

Ecma International Rue du Rhône 114 CH-1204 Geneva T/F: +41 22 849 6000/01 www.ecma-international.org

 For Ecma use only

DATE: 11 February 2009

DOC TYPE: PDF file

TITLE: Module System for ES-Harmony

SOURCE
1
: Mr. Kris Kowal (FastSoft Inc.) and Mr. Ihab Awad (Google)

STATUS: draft technical contribution

ACTION ID: FYI

NO. OF PAGES:

1

 NOTE

The source of this document grants permission to Ecma International to publish this document internally and / or
externally (at least one option must be selected)

Ecma/TC39/2009/011

Introduction

This is a proposal for a module system for inclusion in ES-Harmony and possible
prototyping prior to standardization.

This proposal does not introduce backward-incompatible changes to ES. We specify
semantics and syntax for constructing secure sandboxes for a new kind of managed
script: a module, that shares most of the semantics of a conventional ES script, but
does not allow access or assignment to free variables, has an implicit function block
scope that contains a reference to the sandbox interface and a reference to the object
intended to be exported to other modules, and does not have access to a global scope.
 We leave the means of invoking such systems as an exercise for ES engine
implementors. Sandboxes have singleton module instances and shared capabilities,
provided by the sandbox constructor. We specify the interface of a sandbox but not its
implementation. Capability objects are the only means by which a module can
communicate with objects outside of the sandbox. We specify that the architecture of a
module loader divides identifying, fetching, evaluating, and constructing module
instances into separate layers that can each be cached, memoized, and securely
shared. We specify a means by which sandboxes can be created within sandboxes so
that capabilities can be restricted. Modules cannot modify each other's exported
objects (they are frozen) and modules are sovereign over their own namespace (with
the exception of the names "exports" and "require") and to that end do not have any
objects on their scope chain that are shared with either modules, sandboxes, or global
scripts. Module evaluation supports "import" and "export" statements that use the
"require" and "exports" objects, providing a backward compatibility layer so that
analogous but insecure systems can be implemented with pre-Harmony syntax.

Roadmap

Module loader syntax would support migration in three phases from traditional ES
global scripts, to modules that use special functions to import each other, then finally to
a concise syntax for importing. Both of these latter syntacies would support absolute
and relative module identifiers, destructured imports (selection and renaming), and
sandboxing.

(Legacy) Global Script Module System: a module loader that can be implemented
with currently deployed versions of ES, using only capabilities provided by their
respective environments (eval, with, XHR, local file access). A legacy module loader
could support a common, transitional coding style that does not require additional
features in the ES syntax. Global script module systems can not guarantee capability
isolation without the assistance of an external translator or validator like Caja, ADsafe,
or Jacaranda because all modules would share a mutable transitive global object that
cannot be removed from the scope chain.

(Future, Native) ECMAScript Module System: a module loader that accepts the
transitional syntax, but also provides syntactic sugar for imports and exports, and
guarantees that groups of modules can only access certain capabilities, and can limit
the capabilities for a subordinate group of modules to which they do not wish to be
vulnerable. Future module loaders would not distinguish nor forbid mixing of
transitional syntax with syntactic sugar. Environments that provide a native module
system could supplant the legacy module system so that the client can remain agnostic
of whether their module loader is legacy or native.

Module formats

Module syntax has several aspects that this document will explain in layers:

Page 1 of 14Module System for ES-Harmony

11.02.2009mhtml:file://C:\Documents and Settings\patrick\Local Settings\Temp\wz83f5\Module ...

patrick
Text Box
Back to first page

importing capabilities from a sandbox,
exporting a module,
importing a module,
importing a module asynchronously, and
creating a sandbox with restricted capabilities.

At each layer, we'll explore three kinds of syntax:

syntactic sugar,
so called "syntactic salt", and
a pedagogical desugared syntax.

We define these three kinds of syntax:

Sugar (syntactic sugar): syntax in modules that requires modifications to the ES
grammar. Sugary syntax will invoke equivalent behavior of corresponding "salty"
syntax.

Salt (syntactic salt): transitional syntax that provides module features without
requiring support for new syntax: no parsing, no analysis, just function application and
object references. Both legacy and native module loaders would accept syntactic salt.

Desugared: syntax that is equivalent to corresponding syntactic sugar by behavior,
that a user might not be able to write, that an interpreter might use as an intermediate
step, but is otherwise rendered to help explain how the sugary syntax works.
 Desugared syntax is nearly identical to syntactic salt, except that it wraps the salty
syntax in a module constructor function envelope and assumes that future ES features
are available.

We define the following module formats accessible to the programmer:

Salty module: a chunk of ES text crafted to run in either a global-script-module-
system or a future-ecmascript-module-system.

Sugary module: a chunk of ES text that has syntactic sugar that can only be
evaluated by a future-ecmascript-module-system.

We also define for contrast:

Global script: a chunk of ES text crafted to be evaluated in global context like
ECMAScript today.

Importing capabilities and exporting a module

Desugared module

Given the definition:

Closed function: A function that has no free variables.

We assume that the desugared form of any ES module constructor is a closed function
that takes exactly two arguments, a frozen ES module importer containing capabilities,
and an object into which module exports are assigned, for example:

function (require, exports) {

 const {document, bgColor} = require.env;

 var isOn = false;

Page 2 of 14Module System for ES-Harmony

11.02.2009mhtml:file://C:\Documents and Settings\patrick\Local Settings\Temp\wz83f5\Module ...

 let toggle = exports.toggle = function () {
 (isOn ? reset : set)();
 };
 let set = exports.set = function () {
 document.setBackgroundColor(color);
 isOn = true;
 };
 let reset = exports.reset = function () {
 document.setBackgroundColor('#ffffff');
 isOn = false;
 };

}

This proposal does not require nor forbid that the interpreter statically verify that there
are no free variables in a module, but does require that any accessed or assigned free
variables raise a NameError at the point of execution.

Sugary module

The above module would be desugared from the syntax, only compatible with ES-
Harmony implementations, as follows:

const {document, bgColor} = require.env;

var isOn = false;

export toggle = function () {
 (isOn ? reset : set)();
};
export set = function () {
 document.setBackgroundColor(background);
 isOn = true;
};
export reset = function () {
 document.setBackgroundColor('#ffffff');
 isOn = false;
};

The desugaring algorithm is to expand the statements of the form:

export <identifier> = <value>;

then wrap the resulting text in the envelope:

(function (require, exports) { <desugared> })

Note that there is no special syntax for assigning the module capabilities (obtained from
"require.env") to local variables, since ES-Harmony destructuring syntax already
makes this easy enough.

Salty module

We would support an intermediate syntax that would permit developers to migrate from
global scripts to modules that support all of the module loader features using a module
loader system implemented with current ECMAScript tools. This system would not
provide security guarantees, but would allow some scripts to be used in both
environments. We show this syntax in ES3.

Page 3 of 14Module System for ES-Harmony

11.02.2009mhtml:file://C:\Documents and Settings\patrick\Local Settings\Temp\wz83f5\Module ...

var document = require.env.document;
var bgColor = require.env.bgColor;

var isOn = false;

exports.toggle = function () {
 (isOn ? reset : set)();
};
exports.set = function () {
 document.setBackgroundColor(color);
 isOn = true;
};
exports.reset = function () {
 document.setBackgroundColor('#ffffff');
 isOn = false;
};

The assignments to exports add the symbols to the local scope (e.g. note their use
inside the exported function toggle). This is brought about since module systems
wishing to support this format must use a module function envelope of the following
form:

(function (require, exports) {
 with (exports) {
 (function () {
 <desugared>
 }).call(this);
 }
})

Global/Salty Script/Module

Programmers can write global ES scripts in such a way that they continue to be used as
global modules. Instead of assigning to "exports" (the modus operandi for salty scripts
hitherto described) we assign our exportables to "this". We also wrap the file in a
closure. The closure is redundant with the module constructor closure if you're using
the file as a module, but it ensures module pattern when the file is used as a global
script. To that end, if we alter the sandbox such that the module constructor function
receives its "exports" object as "this", we can write scripts that can also be used as
modules.

(function () {

 var document = typeof require == "undefined" ? document :
require.env.document;
 var bgColor = typeof require == "undefined" ? bgColor :
require.env.bgColor;

 var isOn = false;

 var toggle = this.toggle = function () {
 (isOn ? reset : set)();
 };
 var set = this.set = function () {
 document.setBackgroundColor(color);
 isOn = true;
 };
 var reset = this.reset = function () {
 document.setBackgroundColor('#ffffff');
 isOn = false;

Page 4 of 14Module System for ES-Harmony

11.02.2009mhtml:file://C:\Documents and Settings\patrick\Local Settings\Temp\wz83f5\Module ...

 };

)).call(this);

Calling the enclosure with "call(this)" is necessary to guarantee that "this" is bound
to "exports" (in a module) or "global" (in a global script) both inside and outside the
closure. This is brought about since module systems wishing to support this format
must execute the module function in a block of the following form:

moduleFunction.call(exports, require, exports);

Global and salty support

Support for global and salty modules requires a certain amount of concession to the
ideal of lexical scoping. We consider this acceptable since (a) they are backward
compatibility shims; (b) module systems may choose not to support them; and (c) they
do not intrude on the source format of modules that do not wish to use these features.

Module loaders

We define:

Module text: The ES program text of a module.

Module function (or constructor): The ES function value that is produced by
compiling the module text.

Module identifier: A value that identifies a module, nominally referring to a file that
contains its text.

Module fetcher: A function that maps module identifiers to module text.

Module evaluator: A function that maps module text to a module constructor function.
This function is also responsible for desugaring the module text and checking it for
correctness.

Module loader: A function that maps module identifiers to module constructors. As
such, a module loader encapsulates a fetcher and evaluator and may cache (not
necessarily memoizing) either or both module texts and module constructors.

Module loaders are installation-dependent. For example, the Web browser environment
may provide a module loader which accepts module identifiers in the form of URIs to
the module text:

"file:///usr/lib/js/util/linkedList.js"
"http://example.com/myModule.js"

Another loader may require a module identifier consisting of a dotted name and a
version range:

{ name: "com.example.util.linkedList", version: { min: "3.70", max:
"4.00" } }

Yet another may allow path names relative to the importing module:

"../util/sortAlgorithms.js"

Page 5 of 14Module System for ES-Harmony

11.02.2009mhtml:file://C:\Documents and Settings\patrick\Local Settings\Temp\wz83f5\Module ...

And another module loader might use a dotted name notation:

".util.sortAlgorithms"

Since it would be trivial to construct an adapter for any of these notations and supply
that to a child sandbox, we feel no need to constrain implementations to a particular
module identifier syntax.

So that branches of a module identifier name space can be reorganized without
modifying the module texts in that branch, it's desirable for module loaders to support a
notion of self-relative module imports. That is, if you're looking at the text of a module
with a given identifier, and the identifiers are hierarchical, load and require could accept
a module identifier with a given prefix that indicates that it ought to be resolved relative
to the importing module's identifier. Consider this notation where module identifiers
are local file system paths:

// in "/usr/lib/ecmascript/framework/extension.es
import "./base.es" as base

The identifier "./base.es" would get resolved relative to
"/usr/lib/ecmascript/framework/extension.es" to
"/usr/lib/ecmascript/framework/base.es". Presumably, the identifier "base.es"
would have resolved to "/usr/lib/ecmascript/base.es" instead, off the base
directory for fully qualified module identifiers, "/usr/lib/ecmascript/". A module
fetcher could opt to do analogous resolutions with URL's or dot delimited names.

