
strawman:inherited_explicit_soft_fields [ES Wiki]

[[strawman:
inherited_explicit_soft_fields]]

ES
Wiki

Trace: » es3.1 » start »
iterators_and_generators

» const_functions » inherited_explicit_soft_fields

-Table of Contents

● Explicit Inherited Soft Fields

�❍ A Less Aggressive GC Contract?

■ Why it might not matter

■ What if it does matter?

● See

Explicit Inherited Soft Fields
The following derived abstraction combines the explicitness of explicit soft own
fields with the visibility across inheritance chains of inherited soft fields. Below
is an executable specification as a wrapper around weak_maps. This strawman
page suggests standardizing this derived abstraction because a primitive
implementation is likely to be more efficient that the code below.

As with our previous “EphemeronTable“, the name “ExplicitSoftField” is only a placeholder until someone
suggests an acceptable name.

 const ExplicitSoftField() {
 const et = WeakMap();
 const mascot = {}; // fresh and encapsulated, thus differs from any possible
provided value.
 return Object.freeze({
 get: const(base) {
 while (base !== null) {
 const result = et.get(base);
 if (result !== undefined) {
 return result === mascot ? undefined : result;
 }
 base = Object.getPrototypeOf(base);
 }
 return undefined;
 },
 set: const(key, val) {
 et.set(key, val === undefined ? mascot : val);
 },
 has: const(key) {
 return et.get(key) !== undefined;
 },
 delete: const(key) {
 et.set(key, undefined);
 }
 });
 }

A Less Aggressive GC Contract?

At (es-discuss:011705) I (MarkM) wrote regarding the contrast with the names strawman:

 If the only semantic difference is (not normally observable) less aggressive GC
 obligations, great. I'm confident we can converge those.

file:///C|/Users/Patrick/Documents/2.htm (1 of 3) [14.09.2010 16:53:01]

http://wiki.ecmascript.org/doku.php?id=strawman:inherited_explicit_soft_fields&do=backlink
http://wiki.ecmascript.org/doku.php?id=strawman:inherited_explicit_soft_fields&do=backlink
http://wiki.ecmascript.org/doku.php?id=
http://wiki.ecmascript.org/doku.php?id=
http://wiki.ecmascript.org/doku.php?id=es3.1:es3.1
http://wiki.ecmascript.org/doku.php?id=start
http://wiki.ecmascript.org/doku.php?id=proposals:iterators_and_generators
http://wiki.ecmascript.org/doku.php?id=strawman:const_functions
http://wiki.ecmascript.org/doku.php?id=strawman:inherited_explicit_soft_fields
javascript:toggleToc()
javascript:toggleToc()
javascript:toggleToc()
http://wiki.ecmascript.org/doku.php?id=harmony:weak_maps#explicit_soft_own_fields
http://wiki.ecmascript.org/doku.php?id=harmony:weak_maps#explicit_soft_own_fields
http://wiki.ecmascript.org/doku.php?id=harmony:weak_maps#inherited_soft_fields
http://wiki.ecmascript.org/doku.php?id=harmony:weak_maps
https://mail.mozilla.org/pipermail/es-discuss/2010-September/011705.html
http://wiki.ecmascript.org/doku.php?id=strawman:names

strawman:inherited_explicit_soft_fields [ES Wiki]

Given the gc semantics of weak maps, the gc obligations implied by the above ExplicitSoftField
implementation vs. names seems to be:

Labels ExplicitSoftFields Names

- Given field F where F.get(K) === V Given name F where K[F] === V

- Similarities

a F and K may retain V

b F must not retain K

c F without K must not retain V

- Differences

x K must not retain F K may retain F

y K without F must not retain V K without F may retain V

Why it might not matter

The classes as sugar strawman uses ExplicitSoftFields to implement class-private instance variables. Similar
classes strawmen have suggested using names for similar purposes. How do the above differences affect the gc
semantics of these class proposals?

