Standard ECMA262

3% Edition - December 199¢

ECMA

Standardizing Information and Communication Systems

ECMAScript 3.1 Language
Specification- DRAFT

Phone: +41 22 849.60.00 - Fax: +41 22 849.60.01 - URL: http://www.ecma.ch - Internet: helpdesk@ecma.ch
12 January 2009

Standard ECMA262

3% Edition - December 199¢

ECMA

Standardizing Information and Communication Systems

Phone: +41 22 849.60.00 - Fax: +41 22 849.60.01 - URL: http://www.ecma.ch - Internet: helpdesk@ecma.ch
12 January 2009

Standard ECMA262

3% Edition - December 199¢

ECMA

Standardizing Information and Communication Systems

ECMAScript 3.1 Language
Specification- DRAFT

Phone: +41 22 849.60.00 - Fax: +41 22 849.60.01 - URL: http://www.ecma.ch - Internet: helpdesk@ecma.ch
12 January 2009

Brief History

This ECMA Standard is based on several originating technologies, the most well known being JavaScript (Netscape)
and JScript (Microsoft). The language was invented by Brendan EichBlet scape and first appe:
Navigator 2.0 browser. It has appeared in all subsequent browsers from Netscape and in all browsers from Microsoft
starting with Internet Explorer 3.0.

The development of this Standard started in Novembef19Be first edition of this ECMA Standard was adopted by
the ECMA General Assembly of June 1997.

That ECMA Standard was submitted to ISO/IEC JTC 1 for adoption under thérdaktprocedure, and approved as
international standard ISO/IEC 16262, in Apfib98. The ECMA General Assembly of June 1998 approved the
second edition of ECMA62 to keep it fully aligned with ISO/IEC 16262. Changes between the first and the second
edition are editorial in nature.

The third edition of the Standargncludes powerful regular expressions, better string handling, new control [De|eted; current document defines the
statements, try/catch exception handling, tighter definition of errors, formatting for numeric output and minor chang
in anticipation of forthconmg internationalisation facilities and future language growte language documented by

{ Deleted: and

the third edition has come to be known as ECMAScript 3 or ES3.

Work on the language is not complete. The technical committee is working on significant enhancéembrisg
mechanisms for scripts to be created and used across the Internet, and tighter coordination with other standards bodies
such as groups within the World Wide Web Consortium and the Wireless Application Protocol Forum.

Deleted: This Standard has been adopted as 3rd Editic
ECMA-262 by the ECMA General Assembly in Decemb
1999.

Phone: +41 22 849.60.00 - Fax: +41 22 849.60.01 - URL: http://www.ecma.ch - Internet: helpdesk@ecma.ch
12 January 2009

5

Table of contents

Scope
Conformance
References
Overview
4.1 Web Scripting
4.2 Language Overview
4.2.1 Objects
4.2.2 The Strict Variant of ECMAScript
4.3 Definitions
4.3.1 Type
4.3.2 Primitive Value
4.3.3 Object
4.3.4 Constructor
4.3.5 Prototype
4.3.6 Native Object
4.3.7 Built-in Object
4.3.8 Host Object
4.3.9 Undefined Value
4.3.10 Undefined Type
4.3.11 Null Value
4.3.12 Null Type
4.3.13 Boolean Value
4.3.14 Boolean Type
4.3.15 Boolean Object
4.3.16 String Value
4.3.17 String Type
4.3.18 String Object
4.3.19 Number Value
4.3.20 Number Type
4.3.21 Number Object
4.3.22 Infinity
4.3.23 NaN
4.3.24 Function
4.3.25 Built-in Function
4.3.26 Property
4.3.27 Method
4.3.28 Attribute
4.3.29 Own Property
4.3.30 Inherited Property
4.3.31 Built-in Method
Notational Conventions
5.1 Syntactic and Lexical Grammars
5.1.1 ContextFree Grammars

12 January 2009

[any

N OO0 000000000, 0ooooooooooo oSS DMDBAEMEDDDMDDAEDONNDNDE BB

~N o~

5.1.2
5.1.3
5.1.4
5.1.5
5.2

The Lexical and RegExp Grammars
The Numeric String Grammar
The Syntactic Grammar
Grammar Notation
Algorithm Conventions

6. Source Text

7 Lexical Conventions

7.1
7.2
7.3
7.4
7.5
7.5.1
7.5.2
7.5.3
7.6
7.7
7.8
7.8.1
7.8.2
7.8.3
7.8.4
7.8.5
7.9
7.9.1
7.9.2

Unicode FormatControl Characters
White Space
Line Terminators
Comments
Tokens
Reserved Words
Keywords
Future Reserved Words
Identifiers
Punctuators
Literals
Null Literals
Boolean Literals
Numeric Literals
String Literals
Regular Expression Literals
Automatic Semicolon Insertion
Rules of Automatic Semicolon Insertion
Examples of Automatic Semicolon Inserti

8 Types

8.1
8.2
8.3
8.4
8.5
8.6
8.6.1
8.6.2
8.7
8.7.1
8.7.2
8.8
8.9

The Undefined Type
The Null Type
The Boolean Type
The String Type
The Number Type
The Object Type
Property Attributes
Object Internal Properties and Methods
The Reference Specification Type
GetValue (V)
PutValue (V, W)
The List Specification Type
The Completion Specification Type

8.10 The Property Descriptor and Property Identifier Specification Types

8.10.1
8.10.2
8.10.3
8.10.4

IsAcces®rDescriptor (Desc)
IsDataDescriptor (Desc)
IsGenericDescriptor (Desc)
FromPropertyDescriptor (Desc)

12 January 2009

0 ~N N~

11

12
12
12
13
14
15
15
15
15
16
17
17
17
17
17
20
22
23
23
24

25
26
26
26
26
26
27
27
28
31
31
31
31
31
32
32
32
32
32

8.10.5 ToPropertyDescriptor (Obj)

8.11 The Lexical Environment and Environment Record Specification Types

8.12 Algorithms for Object Internal Methods
8.12.1 [[GetOwnProperty]] (P)
8.12.2 [[GetProperty]] (P)
8.12.3 [[Get]] (P)
8.12.4 [[CanPut]] (P)
8.12.5 [[ThrowingPut]] (P, V, Throw)
8.12.6 [[Put]] (P, V)
8.12.7 [[HasProperty]] (P)
8.12.8 [[Delete]] (P, Throw)
8.12.9 [[DefaultValue]] (hint)
8.12.10 [[DefineOwnProperty]] (P, Desc, Throw)

9 Type Conversion and Testing
9.1 ToPrimitive
9.2 ToBoolean

9.3 ToNumber

9.3.1 ToNumber Applied to the String Type
9.4 Tolnteger
9.5 Tolnt32: (Signed 32 Bit Integer)
9.6 ToUint32: (Unsigned 32 Bit Integer)
9.7 ToUintl6: (Unsigned 16 Bit Integer)
9.8 ToString

9.8.1 ToString Applied to the Number Type
9.9 ToObject
9.10 IsCallable
9.11 The SameValue Algorithm

10 Executable Code and Execution Contexts
10.1 Types of Executable Code
10.1.1 Strict Mode Code
10.2 Lexical Environments
10.2.1 Enviornment Records
10.2.2 Lexical Environment Operations
10.2.3 The Global Environment
10.3 Execution Contexts
10.3.1 Identifier Resolution
10.4 Establishing An Execution Context
10.4.1 Global Code
10.4.2 Eval Code
10.4.3 Function Code
10.5 Arguments Object
10.5.1 Strict Mode Restrictions
10.6 Declaration Binding Instantiation

11 Expressions
11.1 Primary Expressions

12 January 2009

33
33
33
33
34
34
34
34
35
35
35
35
36

37
37
37
38
38
41
41
41
42
42
42
43
43
44

44
44
44
45
45
48
49
49
49
49
50
50
50
51
52
52

53
53

-jv -

11.1.1 Thethis Keyword
11.1.2 Identifier Reference
11.1.3 Literal Reference
11.1.4 Array Initialiser
11.1.5 Obiject Initialiser
11.1.6 The Grouping Operator
11.2 Left-HandSide Expressions
11.2.1 Property Accessors
11.2.2 Thenew Operator
11.2.3 Function Calls
11.2.4 Argument Lists
11.2.5 Function Expressions
11.3 Postfix Expressions
11.3.1 Postfix Increment Operator
11.3.2 Postfix Decrement Operator
11.4 Unary Operators
11.4.1 Thedelete Operator
11.4.2 Thevoid Operator
11.4.3 Thetypeof Operator
11.4.4 Prefix Increment Operator
11.4.5 Prefix Decrement Operator
11.4.6 Unary+ Operator
11.4.7 Unary- Operator
11.4.8 Bitwise NOT Operator ¢)
11.4.9 Logical NOT Operator {)
11.5 Multiplicative Operators
11.5.1 Applying the* Operator
11.5.2 Applying the/ Operator
11.5.3 Applying the%Operator
11.6 Additive Operators
11.6.1 The Addition operator ¢)
11.6.2 The Subtraction Operator-()
11.6.3 Applying the Additive Operators €, -) to Numbers
11.7 Bitwise Shift Operators
11.7.1 The Left Shift Operator €<)
11.7.2 The Signed Right Shift Operator>¢)
11.7.3 The Unsigned Right Shift Operator¢>)
11.8 Relational Operators
11.8.1 The Lessthan Operator €)
11.8.2 The Greatetthan Operator &)
11.8.3 The Lessthanor-equal Operator €=)
11.8.4 The Greatethanor-equal Operator $=)
11.8.5 The Abstract Relational Comparison Algthm
11.8.6 The instanceof operator
11.8.7 The in operator

12 January 2009

53
53
53
53
55
57
57
57
58
58
59
59
59
59
60
60
60
60
61
61
61
61
61
62
62
62
62
63
63
64
64
64
65
65
65
65
66
66
66
67
67
67
67
68
68

11.9 Equality Operators
11.9.1 The Equals Operator%=)
11.9.2 The Doesnot-equals Operator =)
11.9.3 The Abstract Equality Comparison Algorithm
11.9.4 The Strict Equals Operat (===
11.9.5 The Strict Doesot-equal Operator (==
11.9.6 The Strict Equality Comparison Algorithm
11.10 Binary Bitwise Operators
11.11 Binary Logical Operators
11.12 Conditional Operator (?:)
11.13 Assignment Operators
11.13.1 Simple Assignment €)
11.13.2 Compound Assignmentdp=)
11.14 Comma Operator ()

12 Statements

12.1 Block

12.2 Variable statement

12.3 Empty Statement

12.4 Expression Statement
12.5 Theif Statement

12.5.1 Strict Mode Restrictions
12.6 Iteration Statements
12.6.1 Thedo-while Statement
12.6.2 Thewhile statement
12.6.3 Thefor Statement
12.6.4 Thefor -in Statement
12.7 Thecontinue Statement
12.8 Thebreak Statement
12.9 Thereturn Statement
12.10 Thewith Statement
12.10.1 Strict Mode Restrictions
12.11 Theswitch Statement
12.11.1 Strict Mode Restrictions
12.12 Labelled Statements
12.13 Thethrow statement
12.14 Thetry statement

12.15 Debugger statement

13 Function Definition

13.1 Definitions

13.2 Creating Function Objects
13.2.1 [[Call]]
13.2.2 [[Construct]]

14 Program

12 January 2009

68
69
69
69
70
70
70
71
71
72
73
73
74
74

75
75
76
7
7
77
78
78
78
78
79
79
80
81
81
81
82
82
84
84
84
84
85

86
87
87
87
87

89

- Vi -

15 Native ECMAScript Objects

15 Native ECMAScript Objects
15.1 The Global Object
15.1.1 Value Properties of the Global Object
15.1.2 Function Properties of the Global Object
15.1.3 URI Handling Function Properties
15.1.4 Constructor Propeies of the Global Object
15.1.5 Other Properties of the Global Object
15.2 Object Objects
15.2.1 The Object Constructor Called as a Function
15.2.2 The Object Constructor
15.2.3 Properties of the Object Constructor
15.2.4 Properties of the Object Prototype Object
15.2.5 Properties of Objecinstances
15.3 Function Objects
15.3.1 The Function Constrtor Called as a Function
15.3.2 The Function Constructor
153.3 Properties of the Function Constructor
15.3.4 Properties of the Function Prototype Object
15.3.5 Properties of Function Instances
15.4 Array Objects
15.4.1 The Array Constructor Called as a Function
15.4.2 The Array Constructor
15.4.3 Properties of the Array Constructor
15.4.4 Properties of the Array Prototype Object
15.4.5 Properties of Array Instances
15.5 String Objects
15.5.1 The String Constructor Called as a Function
15.5.2 The String Constructor
15.5.3 Properties of the String Constructor
15.5.4 Properties of the StrinBrototype Object
15.5.5 Properties of String Instances
15.6 Boolean Objects
15.6.1 The Boolean Constructor Called as a Function
15.6.2 The Boolean Constructor
15.6.3 Properties of the Boolean Constructor
15.6.4 Properties of the Boolean Prototype Object
15.6.5 Properties of Boolean Instances
15.7 Number Objects
15.7.1 The Number Constructor Called as a Function
15.7.2 The Number Constructor
15.7.3 Properties of the Number Constructor
15.7.4 Properties of the Number Prototype Object
15.7.5 Properties of Number Instances
15.8 The Math Object
15.8.1 Value Properties of the Math Object

12 January 2009

91

91

91

92

92

94

98

99

99

99

99

99
102
103
103
103
103
104
104
106
107
107
107
108
108
123
124
124
124
124
124
132
133
133
133
133
133
134
134
134
134
134
135
138
139
139

15.8.2

- vii -

Function Properties of the Math Object

15.9 Date Objects

15.9.1
15.9.2
15.9.3
15.9.4
15.9.5
15.9.6

Overview of Date Objects and Definitions of Internal Operators

The Date Constructor Called as a Function
The Date Constructor

Properties of the Date Constructor
Properties of the Date Prototype Object
Properties of Date Instances

15.10 RegExp (Regular Expression) Objects

15.10.1
15.10.2
15.10.3
15.10.4
15.10.5
15.10.6
15.10.7

Patterns
Pattern Semantics

The RegExp Constructor Called as a Function

The RegExp Constructor

Properties of the RegExp Constructor
Properties of the RegExp Prototype Object
Properties of RegExp Instances

15.11 Error Objects

15.11.1
15.11.2
15.11.3
15.11.4
15.11.5
15.11.6
15.11.7

The Error Constructor Called as a Function
The Error Constructor

Properties of the Error Constructor
Properties of the Error Prototype Object
Properties of Error Instances

Native Error Types Used in This Standard
NativeError Object Structure

15.12 The JSON Object
15.12.1 parse (text [, reviver])
15.12.2 stringify (value [, replacer [, space]])

16 Errors

Annex A

Al Lexical Grammar

A.2 Number Conversions

A3 Expressions

A.4 Statements

A.5 Functions and Programs

A.6 Universal Resource ldentifier Character Classes

A7 Regular Expressions

Annex B

Compatibility

B.1 Additional Syntax

12 January 2009

140
144
144
149
149
150
151
157
157
157
159
171
171
172
172
173
174
174
174
174
174
175
175
175
176
177
178

182

183

183

189

190

194

196

197

198

202

202

202

- viii -

B.1.1 Numeric Literals
B.1.2 String Literals

B.2 Additional Properties
B.2.1 escape (string)
B.2.2 unescape (string)
B.2.3 String.prototype.substr (start, length)
B.2.4 Date.prototype.getYear ()
B.2.5 Date.prototype.setYear (year)
B.2.6 Date.prototype.toGMTString ()

Annex C

The Strict variant of ECMAScript
C.1 The strict mode
C.1.1 Excluded Features
C.1.2 Additional Execution Exceptions

Annex D
Correction and Clarifications in Edition 3.1 with Possible Compatability Impact

Annex E

Additions and Changes in Edition 3.1 which Introduce Incompatabilities with Edition 3.

12 January 2009

202
202

203
203
204
204
205
205
205

206

206
206
206
207

208

208

209

209

Scope
This Standard defines the ECMAScript scripting language.

Conformance

A conforming implementation of ECMAScript must provide and support all the types, values, objects
properties, functions, and program syntax and semantics described in this specification.

A conforming implementation of this International standard shall pretrcharacters isonformance with the

Unicode Standard, VersigB.0 or later, and ISO/IEC 10646 with either UCS2 or UTF16 as the adopted [Deleted: 2.1]

encoding form, implementation level 3. If the adopted ISO/IEC 10B646bset is not otherwise specified, it is
presumed to be the BMP subset, collection 300. If the adopted encoding form is not otherwise specified,
presumed to be the UTE6 encoding form.

A conforming implementation of ECMAScript is permitted to provide additional types, values, objects,
propeties, and functions beyond those described in® this specification. In particular, a conforming
implementation of ECMAScript is permitted to provide properties not described in this specification, anc
values for those properties, for objects that are deedrib this specification.

A conforming implementation of ECMAScript is_permitted to support program and regular expression synta
not described in this specification. In particular, a conforming implementation of ECMAScript is permitted to
supportprograns y nt ax t hat makes use of the Afuture reser\

References
ISO/IEC 9899:1996 Programming Language€, including.amendment 1 and technical corrigenda 1 and 2.

ISO/IEC 106461:1993 Information Technology Universal MultipleOctet Coded Character Set (UCS) plus
its amendments and corrigenda.

The Unicode Consortium. The Unicode Standard, Ver8ion defined by: The Unicode Standard, Vers®a
(Boston, MA, AddisorWesley, 200. ISBN 0-201-616355)

ANSI/IEEE Std 7541985: IEEE Standard for Binary FloatifRpint Arithmetic. Institute of Electrical and
Electronic Engineers, New York (1985).

Overview
This‘section contains a nemormative overview of the ECMAScript lgnage.

ECMAScript is an objecbriented programming language for performing computations and manipulating
computational objects within. a host environment. ECMAScript as defined here is not intended to b
computationally selsufficient; indeed, there areorprovisions in this specification for input of external data

or output of computed results. Instead, it is expected that the computational environment of an ECMAScri|
program will provide not only the objects and other facilities described in this sgmh but also certain
environmentspecifichostobjects, whose description and behaviour are beyond the scope of this specificatiol
except to indicate that they‘may provide certain properties that can be accessed and certain functions that
be calledfrom an ECMAScript program.

A scripting languageis a programming language that is used to manipulate, customise, and automate th
facilities of an existing system. In such systems, useful functionality is already available through a use
interface, andhe scripting language is a mechanism for exposing that functionality to program control. In this
way, the existing system is said to provide a host environment of objects and facilities, which completes tt
capabilities of the scripting language. A scrigfilanguage is intended for use by both professional and non
professional programmeys.

ECMAScript was originally designed to beWéeb scripting languaggeproviding a mechanism to enliven Web
pages in browsers and to perform server computation as part of ab¥éell clienserver architecture.
ECMAScript can provide core scripting capabilities for a variety of host environments, and therefore the cor
scripting language is specified in this document apart from any particular host environment.

12 January 2009

Deleted: Unicode Inc(1996), The Unicode
Standard, Version 2.0. ISBN: £01-483459,
AddisonWesley Publishing Co., Menlo Park,
California.

Deleted: Unicode Inc. (1998), Unicode
Technical Report #8: The Unicode StanGard
Version 2.1

programmers, some aspects of the languaaye

Deleted: To accommodate neprofessional
be somewhat less strict

Some of the facilities of ECMAScript are similar to those used in other programming languages; in particular
Javé™, Self,and Schemas described in: [Deleted: and]

4.1

4.2

4.2.1

Gosling, JamesBill Joy and Guy Steele. The Javianguage Specification. Addison Wesley Publishing
Co., 1996.

Ungar, David, and Smith, Randall B. Self: The Power of Simplicity. OOPSLA '87 Conference
Proceedings, pp. 22241, Orlando, FL, October 1987.

|IEEE Standard fothe Scheme Programming Language. |[EEE Std 11980.

Web Scripting

A web browser provides an ECMAScript host environment for cisdé computation including, for
instance, objects that represent windows, menus;ypsp dialog boxes, text areaschors, frames, history,
cookies, and input/output. Further, the host environment provides a means to attach scripting code to events
such as change of focus, page and image loading, unloading, error and abort, selection, form submission,
and mouse actian Scripting code appears within the HTML and the displayed page is a combination of
user interface elements and fixed and computed text and images. The scripting code is reactive to user
interaction and there is no need for a main program.

A web server povides a different host environment for semsiésle computation including objects
representing requests, clients, and files; and mechanisms to lock and share data. By usingsideveset
serverside scripting together, it is possible to distribute comfion between the client and server while
providing a customised user interface for a \Atsed application.

Each Web browser and server that supports ECMAScript supplies its own host environment, completing the
ECMAScript execution environment.

Language Overview

The following is an informal overview of ECMAScriptnot all parts of the language are described. This
overview is not part of the standard proper.

ECMAScript is objectbased: basic language -and host facilities are provided by objects, and an

ECMAScript program is a cluster of communicating objects. An ECMAScoipiect is a collection of [Deleted: an unordered
propertieseach with zero or morattributesthat determine how each property can be dséat example,
when theWritable attribute for a property is set false, any attempt by executed ECMAScript code to [Deleted: ReadOnly

methods A primitive value is a member ame of the following builkin types:Undefined, Null, Boolean
Number, and String; an object is a member of the remaining bisilttype Object; and a method is a [Deleted: has o effect
function associated with an object via a property.

Deleted: true

o U

ECMAScript defines a collection djuilt-in objectsthat round out the definition of ECMAScript entities.
These builtin objects include th&lobal object, theObject object, theFunction object, theArray object,
the String object, theBoolean object, theNumber object, theMath object, theDate object, theRegExp
object _the JSON object, and the Error objectsError, EvalError , RangeError, ReferenceError,
SyntaxError, TypeError andURIError .

operations, multiplicative operators, additive operators, bitwise shift operators, relational operator or methods
equality operators, binary bitwise operators, binary logical operators, assignment operators, and tae comm
operator.

ECMAScript also defines a set of built operators ECMAScript operators include various unary J Deleted: thatmay not be, strictlyspeakinmnctions}

ECMAScript syntax intentionally resembles Java syntBCMAScript syntax is relaxed to enable it to
serve as an eadgp-use scripting language. For example, a variable is not required to have its type declared
nor are types associated with pespes, and defined functions are not required to have their declarations
appear textually before calls to them. [

Deleted: proper]

Objects Comment [pL1]: Rationale:
ECMAScript does not contaiglasses such as those in C++, Smalltalk, or Java, but rather, support C"Onsc'djrr:g‘%"‘:"'do‘s’“r’:‘%”h 'lt 'Za” gbémgog bjec
constructorswhich crede objects by executing code that allocates storage for the objects and initialises oy support the [[Construct] property.

all or part of them by assigning initial values to their propertfdsconstructors are objects, but not all {

objects are constructérsEach constructor has groperty named fiprototype 0 that is used to

consistent.
implementprototypebased inheritanceandshared propertiesObjects are created by using constructors [

Comment [pL2]: From AWB:Need to make typograpr}

Deleted: Prototype property]

12 January 2009

in new expressions; for examplegw String("A String") creates a new String object. Invoking a
constructor without usingnew has consequences that depend on the constructor. For example,
String("A String") produces a primitive string, not an object.

ECMAScript supportprototypebased inheritanceEverypbject created by constructor has an implicit] {
reference(called theobj ect 6 s) jpor oft loéd ypeael ue o fiprotiotype ocpoopesty ud

Deleted: constuctor has an associated
prototype, and every

Furthermore a prototype may have a nowll implicit reference to its prototype, and so on; this is called [

Deleted: that

the prototype chainWhen a reference is made to a property in an object, that reference is to the propert[
of that name in the first object in the prototypleam that contains a property of that name. In other

Deleted: to the prototype

words, first the object mentioned directly is examined for such a property; if that object contains th([

Deleted: associated with its constructor

)
)
)
)

named property, that is the property to which the reference refers; if that object does not toatain
named property, the prototype for that object is examined next; and so on.

In a classbased objecbriented language, in general, state.is carried by instances, methods are carried &
classes, and inheritance is only of structure and behaviour. In ASeMpt, the state and methods are
carried by objects, and structure, behaviour, and state are all inherited.

All objects that do not directly contain a particular property that their prototype contains share tha
property and its value. The following dieegn illustrates this:

4.2.2

CF is a constructor (and also an object). Five objects have been created byewiegpressionscf;,

cf,, cfy, cfyp. and cf. Each of these objects contains properties named gl and g2. The dashed line
represent the .impdit prototype relationship; so, for examples&fs pr ot o4 Vhe eonstrisctorC F
CF, has two properties itself, named P1 and P2, which are not visiblejtaiiFct,, cfs, cfy, or ck. The
property named CEP1.in Gks shared by gf cf,, cfs, cfy, and c§ (but not by CF), as are any properties
found in CFp6s ihampthat ara rfot npmed 1o 2y gr €FP&. Notice that there is no
implicit prototype link between CF an@F,.

Unlike classbased object languages, properties can be addetjéats dynamically by assigning values
to them. That is, constructors are not required to name or assign values to all or any of the construct
objectds properties. I'n the above dicfygfs esncf, andn e
cfs by assigning a new value to the propertydRp,.

The Strict Variant of ECMAScript

The ECMAScript Language recognizes the possibility that some users of the language may wish !
restrict their usage ofomefeatures available in the language. Thaight do so in the interests o
security, to avoid what they consider to be error prone feattioegetenhancederror checkingor for
other reasons of their choosing. In support of this possibility, ECMAScript defirstsct varianiof the
languageThe strictvariantof the languagexcludes somespecific syntactic and semantic features of the
nonstrict ECMAScript languagend modifies the detailed semantics of some featuriee.strict variant

12 January 2009

)
CF implicit prototype link
prototype CF, ‘ (Deleted: cf
P1 CFP1 explicit prototypeproperty [Deleted: link
P2
Cfl Seneed] sz Cf3 Cf4 i Cfs
ql ql ql ql ql
02 q2 92 q2 q2

4.3

4.3.1

4.3.2

4.3.3

4.3.4

4.3.5

4.3.6

4.3.7

4.3.8

4.3.9

also specifiesadditional error conditions thamustbe reported by throwing error exceptions in situations
that are not specified as errors thye nonstrict form of thelanguage.

The strict variant of ECMAScript is commonly referred to asshéct modeof the language. Strict mode
selection and use of ¢hstrict mode syntax and semantics of ECMAScript is explicitly made at the level
of individual ECMAScript code units. Because strict mode is selected at the level of a sywmtiic

unit, strict mode only imposes restrictions that have local effect mishich acode unit. Strict mode

does not restrict or modify any aspect of the ECMAScript semantics that must operate consistently
across multiplecodeunits. A complete ECMAScript program may be composed for both strict mode and
nonstrict mode ECMAScriptodeunits. In this case, strict mode only applies when actually executing
code that is defined within a strict modedeunit.

In order to conform to this specification, an ECMAScript implementation must implement both the full

unrestricted ECMAScriptanguage and the strict mode variant of the ECMAScript language as defined

by this specification. In addition, an implementation must support the combination of unrestricted and
strict modecodeunits into a single composite program

Definitions
The following are informal definitions of key terms associated with ECMAScript.

Type
A typeis a set of data valuess defined in‘section 8 of this specification

Primitive Value
A primitive valueis a member of one of the typéndefined, Null, Boolean, Number, or String. A
primitive value is a datum thatis represented directly at the lowest level of the language implementation.

Object

An objectis a member of the typ@bject. It is.a collection of properties. Deleted: Itis an unordered collection of properties
each of which contains a primitive value, object, or

Constructor function. A function stored in a property of an objecl

A constructor is<a Function object that creates and. initialisdgeots. The value of a casiructom s called a method.

fiprototype o property is aprototype object that is used to implement inheritance and shared [Deleted: Each constructor has an associated]

properties.

Prototype

A prototypeis an object used to implement structure, state, and behaviour inheritance in ECMAScript.
When a constructor .creates an object, fdrdiotype obj ect

propertyfor the purpose of resolvingpropg y r ef er e n c e s fiprofbthpe ¢ pvopestycanu c t [Deleted: associated prototype

be referenced by the program expressmimstructor .prototype , and properties added to an Deleted: associated prototype

objectds prototype are shared, t lprototypgh i nheritance

Native Object

A native objectis any object supplied by an ECMAScript implementation independent of the host
environment. Standard native objects are defined in this specification. Some native objects dre built
others may be construataluring the course of execution of an ECMAScript program.

Built-in Object

A built-in objectis any object supplied by an ECMAScript implementation, independent of the host
environment, which is present at the start of the execution of an ECMAScogtam. Standard builn
objects are defined in this specification, and an ECMAScript implementation may specify and define

others. Every builin object is a native objecfA built-in constructoris a built-in object that is also a
constructor.

Host Object

A host objectis any object supplied by the host environment to complete the execution environment of
ECMAScript. Any object that is not native is a host object.

Undefined Value
Theundefined valueis a primitive value used when a variallas not been assigned a value.

12 January 2009

4.3.10

4.3.11

4.3.12

4.3.13

4.3.14

4.3.15

4.3.16

4.3.17

4.3.18

4.3.19

4.3.20

4.3.21

4.3.22

Undefined Type

The typeUndefined has exactly one value, calleshdefined.

Null Value

Thenull value is a primitive value that represents the null, empty, or-aristent reference.
Null Type

The typeNull has exactly one value, calledll.

Boolean Value

A boolean valueis a primitive value that iss member of the typ8oolean and is one of two unique|
values,true andfalse.

Boolean Type

The typeBooleanrepresents a logical entity and castsi'of exactly two unique values. One is called
true and the other is callefhlse.

Boolean Object

A Boolean objectis a member of the typ@bject.and is an instance of the buitt Boolean object. That
is, a Boolean object is created by using-theoBan constructor in mew expression, supplying a
boolean as an argument. The resulting object has an implicit (unnamed) property that is the boolean.
Boolean object can be coerced to a boolean value.

String Value

A string valueis a primitive \alue that isa member of the typString and is a finite ordered sequence ¢f
zero or more 1&it unsigned integer values.

NOTE

Although each value usually represents a singlebit@unit of UTF16 text, the language does not place
any restrictions or requements on the values except that they béit @insigned integers.

String Type

The typeString is the set of all string values.

String Object

A String objectis a member of the typ@®bject and is an instance of the built String object. That is, a
String object is created by using the String constructor imew expression, supplying a string as an
argument. The resulting object has an implicit (unnamed) property that is the stringngé &ject can
be coerced to a string value by calling the String constructor as a function (15.5.1).

Number Value

A number valueis_a primitive value that i member of the typBlumber and is a direct representatioh
of a number.

Number Type

The typeNumber is a set ofprimitive values representing numbers. In ECMAScript, the set of vallies
represents the doubjerecision 64b i t for mat | EEE 754 val uaeNsu mbrea lol
(NaN) values, positive infinity, and negative infinity.

Number Object

A Number objectis a member of the typ®bject and is an instance of the built Number object. That

is, a Number object is created by using the Number constructon@waxpression, supplying a number
as an argument. The resultimdgject has an implicit (unnamed) property that is the number. A Number
object can be coerced to a number value by calling the Number constructor as a function (15.7.1).
Infinity

The primitive valuelnfinity represents the positive infinite numberdwa This value is a member of the
Number type.

12 January 2009

4.3.23 NaN
The primitive valueNaNr epr esent s t he s et-aNdUmbleErEOE vSatlaunedsa.r dT hfii N
member of the Number type.