A loader is an object required to have the following interface:

resolve: takes a partially or fully qualified identifier and an optional fully qualified
identifer, and returns the former fully qualified against the latter. "resolve"
throws an exception if the first identifier is partially qualified and the base
identifier is not passed or is undefined.
fetch: takes a partially or fully qualified identifier and an optional fully qualified
base identifier, and returns the corresponding module text.
evaluate: takes a module text and returns a constructor function.
load: takes a partially or fully qualified identifier and an optional fully qualified
base identifier, and returns a module constructor function, using "resolve",
"fetch", and "evaluate".

Module sandboxes

Module capabilities: An object that contains capability bearing objects that would be
available to any module in a given sandboxed environment via the require.env object.
Capabilities would include objects that facilitate secure input and output, or as in a web
page, the window and document.

Module instance: The value returned from the invocation of a module constructor
when applied to a particular sandbox. A module instance is an Object, copied and
frozen from a module's exports Object. Copying and freezing is deferred to the time of
a request for the module instance so that a module can continue to build its exports
object through to the completion of the module constructor function, even if there is a
cyclic dependency chain that includes the module.

Module sandbox: A system of module instances with common capabilities. A sandbox
has one inherent require function that is synonymous with the sandbox. The
require function uses a given module loader to obtain module constructors which it
executes to construct module instances with the sandbox capabilities. Sandboxes can

Page 6 of 14Module System for ES-Harmony

11.02.2009mhtml:file://C:\Documents and Settings\patrick\Local Settings\Temp\wz83f5\Module ...

be built inside parent sandboxes using whatever capabilities are granted to the parent
sandbox. A sandbox must:

be a function that accepts module identifiers and returns module instances.
be memoized such that it appears stateless, that every call with a given identifier
returns the same value.
have a member called "loader" that is a loader: a function that accepts a module
identifier and returns a module constructor.
have a member "env" that is an object that contains zero or more capability laden
objects.

A module sandbox provides a function that enables modules to import other modules in
the sandbox by their identifier. If that module has never been imported by the sandbox
before, the sandbox loads the module, instantiates it by calling its module function
(providing the sandbox's module scope), and memoizes and returns the resulting
module instance. Otherwise, the sandbox returns the previously memoized module
instance.

Given a loader and an ES object containing bindings to be introduced into a module
scope, any code may construct a sandbox:

var aLoader = /* ... */;
var aDocument = /* ... */;
var aColor = /* ... */;

var sandbox = Sandbox(aLoader, {document: aDocument, bgColor:
aColor});

Sandbox constructors are not privileged. The following is a valid implementation:

function Sandbox(loader, env) {
 env = copy(env).freeze();
 modules = Map();

 var require = function (id, relativeId) {
 if (!modules.has(id)) {
 var constructor = loader.load(id, relativeId);
 var exports = {};
 constructor.call(exports, require.relativeTo(id), exports);
 exports.freeze();
 modules.set(id, exports);
 }
 return modules.get(id);
 };

 require.relativeTo = function (baseId) {
 var requireRelative = function (relativeId) {
 return myRequire(relativeId, baseId);
 };
 requireRelative.id = baseId;
 requireRelative.env = env;
 requireRelative.loader = loader;
 return requireRelative.freeze();
 };

 require.env = env;
 require.load = load;

 return require.freeze();
}

Page 7 of 14Module System for ES-Harmony

11.02.2009mhtml:file://C:\Documents and Settings\patrick\Local Settings\Temp\wz83f5\Module ...

All forms of module importing syntax ultimately get modules from a "require" function.
 A "require" object is not constrained to providing only "loader", "env" and "id", but
we do not specify other attributes here.

Importing modules

As with the module format, there are three forms of importing a module: the desugared
form; the syntactic sugar we propose for ES-Harmony, and the "salty" form for
backward compatibility. Imagine that we wish to use a module with the sugared form:

const {document} = require.env;

export translateTo = function (language) {
 if (language === 'french') {
 document.write('Traduit en Francais!');
 } else if (language === 'english') {
 document.write('Translated to English!');
 }
};

and imagine that this module is stored at the URI:

"http://example.com/docTranslator.js"

Desugared module usage

The desugared form would use the require object (a function) to get an instance of a
required module:

function (require, exports) {
 const document = require.env.document;
 const bgColor = require.env.bgColor;

 const {translateTo} = require
('http://example.com/docTranslator.js');

 var isOn = false;

 const toggle = exports.toggle = function () {
 (isOn ? reset : set)();
 };
 const set = exports.toggle = function () {
 document.setBackgroundColor(color);
 isOn = true;
 };
 const reset = exports.reset = function () {
 document.setBackgroundColor('#ffffff');
 isOn = false;
 };
 const translate = exports.translate = function() {
 translateTo("french");
 };

}

Salty module usage

The salty syntax version would be as follows:

Page 8 of 14Module System for ES-Harmony

11.02.2009mhtml:file://C:\Documents and Settings\patrick\Local Settings\Temp\wz83f5\Module ...

var document = require.env.document;
var bgColor = require.env.bgColor;

var isOn = false;

var translateTo = require
('http://example.com/docTranslator.js').translateTo;

exports.toggle = function () {
 (isOn ? reset : set)();
};
exports.set = function () {
 document.setBackgroundColor(color);
 isOn = true;
};
exports.reset = function () {
 document.setBackgroundColor('#ffffff');
 isOn = false;
};
exports.translate = function() {
 translateTo("french");
};

Sugary module usage

The syntactically sugared form of this module would be as follows:

const {document, bgColor} = require.env;

from 'http://example.com/docTranslator.js' import translateTo;

var isOn = false;

export toggle = function () {
 (isOn ? reset : set)();
};
export set = function () {
 document.setBackgroundColor(background);
 isOn = true;
};
export reset = function () {
 document.setBackgroundColor('#ffffff');
 isOn = false;
};
export translate = function() {
 translateTo("french");
};

Module Import Syntax

We provision syntax for:
importing and binding modules to local scope identifiers,
importing selected exports from a module and binding them to local identifiers by
the same name,
importing selected exports from a module and binding them to local identifiers
with reassigned names,
importing from a given sandbox (with all previous forms).

Page 9 of 14Module System for ES-Harmony

11.02.2009mhtml:file://C:\Documents and Settings\patrick\Local Settings\Temp\wz83f5\Module ...

In all of the following cases, X and Y are both expressions, which is to say that object
literals and variables are both acceptable in these place holders.

There would be three forms in the grammar for importing, one for bringing module
objects into the module scope, and two others for copying exports from a module into
our own module scope.

"import" ((expression ["as" name]) % ",") ["with" expression] ";"
"from" expression "import" ((name ["as" name]) % ",") ["with"
expression] ";"
"from" expression "import" "*"

Sugar Desugar Salt

import X as Y; const Y = require(X); var Y = require(X);

import X as Y, W as Z;
const Y = require(X);
const Z = require(W);

var Y = require(X);
var Z = require(W);

from X import A; const {A} = require(X); var A = require(X).A;

from X import A, B; const {A, B} = require(X);
var A = require(X).A;
var B = require(X).B;

from X import A as F; const {A: "F"} = require(X); var F = require(X).A;

import X as Y with S; const Y = S(X); var Y = S(X);

Reflexive Assignment Extension

A module can bind an imported module to a local variable name that is the same as its
identifier. This requires the module identifier to be a string that is a valid chain of dot-
delimited variable names. Any prefix variable names that do not exist would be
constructed as empty objects. Dot prefixes would be ignored so that the module loader
implementation can reserve dot prefixes for module relative imports.

Sugar Desugar Salt

import "X"; const X = require("X"); var X = require("X");

import ".X"; const X = require("X"); var X = require("X");

import "X.Y"; let X = {};
X.Y = require("Y");

var X = {};
X.Y = require("Y");

Import All Extension

A module can adopt all of the exported variables of a given module, by the same
names.

