
Overview

Generator expressions were introduced in JavaScript 1.8. Generator expressions are a convenient,
declarative form for creating generators with a syntax based on array comprehensions. Generator
expressions also provide a convenient refactoring pattern, making it easy to switch between eager and on-
demand generation of values in a sequence simply by changing the bracketing.

Examples

Extracting pages on demand from an array of URL’s:

(xhrGet(url) for (url in getURLs()))

Filtering a sequence:

(x for (x in generateValues()) if (x.color === ‘blue’))

Lazy cartesian product

(xhrGet(row, column) for (row in rows()) for (column in columns()))

Syntax

PrimaryExpression ::= ...
 | "(" Expression ("for" "(" LHSExpression "in" Expression")")+ ("if" "(" Expression ")")? ")"

Translation

A generator expression:

(Expression0 for (LHSExpression1 in Expression1) ... for (LHSExpressionn) if (Expression)opt)

can be defined by expansion to the expression:

(function () {
 for (let LHSExpression1 in Expression1) {

 ...
 for (let LHSExpressionn in Expressionn) {

 if (Expression)opt

 yield (Expression0);

 }

 }

 }
})()

Notes

Background motivation for the syntactic sugar afforded by generator expressions:

Peter Norvig’s Sudoku solver based on constraint propagation, written in Python
My port of Peter’s solver to JS1.8

The critical uses of generator expressions, e.g., the actual parameter to all in:

Page 1 of 2strawman:generator_expressions [ES Wiki]

19/07/2010http://wiki.ecmascript.org/doku.php?id=strawman:generator_expressions

isabelle
Text Box
Ecma/TC39/2010/035

 if (all(eliminate(values, s, d2) for (d2 in values[s]) if (d2 != d)))
 return values;

can only be desugared to generation function applications or an equivalent lazy iterator construct. They
cannot be replaced with array comprehensions or any such eager construct without the solver taking
exponential time and space creating eagerly populated arrays where it would have stopped early using lazy
generator expressions, thanks to constraint propagation. Note how all is defined:

function all(seq) {
 for (let e in seq)
 if (!e)
 return false;
 return true;
}

so as to stop as soon as a value in the iterated sequence is falsy.

The JS1.8 version has some XXX comments and helper functions that show where methods such as the
Array extras (Array.prototype.every instead of the custom all shown above, e.g.) are not iterator-
friendly. This suggests the need for more generic methods that abstract over arrays and iterators.

— Brendan Eich 2010/06/27 19:47

strawman/generator_expressions.txt · Last modified: 2010/06/27 19:59 by brendan

Page 2 of 2strawman:generator_expressions [ES Wiki]

19/07/2010http://wiki.ecmascript.org/doku.php?id=strawman:generator_expressions