4.3.24 _ Function
A function is a member of the typ@®bject that may berivoked as a subroutinén addition to its named
properties, a function contairexecutablecode and state that determine how it behaves when invoked. A
functi on 6a maynatbe writtenin ECMAScript.

4.3.25 _ Built-in Function

A built-in functionis a function that is a buiiin object of the language, such parselnt andMath.exp.
An implementation may also provide implementatidgpendenbult-in functions that are not described
in this specification.

4.3.26 Property
A propertyis an associadin between a name and a value. Depending upon the form of the property the
value may beepresentecither directly asa data value (a primitive value, an object, or a function) or
indirectly bya pair ofaccessofunctions.
4.3.27 Method
A methodis a function that is the value of a property.
4.3.28 Attribute
An attribute is an internal value that defines'some characteristic of a property.
4.3.9 Own Property
An own property of an object is a property that is diregtigsent orthat object.
4.330 Inherited Property
An inherited propertyis a property of an objectithat is not one of its own properties but is a property
(either ownwnor inherited) of the objectds prototyp
4.331 Built-in Method

A built-in methodis any methodhat is a builtin function. Standard buiin methods are defined in this
specification, and an. ECMAScript implementation may specify and define othdysilt-in method isa
Built-in function.

12 January 2009

5 Notational Conventions

51

5.1.1

5.1.2

5.1.3

5.1.4

Syntactic and Lexical Grammars

This section desdres the contexfree grammars used in this specification to define the lexical and
syntactic structure of an ECMAScript program.

Context-Free Grammars

A contextfree grammarconsists of a number giroductions Each production has an abstract symbol
called anonterminalas itsleft-hand side and a sequence of zero or more nonterminal &mdhinal
symbols as itgight-hand side For each grammar, the terminal symbols are drawn from a specified
alphabet.

Starting from a sentence consisting of a sindjiinguished nonterminal, called tigeal symbal a given
contextfree grammar specifies language namely, the (perhaps infinite) set of possible sequences of
terminal symbols that can result from repeatedly replacing any nonterminal in the sequémeeright
hand side of a production for which the nonterminal.is theheftd side.

The Lexical and RegExp Grammars

A lexical grammarfor ECMAScript is given in‘clause 7. This grammar has as its terminal symbols the
characters of the Unicode chatacset. It defines a set of productions, starting from the goal symbol
InputElementDiv or InputElementRegExpthat describe how sequences of Unicode characters are
translated into a sequence of input elements.

Input elements other than white space and memts form the terminal symbols for the syntactic
grammar for ECMAScript and are called ECMAScrifpkens These tokens are the reserved words,
identifiers, literals, and punctuators of the ECMAScript language. Moreover, line terminators, althougt
not consdered to be tokens, also become part of the stream of input elements and guide the process

automatic semicolon insertiofy (©). Simple white space and singi@e comments are discarded and do [Deleted: 7.8.5

not appear in the stream of input elements for theatic grammar. AMultiLineComment(that is, a
comment of *éeW® fremgmardl ess of whether it spans |
discarded if it contains no line terminator; but if MultiLineCommentcontains one or more line
terminators, lien it is replaced by a single line terminator, which becomes part of the stream of inpui
elements for the syntactic grammar.

A RegExp grammafor ECMAScript is given in 15.10. This grammar also has as its terminal symbols
the characters of the Unicode chater set. It defines a set of productions, starting from the goal symbol
Pattern, that describe how sequences of Unicode characters are translated into regular expressi
patterns.

Productions of the lexical and. RegExp grammars are distinguished bydghavin wo c:0dl oas
separating punctuation. The lexical and RegExp grammars share some productions.

The Numeric String Grammar

A second grammar is used for translating strings into numeric values. This grammar is similar to the pa
of the lexicalgrammar having to do with numeric literals and has as its terminal symbols the character
of the Unicode character set. This grammar appears in 9.3.1.

Producti ons of t he numeric string grammaro arse
punctuation.

The Syntactic Grammar

The syntactic grammarfor ECMAScript is given in clauses 11, 12, 13 and 14. This grammar has
ECMAScript tokens defined by the lexical grammar as its terminal symbols (5.1.2). It defines a set o
productions, starting from the gbsymbolProgram that describe how sequences of tokens can form
syntactically correct ECMAScript programs.

When a stream of Unicode characters is to be parsed as an ECMAScript program, it is first converted tc
stream of input elements by repeated agpgtiion of the lexical grammar; this stream of input elements is
then parsed by a single application of the syntax grammar. The program is syntactically in error if th
tokens in the stream of input elements cannot be parsed as a single instance of thentmaninal
Program with no tokens left over.

12 January 2009

5.1.5

Productions of the syntactic grammao asepdnhnstiuaguo

The syntactic grammar as presented in sectjohs12, 13 and 14s actually not a complete account of [Deleted: 0, 0,0and0

which token sequences are accepted as correct ECMAScript programs. Certain additional token
sequences are also accepted, namely, those that wouldsoeibed by the grammar if only semicolons
were added to the sequence in certain places (such as before line terminator characters). Furthermore,
certain token sequences that are described by the grammar are not considered acceptable if a terminator
chamcter appears in certain fiawkwardo places.

Grammar Notation

Terminal symbols of the lexical and string grammars, and some of the terminal symbols of the syntactic
grammar, are shown ifixed width font, both in the productions of the grammars andtighout

this specification whenever the text directly refers to such a terminal symbol. These are to appear in a
program exactly as written. All nonterminal characters specified in this way are to be understood as the
appropriate Unicode character from tASCII range, as opposed to any similapking characters from

other Unicode ranges.

Nonterminal symbols are shown iitalic type. The definition of a nonterminal is introduced by the name
of the nonterminal being defined followed by.one or more colofke (number of colons indicates to
which grammar the production belongs.) One or more alternative-highdl sides for the nonterminal
then follow on succeeding lines. For example, the syntactic definition:

,WhiIeStat_ement . e, 84444 - [Deleted: WithStatement
while (Expressioy Statement . [Deleted: with
states that the nonterming/hileStatementepresents_the tokewhile , followed by a left parenthesis [Deleted: WithStatement
token, followed by arExpression followed by a right parenthesis token, followed bytatementThe [Deleted: with

occurrence®f Expressiorand Statemenare themselves nonterminals. As another example, the syntactic

(| W,

definition:

ArgumentList

AssignmentExpression
ArgumentList, <AssignmentExpression

states that amArgumentListmay represent either a singfessignmentExpressioar an ArgumentList
followed by a comma, followed by arssignmentExpressionThis definition of ArgumentListis
recursive that is, it is.defined in.terms of itself. The result is thatAagumentListmay contain any
positive number of arguments, separated by commas, where each argument expression is an
AssignmentExpressiosuch recursive definitions of nonterminals are common.

The subscrioptd,edwhiudif imayi appear aifiat, mndicates atomionali n a |
symbol The alternative containing the optional symbol actually specifies two-hght sides, one that
omits the optional element and one that includes it. This means that:

VariableDeclaration:

Identifier Initialiseryy

is aconvenient abbreviation for:

VariableDeclaration:

Identifier
Identifier Initialiser

and that:

IterationStatement

for (ExpressionNolgy, ; Expressiop, ; Expressiog,) Statement

is a convenient abbreviation for:

IterationStatement

for (; Expressiog, ; Expressiogy) Statement
for (ExpressionNoln; Expressiog, ; Expressiog,) Statement

which in turn is an abbreviation for:

12 January 2009

IterationStatement
for (;; Expressiog,) Statement
for (; Expression; Expressiog,) Statement
for (ExpressionNoln;; Expressiogy) Statement

for (ExpressionNoln; Expression; Expressiog,) Statement

which in turn is an abbreviation for:

IterationStatement
for(;;) Statement
for (;; Expression) Statement
for (; Expression;) Statement
for (; Expression; Expression) Statement

for(ExpressionNoln;) Statement

for (ExpressionNoln; Expression) Statement

for (ExpressionNoln Expression;) Statement

for (ExpressionNoln Expression; Expression) Statement

so the nontermindterationStatemenactually-has eight alternative righand sides.

I f t he [epptyl0 ad e p diar s -hansl sidelofea produgtiort, it indicates that the production's
right-hand side contains no terminals or nonterminals.

1 f t h e [lopkhheade s0 fa p p e ar s -hanmd sidehod a prodgction, it indicates that the
production may not be used if.the immediately following input terminal is a member of the ggten
Thesetcan be written as a list of terminals enclosed in curly braces. Forecdence, the set can also be
written as a nonterminal, in which case it represents the set of all terminals to which that nontermini
could expand. For example, given the definitions

DecimalDigit:: one of
0123456789

DecimalDigits::
DecimalDigit
DecimalDigits DecimalDigit

the definition

LookaheadExample
N [lookaheace {1, 3, 5, 7, 9}] DecimalDigits
DecimalDigit [lookaheace DecimalDigit]

matches either the letterfollowed by one or more decimal digits the first of which is even, or a decimal
digit not followed by another decimal digit.

I f t h e [n@uUneTanmsn@orheiep app e ar s -hand sidlehoé a prdaductioh of the syntactic
grammar, it indicates thathe production isa restricted production it may not be used if a
LineTerminatoroccurs in the input stream at the indicated position. For example, the production:

ReturnStatement
return [no LineTerminatothere] EXpreSSiOQn;

indicates that the pragttion may not be used if ineTerminatoroccurs in the program between the
return token and th&xpression

Unless the presence of kineTerminatoris forbidden by a restricted production, any number of
occurrences ofiineTerminatormay appear between ynwo consecutive tokens in the stream of input
elements without affecting the syntactic acceptability of the program.

When t heonevabdr dfsolfil ow the <colon(s) in a grammar
terminal symbols on the following liner lines is an alternative definition. For example, the lexical
grammar for ECMAScript contains the production:

12 January 2009

-10 -

NonZeroDigit:: one of
123456789

which is merely a convenient abbreviation for:

NonZeroDigit::, [Deleted: one of

1

O©CoO~NOUAWN

When a alternative in a production of the lexical grammar or the numeric string grammar appears to be
a multi-character token, it represents the sequence of characters that would make up such a token.

The righthand side of a production may specify that cer@pansions are not permitted by using the
phr absteot?i and then indicating the expansions to be

Identifier ::
IdentifierNamebut not ReservedWord
means that the nonterminalentifier may be replaced by any sequence of characters that could replace
IdentifierNameprovided that the same sequence of characters could not répéseevedWord

Finally, a few nonterminal symbols are described by a descriptive phrase in roman type in lcaes w
would be impractical to list all the alternatives:

SourceCharacter.

any Unicode character

Algorithm Conventions

The specification often uses-a numbered list to specify steps in an algorithm. These algorithms are used to
recisely spefynthe requiredsemanticsof. ECMAScript language construct§he algorithms are not [Deleted: clarify

intended to imply the use of any specific implementation technigusractice, there may be more efficient
algorithms available to implement a given feature.

In_orden to facilitate their.use in_multiple parts of this specification some algoritms, callestract
operations.are named and written in parameterized functional form so that they may be referenced by name
from within other algorithms.

When an algorithm istopdbuce a value as a red8uls, uskd dibr éeatdiv
result of the algorithm is the value gfand that the algorithm should terminate. The notation Reguil(
used as short handnof.orTxypieedcas she ¢ thlath do ff osxd &ip he type of

For clarity of expression, algorithm steps may be subdivided into sequential substeps. Substeps are indented
and may themselves be further divided into indented substeps. Outline numbering conventions are used to
identify sulsteps with the first level of substeps labeled with lower case alphabetic characters and the
second level of substeps labelled with lower case roman numerals. If more than three levels are required
these rules repeat with the fourth level using numetiels For example:

1. Top-level step
a. Substep.
b. Substep
i. Subsubstep.

ii. Subsubstep.
1. Subsubsubstep

a. Subsubsubsubstep

12 January 2009

-11 -

A step or substep may be written as a predicate that conditions its substeiidgs dase, the substeps ale
only applied if the predicate is true. I f a stlep
the negation of the preceding predicate step at the same level.

A step my specify the iterative application o gubsteps.

Mathematical operations such as addition, subtraction, negation, multiplication, division, and the
mathematical functions defined later in this section should always be understood as computing exa
mathematical results on mathematical real bens, which do not include infinities and do not include a
negative zero that is distinguished from positive zero. Algorithms in this standard that model floaitihg
arithmetic include explicit steps, where necessary, to handle infinities and signedarzérto perform
rounding. If a mathematical operation or function is applied to a flogtimigt number, it should be
understood as being applied to the exact mathematical value represented by that-floatingumber;

such a floatingpoint number musbe finite, and if it is+0 or —0 then the corresponding mathematical value

is simply 0.

The mathematical function abg(yields the absolute value &f which is—x if x is negative (less than zero)
and otherwise is itself.

The mathematical function si¢x) yields 1 ifx is positive anc-1'if x is negative. The sign function is not
used in this standard for cases whes zero.

The nokmadadiloyiny iffust be finite and nonzero) computes a valud the same sign as(or zero)
such that ab&) < as(y) andx-k = q x y for some.integeq.

The mathematical function floax) yields the largest integer (closest to positive infinity) that is not larger
thanx.

NOTE
floor(x) = x—(x modulo 1).

I'f an algorithm is defi nedofthealgbrithmrisotevmireated aamdk no eepult is o |
returned. The calling algorithms are also terminated, until an algorithm step is reached that explicitly dea
with the exception, using terminology suchhnasepfl f
has been encountered the exception is no longer considered to have occurred.

Source Text

ECMAScript source text is represented as a sequence of characters in the Unicode character encoding, ver:
3.0 or later, using the UTH6 transformabn format. The text is expected to have been normalised to Unidode [Deleted: 2.1]

Normalised Form C (canonical composition), as described in Unicode Technical Report #15. Conformin
ECMAScript implementations are not required to perform any normalisation of text, evéets though they
were performing normalisation of text, themselves.

SourceCharacter.
any Unicode character

Throughout the rest ofcodeunibs addcd meatwaprra htee pd rwaislel { Deleted: ECMAScript source text can contain
a 16bit unsigned value used to represent a singkbit@nit of UTRF1 6 t e x t . The phrase any of the Unicode characters. All Unicode whi
will be used to refer to the abstract linguistic or typographical unit represented by a single Unicaie scal| SPace characters are treated as white spackall
. . . K Unicodeline/paragraph separataage treated as
value (which may be longer than 16 bits and thus may be represented by more tfzaml@nmi). This only | line separators. Nehatin Unicode characters ar
refers to entities represented by single Unicode scalar values: the components of a combining charad allowed in identifiers, string literals, regular
sequence are tiicloldei mdiaviadu &lr sfW even though a us|(expressionliterals and commefits.

single character.

Deleted: code point

In string literals, regular expression literals and identifiers, any chargmtee (unij may also be expressed ds

a Unicode escape sequence consgstof six characters, namelyu plus four hexadecimal digits. Within a
comment, such an escape sequence is effectively ignored as part of the comment. Within a string literal
regular expression literal, the Unicode escape sequence contributes onaerharahe value of the literal.
Within an identifier, the escape sequence contributes one character to the identifier.

NOTE 1

Deleted: code point

A
U

Deleted: code point

12 January 2009

-12 -

Al though this document sometimes refers to a fAtrans
the 16bit unsignednteger that is the UTHA6 encoding of that character, there is actually no transformation
because a ficharacter o6 within a #fs-bitunsipgedvalus. actually

NOTE 2

ECMAScript differs from the Java programming language inkdbkaviour of Unicode escape sequences. In a
Java program, if the Unicode escape sequenaB00A, for example, occurs within a singlilme comment, it

is interpreted as a line terminator (Unicode characB80A is line feed) and therefore the next charadse

not part of the comment. Similarly, if the Unicode escape sequam@@0A occurs within a string literal in a
Java program, it is likewise interpreted as a line terminator, which is not allowed within a string &tersd

must write\ n instead of\ UOOOA to cause a line feed to be part of the string value of a string literal. In an
ECMAScript program, a Unicode escape sequence occurring within a comment is never interpreted and
therefore cannot contribute to termination of the comment. Similarly, addeiescape sequence occurring
within a string literal in an ECMAScript program always contributes a character to the string value of the
literal and is never interpreted as a line terminator or as a quote mark that might terminate the string literal.

f

Deleted: can occur]

Deleted: anywhere in the source text of an
ECMAScript program. These characters are remove

7 Lexical Conventions
The source text of an ECMAScript program is first converted into. a sequence of input elements, which are
either tokens, line terminators, comments, or.white space. The source text is scanned from left to right,
repeatedly taking the longepossible sequence of characters as the nextinput element.
There are two goal symbols for the lexical grammar. TputElementDivsymbol is used in those syntactic
grammar contexts where a division/)(or divisionassignment /€) operator is permitted.The
InputElementRegExpymbol is used in other syntactic grammar contexts.
Note that contexts exist in the syntactic. grammar where both a division &edjaarExpressionLiteraare
permitted by the syntactic grammar; however, since the lexical grammar thednputElementDivgoal
symbol in such cases, the opening slash is not recognised as starting a regular expression literal in such a
context. As a workaround, one may enclose the regular expression literal in parentheses.
Syntax
InputElementDiv:
WhiteSpace
LineTerminator
Comment
Token
DivPunctuator
InputElementRegExp
WhiteSpace
LineTerminator
Comment
Token
RegularExpressionLiteral
7.1 Unicode Format-Control Characters
The Unicode format ont r ol characters (i.e., tehUmicodehGharactert e r s
Database such asFT-TO-RIGHT MARK Or RIGHT-TO-LEFT MARK) are control codes used to control the
formatting of a range of text in the absence of higleeel protocols for this (such as mauk languages).
It is useful to allow these isource text to facilitate editing and display.
The format control characteysay be usedn identifiers, within comments, angithin string literals and [
regular expression literals
7.2 White Space

White space characters are used to improve source text readability and to separate tokens (indivisi
lexical units) from each other, but are otherwise insignificant. White spaceomay between any two
tokens, and may occur within strings (where they are considered significant characters forming part of t
literal string value), but cannot appear within any other kind of token.

from the source text before applying the lexical
grammar. Since these chaters are removed before
processing string and regular expression literals, one
must use aJnicode escape sequence (see 7.6) to
include a Unicode formatontrol character inside a
string or regular expression literal

12 January 2009

Syntax

- 13-

The following characters are considered to be whitcsp

Lode UnitValue Name Formal Name ‘ [Deleted: Code Point

\ u0009 Tab <TAB>

\ uo00B Vertical Tab <VT>

\ uoooC Form Feed <FF>

\ u0020 Space <SP>

\ u0085 Next Line <NEL>

\ uOOAO No-break space <NBSP>

\ u200B Zero width space <ZWSP>

\ UFEFF Byte Order Mark <BOM>

Ot her <categ Any other Unicode <USP>
ispace sepa

ECMAScript implementations must recognize’ all of the white space characters defined in Unicode 3.(
Later editions of the Unicode Standard may define other white space characters. ECMA[Scrig
implementations may recognize white space characters from later editions of the Unicode Standard.

WhiteSpace:
<TAB>
<VT>
<FF>
<SP>
<NEL> |
<NBSP>
<ZWSP>
<BOM>
<USP>

7.3

Line Terminators

Like white space characters, line terminator.characters are used to improve source text readability and
separate tokens (indivisible lexical units) from each other. However, unlike white space characters, lir
terminators have some influence over thédeour of the syntactic grammar. In general, line terminators

may occur between any two tokens, but there are a few places where they are forbidden by the syntac

grammar. A line terminator cannot occur within any tokexcept that lie terminators that are preceded Ry [Deleted: not even a string

an _escape sequence may occur within a string literal tokave terminators also affect the process pf

automatic semicolon insertiofd.©). [Deleted: 7.8.5

Line terminators are.included in the set of white space characters thatécked by thés class in regular
expressions.

The following characters are considered to be line terminators:

Code UnitValue Name Formal Name | (Deleted: Code Point
\ uOOOA Line Feed <LF>
\ u000D Carriage Return <CR>
\ u2028 Line separator <LS>
\ u2029 Paragraplseparator <PS>

12 January 2009

- 14 -

Only the characters in the above table reated as line terminators. Other new line or line breaking
characters are treated as white space but not as line terminBbersharacter sequence <CR><LF>
is commonly used as Bne terminate. It should be considered a single character for the purpose of
reporting line numbers.

Syntax

LineTerminator.:
<LF>
<CR>
<LS>
<PS>

LineTerminatoBequence
<LF>
<CR> [lookaheace <LF>]
<LS>
<PS>
<CR> <LF>

7.4 Comments
Description

Comments can beither single or multiine. Multi-line comments cannot nest.

Because a singiine comment can contain any character exceptr@Terminatorcharacter, and because
of the general rule that a token is always as long as possible, a-imgleomment alway consists of all
characters from th# marker to the end of the line. However, thieeTerminatorat the end of the line is
not considered to be part of the singllee comment; it is recognised separately by the lexical grammar and
becomes part of thetream of input elements for. the syntactic grammar. This point is very important,
because it implies that the presence or absence of slimglecomments does not affect the process of
automatic semicolon insertion (7.9).

Comments behave like white spacedaare discarded except that, ifMultiLineCommentcontains a line
terminator character, then the entire comment is considered td_be&erminatorfor purposes of parsing
by the syntactic grammar.

Syntax

Comment:
MultiLineComment
SingleLineComment

MultiLineComment:
* MultiLineCommentChagsg, */

MultiLineCommentChars
MultiLineNotAsteriskChar MultiLineCommentChgys
* PostAsteriskCommentChggs

PostAsteriskCommentChars
MultiLineNotForwardSlashOrAsteriskChar MultiLineCommentChars
* PostAsteriskCommentChggs

MultiLineNotAsteriskChar:
SourceCharactebut not asterisk*

MultiLineNotForwardSlashOrAsteriskChar
SourceCharactebut not forward-slash/ or asterisk*

12 January 2009

- 15 -

SingleLineComment
/I SingleLineCommentChags

SingleLineCommentChars
SingleLineCommentChaingleLineCommentChags

SingleLineCommentChar
SourceCharactebut not LineTerminator

7.5 Tokens

Syntax

Token::
JdentifierName & | Deleted: ReservedWord
Punctuator Identifier
NumericLiteral
StringLiteral

7.5.1 Reserval Words
Description

Reserved words cannot be used as identifiers.

Syntax

ReservedWord
Keyword
FutureReservedWord
NullLiteral
BooleanLiteral

7.5.2 Keywords
The following tokens are ECMAScript keywords and may not be used as identifiers in ECMAScript

progams.
Syntax
Keyword:: one of

preak else new. var ‘ [Deleted: Break]

case finally return void

catch for switch while

continue function this with

default if throw debugger ‘

delete in try

do instanceof typeof

7.5.3 Future Reserved Words

The following words areised as keywords in proposed extensions and are therefore reserved to allow fo
the possibility of future adoption of those extensions.

Syntax
FutureReservedWord one of
abstract enum int short
boolean export interface static
byte extends long super
char final native synchronized
class float package throws
const goto private transient
v jmplements | protected volatile | {Comment [pL3]: This table needs to be repack}
double import public to get rid of the holes.

| [Deleted: debugger]

12 January 2009

-16 -

Note
The identifiers c onst 6 , 6 | aeetlikKely to denused dnya ifuile dedsion of this standard.
7.6 Identifiers

Description
Identifiers are interpreted according to the grammar given in Section 5.16 ¢irtitede standard, with Deleted: upcoming version 3.0 of the]
some small modifications. This grammar is based on both normative and informative character categories
specified by the Unicodg8tandard The characters in the specified categories in ver8iorof the Unicode Deleted: standard]
standard mst be treated as in those categories by all conforming ECMAScript implemenjations [Deleted: 2.1]
This standadt specifiesspecific character additionThe dollar sign$) and the underscore (_) are permitted Deleted: ; however, conforming ECMAScript
anywhere in an identifigr. implementations may allow additional legal identifier

. . A . . X characters based on the category assignment from |
Unicode escape sequences are also permitted in identifiers; where they contribute a single character to versions of Unicode
|de‘nt|f|er, as computed by the CV of_ tHenlcodeEscapeSequgnqsgg 7.8.4)._The\ preceding the Deleted: one departure from the grammar given in
UnicodeEscapeSequenatoes not contribute a chater to the identifier. AUnicodeEscapeSequence Unicode standard
cannot be used to put a character into an identifier.that would otherwise be illegal. In other words, if a - — -

. N . Deleted: The dollar sign is intended for use only in
UnicodeEscapeSequensequence were replaced by WsicodeEscapeSequeriseCV, the result must sti mechanically generated ced }
be a valididentifier that has the exact same sequence of characters as the ofiiginfier.

Two identifiers that are canonically equivalent according to the Unicode standandtagual unless they
are represented by the exact same sequenceo®& unis (in other words, conforming ECMAScript Deleted: code point]
implementations are only required to do bitwise comparison on identifiers). The intent is that the incoming
source text has been converted to normalised form C before. it reaches the compiler.
ECMAScript implementations may.recognize identifier characters defined in later editions of the Unicode
Standard. If portability is a concern,nprogrammers _should only employ identifier characters defined in
Unicode 3.0.
Syntax
Identifier ::
IdentifierNamebut not ReservedWord
IdentifierName ::
IdentifierStart
IdentifierName IdentifierPart
IdentifierStart
UnicodelLetter
$
\ UnicodeEscapeSequence
IdentifierPart ::
IdentifierStart
UnicodeCombiningMark
UnicodeDigit
UnicodeConnectorPunctuation
\ UnicodeEscapeSegnce
UnicodeLetter
any character in the Unicode categories fAUppercase |
AModi fier letter (Lm)oé, AOther | etter (Lo)O, or fdiLette
UnicodeCombiningMark
any character in the Unicoda¢ e g or isgpsa cfi hogn mar k (Mn) 6 or A Combining sp
UnicodeDigit
any character in the Unicode category fADecimal number

12 January 2009

-17 -

UnicodeConnectorPunctuation
any character in the Unicode category fAiConnector pur

UnicodeEscapeSequence
see 7.8.4.

HexDigit:: one of
0123456789abcdefABCDETF

7.7 Punctuators

Syntax
Punctuator:: one of

: s < > <=
>= == 1= === ==
+ - * % ++ -
<< >> >>> & | 2
| ~ && Il il
= += -= *= %= <<=
>>= >>>= &= = A=

DivPunctuator:: one of
/ /=

7.8 Literals

Syntax

Literal ::
NullLiteral
BooleanLiteral
NumericLiteral
StringLiteral

7.8.1 Null Literals

Syntax
NullLiteral ::
null

Semantics
The value of the null literahull is the sole value of the Null type, namelyll.

7.8.2 Boolean Literals

Syntax

BooleanLiteral:
true
false

Semantics
The value of the Boolean liter&ue is a value of the Boolean type, nametlye.
The value of the Boolean literfdlse is a value of the Boolean type, namédyse.

7.8.3 Numeric Literals
Syntax

12 January 2009

-18 -

NumericLiteral::
DecimalLiteral
HexIntegerLiteral

DecimalLiteral::
DecimallntegerLiteral DecimalDigitgy: ExponentPagh
. DecimalDigits ExponentPayg;
DecimallntegerLiteal ExponentPagt,

DecimalintegerLiteral:

0

NonZeroDigit DecimalDigitg;

DecimalDigits::
DecimalDigit
DecimalDigits DecimalDigit

DecimalDigit:: one of
0123456789

NonZeroDigit:: one of
123456789

ExponentPart:
ExponentindicatoSignedinteger

Exponentindicator: one of

e E

Signedinteger:
DecimalDigits
+ DecimalDigits
- DecimalDigits

HexIntegerLiterat:
0x HexDigit
0X HexDigit
HexIntegerLiteral HexDigit

The source character immediately. following NumericLiteral must not be anldentifierStart or
DecimalDigit

NOTE
For example:
3in
is an error and not the two input eleme®sandin.
Semantics

A numeric literal stands for a value of the Number type. This value is determined in two steps: first, a
mathematical value (MV) is derived from the literal; second, this mathematical value is rounded as
described below.

The MV of NumericLiteral:: DecimalLiteralis the MV ofDecimalLiteral

The MV of NumericLiteral:: HexIntegerLiterais the MV ofHexIntegerLiteral

The MV of DecimalLiteral:: DecimallntegerLiteral is the MV ofDecimalintegerLiteral

The MV of DecimalLiteral:: DecimalintegerLiteral DecimalDigitsis the MV of DecimallntegerLiteralplus
(the MV of DecimalDigitstimes 10", wheren is the number of charactersiecimalDigits.

12 January 2009

-19 -

The MV of DecimalLiteral:: DecimallntegerLiteral. ExponentParis the MV of DecimallntegerLiteratimes
10°, whereeis the MV of ExponentPart

The MV of DecimalLiteral :: DecimalintegerLiteral . DecimalDgits ExponentPartis (the MV of
DecimallntegerLiteralplus (the MV ofDecimalDigitstimes 10") times 16, wheren is the number of
characters ilDecimalDigis andeis the MV of ExponentPart

The MV of DecimalLiteral::. DecimalDigitsis the MV of DecimdDigits times 10", wheren is the number of
characters ilecimalDigis.

The MV of DecimalLiteral::. DecimalDigits ExponentPais the MV of DecimalDigitstimes 16", wheren is
the number of characters recimalDigis andeis the MV ofExponentPart

The MV of DecimalLiteral:: DecimallntegerLiterais the MV ofDecimalintegerLiteral

The MV of DecimalLiteral :: DecimallntegerLiteral ExponentPai$ the MV of DecimallntegerLiteraltimes
10°, whereeis the MV of ExponentPart

The MV of Decimalintegerltieral :: 0 is 0.

The MV of DecimalintegerLiteral: NonZeroDigitDecimalDigitsis (the MV of NonZeroDigittimes 10) plus
the MV of DecimalDigits wheren is the number of charactersDecimalDigits

The MV of DecimalDigits:: DecimalDigitis the MV ofDecimalDigit.

The MV of DecimalDigits:: DecimalDigitsDecimalDigitis (the MV of DecimalDigitstimes 10) plus the MV of
DecimalDigit

The MV of ExponentPart:

The MV of Signedinteger:

The MV of Signedinteger:

The MV of Signedinteger:

The MV of DecimalDigit::

Exponentindicator Signedintegsrthe MV ofSignedinteger
DecimalDigitsis the MV ofDecimalDigits

+ DecimalDigitsis the MV ofDecimalDigits

- DecimalDigitsis the negative of the MV ddecimalDigits
0 or of HexDigit:: 0 is 0.

The MV of DecimalDigit::
The MV of DecimalDigit::
The MV of DecimalDigit::
The MV of DecimalDigit::
The MV of DecimalDigit::
The MV of DecimalDigit::
The MV of DecimalDigit ::
The MV of DecimalDigit.:
The MV of DecimalDigit::

1 or of NonZeroDigit::
2 or of NonZeraoDigit::
3 or of NonZeroDigit::
4 or of NonZeroDigit::
5 or of NonZeroDigit::
6 or of NonZeroDigit::
7 or of NonZeroDigt ::
8 or of NonZeroDigit::
9 or of NonZeroDigit::
Ais 10.

The MV of HexDigit ::
The MV of HexDigit ::
The MV of HexDigit ::
The MV of HexDigit ::
The MV of HexDigit ::

a or of HexDigit ::
b or of HexDigit ::
¢ or of HexDigit ::
d or of HexDigit ::
e or of HexDigit i

Bis 11.
Cis 12.
Dis 13.
Eis 14.

1 or of HexDigit ::
2 or of HexDigit ::
3.or of HexDigit::
4 or of HexDigit ::
5 or of HexDigit ::
6 or of HexDigit ::
7 or of HexDigit ::
8 or of HexDigit ::
9 or of HexDigit ::

lis 1.
2is 2.
3is 3.
4is 4.
5is 5.
6 is 6.
7is 7.
8 is 8.
9is 9.

The MV ofHexDigit:: f or of HexDigit:: Fis 15.
The MV of HexIntegerLiteral: Ox HexDigitis the MV ofHexDigit
The MV of HexIntegerLiterat: 0X HexDigitis the MV ofHexDigit

The MV of HexIntegerLiteral:: HexIntegerLiteralHexDigitis (the MV of HexIntegerLiteratimes 16) plus the
MV of HexDigit

Once theexact MV for a numeric literal has been determined, it is then rounded to a value of the Numbe
type. If the MV is 0, then the rounded value+8; otherwise, the rounded value must the number
value for the MV (in the sense defined in 8.5), unless iteedl is aDecimalLiteraland the literal has
more than 20 significant digits, in which case the number value may be either the number value for tt
MV of a literal produced by replacing each significant digit after the 20th withdégit or the number
value for the MV of a literal produced by replacing each significant digit after the 20th Witthigit and

then incrementing the literal at the 20th significant digit position. A dig#igsificantif it is not part of

an ExponentParand

itis notO; or
there is a nonzero digit to its left and there is a nonzero digit, not iExpenentPartto its right.

12 January 2009

-20 -

7.8.4 String Literals

A string literal is zero or more characters enclosed in single or double quotes. Each character may be
represented by an es@pequenceAll Unicode characters may appear literally in a string literal except

for the closing quote character, backslash, carriage retums separator, paragraph separatomd line

feed. Any character may appear in the form of an escape sequence.

Syntax

StringLiteral ::
" DoubleStringCharactegg; "
' SingleStringCharactess; '

DoubleStringCharacters
DoubleStringCharacteDoubleStringCharactegsg

SingleStringCharacters
SingleStringCharactegingleStringCharactes

DoubleStringCharacter.
SourceCharactebut not doublequote” or backslash -or LineTerminator
\ EscapeSequence
LineContinuation

SingleStringCharacter.
SourceCharactebut not singlequote' orbackslash or LineTerminator
\ EscapeSequence
LineContinuation

LineContinuatiorn:
\ LineTerminatoBequence

EscapeSequence
CharacterEscapeSequence
0 [lookaheace DecimalDigif
HexEscapeSequence
UnicodeEscapeSequence

CharacterEscapeSequence
SingleEscapeCharacter
NonEscapeCharacter

SingleEscapeCharacter one of
t b f nrtv

NonEscapeCharacter
SourceCharactebut not EscapeCharacteor LineTerminator

EscapeCharacter.
SingleEscapeCharacter
DecimalDigit
X
u

HexEscapeSequence
x HexDigit HexDigit

UnicodeEscapeSequence
u HexDigit HexDigit HexDigit HexDigit

12 January 2009

-21 -

The definitions of the nonterminalexDigit is given in section 7.8.35ourceCharacteis described in
sections 2 and 6.

A string literal stands for a value of the String type. The string value (SV) of the literal is described ir
terms of character valueCV) contributed by the various parts of the string literal. As part of this
process, some characters within the string literal are interpreted as having a mathematical value (MV),

described below or in section 7.8.3.

The SV ofStringLiteral:: "™ is the empty character sequence.

The SV ofStringLiteral:: " is the empty character sequence.

The SV ofStringLiteral:: " DoubleStringCharacters is the SV ofDoubleStringCharacters

The SV ofStringLiteral:: ' SingleStringCharacters is the SV ofSngleStringCharacters

The SV of DoubleStringCharacters: DoubleStringCharactelis a sequence of one character, the CV of
DoubleStringCharacter

The SV ofDoubleStringCharacters DoubleStringCharacteDoubleStringCharacters a sequence of the CV
of DoubleStringCharactefollowed by all the characters in the SV@dubleStringCharacteri order.

The SV of SingleStringCharacters: SingleStringCharacteris .a sequence of one character, the CV of
SingleStringCharacter

The SV ofSingleStringCharacters SingleStringCharacteSingleStringCharacters a sequence of the CV of
SingleStringCharacteiollowed by all the characters in the SVSihgleStringCharacters order.

The SV ofLineContinuation: \ LineTerminatons the empty character sequence

The CV of DoubleStringCharacter:: SourceCharacterbut not doublequote " or backslash\ or
LineTerminatoris theSourceCharactecharacter itself.

The CV ofDoubleStringCharacter.\ EscapeSequenégthe CV of theEscapeSequence

The CV ofSingleStringCharacter. SourceCharactebut not singlequote’ or backslasi or LineTerminator
is theSourceCharactecharacter itself.

The CV ofSingleStringCharacter. \' EscapeSequencethe CV of theEscapeSequence

The CV ofEscapeSequenceCharacterEscapeSequeniethe CV of theCharacterEscapeSequence

The CV ofEscapeSequence0 [lookaheace DecimalDigifis @ <NUL> character (Unicode value 0000).

The CV ofEscapeSequenceHexEscapeSequenisethe CV of theHexEscapeSequence

The CV ofEs@peSequence UnicodeEscapeSequenisehe CV of theJnicodeEscapeSequence

The CV of CharacterEscapeSequence SingleEscapeCharactes the character whosgode unitvalue is |
determined by th8ingleEscapeCharacteiccording to the following table:

Escape Sequence Lode UnitValue Name Symbol ‘

\b \ u0008 backspace <BS>
\'t \ u0009 horizontal tab <HT>
\'n \ UOOOA line feed (new line) <LF>
\v \ u000B vertical tab <VT>
\f \ uoooC form feed <FF>
\r \'u000D carriage return <CR>
\ " \ u0022 double quote !

\' \ u0027 single quote '

\\ \ u005C backslash \

The CV ofCharacterEscapeSequenceNonEscapeCharactés the CV of theNonEscapeCharacter

The CV of NonEscapeCharacter. SourceCharactetbut not EscapeCharacteor LineTerminatoris the
SourceCharactecharacter itself.

The CV ofHexEscapeSequencex HexDigit HexDigit is the character whogmde unitvalue is (16 times the|
MV of the first HexDigit) plus the MV of the secondexDigit

12 January 2009

[

Deleted: code point

(Deleted: Code Point

[

Deleted: code point

-22 -

The CV ofUnicodeEscapeSequenceu HexDigit HexDigit HexDigit HexDigitis the character whogmde unit [

value is (4096 (that is, Tptimes the MV of the firsHexDigif) plus (256 (that is, B times the MV of the
secondHexDigit) plus (16 tines the MV of the thirddexDigit) plus the MV of the fourttidexDigit

NOTE

Aline terminatorcharacter cannot appear in a string litergtxcept whepreceded by a backslash as

a 6LineContinuationd t 0o gequendeuThee cortedt avay domgatsg a kine a r

terminator character to be part of the string value of a string literal is to use an escape sequence such as
\'n or\ uOOOA.

7.8.5 Regular Expression Literals

A regular expression literal is an input element thatdeverted to a RegExp object (section 15 28%h

Deleted: code point]
Deleted: 'LineTerminator']
Deleted: even if]
Deleted: when it is scanned]

time the literal is evaluategQ’'wo regular expression literals in a program evaluate to regular expression
objects that never compare as= to each other even if the two literals' contents are identical. A RegExp
object may also be created at runtime hgw Reg Exp (section 15.10.4) or calling th®egExp

Deleted: The object is created before evaluation of
the containing program or function begins. Evaluatic
of the literal produces a reference to that object; it d
not create a new object.

constructor as a function (section 15.10.3).

The productions below describe the syntax for‘a regular expression literal and are used by the input
element scanner to find the end of the regular.expression lifEnal strings of characters comprising the
RegularExpressionBodyand the RegularExpressionFlagsare passed uninterpreted to the regular
expression constructor, which interprets them according to its. own, more stringent grammar. An
implementation may extenthe regular expression constructor's grammar, but it should not extend the
RegularExpressionBodynd RegularExpressionFlagproductions or the. productions used by these
productions.

Syntax

RegularExpressionLiteral
| RegularExpressionBody RegularExpressionFlags

RegularExpressionBody
RegularExpressionFirstChdegularExpressionChars

RegularExpressionChars
[empty]
RegularExpressionChars RegularExpressionChar

RegularExpressionFirstChar
NonTerminatobut not* or\ or/ or
Backslash&quence
RegularExpressionClass

RegularExpressionChar
NonTerminatobut not\ or/ or
BackslashSequence
RegularExpressionClass:

BackslashSequence
\ NonTerminator

NonTerminator:
SourceCharactebut not LineTerminator

RegularExpressionClass
[RegularExpressidblassPreambleRegularExpressionClassChais

RegularExpressidblassPreamble:
em[zty

e

12 January 2009

-23-

RegularExpressionClassChars

empty
RegularExpressionClassChamRegularExpressionClassChar

RegularExpressionClassChar
NonTerminatoibut not] or\ or -
- RegularExpressionClassChar

BackslashExpression

RegularExpressionFlags
[empty]
RegularExpressionFlags IdentifierPart

NOTE
Regular expression literals may not be empty; instead of representing an empty regular expressic
literal, the characters// start a singleline comment. To specify an empty regular expression, use

1(?:)/

Semantics

A regular expression litergtvaluates taa value of the Object typghat is an instance of the standaid [Deleted: stands for]
built-in constructor RegExpThis value is determined in two steps: first, the characters comprising the

regular expression'fRegularExpressionBodynd RegularExpressionFlagproduction expansions are
collected uninterpreted into two strings Pattern and Flags, respectively. ddigntime the literal is
evaluateda new object is created as if Iblye expressionnew RegExp (Pattern, Flags) where
RegExpis the standard budindconstructor with that‘namehe newly construted objegtbecomes the
value of the RegularExpressionLiteraf the call tonew RegExp would generatgan error,the error
must be reported while scanning the program

7.9 Automatic Semicolon Insertion { Deleted: becomes the value of the

Deleted: constructor is called with two
arguments Pattern and Flags and t

Deleted: result

Certain ECMAScript statements nigty statement, variable statement, expression staterdentyhile RegularExpressiont teral
statementcontinue statementbreak statementreturn - statement, andhrow statement) must be

terminated with semicolons. Such semicolons may always appear explicitly in the source dext.| F
convenience, however, such semicolons may be omitted from the source text in certain situations. The Deleted: an implementation may, at its

situations are described by saying that semicolons are automatically inserted into the source code tok discretion, either report the error immediately

stream in-those situations. while scanning the program, or it may defer tt
error until the regular expression literal is

Deleted: |If

Deleted: s

A

7.9.1 Rules of Automatic Semicolon Insertion evaluated in the course of program execution
e When, as the program is parsed from left to right, a token (calledffaeding tokehis encountered Comment [pL4]: Note that both IE and FF dete
that is not allowed by any production of the grammar, then a semicolon is automatically inserte(€1y (tstcase below).
before the offending tokeri one or more of the following conditions is true: <script>
. ar falsy = function(){return
1." The offending token is separated from the previous token by at leadtin@®erminator 0}0: b SIS
. . re = /[/)/;
2. The offending token i$. alert(re);
if (falsy) {
¢ When, as the program is parsed from left to right, the end of the input stream of tekens i ;?ezrt:(rgg)'
encountered and the parser is unable to parse the input token stream as a single compli) '
ECMAScript Program then a semicolon is automatically inserted at the end of the input stream. </script>

¢ When, as the program is parsed from left to right, a token is encountered that is allowed by somrr
production of the grammar, but the production iseatricted productiorand the token would be the
first token for a terminal or nonterminal immediately folwvi ng t h e [sonimeTerdnisaori 0 n
herep wi thin the restricted production (and thei
the restricted token is separated from the previous token by at leastim@®erminator then a
semicolon is atomatically inserted before the restricted token.

However, there is an additional overriding condition on the preceding rules: a semicolon is neve
inserted automatically if the semicolon would then be parsed as an empty statement or if that semicol:
would become one of the two semicolons in the heaflarfor statement (section 12.6.3).

NOTE
These are the only restricted productions in the grammar:

12 January 2009

7.9.2

- 24 -

PostfixExpression
LeftHandSideExpressiofno LineTerminatothere] ++
LeftHandSideExpressiofno LineTerminatothere] --

ContinueStatement
continue [no LineTerminatoihere] Identifieryy ;

BreakStatement
break [noLineTerminatotere] ldentifier,y;

ReturnStatement
return [no LineTerminatorhere] Expressiogm;

ThrowStatement
throw [no LineTerminatohere] Expression

The practical effect of thesestricted productions is.as follows:

¢ When a++ or -- token is encountered where the parser would treat it as a postfix operator, and at
least oneLineTerminatoroccurred between the preceding token and theor -- token, then a
semicolon is automaticallynserted before the+ or -- token.

e When acontinue , break , return¢ , or throw token is encountered andlaneTerminatoris
encountered before the next token, a semicolon is automatically inserted aftepritirue
break , return , orthrow token.

The resuling practical advice to. ECMAScript programmers is:

e A postfix ++ or -- operator should appear on the same line as its operand.

e An Expressionin areturn or throw statement should start on the same line asréltern or
throw token.

e A label in abreak or continue statement should be on the same line as ltheak or
continue token.

Examples of/Automatic Semicolon Insertion

The source

{12}3
is not a valid sentence in the ECMAScript. grammar, even with the automatic semicolon insertion rules.
In contast, the source

{1

213
is also not a valid ECMAScript sentence, but is transformed by automatic semicolon insertion into the
following:

{1

213
which is a valid ECMAScript sentence.
The source

for (a; b

)

is not a valid ECMAScript sentence and st altered by automatic semicolon insertion because the
semicolon is needed for the header dba statement. Automatic semicolon insertion never inserts one
of the two semicolons in the header ofoa statement.

The source

12 January 2009

- 25 -

return
a+b

is transformed Y automatic semicolon insertion into the following:

return;
a+b;

NOTE

The expressiom + b is not treated as a value to be returned by theurn statement, because a

'LineTerminator' separates it from the tokesturn
The source
a=b
++C
is transforme by automatic semicolon insertion into the following:

a=b;
++C;

NOTE
The tokent++ is not treated as a postfix operator applying to the varidbléecause a 'LineTerminator'
occurs betweeb and ++.

The source
if (@>b)
elsec=d

is not a valid ECMAScript sentence and is not altered by automatic semicolon insertion befelgethe

token, even though no production of the grammar applies at that point, because an automatically insert

semicolon would then be parsed as an empty stent.
The source
a=b+c
(d-+ e):print()
is not transformed by automatic semicolon insertion, because the parenthesised expression that
the second line can be interpreted as an argument list for a function call:
a=b +c(d + e).print()

beg

In the cicumstance that an assignment statement must begin with a left parenthesis, it is a good idea -

the programmer to provide an explicit semicolon at the end of the preceding statement rather than
on automatic semicolon insertion.

Types

Algorithms within this specification manipulate values each of which has an associated type. The pg
value types are exactly those defined in this section. Types are further subclassified into ECMA
lanquage types and specification types.

An ECMAScript lan@age type corresponds to values that are directly manipulated by an ECMAS
programmer using the ECMAScrpt lanquage. The ECMAScript language types are Undefined, Null, Bq
String, Number, and Object.

A specification type corresponds to metaluesthat are used within algorithms to describe the semantics
ECMAScript lamguage constructs and ECMAScript language types. The specification types are Refe
List, Completion, Property Descriptor, Property Identifier, Lexical Environment, and EnviminRecord.

Specification type values are specification artifacts that do not necessarily correspond to any specifi

within an ECMAScript implementaiton. Specification type values are used to describe intermediate res|

12 January 2009

to re

ssib
Scrif

cript
oleal

of
ence

ent
ults

8.1

8.2

8.3

8.4

8.5

- 26 -

ECMAScript_expression ewaation but such values cannot be stored as properties of objects or values of

ECMAScript language variables. Deleted: A value is an entity that takes on onenafe
. types. There aminetypes (Undefined, Null, Boolean,
The Undefined Type String, Number, Object, Reference, Listd

The Undefined type has exactly one value, callediefined. Any variable that has not been assigned a

Completior). Values of type Reference, List, and
Completion are used only as intermediate results of

value has the valuendefined. expression evaluation and cannot be stored as prope

of objects.

The Null Type
The Null type has exactly one value, calleall.

The Boolean Type
The Boolean type represents a logical entity having two values, dallecandfalse.
The String Type

The String type is the set of all finite ordered sequences of zero or mebé& LBsigned integer values
(el ement so) . The String type is generally used to

in which case each element in tB&ing is treated as'gode unitvalue (see section 6). Each element is [Deleted:

code point]

regarded as occupying a position within the sequence. These positions are indexed with nonnegative
integers. The first element (if any) is at position 0, the next elemémingi) at position 1, and so on. The
length of a string is the number of elements (i.e-pltévalues) within it. The empty string has length zero

and therefore contains no elements.

When a string contains actual textual data, each element is considebedatsingle UTR6 unit. Whether

or not this is the actual storage format of a String, the characters within a String are numbered as though
they were represented using U-LB. All operations on Strings (except as otherwise stated) treat them as
sequence of undifferentiated 1®it unsigned integers; they do not ensure the resulting string is in
normalised form, nor do they ensure languagesitive results.

NOTE

The rationale behind these decisions was to keep the implementation of Strings as simplighand
performing as possible. The intent is that textual data.coming into the execution environment from outside
(e.g., user input,text read from a file or received over the network, etc.) be converted to Unicode
Normalised Form C before the running prograees it. Usually this would occur at the same time incoming

text is converted from its original character encoding to Unicode (and would impose no additional
overhead). Since it'is recommended that ECMAScript source code be in Normalised Form Cjtetaigy |

are guaranteed to be normalised (if source text is guaranteed to be normalised), as long as they do not
contain any Unicode escape sequences.

The Number Type

The Number type has exactly 18437736874454810627 (thaf*-2°3+3) valuesrepresenting the double
precision. 64bit format |IEEE 754 values as specified in the IEEE Standard for Binary FloRbig
Arithmetic, except that the 9007199254740990 (that¥&2) di st-aMwmb d@&rNotval ues of
Standard are represented HCMAScript as a single specidlaN value. (Note that theNaN value is

produced by the program expressidaN) In some implementations, external code might be &hbldetect
a difference between various N@Number values, but such behaviour is implementatiependent; to

Deleted:

, assuming that the globally defined variab}

NaNhas not been altered by program execution

ECMAScript code, all NaN values are indistinguishable from each other.

There are two other special values, calpesitive Infinity andnegativelnfinity . For brevity, these values
are also referred to for expository purposes by the symbo and—w, respectively. (Note that these two
infinite number values are produced by the program expressibrimity (or simply Infinity) and

- Infinity v) { Deleted:

, assuning that the globally defined variabl¢
has not been altered by program executit

Infinity
The other 18437736874454810624 (that i¥-2°% values are called the finite numbers. Half of these are
positive numbers and half are negative numbers; for efiaite positive number there is a corresponding
negative number having the same magnitude.

Note that there is both positive zeroand anegative zero For brevity, these values are also referred to for
expository purposes by the symbaié and-0, respedtely. (Note that these two zero number values are
produced by the program expressier®s (or simply0) and- 0.)

The 18437736874454810622 (that i§*-25-2) finite nonzero values are of two kinds:

12 January 2009

8.6

8.6.1

- 27 -

18428729675200069632 (that i€*-2%% of them are normised, having the form
sxmx 2°

wheresis +1 or-1, mis a positive integer less thafi®sut not less than®3, ande is an integer ranging
from -1074 to 971, inclusive.

The remaining 9007199254740990 (that i¥-2) values are denormalised, havithg form
sxmx 2°
wheresis +1 or-1, mis a positive integer less thaf’2ande is —1074.

Note that all the positive and negative integers whose magnitude is no greatePtham 2presentable in
the Number type (indeed, the integer 0 has twoesentations+0 and- 0).

A finite number has awldd significandif it is nonzero and the integen used to express it (in one of the
two forms shown above) is odd. Otherwise, it hasaan significand

In this specification, prhxe yw he nemesentsi anhexact manaepoereal v
mathematical quantity (which might even be an irrational number sun) means a number value chosen

in the following manner. Consider the set of allfinite values of the Number type —Oitemoved and wi

two additional values added to it that are not representable in the Number type, natfiiwisich is +1x

253 2°7Y and-2'2* (which is—1 x 2% x 2°7%. Choose the member of this set that is closest in value to

If two values of the set arequally close, then the one with an even significand is chosen; for this purpose,
the two extra values'®* and—2'?*are considered.to have @ven significands. Finally,'{f“was chosen,
replace it with+wo; if —2'°%*was chosen, replace it wi—ow; if +0 was chosen, replace it wi—0 if and only

if x is less than zero; any other.chosen value is used unchanged. The result is the number xalTdifor
procedure corresponds exactly to the behaviour of

Some ECMAGSript operators deal only with integers in the ra—23' through 2'-1, inclusive, or in the
range 0 through %-1, inclusive. These operators accept any value of the Number type but first converi
each such value to.one of*dnteger values. See the deigtions of the Tolnt32 and ToUint32 operators in
sectiong9.5and9.6, respectively.

The Object Type

An Object isa collection of propertiesEach propertyis either a named data property, a nanaedessor
property, or an internal property.

¢ _A named data propertassociates a name. with a value and a set of boolean attributes.

¢ | A namedaccessorpropertyassociates a name with a get method, a set method, and a set of bgolea
attributes.

¢ An internal propertyhas .no name and is not directly accessible via the property accessor opefators
Internal properties exist purely fepecificationpurposes. How and whenternalproperties are used ig
specified by.the language specification below.

There are two types afccess for normal (neimternal) propertiesget and put, corresponding to retrieval
and assignmentespectively.

Property Attributes

Attributes are used in this specification to define and erpthe state of named properties.named
data property associates a name with the follovdtigbutes

Table 1 Attributes of a Named Data Property

Attribute Name Value Description
Domain

Value Any The value retrieved byeading the property.
ECMAScript
language
type

12 January 2009

Deleted: 0

Deleted: 0

Deleted: an unordered

Deleted: consists of a name, a value and a s
of attributes.

[[Writ able]]

Boolean

If false_attempts by ECMAScript code to assign the

- 28 -

propertyomtsuceeddue wi | |

[[Enumerable]]

Boolean

If true, the property will be enumerated by a-fior

enumeration (section 12.6.4). Otherwise, gheperty is said

to be norenumerable.

[[Configurablé]

Boolean

If false_attempts to delete the propernthange the propert:

to be an accessor propenty,change its attributes withil.

A namedaccessoproperty associates a name with the followattributes

Table 2 Attributes of a Named AccessorProperty

Attribute Name

Value TypeDomain

Description

Get Objector Undefined If the valueds an Object it must be a function. The
function.is called with nerguments to return the
property value each time the propegyead.

Set Objector Undefined | If.the value is an Object it must be a function. Th

function is called with the assigned value as its so|
argument each time the property is assigned. The|
effect.of a property'§Set]] method maybut it not
required\tohave an effect on the valueuated by
subsequentccalls to the properf{Get]] function.

[[Enumerable]] | Boolean If true, the property is to be enumerated by airfor
enumeration (section 12.6.4). Otherwise, the prop
IS'saidhto be noenumerable.

[[Configurabld] |<Boolean If false attempts to delete the properthange the

propeérty tobea data propertyor change its attribute
will fail.

v

If thé value of.an attribute is nexplicitly. specified for a named property, the default value as defined in

the following table is used:

Deleted: A property can have zero or more attribut

from the following sef]

Attribute
Table 3 Default Attribute Values
Attribute Default Value
Name
[[Valuell undefined

Get undefined

Set undefined

Writable false

Enumerable]] | false

Configurablg] | false

8.6.2 Object Internal Properties and Methods

This specification uses varioysternal properties and methods define the semantics of object values. [Deleted: Internal]

Thse internal properties and methate not part of th&CMAScriptlanguage. They are defined by this

specification purely for expository purposes. An implementation of ECMAScript must behave as if it
produced ad operated upon internal properties in the manner described here. For the purposes of this
document, the names of internal properties are enclosed in double square brackets [[]]. When an

12 January 2009

- 29-

algorithm uses an internal property of an object and the objectrduteisnplement the indicated internal
property, aTypeError exception is thrown.

12 January 2009

Jhe following table summarises the internal properties used by this specificatibrmre applicable to| Deleted: There are two types of access for
all ECMAScript objects The description indicates their behaviour for native ECMAScript objectiess normal (norinternal) propertiesgetandput,
stated otherwise in this document for particular types of ECMAScript objects. In particular, Array fggg:ilzi‘\’lgwg to retrieval and assignment,
ob@ects have a s_liqhtly di_ffgl_'erdefinition of the [[ThrowingPut]] method (gee 15.4.5.19nd String Native ECMAScript objects have an interal
objects have a differerdefinition of the [[Ge&OwnProperty]] methodHost objects magupportthese property called [[Prototype]]. The value of this
property is eithenull or an object and is use
for implementing inheritanc&@ropertieof the
, [[Prototype]] object are visible as properties ¢
The fAValue Type Domainodé column of the foll owj\n:/ the child object for thpurposes of get access,
internal properties. The type names refer to the types desfingelction8 augumented by the following but not for put accesp.
addi ti onahy nmenass fihe valMASCcmaiyptb el aanpgyitaED@ mnieys mes{ Deleted: implement J
Undefined, Nul. Boolean, String, or Number.iSpecOp means the interpna { Deleted: methods]
i mpl ement ation provided pirocedure defined by fn —
by a list of descriptie parameter names. If a paraméter hame is the same as a typ¢heaniee name [Deleted: implements]
describes._theb/e of the parameter. | f a fiSpecOpo retur[Deleted: methods]
symbolfi Y dand the type of the returned value.
Table 4 Internal Properties Common to(All Objects
Internal Property YValue TypeDomain Description [Deleted: Parameters]
[[Prototypel]] Objector Null The prototype of this object. [Deleted: none]
[[Class]] Sring A st_ring _value indicatinq.a specification _define [Deleted: none]
classification of objects - - —
[[PrimitiveValue]] primitive Internal state information associated with this object (Deteted: _the kind of this object)
Extensible Boolean If true, own properties may be added to the object. [Deleted: none]
[[Get]] SpecOjfpropertyNamgY Returns the value of theamedproperty. [De|eted; P]
any
[[GetOwnProperty]] SpecOppropertyNamg Y. Returns the Property Descriptor of the named owr|
Undefinedor Property property of this object, arndefinedif absent.
Descriptor
GetProperty] SpecOgpropertyNamg Y. Returnsthe fully populatedProperty Descriptorof the
Undefinedor Property named property of this object, ondefined if absent.
Descriptor
[[Put]] SpecOp(propertyNameany) | Sets the specifiedamedproperty tpthe value of the [Ddeted; P]
second parameter [D -
= —_— eleted: Value]
[[CanPut]] SpecOp(propertyNamg Y Returns gBooleanvalue indicating whether a [[Put
Boolean operation withPropertyNamesan be performed (Deleted: _value)
[[HasProperty]] SpecOp(propertyNamg Y Returns aBpolean value indicating whether the obj [Deleted: P]
boolean already has aropertywith the given name. O\ ~[De|eted: boolean]
[[Delete]] SpecOp(PropertyName Removes the specifiedamed ownproperty from the| N\ ‘(Delete 4 will succeed]
Boolear) Y Boolean object.The flag controls failure handling. . :
[[DefaultValue]] SpecOp(Hint) Y_ primitive Hint is a stringReturns a default value for the object \ {De'emdi P]
[[DefineOwnProperty]] | SpecOppropertyName, Creates or alterthe named own property to have t [Deleted: b]
PropertyDegiptorc state descrlbed by a Property DescriptorThe flag [Deleted: member]
Boolean controls failure handling { - —
ThrowingPut SpecOppropertyNameany, | Sets the specified named propertythe value of the {De'e“?d' » which should be a primitive value (”0'}
. " an object or reference)
Boolean second parameterheflag controlsfailure handling.
Comment [pL5]: Divide the table into two; one
X X X X .| properties of all objects, and the othepisperties
All ECMAScript objects have an internal property called [[Prototype]]. The value of this proper{y is | that apply to only some objects.
either null_or_an object and is used for implementing inheritance. Named data properties df th Deleted: [[Construct] f—i
[[Prototype]] object are inherited (are visible as properties of the child object) for the purposes pf ge :
access, but not for put access. Named accessor propertiesh@aréed for both get access and put
access.

- 30 -

Every object (including host objects) must implement the [[Prototyp§fllass]]. and [[Extensible]] [

Deleted: and]

internal dataproperties and the [[Get]]|[GetProperty]], [[GetOwnProperty]][[DefineOwnProperty]],
[[Put]], [[CanPut]], [[HasProperty]], [[Delete]], and [[DefaultValuelhternal methods. (Note, however,
that the [[DefaultValue]] method may, for some objects, simply throkygeError exception.)

The value of the [[Prototype]] property must be either an abge null, and every [[Prototype]] chain
must have finite length (that is, starting from any object, recursively accessing the [[Prototype]] property
must eventually lead to aull value). Whether or not a native object can have a host object as its
[[Prototype]] depends on the implementation.

The value of the [[Class]] property is defined by this specification for every kind of-ioudbject. The
value of the [[Class]] property of a host object may be &fyng value, even a value used by a bt
object for its [[Class]] property. The value of a [[Class]] property is used internally to distinguish
different kinds of builtin objects. Note that this specification does not provide any means for a program
to access that value except throughject.proto type.toString (see 15.2.4.2).

For most native objects thgommon internamethods.behave as described in describefl.ir?, except
that Array objects have a slightly different implementation of tfié[pwingPut]] method (see 15.4.5.1)

Deleted: [[Get]], [[Put]], [CanPut]], [[HasPropeny]]J
[[Delete]] and [[DefaultValue]]

and String objects have a slightly different implementation of the [[GetOwnPropertgihod (see
15.5.5.2) Host objects may implement these methods in any manner unless specified otherwise; f

Deleted: 8.6.2.1,8.6.2.2,8.6.2.3,8.6.2.4,8.6.25¢
8.6.2.6, repectively

example, one possibility is that [[Get]] and [[Put]] for a particular host object indeed fetch and store
property values but [[HasProperty]] always generdtése.

Table 5 Internal Properties Only Defined for.Some Objects ‘

assuméD is a native ECMAScript obje@ndP is a

Deleted: In the following algorithm descriptions,
string.

Internal Property Value Type Domain Description
Construct SpecOfa list ofany) Y Constructs an object. Invoked via tmew operator.
Object The arguments to the SpecOp are the arguments p

to the new_operator. Objects that implement thi
internal method are callexbnstructors

SpecOfa list ofany) ¥ _any | Executes ode associated with the object. Invoked vi
or Reference function call.expressionthe arguments to the Spec
are the “arguments passed to the function
expression. Objects that implement this intern
method arefunctions Only functions that are ho
objects ma return Reference values.

HaslInstance]] SpecOyany) Y. Boolean Returns a Boolean value indicating whethethe

argument is an Object thdelegates behaviour to th
object. Of thestandard buitin ECMAScript objects,
only Objectsthat are instances of the standard buil
constructoFunction implement [[HasInstance]].

Scope Lexical Environment A lexical environment that defines the environmen

which a Function object is executedf the standarg
built-in ECMAScript objets, only Objects that arg
instances of the standard btiiit constructorFunction
implement [[Scope]].

FormalParameters]] | List A possibly empty List containing the identifier strin

of a F uFormdlHarameted istOf the standarg
built-in ECMAScript objects, onlyObjects that arg
instances of the standard buiiit constructor Functio
implement [[FormalParameterList]].

Code ECMAScript code The ECMAScript code of a function. Of the stand

built-in ECMAScript objects, onlyObjects that ar¢
instances of the standard buiiit constructor Functio
implement [[Code]].

Match SpecOfstring, index ¥. Tests for a regular expression match and retur

MatchResult MatchResult value (see section 15.10.2.0F the
standard buitin ECMAScript objects only only
objects that are instances of the standard -bui
constructoRegExpimplement [[Match]].

12 January 2009

-31-

not |

8.7 The ReferenceSpecification Type
" The Reference type is used to explain the behaviour of spehators asdelete , typeof , and the
assignment operators. For example, the-fefbd operand of an assignment is expected to produce a
reference. The behaviour of assignment could, instead, be explained entirely in terms of a case analysis
the syntactidorm of the lefthand operand of an assignment operator, but for one difficulty: function calls
are permitted to return references. This possibility is admitted purely for the sake of host objects. No buil
in ECMAScript function defined by this specifigan returns a reference and there is no provision for a
userdefined function to return a reference. (Another reason not to use a syntactic case analysis is thai
would be lengthy and awkward, affecting many parts of the specification.)
A Referenceis areference to a resolved name binding. A Reference consists of three componeh&seth
value the referenced nameand the Boolean valuestrict referenceflag. The base value is either null, a
object, or an environment record (10.2.1). A base value of null indicates that the reference could
resolved to a binding. The referenced name is a string
The following abstract operations are used in this specification to acceserttponents of references:
e GetBase(V). Returns the bagseluecomponent of.the reference V.
o GetReferencedNan(¥). Returns thgeferencechame component of the reference V.
¢ IsStrictReference(V). Returns the strict referencmponent of the.reference V. \
e IsPropertyReference(V). Returrieue if the base value is an object afalse if the base value is an
environment record.
e IsUnresolvableReference(VReturnstrue if the base value isull andfalseotherwise.
The followingabstract operations are used in this specification to operate on references:
8.7.1 GetValue (V)
1. If Type(V) is not Reference, retui.
2. Letbasebe the result of callinGGetBasey).
3. If UnresolvableReferenc¥], throw. aReferenceError exception.
4. If IsPropertyReférenc&), then
a. Return the result of callinthe [[Get]] method opase passingGetReferencedNan(¥) for
theargument
5. Else,basemust be an environment record.
a. Return the reault of callinthe GetBindingValudy, S) concrete method of Result(2) passinig
GetReferencedNam¥jand IsStrictReferenc¥j as arguments.
8.7.2 PutValue (V, W)
1. If Type(V) is not Reference, throw ReferenceError exception.
2. Lket basebe the result of callingetBaseY).
3. If UnresolvableReferenc¥], then
aun If IsStrictReference) istrue, then throw eReferenceError exception.
b. Call the [[ThrowngPut]] method for the global object, passing Beferencelame{) for
the property namey for the value, andalse for the Throwflag.
4. Else if IsPropertyReference), then
a. Call'the [[ThrowngPut]] method ofbase passing GetReferencedNarwgfor the property
name W for the value, andsStrictReference() for the Throw flag.
5. Elsebasemust be a reference whose base is an environment record. So,
a. Call theSetMutableBindind{, V, S) concretemethod ofbase passing
GetReferencelame) for N, W for V, andlsStrictReference() for S.
6. Return.
8.8 The List Specification Type
The List type is used to explain the evaluation of argument lists (see 11.2@gwnexpressionsin
function calls and in other algorithms where a simple list of values is nee¥allies of the List type are
simply ordered sequences of valuebe$e sequences may be of any length.
8.9 The Completion Specification Type

JThe Completion typés used to explain the behaviour of statemermiegk
throw) that perform nonlocal transfers of control. Values of the Completion type are triples of the form

Deleted: 1

8.6.2.1 [[Get]] (P)1

When the [[Get]] method dD is called with
property namé, the following steps arekan
IfOdoesndét have aPmoto
step 41
Get the value of the propery.

Return Result(2).

If the [[Prototype]] ofO is null, return
undefined.§
Call the [[Get]] method of [[Prototype]] with
property namé.{

Return Result(5).

8.6.2.2 [[Put]] (P, V)T

When the [[Put]] method d® is called with
propertyP and valueV, the following steps are
taken{

<#>Call the [[CanPut]] method d@® with name
P

<#>If Result(1) isfalse, return
<#fOdoesndt have
go to step 4]

<#>Set the value of the property%o The
attributes of the property are not chanfed.
<#>Returnf

<#>Create a property with nanf set its value
to Vand give it empty attributef.

<#>Return{

Note, however, that D is an Array object, it
has a more elaborate [[Putflethod (15.4.5.1§.
8.6.2.3 [[CanPut]] (P)1

The [[CanPut]] method is used only by the
[[Put]] method{

When the [[CanPut]] method @i is called
with propertyP, the following steps are takéh
IfOdoesnodt have aPpmoto

step 41 h

a Pp

Deleted: The internal Reference type is not a
language data typdt is defined by this
specification purely for expository purposg

Deleted: Another use of the Reference type i
to explain the determirian of thethis value for
a function callf

Deleted: object

Deleted: GetPropertyName

Deleted: property

Deleted: Call

Deleted: Result(2) ishull

Deleted: Call

Deleted: Result(2)

Deleted: GetPropertyName

Deleted: property name

N O Y O

Deleted: Return Resul).

)
J
J
)
J
J
)
)
J
J
)

Deleted: <#>If Type(V) is not Reference,
throw aReferenceError exceptionf
<#>Call GetBase\).1

, continue , return and

12 January 2009

Deleted: The internal List type is not a
language data typdt is defined by this
specification purely for expository purposg”

(

Deleted: and]

Deleted: The internal Completion type is not
language data typdt is defined by this
specification purely for expository purpose_

-32-

(type value target), wheretype is one ofnormal, break, continue, return, or throw, value is any
ECMAScriptlanguagevalue orempty, andtargetis any ECMAScript identifier oempty.

The term fiabrupt completiond refenmosnalt o any compl et

8.10 The Property Descriptorand Property Identifier_Specification Types

The Property Descriptor type is used to explain the manipulation and reification of named property
attributes. Values of the Property Descriptor type
name is an attribute name and value is a corresponding attribute value. In addition, any field beay
present or absent

Property Descriptor values may be further classified as data property descriptors and accessor property
descriptors based upon the existe or use of certain figs. A data property descriptor is one that includes

any fields named either [[Value]], or [[Writable]].rAaccessor property descriptor is one that includes any
fields named eithef{Get]], or [[Set]]. Any property descriptor may have fields nanff@humerable]], and
[[Configurabld]. A Property Descriptor value may not be both a data property descriptor and an accessor
property descriptor however it may be neither. A generic property descriptor is a Property Descriptor value
that is neither a dataroperty descriptor nor an accessor property descriptor.

For notational conenience within this specification, an object litedldte syntax can be used to define a
property descriptor value. For example, Property Descrifptatue:42ywritable: falseconfigurable true}
defines a data property descriptor. The order of listing fields names.is not signiffaaynfiields that are
not explicitly listedare considered to be absent

In_specification text and algorithms, dot notation may be used to refardpecific field of a Property
Descriptor. For example, i f D is a wproperty descri
namedvalueo .

The Property Identi&r type is used to associate a property name with a Property Descriptor. Vathes of
Property Identifier type are pairs of the form (name, descriptor). where name is a string and descriptor is a
Property Desdptor value.

The following abstract operations are used in this specification to operate upon Property Descriptor values

8.101 IsAccessorDeéscriptor (Desc)
When theabstract operatiotsAccessorDescriptois calledwith propertydescriptorDescthe following
steps are taken:
1. If'Descisundefined, thenreturnfalse:

24 If bothDesc[[Get]] andDesc[[Set]] are absenthen returrfalse
3. Returntrue.

8.102 IsDataDescriptor (Desc)

When theabstract operatiofsDataDescriptois calledwith propertydescriptorDescthe following steps
are taken:

1. If Descis undefined, thenreturnfalse
2. If bothDes¢[[Valu€]] and Desc[[Writable]] are absenthen returrfalse
3. Returntrue.

8.103 IsGenericDescriptor (Desc)
When theabstract operatiomsGenericDescriptois calledwith propertydescriptorDescthe following
steps are taken:

1. If Descis undefined, thenreturnfalse
2. If IsAccessorDescriptaflesq and IsDataDescriptdbesq arebothfalse then returrirue.
3. Returnfalse

8.104 FromPropertyDescriptor (_ Desc)

When the abstract operationFromPropertyDescriptoris called with property descriptor Desc the
following steps are takenthe following steps are taken:

The following algorithm assumes thadbesc is a fully populated Property Descriptor, such as that
returned from [[GetOwnProperty]]

12 January 2009

- 33-

1. If Descis undefined, then returrundefined.
2. Let obj be the result of creating new object as if by the expressioew Object() where Object is the
standard buitin constructor with that name.
3. If IsDataDescriptoiDesq is true, then
a. Call the [[Put]] method obbjwi t h ar guments fAvalued and
b. Call the [[Put]] method ofbjwi t h ar g u me n tBescfiWwitabldl.abl eo a
4. Else,IsAccessorDescriptabflesq must betrue, so
a. Call the [[Put]] method obbjwi t h ar geh me m [§GER. s c .
b. Call the [[Put]] method ofbjwi t h ar seth meDedt[ESet]fi
5. Call the [[Put]] method obbjwi t h ar gument s Desef[Bnumeeabla bl ed and

6: Call the [[Put]] method obbjwi t h a r coofigueabl® s aDist[[Configurablg).

7. Returnobj.

8.105 ToPropertyDescriptor (Obj)

When theabstract operatiodoPropertyDescriptois calledwith object Desc the following steps are

taken:

1. If Type(Obj) is not Object throw d&ypeError _exception

2. Letdescbe the result of creating a new Praperty Descriptor. that initially has no fields.

3. If the resilt of calling the [[HasProperty]]¢ method &fbj with-argument "enumerable” tsue, then
a. Letenum be the result of calling the [[Get]] method Obj with "enumerable".
b. Set the [[Enumerable]] field adescto ToBooleanénun).

4. If the result of calling the [[HasProperty]] \method @bj with argument:‘configurable" isue, then
a. Letconf be the result of calling the [[Get]] méthod ©bj with argument "configurable".
b. Set the [[Configurable]] field oflescto ToBoolean¢onf).

5. If the result of calling the [[HasProperty]] method@hj with argument "value" isrue, then
a. Letvaluebe the result of calling the [[Get]] method®bjwi t h ar gu ment f
b. Set the [[Value]] field ofdescto value.

6. If the result of calling the [[HasPrepty]] method ofObj with argument "writable" igrue, then
a. Letwritablebe the result of calling the [[Get]] method ©bj with argument "writable".
b. Set the [[Writable]] field ofdescto ToBooleangritable).

7. If the result of calling the [[HasProperty]]'method ®bj with argument et' is true, then
a. Letgetterbe the result of calling the [[Get]] method ©bj with argument get".
b. If IsCallable@ettel is false andgetteris notundefined, then throw alypeError exception.
c. Set the[[Get]] field ofidescto getter

8. Ifithe result of calling:the [[HasProperty]] method ©bj with argument Set' is true, then
a. Letsetterbe the result of calling.the [[Get]] method ©bj with argument Sef'".
b. If IsCallable&eter) s false andsetteris notundefined, then throw arypeError exception.
c. Set the[[Set]] field of descto setter

9. "If either desc[[Get]] or desc[[Set]] are present, then
a. If eitherdese[[Value]] ordesc[[Writable]] are present, then throwTaypeError exception.

10. Returndesc

8.11 The Lexical Environment and Environment Record Specification Types

The Lexical Environmentfand Environment Record types are used to explain the behaviour of

resolution in nested functions ardocks These types and theperations upon them are are defined |i

section 10.
8.12 Algorithms for Object Internal Methods
Property Description record, afithrowis a Boolean fg.
8.12.1 [[GetOwnProperty]] (P)

In the following algorithm descriptions, assurfeis a native ECMAScript objec® is a string,Descis a

When the [[GetOwnPropertylhternalmethod ofO is called with property namB, the following steps
are taken:
fOdoesndt have an owpetwnumdefieed.t y wi t h

Let D be a newly created Property DescriptSection 8.10) with no fields.
LetXbeO6s own proBerty named

name

nam

1
2.
3.
4. If Xis a data property, then

12 January 2009

-34-

a. SetD.[[Value]ltothevalueoXds [[Val ue]] att

b. SetD.[[Writable]]tothevalueoX6s [[Wr i tabl e]] a
5. ElseXis an accessor property, so

a. SetD.[[Get]] to the value oXd6 HGet]] attribute.

b. SetD.[[Set]] to the value oXd {Set]] attribute.
6. SetD.[[Enumerable]]tothevalueofd s [[Enumer abl e]] attribute.
7. SetD.[[Configurable]]to the valueok6 s [[Conf i gur abl e]] attribute.
8. ReturnD.

Note, however, that i© is a String object it has a more elaborate [[GetOwnProperty]] method (15.5.5.2).

8.12.2 [[GetProperty]] (P)

When the [[GetPropertylinternal method ofO is called with property namP, the following steps are
taken:

1. Letpropbe the result of callinghe [[GetOwnPropertylinternalmethod ofO with property named.
2. |f propis notundefined, return Result(1).

3. If the [[Prototype]linternal propertyof O is null £ returnundefined.

4. Call the [[GetProperty]internalmethod of [[Prototype]] with property nanie

5. Return Result(4).
8.123 [[Get]] (P)
When the [[Get]linternalmethod ofO is called with property name, the following steps are taken:

Let descbe te result of callinghe [[GetProperty]intérnalmethod ofO with property namé®.
If descis undefined, returnundefined.

If IsDataDescriptordesd is true, returndescf[Value]].

Otherwise, IsAccessorDescriptdgsg must be true sdet getterbe desc[[Get]].

If getteris undefined, returnundefined.

Return the result calling thigCall]] internalmethod ofgetterproviding O as thethis value and
providing no arguments.

8.124 [[CanPut]] (P)
When the [[CanPut]internalmethod ofO'is called with property name, the following steps are taken:

o |01 (3 00 |

1. Letdescbe the result of calling the [[GetOwnPropertyjlernalmethod ofO with argumentP.
2. If descis notundefined,then
a. IfilsAccessorDescriptodesg.is true, then
in. If desc[[Set]] is undefined, then returfalse.
li.__Else returrirue.
b. Else,descmust be a DmDescriptor so return the value @ésc[[Writable]].
Let proto be the internal [[PrototypeJhternalproperty ofO.
If'proto is null, then return the value of the [[Extensibléjlernalproperty ofO.
Letinheritedbe the result of calling the [[GetRyerty]] internalmethod ofproto with property name
P.
6. If inheritedis.undefined, return the value of the [[Extensible]] internal propertydf
7. If IsAccessorDescriptoniherited) is true, then
a. If inherited[[Set]] is undefined, then returrfalse.
b. Else returrtrue.
8. Else,inheritedmust be a DataDescriptor
a. If the [[Extensible]] internal property d is false, returnfalse.
b. Else return the value efherited[[Writable]].

NOTE
Host objects may define additional constraints upon [[Put]] operationgads$sible, host objects should
not allow [[Put]] operations in situations where this definition of [[CanPut]] returns false.

8.125 [[Throw ingPut]] (P, V, Throw)

When the [[ThrowingPut]linternal method ofQO is called with propertyP, valueV, and boolean flag
Throwthe following steps are taken:

1| |0

1. If the result of calling the [[CanPut]hternalmethod ofO with argumentP is false, then

12 January 2009

8.126

- 35-

a. |If Throwis true, then throw alypeError exception.
b. Else return.
2. LetownDesde the result of calling the etOwnProperty]] method d with argumentP.
3. If IsDataDescriptodwnDesg is true, then
a. Set the [[Value]] attribute of property of O to V.
b. Return.
4. Letdescbe the result of calling the [[GetProperty]] method®fvith argumentP. This may be
either anown or inherited accessor property descriptor or an inherited data property descriptor.
5. If IsAccessorDescriptodesq is true, then
a. Let setterbedesc[[Set]] which cannot beindefined.
b. Call the [[Call]] method ofetterproviding O as the this value and@viding V as the sole
argument.
6. Else, create a named data property nafeh objectO whose attributes are:
a. [[Valuel]]: V
b. [[Writable]]: true,
c. [[Enumerable]]: true,
d. [[Configurable]]: true.
7. Retun.

Note, however, that i© is an Array object, itthas a moedaborate [[ThrowingPut]] method (15.4.5.1).
[[Put]] (P, V)

8.12.7

[[Put]] is primarily used in the specification of buith methods. Algorithms. that require explicit contrq
over the handling of invalid property starehould.call [[ThrowngPut]] directly.

When the [[Put]]internal method»ofO is called with‘property® and valueV, the following steps are
taken:

1. Call the [[ThrowingPut]] internalmethod.ofO with arguments, V, andfalse.
2. Return.

[[HasProperty]] (P)

8.12.8

When the [[HasPropertylinternal method ofQ'is called with property namP, the following steps are
taken:

Let descbe the result of calling thg GetProperty]linternalmethod ofO with property namé®.
If descis undefinedythen returrfalse.
Else retrntrue.

[[Delete]] (P, Throw)

8.12.9

When the [[Delete]jnternalmethod ofO is called with property name and the boolean flaghrow, the
following steps are taken:

1. Letdescbe the result of callinthe [[GetOwnPrperty]] internalmethod ofO with property namé.
2. If desciswundefined, then returrtrue.
3. If desc[[Configurable]] istrue, then
a. Remove the own property with name P from O.
b. Returntrues
4. Else if Throw, then throw alypeError exception.
5. Returnfalse.

[[DefaultValuel] (hint)

When the [[DefaultValue]]nternalmethod ofO is called with hint String, the following steps are taken:

1. LettoStringbe the result of calling the [[Getihternalmethod of objecO with argument "toString".
2. If toStringis an object then,

3. Letstrbe the result of calling the [[Calljhternalmethod oftoString with O as the this value and
an empty argument list.

If stris a primitive value, returstr.

Let valueOfbe the result of calling the [[Getihternalmethod of objecD with argument "vlueOf".

o |01 |~

If valueOfis an object then,

12 January 2009

8.12.10

- 36 -

7. Letval be the result of calling the [[Callfhternalmethod ofvalueOf with O as the this value and
an empty argument list.

8. If valis a primitive value, returmal.

9. Throw aTypeError exception.

When the [[DefaultValue]] method @ is called with hint Number, the following steps are taken:

1. LetvalueOfbe the result of calling the [[Getihternalmethod of objecD with argument "valueOf".
2. If valueOfis an object then,
a. Letvalbe the result of ding the [[Call]] internalmethod ofvalueOf, with O as the this
value and an empty argument list.
b. If valis a primitive value, returrmal.
3. LettoStringbe the result of calling the [[Getihternalmethod of objecO with argument "toString".
4. |If toString is an object then,
a. Letstrbe the result of calling the [[Calljhternalmethod oftoString with O as the this
value and an empty argument list.
b. If stris a primitive value, returstr.
5. Throw aTypeError exception.

When the [[DefaultValue]lnternalmethod ofO4dS.called with no hint, then it behaves as if the hint were

Number, unles® is a Date object (see 15.9), in which case it behaves as if the hint were String.

The

above specification of [[DefaultValue]] for native objects can return only grienitalues. If a host

object implements its own [[DefaultValue]] method, it must ensure that.its [[DefaultValue]] method can

retu

rn only primitive values.

[[DefineOwnProperty]] (P, DeSe, Throw)

I n

the following al gor i t H fhrow fshree, them rthmow @ R/peEreoc t O

e X

ception, ot herwi sse return. o

When the [[DefineOwnProperty]jnternal methed of O is_called with property nameP, property

descriptorDesg andsboolean flag hrow, the followingsteps are taken:

1.

Let currentbe the result of calling thEGetOwnProperty]linternalmethod ofO with property

nameP:
Let extensiblebe thevalue ofthe [[Extensible]] internal property o®.

If currentis undefinedandextensiblds false, then Reject.

2.
3.
4

If-currentis undefined andextensibles true, then

a. IfiIsGenericDescriptoidesg or IsDataDescriptofjesq is true, then
i. Createran own data preperty nanfedf objectO whose [[Value]], [[Writable]],
[[Enumerable]] and [[Configurable]] attribute values are describe®égc If
the value ofian attribute field descis absentthe attribute of the newly created
property is setito its default value.
b. Else,Descmust be an accessor Property Descriptor so,
i. Create an own accessor property narReaf objectO whose[[Get]], [[Sef],
[[Enumerable]] and [[Configurable]] attribute values are describe®égc If

the value of an attribute field descis absent, the attribute of the newly created

property is set to its default value.
c. Return.
Return, if everyfield irDescis absent

Return, if every field irDescalso occurs ircurrentand the value of every field iBescis the

same value as the corresponding fieldinrent
If the [[Configurable]] field ofcurrentis falsethen

a. Reject, if the [[Configurable]] field oDescis true.
b. Reject, if the [[Enumerable]] field ofurrentandDescare the Boolean negation of each
other.
If IsGenericDescriptomesq is true, then no further validation is required.

Else, if IsDataDescriptocurrent) and IsDataDescriptoBesq have differentesults, then

a. Reject, if the [[Configurable]] field o€urrentis false.
b. If IsDataDescriptor§urrent) is true, then
i. Convert the property nameRiof objectO from a data property to an accessor

property. Preserve the existing values

12 January 2009

me

0o

9.1

9.2

- 37 -

[[Configurable]] and [[Enumerable]] attributes and set the the rest of the

propertyés attributes to their def a

c. Else,

i. Convert the property na@a P of objectO from an accessor property to a data
property. Preserve the existing val

[[Configurable]] and [[Enumerable]] attributes and set the the rest of the

propertyés attributes to their def a

10. Else, if IsDaaDescriptor€urrenf) and IsDataDescriptobesq are bothtrue, then
a. If the [[Configurable]] field ofcurrentis false, then

i. Reject, if the [[Writable]] field ofcurrentis false and the [[Writable]] field of

Descis true.
ii. If the [[Writable]] field of currentis false, then
1. Reject, if the [[Value]] field ofDescis present and
SameValueDesc[[Value]], current[[Value]]) is false.
b. else, the [[Configurable]] field ofurrentistrue, so any change is acceptable.
11. Else, IsAccessorDescriptanfrrent) and EAccessorDescriptoblesq are bothtrue so,
a. If the [[Configurable]] field ofcurrentis false, then
i. Reject, if the[[Set]] field of Descis present and SameVali@sc[[Set]],
current[[Set]] is false.
ii. Reject, if the[[Get]] field of Descis present and SameValidgsc[[Get]],
current[[Get]]) is false

12. For each attribute field ddescthat is present, set the correspondingly named attribute of the

property namedP of objectO to the value of the field:
13. Return.

Type Conversionand Testing

The ECMAScript runtime system performs automatic type conversion as needed. To clarify the semantics

bl

bl

certain constructs it is useful to define a set of conversimstractoperations Theseabstractoperationsare |

type, but no of specification types

tn

ToPrimitive

Deleted: operators
not a part of the language; they are defined here to aid the specification of the semantics of the language. Deleted: operators
conversionabstractoperationsare polymorphic; that is, they can accept a value offa@AScript language :
cificationtvpes 0 L £ ., & o/ Deleted: operators
Deleted: standard
Deleted: type Reference, Lisgr Completion

The abstracioperationToPrimitive takes a Value argument and an optional argurReeferredType The

!

converting to more than one primitive type, it may use the optionalRrieferredTypeo favour that type.

Conversion occurs according to the following table:

Input Type Result

Undefined The result equals the input argument (no conversion).

Null The result equals the input argument (no conversion).

Boolean The result equals the input argument (no conversion).

Number The result equals the input argument (no conversion).

String The result equals the input argument (no conversion).

Object Return a default value for the Object. The default value of an object is retrie
calling the internal [[DefaultValue]] method of the object, passing the opti
hint PreferredType The béaviour of the [[DefaultValue]] method is defined
this specification for all native ECMAScript objects (8.6.2.6).

ToBoolean

The abstractpperation ToBoolean converts its argument to a value of type Boolean according td the[

following table:

12 January 2009

(the internal types)

Deleted: operator

(
|
(
[
{
|
|

Deleted: operator

o U JU

Deleted: operator

- 38 -

Input Type Result

Undefined false

Null false

Boolean The result equals the input argument (no conversion).

Number The result idalseif the argument i3-0, -0, or NaN; otherwise the result tsue.

String The result idalseif the argument is the empty string (its length is zero); other)
the result igrue.

Object true

9.3 ToNumber

The abstractoperation ToNumber converts its argument to a value of type Number according to the[Deleted: operator

following table:

Input Type Result
Undefined NaN
Null +0
Boolean The result idl if the argument isrue. Theresult is+0 if the argument isalse
Number The result equals the input argument (no conversion).
String See grammar and note below.
Object Apply the following steps:
1. Call ToPrimitive(input argument, hint Number).
2. Call ToNumber(Result(1)).
3. Return Result(2).

9.3.1 ToNumber Applied to the String Type

ToNumber applied to strings applies the following grammar to the input string. If the grammar cannot
interpret the string as an expansionStfingNumericLiteral then the result of ToNumber aN.

StringNumericLiterat::
StrWhiteSpacg:
StrWhiteSpacg: StrNumericLiteral StrWhiteSpage

StrWhiteSpace:
StrwWhiteSpaceChar StrWhiteSpage
StrWhiteSpaceChar:
WhiteSpace Deleted: <TAB>
LineTerminator <SP>
""" <NBSP>
StrNumericLiteral.:: :\F/.F;
StrDecimalLiteral <CR>
HexlIntegerLiteral <LF>
<LS>
<PS>

StrDecimalLiteral :::

StrUnsignedDecimalLiteral [Deleted: <USP>

+ StrUnsignedDecimalLiteral
- StrUnsignedDecimalLiteral

12 January 2009

-39-

StrUnsignedDecimalLiterat:
Infinity
DecimalDigits. DecimalDigits,ExponentPag;
. DecimalDigits ExponentPayg;
DecimalDigits ExponentPay;

DecimdDigits :::
DecimalDigit
DecimalDigits DecimalDigit

DecimalDigit::: one of
0123456789

ExponentPart::
Exponentindicator Signedinteger

Exponentindicator:: one of
e E

Signedinteger::
DecimalDigits
+ DecimalDigits
- DecimalDigits

HexIntegerLiterat::
0Ox HexDigit
0X HexDigit
HexIntegerLiteral HexDigit

HexDigit::: one of
0123456789abcdefABCDEF

Some differences should be noted between the syntaxSifiagNumericLiteraland aNumericLiteral
(see 7.8.3):

A StringNumericLiteralmay be preceded and/or followed by white space and/or line terminators.
A StringNumericLiteralthat is decimal may have any number of leadindigits.

A StringNumericLiterathat is decimal may be preceded byr - to indicate its sign.

A StringNumericLiterakthat is empty or contains only white space is convertetOto

The conversion of a string to a number value is similar overall to the determination of the number valu
for a numeric literal (see 7.8.3), but sometbe details are different, so the process for converting a
string numeric literal to a value of Number type is given here in full. This value is determined in two
steps: first, ‘@ mathematical value (MV) is derived from the string numeric literal, sedbidd,
mathematical value is rounded as described below.

The MV of StringNumericLiteral:: [empty]is O.

The MV of StringNumericLiteral:: StrWhiteSpacés 0.

The MV of StringNumericLiteral::: StrWhiteSpacg; StrNumericLiteral StrWhiteSpaggis the MV
of StrNumericLitera] no matter whether white space is present or not.

The MV of StrNumericLiteral::: StrDecimalLiteralis the MV of StrDecimalLiteral.

The MV of StrNumericLiteral::: HexlIntegerLiteralis the MV ofHexIntegerLiteral

The MV of StrDecimalLiteral ::: StrUnsignedDecimalLiteral is the MV of
StrUnsignedDecimalLiteral

The MV of StrDecimalLiteral:: + StrUnsignedDecimalLiteral is the MV of
StrUnsignedDecimalLiteral

The MV of StrDecimallLiteral:: - StrUnsignedDecimalLiteralis the negtive of the MV of
StrUnsignedDecimalLiteral(Note that if the MV ofStrUnsignedDecimalLiterails 0, the negative of

12 January 2009

- 40 -

this MV is also 0. The rounding rule described below handles the conversion of this sign less

mathematical zero to a floatingoint +0 or —0 as appropriate.)

The MV of StrUnsignedDecimalLiteral: Infinity is 10t°°% (a value so large that it will round to

+00).

The MV of StrUnsignedDecimalLiteral: DecimalDigits is the MV of DecimalDigits

The MV of StrUnsignedDecimallLiteral: DecimalDigits. DecimalDigitsis the MV of the first

DecimalDigits plus (the MV of the secon@®ecimalDigitstimes 1G"), wheren is the number of

characters in the secortecimalDigits.

The MV of StrUnsignedDecimalLiterat DecimalDigits ExponentParts the MV of DecimalDigitstimes 16,
whereeis the MV of ExponentPart

The MV of StrUnsignedDecimalLiterat DecimalDigits DecimalDigits ExponentPaiis (the MV of the first
DecimalDigitsplus (the MV of the seconBecimalDigitstimes 1G")) times 16, wheren is the number of
characters in the secof@cimalDigits andeis the MV of ExponentPart

The MV of StrUnsignedDecimalLiterat . DecimalDigitsis‘the MV of DecimalDigitstimes 1G", wheren is
the number of characters ecimalDigits.

The MV of StrUnsignedDemallLiteral:::. DecimalDigits ExponentParis the MV of DecimalDigits times
10°", wheren is the number of charactersbecimalDigits andeis the MV of ExponentPart

The MV of StrUnsignedDecimalLiterat DecimalDigitsis the MV of DecimalDigits

The MV of StrUnsignedDecimalLiterat DecimalDigitsExponentParis the MV of DecimalDigitstimes 16,
whereeis the MV of ExponentPart

The MV of DecimalDigits::: DecimalDigitis the MV of DecimalDigit

The MV of DecimalDigits::: DecimalDigitsDecimalDigitis(the MV of DecimalDigitstimes 10) plus the MV
of DecimalDigit

The MV of ExponentPart::

The MV of Signedinteger::

The MV of Signedinteger::

The MV of Signedinteger::

Exponentindicator Signedintegerthe MV ofSignedinteger
DecimalDigitsis the MV ofDecimalDigits

+ DecimalDigitsis the MV ofDecimalDigits

- DecimalDigitsis the negative of the MV ddecimalDigits

The MV of DecimalDigit::: 0 or of HexDigit::: 0 isO.
The MV of DecimalDigit::: 1 or of HexDigit::: 1'is 1.
The MV of DecimalDigit::: 2 or of HexDigit::: 2 is 2.
The MV of DecimalDigit::: 3 or of HexDigit::: 3is 3.
The MV of DecimalDigit::: 4 or of HexDigit::: 4'is 4.
The MV of DecimalDigit::: 5 or of HexDigit:::. 5 is 5.
The MV of DecimalDigit::: 6 or of HexDigit::: 6 is 6.
The MV of DecimalDigit::: 7 or of HexDigit::: 7 is 7.
The MV of DecimalDigit::: 8 or of HexDigit::: 8 is 8.
The MV of DecimalDigit::: 9 or of HexDigit::: 9is 9.
The MV of HexDigit ::: a or of HexDigit::: Ais 10.
The MV of HexDigit::: b or'of HexDigit::: Bis 11.
The MV of HexDigit::: ¢ or of HexDigit::: Cis 12.
The MV of HexDigit::: d or of HexDigit::: Dis 13.
The MV of HexDigit ::: e or of HexDigit::: Eis 14.
The MV of HexDigit::: f or of HexDigit::: Fis 15.

The MV of HexIntegerLiteral:: Ox HexDigitis the MV ofHexDigit

The MV of HexIntegerLiterat:: 0X HexDigitis the MV ofHexDigit

The MV of HexIntegerLiteral:: HexIntegerLiteraHexDigitis (the MV ofHexIntegerLiteratimes 16) plus the
MV of HexDigit

Once the exact MV for a string numeric literal has been determined, it is then rounded to a value of the
Number type. If the MV is 0, then the rounded value is +0 unless the first non white space character in

the string nuée whidh cdse theerouaded vialse -0) Otherwise, the rounded value

must be the number value for the MV (in the sense defined in 8.5), unless the literal includes a

StrUnsignedDecimalLiteradand the literal has more than 20 significant digits, in which ¢hsenumber

value may be either the number value for the MV of a literal produced by replacing each significant digit

12 January 2009

9.4

9.5

9.6

- 41 -

after the 20th with a 0 digit or the number value for the MV of a literal produced by replacing each
significant digit after the 20th with 0 digit and then incrementing the literal at the 20th digit position. A
digit is significantif it is not part of anExponentPartand

itis notO; or
there is a nonzero digit to its left and there is a nonzero digit, not iExpenentPartto its right

Tolnteger

The abstracjpperationTolnteger converts its argument to an integral numeric value. dibé&acfoperation |
functions as follows:

Call ToNumber on the input argument.

If Result(1) isNaN, return+0.

If Result(1) is+0, —0, +w, or —oo, return Result(1).
Compute sign(Result(1)) * floor(abs(Result(1))).
Return Result(4).

Tolnt32: (Signed 32 Bit Integer)

arwbdPE

2%L_1, inclusive. Thisabstracfpperationfunctions as follows:

1. Call ToNumber on the input argument.

2. If Result(1) isNaN, +0, —0, +w, or—ow, return +0.

3. Compute sign(Result(1)) * floor(abs(Result(1))).

4. Compute Result(3) modulo®2_that is, a finite iteger value k of Number type with positive sign and
less than Z in ma%?itude such the mathematical difference of Result(3) and k is mathematically an
integer multiple of 2°.

5. If Result(4) is greater than or equal t& Zeturn Result(~ 2%, otherwisereturn Result(4).

NOTE
Given the above definition of ToInt32:

The Tolnt32abstractoperation is idempotent: if applied to a result.that it produced, the second application lepves
that value unchanged.

TolInt32(ToUint32(x)) is equal to Tolnt32(x) for all weds of x. (It is to preserve this latter property theeo and —e
are mapped to +0.)

Tolnt32 map<-0 to +0.
ToUint32: (Unsigned 32 Bit Integer)

Deleted:

operator

Deleted:

operator

Deleted:

operator

Deleted:

operator

The abstractoperationToUint32 converts its argument to one Jf 2nteger values in the range 0 throuih [Deleted: operator

2°2_1, inclusive. Thisabstracdion operator functions as follows:

1. Call ToNumber on the input argument.

2. If Result(1) isNaN, +0,-0; +w0, or —o0, return +0.

3. Compute sign(Result(1)) * floor(abs(Result(1))).

4. Compute Resu(8) modulo 32 that is, a finite integer value k of Number type with positive sign and
less than Z in magnitude such the mathematical difference of Result(3) and k is mathematically an
integer multiple of 2%

5. Return Result(4).

NOTE
Given the above digfition of ToUInt32:

Step 5 is the only difference between ToUint32 and Tolnt32.

The ToUint32abstractoperation is idempotent: if applied to a result that it produced, the second application lepves
that value unchanged.

ToUint32(TolInt32(x)) is equal to Tint32(x) for all values of x. (It is to preserve this latter property the and -«
are mapped to +0.)

12 January 2009

- 42 -

ToUint32 map<-0 to +0.

9.7 ToUint16: (Unsigned 16 Bit Integer)
The abstractoperationToUint16 converts its argument to one df integer values in the range 0 through [Deleted: operator
16 4 ; - : ; ;
27°-1, inclusive. Thisabstracjpperationfunctions as follows: [Deleted: operator
1. Call ToNumber on the input argument.
2. If Result(1) isNaN, +0,-0, +w, or—ow, return +0.
3. Compute sign(Result(1)) * floor(abs(Result(1))).
4. ComputeResult(3) modulo Z; that is, a finite integer valuk of Number type with positive sign and
less than ¥ in magnitude such the mathematical difference of Result(3)kaisdmathematically an
integer multiple of 2°.
5. Return Result(4).
NOTE
Given theabove definition of ToUint16:
The substitution of % for 2°2in step 4 is the only difference between ToUint32 and ToUint16.
ToUint16 map<-0 to +0.
9.8 ToString
The abstractoperationToString converts its argument to a value of type String eding to the following [Deleted: operator
table:
Input Type Result
Undefined "undefined"
Null "null”
Boolean If the-argument isrue, then the result itrue”
If the argument ifalse, then the result i¥alse"
Number See note below.
String Return the inpuargument (no conversion)
Object Apply the following steps:
1. Call ToPrimitive(input argument, hint String).
2.Call ToString(Result(1)).
3. Return Result(2).
9.8.1 ToString Applied to the Number Type
The abstracipperationToString converts a numben to string format as follows: [Deleted: operator
1. If mis NaN, return the stringNaN" .
2. If mis +0 or -0, return the string0" .
3. If mis less than zero, return the string concatenation of the strifigand ToString-m).
4. If mis infinity, return the string"Infinity"
5. Otherwise, len, k, ands be integers such that= 1, 10°* < s < 10¢, the number value fos x 10" is

m, andk is as small as possible. Note tlkas the number of digits in the decimal representatios, of
thatsis not divisible by 10, and that the least significant digisdd not necessarily uniquely
determined by these criteria.
6. If k< n <21, return the string consisting of thealigits of the decimal representation of s (in order,
with no leading zeroesjpllowed byn-koc cur rences ®b.t he character 6
7. 1f 0 < n< 21, return the string consisting of the most significanligits of the decimal representation
of s, foll owed by.o6a dfeoclilnoane dp oli-mdigithd the deemaal ni n g
representation os.

12 January 2009

9.9

9.10

- 43 -

8. If-6<n<0, return the string0dcorfwildtoiweg dfydtah e eaxch
followed by-noccur rences b, t hel t bldyitofthe decitha
representation og.
9. Otherwise, itk = 1, return the string consisting of the single digitspfollowed by lowercase
char aét efobl owed +tbyorm mi —068 sascscigogrndd 6nr-1 is positivehoe t h e r
negative, followed by the decimal representation of titeger abs{-1) (with no leading zeros).
10.Return the string consisting of the most significant digit of the decimal representation of s, followed
by a deci mal point 6. 0 -1digislof tealecimeal deprbsgntatiom ef s,r e ma
followed byt he | owercase character 06ed, f-0l lacwed dby ¢
whether 1 is positive or negative, followed by the decimal representation of the intege+1ps(n
(with no leading zeros).

NOTE
The following observations may be udefs guidelines for implementations, but are not part of the normative
requirements of this Standard:

If x is any number value other thi-0, then ToNumber(ToString(x)) is exactly the same number value as x.
The least significant digit of s is not alwaysiquely determined by the requirements listed in step 5.

For implementations that provide more accurate conversions than required by the rules above, it is recommende¢
that the following alternative version of step5 be used as a guideline:

Otherwise, len, k, and s be integers such tha> 1, 10" <'s < 10, the number value for x 10"*is m, and k is

as small as possible. If there are multiple possibilities for s; choose the value of s for v 1€A™is closest in

value to m. If there are two such possible values of s, choose the one that is even. Note that k is the numbel
digits in the decimal representation of s and that s is not divisible by 10.

Implementors of ECMAScript may find useful the grapnd code written by David M. Gay for binatg-decimal
conversion of floatingpoint numbers:

Gay, David M. Correctly Rounded Binafyecimal and DecimaBinary Conversions. Numerical Analysis
Manuscript 9010.-AT&T Bell Laboratories (Murray Hill, New Jsey). November 30, 1990. Available as

http://cm.bell - labs.com/cm/cs/doc/90/4 -10.ps.gz . Associated code available as
http://cm.bell - labs.com/netlib/fp/dtoa.c.gz andas
http://cm.bell - labs.com/netlib/fp/g_fmt.c.gz and may also be found at the varionstl ib
mirror sites.

ToObject

Input Type Result

Undefined Throw aTypeError exception.

Null Throw aTypeError exception.

Boolean Create a new Boolean object whoger{initiveValug] property is set to the valu |
of the boolean. See 15.6 for a description of Boolean objects.

Number Create a new Number object whosgr[fnitiveValug] property is set to the valu| |
of the numbe See 15.7 for a description of Number objects.

String Create a new String object whosBiffnitiveVValud] property is set to the value |
the string. See 15.5 for a description of String objects.

Object The result is the input argument (no coni@rs

IsCallable

The abstractoperaton IsCallable determines if its argumenthich must be an ECMAScript language
value,is a callable function Object according to the following table:

Input Type Result
Undefined Returnfalse
Null Returnfalse

12 January 2009

[Deleted: as

[Deleted: operator

[Deleted: value

[Deleted: value

[Deleted: value

- 44 -

Boolean Returnfalse

Number Returnfalse

String Returnfalse

Object If the argumenbbjecthas annternal [[Call]] methodthenreturntrue, otherwise
returnfalse

9.11 The SameValue Algorithm

The internalcomparisonabstract operatiorBameValueX, y), wherex andy are ECMAScript language
values, producetue or false. Such a comparison {gerformedas follows:

1. If Type(x) is different from Typey), returnfalse.
2. If Type(x) is Undefined, returitrue.
3. If Type(x) is Null, returntrue.
4. If Type(x) is Number, then.
a. If xis NaN andy is NaN, returntrue.
b. If xis +0 andy is -0, returnfalse.
c. If xis-0andy is +0, returnfalse.
d. If xis the same number value gsretdrntrue.
e. Returnfalse
5. If Type(x) is String, then returtrue if x @andy are exactly the same sequence of characters (same
length and same characters in corresponding positions); otherwise, falsen
6. If Type(x) is Boolean, returitrue if x andy are bothtrue onbothfalse; otherwise, returifialse.
7. Return true ifx andy refer to the same object. Otherwise, rettatse.

10 Executable Code andExecution Contexts

10.1 Types of Executable Code
There are three types of ECMAScript executable code:

Global codeis source text that is treated .as an<ECMAScfpbgram The global code of a particular
Programdoes not include any source text thatis parsed as parFohetionBody

Eval codeis the source text supplied to the bsifiteval function. More precisely, if the parameter to the
built-in eval function is a sting, it-is treated as an ECMAScriprogram The eval code for a particular
invocation oféval is the global code portion of the string parameter.

Function codeis sourcentext thathis parsed as part oFunctionBody The function codeof a particular
FunctionBodydoes not include ‘any. source text that is parsed as part of a rfastettonBody Function
codealso denotes the source text'supplied when using the-ibutinction object as a constructor. More
precisely, the last parameter provided to Ehenction constructor is converted to a string and treated as
the FunctionBedy If more than one parameter is provided to fhenction constructor, all parameters
except the last one are converted to strings and concatenated together, separated by conmasusitifibe
string is interpreted as thieormalParameterListfor the FunctionBodydefined by the last parameter. The
function codefor a particular instantiation of Bunction does not include any source text that is parsed
as part of a nesteldunctionBody

10.1.1 Strict Mode Code
As described in section 4.2.2, an ECMAScritogram syntactic unit may be processed using either
unrestricted or strict mode syntax and semantics. When processed using strict mode the three types of
ECMAScript code are referred @5 strict global code, strict eval code, and strict function code. Code is
interpreted in strict mode code in the following situations:

e Global code is strict global code if th@rogram that defines the global code includes a
UsesStrictDirective

e Eval codeis strict eval code if th@rogramthat defines the eval code include&JgseStrictDirective
or if the call to eval is a direct call (see section 15.1.2.1) to the eval function that is contained in
strict mode code.

12 January 2009

- 45 -

e Function code that is part of FunctiorDeclaration or FunctionExpressiors strict function code if
its FunctionDeclaration or FunctionExpressionis contained in strict mode code or if itp
FunctionBodyincludes aUseStrictDirective

e Function code that is supplied as the last argument to thié-ibuFunction constructor is stricf]
function code if the last argument is a string that when processedFasidionBodyincludes a
UsesStrictDirective

10.2 _ Lexical Environments

A Lexical Environmentis a specification typeused to define the association fentifiers to specific
variables and functions based upon the lexical nesting structure of ECMAScript codeexiBal
Environment consists of arEnvironment Record and a possibly null reference to aenter Lexical
Environment. Usually alexical Environment is associated with some specific syntactic structure of
ECMAScript code such asRunctionDeclaration a WithStatemé@ntor acatchclause of arryStatemenand
a newl exical Environment is created each time suclieos €valuated.

An EnvironmentRecord records the identifier bindings‘that are created within the scope af#sciated
Lexical Environment.

The outer environment reference is used to model the dynamic nestirexiafal Environmentvalues. The
outer rderence of a (inner).exical Environment is a reference to_theexical Environment that logically
surrounds the innelcexical Environment. Andoutet exical Environment may, of course, have its own outer

Lexical Environment. ALexical Environment. may serve as the outer.environment for multiple inpher
Lexical Environments. For example, if BunctionDeclarationcontains two_neste&unctionDeclarations
then theLexical Environments of each of the nested functions will have as their duetécal Environment
the Lexical Environment of the current execution of the‘surrounding function.

Lexical Environments andEnvironmentRecordvalues are purely specification mechanisms and need hot
correspond to any particular artifact” of van ECMAScript impdewation. It is impossible for ar
ECMAScript program to directly access or manipulstieh values

10.2.1 _Enviornment Records

There are twokinds oEnvirenmentRecord values used in.this specificatiordeclarative environment
recordsand object environmerecords ‘Declarative environment records are used to define the effect
of ECMAScript'language syntactic elements suchFasctionDeclarations VariableDeclarations and
Catchclauses that directly associdtientifier_bindings withECMAScript languageralues or variables.
Object-environment records are used to define the effect of ECMAScript elements sRabgesm and
WithStatementhat associatedentifier bindings with the properties of some object.

For specification purposdsnvironmentRecordvalues can be thought of as existing in a simple objeg
oriented hierarchy. wherdnvironment Record is an abstract class with two concrete subclasses,
declarative environment.record and object environment record. The abstract cliass dbé following
abstrat specificationmethods that have distinct concretigorithmsfor each of its subclasses:

Method Purpose
HasBinding(N) Determine if an environment record has a binding for an ident

Returntrue if it does andalseif it does not. The string value N is tff
text of the identifier.

CreateMutableBinding(N) Create a new mutable binding in an environment record. The {§
value N is the text of the bound name.
GetBindingValue(N,S) Returns the value of an already existing binding from an environ

record. The string value N is the text of the bound name. Ift&iés
and the binding is an unitialized immutable binding throw
ReferenceError exceptioB.is used to identify strict mode reference

SetMutableBinding(N,V, S) Set the value of an already existing mutable binding in an environ
record. The string value N is the text of the bound name. V is the
for the binding andnay be a value ainy ECMAScript language typq
Sis a Boolean flag. If S isue and the binding can not be set thro
TypeError exceptiorS is used to identify strict mode references.

12 January 2009

- 46 -

10.2.1.1 Declarative Envioronment Records

Each declarative environment record iss@siated with a ECMAScrpt program scope containing
variable,and orfunction declarations. A declarative environment record bitite set of identifiers
defined by the declaraihs contained within its scope.

In_addition to the mutable binds supported HhY Bnvironment Records, declarative environment
records also provide for immutable bindings. An immutable binding is one where the association
between an identifier and a value may not be modified once it has been established. Declarative
environment reards support the following methods in addition to the Environment Record abstract
specificationmethods:

Method Purpose
CreatelmmutableBinding(N) Create a new but uninitialized immutable binding in an environ

record. The string valde N is the texttbé bound name.

InitializelmmutableBinding(N,V) | Set the value offan already existing but uninitialized immut
binding in an environment record. The string value N is the text of
bound name! V is the value for the binding and is a value of
ECMAScript language type:

The behaviour of the concrete specification methods for Declarative Environment Records are defined
by thefollowing algorithms.

10.2.1.1.1 HasBindingl)

The concrete environment record method HasBinding for declarative environment records simply
determins if the argument identifier is one of the identifiers bound by the record:

1. LetenvRede thedeclarative environment record for which the method was invoked.
2. If envRedas a binding for the name that is the valudpfeturntrue.
3. If it does notthave sica binding, returrialse

10.2.1.1.2 CreateMutableBinding (N)

The concreteEnvironment Record method CreateMutableBinding for declarative environment
records creates a.new mutable binding for the n&ntieat is initialized to the valuandefined. A
bindingsmust not already exist in.thisvironmentRecord forN.

1. LetenvRedethe declarative environment record for which the method was invoked.
2. Assert:envReaoes not already have a binding fér
3. Create a mutable binding envRedor N and set its bound value tmdefined.

10.2.1.13 SetMutableBinding (N,V,S)

The concrete Environment Record method SetMutableValue for declarative environment records
attempts to change the bound value of the current binding of the identifer whose nhweeatue

of the argumeni to/the value of argument. A binding forN must already exist. If the binding is

an _immutablenbinding, a TypeError is always thrown. Thargument is ignored because stict
mode deoes not change the meaning of setting bisdimgeclarative environment records have .

1. LetenvRede the declarative environment record for which the method was invoked.

2. Assert:envReanust have a binding fax.

3. If the binding forN in envReds a mutable binding, change its bound valu&/to

4. Else this must be an attempt to change the value of an immutable binding so throw a
TypeError_exception.

10.2.1.1.4 GetBindingValue(N,S)

The concrete Environment Record method GetBindingValue for declarative environment records
simply returnsthe value ofits bound identifer whose name is the value of the argurienthe
binding must already exist. Bis true and the binding is an unitialized immutable binding throw a
ReferenceError exception.

1. LetenvRede the declarative environment record for which tiethod was invoked.

12 January 2009

- 47 -

2. Assert:envRedas a binding folN.
3. If the binding forN in envReds an uninitialized immutable binding, then

a. If Sisfalse, return the valueindefined, otherwise throw a ReferenceError excepton.
4. Else, return the value currently boundMdan envRec

10.2.1.15 CreatelmmutableBinding (N)
The concreteEnvironment Record method CreatelmmutableBinding for declarative environmient
records creates a new immutable binding for the n&htkat is initializel to the value undefined|
A binding must not already exist in this environment recordNor

1. LetenvRedethe declarative environment record for which the method was invoked.
2. Assert:envRedoes not already have a binding fér
3. Create a immmutable binding envRedor N and ecord that it is uninitialized.

10.2.1.16 InitializelmmutableBinding (N,V)

The concreteEnvironmentRecord method Initializ€lmmutableBinding for declarative environment
records is used to set the boundueabof the cdrrent binding of the identifer whose name is the
value of the argumen to the value of argumen¥. A unitialized immutable binding foN must
already exist.

1. LetenvRedethe declarative envirconment record for which the method was invoked.
2. Assert:envReanust have an unitialized immutable binding for N.

3. Set the bound value fd¥ in envRedo V.

4. Record that the immutable binding fBkin envRedias been initialized.

10.2.1.2 Object Environment Records

Each object environment recordis assosiawith an object called itsinding object An environment
record binds the set of identifiers that directly correspond to the property names of its binding gbjec
Property names that are not identifiers.are not included in the set of bound iden®Bemause
properties can be dynamically added and deleted from objects, the set of identifiers bound by ar| obje
environment record.may potentially change as.a -siffiect of any operation that adds or deletes
properties. Any bindings.that are createdaa®sult of such a sideffect is considered to be a mutab
binding even if the Writable attribute of«the corresponding property has the falke Immutable
bindingsdo not.exist for object environment records

[

The behaviour of the concrete specification methodsGbpect Environment Records are defined by
thefollowing algorithms:

10.2.1.2¢1 HasBinding(N)

The concretéEnvironmentRecord method HasBinding for object environment records determings if
its associatd binding object has a property whose name is the value of the arghiment

1. \LetenvRedethe object enviconment record for which the method was invoked.

2. Let bindingsbe thebinding object forenvRec

3. Return the result of calling tHgHasProperty]] methoaf bindings passind\N as the property
name.

10.2.1.2.2 CreateMutableBinding (N)

The concreteEnvironmentRecord method CreateMutableBinding for object environment recdrds
creates a propertywhose name is the string valde in the environment recordndinitializes it to
the valueundefined. A property namedN must not already exist in the binding object.

1. LetenvRedethe declarative environment record for which the method was invoked.

2. Letbindingsbethe binding object foenvRec

3. Assert: The result of calling the [[HasProperty]] methodwofdings passingN as the property
name isfalse.

4. Call the [[Put]] method obindings passing\ andundefined for the arguments.

10.2.1.2.3 SetMutableBinding (N,V,S)

The concretéeEnvironmentRecord method SetMutableValue for object environment records attempts
to set the value of the environment recorddép
value of the argumenit to the value of argument. A property namedN should already exist but if it

12 January 2009

- 48 -

does not or is not currently writable, error handling is determined by the value of the Boolean
arguments.

1. LetenvRedethe object environment record for which the method was invoked.
2. Letbindingsbethe binding object foenvRec
3. Call the [[ThrowingPut]] method dbindingswith argumentsN, V, andS.

10.2.1.2.4 GetBindingValue(N,S)
The concretéEnvironmentRecord method GetBindingValue for object environment records returns
the val ue o f itos a s spertyi whose damd is rihaétring galueo &f jthe c t 6 s
argument identifieN. The property should already exist hfiit does not the result depends upon
the value ofSargument:

1. LetenvRedethe object environment record for which the method was invoked.
2. Letbindingsbethe binding object foenvRec
3. Letvaluebe the result of calling thEHasProperty]] method obindings passing\ as the
property name.
4. If valueis false then
a. |If Sisfalse, return the valueindefined, otherwise throw d&eferenceError exception.
5. Return the result of calling thgGet]]l.method ofbindings passing\ for the argument.

10.2.2 Lexical Environment Operations
The followingabstractoperations are used in.this specification to operate upon lexical environments:

10.2.2.1 GetldentifierReference (lex, nhame, strict)
The abstract operatioGetldentifierReference is called withlaexical Environmentlex, an identifier
stringname andaboolean flagstrict. The value oflex may benull. When called, lte following steps
are perbrmed:

1. If lexis the valuenull, then
a. Return a value of type Referencewhose basewalnalis whose referenced name is
name andwwhose strict mode flag $srict.
2. lLetenvRedelexd s » envi r.onment r.ecor d.
3. Let existsbe the resulbf calling the HasBinding(N) concrete method afnvRe@assingnameas
the argumenn.
4. |If existsis true., then
a. Return avalue of type Reference whose base valeauRecwhose referenced name is
name and whose strict mode flag $srict.

5. Else
a. Letouterbe the value of e >oWtes environment reference.
b. Retunthe result oficalling GetldentifierReference passauger, name andstrict as

arguments.
10.2.2.2 NewDeclarativeEnvironmentRecord(E)

When the abstract operatiorNewDeclarativeEnvironmentRecord isalled with either a Lexical
Environment omull as/argumenkE the following steps are performed:

Let envbe a new LexickEnvironment.
Let envRede anew DeclarativeEnvironmentRecord containing no bindings.
Sete n veé@vironment record to benvRec
Set the outer lexical envroment referenceenf/to E.
Returnenwv.

10.2.2.3 NewObjectEnvironmentRecord(O, E)

When theabstract operatiodNewObjectEnvironmentRecord is cadl with an Cbject O and al exical
EnvironmentE (or null) as argumers the following steps are performed:

I TN

Let envbe a new Lexical Environment.
Let envRede anew ObjectEnvironmentRecord containing usid@s the binding object.
Sete n vea@vironment record to benvRec
Set the outer lexical environment referenceenf/to E.
Returnenwv.

SIS

12 January 2009

10.2.3 _The Global Environment

- 49 -

10.3Execution Contexts

Theglobal environments a uniguel exical Environment which is created before any ECMAScript cofle
i s executed. T h e HEnVironment Recernd vsi an @bjecteenvirdnment record whoge

bindingobjet i s the gl obal object (15.1) . Tefeeencadnallb 4

As ECMAScript code is executed, additional properties may be added to the global object and the
properties may be modified.

10.3.1 Identifier Reseolution

When control is transferred to ECMAScript executable code, control is enteriegesnution contextActive
execution contexts logically form a stack. The top execution context on this logical stack is the ru
execution contextA new exectution contexis created whenever control is transferred from the excutid

initii

nnini
ble

code associated with the currently running execution context to executable code that is not associated w

that execution context. The newly created execution context is pushed onto tharstiadsecomes the running

execution context.

An_execution context contains whatever state is necessary to tract the execution progress of its aspocie

code. In addition, each execution context has the following state components:

Component Purpose

LexicalEnvironment Identifes thelLexical Environment used to resolve.identifier references m
by code within this execution context.

VariableEnvironmnet Identifies thelexical Environment whesenvironment record holds bindin
created byariableStatemestand FunctionDeclaratios within this execution
context.

ThisBinding The value_associated with thlis . keyword within ECMAScript codq
associated with this execution context:

The LexicalEnvironment and:VariableEnvironment.components of an execution context are abvagyal
Environments. When ra execution context is created its LexicalEnvironment and VariableEnvironn
componentdnitially_have the same value. The value bé tVariableEnvironment component never chang
while the value of the.lexicalEnvironemnt component may change during execution of code with
execution context.

In_mostsSituations.only the running execution context (the top of the execution contek} sadirectly
mand pul ated by al gor int h'ms wi thin this speci fi
AvVari abl eEnwi ronment 0o and AThi sBindingod are us
components of the running execution.coritex

An execution.context is purely.a specification mechanism and need not correspond to any particular art
an ECMAScript.implementation. It is impossible for an ECMAScript program to access an execution co

10.4

Identifier resultion is process of determining the binding ofld@ntifer using the LexicalEnvironment off
the running execution context. During execution of ECMAScript code, the syntactic produ
PrimaryExpression Identifier is evaluated using the followgnalgorithm:

1. Letenvbe the running execution contextds Lexic

2. If the syntactic production that is being evaluated is contained in a strict mode code, tbteittéie
true else letstrict befalse

3. Return the result of callin@GetldentifieReference function passiremy, Identifier, andstrict as
arguments.

The result of evaluating an identifier is always a value of type Reference with its referenced
component equal to thieentifier string.

Establishing An Execution Context

Evaluationof global code or code using the eval function (15.1.2.1) establishes and enters a new ex

ent
es
in ar

7
[V
=

efact
ntext

ction

a |

nam

pcuti

context. Every invocation of a ECMAScript code function (13.2.1) also establishes and enters

12 January 2009

p ne

- 50 -

execution context, even if a function is callifigelf recursively. Every return exits an execution context. A
thrown exception may also exit one or more execution contexts.

Wh e n control enters an execution context, t he
VariableEnvironment and initial LexicBhvironment are defined, and declaration binding instantiation is
performed.The exact manner in which these actions occur depend on the type of code being entered.
10.4.1 Global Code
The following steps are performed when control enters the executioexddot global code:

1. Inititalize the execution context using the global code as described in 10.4.1.1.
2. PerformDeclaration Binding Instantiation as described in 10.6 using the global code.

10.4.1.1 Initital Global Execution Context
The following steps arperformed to initialize an executioh. context for ECMAScript c@ie

1. Set the VariableEnvironment to the Global Environment.
2. Set the LexicalEnvironment to the Global Environment.
3. If Cis strict code, set the ThisBinding tmdéfined ', otherwise set the Thisiding to the global

object.
10.4.2 Eval Code
The following sets are performed whendontrol enters the execution context for eval code:

1. If thereis no calling context or if the eval.code is not.being evaluated by a direct call (15.1.2.1) then,
a. Initialize the execution context as if it was a global execution context using the eval code as
C as described in 10.4.1.1.

2. Else,
a. Set the ThisBinding to the same value as the ThisBinding of the calling execution context.
b. Set the LexicalEnvironment to theexicalEnvironment of the calling execution context.
c. Set the VariableEnvironment to thexsame value as the VariableEnvironment of the calling
executionscontext.
3. |If the eval code is strict.code, then
a. LetstrictvarEnvbe the result of calling NewDeclarativeironmentRecord(E) passing the
LexicalEnvironment as the argument.
b. Set the VariableEnvironment &irictVarEnv
4. Perform Declaration Bindingrinstantiation as described in 10.6 using the eval code.

10.4.2.1 < Strict Mode Restrictions
The eval code canndnstantiate variable or function bindings in the variable environment of the
calling context that invoked the eval if either the code of the calling context or the eval code is strict
code. Instead such bindings aresinstantiated in a new VariableEnvirérthegnis only accessable to
theeval code.

10.4.3 _Function Code

The following sets are performed when control enters the execution context for function code contained
in function objectF,.a caller providedhisArg, and a caller providedrgumentsList

1. If the function code is strict code, set the ThisBindinghisArg.

2. Else ifthisArgis null or undefined, set the ThisBinding to the global object.

3. Else ifthisArgis not an Object, set the ThisBinding to ToObjéuigArg).

4. Else set the ThisBinding tthisArg.

5. LetlocalEnvbe the result of calling NewDeclarativeEnvironmentRecord(E) passing the value of the
[[Scope]] property of as the argument.

6. Set the LexicalEnvironment flocalEnv.

7. Set the VariableEnvironment tocalEnv.

8. Letcodebe t he v aCoded]interhal gidperty.[[

9. Perform Declaration Binding Instantiation using the function codde andargumentList@as

described in 10.6.

12 January 2009

105

-51-

Arguments Object

When control enters an execution context for function code, an arguments object is created.

The arguments object is created by calling #istract operatioiCreateArgumentsObject with argumen
func the function object whose code is to be evaluate@imesa List containing the formal paramete
names argsthe actual arguments pass to the [[fJathethod envthe variable environment for the functio
code, and strict a Boolean that indicates whether or not the function code is strict code. \}
CreateArgumentsObject is call the following steps are performed:

If strictis true, perform the followng steps:

1. Letlenbe the number of elements amgs.
2. Letobjbe the result of creating a new objest if by the expressionew Array(len) whereArray is
the standard buHin constructor with that name and len is the numeric valderof
3. letindx=0
4. Repeat whilendx<len,
a. Letvalbe the the element @frgsat G-origined list positionindx.
b. Call the [[Put]] method obbj passingndxandval as.arguments.
c. Letindx=indx+1
5. Letfbe a function which when evaluated throwSypeError exception and @forms no other actions
6. Call the [[DefineOwnProperty]] method a¥bj passing talle€', the property descriptor[fGet]]: f,
[[Enummerable]]false [[Configurable]lifalse}, and true as arguments.
7. Call the [[DefineOwnProperty]] method @bj passing taller", the property descriptor[[Get]]: f,
[[Enummerablel]lfalse, [[Configurable]]:false}pand trued@s arguments.

8. Returnobj

If strictis false, perform the following steps:

1. Letlenbe the number of elementsangs.

2. Letobjbe the result of creating a neCMAScript.object.

3. Set the [[Class]ifproperty of obj to "Object".

4. Set the [[Constructor]] property afbj to the standard buiin Object constructor (Section 15.2.3).

5. Set the [[Prototype]] property afbj to the standard bii-in“Array prototype object (Section 15.4.4).

6. Call the [[DefineOwnProperty]] method ‘@bj passing "length”, the property descriptor {[[Value]]:
len, [[Enummerable]jfalse/[[Configurable]]:true}, and falseas arguments.

7. Letindx=.0

8. Repeat whiléndx < len,

a. If indxis less than the number of elementsxames then
i. Letnamebe the the element afamesat O-origined list positionndx.

ii. Letgbe the resuit of calling thelakeArgGetterfunction with argumentsameand
env.

iii. Letpbe the resultof calling thelakeArgSettefunction with argumentsameand
env.

iv.. Call the [[DefineOwnProperty]] method arbj passing ToStrind(dx), the property
descriptor {[Set]]: p, [[Get]]: g, [[Enumerable]]:false, [[Configurable]]:true}, and
falseas arguments.

b. Else, there are fewer arg names than actual arguments so
i. Letvalbe the the element @frgs at O-origined list positionndx.
ii. Call the [[Put]] method obbj passingndx andval as arguments.
c. Letindx=indx+1
9. Call the [[DefineOwnProperty]] method arbj passing talle€', the property descriptor {[[Value]]:
func, [[Enummerable]]false, [[Configurable]]:true}, and falseas arguments.

10. Returnobj

The functionMakeArgGettercalled with stringnameand environmentecordenv creates a function objec
that when executes returns the value bounchfonein env. It performs the following steps:

1. Let body be the result of concatenating the stringsutn ", name and %"
2. Create a function object as described in 13hg noFormalParameterListbodyfor FunctionBody

envasScope and the empty string &dame

12 January 2009

=0

hen

3. Return Result(2)

-52-

The functionMakeArgSettercalled with stringnameand environment recordnv creates a function object

that when executes returns the value bounchfomein env. It performs the following steps:

1.

Let param be the stringameconcatenated with the string

arg"

2.

Let body be the strintikname> = <param>;" with <name>replaced by th value ofnameand

<param> replaced by the value gfaram
3. Create a function object as described in 13.2 using a List containing the singlepstrargas

FormalParameterListbodyfor FunctionBody envasScope and the empty string d¢éame

4. ReturnResult(3)

105.1 Strict Mode Restrictions
If a arguments object is createdcallee
vice versa.
106 Declaration Binding Instantiation

property is not created.

The arguments object does not share properties with the activation object. Changing the value of a

arguments object property does not changeviillae of the corresponding activation object property and

Every execution context has associated vdtWariableEnviornment. Variables and functions declared in

ECMAScript code evaluatkin an execution catext are added as bindings in that@ r i

abl

eEnviron

EnvironmentRecord. For function code, parameters are also added as bif@itlyst Environment Record

Which EnvironmentRecord is used to bind declaration and its kind depermd® the type of EMAScript

code executed by the executionh econtext, but the remainder of the behaviour is generic. On entering an

execution context, bindings are created in the VariableEnvironment environment record as tdiows

the called providedodeand (if it is function .eode) a function objefttnc and argument lisargs:

Let envbe theenvironment record component:of theu n"n i

ng

executi on

context 6s

If codeis strict modescode, then lstrict betrue else. letstrict befalse.

If codeis eval code, leévalbetrue, otherwiselet evalbefalse.

1
2.
3.
4

If codeis function code, then

a.

Let namesbethe value ofundd s [[For mall

Par amet.er s]]

b.

LetargCountbe the number of elements amgs.

C.

Let funcbe the functionsebject that is thiis value of the [[Call]] internal method that is is

internal

d.

exeecuting the function code:

Letn be.the number 0.

For each strin@argNamein namesin list order do

i. Letnbe thecurrent value afplus 1.

ii. If nis greater than #h number of elements iargs, letv be undefined otherwise letv

be thevalue of then6ut h e bfargse n t

iii. LetargAlreadyDeclarede the result of calling n vHasBinding(\) concrete method

passingargNameas the argument.

iv. »If argAlreadyDeclareds false, call e n vGiesteMutableBindY) concrete method

passingargNameas the argument.

v. Callé n vSgtMutableBindindy,V,S) concrete method passimggName v, andstrict

as the arguments.
5. For eachFunctionDeclarationf i

n

the execut.i

on

ctexharderdd 6 s

a.

Let fn be theldentiferin FunctionDeclarationf.

b.

Let fo be the result oévaluatingFunctionDeclarationfor f as described in 13.

C.

code, in

Let funcAlreadyDeclarede the result of calling n vHasBinding(N) concrete method passing

d.

fn as the argument.

If funcAlreadyDeclareds false, call e n vGyesteMutableBindY) concrete method passitfig

e.

as the argument.

Else ifstrictis true and evalis true throw an EvalError exception.

f.

Calle n vSetMutableBindind\,V,S) concrete method passitfig, fo, andstrict as the

arguments.

6. For eachvariableDeclarationandVariableDeclarationNolnd i

n

t he

execut.i

on

source text order do

12 January 2009

cont ex

a. Letdnbe theldentiferin d.

-53-

b. LetvarAlreadyDeclarede the result of calling n vHasBinding{N) concrete method passing

dn as the argument.
c. If varAlreadyDeclareds false, then

Callend s Cr eat e M) toacbete enBtinod paésimim as the argument.

Callend s Set Mut aNpVSecBricrete methgd passimip, undefined, and

d. Else ifstrictis true and evalis true throw an EvalError _exception.

strict as the arguments.

7. LetargumentsAlreadyDeclarelde the result of calling n vHasBinding{N) concrete method passing
"arguments" as the argument
8. If the code is function code aratgumentsAlreadyDeclareid false, then
a. LetargsObj be the result of calling thabstract operatio€reateArgumentsObject passing
func, names, argenvandstrict as arguments.
b. |If strictistrue, then
i. Callenw s Cr muableBindingl).concrete method passing the string
"arguments " as the argument.
ii. Callends I nitiali.zNW conteteabthod ssmgifuments " and
argsObjas arguments.
c. Else,
i. Callends Cr e atdfe MuN,R)lcdnerdde methad pasging the string
"arguments " andfalseas the arguments.
ii. Callendos Set Mu tN&,B) Ican@etenntbthod passitigrquments ", argsObj
andstrict as arguments.
11 Expressions
11.1 Primary Expressions
Syntax
PrimaryExpression
this
Identifier
Literal
ArrayLiteral
ObjectLiteral

(Expression

11.1.1

11.1.2

11.1.3

11.1.4

Syntax

The this Keyword
Thethis keyword evaluates to théis value of the execution context.

Identifier Reference

An Identifieris evaluated using the scoping rules stated if8.10The result of evaluating aldentifier |
is always a value of type Reference.

Literal Reference
A Literal is evaluated as described in 7.8.

Array Initialiser

An array initialiser is an expression describing the initialisation of an Arraycobjeitten in a form of a

literal. It is a list of zero or more expressions, each of which represents an array element, enclosed
square brackets. The elements need not be literals; they are evaluated each time the array initialise

evaluated.

Array elements may be elided at the beginning, middle or end of the element list. Whenever a comma

the element list is not preceded by AssignmentExpressiofi.e., a comma at the beginning or after

another comma), the missing array element contributesetdetigth of the Array and increases the index

of subsequent elements. Elided array elements are not defined.element is elided at the end of gn
array, that element does not contribute to the length of the Array.

12 January 2009

) [Deleted: 1

[

Deleted: 1.4

.54 -

ArrayLiteral :
[Elisiongg]
[ElementList]
[ElementList Elisiongy]

ElementList
Elision,,; AssignmentExpression

f L. . . [Deleted: Create
ElementList Elision,,; AssignmentExpression
[Deleted: array
Elision: [Deleted: Evaluate
v Deleted: Result(1
Elision, [cee esultt)
[Deleted: Result(2)
Semantics [Deleted: Resultit)
The productionArrayLiteral : [Elisiony,] is evaluated as follows: [Deleted: Evaluate
1. Jetarray be the result of creating newobjectas if by the .expressiomew Array() where [Deleted: <#>ReturnResult(1)T
Array _is the standard buHin constructor with that name [Deleted: Evaluate
2. Letpadbe the result of evaluatinglisionyif not present, use the numeric value zero. [Deleted: Evaluate
3. Call the [[Put]]internalmethod ofarray with arguments length. " andpad. [Deleted: Call
4. Returnarray. .
. . X i [Deleted: Result(1)
The productionArrayLiteral : [ElementList] is evaluated as follows: [Deleted: Resul(l)
1. Return the result of evaluatiriglementList [Deleted: Result(2)
The productionArrayLiteral : [ElementList, Elisionyy] is evaluated as follows: [Deleted: Result(3)
1. Letarray be the result of eatuating ElementList [Deleted: Result(1)
2. Letpadbe the result of evaluatigglision; if not.present, use the numeric value zero. [Deleted: Create
3. = - . [Deleted: array
4. Call the [[Put]]internalmethod ofarray with-arguments length " andToUint32(pad+len). [FES———
5. Returnarray. eleted: Evaluate
[Deleted: Evaluate
The productionElementList ' Elision,,; AssignmentExpressiois evaluated as follows: [Deleted: Call
1. Letarraybe the result'of creatingnewobjectas if by the expressiomew Array() where [Deleted: Result(3)
Array isthesstandard buHin constructer with that name [Deleted: Put
2. Letfirstindexbe the result of evaluatiplision; if not present, use the numeric value zero. [-
3. LetinitResultbe the result of evaluatipissignmentExpression Deleted: Result(1)
4. LetinitValue be GetValue{nitResul). Y/ [Deleted: Result(2)
5. Call the [DefineOwnPropertl] internalmethod ofarray with argumentsToStringfirstindex), the ([Deleted: andResult(4)
Property. Descriptor {{[[Value]]jnitValue, [[Writable]]: true, [[Enumerable]]:true, [otod. |
[[Configurable]]: true}, and false. S Deleted: Result(1)
6. Returnarray. [Deleted: Evaluate
The productionElementList ElementList, Elision,,; AssignmentExpressiois evaluated as follows: [Deleted: Evaluate
1. Letarray be the result of evaluatinglementList [Deleted: Evaluate
2. Letpadbe the result of evaluatinlision; if not present, use the numenialue zero. , [Deleted: Call
3. LetinitResultbe the result of evaluatipfssignmentExpression "/ [Deleted: Result(3)
4. LetinitValuebe GetValuefnitResul). [Deleted: Call
5. Letlenbe the result of callinthe [[Get]] internalmethod ofarray with argument' length :
6. Call the[[DefineOwnPropert]j internalmethod ofarray with arguments h [Deleted: Result(1)
ToString(ToUint32(padtjen)) andthe Property Descriptor { [[Value]jnitValue, [[Writable]]: true, [Deleted: Put
[[Enumerable]]:true, [[Configurable]]:true}, andfalse. [Deleted: Result(1)
7. Returnarray. [-
\ Deleted: Result(2)
The productionElision: , is evaluatedas follows: [Deleted: Result(5)
1. Return the numeric valuk [Deleted: Result(4)
[Deleted: Result(1)

12 January 2009

o U U 0 U U JU U U U U 0 U U U U U U U U U

- 55-

The productionElision: Elision, is evaluated as follows:

1. Letpreceedingoe the result of evaluatinglision. [Deleted: Evaluate
2. Return preceeding1). [Deleted: Result(1)
NOTE

Theuse of [[Put]] rather than [[ThrowngPut]] in this section is intentional as there are no situations
where these [[Put]] operationsnay fail. [[DefineOwnProperty]] is used to ensure that own propertigs
are defined for the array even if the standard binltArray prototype object has been madified in|a
manner that would preclude the creation of new own properties using [[Put]].

11.1.5 Object Initialiser

An object initialiser is an expression describing the initialisation of an Object, written in a form
resembling a literal. It is a list of zero or more pairs of property names and associated values, enclosed
curly braces. The values need no¢ bterals; they are evaluated each time the object initialiser is
evaluated.

Syntax

ObjectLiteral:

{}

{ PropertyNameAndValueLis}
{ PropertyNameAndValueList }

PropertyNameAndValueList
PropertyAssignment

PropertyNameAndValueList

PropertyAssignment
PropertyName AssignmentExpression
get PropertyNamé) { FunctionBody}
setPropertyNamd PropertySetParameterLi3t{ FunctionBody

PropertyName
IdentifieName
StringLiteral
NumericLiteral

PropertySetParameterList
Identifier

Semantics

The productionObjectLiteral: { } is evaluated as follows:

whereObject is the standard buHin

1. Create a new object as if by the expressiem Object()
construcor with that name
2. Return Result(1):

The productios ObjectLiteral: { PropertyNameAndValueLi$t and Deleted:
ObjectlLiteral: { PropertyNameAndValueList} areevaluated as follows: Deleted: is

1. Return the result of evaluatirRropertyNameAndValueList

Jhe production

PropertyNameAndValueList PropertyAssignment

is evaluated as follows:

1. Letobjbe the result of creating new object as if by the expressioew Object()

where

Object _is the standard buHin construcor with that name
2. JLetpropldbe the result of evaluatig@ropertyAssignment

12 January 2009

A O Y

[Deleted: PropertyName AssignmentExpressic]

[Deleted: PropertyName AssignmentExpressic]

Deleted: Evaluate

Deleted: <#>Return Result(1}

Deleted: PropertyName
AssignmentExpression

Deleted: Create

Deleted: Evaluate

o L JL L UL

Deleted: PropertyName

- 56 -

3. Callthe [[DefineOwnProperty]internalmethod ofobj with argumentgpropld.name,
propld.descriptor.andfalse

4. Returnpbj.

The production
PropertyNameAndValueList PropertyNameAndValueLis{PropertyAssignment
is evaluated as follows:

1. Letobjbe the result of evaluatinBropertyNameAndValueList

2. Letpropldbe the result of evaluatin@ropertyAssignment
3. Let previousbe the result of calling the [[GetOwnProperty]] internal methodmfwith argument
propld.name
4. If previousis notundefined then throw aSyntaxError exceptionif any of the following conditions
are true
a. This production is contained in strict code ds#é\ccessorDescriptopfevious is true and
IsAccessorDescriptopfopld.descriptor) isrue.
b. IsPropertyDescriptoprevious is true anddsAccessorDescriptgnopld.descriptor) isrue.
c. IsAccessDescriptopfevioug is true and ISPropertyDescriptgsfopld.desriptor) istrue.
d. IsPropertyDescriptogrevious is true and IsPropertyDescriptgsfopld.descriptor) idrue
andeither bothpreviousandpropld.descriptor hav¢[Get]] fields or bothpreviousand
propld.descriptor havé[Set]] fields
5. Callthe [DefineOwnProperty]internalmethod ofobj with argumentsgpropld.name,
propld.descriptor.andfalse.
6. Returnobj.

(
(
(
(
(
(
(

If the above steps would throwra SyntaxError then.@an implementation must tepertror immediately
when scanning the program.

The productionPropertyAssignment PropertyName AssignmentExpresside evaluated as follows:

1. Let propNamebe the result oévaluatingPropertyName

2. Let exprValuebethewresult of evaluatingssignmentExpression

3. Let propValuebe GetValueéxprValug.

4. Letdescbe theProperty Descriptor{[[Value]]propValue [[Writable]]: true, [[Enumerable]]:true,
[[Configurabld]: true}

5. Retun Property ldentifergropName desq.

The productionPropertyAssignmentgetPropertyName) { FunctionBody} is evaluated as follows:

1. lLet propNamebe.the result.of evaluatin@ropertyName

2. Let closurebe the teault of creating new Function object as specified in 13.2 with an empty
parameter list and body specified BunctionBody Pass in thé exical Environmentof the running
execution context as thfecope andpropNameas theName

3. Letdesche theProperty Descriptof{Get]]: closure [[Enumerable]]:true, [[Configurabld]: true}

4. Return Preperty Identi@r (oropName desq.

The productionPrepertyAssignment set PropertyName(PropertySetParameterList{ FunctionBody}
is evaluated as follows:

1. LetpropNamebe the result of evaluatin@ropertyName

2. Letclosurebe the result of creating a newunction object as specified in 13.2 with parameters
specified byPropertySetParameterListnd body specified bifunctionBody Pass in thé exical
Environmentof the running execution context as tif&cope andpropNameas theName

3. Letdescbe theProperty Descriptof{Set]]: closure [[Enumerable]]itrue, [[Configurabld]: true}

4. Return Property Identiér (propName desq.

The productionPropertyName I|dentifierName is evaluated as follows:

1. Return the string valueontaining the same sequence of characters aklémifierName

JThe productionPropertyName StringLiteral is evaluated as follows:

1. Return the value of th8tringLiteral.

12 January 2009

(
| 7[
(

Deleted: EvaluateAssignmentExpressidh

Deleted: GetValue(Result(3))

| Deleted: Call the [[Put]] method of Result(1) with

arguments Result(zndResult(4)1

Deleted: Result(1)

Deleted: PropertyName AssignmentExpression

Deleted: Evaluate

Deleted: Evaluate

Deleted: PropertyName

o U L

Deleted: EvaluateAssignmentExpressidh

Deleted: GetValue(Result(3))

Deleted: Call the [[Put]] method of Result(1) with
arguments Result(zndResult(4)1

Deleted: Result(1)

o U

(

Deleted: Form a string literal

(

Deleted: <#>Return Result(1y.

- 57 -

The productionPropertyName NumericLiteral is evaluated as follows:

1. Letnbrbe the result of forminthe value of theNumericLiteral [Deleted: Form

2. Return ToStringgbr). (Deleted: Resul(1)

11.1.6 The Grouping Operator
The productiorPrimaryExpression (Expression) is evaluated as follows:

1. EvaluateExpression This may be of type Reference.
2. Return Result(1).

NOTE

This algorithm does not apply GetValue to Result(1). The principal motivation for this is so that
operators such adelete andtypeof may be applied to parenthesised expressions.

11.2 Left-Hand-Side Expressions
Syntax

MemberExpression
PrimaryExpression
FunctionExpression
MemberExpressiop Expressior]
MemberExpression IdentifielName
new MemberExpressiomArguments

NewExpression
MemberExpression
new NewExpression

CallExpression
MemberExpressiorArguments
CallExpression Arguments
CallExpressior] Expression
CallExpression IdentifiedName

Arguments
(ArgumentList)

ArgumentList
AssignmentExpression
ArgumentList AssignnentExpression

LeftHandSideExpressian
NewExpression
CallExpression
11.2.1 Property Accessors
Properties are accessed by name, using either the dot notation:
MemberExpression IdentifieName
CallExpression IdentifiedName
or the bracket notation:

MemberExpressiop Expressior]
CallExpressiorf Expressior]

The dot notation is explained by the following syntactic conversion:

12 January 2009

- 58 -

MemberExpression IdentifieName

is identical in its behaviour to

MemberExpressiop <identifier-namestring>]

and similary

CallExpression IdentifieName

is identical in its behaviour to

CallExpressior] <identifier-namestring>]

11.2.2

11.2.3

where <identifiernamestring> is a string literal containing the same sequence of charaefess
processing of Unicode escape sequerastheldentifierName

The productionMemberExpression MemberExpressiofi Expression] is evaluated as follows:

1. LetbaseReferencke the result of evaluatinilemberExpressian [Deleted: Evaluate
2. LetbaseValuéde GetValuepaseReferenge [Deleted: Call
3. Let propertyNameReferendee the result'of evaluatingxpression :
4. Let propertyNameValude GetValuepropertyNameReferenge [Deleted: Result(1)
5. Letbasebe ToObjectpaseValu}. [Deleted: Evaluate
6. Let propertyNamesStrindpe ToStringpropertyNameValue [Deleted: Call
7. If the syntactic production that is being evaluated i$ contained in strict mode cod&idebetrue, :
else letstrict be false. [Deleted: Resut(3)
8. Return a value of type Reference whose haseeis paseand whosgeferencechame is [Deleted: Call
propertyNamesStringand whose.strict mode flag $érict. [Deleted: Result2)
The productionCallExpression: CallExpression[. Expression] is evaluated in exactly the same (_ Deleted: call
manner, except that the contain€dllExpressions evaluated in step 1. [Deleted: Result(4)
The new Operator (_ Deleted: object
The productiorNewExpression new NewExpressioiis evaluated as follows: [Deleted: Result(5)
1. EvaluateNewExpression [Deleted: _property
2. call Getvalue(Result(1)). (Deleted: Result(6)
3¢ If Type(Result(2)) is not Object, throwT&ypeError exception.
4. If Result(2) does not implement the internal [[Construct]] methorhwha TypeError exception.
5. Call the [[Construct]] method on Result(2), providing no arguments (that is, an empty list of
arguments).
6. Return Result(5).
The productioniMemberExpressionnew MemberExpression Argumeritsevaluated as follows:
1. EvaluateMembeExpression
2. Call GetValue(Result(1)).
3. EvaluateArguments producing an internal list of argument values (11.2.4).
4. If Type(Result(2))is not Object, throwBypeError exception.
5. If Result(2) does not implement the internal [[Construct]] method, thr@wpmeError exception.
6. Call the [[Construct]] method on Result(2), providing the list Result(3) as the argument values.
7. Return Result(6).
Function Calls
The productionCallExpression MemberExpressioArgumentds evaluated as follows:
1. EvaluateMemberExpressian [Deleted: <#>Call GetValue(Result(1)].
2. Call GetVvalue(Result(1)). [Deleted: 3
3. EvaluateArguments producing an internal list of argument values (see 11.2.4). [Deleted: 3
4. Jf Type(Resultp)) is not Object, throw dypeError exception. g . .
5. If IsCallableResultQ)) is false, throw aTypeError exception. { De'{itegi does not implement the internal [[Call]]
metno

12 January 2009

o U U U U U U L

_ JCU U

-59-

6. If Type(Result(1)) is Referencend IsPropertyReference(Result(1)Yise, Result(6) is |
GetBase(Result(1)). Otherwise, Result(6isdl.

U U

Reference is returned, it must be a rstnict Property Reference. Comment [pL6]: We wanted to remove this
possibility but have not done so because this cou
break bridging to VBScript. Cannot afford to do tk

as VBScript is still used in the intranet.

11.2.4 Argument Lists
The evaluation of an argument list produeesinternal list of values (see 8.8).

7. Call the [[Call]] method on Resuf}, providing Resul{f) as thethis value and providing the list Deleted: <#>If Result(6) is an activation
Result@) as the argument values. object, Result(7) isull. Otherwise, Result(7) i
8. Return Resulfl). the same as Result(§).
[Deleted: 3
The productionCallExpression: CallExpression Argumentss evaluated in exactly the same manner, [Deleted: 7
except that the containgdallExpressions evaluated in step 1. [S
NOTE
Result(8) will never be of type Reference if Reg)i§ a native ECMAScript obg. Whether calling a [Detetea: 8
host object can return a value of type Reference is implementdépandent.If a value of type [Deleted: 3

The productiorArguments () is evaluated as follows:

1. Return an empty internal list of values.

The productiorArguments (ArgumentList) is evaluated as follows:

1. EvaluateArgumentList
2. Return Result(1).

The productioPArgumentList /AssignmentExpressiois evaluated as follows:

1. EvaluateAssignmentExpression
2. Call GetValue(Result(1)).
3. Return an internal list whose sole item is Result(2).

The productionArgumentList ArgumentList, <AssignmentExpressiois evaluated as follows:

1. EvaluateArgumentList

2. EvaluateAssignmentExpression

3. Call GetValue(Result(2)).

4. Return-an internal list whose length is one greater than the length of Result(1) and whose items are
the items of Result(1), in order, followed at the dnydResult(3), which is the last item of the new
list.

11.2.5 Function Expressions
The productiorMemberExpression FunctionExpressions evaluated as follows:

1. EvaluateFunctionExpression
2. Return Result(1).

11.3 Postfix Expressions
Syntax
PostfixExpression
LeftHandSideExpression
LeftHandSideExpressiomo LineTerminatothere] ++
LeftHandSideExpressiofno LineTerminatothere] --

11.3.1 Postfix Increment Operator
The productionPostfixExpression LeftHandSideExpressiorino LineTerminatorhere] ++ is evaluated as
follows:

1. Evaluate LeftHandSideExpression.
2. Call GetValue(Result(1)).
3. Call ToNumber(Result(2)).

12 January 2009

- 60 -

4. Add the valuel to Result(3), using the same rules as for-theperator (see 11.6.3).
5. Call PutValue(Result(1), Result(4)).
6. Return Resu(3).

11.3.2 Postfix Decrement Operator

The productionPostfixExpression LeftHandSideExpressiorino LineTerminatorhere] -- is evaluated as
follows:

Evaluate LeftHandSideExpression.

Call GetValue(Result(1)).

Call ToNumber(Result(2)).

Subtract the valué from Result(3), using the same rules as for-theperator (11.6.3).
Call PutValue(Result(1), Result(4)).

Return Result(3).

o kwhE

114 U
Syntax

>

ary Operators

UnaryExpression
PostfixExpression
delete UnaryExpression
void UnaryExpression
typeof UnaryExpression
++ UnaryExpression
- UnaryExpression
+ UnaryExpression
- UnaryExpression
~ UnaryExpression
I UnaryExpression

11.4.1 The delete Operator
The productionUnaryExpression delete = UnaryExpressions evaluated as follows:

1. Letrefbe the result of evaluatingnaryExpression. [Deleted: Evaluate
2. If Type(ef) is not Reference; returtnue.
Deleted: Result(1
3. _df UnresolvableReferencedf) retruntrue. [cete esultl)
4¢ If IsPropertyReferenc is true, then
a. Return theresult of callingthe [[Delete]]internalmethod onGetBasefef) providing Deleted: <#>Call GetBase(Result(1)).
GetReferencedNamef) and IsStrictReferenceff) as the arguments ~ <#>Call GetPropertyName(Result(1)).
5. “Else,ref is a Reference tan EnviconmentRecordbinding, so N\ Call
a. If IsStrictReferenceagf) is true throw aReferenceError exception. N [Deleted: Result(3), providing Result(4)
b. lf GetBase(ef) [s a_decla_rative environment re(_:ord, retfiatse. _ [Deleted: _as the property name (o delete
c. Letobjbethe binding object of the object environment record that is the value of
GetBaséref).

d. Returntle result of calling th¢[Delete]] internalmethod orobj, providing
GetReferencedNamedf) and false as the arguments.

NOTE [Deleted: Return Result(5y.

When adelete operator occurs withinstrict mode codea ReferenceErrorexception is thrown ifts
UnaryExpres®on is a direct reference to a variable, function argument, or function ndmaeddition, if
the property to be deleted has the attributi¢ Configurabld]: false}, a TypeError exception $ thrown.

11.4.2 Thevoid Operator
The productionUnaryExpression void UnaryExpressions evaluated as follows:

1. EvaluateUnaryExpression
2. Call GetValue(Result(1)).
3. Returnundefined.

12 January 2009

11.4.3

11.4.4

11.4.5

11.4.6

11.4.7

The typeof Operator

The productionUnaryExpression typeof

- 61 -

UnaryExpressions evaluated as follows:

1. EvaluateUnaryExpression
2. If Type(Result(1)) is not Reference, go to step 4.
3. If JsUnresolvableReferen¢Result(1)) isirue, return"undefined”
4. Call GetValue(Result(1)).
5. Return a string determined by Type(Result(4)) according to the following table:
Type Result
Undefined "undefined”
Null "object”
Boolean "boolean”
Number "number"
String "string"
Object (native and "object”
doesnodt
[[Calll])
Object (nativeor host| "function”
and implements
[[Calll])
Object (hostu n d d { Implementatiordefined

implement [[Call])

Prefix Increment Operator

The productionUnaryExpression ++ UnaryExpressions evaluated as follows:

o0 hWNE

Return Result(4).

Evaluate UnaryExpression.
Call GetValue(Result(1)).

Call ToNumber(Result(2)).
Add the valuel to Result(3), using the same rules as for-theperator (see 11.6.3).
Call PutValue(Result(1), Result(4)).

Prefix Decrement Operator

The productionUnaryExpression --

counkrwbE

Return Result(4).
Unary + Operator

The wary + operator converts its operand to Number type.

The productionUnaryExpression + UnaryExpressiorns evaluated as follows:

Evaluate UnaryExpression.
Call' GetValue(Result(1)).

Call ToNumber(Result(2)).
Subtract the valué from Result(3), using the same rules as fortheperator (see 11.6.3).
Call PutValue(Result(1), Result(4)).

1. Evaluate UnaryExpression.
2. Call GetValue(Result(1)).
3. Call ToNumber(Result(2)).

4. Return Result(3).
Unary - Operator

UnaryExpressions evaluated as follows:

| [Deleted: GetBase

[Deleted: null

‘ [Deleted: dependent

The unay - operator converts its operand to Number type and then negates it. Note that ne@ating
produces<0, and negatin0 produces+0.

12 January 2009

-62 -

The productionUnaryExpression - UnaryExpressiorns evaluated as follows:

Evaluate UnaryExpression.

Call GetValue(Rest(1)).

Call ToNumber(Result(2)).

If Result(3) isNaN, returnNaN.

Negate Result(3); that is, compute a number with the same magnitude but opposite sign.
Return Result(5).

11.4.8 Bitwise NOT Operator (~)
The productionUnaryExpression ~ UnaryExpressions evaluated as follows:

oCURBNE

EvaluateUnaryExpression

Call GetValue(Result(1)).

Call ToInt32(Result(2)).

Apply bitwise complement to Result(3). The resultis a signedi8nteger.
Return Result(4).

ghROdE

11.4.9 Logical NOT Operator (!)
The productionUnaryExpession: ! UnaryExpressions evaluated as follows:

EvaluateUnaryExpression
Call GetValue(Result(1)).
Call ToBoolean(Result(2)).

If Result(3) istrue, returnfalse.
Returntrue.

ghrwNE

11.5 Multiplicative Operators
Syntax

MultiplicativeExpression
UnaryExpression
MultiplicativeExpressiorf UnaryExpression
MultiplicativeExpressiot UnaryExpression
MultiplicativeExpressio®UnaryExpression

Semantics

The productionMultiplicativeExpression MultiplicativeExpression @ UnaryExpressiowhere @ stands
for one of the operators in the above definitions, is evaluated as follows:

Evaluate MultiplicativeExpression.

Call GetValue(Result(1)).

Evaluate UnaryExpression.

Call GetValue(Result(3)).

Call ToNumber(Result(2)).

Call ToNumber(Result(4)).

Apply the spedied operation (*, /, or %) to Result(5) and Result(6). See the notes below (11.5.1,
11.5.2, 11.5.3

8. Return Result(7).

11.5.1 Applying the * Operator

The * operator performs multiplication, producing the product of its operands. Multiplication is
commutaive. Multiplication is not always associative in ECMAScript, because of finite precision.

NookwhE

The result of a floatingpoint multiplication is governed by the rules of IEEE 754 doyiecision
arithmetic:

If either operand idNaN, the result isNaN.
The signof the result is positive if both operands have the same sign, negative if the operands have
different signs.

12 January 2009

11.5.2

11.5.3

- 63 -

Multiplication of an infinity by a zero results iNaN.

Multiplication of an infinity by an infinity results in an infinity. The sign is deterndniey the rule
already stated above.

Multiplication of an infinity by a finite norzero value results in a signed infinity. The sign is determined
by the rule already stated above.

In the remaining cases, where neither an infinity or NaN is involved, tbeugt is computed and
rounded to the nearest representable value using IEEE 754-toumghrest mode. If the magnitude is
too large to represent, the result is then an infinity of appropriate sign. If the magnitude is too sma
to represent, the result feen a zero of appropriate sign. The ECMAScript language requires support
of gradual underflow as defined by IEEE 754.

Applying the / Operator

The / operator performs division, producing the quotient. of its operands. The left operand is the
dividend and the right operand is the divisor. ECMAScript does not perform integer division. The
operands and result of all division operations are depbéeisio floating-point numbers. The result of
division is determined by the specification of IEEE 754 arithmetic:

If either operand iNaN, the result isNaN.

The sign of the result is positive if both operands have the same sign, negative if the operands ha
different signs.

Division of an infinity by an infinity results itNaN.

Division of an infinity by a zero results in an infinity. The sign is determined by the rule already statec
above.

Division of an infinity by a norzero finite value results in a signéudffinity. The sign is determined by
the rule already stated above.

Division of a finite value by an infinity results in zero. The sign is determined by the rule already statec
above.

Division of a zero-by a zero results MaN; division of zero by any o#r finite value results in zero,
with the sign-determined by the rule already stated above.

Division of a‘nonzero finite value by a zero results in a signed infinity. The sign is determined by the
rule already stated above.

In the remaining cases, whereither an infinity, nor a zero, noNaN is involved, the quotient is
computed and rounded to the nearest representable value using IEEE 754c-memdest mode. If
the magnitude is too large to represent, the operation overflows; the result is thefiniy of
appropriate sign. If the magnitude is too.small to represent, the operation underflows and the result
a zero of the appropriate sign. The ECMAScript language requires support of gradual underflow a
defined by IEEE 754.

Applying the %Operator
The % operator yields the remainder of its operands from an implied division; the left operand is the
dividend and the right operand is the divisor.

NOTE
In C and C++, the remainder operator accepts only integral operands; in ECMAScript, it alsepts
floating-point operands.

The result of a floatingoint remainder operation as computed by ¥heperator is not the same as the
iremaindero operation defined by | EEE 754. The
remainder from a rounding dision, not a truncating division, and so its behaviour is not analogous to
that of the usual integer remainder operator. Instead the ECMAScript language défamesdloating

point operations to behave in a manner analogous to that of the Java integerdemuogierator; this may

be compared with the C library function fmod.

The result of a ECMAScript floatingoint remainder operation is determined by the rules of IEEE
arithmetic:

If either operand iNaN, the result isNaN.
The sign of the result equatlse sign of the dividend.

12 January 2009

- 64 -

If the dividend is an infinity, or the divisor is a zero, or both, the resulal.

If the dividend is finite and the divisor is an infinity, the result equals the dividend.

If the dividend is a zero and the divisor is finitBgtresult is the same as the dividend.

In the remaining cases, where neither an infinity, nor a zero,N#\ is involved, the floatingpoint
remainder r from a dividend n and a divisor d is defined by the mathematical relatior— (& hq)
where g is a integer that is negative only if n/d is negative and positive only if n/d is positive, and
whose magnitude is as large as possible without exceeding the magnitude of the true mathematical
quotient of n and d.

11.6 Additive Operators
Syntax

AdditiveExpression
MultiplicativeExpression
AdditiveExpressior MultiplicativeExpression
AdditiveExpression MultiplicativeExpression

11.6.1 The Addition operator (+)
The addition operator either performs string concatenation or numeric addition.

The production AdditiveExpression: AdditiveExpressiort+ MultiplicativeExpressionis evaluated as
follows:

Evaluate AdditiveExpression.

Call GetValue(Result(1)).

Evaluate MultiplicativeExpression.

Call GetValue(Result(3)).

Call ToPrimitive(Result(2)).

Call ToPrimitive(Result(4)).

If Type(Result(5)) is String or Type(Result(6)) is Stringen Deleted: go to step 12. (Note that this step differs
a. Call ToString(Resul®)). from step 3 in the comparison algorithm for the
b. cCal ToString(Result6)). relational operators, by using or instead of and.)
c. Concatenate Resultd) followed by Resulf{b).
d. Return Resulf{c).

8. Call ToNumber(Result(5)).

9.« Call ToNumber(Result(6)).

10. Apply the addition operation to Result(8).and Result(9). See the note below (11.6.3).

11. Return Result(10).

NogoprwNE

NOTE. Deleted: <#>Call ToString(Result(5))i
No hint is provided in the calls to ToPrimitive in steps 5 and 6. All native ECMAScript objects excep <#>Call ToString(Result(6)]. X
Date objects handle the absenoga hint as if the hint Number were given; Date objects handle the :zzgg[‘ucrita’gﬁ“?legu"(12) followed by Resuilt(1.3]
absence of a hint as if the hint String were given. Host objects may handle the absence of a hint in sok- :

other manner,

11.6.2 The Subtraction Operator (-)

The productionAdditiveExpresi®n : AdditiveExpression- MultiplicativeExpressionis evaluated as
follows:

1. Evaluate AdditiveExpression.

Call GetValue(Result(1)).

Evaluate MultiplicativeExpression.

Call GetValue(Result(3)).

Call ToNumber(Result(2)).

Call ToNumber(Result(4)).

Apply the sibtraction operation to Result(5) and Result(6). See the note below (11.6.3).
Return Result(7).

N~ ON

12 January 2009

11.6.3

11.7
Syntax

- 65 -

Applying the Additive Operators (+, -) to Numbers

The + operator performs addition when applied to two operands of numeric type, producing the sum ¢
the operands. The operator performs subtraction, producing the difference of two numeric operands.

Addition is a commutative operation, but not always associative.
The result of an addition is determined using the rules of IEEE 754 dqubtgsion arithmegc:

If either operand idNaN, the result isNaN.

The sum of two infinities of opposite sign NaN.

The sum of two infinities of the same sign is the infinity of that sign.

The sum of an infinity and a finite value is equal to the infinite operand.

The sum of two negative zeros—0. The sum of two positive zeros, or of two zeros of opposite sign, is
+0.

The sum of a zero and a nonzero finite value is equalto the nonzero operand.

The sum of two nonzero finite values of the same magnitude and desdgn is+0.

In the remaining cases, where neither an infinity, nor a zero, nor NaN is involved, and the operands ha
the same sign or have different magnitudes, the sum is computed and rounded to the near¢
representable value using IEEE 7&8undto-nearest mode. If the magnitude is too large to represent,
the operation overflows and the result is then an infinity of appropriate sign. The ECMAScript
language requires support of gradual underflow as defined by IEEE 754.

The - operator performssubtraction when applied to-two operands of numeric type, producing the
difference of its operands; the-left operand is the minuend and the right operand is the subtrahend. Giv
numeric operanda andb, it is always the case that b produces the samesult asa+(1 b) .

Bitwise Shift Operators

ShiftExpression
AdditiveExpression
ShiftExpressior< AdditiveExpression
ShiftExpressior> AdditiveExpression
ShiftExpressior>> AdditiveExpression

11.7.1

11.7.2

The Left Shift Operator (<<)
Performs a hivise left shift operation on the left operand by the amount specified by the right operand.

The productiorShiftExpression ShiftExpressior< AdditiveExpressiois evaluated as follows:

EvaluateShiftExpression

Call GetValue(Result(1)).

EvaluateAdditiveExpression

Call GetValue(Result(3)).

Call ToInt32(Result(2)).

Call ToUint32(Result(4)).

Mask out all but the least significant 5 bits of Result(6), that is, compute Result(6) & Ox1F.
Left shift Result(5) by Result(7) bits. The result is a signed 32nbétger.

Return Result(8).

CoNoORWNE

The Signed Right Shift Operator (>>)

Performs a sigifilling bitwise right shift operation on the left operand by the amount specified by the
right operand.

The productiorShiftExpression ShiftExpressior> AdditiveExpressioms evaluated as follows:

1. EvaluateShiftExpression
2. Call GetValue(Result(1)).
3. EvaluateAdditiveExpression
4. Call GetValue(Result(3)).

12 January 2009

11.7.3

| 418

Syntax

- 66 -

. Call ToInt32(Result(2)).
. Call ToUint32(Result(4)).

o ~NoO U

. Mask out all but the least significant 5 bits of Rk@&), that is, compute Result(6) & Ox1F.
. Perform sigrextending right shift of Result(5) by Result(7) bits. The most significant bit is

propagated. The result is a signed 32 bit integer.

9. Return Result(8).

The Unsigned Right Shift Operator (>>>)

Performs a zerdilling bitwise right shift operation on the left operand by the amount specified by the

right operand.

The productiorShiftExpression ShiftExpressior>> AdditiveExpressiofs evaluated as follows:

1. EvaluateShiftExpression
. Call GetValueResult(1)).
. EvaluateAdditiveExpression
. Call GetValue(Result(3)).
. Call ToUint32(Result(2)).
. Call ToUint32(Result(4)).

®NOUTAWN

result is an unsigned 32 bit integer.
Return Result(8).

©

Relational Operators

RelationalExpression
ShiftExpression
RelationalExpressior ShiftExpression
RelationalExpressior ShiftExpression
RelationalExpressiog= ShiftExpression
RelationalExpressior= ShiftExpression
RelationalExpressioimstanceof ShiftExpression
RelationalExpressiom ShiftExpression

RelationalExpressionNoln
ShiftExpression

RelatonalExpressionNolr ShiftExpression
RelationalExpressionNoln ShiftExpression
RelationalExpressionNolx= ShiftExpression
RelationalExpressionNolr= ShiftExpression

RelationalExpressionNolimstanceof = ShiftExpression

NOTE

The 'Noln' variants are needdd avoid confusing thén operator in a relational expression with the

operator in afor statement.

Semantics

The result of evaluating a relational operator is always of type Boolean, reflecting whether the relationship

Mask out all but the least significant 5 bits of Result(6), that is, compute Result(6) & Ox1F.
. Perform zeréfilling right shift of Result(5) by Result(7) bits. Vacated bits are filled with zero. The

named by the operator holds beemeits two operands.

The RelationalExpressionNolproductions are evaluated in the same manner aféhationalExpression
productions except that the contain®elationalExpressionNolns evaluated instead of the contained

RelationalExpression

11.8.1 The Lessthan Operator (<)
The productiorRelationalExpression RelationalExpressior ShiftExpressioris evaluated as follows:

1. Evaluate RelationalExpression.

12 January 2009

[

Deleted: 11.4

11.8.2

11.8.3

11.8.4

11.8.5

- 67 -

Call GetValue(Result(1)).

Evaluate ShiftExpression.

Call GetValue(Result(3)).

Perform thecomparison Result(2) < Result(4). (see 11.8.5)

If Result() is undefined, returnfalse. Otherwise, return Resuf). l

S

The Greater-than Operator (>)
The productiorRelationalExpression RelationalExpressior ShiftExpressioiis evaluated as follos:

Evaluate RelationalExpression.

Call GetValue(Result(1)).

Evaluate ShiftExpression.

Call GetValue(Result(3)).

Perform the comparison Result(4) < Result(2)h LeftFirstequal tofalse. (see 11.8.5).

ogahrwnE

The Lessthan-or-equal Operator (<=)
The productiorRelationalExpression RelationalExpressiog= ShiftExpressions evaluated as follows:

Evaluate RelationalExpression.

Call GetValue(Result(1)).

Evaluate ShiftExpression.

Call GetValue(Result(3)).

Perform the comparison Result(4) < Result(2)h LeftFirst equal tofalse. (see 11.8.5).

okhwhE

The Greater-than-or-equal Operator (>=)
The productionRelationalExpression RelationalExpressior= ShiftExpressiorns evaluated as follows:

Evaluate RelationalExpression.

Call GetValue(Result(1)).

Evaluate ShiftExpression.

Call GetValue(Result(3)):

Perform the comparison Result(2) < Result(4). (see 11.8.5).

ok wnE

The Abstract Relational Comparison Algorithm

The comparisonx < y, wherex andy are values, producesue, false, or undefined (which indicates that
at least one operand aN)._In addition tox andy the algorithm takes a booledllag named_eftFirst as
a parameter. The flag.is used to control the order in which operations with potentially visibEffeicts
are_performed upoxandy. It is necessary because ECMAScript specifies left to right evaluatio
expressions. The default value loéftFirst is true and indicates that the paramenter corresponds to g
expression. that occurs to the left of th@arameters corresponding expressilf LeftFirstis false the
reverse is the case and operations must be performedyupefiorex. Such a comparison is performed §
follows:

1. |If the LeftFirstflag is'true, then
a. Letpxbe the result of callingoPrimitive(x, hint Number).
b. Let pybe the result of callindoPrimitive(y, hint Number).
2. Else the order of evaluation needs to be reversed to preserve left to right evaluation
a. Letpybe the result of calling ToPrimitivg(hint Number).
b. Let pxbe the result of calling ToPrimitive(hint Number).
3. If Type(px) is Stringbr Type(py) is String, go to step 16. (Note that this step differs from step 7 in

If Result@) istrue or undefined, returnfalse. Otherwise, returitrue. ‘

If Result() is undefined, returnfalse. Otherwisereturn Resultf). ‘ [

If Result() is true or undefined, returnfalse. Otherwise, returitrue. ‘ [

n

S

Deleted:

Deleted:

Deleted:

Deleted:

Deleted:

Deleted:

5

of[

Deleted: Call

Deleted: Call

Comment [pL7]): See Deviations doc item 2.8

Deleted:

Result(1)

Deleted:

and

Deleted:

Result(2)

Deleted:

Call

Deleted:

Result(1)

Deleted:

Call ToNumber

the algorithm for the addition operaterin usingandinstead ofor.) Deleted: Result(2)
4. Letnxbe the result of callingdoNumberfx). Because opx andpy are primitive values evaluation Deleted: Result(4)
order is not important. Deleted: Result(5)
Let ny be the result of callinfioNumbe(py). -
If nxis NaN, returnundefined. Deleted: Result(4)
If pyis NaN, returnundefined. Deleted: Result(5)
If nxandpy are the same number value, retfiaise. Deleted: Result(4)
If pxis +0 andny is —0, returnfalse. Deleted: Result(5)

Co~NG

12 January 2009

(
(
(
(
(
(
(
(
(
(
(
(
(
(
—

O U 0 U U 0 JU U L L

10.
11.
12.
13.
14.
15.

16.

- 68 -

If nxis -0 andny,is +0, returnfalse.

If nxis +e0, returnfalse.

If ny,is +e, returntrue.

If ny,is —oo, returnfalse.

If nxis —oo, returntrue.

If the mathematical value g¢fxis less than the mathematical valuengfd note that these
mathematical values are both finite and not both @emeturntrue. Otherwise, returfialse.

If pyis a prefix ofpx, returnfalse. (A string valuep is a prefix of string valug if g can be the result
of concatenating and some other string Note that any string is a prefix of itself, because r thay
the empty string.)

. If pxis a prefix ofpy, returntrue.
. Let k be the smallest nonnegative integer such that the character at pésitithin px is different

. If m<n, returntrue. Otherwise, returmalse.

NOTE
The comparison of strings uses a simpledexicographic ordering on sequencedeofinitvalue values.

There is no attempt to use tmeore complex, semantically oriented definitions of character or string
equality and collating order defined in the Unicode specification. Therefore strings that are canonically

equal according to the Unicode standard could test as unequal. In effect [gdstam assumes that
both strings are already in normalised form.

11.8.6 The instanceof operator

The productionRelationalExpressianRelationalExpressioinstanceof ShiftExpressions evaluated
as follows:

QO NSOk wNE

EvaluateRelationalExpression

Call GetValue(Reslt(1)).

EvaluateShiftExpression

Call GetValue(Result(3)).

If Result(4) is not an object, throwTypeError exception.

If Result(4) does not have a [[HasInstance]] method, throl@eError exception.
Call the [[HasInstance]] method of Result(4) wighrameter Result(2).

Return Result(7).

11.8.7 The in operator
The productionRelationalExpression RelationalExpressioin ShiftExpressions evaluated as follows:

KNouhwNE

EvaluateRelationalExpression

Call GetValue(Result(1)).

EvaluateShiftExpression

Call GetValue(Result(3)).

If Result(4) is not an object, throwT®ypeError exception.

Call ToString(Result(2)).

Call the [[HasProperty]] method of Result(4) with parameter Result(6).
Return Result(7).

11.9 Equality Operators

Syntax

EqualityExpression
RelationalExpression
EqualityExpressior= RelationalExpression
EqualityExpressiof= RelationalExpression
EqualityExpressior== RelationalExpression
EqualityExpressiot== RelationalExpression

12 January 2009

Deleted:

Result(4)

Deleted:

Result(5)

Deleted:

Result(4)

Deleted:

Result(5)

Deleted:

Result(5)

Deleted:

Result(4)

Deleted:

Result(4)

Deleted:

Result(5)

Deleted:

Result(2)

Deleted:

Result(1)

[
[
(
[
(
(
(
(
(
(
(

Deleted:

Result(1)

Deleted:

Result(2)

Deleted:

Result(1)

Deleted:

Result(2)

Deleted:

code point

Deleted:

Result(1)

Deleted:

code point

Deleted:

Result(2)

[
[
[
(
[
[
[
[

Deleted:

code point

o U U U 0 JU U U U U

- 69 -

EqualityExpressionNoln
RelationalExpressionNoin
EqualityExpessionNoln== RelationalExpressionNoln
EqualityExpressionNolt= RelationalExpressionNoln
EqualityExpressionNolr== RelationalExpressionNoln
EqualityExpressionNolt== RelationalExpressionNoln

11.9.1

11.9.2

11.9.3

Semantics

The result of evaluating an equality operator iwa}s of type Boolean, reflecting whether the relationship
named by the operator holds between its two operands.

The EqualityExpressionNolmproductions are evaluated in the same manner asEthelityExpression
productions except that the containEdualityExpressionNolrand RelationalExpressionNolare evaluated
instead of the containelqualityExpressiorand RelationalExpressionrespectively.

The Equals Operator (==

The production EqualityExpression: EqualityExpression==_RelationalExpressionis evaluated as
follows:

1. EvaluateEqualityExpression

Call GetValue(Result(1)).

EvaluateRelationalExpression

Call GetValue(Result(3)).

Perform the comparison Result(4) == Result(2). (see 11.9.3).
Return Result(5).

ook wN

The Doesnot-equals Operator (I=)

The production EqualityExpression: EqualityExpression!=. RelationalExpressionis evaluated as
follows:

1. EvaluateEqualityExpression

Call GetVvalue(Result(1)).

EvaluateRelationalExpression

Call GetValue(Result(3)).

Perform the comparison Result(4) Result(2). (see 11.9.3).
If Result(5).istrue, returnfalse. Otherwise, returtrue.

ourwON

The Abstract Equality Comparison Algorithm

The comparisonx == y, wherex and y are values, producesue or false Such a comparison is
performed as follows:

If Type() is different from Typey), go to step 14.

If Type(x) is Undefined, returitrue.

If Type(x) is Null, returntrue.

If Type(x) is not. Number, go to step 11.

If xis NaN, returnfalse

If yis NaN, returnfalse.

If xis the same number value ysretun true.

If xis +0 andy is -0, returntrue.

If xis -0 andy is +0, returntrue.

0. Returnfalse.

1. If Type(x) is String, then returtrue if x andy are exactly the same sequence of characters (same
length and same characters in corresponding positionser@ibe, returrfalse.

12. If Type(x) is Boolean, returtrue if x andy are bothtrue or bothfalse. Otherwise, returfialse.

13. Returntrue if x andy refer to the same objedDtherwise, returialse.

14. If xis null andy is undefined, returntrue.

15. If x is undefined andy is null, returntrue.

16. If Type(x) is Number and Typ@gf is String,

return the result of the comparisarr= ToNumbery).

HRboo~NoGarwbE

12 January 2009

Deleted: or if they refer to objects joined tc
each other (see 13.1.2)

11.9.4

11.9.5

11.9.6

-70 -

17. If Type(x) is String and Typef) is Number,
return the result ofhe comparison ToNumbed(==y.
18. If Type(x) is Boolean, return the result of the comparison ToNumderf y.
19. If Type(y) is Boolean, return the result of the comparisor= ToNumbery).
20. If Type(x) is either String or Number and Typg(s Object,
returnthe result of the comparison== ToPrimitivef).
21. If Type(x) is Object and Typsey is either String or Number,
return the result of the comparison ToPrimitixe€=y.
22. Returnfalse.
NOTE
Given the above definition of equality:

String comparison can be forced BYy:+ a==""+b

Numeric comparison can be forced key:- 0 == - 0.

Boolean comparison can be forced bBg:== !b

The equality operators maintain the following invariants:

Al= Bis equivalent td(A ==B).

A == Bis equivalent toB == A, except in the order of evaluation Afand B.

The equality operator is not always transitive. For example, there might be two distinct String objects,
each representing the same string value; each String object would be consideraldteghe string
value by the== operator, but the two String objects would not be equal to each other.

Comparison of strings uses a simple equality test on sequengesdefunitvalue values. There is no [Deleted: code point

attempt to use the more complex, seruatly oriented definitions of character or string equality and
collating order defined in the Unicode 2.0 specification. Therefore strings that are canonically equal
according to the Unicode standard could test-as unequal..In effect this algorithm assuahédsoth
strings are already in normalised form.

The Strict Equals Operator (===

The productionEqualityExpression: EqualityExpression=== RelationalExpressions evaluated as
follows:

1. EvaluateEqualityExpression

Call GetValue(Result(1)).

EvaluateRelationalExpression

Call GetValue(Result(3)).

Perform the comparison Result(4) === Result(2). (See below.)
Return Result(5).

O TLEON

The Strict Doesnot-equal Operator (!==)

The productionEqualityExpression: EqualityExpression!== RelationalEpressionis evaluated as
follows:

EvaluateEqualityExpression

Call GetValue(Result(1)).

EvaluateRelationalExpression

Call GetValue(Result(3)).

Perform the comparison Result(4) === Result(2). (See below.)
If Result(5) istrue, returnfalse. Otherwise, returtrue.

ocupwNhE

The Strict Equality Comparison Algorithm
The comparisorx ===y, wherex andy are values, produceBue or false. Such a comparison is
performed as follows:

1. If Type(x) is different from Typey), returnfalse.
2. If Type(x) is Undefined, returrirue.
3. If Type(x) is Null, returntrue.

12 January 2009

-71 -

If Type(x) is not Number, go to step 11.

If xis NaN, returnfalse.

If yis NaN, returnfalse.

If xis the same number value gsreturntrue.

If xis +0 andy is -0, returntrue.

. If xis—0 andy is +0, returntrue.

0. Returnfalse.

1. If Type(x) is String, then returtrue if x andy are exactly the same sequence of characters (same
length and same characters in corresponding positions); otherwise, falsen

12. If Type(x) is Boolean, returrirue if x andy are bothtrue or bothfalse; otherwise, returrialse.

13. Returntrue if x andy refer to the same objedDtherwise, returfialse. ‘ { Deleted: or if they refer to objects joined ﬂ

Hboo~NoO M

each other (see 13.1.2)

J11.10 Binary Bitwise Operators

Syntax

BitwiseANDEXxpression
EqualityExpression
BitwiseANDExpressio& EqualityExpression

[Deleted: <#>]

BitwiseANDEXxpressionNoln
EqualityExpressionNoin
BitwiseANDExpressionNol& EqualityExpressionNoln

BitwiseXOREXxpression
BitwiseANDEXxpression
Bitwise XORExpressioh BitwiseANDEXxpression

BitwiseXORExpressionNoin
BitwiseANDExpressionNoln
BitwiseXORExpressionNomBitwiseANDExpressionNoln

BitwiseORExpression
BitwiseXORExpression
BitwiseOREXxpressioh Bitwise XORExpression

BitwiseORExpressionNotn
BitwiseXORExpressionNoln
Bitwise ORExpressionNoln Bitwise XORExpressionNoln

Semantics

The productionA : A @ B where @ is one of the bitwise operators in the productions above, is evaluatec
as follows:

EvaluateA.

Call GetValue(Result(1)).

EvaluateB.

Call GetValue(Result(3)).

Cal Tolnt32(Result(2)).

Call ToInt32(Result(4)).

Apply the bitwise operator @ to Result(5) and Result(6). The result is a signed 32 bit integer.
Return Result(7).

ONoOOTRWNE

11.11 Binary Logical Operators
Syntax

LogicalANDEXxpression
BitwiseORExpression
LogicalANDExpressio&& BitwiseOREXxpression

12 January 2009

-72 -

LogicalANDExpressionNoln
BitwiseOREXxpressionNolIn
LogicalANDExpressionNol&& BitwiseORExpressionNoln

LogicalORExpression
LogicalANDExpression
LogicalORExpressiof] LogicalANDExpression

LogicalORExpressionNal:
LogicalANDExpressionNoln
LogicalORExpressionNoljy LogicalANDEXxpressionNoln

Semantics

The productionLogicalANDExpression LogicalANDExpressior&& BitwiseORExpressiois evaluated as
follows:

EvaluateLogicalANDExpression
Call GetValue(Result(1)).

Call ToBoolean(Result(2)).

If Result(3) isfalse, return Result(2).
EvaluateBitwiseORExpressian

Call GetValue(Result(5)).

Return Result(6).

NogokwhpE

The productionLogical ORExpression. LogicalORExpressiorj] LogicalANDExpressions evaluated as
follows:

EvaluateLogicalORExpression

Call GetValue(Result(1)).

Call ToBoolean(Result(2)).

If Result(3).istrue, return Result(2).
EvaluateLogicalANDExpression
Call GetValue(Result(5)).

Return Result(6).

Nogoh,wnhpE

The LogicalANDExpressionNolrand Logical ORExpressionNolmproductiors are evaluated in the same
manner as thd.ogicalANDExpressiorand LogicalORExpressiorproductions except that the contained
LogicalANDExpressionNoln BitwiseORExpressionNolnand LogicalORExpressionNolnare evaluated
instead. of the containedLogicalANDExpression BitwiseORExpressionand LogicalORExpression
respectively.

NOTE
The value produced by &&or || operator is not necessarily of type Boolean. The value produced will
always be the value of one of the two operand expressions.

11.12 Conditional Operator (?2:)
Syntax

ConditionalExpression
LogicalORExpression
LogicalORExpressior? AssignmentExpressionAssignmentExpression

ConditionalExpressionNoln
LogicalORExpressionNolIn
LogicalORExpressionNolr? AssignmentExpressionAssignmentExgssionNoln
Semantics

The productionConditionalExpression Logical ORExpressiof? AssignmentExpressian
AssignmentExpresside evaluated as follows:

12 January 2009

-73-

EvaluateLogical ORExpression

Call GetValue(Result(1)).

Call ToBoolean(Result(2)).

If Result(3) isfalse, go to step 8.

Evaluate the firsAssignmentExpression
Call GetValue(Result(5)).

Return Result(6).

Evaluate the seconfissignmentExpression
Call GetValue(Result(8)).

0. Return Result(9).

BoeoNoahwNE

The ConditionalExpressionNolproduction is evaluated in the same manas theConditionalExpression
production except that the contained.ogicalORExpressionNoln AssignmentExpressionand

AssignmentExpressionNolnare evaluated instead of .the. containeldogicalORExpression first

AssignmentExpressicand second\ssignmentExgssion respectively.

NOTE

The grammar for a ConditionalExpression in ECMAScript is a little bit different from that in C and Java,
which each allow the second subexpression to be an Expression but restrict the third expression to be
ConditionalExpresgin. The motivation for this difference in ECMAScript is to allow an assignment

expression to be governed by either arm of a conditional and to eliminate the confusing and fairly usele:
case of a comma expression as the centre expression.

11.13 AssignmentOperators
Syntax

AssignmentExpression
ConditionalExpression
LeftHandSideExpression AssignmentOperator AssignmentExpression

AssignmentExpressionNoln
ConditionalExpressionNoln
LeftHandSideExpression AssignmentOperator AssignmentExpressionNoln

Assignment@erator: one of
= *= /= %= += -= <<= 3>z >>>= &= A= =

Semantics

The AssignmentExpressionNoproductions are evaluated in the same manner agshiggnmentExpression
productions except that the contain€bnditionalExpressionNoln andissignmentExpressionNolare
evaluated instead of the contain€dnditionalExpressiomnd AssignmentExpressipmespectively.

11.13.1 Simple Assignment (=)

The productionAssignmentExpression LeftHandSideExpression AssignmentExpressiois evaluated
as follows:

EvaluateLeftHandSideExpression
EvaluateAssignmentExpression
Call GetValue(Result(2)).

Call PutValue(Result(1), Result(3)).
Return Result(3).

apwdRE

NOTE

When asimple assignment occurs withistrict mode codeits LeftHandSide mustoh evaluate toan
unresolvable referencelf it does a ReferenceError exception is thrownupon assignmentThe
LeftHandSide also may not be a reference to a property with the attribute value {[[WritafaleH: nor
to a nonexistent property of an objesthose [[Extensible]] property has the valdi@lse. In these cases|
a TypeError exception is thrown.

12 January 2009

- 74 -

11.13.2 Compound Assignment (op=)

The productionAssignmentExpressionLeftHandSideExpression @ AssignmentExpressiomhere @
represents one of theperators indicated above, is evaluated as follows:

EvaluateLeftHandSideExpression

Call GetValue(Result(1)).
EvaluateAssignmentExpression

Call GetValue(Result(3)).

Apply operator @ to Result(2) and Result(4).
Call PutValue(Result(1), Result(5)).
ReturnResult(5).

NogrwNE

11.13.2.1 Strict Mode Restrictions
The same restrictions apply as specified in 11.13.1.1
11.14 Comma Operator (,)
Syntax

Expression
AssignmentExpression
Expression AssignmentExpression

ExpressionNoln
AssignmentExpressionNoln
ExpressionNoln AssignmentExpressionNoln

Semantics
The productiorExpression Expression AssignmentExpresside evaluated as follows:

EvaluateExpression

Call GetValue(Result(1)).
EvaluateAssignmentExpression
Call GetValue(Result(3)).
ReturnResult(4).

ghrwnE

The ExpressionNolmproduction is evaluated in the same manner asEgressionproduction except that
the' containedExpressionNolnand AssignmentExpressionNolare evaluated instead of the contained
Expressiorand AssignmentExpressionespectvely.

12 January 2009

- 75 -

12 Statements
Syntax

Statement
Block
VariableStatement
EmptyStatement
ExpressionStatement
IfStatement
IterationStatement
ContinueStatement
BreakStatement
ReturnStatement
WithStatement
LabelledStatement
SwitchStatement
ThrowStatement
TryStatement

DebuggerStatement

Semantics

A Statementan be part of dabelledStatementwhich itself can be part of babelledStatementand so on.
The | abels introduced this< way are collectively 1
semantics ofndividual statements AabelledStatemertas no semantic meaning other than the introduction
of a label to alabel set The label set of aliterationStatemenbr a SwitchStatemeninitially contains the
single elemenempty. The label set of any otherasement is initially empty.

Note:
TBD: Implementations.have.been known te supgarhctionDeclarationin a Statementhowever there is no
uniform support.t isdmpossiblésto reconcile their differing semantics, and hence this specification excludes

their possibility.
12.1 Block
Syntax

Block:
{ StatementLigt,}

StatementList
Statement
StatementList Statement

Semantics
The productiorBlock: { } .is evaluated as follows:

1. Return formal, empty, empty).

The productiorBlock: { StatementLis} is evaluatedas follows:

1. EvaluateStatementList
2. Return Result(1).

The productionStatementList Statements evaluated as follows:

1. EvaluateStatement

2. If an exception was thrown, returrth(ow, V, empty) whereV is the exception. (Execution now
proceeds as if no exception were thrown.)

3. Return Result(1).

The productionStatementList StatementList Statemeistevaluated as follows:

12 January 2009

12.2
Syntax

-76 -

EvaluateStatementList

If Result(1) is an abrupt completion, return Result(1).

EvaluateStatement

If an exception was thrown, returth(ow, V, empty) whereV is the exception. (Execution now
proceeds as if no exception were thrown.)

If Result(3).value i=mpty, letV = Result(1).value, otherwise let V = Result(3).value.

Return (Resu(3).type,V, Result(3).target).

BONE

oo

Variable statement

VariableStatement

var

VariableDeclarationList

VariableDeclarationList

Var
Var

iableDeclaration
iableDeclarationList VariableDeclaration

VariableDeclarationListNoln

Var
Var

VariableD

iableDeclarationIn
iableDeclarationListNoln VariableDeclarationNoln

eclaration:

Identifier Initialiser,y

VariableD

eclarationNoln

Identifier InitialiserNoln,;

Initialiser :
=A

ssignmentExpression

InitialiserNoln :

=A

ssignmentExpressionNoln

Description

A variable statemendeclars variables that are created as defined in sectiof. Mariablesare initialised
to undefined when created. A variable with dnitialiser is assigned the value of ifsssignmentExpression
when theVariableStatemen executed, not when the variablecigated.

Semantics
The productiorivariableStatement var VariableDeclarationList, is evaluated as follows:

1. EvaluateVariableDeclarationList
2. Return formal, empty, empty).

The productionvariableDeclarationList VariableDeclarationis evaluated as follows:

1. EvaluateVariableDeclaration

The productionVariableDeclarationList: VariableDeclarationList, VariableDeclarationis evaluated as
follows:

1. EvaluateVariableDeclarationList
2. EvaluateVariableDeclaration

The productionvariableDeclaration: Identifier is evaluated as follows:

1. Return a string value containing the same sequence of characters asdarttier.

The productionvVariableDeclaration: Identifier Initialiseris evaluated as follows:

12 January 2009

(

Deleted: If the]

Deleted: occurs inside &unctionDeclarationthe
variables are defined with functidacal scope in that
function, as described 810.1.3. Otherwise, they are
defined with global scope (that is, they are created a
members of the globabject, as described in 10.1.3)
using property attributes@ontDelete}. Variables are
created when the execution scope is enterelosk
does not define a new execution scope. Giygram
andFunctionDeclaratiorproduce a new scope.
Variables

- 77 -

Jf the VariableDeclarationoccurs in strict modeode let strict betrue, otherwise lestrict befalse.
Letrhs be the result of evaluatinipitialiser.
Letvaluebe GetValuefhs).

PoNE

Call the SetMutableBindindN,V,S) concrete method of the exec

passing thddentifer, valug andstrict as argumenjs
5. Return a string value containing the same sequence of characters addarttiéer.

The productionnitialiser : = AssignmentExpressids evaluated as follows:

1. EvaluateAssignmentExpression
2. Return Result(1).

The VariableDeclarationListNoln VariableDeclarationNolnand InitialiserNoln productions are evaluated

in the same manner as tNariableDeclarationList VariableDeclarationand Initialiser productions except
that the contained VariableDeclarationListNoln VariableDeclarationNoln InitialiserNoln and

AssignmentExpressionNolnare evaluated instead < of the containe¥ariableDeclaratiorist,
VariableDeclaration Initialiser and AssignmentExpressionespectively.

12.3 Empty Statement
Syntax
EmptyStatement
Semantics
The productiorEmptyStatement; is evaluated as follows:
1. Return formal, empty, empty).
12.4 Expression Statement
Syntax
ExpressionStatement

[lookaheace {{, function 1 Expression

Note that-anExpressionStatemertannot start with an opening curly brace because that might make it
ambiguous with &lock Also, anExpressionStatememgnnot start with théunction keyword because

that might make it ambiguous withFRunctionDeclaration
Semantics
The productiorExpressionStatemenflookaheade {{, function 11 Expression is evaluated as follows:

1. EvaluateExpression
2. Call GetValue(Result(1)).
3. Return formal, Result@), empty).

12.5 Theif Statement
Syntax
IfStatement

if (Expressior) Statementelse Statement
if (Expressior) Statement

Each else for which the choice of associatafl is ambiguous shall be associated with the nearest

possibleif that would otherwis have no correspondiredse .
Semantics
The productionfStatement if (Expression) Statementlse Statemenis evaluated as follows:

1. EvaluateExpression

12 January 2009

i Vo T VA (mmm—

Deleted:

11.1.2.

Evaluateldentifier as desribed in

Deleted:

Evaluate

Deleted:

Call

Deleted:

Result(2)

Deleted:

Call PutValue(Result(1), Result(3)

I U

-78 -

Call GetValue(Result(1)).

Call ToBoolean(Result(2)).

If Result(3) isfalse, go to step 7.
Evaluate the firsBtatement
Return Result(5).

Evaluate the secon8tatement
Return Result(7).

PN~ WN

The productiorifStatement if (Expression Statemenis evaluated as follows:

EvaluateExpression

Call GetValue(Result(1)).

Call ToBoolean(Result(2)).

If Result(3) isfalse, return formal, empty, empty).
EvaluateStatement

Return Result(5).

12.5.1 Strict Mode Restrictions

In strict mode code 8tatementhat is part of anfStatemenproduction may not be ®ariableStaement
nor may it be alabelledStatmet whose Statement production is a VariableStatment The
LabelledStatementestriction also appliesdf such afariableStatmenis.preceeded by multiple labels.

O 0TEWNE

12.6 Iteration Statements

An iteration statement consists of heeader (which. consists of a keyword and a parenthesised control
construct) and dody(which consists of Statement

Syntax

IterationStatemertt
do Statementwhile (Expression);
while (Expressior) Statement
for (ExpressionNolgy; Expressiog,; Expressiog,) Statement
for (var VariableDeclarationListNoln Expressiog,; Expressiog,) Statement
for (LeftHandSideExpressian Expressior) Statement
for (var VariableDeclarationNolrin Expressior) Statement

StrictsaMode Restrictions

A Statementhat'is an element of alterationStatemenproduction may not be WariableStatmenhor may
it be a LabelledStatmentwhose Statementproduction is aVariableStatment The LabelledStatement
restriction also applies if such afariableStatmenis preceeded by multiple labels.

12.6.1 The do-while Statement
The productiordo Statementvhile (Expressior); is evaluated as follows:

Let V = empty.

EvaluateStatement

If Result(2).value is noempty, letV = Result(2).value

If Result(2).type isontinue and Result(2).target is in the current label set, go to step 7.
If Result(2).type idreak and Result(2).target is in the current label set, retaorrfal, V, empty).
If Result(2) is an abrupt completion, return Result(2).

EvaluateExpression

Cal GetValue(Result(7)).

. Call ToBoolean(Result(8)).

10.1f Result(9) istrue, go to step 2.

11.Return formal, V, empty);

CoNoTRALNME

12.6.2 The while statement
The productioniterationStatement while (Expression) Statements evaluated as follows:

1. LetV =empty.
2. EvaluateExpressio.

12 January 2009

-79 -

Call GetValue(Result(2)).

Call ToBoolean(Result(3)).

If Result(4) isfalse, return formal, V, empty).

EvaluateStatement

If Result(6).value is noempty, let V = Result(6).value.

If Result(6).type iscontinue and Result(6).target is the current label set, go to 2.

If Result(6).type isbreak and Result(6).target is in the current label set, retaorrfal, V, empty).
10 If Result(6) is an abrupt completion, return Result(6).

11.Go to step 2.

CoNOO AW

12.6.3 Thefor Statement

The productioniterationStatement for (ExpressionNolgy,, ; Expressiog,;; Expressiogy) Statement
is evaluated as follows:

1. If ExpressionNoljis not present, goto step 4. | [Deleted: the firstExpression

EvaluateExpressionNoln

Call GetValue(Result(2)). (This value is not used.)

Let V = empty.

If the first Expressions not present, go tostep 10.

Evaluate the firsExpressio.

Call GetValue(Result(6)).

Call ToBoolean(Result(7)).

If Result(8) isfalse, go to step 19.

10 EvaluateStatement

11.1f Result(10).value is notmpty; let V = Result(10).value

12.1f Result(10).type idreak and Result(10).target is in the current label set, go to step 19.
13.1f Result(10).type isontinue and Result(10).targetis in the current label set, go to step 15.
14.1f Result(10) is an abrupt completion, returesult(10).

15.1f the secondExpressions not present, go to step 5.

16.Evaluate the seconxpressio.

17.Call GetValue(Result(16). (This value is not used.)

18.Go to step 5.

19.Return formal, V, empty).

CoNOOAWN

The production IterationStatement:. for (" var VariableDeclaratbnListNoln ; Expressiogy ;
Expressiogy) Statemenis evaluated as follows:

1. EvaluateVariableDeclarationListNoln

Let V = empty.

If the first Expressioris not present, go to step 8.
Evaluate the firsExpression

Call GetValue(Result(4)).

Call ToBoolean(Result(5)).

If Result(6) isfalse, go to stefl7. | (Deleted: 14

EvaluateStatement

If Result(8).value is noempty, let V = Result(8).value.

10 If Result(8).type idreak and Result(8).target is in the current label set, go to step 17.
11.1f Result(8).type ixontinue and Result(8).target is in the current label set, go to step 13.
12.1f Result(8) is an abrupt completion, return Result(8).

13.1f the secondExpressioris not present, go to step 3.

14.Evaluate the seconxpression

15.Call GetValue(Result(14)). (This valuen®t used.)

16.Go to step 3.

17.Return formal, V, empty).

©COND O AW

12.6.4 Thefor -in Statement

The productioniterationStatement for (LeftHandSideExpressioin Expression) Statementis
evaluated as follows:

12 January 2009

- 80 -

. Evaluate theExpression

. Call GetValue(Result(1)).

. If Result(2) isnull or undefined, return fiormal, V, empty).

. Call ToObject(Result(2)).

Let V = empty.

Get the name of the next property of Regillj’hose [[Enumerable]] attribute isue. If there is no

OURWN

such property, go to stefb.
. Evaluate thd_eftHandSideExpressionit may be evaluated repeatedly).
. Call PutValue(Result(6), ResyHy).
. EvaluateStatement
10.1f Result(@).value is notempty, letV = Resultp).value.

© 00~

11.1f Result(9).type isbreak and Resul{f).target is in the current label set, go to siép

12.1f Result().type iscontinue and Resulf).target is in the current label set, go to sfep

Deleted: 3

Deleted: t hat doesndt have

Deleted: 14

Deleted:

Deleted:

Deleted:

13.1f ResultQ) is an abrupt completion, return Res@jt(

14.Go to stegp.
15.Return formal, V, empty).

The productioniterationStatement for (var VariableDeclarationNolnin Expression) Statements
evaluated as follows:

. EvaluateVariableDeclarationNoln

. EvaluateExpression

. Call GetValue(Result(2)).

. If Result(3) isnull or undefined, return formal,.V, empty).

. Call ToObject(Result(3)).

Let V =empty.

. Get the name of the next property of Resilit¢hose [[Enumerable]] attribute tsue, If there is no

NoOUrwWN R

such property, go to stels. B
8. Evaluate Result(1) as if it were an Identifier; sep 7 from the previous algorith@it may be

evaluated repeatedly).
9. Call PutValue(Result(7), Resuysy).
10.EvaluateStatement
11.If Result(L0).value is noempty, let V = Resul{f0).value.

12.1f Result(L0).type isbreak and Resul{{0).target is in the current label set, go to siép

13.If Result(L0).type iscontinue and Result{0).target is in the currerabel set, go to step.

14.1f Result@) is.an abrupt completion, return Res@jt(

15.Go to step/. - N
16.Return ormal, V, empty).

The mechanics of enumerating the properties (step 5 in the first algorithm, step 6 in the seguand) is
specified Properties of the object being enumerated may be deleted during enumeration. If a proper
that has not yet been visited during enumeration is deleted, then it will not be visited. If newtipsoper
are added to the object being enumerated during enumeration, the newly added propd@ aneed

notto be visited in the active enumeration.

Enumerating the properties of an object includes enumerating properties of its prototypéheand
prototype of the protatype, and so on, recursively; but a property of a prototype is not enumerated if it
object in the

Ashadowedd because some previous

12.6.4.1 Strict Mode Restrictions

12.7
Syntax

The continue

The same rstrictions apply as specified in section 11.13.1.1

Statement

ContinueStatement

continue

[no LineTerminatohere] Identifieryy ;

Semantics

12 January 2009

Deleted:

0 || | || ||

Deleted:

Deleted:

Deleted:

Deleted:

Deleted:

Deleted:

|| || |fo || ||

Deleted:

Deleted: 4

Deleted: t hat doesnd6t have

(
(
[
(
(
(
(
(
[Deleted: 14
(
(
(
(
(
(
(
(
(

o WU U U U U U U U L L

Deleted: 15

Comment [pL8]: From AWB:

I dondét see what valwue t#h
where step numbering can get out of whack.

Deleted: 0

Deleted: yes,

Deleted:

Deleted:

Deleted:

Deleted:

|l |||

Deleted:

Deleted: 15

(
(
(
(
(
{
(
(
[Deleted:
(
4
(
(
(
%

Deleted:

Deleted:

Deleted:

@ | |o || o

Deleted:

Deleted: 6

Deleted: implementation dependent

Deleted: The order of enumeration is defined by th
object.

=20 O U U U U U L

Comment [pL9]: Mar k wants to de
obvious that this is a requirement that we can (or shoulc
force upon implementations.

(Deleted: not]

-81-

A program is considered syntactically incorrect if either of the following are true:

The program contains @ontinue statement without the option&entifier, which is not nested, directly
or indirectly (but not crossing function boundaries), withinlerationStatement

The program contains @ntinue statement with the optionadlentifier, whereldentifier does not appear
in the label set of an enclosing (but not crossing function bounddtas}ionStatement

A ContinueStatementithout anldentifieris evaluated as follows:

1. Return €ontinue, empty, empty).

A ContinueStatememnith the optionalldentifieris evaluated as follows:

1. Return €ontinue, empty, Identifier).

12.8 The break Statement
Syntax
BreakStatement

break [noLineTerminatomere] Identifieryy ;

Semantics
A program is considered syntactically incorrect if either offiilowing are true:

The program contains lreak statement without the optionadentifier, which is not nested, directly or
indirectly (but not crossing function boundaries), withinlgarationStatemenodr a SwitchStatement
The program contains lareak statement with the optionatlentifier, whereldentifier does not appear in

the label set of an enclosing (but not crossing function boundeBtas¢ment
A BreakStatemenwithout anldentifier is evaluated as follows:

1. Return preak, empty, empty).

A BreakStatemenwith anldentifier is evaluated as follows:

1. Return preak, empty, Identifier).

12.9 Thereturn Statement
Syntax
ReturnStatement

return [no Line Terminatorhere] Expressioa,[;

Semantics

An ECMAScript program is'considered syntactically in@atrif it contains aeturn statement that is not
within a FunctionBody A return statement causes a function to cease execution and return a value to thi
caller. If Expressionis omitted, the return value isndefined. Otherwise, the return value is the value of
Expression

The productiorReturnStatementreturn [no LineTerminatorhere] Expressiog,;; is evaluated as:

1. |If the Expressioris not present, returrréturn, undefined, empty).
2. EvaluateExpression

3. Call GetValue(Result(2)).

4. Return ¢eturn, Result(3),empty).

12.10 The with Statement

Syntax

WithStatement
with (Expressior) Statement

12 January 2009

-82 -

Description
Thewith statement adds a computed objeowironment recordo thelexical environmenof the current [Deleted: front of the scope chain]
execution context, then executes a statement with this augmented scope chain, then resjerésathe [Deleted: scope chain]
environment

Semantics

The productiorWithStatement with (Expression) Statements evaluated as follows:

Let val be the result of evaluatingxpression

Deleted: Evaluate

Let obj be ,ToObjectGetValuegal).

Deleted: Call

1
2.
3. LetoldEnvbe therunninge x ecuti on contextdéds Lexical Environm
4. Let newEnvbe the result of callindNewObjectEnvironmentRecord(O,E) passiolgj andoldEnvas the

Deleted: Result(1)

argumens,

Deleted: Call ToObject(Result(2)).

Set therunninge x e c ut i o nLexecalEnvirenmxnend thewEnv
Let C be the result of evaluatin§tatemenput if an exception is thrown during the evaluatidet C be

oo

Deleted: Add Result(3) to the front of the scope
chain.

(throw, V, empty), whereV is the exception. (Execution now proceeds as if no exception were
thrown.))

P

o U

Deleted: Evaluate

7. Settherunninge x ecuti on conteext 6soldEmxi cal Environment
8. ReturnC.

NOTE

Deleted: using theaugmentedcope chairffrom step
49

Let C be Resulf). If an exception was thrown in ste
5

No matter how control leaves the embedded. 'Statement’, whether normally or by some form of abru

scope chain

completion or exception, thieexicalEnvironmentis always restored to its former state.

Deleted: RemoveResult(3) from the front of the }

Deleted: scope chain

12.10.1 Strict Mode Restrictions [

Strict mode codenay notincludea WithStatementThe occurrence of WithStatemenin such a context
is treated as a syntax error.

12.11 The switch Statement
Syntax

SwitchStatement
switch (Expression) CaseBlock

CaseBlock
{ CaseClausesg; }
{ CaseClauseg; DefaultClause CaseClausgs

CaseClauses
CaseClause
CaseClauses CaseClause

CaseClause
case Expression StatementLig;

DefaultClause
default : StatementLigf,

Semantics
The productiorSwitchStatementswitch (Expression CaseBlocks evaluated as follows:

1. EvaluateExpression

2. Call GetValue(Result(1)).

3. EvaluateCaseBlockpassing it Result(2) as a parameter.

4. If Result(3).type is break and Result(3).target is in the current label set, retunorrfal,
Result(3).valueempty).

5. Return Result(3).

12 January 2009

- 83-

The productionCaseBlock: { CaseClausgg; } is given an input parametemput,_and is evaluated aq
follows:

1. LetV =empty.

. Let Abe the list of CaseClause items in source text order.

. Let C be the next CaseClauseAnlf there is no such CaseClause, then go to step 16.
. EvaluateC.

. If inputis not equal to Result(4) as defined by the operator, themgo to step 3.

. If Cdoes not have a StatementList, then go to step 10.

.EvaluateC6 s St at e meRbetherssult. and | et

. If Ris an abrupt completion, then rettRn
. LetV =Rvalue.

10. Let C be the next CaseClauseAnlf there is nsuch CaseClause, then go to step 16.

11. If Cdoes not have a StatementList, then go to step 10.

12. EvaluateC6 s St at e meRbetherssult. and Al et

13. If Rvalue is noempty, then letV = Rvalue.

14. If Ris an abrupt completion, then retuRtype.V, R target).

15. Go to step 10.
16. Return formal, V, empty).

O |00 N[O |O1 | | N

The productionCaseBlock { CaseClauses DefaultClause CaseClausgs} is given an input parameter
input, and is evaluated as follows:

1. LetV =empty.
. Let Abe the list of CaseClause items in the first CaseClauses. in source text order.
. Let C be the next CaseClauseAualfithere is no such CaseClause, then go to step 11.
. EvaluateC.
. If inputis not equal to Result(4) as definediby the operate, then go to step 3.
. If Cdoes not have a StatementList, then go tostep 20.
.EvaluateC6 s St at e meRbethe result. and | et
. If Ris an abrupt completion, then retu®n
. LetV=Rvalue.
10. Go to step 20.
11. Let B be the list of CaeClause items in the second CaseClauses, in source text order.
12. Let C be the next CaseClauseBnlf there is no such CaseClause, then go to step 26.
13. EvaluateC.
14. Ifdnputis not equal to Result(13) as defined bylthe operator, then go to step 12.
15{If Cdoes not have.a StatementList, then go te step 31.
16. EvaluateC6 s Sthat emeRbethéerssult. and | et
17. 1 Ris an abrupt completion, then retirRn
18. LetV.=Rvalue.
19. Go tostep 31.
20. Let C be he.next CaseClause i If there is no such CaseClause, then go to step 26.
21. If Cdoes not have a StatementList, then go to step 20.
22. EvaluateC6 s St at/e meRbethérssult. and | et
23. If Rvalue is noempty,then letV = R.value.
24. If Ris an abrupt completion, then retuRtfpe,V, Rtarget).
25. Go to step 20.
26. If the DefaultClause does not have a StatementList, then go to step 30.
27.Evaluate the Default CRbethesres@lts St at ement Li st and
28. If Rvalue is noempty, then letV = R.value.
29. If Ris an abrupt completion, then retuRtfpe,V, Rtarget).
30. Let B be the list of CaseClause items in the second CaseClauses, in source text order.
31. Let C be the next CaseClauseBnlf there is no such CaskDse, then go to step 37.
32. If Cdoes not have a StatementList, then go to step 31.
33. EvaluateC6 s St at e meRbethérssult. and | et
34. If Rvalue is noempty, then letV = Rvalue.
35. If Ris an abrupt completion, then retuftgpe,V, Rtarget).

36. Go to step 31.
37. Return fiormal, V, empty).

O |00 [N |O |01 || N

12 January 2009

-84 -

Jhe productionCaseClause case Expression StatementLis},is evaluated as follows:

1. EvaluateExpression
2. Call GetValue(Result(1)).
3. Return Result(2).

NOTE

Evaluating CaseClause does not execute ahsociated StatementList. It simply evaluates the Expression
and returns the value, which the CaseBlock algorithm uses to determine which StatementList to stg
executing.

12.11.1 Strict Mode Restrictions

A Statementhat is an element of aBatementListthat is part of aCauseClauser DefaultClausemay
not be aVariableStatmentnor may it be alabelledStatmentwhose Statementproduction is a
VariableStatmentThe LabelledStatementestriction also applies if such\fariableStatmenis preceeded
by multiple labels.

12.12 Labelled Statements

LabelledStatement
Identifier: Statement

Semantics

A Statementmay be prefixed by.a label. Labelled statements are only used in conjunction with labelleg
break andcontinue statements. ECMAScript has goto statement.

An ECMAScript program is considered syntactically incorrect if it containsabelledStatementhat is
enclosed by d abelledStatemenwith the samddentifier as label. This does not apply to labels appearing
within the body of a~unctionDeclaation that is nested, directly or.indirectly, within a labelled statement.

The productionldentifier : Statemenis evaluated by addintdentifier to the label set oStatementand
then evaluatingStatement|f the LabelledStatemenitself has a noremptylabel set, these labels are also
added to the label set Statemenbefore evaluating it. If the result of evaluatiSgatements (break, V, L)
whereL is equal todentifier, the production results imérmal, V, empty).

Deleted: The productiorCaseBlock { CaseClauses
DefaultClause CaseClausgss given an input
parameterinput, and is evaluated as follows:
<#>Let A be the list ofCaseClauséems in the first
CaseClausesn source text ordef.
<#>For the nexCaseClausén A, evaluate
CaseClauself there is no suclaseClausggo to step
79
<#>If inputis not equal to Result(2), as defined by t
== operator, go to stepP.
<#>Evaluate th&StatementLisof this CaseClaisef
<#>If Result(4) is an abrupt completion then return
Result(4)]
<#>Go to step 13,
<#>l et B be the list ofCaseClauséems in the secon:
CaseClausesn source text ordef.
<#>For the nexCaseClausén B, evaluate
CaseClauself there is no suclaseClausgego tostep
159
<#>If inputis not equal to Result(8), as defined by t
== operator, go to step®B.
<#>Evaluate th&StatementLisdf this CaseClausq
<#>If Result(10) is an abrupt completion then returr
Result(10y
<#>Go to step 18
<#>For the nexCaseClausén A, evaluate the
StatementLisof this CaseClauself there is no such
CaseClausggo to step 15.
<#>If Result(13) is an abrupt completion then returr
Result(13)1
<#>Execute théStatementLisof DefaultClause]
<#>If Result(15) is an abrupt completion then returr
Resut(15)1
<#>L et B be the list ofCaseClausé&ems in the secont
CaseClausesn source text ordef.
<#>For the nexCaseClausén B, evaluate the
StatementLisof this CaseClauself there is no such
CaseClausereturn lormal, empty, empty).{
<#>If Result(18) is an almpt completion then return
Result(18)Y
<#>Go to step 18

Prior to-the evaluation of habelledStatementhe containedStatements regarded as possessing an empty
label” set, except if it is anterationStatementor a SwitchStatementin which case it is regarded as
possessing a label set consisting of the single elersemtty.

12.13 The thr ow statement

Syntax
ThrowStatement
throw [no LineTerminatohere] Expression ;

Semantics

The productionThrowStatementthrow [no LineTerminatorhere] Expression is evaluated as:

1. EvaluateExpression
2. Call GetValue(Result(1)).
3. Return throw, Result(2),empty).

12.14 Thetry statement
Syntax
TryStatement
try Block Catch
try Block Finally
try Block Catch Finally

12 January 2009

- 85 -

Catch:
catch (Identifier) Block

Finally :
finally Block

Description

The try statement encloses a block of code in which an exceptional condition can occur, such as
runtime error or ahrow statement. Theatch clause provides the exceptidrandling code. When a
catch clause catches an exception]disntifieris bound to thatxception.

Semantics
The productionTryStatement try Block Catchis evaluated as follows:

1. EvaluateBlock

2. If Result(1).type is nothrow, return Result(1).
3. EvaluateCatchwith parameter Result(1).

4. Return Result(3).

The productioniTryStatement try Block Finally is evaluated as follows:

1. EvaluateBlock

2. EvaluateFinally.

3. If Result(2) typeis normal, return Result(1).
4. Return Result(2).

The productionTryStatement try Block CatchFinally is evaluated as follows:

EvaluateBlock

Let C = Result(1)-

If Result(1).type is nothrow, go to step 6.

EvaluateCatchwith parameter Result(1).

Let C = Result(4). | [Deleted: If Result(4).typeis notnormal,]
EvaluateFinally.

If Result(6).type imormal, returnC.
Return Result(6).

GNoohwNE

The productionCatch: catch (Identifier) Blockis evaluated as follows:

1. LetC be the parameter that has been passed to this production.

2. LetoldEnvbe therunningexecutioncontexts Lexi cal Environment .

3. Let catchEnv be the result of callindNewDeclarativeEnvironmentRecord(E) passio@Env as the
argument.

4. Call the CreateMutableBindinblj concrete method ofatchEnvpassing thddentifier String valueas
the argument.

5. Call the SetMutableBindindN,V.S concrete methd of catchEnvpassing thddentifer, C, andfalse as
arguments. Note thahé last argument is immaterial in this situatjon. Deleted: Create a new object as if by the
6. Settherunninge x e c ut i o nLexecaEnvirenmendtecatchEnv expressiomew Object() .1
7. Let B be the result of evaluatinBlock S¥eCreale a propery n the object Result(2)
- - A - - e property's name Identifier, value is

8. Settherunninge x ecuti on context 6xlddEne xi cal Envi ronment t C.value, and atiributes are { DontDelet§ }.

9. ReturnpB. <#>Add Result(2) tole front of the scope
chain{

The productiorFinally : finally Blockis evaluated as follows: <#>EvaluateBlockf
Remove Result(2) from the front of the scope
chain

1. EvaluateBlock .

2. Return Result(1). [Deleted: Results))

12.15 Debugger statement
Syntax

12 January 2009

- 86 -

DebuggerStatement

13

debugger ;

Semantics

Evaluating theDebuggerStatemeniroductionmay allow an implementation to causeébeakpoint when run
under a debugger.

Function Definition

Syntax

FunctionDeclaration

function Identifier (FormalParameterList:) { FunctionBody}

FunctionExpression

function Identifier,, (FormalParameterList,) { FunctionBody}

FormalParameterList

Identifier
FormalParameterList Identifier

FunctionBody.

UseStrictDirectivg,, SourceElements

Semantics

The productiorFunctionDeclaration: function_ Identifier(FormalParameterLisf,) { FunctionBody} is
processed for function declarations as follodeging Declaration Binding instantiation (10.3.3)

1. Return the result of creating new Function object as specified in 13.2 with parameters specified by

Deleted: Create

FormalParameterLisf,, and body specified b¥unctionBody Pass in thevariableEnvironmentof the [

Deleted: scope chain

(N

running execution context as tiseopeand the stfing value dfientifierasName

The productionFunctionExpression function
as follows:

(FormalParameterLisj,;) { FunctionBody} is evaluated

Deleted: <#>Create a property of the curremriable
object (as specified ih0.1.3) with namddentifier and
value Result(1)]

1. Return_the result of creating new Function object as specified in 13.2 with paramsespecified by

Deleted: Create

FormalParameterLisf,; and body specified byrunctionBody Pass in theLexicalEnvironmentof the

Deleted: scope chain

running execution context as tiseopeand an empty string ddame [

The productionFunctionExpression function Identifier (FormalParameterLigf;) { FunctionBody} is

J U

Deleted: <#>Return Resul).{

evaluated as follows:

1. Let funcEnvbe the result of callindNewDeclarativEnvironmentRecor#) passing theunning execution
c 0 nt éexicabEmvironment as the argument

2. LetenvRedef u n ¢ Eenvirdnment record.

3. Call the CreatelmmutableBinding(N) concrete methokwo¥Recpassing the string value dflentifier as

the argument.

et closurebe the result of creating new Function object as specified in 13.2 with parameters specified
by FormalParameterLisf,; and body specified byunctionBody Pass infuncEnvas theScopeand the
string value ofidentifierasName

5. Call the InitializdmmutableBindingl,V) concrete method afnvRegassing the string value ¢dentifier

Deleted: <#>Create a new object as if by the
expressiomew Object() .1

<#>Add Result(1) to the front of the scope chtin.
Create

andclosureas the arguments
6. Returngclosure

Deleted:
context

the scope chain of the running execution }

Deleted:

NOTE [
The Identifier in a FunctionExpression can be referenced from inside the FunctionExpression's FunctionBoc
to allow the function to call itself recursively. However, unlike in a FunctionDeclaration, the Identifier in a
FunctionExpression cannot be referenced from and does not affect the scope enclosing th

Deleted: <#>Create a property in the object Result(
The property's name Identifier, value is Result(3), ar
attributes are PontDelete, ReadOnly}.

Remove Result(1) from the front of the scope chain

FunctionExpression. [

Deleted: Result(3)]

The productionFunctionBody. Sourceffementsis evaluated as follows:

12 January 2009