This extension to the import syntax imposes the additional constraint on a sandbox that

Sugar Desugar Salt

from X import *
__update__(__locals__, require
(X)); require.all(X);

from X import A,
B const {A, B} = require(X);

require.all(X, ["A",
"B"]);

from X import A
as F const {F: "A"} = require(X);

require.all(X, {F:
"A"});

Page 10 of 14Module System for ES-Harmony

11.02.2009mhtml:file://C:\Documents and Settings\patrick\Local Settings\Temp\wz83f5\Module ...

it have an "all" function that has the ability to inject variables in the caller scope, so
called "dynamic scope". I'm going to take a wild guess that this is not going to fly well
past our security proponents or the "don't break lexical scope" crowd, so I include this
section as a warning to myself and others that use and like this syntactic form. Maybe
we can construct some unlikely kind of compromise.

However, as a byproduct of the inclusion of an "all" function to the sandbox, the salty
syntax for destructuring imports in Pre-Harmony ES could be greatly improved. This
feature would also have to be provided by a future ES module loader for compatibility.

Sugar Desugar Salt

from X import A, B const {A, B} = require(X);
require.all(X, ["A",
"B"]);

from X import A as
F

const {F: "A"} = require
(X); require.all(X, {F: "A"});

Asynchronous Module Importing Extension

So far all syntax examples presume that a script will block until dependencies are
resolved. This will no doubt be unacceptable in certain environments. We can resolve
this issue by implying that the syntactic sugar can (at the purview of the ES engine
implementor) desugar to a form of implicit continuation passing such that the main ES
event queue, and related queues in the embedding system, can continue processing
until the module instance is available. At that point, the continuation may be called
back with the module instance and resume execution.

Syntactic Sugar

import X as Y
...

Desugared Syntax

The above syntax implies that any import directive

require(X, function (Y) {
 ...
});

Syntactic Salt

This transformation cannot be applied in pre-Harmony ES, and probably not even post-
Harmony, if I'm not mistaken. For that reason, the desugarred syntax must be
explicitly supported as salty syntax if module authors in previous versions of ES can
take advantage of non-blocking scripts. This poses certain onerous constraints for
sandbox implementors. For example, a sandbox must schedule module loading. That
is, the sandbox must retain notes about whether all continuations, including the module
constructor itself, have run to completion, before calling back to dependent modules.
 In salty syntax, mixing the continuation passing style and blocking import calls is not
possible because an importing module cannot know whether the depended module will
defer to a continuation.

Addendum: Bind/Curry Calling Module

Page 11 of 14Module System for ES-Harmony

11.02.2009mhtml:file://C:\Documents and Settings\patrick\Local Settings\Temp\wz83f5\Module ...

code from the module relative imports extension is in peach.
code from the global/module extension is in yellow.
new code is in green.

;
 constructor.call(exports, require.relativeTo(id), exports);
 modules.set(id, exports);
 }

 // curry exports with the id if they request
 let module = modules.get(id);
 let boundModule = {};
 for (let name in module) {
 if (module.hasOwnProperty(name)) {
 if (module[name].curryCallerModuleId) {
 boundModule[name] = (function (unbound) {
 return unbound.apply(this, [relativeId] + arguments);
 })(module[name]);
 } else {
 boundModule[name] = module[name];
 }
 }
 };

 return boundModule.freeze();
 }

 require.relativeTo = function (relativeId) {
 var requireRelative = function (id) {
 return require(id, relativeId);
 };
 requireRelative.env = env;
 requireRelative.load = load;
 return requireRelative.freeze();
 };

 require.env = env;
 require.load = load;

 return require.freeze();
}

/* a decorator that is trivial to define or import inside the sandbox
*/
export curryCallerModuleId = function (function) {
 function.curryCallerModuleId = true;
 return function;
};

/* assuming a module exists with a log function, presumably connected
to a
 console capability object. */
from "console" import log as baseLog;

/* provide a log function that notes the module it was called in */
export log = curryCallerModuleId(function (id, message) {
 baseLog(message + " from " + id);
});

Addendum: Module Bundling

Page 12 of 14Module System for ES-Harmony

11.02.2009mhtml:file://C:\Documents and Settings\patrick\Local Settings\Temp\wz83f5\Module ...

In environments where there is high latency in fetching, it's desirable to prefetch
module constructors. There are various strategies.

The client can perform static analysis of the module text or the abstract syntax of
the module constructor to heuristically determine the module identifiers of
modules that are likely to be required and issue requests for the corresponding
files, recursively fetching their transitive dependencies.
A sandbox can arrange to download an archive of module texts to prime its
module text cache or memo. This requires agreement between the sandbox and
server that certain modules must be available in an archive, or that a script
archiving service is available.
The server can analyze the module text or the abstract syntax of the module
constructor and subvert requests for a module text with:

an archive containing the module text and the texts of its transitive
dependencies, or
a module that registers module constructor functions for
their transitive dependencies

Use a build system to analyze the modules in a library and create a "production"
version of the library that replaces module files with versions that are either
archives or register constructor functions for their probable dependencies.

All of these options are possible with extensions to a loader or sandbox.

Addendum: Module metadata

To enforce clean isolation, our proposal does not allow modules to name themselves or
their contents in their client's universe of discourse. However, it may be useful for the
module function to support metadata. This would be visible after loading:

var aLoader = /* ... */;
var moduleFcn = aLoader.load("http://example.com/test.js");
m.version; // → '1.8.10b'
m.author; // → 'Alyssa P Hacker <hacker@example.com>'
m.imports; // → ['document', 'background']
m.exports; // → ['toggleIt', 'setIt']

This may be assigned using standardized comment-like notations analogous to Javadoc:

/*file module.js */
/*version 1 */
/*author Ihab Awad, Kris Kowal */
/*quality dismal */
/*tutorial-order 1 */

/*preamble
 Copyright 2008 Ihab Awad, Kris Kowal
 We have a license! You can read it at the bottom of this file.
*/

/**
 This is inline documentation.
*/

/*** Map
 This is documentation for the Map function.
*/
export function Map () {
}

Page 13 of 14Module System for ES-Harmony

11.02.2009mhtml:file://C:\Documents and Settings\patrick\Local Settings\Temp\wz83f5\Module ...

Addendum: Implementing a Loader

Here's the rest of a trivial implementation (untested) of a sandbox. This bit of code
builds a loader from a fetcher and a resolve function for the fetcher's module identifier
name space. The only part of this code that cannot be implemented in legacy
ECMAScript is the evaluator. We need an "eval" function that evaluates the program in
a context that has frozen primordial objects (Array, Object, &c), has an undefined (or
provided) global object, and an empty (or provided) scope chain. There must be no
way for code executed in the exection environment to receive or share lexemes with
other modules.

/* returns an absolute (fully-qualified) identifier
 for a given identifier (that may be absolute or relative)
 and a base identifier (that is optionally undefined).
 if the identifier is absolute, it just returns the id.
 if the identifier is not fully qualified, returns the equivalent
 absolute identifier from the given base identifier.
 raises an exception if the id is relative and
 the base id is undefined.
*/
let resolve = function (id, baseId) {...};

/* a decorator that returns a version of a function that
 only runs a computation once for a given set of arguments
 and stores the result for future requests */
let memoize = function (callback) {
 let memo = Map();
 return function () {
 if (!memo.has(arguments))
 memo.set(arguments, callback.apply(this, arguments));
 return memo.get(arguments);
 };
};

/* a decorator for functions that accept an optional relativeId */
let resolved = function (callback) {
 return function (id, relativeId) {
 return callback(resolve(id, relativeId));
 };
};

let fetch = resolved(memoize(...));

let evaluate = memoize(function (text) {
 if (supportSalt)
 text = "with(exports){(function(){" + text + "}).call(this)}";
 text = "(function (require, exports) {" + text + "})";
 return hermeticEval(text);
});

let load = resolved(memoize(function (id) {
 return evaluate(fetch(id));
}));

Page 14 of 14Module System for ES-Harmony

11.02.2009mhtml:file://C:\Documents and Settings\patrick\Local Settings\Temp\wz83f5\Module ...

