deleted: PropertyName AssignmentExpression
PropertyNameAndValueList PropertyAssignment

[Deleted: PropertyName AssignmentExpression

PropertyAssignment
PropertyName AssignmentExpression
get PropertyNamg) { FunctionBody}
setPropertyName PropertySetParameterLi$t{ FunctionBody}

PropertyName
IdentifieName
StringLiteral
NumericLiteral

PropertySetParameterList
Identifier

Semantics
The productionObjectLiteral: { } is evaluated as follows:

1. Create a new object as if by the expressiew Object() whereObject is the standard buin
construcor with that name
2. Return Result(1).

The productior ObjectLiteral: { PropertyNameAndValueLigt and{ PropertyNameAndValueList}
Areevaluated asollows: [Deleted: is

1. EvaluatePropertyNameAndValueList
2. Return Result(1);

The production
PropertyNameAndValueList PropertyAssignment [Deleted: PropertyName AssignmentExpression
is evaluated as follows:

1. Create a new object as if by the expressiew Object() whereObject is the standard buin
construcor with that name

2. EvaluatePropertyAssignment [Deleted: PropertyName
3. Callthe [[DefineOwnProperty]] method of Result(&jth arguments Result(2).name, [Deleted: <#>EvaluateAssignmentExpressiah
Result(2).descriptoffalse, :

Comment [pL39]: Object literal property definition
should never cause [[DefineProperty]] to throw; so, fal
fine here.

4. Return Result(1).

The production
PropertyNameAndValueList PropertyNameAndValueLisiPropertyAssignment
is evaluated as follows:

Deleted: GetValue(Result(3))

Deleted: <#>Call the [[Put]] method of Result(1)
with arguments Result(ZndResult(4)1

1. EvaluatePropertyNameAndValuelList

2. EvaluatePropertyAssignment

3. Callthe [DefineOwnProperty]] method of Result(1) with argumefResult(2).name,
Result(2).descriptorfalse).

4. Return Result(1).

Deleted: PropertyName AssignmentExpression

Deleted: PropertyName

Deleted: <#>EvaluateAssignmentExpressidh
Deleted: GetValue(Result(3))

The productionPropertyAssignment PropertyName AssignmentExpresside evaluated as follows: Deleted: <#>Call the [[Put]] method of Result(1)

with arguments Result(ZndResult(4)1

— N

1. EvaluatePropertyName
2. EvaluateAssignmentExpression

27 October 2008

-51-

3. Call GetValue(Result(2)).

4. Create Property Descriptor{[[Value]]: Result(2), [[Writableftue, [[Enumerable]]itrue,
[[Configurablg]: true}

5. Return Property Identifer (Result(1), Result(4)).

The productionPropertyAssignmentget PropertyNamg) { FunctonBody} is evaluated as follows:

1. EvaluatePropertyName

2. Create a new Function object as specified in 13.2 with an empty parameter list and body specifled b
FunctionBody Pass in the scope chain of the running execution context &ctpe

3. Create Property Descriptor{[[Getter]]: Result(2), [[Enumerabléjje, [[Configurabld]: true}

4. Return Property Identiér (Result(1), Resul8)).

The production PropertyAssignment setPropertyName(PropertySetParameterLigt{ FunctionBody}
is evaluated as follows:

1. EvaluatePropertyName

2. Create a new Function object as specified in 13.2 with parameters specified by
PropertySetParameterListnd body specified bifunctionBody Pass in the scope chain of the
running execution context as tiSeope

3. Create Property Descriptor{[[Setter]]: Result(2), [[Enumerablelle, [[Configurablg]: true}

4. Return Property Identiér (Result(1), Resul®)).

The productionPropertyName IdentifierName is evaluated as follows:

1. Form a string literal containing the same sequence of characters laehigéierName
2. Return Result(1).

The productionPropertyName StringLiteral is evaluated as follows:

1. Return the value of th8tringLiteral

The productionPropertyName NumericLiteral is evaluated as follows:

1. Form the value of th&lumericLiteral
2. Return ToString(Result(1)).

11.1.6 The Grouping Operator
The productiorPrimaryExpression (Expression) is evaluated as follows:

1. EvaluateExpression This may be of type Refence.
2. Return Result(1).

NOTE
This algorithm does not apply GetValue to Result(1). The principal motivation for this is so that
operators such adelete andtypeof may be applied to parenthesised expressions.

11.2 Left-Hand-Side Expressions
Syntax

MemberEpression:
PrimaryExpression
FunctionExpression
MemberExpressioh Expression
MemberExpression IdentifieiName
new MemberExpressiomArguments

NewExpression

MemberExpression
new NewEXxpression

27 October 2008

-52-

CallExpression
MemberExpressiomArguments
CallExpression Arguments
CallExpressiorf Expressior
CallExpression IdentifieiName

Arguments
(ArgumentList)

ArgumentList
AssignmentExpression
ArgumentList AssignmentExpression

LeftHandSideExpressian
NewExpression
CallExpression

11.2.1 Property Accessos
Properties are accessed by name, using either the dot notation:
MemberExpression IdentifieiName
CallExpression IdentifiedName
or the bracket notation:
MemberExpressioh Expressior]
CallExpressiorf Expressior]
The dot notation is explained by thalowing syntactic conversion:

MemberExpression IdentifieiName

is identical in its behaviour to

MemberExpressiop <identifier-namestring>]

and similarly

CallExpression IdentifieiName

is identical in its behaviour to

CallExpressior <identifier-name-string>]

where <identifiernamestring> is a string literal containing the same sequence of characters as the
IdentifierName

The productiorMemberExpression MemberExpressiofi Expression is evaluated as follows:

EvaluateMemberExpressiaon

Call GetValue(Result(1)).

EvaluateExpression

Call GetValue(Result(3)).

Call ToObject(Result(2)).

Call ToString(Result(4)).

Return a value of type Reference whose base object is Result(5) and whose property name is
Result(6).

NogrwnhpE

The productionCallExpression: CallExpression[Expression] is evaluated in exactly the same
manner, except that the contain@dllExpressions evaluated in step 1.

27 October 2008

11.2.2

11.2.3

11.2.4

- 53-

The new Operator
The productiorNewExpression new NewExpressioims evaluated as follows:

. EvaluateNewExpression

. Call GetValue(Result(1)).

. If Type(Result(2)) is not Object, throwTypeError exception.

. If Result(2) does not implement the internal [[Construct]] method, thrwpeError exception.

. Call the [[Construct]] method on Result(2), providing no argumentd (than empty list of
arguments).

6. Return Result(5).

O WOWNPEFP

The productioMemberExpressionnew MemberExpression Argumentsevaluated as follows:

EvaluateMemberExpressian

Call GetValue(Result(1)).

EvaluateArguments producing an internal list of argumevdlues (11.2.4).

If Type(Result(2)) is not Object, throwTypeError exception.

If Result(2) does not implement the internal [[Construct]] method, thr@wpeError exception.
Call the [[Construct]] method on Result(2), providing the list Result(3) aatfement values.
Return Result(6).

NogoswWNE

Function Calls
The productiorCallExpression MemberExpressioArgumentss evaluated as follows:

. EvaluateMemberExpressian

. Call GetValue(Result(1)). |

. EvaluateArguments producing an internal list of argument vab (see 11.2.4).

. Jf Type(Resultp)) is not Object, throw dypeError exception. ‘ [

. If IsCallableResultQ)) is false, throw aTypeError exception. [

. If Type(Result(1)) is Reference, Result(6) is GetBase(Result(1)). Otherwise, Resuh(#).is

. If Result(6) is an activation object, Result(7)nigll. Otherwise, Result(7) is the same as Result(6). [

. Call the [[Call]] method on Resuft}, providing Resul{7) as thethis value and providing the list ‘ { Deleted: does not implement the internal
(
(

Deleted: <#>Call GetValue(Result(1)].

Deleted: 3

Deleted: 3

O~NO O~ WN R

,,,,,,,, [[Call]] method

9. Return Result(8). Deleted: 3

The productionCallExpression: CallExpression Argumentss evaluated in exactly the same manner, Deleted: 2

except that the containgdlallExpressions evaluated in step 1.

NOTE
Result(8) will never be of type Reference if Reg)lig a native ECMAScript object. Whether callingla [peleted: 3
host object can return a value of type Reference is implementdépendent.

Comment [pL40]: We wanted to remove this
Argument Li p055|b|lltly put have not QOne s0 because this cc

gument ,8ts X i i break bridging to VBScript. Cannot afford to do
The evaluation on argument list produces an internal list of values (see 8.8). as VBScript is still used in the intranet.

The productioPArguments () is evaluated as follows:

1. Return an empty internal list of values.

The productioPArguments (ArgumentList) is evaluated as follows:

1. EvaluateArgumentList
2. Return Result(1).

The productioPArgumentList AssignmentExpressioms evaluated as follows:

1. EvaluateAssignmentExpression
2. Call GetValue(Result(1)).
3. Return an internal list whose sole item is Result(2).

The productioPArgumentList ArgumentList, AssignmentExpressiois evaluated as follows:

27 October 2008

- 54 -

. EvaluateArgumentList

. EvaluateAssignmentExpression

. Call GetValue(Result(2)).

. Return an internal list whose length is one greater than the length of Result(1) and whose items are
the items of Result(1), in der, followed at the end by Result(3), which is the last item of the new
list.

A WNPE

11.2.5 Function Expressions
The productioriMemberExpression FunctionExpressioims evaluated as follows:

1. EvaluateFunctionExpression
2. Return Result(1).

11.3 Postfix Expressions
Syntax

PostfixExpression
LeftHandSideExpression
LeftHandSideExpressiomo LineTerminatotere] ++
LeftHandSideExpressiofno LineTerminatothere] --

11.3.1 Postfix Increment Operator

The productionPostfixExpression LeftHandSideExpressiofno LineTeminator here] ++ is evaluated as
follows:

1. Evaluate LeftHandSideExpression.
2. Call GetValue(Result(1)).
3. If Type(ResultQ)) is Decimal, then
a. Perform IEEE 7542008Decimaladditionwith arguments Result(2) and the decimal value
Im.
b. Call PutValue(Result(1), Result(3dglse).
c. Return Result(1).

4. Call ToNumber(Result(2)).
5. Add the valuel to Result@), using the same rules as for th@perator (see 11.6.3). [Deleted: 3
6. Call PutValue(Result(1), Resy#y, false). [Deleted: 4
7. Return Resulf). [T
eleted:
11.3.1.1 UsageSubset Restrictions

When a postfix increment operator occurs within an execution context that is subset restricted to the
strict subset, itsLeftHandSidemust not be a referencéo a property with the attribute value
{[[Writable]]: false} nor to a norexistent property of an object whose [[Extensible]] property has the
valuefalse In these cases BypeError exceptionis thrown. This is accomplished by replacing step

3b and 6of the aboe algorithm with the following:

3b. Call PutValue(Result(1), Result(3djue).
6. Call PutValuéResult(1), Resulf), true).

11.3.2 Postfix Decrement Operator

The productionPostfixExpression LeftHandSideExpressionno LineTerminatorhere] -- is evaluated as
follows:

1. EvaluateLeftHandSideExpression.
2. Call Getvalue(Result(1)).
3. If TypeResult)) is Decimal, then
a. Perform IEEE 754008Decimal subtractctionwith arguments Result(2) and the decimal
value 1m.
b. Call PutValue(Result(1), Result(3&glse).
c. Return Result(1).
4. Call ToNumber(Result(2)).

5. Subtract the valué from Resultf), using the same rules as for th@perator (11.6.3). [Deleted: 3

27 October 2008

- 55-

6. Call PutValue(Result(1), Resy#, false).
7. Return Resulf).

11.3.2.1 Usage Subset Restrictions
The same restrictions apply as specifiedéttion 11.3.1.1 for the postfix increment operator.
11.4
Syntax

Unary Operators

UnaryExpression
PostfixExpression
delete UnaryExpression
void UnaryExpression
typeof UnaryExpression
++ UnaryExpression
-- UnaryExpression
+ UnaryExpression
- UnaryExpressio
~ UnaryExpression
I UnaryExpression

11.4.1 Thedelete Operator

The productioJnaryExpression delete UnaryExpressions evaluated as follows:

EvaluateUnaryExpression

If Type(Result(1)) is not Reference, returoe.

Call GetBase(Result(1)).

Call GetRopertyName(Result(1)).

Call the [[Delete]] method on Result(3), providifigesult(4) false) as the arguments
Return Result(5).

ouhwNE

11.4.1.1 Usage Subset Restrictions

When adelete operatoroccurs within an execution context that is subset restricted tottfss
subset, itsUnaryExpres®n is further limited to being aMemberExpressianin addition, if the
property to be deleted is has the attribut¢g]€onfigurabld]:false }, a TypeError exception $
thrown. This is accomplished by replacing step 5 of the above algorithm with the following:

5. Call the [[Delete]] method on Result(3), providing (Resultt4)e) as the arguments.

11.4.2 Thevoid Operator

The productiorJnaryExpression void UnaryExpressions evaluated as follows:

1. EvaluateUnaryExpression
2. Call GetValue(Result(1)).
3. Returnundefined.

11.4.3

The typeof Operator

The productiorJnaryExpression typeof UnaryExpressions evaluated as follows:

EvaluateUnaryExpression

If Type(Reslt(1)) is not Reference, go to step 4.

If GetBase(Result(1)) iaull, return"undefined"

Call GetValue(Result(1)).

Return a string determined by Type(Result(4)) according to the following table:

grwNE

27 October 2008

[Deleted: 4

[Deleted: 3

[Deleted:

as the property name to delete

11.4.4

- 56 -

Type Result
Undefined "undefined"
Null "object”
Boolean "boolean"
Number "number"”
Decimal "decimal”
String "string"
Object (native and "object”
doesndt

[[Calll])

Object (native and "function”

implement

s [[Call]])

Object (ho

st) Implementatiordependent

Prefix Increment Operator

The productioJnaryExpression ++ UnaryExpressions evaluated as follows:

1.
2.
3.

No oA

Evaluate UnaryExpression.
Call GetValue(Result(1)).
If TypeResult(2) is Decimal, then

a.

Perform IEEE 7542008Decimal addion with arguments Result(2) and the decimal value

im.

b. Call PutValue(Result(1), Result(3&glse).

C.

Return Result(1).

Call ToNumber(Result(2)).

Return Resulff).

11.4.4.1 UsageSubset Restrictions

11.4.5

The same restrictions apply as specified in section 11.3.1.1 for the postfix increment operator.

Prefix Decrement Operator

The productiolJnaryExpression --

1.
2.
3.

Noos

Evaluat

e UnaryExpression.

Call GetValue(Result(1)).
If TypeResult(2) is Decimal, then

a.

PerformlEEE 7542008 Decimal subtradon with arguments Result(2) and the decimal

value 1m.

UnaryExpressioris evaluated as follows:

b. Call PutvValue(Result(1), Result(3&glse).

C.

Return

Return Result(3a).

Call ToNumber(Result(2)).
Subtract tle valuel from Result#), using the same rules as for theperator (see 11.6.3).
Call PutValue(Result(1), Resyfly, false).

Resulff).

11.4.5.1 Usage Subset Restrictions

11.4.6

The same restrictions apply as specified in section 11.3.1.1 for the postfix increment operator.

Unary + Operator
The unary + operator converts its operand to Number type.

The productionJnaryExpression + UnaryExpressions evaluated as follows:
1.

Evaluat

e UnaryExpression.

2. Call GetValue(Result(1)).

3.

If TypeResult(2) is Decimal, then

27 October 2008

Deleted: 3

Deleted: 4

Deleted: 4

Deleted: 3

Deleted: 4

Deleted: 4

4.
5.

11.4.7 U

The unary- operator converts its operand to Number type and then negates it. Note that neg@ating

-57-

a. Return Result(2).
Call ToNumber(Result(2)).
Return Resuly).

nary - Operator

produces-0, and negating-0 producestO.

The productiorlJnaryExpression - UnaryExpressions evaluated as follows:

1.
2.
3.

Noa s

11.48 B

Evaluate UnaryExpression.

Call GetValue(Result(3)

If TypeResult(2) is Decimal, then
a. PerformlEEE 7542008 Decimal negdbn with argument Result(2).
b. Return Result(3a).

Call ToNumber(Result(2)).

If Result{) is NaN, returnNaN.

Return Resulf).

itwise NOT Operator (~)

The productiorlUnaryExpression ~ UnaryExpressions evaluated as follows:

arobPE

EvaluateUnaryExpression

Call GetValue(Result(1)).

Call ToInt32(Result(2)).

Apply bitwise complement to Resu®. The result is a signed 31t integer.
Return Result(4).

11.4.9 Logical NOT Operator (!)
The productioJnaryExpression | UnaryExpressions evaluated as follows:

grobE

EvaluateUnaryExpression
Call GetValue(Result(1)).
Call ToBoolean(Result(2)).

If Reault(3) istrue, returnfalse.
Returntrue.

11.5 Multiplicative Operators

Syntax

MultiplicativeExpression
UnaryExpression
MultiplicativeExpressiorf UnaryExpression
MultiplicativeExpressiort UnaryExpression
MultiplicativeExpressiofeUnaryExpression

Semantics

The productionMultiplicativeExpression MultiplicativeExpression @ UnaryExpressiowhere @ stands

for one of the operators in the above definitions, is evaluated as follows:

agrwbdPE

Evaluate MultiplicativeExpression.

Call GetValue(Result(1)).

EvaluateUnaryExpression.

Call GetValue(Result(3)).

If TypeResult(2) is Decimal andTypeResult(4) is Decimal, then

a. Performthe corresponding Decimal method (muligation, division, remainder) with

arguments RBsult@) and Resuly).
b. Return Result(5a).
Call ToNumber(Result(2)).

27 October 2008

Deleted: 3

Deleted: 3

Deleted: 3

Deleted: 5

- 58 -

7. Call ToNumber(Result(4)).

8. Apply the specified operation (*, /, or %) to Resf)téind Resulf{). See the notes below (11.5.1, [Deleted: 5
11.5.2, 11.5.3 -
9. Return Resulg). [Deleted: 6

[Deleted: 7

11.5.1 Applying the * Operator

The * operator performs multiplicationproducing the product of its operands. Multiplication is
commutative. Multiplication is not always associative in ECMAScript, because of finite precision.

The result of a floatingoint multiplication is governed by the rules of IEEE 754 doyiecision
arithmetic:

If either operand iNaN, the result ifNaN.

The sign of the result is positive if both operands have the same sign, negative if the operands have
different signs.

Multiplication of an infinity by a zero results iNaN.

Multiplication of aninfinity by an infinity results in an infinity. The sign is determined by the rule
already stated above.

Multiplication of an infinity by a finite norzero value results in a signed infinity. The sign is determined
by the rule already stated above.

In the remaining cases, where neither an infinity or NaN is involved, the product is computed and
rounded to the nearest representable value using IEEE 754-tourghrest mode. If the magnitude is
too large to represent, the result is then an infinity of appao® sign. If the magnitude is too small
to represent, the result is then a zero of appropriate sign. The ECMAScript language requires support
of gradual underflow as defined by IEEE 754.

11.5.2 Applying the / Operator

The / operator performs division, pducing the quotient of its operands. The left operand is the
dividend and the right operand is the divisor. ECMAScript does not perform integer division. The
operands and result of all division operations are dopbéeision floatingpoint numbers. Theesult of
division is determined by the specification of IEEE 754 arithmetic:

If either operand idNaN, the result idNaN.

The sign of the result is positive if both operands have the same sign, negative if the operands have
different signs.

Division of aninfinity by an infinity results inNaN.

Division of an infinity by a zero results in an infinity. The sign is determined by the rule already stated
above.

Division of an infinity by a norzero finite value results in a signed infinity. The sign is deteeahihy
the rule already stated above.

Division of a finite value by an infinity results in zero. The sign is determined by the rule already stated
above.

Division of a zero by a zero results NaN; division of zero by any other finite value results in zero
with the sign determined by the rule already stated above.

Division of a nonzero finite value by a zero results in a signed infinity. The sign is determined by the
rule already stated above.

In the remaining cases, where neither an infinity, nor a zeows,NaN is involved, the quotient is
computed and rounded to the nearest representable value using IEEE 754c-oeadest mode. If
the magnitude is too large to represent, the operation overflows; the result is then an infinity of
appropriate sign. Ithe magnitude is too small to represent, the operation underflows and the result is
a zero of the appropriate sign. The ECMAScript language requires support of gradual underflow as
defined by IEEE 754.

11.5.3 Applying the %Operator

The % operator yields e remainder of its operands from an implied division; the left operand is the
dividend and the right operand is the divisor.

NOTE

27 October 2008

11.6
Syntax

-59-

In C and C++, the remainder operator accepts only integral operands; in ECMAScript, it also accepts
floating-point operands.

The result of a floatingoint remainder operation as computed by ¥heperator is not the same as the
Airemainderodo operation defined by | EEE 754. The
remainder from a rounding division, not a truncating divisiand so its behaviour is not analogous to
that of the usual integer remainder operator. Instead the ECMAScript language défomefoating

point operations to behave in a manner analogous to that of the Java integer remainder operator; this n
be compmred with the C library function fmod.

The result of a ECMAScript floatingoint remainder operation is determined by the rules of IEEE

arithmetic:

If either operand iNaN, the result ifNaN.

The sign of the result equals the sign of the dividend.

If the dividend is an infinity, or the divisor is a zero, or both, the resutai.

If the dividend is finite and the divisor is an infinity, the result equals the dividend.

If the dividend is a zero and the divisor is finite, the result is the santeeatitidend.

In the remaining cases, where neither an infinity, nor a zero,Nat is involved, the floatingpoint
remainder r from a dividend n and a divisor d is defined by the mathematical relation-r(¢ hq)
where g is an integer that is negatioely if n/d is negative and positive only if n/d is positive, and

whose magnitude is as large as possible without exceeding the magnitude of the true mathematis
quotient of n and d.

Additive Operators

AdditiveExpression
MultiplicativeExpression
AdditiveExpressior MultiplicativeExpression
AdditiveExpression MultiplicativeExpression

11.6.1

The Addition operator (+)
The addition operator either performs string concatenation or numeric addition.

The productionAdditiveExpression AdditiveExpression+ MultiplicativeExpressionis evaluated as
follows:

1. Evaluate AdditiveExpression.
2. Call GetValue(Result(1)).
3. Evaluate MultiplicativeExpression.
4. Call GetValue(Result(3)).
5. If TypeResult(2) is Decimal andTypeResult(4) is Decimal, then
a. PerformlEEE 7542008Decimal addion with argumentfResult@) and Resuly). Deleted: 5
b. Return Result(5a). Deleted: 6
6. cal ToPr!m!t!ve(Result(Z)). Deleted: go to step 12. (Note that this ste
7. Call Toprlmltlve(ReSUIt.(4))' . . differsfron?step 3 ig the comparison algori
8. If Type(Resultf)) is String or Type(Resulf}) is String,then for the relational operators, by using or ins

a. Call ToString(Result(6)).

of and.)

b. Call ToString(Result(7)).

Deleted:

c. Concatenate Result(8a) followed by Result(8b).
d. Return Result(8c).

Deleted:

9. Call ToNumber(Resulg)).

Deleted:

10. Call ToNumber(Resulf)).
11. Apply the addition operation to Resi#j(and Resul{{0). See the note below (11.6.3).

O ||| o

Deleted:

e A A Y e

Deleted: 10

12. Return Resulf(1).

NOTE
No hint is provided in the calls to ToPrimitive in steps 5 and 6. All native ECMAScript objects excep
Date objects handle the absence of a hint as if the hint Number were given; Date objects handle tl

Deleted: <#>Call ToString(Result(5)J
<#>Call ToString(Result(6).
<#>Concatenate Result(12) followed by
Result(13)f

<#>Return Result(14y.

27 October 2008

- 60 -

absence of a hint as if the hint String were givdast objects may handle the absence of a hint in some
other manner.

11.6.2 The Subtraction Operator (-)

The productionAdditiveExpression AdditiveExpression- MultiplicativeExpressionis evaluated as
follows:

Evaluate AdditiveExpression.

Call GetValueResult(1)).

Evaluate MultiplicativeExpression.

Call GetValue(Result(3)).

If TypeResult(2) is Decimal andTypeResult(4) is Decimal, then
a. Perform IEEE 7542008Decimal subtradon with argumentfResult(2) and ResuHj.
b. Return Result(5b).

Call ToNumber(Result(2)).

Call ToNumber(Result(4)).

aghrwbdpE

Apply the subtraction operation to Resgi)tand Resulf{). See the note below (11.6.3). Deleted: 5

©oNo

ReturnResulg. % Deleted: 6
(

11.6.3 Applying the Additive Operators (+, -) to Numbers Deleted: 7

The + operator performs addition when djgg to two operands of numeric type, producing the sum of
the operands. The operator performs subtraction, producing the difference of two numeric operands.

Addition is a commutative operation, but not always associative.
The result of an addition is tekmined using the rules of IEEE 754 douplescision arithmetic:

If either operand idNaN, the result isNaN.

The sum of two infinities of opposite signi&N.

The sum of two infinities of the same sign is the infinity of that sign.

The sum of an infinit and a finite value is equal to the infinite operand.

The sum of two negative zeros+€. The sum of two positive zeros, or of two zeros of opposite sign, is
+0.

The sum of a zero and a nonzero finite value is equal to the nonzero operand.

The sum of twanonzero finite values of the same magnitude and opposite si is

In the remaining cases, where neither an infinity, nor a zero, nor NaN is involved, and the operands have
the same sign or have different magnitudes, the sum is computed and roundlee nearest
representable value using IEEE 754 rotneéhearest mode. If the magnitude is too large to represent,
the operation overflows and the result is then an infinity of appropriate sign. The ECMAScript
language requires support of gradual underfesadefined by IEEE 754.

The - operator performs subtraction when applied to two operands of numeric type, producing the
difference of its operands; the left operand is the minuend and the right operand is the subtrahend. Given
numeric operanda andb, it is always the case that b produces the same resultas(i b) .
11.7 Bitwise Shift Operators
Syntax

ShiftExpression
AdditiveExpression
ShiftExpressior< AdditiveExpression
ShiftExpressior> AdditiveExpression
ShiftExpressiomr>> AdditiveExpression

11.7.1 The Left Shift Operator (<<)
Performs a bitwise left shift operation on the left operand by the amount specified by the right operand.
The productiorShiftExpression ShiftExpressiork< AdditiveExpressiofs evaluated as follows:

1. EvaluateShiftExpression

27 October 2008

OCNoO~WN

-61-

Call GetValue(Result(1)).

EvaluateAdditiveExpression

Call GetValue(Result(3)).

Call ToInt32(Result(2)).

Call ToUint32(Result(4)).

Mask out all but the least significant 5 bits of Result(6), that is, compute Result(6) & Ox1F.
Left shift Result(3 by Result(7) bits. The result is a signed 32 bit integer.

Return Result(8).

11.7.2 The Signed Right Shift Operator (>>)

Performs a sigifilling bitwise right shift operation on the left operand by the amount specified by the
right operand.

The productdn ShiftExpression ShiftExpressior> AdditiveExpressiolis evaluated as follows:

NoOh~wNE

9.

EvaluateShiftExpression

Call GetValue(Result(1)).

EvaluateAdditiveExpression

Call GetValue(Result(3)).

Call ToInt32(Result(2)).

Call ToUint32(Result(4)).

Mask out allbut the least significant 5 bits of Result(6), that is, compute Result(6) & Ox1F.
Perform sigrextending right shift of Result(5) by Result(7) bits. The most significant bit is
propagated. The result is a signed 32 bit integer.

Return Result(8).

11.7.3 The Unsigned Right Shift Operator (>>>)

Performs a zerdilling bitwise right shift operation on the left operand by the amount specified by the
right operand.

The productiorShiftExpression ShiftExpressiorr>> AdditiveExpressioiis evaluated as follows:

SRR U1~ W N

©

EvaluateShiftExpression

Call GetValue(Result(1)).

EvaluateAdditiveExpression

Call GetValue(Result(3)).

Call ToUint32(Result(2)).

Call ToUint32(Result(4)).

Mask out all but the least significant 5 bits of Result(6), that is, compute Result(6) & Ox1F.
Peaform zerofilling right shift of Result(5) by Result(7) bits. Vacated bits are filled with zero. The
result is an unsigned 32 bit integer.

Return Result(8).

11.8 Relational Operators |

Syntax

RelationalExpression
ShiftExpression
RelationalExpressior ShiftExpression
RelationalExpressior ShiftExpression
RelationalExpressior= ShiftExpression
RelationalExpressior= ShiftExpression
RelationalExpressiomstanceof ShiftExpression
RelationalExpressiom ShiftExpression

27 October 2008

[

Deleted:

114

-62-

RelationalExpressionNoin
ShifExpression
RelationalExpressionNola ShiftExpression
RelationalExpressionNoln ShiftExpression
RelationalExpressionNolx= ShiftExpression
RelationalExpressionNo= ShiftExpression
RelationalExpressionNolimstanceof ShiftExpression

NOTE
The 'Noln' varants are needed to avoid confusing tine operator in a relational expression with thie
operator in afor statement.

Semantics

The result of evaluating a relational operator is always of type Boolean, reflecting whether the relationship
named by the opator holds between its two operands.

The RelationalExpressionNolproductions are evaluated in the same manner afkéhationalExpression
productions except that the contain®elationalExpressionNolris evaluated instead of the contained
RelationalExpresion

11.8.1 The Lessthan Operator (<)
The productiorRelationalExpression RelationalExpressior ShiftExpressions evaluated as follows:

Evaluate RelationalExpression.
Call GetValue(Result(1)).
Evaluate ShiftExpression.
Call GetValue(Result(3)).
If TypeResult(2) is Decimal andType(Result(4) is Decimal, then
a. If IEEE 7542008DecimalisNaN(Result(2) or isNaNResult(4), returnfalse.
b. Call thelEEE 7542008Decimal compar@uietLessmethod with arguments ResWj(and
Resultd).
c. ReturnResult(®).
6. Perform the comparison Result(2) < Result(4). (see 11.8.5)

aghrwbpE

7. If Result() isundefined, returnfalse. Otherwise, return Resyfy. [Deleted: 5

11.8.2 The Greater-than Operator (>) [Deleted: 5

The productiorRelationalExpression RelationalExpressior ShiftExpressions evaluated as follows:

Evaluate RelationalExpression.
Call GetValue(Result(1)).
Evaluate ShiftExpression.
Call GetValue(Result(3)).
If TypeResult(2) is Decimal andTypeResult(4) is Decimal, then
a. If IEEE 7542008DecimalisNaN(Result(2) or isNaN(Result(4)yeturnfalse.
b. Call thelEEE 7542008Decimal compar@uietGreatemethod witharguments ResulRj
and Resuly).
c. ReturnResult(®).
6. Perform the comparison Result(4) < Result@)h LeftFirstequal tofalse. (see 11.8.5).

arwhkE

7. If Resultf) is undefined, returnfalse. Otherwise, return Resufy. [Deleted: 5

11.8.3 The Lessthan-or-equal Operator (<=) [Deleted: 5

The productiorRelationalExpression RelationalExpressior= ShiftExpressions evaluated as follows:

Evaluate RelationalExpression.
Call GetValue(Rsult(1)).
Evaluate ShiftExpression.
Call GetValue(Result(3)).
If TypeResult(2) is Decimal andType(Result(4) is Decimal, then
a. If IEEE 7542008DecimalisNaN(Result(2)) or isNaN(Result(4)) retufalse.

aghwbhpeE

27 October 2008

11.8.4

11.8.5

- 63 -

b. Call thelEEE 7542008Decimal compar@uietLessEquamethod with arguments Resu)(
and Resuly).
c. ReturnResult(®).
6. Perform the comparison Result(4) < Result{@)h LeftFirst equal tofalse. (see 11.8.5).
7. If Result) is true or undefined, returnfalse. Otherwise, returitrue.

The Greater-than-or-equal Operator (>=)
The productiorRelationalExpression RelationalExpressior= ShiftExpressions evaluated as follows:

Evaluate RelationalExpression.
Call GetValue(Result(1)).
Evaluate ShiftExpression.
Call GetValue(Result(3)).
If Type(Result(2) is Decimal andType(Result(4) is Decimal, tfen
a. If IEEE 7542008DecimalisNaN(Result(2)) or isNaN(Result(4)) retufalse.
b. Call thelEEE 7542008Decimal compar@uietGreaterEquahethod with arguments
Result@) and Resuly).
c. ReturnResult(®).
6. Perform the comparison Result(2) < Result(4). (see 11.8.5).
7. If Result@®) istrue or undefined, returnfalse. Otherwise, returtirue. |

agprwhE

The Abstract Relational Comparison Algorithm

The comparisox <y, wherex andy are values, producedsue, false, or undefined (which indicates that
at least one operand MaN). In addition tox andy the algorithm takes a booledlag named_eftFirst as
a parameter. The flag is used to control the order in which operations with potentially visibidfsicte
are performed upom andy. It is necessary because ECMAScript specifies left to right evaluatiof
expressions. The default value loéftFirst is true and indicates that the paramenter corresponds to g
expression that occurs to the left of h@armmeters corresponding expressitihLeftFirst is false, the
reverse is the case and operations must be performedydpsfiorex. Such a comparison is performed §
follows:

1. If the LeftFirstflag is true, then
a. Letpxbe the result of callingoPrimitive, hint Number).
b. JLetpybe the result of calling oPrimitive(y, hint Number).

2. Else the order of evaluation needs to be reversed to preserve left to right evaluation
a. Letpybe the result of calling ToPrimitivg(hint Number).

n

of

{

Deleted:

5

Deleted:

5

Deleted: Call

Deleted: Call

Comment [pL41]: See Deviations doc item 2.

Deleted:

Result(1)

Deleted:

and

Deleted:

Result(2)

Deleted:

Call

Deleted:

Result(1)

Deleted:

Call ToNumber

b. Letpxbe theresult of calling ToPrimitive{, hint Number). ’ [Deleted: Result(2)
3. If Type(p) is Stringbf Type(oy) is String, go to step 16. (Note that this step differs from step 7 in| | |/ [Deleted: Resul(4)
the algorithm for the addition operatérin usingandinstead ofor.) [Deleted: Result(5)
4. Jetnxbe the result of callingoNumberpx). Because opx andpy are primitive values evaluation -
order is not important. [Deleted: Result(4)
5. Let ny be the result of callinfoNumbe(py). { Deleted: Result(5)
6. If nxis NaN, returnundefined. [Deleted: Result(4)
7. If nyis NaN, returnundefined. -
8. If hxandpny are the same number value, retfafse [Deleted: ResulS)
9. If pxis +0 andpyis =0, returnfalse. , (_ Deleted: Resuli(9
10. If pxis—0 andnyis +0, returnfalse. : [Deleted: Result(5)
11. h; nxis +oo, returnfalse. [Deleted: Result(4)
12. If ny,is +, returntrue.] -
13. If ny,is —o, returnfalse. [Deleted: Result(S)
14. If nxis —oo, returntrue. (Deleted: Resul(s)
15. If the mathematical value gfxis less than the mathematical valuengfd note that these [Deleted: Result(4)
mathematical values are both finite and not both @e®turntrue. Otherwise, returfalse. [Deleted: Result(4)
16. If pyis a prefix ofpx, returnfalse. (A string valuep is a prefix of string valug if g can be the result | :
of concatenating and some other string Note that any string is a prefix of itself, because r may be (_ Deleted: Resul(s)
the empty string.) ~ [Deleted: Resul(2)
17. If pxis a prefix ofpy, returntrue. | [Deleted: Result(1)
AN [Deleted: Result(1)
[Deleted: Result(2)

27 October 2008

11.8.6

11.8.7

11.9
Syntax

- 64 -

. Let k be the smallest nonnegative integer such that the character at p&sitititin px is different

from the character at positidowithin py. (There must be suchka for neither string is a prefix of the
other.)

. Let mbe the integer that is the code point value for the character at polsitiiihin px.
. Let n be the integer that is the code point value for the character at polsitiihin py.
. If m<n, returntrue. Otherwise, returfialse.

NOTE

The comparison of strings uses a simple lexicographic ordering on sequences of code point value values.

Deleted:

Result(1)

Deleted:

Result(2)

Deleted:

Result(1)

Deleted:

Result(2)

There is no attempt to use the more complex, semantically oriented definitions of character or string
equality and collating order defined in the Unicode specification. Therefore strings that are canonically

equal according to the Unicode standard could tastunequal. In effect this algorithm assumes that

both strings are already in normalised form.

The instanceof operator

The productionRelationalExpressianRelationalExpressiomnstanceof ShiftExpressions evaluated
as follows:

ONoGOrWNE

EvaluateRelationalExpression

Call GetValue(Result(1)).

EvaluateShiftExpression

Call GetValue(Result(3)).

If Result(4) is not an object, throwTeypeError exception.

If Result(4) does not have a [[HasInstance]] method, thraweError exception.
Call the [[Hadnstance]] method of Result(4) with parameter Result(2).

Return Result(7).

The in operator
The productiorRelationalExpression RelationalExpressioin ShiftExpressions evaluated as follows:

ONoOGO~WNE

EvaluateRelationalExpression

Call GetValue(Result(1)).

EvaluateShiftExpression

Call GetValue(Result(3)).

If Result(4) is not an object, throwTeypeError exception.

Call ToString(Result(2)).

Call the [[HasProperty]] method of Result(4) with parameter Result(6).
Return Result(7).

Equality Operators

EqualityExpression
RelationalExpression
EqualityExpressior= RelationalExpression
EqualityExpressioft= RelationalExpression
EqualityExpressior== RelationalExpression
EqualityExpressiot== RelationalExpression

EqualityExpresionNoln:
RelationalExpressionNoln
EqualityExpressionNols= RelationalExpressionNoln
EqualityExpressionNoli+ RelationalExpressionNoln
EqualityExpressionNolr== RelationalExpressionNoln
EqualityExpressionNolbF= RelationalExpressionNoln

Semantics

27 October 2008

Theresult of evaluating an equality operator is always of type Boolean, reflecting whether the relationship
named by the operator holds between its two operands.

11.9.1

11.9.2

11.9.3

- 65 -

The EqualityExpressionNolmproductions are evaluated in the same manner asEthelityExpression
productions except that the containgdualityExpressionNolandRelationalExpressionNolare evaluated
instead of the containdgqualityExpressiormndRelationalExpressionrespectively.

The Equals Operator (==

The production EqualityExpression: EqualityExpression== RelationalExpressionis evaluated as
follows:

1. EvaluateEqualityExpression

Call GetValue(Result(1)).

EvaluateRelationalExpression

Call GetValue(Result(3)).

Perform the comparison Result(4) == Result(2). (see 11.9.3).
Return Resu(5).

oukrunN

The Doesnot-equals Operator (!=)

The production EqualityExpression: EqualityExpression!= RelationalExpressionis evaluated as
follows:

EvaluateEqualityExpression

Call GetValue(Result(1)).

EvaluateRelationalExpression

Call GetValue(Result(3)).

Perform the comparison Result(4) == Result(2). (see 11.9.3).
If Result(5) istrue, returnfalse. Otherwise, returitrue.

ouhrhwhE

The Abstract Equality Comparison Algorithm

The comparisonx ==y, where x and y are values, producesue or false. Such a comparison is
performed as follows:

If Type(x) is Undefined, returtrue.
If Type(x) is Null, returntrue.
If Type(x) is Decimalor Typefy) is Decimal then

a. If IEEE 7542008DecimalisNaN() or isNaNf) returnfalse.

b. Return the result ofEEE 7542008 Decimal.compar@uietEqua(x, Y).
5. If Type(x) is not Number, go to stgp2
6. If xis NaN, returnfalse.
7
8

PR

If yis NaN, returnfalse.
. If xis the same number value gsreturntrue.

9. If xis +0andy is -0, returntrue.

10. If xis—0 andy is +0, returntrue.

11. Returnfalse.

12. If Type(x) is String, then returtrue if x andy are exactly the same sequence of characters (same
length and same characters in corresponding positions). Otherwise fiadte

13. If Type(x) is Boolean, returtrue if x andy are bothtrue or bothfalse. Otherwise, returiialse.

14. Returntrue if x andy refer to the same objedDtherwise, returfialse. | {

15. If xis null andy is undefined, returntrue.
16. If xis undefined andy is null, returntrue.
17. If Type(x) is Number and Typey) is String, |
return the result of the comparisarFr= ToNumbery).
18. If Type(x) is String and Typs/) is Number,
return the result of theomparison ToNumbexj ==y.
19. If Type(x) is Decimaland Typey) is Decimal then
a. If IEEE 7542008 DecimaisNaN() or isNaNf) returnfalse.
b. Return the result of IEEE 752008 Decimal.compareQuietEqual().
20. If Type(x) is Boolean, return the result of tbtemparison ToNumbexj ==y.
21. If Type(y) is Boolean, return the result of the comparigor= ToNumbery).

27 October 2008

Deleted: 14

Deleted: 11

Deleted: or if they refer to objects joined
each other (see 13.1.2)

11.9.4

11.9.5

11.9.6

- 66 -

22. If Type(x) is either String or Number and Typg(s Object,
return the result of the comparis@rr= ToPrimitivefy).

23. If Type(x) is Object and Typej] is either String or Number,
return the result of the comparison ToPrimitije€=y.

24. Returnfalse.

NOTE

Given the above definition of equality:

String comparison can be forced BY:+a==""+b

Numeric comparison can be forced lay:- 0 == - 0.

Boolean comparison can be forced dg: == b

The equality operators maintain the following invariants:

Al= Bis equivalent td(A ==B).

A== Bis equivalent td == A, except in the order of evaluation Afand B.

The equality operator is not always transitive. For example, there might be two distinct String objects,
each representing the same string value; each String object would be considered equal to the string
value by the== operator, but the two String objectvould not be equal to each other.

Comparison of strings uses a simple equality test on sequences of code point value values. There is no
attempt to use the more complex, semantically oriented definitions of character or string equality and
collating orde defined in the Unicode 2.0 specification. Therefore strings that are canonically equal
according to the Unicode standard could test as unequal. In effect this algorithm assumes that both
strings are already in normalised form.

The Strict Equals Operator (===)

The productionEqualityExpression: EqualityExpression=== RelationalExpressions evaluated as
follows:

EvaluateEqualityExpression

Call GetValue(Result(1)).

EvaluateRelationalExpression

Call GetValue(Result(3)).

Perform the comparisoResult(4) === Result(2). (See below.)
Return Result(5).

ouprwONE

The Strict Doesnot-equal Operator (!==

The productionEqualityExpression: EqualityExpression!==RelationalExpressions evaluated as
follows:

EvaluateEqualityExpression

Call GetValue(Rsult(1)).

EvaluateRelationalExpression

Call GetValue(Result(3)).

Perform the comparison Result(4) === Result(2). (See below.)
If Result(5) istrue, returnfalse. Otherwise, returitrue.

oukrwbdpE

The Strict Equality Comparison Algorithm

The comparisorx ===y, wherex andy are values, produceSue or false Such a comparison is
performed as follows:

If Type(x) is different from Typey), returnfalse.
If Type(X) is Undefined, returtrue.

If Type(x) is Null, returntrue.

If Type(X) is not Number, go to stepl.

If xis NaN, returnfalse.

If yis NaN, returnfalse

If X is the same number value gsreturntrue.

NourwNE

27 October 2008

- 67 -

8. If xis +0 andy is —0, returntrue.
9. If xis—0 andy is +0, returntrue.
10. Returnfalse.
11. If Type(X) is String, then returtrue if x andy are exactly the same sequence of characters (same
length and same characters in corresponding positions); otherwise, fiadgen
12. If Type(x) is Boolean, returtrue if x andy are bothtrue or bothfalse; otherwise, returrialse.
13. If Type(x) is Decimal, hen
a. If IEEE 7542008DecimalisNaN(x) or isNaN(y) then returfalse.
b. Return the result ofEEE 7542008 Decimal.compar@uietEqua(x,).

14. Returntrue if x andy refer to the same objedDtherwise, returfialse. Deleted: or if they refer to objects joined
each other (see 13.1.2)

11.10 Binary Bitwise Operators
Syntax

BitwiseANDEXxpression
EqualityExpression
BitwiseANDExpressio& EqualityExpression

BitwiseANDEXxpressionNoln
EqualityExpressionNoln
BitwiseANDEXxpressionNol& EqualityExpressionNoln

BitwiseXOREXxpression
BitwiseANDEXxpression
Bitwise XORExpressioh BitwiseANDEXxpression

BitwiseXORExpressionNotn
BitwiseANDEXxpressionNoln
Bitwise XORExpressionNoMm BitwiseANDExpressionNoln

BitwiseORExpression
BitwiseXOREXxpression
BitwiseORExpressioh BitwiseXOREXxpression

BitwiseORExpressionNotn
BitwiseXORExpressionNoln
BitwiseORExpressionNoln BitwiseXORExpressionNoIn

Semantics

The productionA : A @ B where @ is one of the bitwise operators in the productions above, is evaluatec
as follows:

EvaluateA.

Call GetValue(Result(1)).

EvaluateB.

Call GetValue(Result(3)).

Call ToInt32(Result(2)).

Call ToInt32(Result(4)).

Apply the bitwise operator @ to Result(5) and Result(6). The result is a signed 32 bit integer.
Return Result(7).

NGO ~WNE

11.11 Binary Logical Operators
Syntax

LogicalANDExpression
BitwiseORExpression
LogicalANDEXxpressio&.& BitwiseORExpression

27 October 2008

- 68 -

LogicalANDExpressionNoln
BitwiseORExpressionNoln
LogicalANDExpressionNol&& BitwiseORExpressionNoln

LogicalORExpression
LogicalANDExpression
LogicalORExpession|| LogicalANDExpression

LogicalORExpressionNoin
LogicalANDExpressionNolIn
LogicalORExpressionNoljp LogicalANDExpressionNoln

Semantics

The productionLogicalANDExpression LogicalANDEXxpressior&& BitwiseORExpressiois evaluated as
follows:

1. EvaluateLogical ANDExpression

2. Call GetValue(Result(1)).

3. Call ToBoolean(Result(2)).

4. If Result(3) isfalse, return Result(2).

5. EvaluateBitwiseORExpressian

6. Call GetValue(Result(5)).

7. Return Result(6).

The productionLogicalORExpression LogicalORExpressior)] LogicalANDEXxpressioris evaluated as
follows:

1. EvaluateLogical ORExpression

2. Call GetValue(Result(1)).

3. Call ToBoolean(Result(2)).

4. If Result(3) istrue, return Result(2).

5. EvaluateLogical ANDExpression

6. Call GetValue(Result(5)).

7. Return Result(6).

The LogicalANDExpressionNolnand LogicalORExpressionNolmproductions are evaluated in the same
manner as thd.ogicalANDExpressiorand LogicalORExpressiomproductions except that the contained
LogicalANDExpressionNoln BitwiseORExpressionNolnand LogicalORExpressiodoln are evaluated
instead of the contained.ogicalANDExpression BitwiseORExpressionand LogicalORExpression

respectively.
NOTE

The value produced by && or || operator is not necessarily of type Boolean. The value produced will

always be the value ofne of the two operand expressions.
11.12 Conditional Operator (?:)
Syntax

ConditionalExpression
Logical ORExpression
LogicalORExpressior? AssignmentExpressionAssignmentExpression

ConditionalExpressionNoln
LogicalORExpressionNoln
Logical ORExpressionNolr? AssignmentExpressionAssignmentExpressionNoln
Semantics

The productiorConditionalExpression LogicalORExpressiof? AssignmentExpressian
AssignmentExpressias evaluated as follows:

27 October 2008

- 69 -

EvaluatelLogical ORExpression

Call GetVale(Result(1)).

Call ToBoolean(Result(2)).

If Result(3) isfalse, go to step 8.

Evaluate the firsAssignmentExpression
Call GetValue(Result(5)).

Return Result(6).

Evaluate the seconéissignmentExpression
Call GetValue(Result(8)).

0. Return Result(9).

ROo®~NoOh~wWNE

The ConditionalExpressionNolrproduction is evaluated in the same manner asCiveditionalExpression
production except that the contained.ogicalORExpressionNoln AssignmentExpressionand
AssignmentExpressionNolnare evaluated instead of the containddogicalORExpression first
AssignmentExpressiand secondssignmentExpressiomespectively.

NOTE

The grammar for a ConditionalExpression in ECMAScript is a little bit different from that in C and Java,
which each allow the second subexpression to bé&xression but restrict the third expression to be a
ConditionalExpression. The motivation for this difference in ECMAScript is to allow an assignment
expression to be governed by either arm of a conditional and to eliminate the confusing and fairlg usele:
case of a comma expression as the centre expression.

11.13 Assignment Operators
Syntax

AssignmentExpression
ConditionalExpression
LeftHandSideExpression AssignmentOperator AssignmentExpression

AssignmentExpressionNoln
ConditionalExpressionNoln
LeftHandSideExpression AssignmentOperator AssignmentExpressionNoln

AssignmentOperatarone of
= *= /= %= += -= <<= >>= >>>= &= A= =

Semantics

The AssignmentExpressionNoproductions are evaluated in the same manner aAghignmentExpression
productions except that the contain&@bnditionalExpressionNoln and AssignmentExpressionNaie
evaluated instead of the contain€dnditionalExpressiomnd AssignmentExpressiomespectively.

11.13.1 Simple Assignment (=)

The productionAssignmentExmssion: LeftHandSideExpression AssignmentExpressiois evaluated
as follows:

EvaluatelL eftHandSideExpression
EvaluateAssignmentExpression

Call GetValue(Result(2)).

Call PutValue(Result(1), Result(3glse).
Return Result(3).

abwhPE

11.13.1.1 Usage SubseRestrictions

When asimpleassignmentoccurs within an execution context that is subset restricted tetthot
subset, itsLeftHandSidemust not evaluate to a Referencehose base isnull. If it does a
ReferenceError exception is thrown. ThéeftHandSidealso may not be a referente a property
with the attribute value {[[Writable]false} nor to a norexistent property of an object whos
[[Extensible]] property has the valdelse. In these cases BypeError exception is thrown. This is
accomplished by replacing stdpf the above algorithm with the following:

27 October 2008

-70-

4. Call PutValue(Result(1), Result(3yue).

11.13.2 Compound Assignment (op=)

The productionAssignmentExpressionLeftHandSideExpression @ AssgnmentExpressionwhere @
represents one of the operators indicated above, is evaluated as follows:

EvaluateLeftHandSideExpression

Call GetValue(Result(1)).
EvaluateAssignmentExpression

Call GetValue(Result(3)).

Apply operator @ to Result(2) and Refd).
Call PutValue(Result(1), Result(5halse).
Return Result(5).

NoghwhpE

11.13.2.1 Usage Subset Restrictions
The same restrictions apply as specified in 11.13.1.1 except that the algorithm change is:

6. Call PutValue(Result(1), Result(Syue).

11.14 Comma Operator (,)
Syntax

Expression
AssignmentExpression
Expression AssignmentExpression

ExpressionNoln
AssignmentExpressionNoln
ExpressionNoln AssignmentExpressionNoln

Semantics
The productiorExpression Expression AssignmentExpressids evaluated as follows:

EvaluateExpression

Call GetValue(Result(1)).
EvaluateAssignmentExpression
Call GetValue(Result(3)).
Return Result(4).

ahwNE

The ExpressionNolmproduction is evaluated in the same manner asEttressionproduction except that
the mntained ExpressionNolnand AssignmentExpressionNolare evaluated instead of the contained
Expressiomand AssignmentExpressiomespectively.

27 October 2008

- 71 -

12 Statements
Syntax

Statement
SutStatement
ConstantStatement
VariableStatement
FunctionDeclaration

SulStatement
Block
fmptyStatement | [Deleted: VariableStatement
ExpressmnStatemént —————————— Comment [pL42]: Note this means that
IfStatement VariableStatements cannotbe e d a s - fi |
IterationStatement blockso. This is a ch
ContinueStatement
BreakStatement
ReturnStatement
WithStatement
LabelledStatement
SwitchStatement
ThrowStatement
TryStatement
Semantics
A Statementan be part of dabelledStatementwhich itself can be part of kabelledStatementand so on. Comment [pL43]: Mark (and perhaps others)
The |l abels introduced this way are coll ecti vel y |thikthisshouldbeasubstatement However
semantics of individual statements.LabelledStatem# has no semantic meaning other than the introduction | Would be a breaking syntactic change from ES3
f a label to alabel set The label set of amterationStatemenbr a SwitchStatemeninitially contains the Need to start a discussion list thread on whethe
0_ "N y not this is really acceptéb Another alternative is
single elemenempty. The label set of any other statement is initially empty. only make this change in strict mode code.
12.1 Block
Syntax
Block:

{ StatementLig; }

StatementList
Statement
StatementList Statement
Semantics
The productiorBlock: { } is evaluated as follows:

1. Return formal, empty, empty).

The productiorBlock: { StatementLis} is evaluated as follows:

1. [Establish a new lexicallock execution context using any contextually supplied block parameters
2. EvaluateStatementListising thenew execution context

3. Exit the execution context established in step 1, restoring the previous execution context

4. Return Reslt(?,).\ Comment [pL44]: From AWB:

NOTE Needs to be rewritten for new lexical scoping m

No matter how control leaves the embedded Block, whether normally or by some form of abrupt com Ietio[Deleted: 1
or exception, thexecution contexis always restored to its former state.

The productiorStatementList Statements evaluated as follows:

1. EvaluateStatement

27 October 2008

121.1

12.2
Syntax

-72 -

2. If an exception was thrown, returrthow, V, empty) whereV is the exception. (Execution now
proceeds as if no exception were thrown.)
3. Return Result(1).

The productiorStatementList StatementList Statemeist evaluated as follows:

1. EvaluateStatementList

2. If Result(1) is an abrupt completion, return Result(1).

3. EvaluateStatement

4. If an exception was thrown, returthow, V, empty) whereV is the exception. (Execution now
proceeds as if no exception were throyv

If Result(3).value iempty, letV = Result(1).value, otherwise let V = Result(3).value.

Return (Result(3).typeV, Result(3).target).

oo

Usage Subset Restrictions

A VariableStatementvithin an execution context that is subset restricted tostheict subset, may
not occur as theStatementLisbf a Block The occurrence of ¥ariableStatemenin such a contexmust
be treated as a syntax error.

Variable statement

VariableStatement
var VariableDeclarationList

VariableDeclarationList
VariableDeclaration
VariableDeclarationList VariableDeclaration

VariableDeclarationListNoln
VariableDeclarationNoln
VariableDeclarationListNoln VariableDeclarationNoln

VariableDeclaration:
Identifier Initialisery

VariableDeclarationNoln
Identifier InitialiserNolrny

Initialiser

= AssignmentExpression

InitialiserNoln:
= AssighmentExpressionNoln

Description

If the variable statement occurs insideFanctionDeclarationor FunctionExpressionthe variables are

defined with functiorlocal scope irthat function, as described JIO.1.3.[Otherwisé they are defined with Comment [pL45]: From MSM:

global scope (that is, they are created as members of the global object, as described in 10.1.3) us| Whatabout a variable declaration at top level of a Pro

property attributes {[[Writable]]: true, [[Enumerable]]:true, [[Configurabld]: false }. Variables are 27Ty GRS (03T @V EpEnElio] wiiTn & {ITRer [0
. . X . - strict eval operator, or by a strict eval operator within

created when the execution scope is entere@lotk does not define a new execution scdpe variables function?

declared using aVariableDeclaration Only Program FunctionDeclaration and FunctionExpression

produce a new scop®r variablesdeclared using &ariableStatement{Such variablesare initialised to

undefined when created. A variable with dnitialiser is assigned the value of isssignmentExpression
when theVariableStatemenis executd, not when the variable is created.

Deleted: s

Deleted: DontDelete

Deleted: and

O

Semantics Deleted: Variables

The productiorvariableStatementvar VariableDeclarationList is evaluated as follows:

27 October 2008

-73-

1. EvaluateVariableDeclarationList
2. Return formal, empty, empty).

The productiorVariableDeclarationList VariableDeclaation is evaluated as follows:

1. EvaluateVariableDeclaration

The productionVariableDeclarationList: VariableDeclarationList, VariableDeclarationis evaluated as
follows:

1. EvaluateVariableDeclarationList
2. EvaluateVariableDeclaration

The productiorvariableDeclaration: Identifieris evaluated as follows:

1. \ReturnH string value containing the same sequence of characters aslietitdier. Comment [pL46]): From MSM:
The productiorVariableDeclaration: Identifier Initialiseris evaluated as follows: Since it seems so mysterious, we should either
remove these Areturno
1. Evaluateldentifier as described in 11.1.2. why theyodre there.
2. Evaluatelnitialiser. Comment [pL47]: From AWB:
3. Call GetValue(Result(2)).
4. Call PutValue(Result(1), Result(3glse). Canét remove tingepartsofthe
5. Return a string value containing the same sequence of characters asderttifer. spec. that depend on them.
Comment [pL48]: From AWB:
The productionnitialiser : = AssignmentExpress is evaluated as follows: This will probably change with the rewrite of ch:
1. EvaluateAssignmentExpression i

2. Return Result(1).

The VariableDeclarationListNoln VariableDeclarationNolnand InitialiserNoln productions are evaluated
in the same manner as thariableDeclarationList VariableDeclarationand Initialiser productions except
that the contained VariableDeclarationListNoln VariableDeclarationNoln InitialiserNoln and
AssignmentExpressionNolnare evaluated instead of the containe¥ariableDeclarationList
VariableDeclaration Initialiser and AssignimentExpressionrespectively.

12.3 Empty Statement
Syntax
EmptyStatement
Semantics
The productiorEmptyStatement; is evaluated as follows:
1. Return formal, empty, empty).
12.4 Expression Statement
Syntax

ExpressionStatement
[lookaheadz {{, function }] Expression

Note that anExpressionStatemerdannot start with an opening curly brace because that might make it
ambiguous with 8lock Also, anExpressionStatememannot start with théunction keyword because
that might make it ambiguous thiaFunctionDeclaration

Semantics
The productiorExpressionStatement{lookaheade {{, function }] Expression is evaluated as follows:

1. EvaluateExpression
2. Call GetValue(Result(1)).

27 October 2008

- 74 -

3. Return formal, Result(2),empty).

12.5 Theif Statement
Syntax

IfStatement
if (Expression) SulStatementelse SulStatement
if (Expressior) SulStatement

Each else for which the choice of associatdéfl is ambiguous shall be associated with the nearest
possibleif that would otherwise have no correspondaige .

Semantics
‘ The productiorfStatement if (Expression) SulStatemenelse SulStatements evaluated as follows:

EvaluateExpression

Call GetValue(Result(1)).

Call ToBoolean(Result(2)).

If Result(3) isfalse, go to step 7.
Evaluate the firsSulStatement
Return Result(5).

Evaluate the seconBlutStatement
Return Result(7).

ONoakrwN P

‘ The productiorfStatement if (Expression) SulStatements evaluated as follows:

EvaluateExpression

Call GetValue(Result(1)).

Call ToBoolean(Result(2)).

If Result(3) isfalse, return fiormal, empty, empty).
EvaluateSutStatement

Return Result(5).

oakwNE

12.6 lteration Statements

An iteration statement consists ofheader (which consists of a keyword and a parenthesised control
construct) and &ody (which consists of Statement

Syntax

IterationStatement
do SulStatementwhile (Expression;
while (Expressiorn) SulStatement
for (ExpressionNolg; Expressiog,; Expressiog,) SulStatement
for (var VariableDeclara