For a given class C, let’s call IC the set of all instances of C. The ExplicitSoftField or name F created by the
desugaring is reachable only from C and from IC, and cannot escape from this set. The keys of F are exactly all
the members of IC. Under these circumstances, the implied GC obligations seem to be exactly the same. To see
why, say that some non-empty subset of IC, SIC, is reachable from outside C and IC. Since F is reachable from
all members of SIC (independent of whether F is an ExplicitSoftField or name), SIC’s non-emptiness implies that
F may be retained. By rule #b, SIC and F and C together must not retain the remaining members of IC outside
of SIC. Since these are not retained, by rule #c the private facets of these instances are also not retained. For
all members of SIC, since they retain F, by rule #a, SIC together with F retain all the private facets of SIC.

The reason that the different obligations of ExplicitSoftFields and names don’t matter for classes is that there
are no circumstances where a K may be reachable but the corresponding F might not be, since the Ks in
question – the instances of C – reference F anyway.

What if it does matter?

Nevertheless, we may want to reduce the gc obligations of ExplicitSoftFields towards that of names. I’m not
sure, but I think only difference #y matters. Rule #x by itself would only affect how many empty
ExplicitSoftFields are retained, since the number of Key-to-Value associations retained is determined by the
other rules. We can change our executable spec above to represent these reduced obligations as follows:

 const ExplicitSoftField = (const(){
 const globalET = WeakMap(); // necessarily reachable
 return const() {
 const et = WeakMap();
 const mascot = {};
 return Object.freeze({
 //...other methods same as before...
 set: const(key, val) {
 et.set(key, val === undefined ? mascot : val); // as before
 globalET.set(key, et);
 }
 });
 };
 })();

file:///C|/Users/Patrick/Documents/2.htm (2 of 3) [14.09.2010 16:53:01]

http://wiki.ecmascript.org/doku.php?id=strawman:gc_semantics
http://wiki.ecmascript.org/doku.php?id=harmony:weak_maps
http://wiki.ecmascript.org/doku.php?id=strawman:names
http://wiki.ecmascript.org/doku.php?id=strawman:classes_as_sugar
http://wiki.ecmascript.org/doku.php?id=strawman:names

strawman:inherited_explicit_soft_fields [ES Wiki]

See
The thread beginning at WeakMap API questions?

strawman/inherited_explicit_soft_fields.txt · Last modified: 2010/09/06 04:20 by markm

file:///C|/Users/Patrick/Documents/2.htm (3 of 3) [14.09.2010 16:53:01]

https://mail.mozilla.org/pipermail/es-discuss/2010-August/011654.html
http://wiki.ecmascript.org/feed.php
http://creativecommons.org/licenses/by-nc-sa/2.0/
https://www.paypal.com/xclick/business=andi%40splitbrain.org&item_name=DokuWiki+Donation&no_shipping=1&no_note=1&tax=0¤cy_code=EUR&lc=US
http://www.php.net/
http://validator.w3.org/check/referer
http://jigsaw.w3.org/css-validator/check/referer
http://wiki.splitbrain.org/wiki:dokuwiki

	Local Disk
	strawman:inherited_explicit_soft_fields [ES Wiki]

	PPJDDFDCNNMLKHIHKFFCBLHEADAGHAHJ:
	form1:
	x:
	f1: edit
	f2:
	f3: strawman:inherited_explicit_soft_fields

	f4:

	form2:
	x:
	f1: revisions
	f2: strawman:inherited_explicit_soft_fields

	f3:

	form3:
	x:
	f1: recent
	f2:

	f3:

	form4:
	x:
	f1: search
	f2:

	f3:

	form5:
	x:
	f1: edit
	f2:
	f3: strawman:inherited_explicit_soft_fields

	f4:

	form6:
	x:
	f1: revisions
	f2: strawman:inherited_explicit_soft_fields

	f3:

	form7:
	x:
	f1: login
	f2: strawman:inherited_explicit_soft_fields

	f3:

	form8:
	x:
	f1: index
	f2: strawman:inherited_explicit_soft_fields

	f3:

	form9:
	f1:

