
Shallow continuations

Syntax

UnaryExpression ::= ... | "shift" UnaryExpression

Semantics

Every function containing the shift operator in its body (not contained in any nested
functions) implicitly creates a continuation object every time it is called. The continuation object
encapsulates the function call’s activation object.

Let the current stack consist of S followed by activation object A. Let k be the continuation
object of A. Let o be the binding of this in A.

. Evaluate the argument expression to get a value v.

. Capture the activation object A and set the internal [[Value]] property of k to A.

. Remove A from the stack, leaving S as the current stack.

. Call v with k as its single argument, with this bound to o.

Continuation objects

A continuation object k has the following methods:

send(x):
1. Let A be the activation object in k‘s [[Value]] property.
2. Push A onto the current stack.
3. Use the value of x as the result of the suspended shift expression and continue

evaluating the function activation.

throw(x):
1. Let A be the activation object in k‘s [[Value]] property.
2. Push A onto the current stack.
3. Use the value of x as an exception value to throw in place of the suspended shift

expression and continue evaluating the function activation.

close():
1. Let A be the activation object in k‘s [[Value]] property.
2. Push A onto the current stack.
3. Replace the suspended shift expression with let () { return }.

Note that suspending the same activation object multiple times leads to the same (in the sense
of ===) continuation object.

Statefulness

Note that every subsequent evaluation of shift for the same activation A produces the same
continuation object k. This means that as execution of A proceeds, the continuation object k
reflects the changing state of the computation.

Examples

Page 1 of 3strawman:shallow_continuations [ES Wiki]

19/07/2010http://wiki.ecmascript.org/doku.php?id=strawman:shallow_continuations

isabelle
Text Box
Ecma/TC39/2010/034

function f() {
 try {
 for (let i = 0; i < K; i++) {
 farble(i);

 // suspend and return the activation
 let received = shift function(k) { return k };

 print(received); // this will be 42
 }
 }
 catch (e) { /* ... */ }
}

let k = f(); // starts running and return the suspended activation
// ...
k.send(42); // resume suspended activation

Enhancements

allow the argument to be optional, defaulting to function (k) { return k }

Generators

Generators are a convenience form for creating custom iterators.

Syntax

PrimaryExpression ::= ... | "generator" Identifier? FunctionArguments FunctionBody

GeneratorDeclaration ::= ... | "generator" Identifier FunctionArguments FunctionBody

Within a generator body, it is a syntax error for return to take an argument expression.

Semantics

The expression generator(x1,...,xn) { body ... } is equivalent to:

function(x1,...,xn) {
 shift function(k) {
 return Object.freeze({
 send: function(x) { return k.send(x); },
 next: function() { return k.send(void 0); },
 throw: function(x) { return k.throw(x); },
 close: function() { k.close(); }
 });
 };
 body ...
 throw StopIteration;
}

for the original definitions of StopIteration and Object.freeze.

Inside a function body, a return statement (which may not have an argument) is equivalent
to:

throw StopIteration;

Page 2 of 3strawman:shallow_continuations [ES Wiki]

19/07/2010http://wiki.ecmascript.org/doku.php?id=strawman:shallow_continuations

for the original definition of StopIteration.

The expression yield e is equivalent to:

let (result = e) { => (shift function(k) { return result; }) }

A couple of quick notes before the TC39 meeting:

yield is a low-precedence operator, at the same precedence as assignment in Python and

JS1.7+. This means in an argument list or comma expression, you must parenthesize on the
outside: foo(a, (yield b), c). Python requires parenthesization even if there’s only

one argument: foo1), but JS1.7+ do not.

generator instead of function (in JS1.7+, after Python which reuses its def function-
declaring keyword) has benefit in terms of explicitness (you don’t have to look for yield
usage in the body to know it’s a generator, not a function), but breaks the ability to use
const instead of function (see const functions). const generator is a bit much, and
not parallel (no const function).

— Brendan Eich 2010/05/24 04:47

1) yield bar

strawman/shallow_continuations.txt · Last modified: 2010/05/24 04:55 by brendan

Page 3 of 3strawman:shallow_continuations [ES Wiki]

19/07/2010http://wiki.ecmascript.org/doku.php?id=strawman:shallow_continuations

