
strawman:const_functions [ES Wiki]

[[strawman:
const_functions]]

ES
Wiki

Trace: » es3.1 »
start »

iterators_and_generators » const_functions

-Table of Contents

● Const Functions

�❍ ExpressionStatement

�❍ FunctionDeclaration

�❍ FunctionExpression

● Joining

�❍ Degenerate Case May Be Common

● Examples

�❍ High Integrity Factories

Const Functions
This page proposes to allow the const keyword to appear wherever the
function keyword is allowed, with the following consequences:

●

The defined function is born frozen.

●

The defined function’s prototype property is born frozen.

●

If the form defines a named variable, then the variable is unassignable, as if defined as a const variable.

●

If the form is a named function declaration, then, like the normal named function declaration, the named

variable is initialized at the beginning of its block, rather than where the declaration appears.

ExpressionStatement

 ExpressionStatement :
 [lookahead not-in { "{", "function", "const", "class" }] Expression ";"

Just as an ExpressionStatement cannot begin with function, it would also not be able to begin with const or
class.

FunctionDeclaration

 FunctionDeclaration :
 "function" Identifier "(" FormalParameterList? ")" "{" FunctionBody "}"
 "const" Identifier "(" FormalParameterList? ")" "{" FunctionBody "}"

For example, the semantics of the FunctionDeclaration const foo(a) {return a(foo);} is equivalent to

 const foo = function(a) {return a(foo);};
 Object.freeze(foo);
 Object.freeze(foo.prototype);

file:///C|/Users/Patrick/Documents/1.htm (1 of 6) [14.09.2010 16:53:03]

http://wiki.ecmascript.org/doku.php?id=strawman:const_functions&do=backlink
http://wiki.ecmascript.org/doku.php?id=strawman:const_functions&do=backlink
http://wiki.ecmascript.org/doku.php?id=
http://wiki.ecmascript.org/doku.php?id=
http://wiki.ecmascript.org/doku.php?id=es3.1:es3.1
http://wiki.ecmascript.org/doku.php?id=start
http://wiki.ecmascript.org/doku.php?id=proposals:iterators_and_generators
http://wiki.ecmascript.org/doku.php?id=strawman:const_functions
javascript:toggleToc()
javascript:toggleToc()
javascript:toggleToc()

strawman:const_functions [ES Wiki]

where those three lines are hoisted to the top of the block containing this function definition, so that

●

the variable foo cannot be observed in a non-initialized state (and so no read barrier is needed).

●

the function cannot be observed in a non-frozen state.

●

the value of the function’s prototype property cannot be observed in a non-frozen state.

In all the expansions shown on this page, when we use Object.freeze, we actually mean the original binding
of Object.freeze, not the current binding. In this sense, these expansions are as-if hygienic, and so are not
simply naive syntactic sugar.

FunctionExpression

 FunctionExpression :
 "function" Identifier? "(" FormalParameterList? ")" "{" FunctionBody "}"
 "const" Identifier? "(" FormalParameterList? ")" "{" FunctionBody "}"

The semantics of the FunctionExpression const foo(a) {return a(foo);} is equivalent to the
expression

 (function(){
 const foo = function(a) {return a(foo);};
 Object.freeze(foo);
 Object.freeze(foo.prototype);
 return foo;
 })()

The expansion here is a bit trickier. However, since two function boundaries do not violate TCP (tennent
correspondence principle) any more than one, this works.

The semantics of the FunctionExpression const(a) {return a;} is equivalent to the expression

 (function(func) {
 Object.freeze(func);
 Object.freeze(func.prototype);
 return func;
 })(function(a) {return a;})

This expansion carefully avoids any conflict with other possible uses of the parameter name func. (Obviously, a
hygienic expansion system can avoid such name conflicts without resort to such games.)

Joining
Often, convenient coding patterns will express more function evaluations than are really needed. For example:

file:///C|/Users/Patrick/Documents/1.htm (2 of 6) [14.09.2010 16:53:03]

strawman:const_functions [ES Wiki]

 function divisible(m) {
 return function(list) {
 return list.filter(function(n) {
 return n%m === 0;
 });
 };
 }
 const even = divisible(2);

The anonymous function passed to filter does not capture any variables defined by its immediately enclosing
block, so it seems wasteful to evaluate it to a fresh closure with a fresh identity each time the expression is
evaluated. The text of the EcmaScript 3 (ES3) spec sought to allow an optimization equivalent to the following
rewrite (where variable names ending with triple underbar are assumed not to conflict with any other identifiers):

 // BAD NON-TRANSPARENT JOINING OPTIMIZATION
 function divisible(m) {
 function t1___(n) {
 return n%m === 0;
 }
 return function(list) {
 return list.filter(t1___);
 };
 }
 const even = divisible(2);

However, when these are full functions, that “optimization” is hardly transparent, since each of the original’s
generated functions is separately mutable and has a .prototype object which is also separately mutable. All
major implementations of ES3 (and all implementations of which I’m aware) wisely avoided this “optimization”
because of this problem; and the ES5 spec no longer allows this optimization. However, using const functions
instead:

 const divisible(m) {
 return const(list) {
 return list.filter(const(n) {
 return n%m === 0;
 });
 };
 }
 const even = divisible(2);

the corresponding joining optimization

 const divisible(m) {
 const t1___(n) {
 return n%m === 0;
 }
 return const(list) {
 return list.filter(t1___);
 };
 }

file:///C|/Users/Patrick/Documents/1.htm (3 of 6) [14.09.2010 16:53:03]

strawman:const_functions [ES Wiki]

 const even = divisible(2);

clearly preserves the intent of the original but for the separate identities of the function and its prototype object.
Thus, it makes sense to require this optimization. We propose the following fixpoint rule:

Loop

●

For each const FunctionDeclaration or FunctionExpression f,

�❍

Let s be the outermost lexical scope (strict block, function, or program) enclosing f.

�❍

for each variable v used freely in f,

■

If v is defined by a declaration (let, const, var, or function) in an enclosing lexical scope s1,

■

Let s be the nearest of s and s1.

�❍

s is now the outermost scope at which f could have been declared.

�❍

Allocate f once per entry of s, as if it had become a declaration in s of an unmentioned variable.

●

If no const functions were promoted by the above steps, exit.

This is a simple deterministic rule that is easy to implement and provides virtually all the benefit that a more
unpredictable “implementation defined” exemption would allow. By this rule, the expansion shown above is a
fixpoint, since the free m prevents t1___ from being promoted further, and thus the free t1___ in the remaining
anonymous function prevents it from being promoted further.

Degenerate Case May Be Common

The example above limits hoisting in order to better explain the proposed mechanics. However, with the
availability of array generics, the common case may be the degenerate case where a const function can be
promoted all the way to top level, giving maximal benefit. Using this same example, it is now concise enough to
extract the even members of a list where needed that one-off uses will often just open code it in place:

 //...
 //...arbitrarily nested...
 var evenList = list.filter(const(n) { return n%2 === 0; });
 //..
 //...

Since the const function above is closed (has no free variables), it would get promoted all the way.

file:///C|/Users/Patrick/Documents/1.htm (4 of 6) [14.09.2010 16:53:03]

strawman:const_functions [ES Wiki]

 const t1___(n) { return n%2 === 0; }
 //...
 //...arbitrarily nested...
 var evenList = list.filter(t1___);
 //..
 //...

By adopting this promotion rule, the program notation avoids the distraction cost of this non-local code
organization while still painlessly obtaining all the benefits.

Examples

High Integrity Factories

Const functions combined with ES5’s Object.freeze provide a more convenient syntax for high integrity
factories than anything that can be expressed in ES5 by itself.

 const Point(x, y) {
 return Object.freeze({
 getX: const() { return x; },
 getY: const() { return y; },
 add: const(otherPt) {
 return Point(x + otherPt.getX(),
 y + otherPt.getY())
 },
 toString: const() { return '<' + x + ',' + y + '>'; }
 });
 }

or, if we wish the factory to have the instanceof behavior associated with constructors, we can also make
use of ES5’s Object.create.

 const Point(x, y) {
 return Object.freeze(Object.create(Point.prototype, {
 getX: {value: const() { return x; }},
 getY: {value: const() { return y; }},
 add: {value: const(otherPt) {
 return Point(x + otherPt.getX(),
 y + otherPt.getY())
 }},
 toString: {value: const() { return '<' + x + ',' + y + '>'; }}
 }));
 }

Of course, sweeter sugar such as Classes as Sugar would make high integrity factories even easier.

file:///C|/Users/Patrick/Documents/1.htm (5 of 6) [14.09.2010 16:53:03]

http://wiki.ecmascript.org/doku.php?id=strawman:classes_as_sugar

strawman:const_functions [ES Wiki]

strawman/const_functions.txt · Last modified: 2010/09/05 14:12 by markm

file:///C|/Users/Patrick/Documents/1.htm (6 of 6) [14.09.2010 16:53:03]

http://wiki.ecmascript.org/feed.php
http://creativecommons.org/licenses/by-nc-sa/2.0/
https://www.paypal.com/xclick/business=andi%40splitbrain.org&item_name=DokuWiki+Donation&no_shipping=1&no_note=1&tax=0¤cy_code=EUR&lc=US
http://www.php.net/
http://validator.w3.org/check/referer
http://jigsaw.w3.org/css-validator/check/referer
http://wiki.splitbrain.org/wiki:dokuwiki

	Local Disk
	strawman:const_functions [ES Wiki]

	CKGNAMJAHKDJLNOLCKFONEHNLNBFILGA:
	form1:
	x:
	f1: edit
	f2:
	f3: strawman:const_functions

	f4:

	form2:
	x:
	f1: revisions
	f2: strawman:const_functions

	f3:

	form3:
	x:
	f1: recent
	f2:

	f3:

	form4:
	x:
	f1: search
	f2:

	f3:

	form5:
	x:
	f1: edit
	f2:
	f3: strawman:const_functions

	f4:

	form6:
	x:
	f1: revisions
	f2: strawman:const_functions

	f3:

	form7:
	x:
	f1: login
	f2: strawman:const_functions

	f3:

	form8:
	x:
	f1: index
	f2: strawman:const_functions

	f3:

	form9:
	f1:

