
strawman:binary_data [ES Wiki]

[[strawman:
binary_data]]

ES
Wiki

Trace: »
inherited_explicit_soft_fields »

classes_as_sugar » egal » block_scoped_bindings » binary_data

-Table of Contents

● Binary data

�❍ Goals

�❍ Examples

● Notation

● Binary data blocks

● Block types

● Block objects

● Numeric blocks

● Array blocks

�❍ Array block-type objects

�❍ Array block objects

● Struct blocks

�❍ Struct block-type objects

�❍ Struct block objects

● Prototype hierarchy

● Large integers

�❍ Unsigned 64-bit integers

�❍ Signed 64-bit integers

● Rationale

�❍ Aliasing

�❍ Numeric blocks

�❍ Large integers

�❍ Struct-type constructor API

�❍ Deviations from js-ctypes

● To do

● References

Binary data

Goals

Provide portable, memory-safe, efficient, and structured access to compact (i.e.,
contiguously allocated) binary data, as well as an interface for external binary I/O
facilities such as XMLHttpRequest, HTML5 File API, and WebGL.

Desiderata:

●

expressive and convenient way to create structured binary data

●

no new primitive (i.e., non-object) ECMAScript values

●

admit architecture-native internal representation while preserving portability:

�❍

hide struct layout/padding

�❍

hide endianness

�❍

prevent multiple interpretations of the same binary data structure at different types

●

convenient conversion to native ECMAScript values

●

reference semantics without changing ECMAScript evaluation model

The design of this library allows implementations to represent allocated binary data in architecture-specific formats – in
particular, using the architecture’s native padding/alignment and endianness – without exposing these details to
ECMAScript. This allows for efficient implementation without creating portability hazards.

Examples

const Point2D = new StructType([["x", uint32], ["y", uint32]]);
const Color = new StructType([["r", uint8], ["g", uint8], ["b", uint8]]);
const Pixel = new StructType([["point", Point2D], ["color", Color]]);

const Triangle = Pixel.array(3);

let t = new Triangle([{ point: { x: 0, y: 0 }, color: { r: 255, g: 255, b: 255 } },

file:///C|/Users/Patrick/Documents/6.htm (1 of 14) [14.09.2010 16:52:58]

http://wiki.ecmascript.org/doku.php?id=strawman:binary_data&do=backlink
http://wiki.ecmascript.org/doku.php?id=strawman:binary_data&do=backlink
http://wiki.ecmascript.org/doku.php?id=
http://wiki.ecmascript.org/doku.php?id=
http://wiki.ecmascript.org/doku.php?id=strawman:inherited_explicit_soft_fields
http://wiki.ecmascript.org/doku.php?id=strawman:classes_as_sugar
http://wiki.ecmascript.org/doku.php?id=strawman:egal
http://wiki.ecmascript.org/doku.php?id=harmony:block_scoped_bindings
http://wiki.ecmascript.org/doku.php?id=strawman:binary_data
javascript:toggleToc()
javascript:toggleToc()
javascript:toggleToc()

strawman:binary_data [ES Wiki]

 { point: { x: 5, y: 5 }, color: { r: 128, g: 0, b: 0 } },
 { point: { x: 10, y: 0 }, color: { r: 0, g: 0, b: 128 } }]);
...

TODO: more examples

Notation
This spec uses Italicized names for datatypes of ECMAScript values, i.e., values that can be stored in variables and
object properties and passed to and returned from functions. E.g.:

●

UInt32 - integer values in the range [0, 232)

●

Int32 - integer values in the range [-231, 231)

●

Any - any ECMAScript value

This spec uses bold names for datatypes of spec-internal data structures. E.g.:

●

string - internal strings, such as the value of the [[ClassName]] property

●

reference[t] - a reference into the program store (aka heap) to an internal value of type t

●

reference[Object] - a reference into the program store (aka heap) to an ECMAScript value of type Object

Binary data blocks
This spec introduces a new, spec-internal block datatype, intuitively representing a contiguously allocated block of
binary data. Blocks are not ECMAScript values and appear only in the program store (aka heap).

A block is one of:

●

a number-block

●

an array-block[t, n]

●

a struct-block[t1, ..., tn]

A number-block is one of:

●

an unsigned-integer

●

a signed-integer

file:///C|/Users/Patrick/Documents/6.htm (2 of 14) [14.09.2010 16:52:58]

strawman:binary_data [ES Wiki]

a floating-point

An unsigned-integer is one of uint8, uint16, uint32, or uint64. A signed-integer is one of int8, int16, int32, or
int64 A floating-point is one of float32 or float64

A uintk is an integer in the range [0, 2k). An intk is an integer in the range [-2k-1, 2k-1). A floatk is a floating-point
number representable as a k-bit IEE754 value.

An array-block[t, n] is an ordered sequence of n blocks of homogeneous block type t. Each element of the array is stored
at in independently addressable location in the program store, and multiple Block objects may contain references to
the element.

A struct-block[t1, ..., tn] is an ordered sequence of n blocks of heterogeneous block types t1 to tn, respectively. Each
field of the struct is stored at in independently addressable location in the program store, and multiple Block objects
may contain references to the field.

The spec also introduces a datatype of Block objects, which are ECMAScript values that encapsulate references to block
data in the program store. Every Block object has the following properties:

●

[[ClassName]] = “Block”

●

[[Value]] : reference[block] – a reference to a block in the program store

●

[[BlockType]] : reference[BlockType] – a reference to a BlockType describing this object’s block data

Block types
Every binary data block is associated with a fixed BlockType object, which describes the permanent shape, size,
and interpretation of the block, somewhat like a runtime type tag. All references to a given block in the program store
are associated with the same BlockType. Consequently, implementations can allocate blocks as untagged memory buffers
(e.g., raw C data structures) without violating memory safety.

Every block type supports the following properties:

●

[[ClassName]] = “BlockType” – the constant class name of all BlockType objects

●

[[BlockTypeName]] : string – a string determining the variant of BlockType, for compatibility between block objects across

multiple execution environments (such as multiple windows, module loaders, etc.)

●

[[Convert]](val : Any) → reference[block] – converts an ECMAScript value to a reference to a binary data block

●

[[IsSame]](t : BlockType) – compare block types for equality

●

bytes : UInt32 – the logical size of blocks of this type, in bytes

Note that the bytes property does not expose information about the actual size of a block type, just the logical size of
its components. This avoids exposing architecture- and implementation-specific details like struct padding.

There is a built-in BlockType constructor which serves as a “base class” for block types:

file:///C|/Users/Patrick/Documents/6.htm (3 of 14) [14.09.2010 16:52:58]

strawman:binary_data [ES Wiki]

function BlockType()

The “abstract” base constructor for block types, whose prototype is a descendant of all block type prototypes. Calling
the BlockType constructor always raises an error; it is provided solely for access to its prototype.

BlockType.[[Prototype]] = Function.prototype

BlockType.prototype.[[Prototype]] = Function.prototype

BlockType.prototype.constructor = BlockType

BlockType.prototype.array(n : UInt32 | Int64 | UInt64) → ArrayBlockType

Convenience method that produces the same result as new ArrayType(this, n).

Block objects
There is a built-in Block constructor which serves as a “base class” for block types:

function Block()

The “abstract” base constructor for block objects, whose prototype is a descendant of all block object prototypes. Calling
the Block constructor always raises an error; it is provided solely for access to its prototype.

Block.[[Prototype]] = BlockType.prototype

Block.prototype.[[Prototype]] = Object.prototype

Block.prototype.constructor = Block

Block.prototype.update(val : Any) → Void
    If !IsObject(this) || this.[[ClassName]] != “Block”
        Throw TypeError
    Let R ?= this.[[BlockType]].[[Convert]](val)
    Copy Dereference(R) into this.[[Value]]
    Return undefined

Numeric blocks
There are several pre-defined block type objects describing numeric binary data.

var uint8, uint16, uint32, uint64 : BlockType
var int8, int16, int32, int64 : BlockType
var float32, float64 : BlockType

Let t be one of the above built-in block type objects.

t.[[Prototype]] = BlockType.prototype

t.[[BlockTypeName]] = the name of t as a string (e.g., “uint8” for uint8)

t.[[Convert]](val : Any) → reference[block]
    Let R = a reference to a new number-block of the appropriate size for t
    If val = true
        R := 1
    Else If val = false
        R := 0
    Else If val is an ECMAScript number in the domain of this type

file:///C|/Users/Patrick/Documents/6.htm (4 of 14) [14.09.2010 16:52:58]

strawman:binary_data [ES Wiki]

        R := val
    Else If val is a UInt64 or Int64 and val.[[Value]] is in the domain of t
        R := val.[[Value]]
    Else Throw TypeError
    Return R

t.[[IsSame]](u : BlockType)
    Return t.[[BlockTypeName]] = u.[[BlockTypeName]]

t.[[Cast]](val : Any) → number-block
    Let V = t.[[Create]](val)
    If !IsError(V)
        Return Dereference(V.value)
    If val = Infinity or val = NaN
        Return 0
    If val is an ECMAScript number
        Return t.[[CCast]](val)
    If val is a UInt64 or Int64
        Return t.[[CCast]](val.[[Value]])
    If val is a numeric string, possibly prefixed by “0x” or “0X” for uints or /(-)?(0[xX])?/ for ints
        Let V = ParseNumber(val)
        Return uintk.[[CCast]](V)
    Throw TypeError

t.[[CCast]](n : number) → number-block
    TODO: do roughly what C does

t.[[Call]](val : Any) → Number
    Let x ?= t.[[Cast]](x)
    Let R = a reference to a new number block with value x     Return t.[[Reify]](R)

t.[[Reify]](R : reference[number-block])
    Let x = Dereference(R)
    If t.[[BlockTypeName]] = “uint64”
        Return a new UInt64 with [[Value]] x
    If t.[[BlockTypeName]] = “int64”
        Return a new Int64 with [[Value]] x
    Return x

For each built-in type object t with suffix k (e.g., for uint32, k = 32):

t.bytes = k / 8

Array blocks
Programmers can create array block-type objects, which describe fixed-length sequences of block data of homogeneous
block-type, using the following constructor.

function ArrayType(elementType : BlockType, length : UInt32 | Int64 | UInt64) ->
BlockType

ArrayType.prototype.[[Prototype]] = BlockType.prototype

ArrayType.prototype.constructor = ArrayType

ArrayType.prototype.repeat(val : Any) → ArrayBlock
    If !IsObject(this) || this.[[ClassName]] != “BlockType” || this.[[BlockTypeName]] != “array”
        Throw TypeError
    Let V = this.[[Construct]]()
    For each integer i in [0, this.[[Length]])
        Let R ?= this.[[ElementType]].[[Convert]](val)
        Copy Dereference(R) into the ith element of this.[[Value]]
    Return V

file:///C|/Users/Patrick/Documents/6.htm (5 of 14) [14.09.2010 16:52:58]

strawman:binary_data [ES Wiki]

Array block-type objects

Let elementType be a BlockType object and length a non-negative integer. Then it is possible to define a new array
block-type object t using the ArrayType constructor:

t = new ArrayType(elementType, length)

The resulting array block-type object t has the following properties:

t.[[ClassName]] = “BlockType”

t.[[Prototype]] = ArrayType.prototype

t.[[BlockTypeName]] = “array”

t.[[ElementType]] = elementType

t.[[Length]] = length

t.[[Convert]](val : Any) → reference[block]
    If IsObject(val) && val.[[ClassName]] = “Block”
        If val.[[BlockType]].[[IsSame]](t)
            Return val.[[Value]]
        Throw TypeError
    If !IsObject(val)
        Throw TypeError
    Let u = t.[[ElementType]]
    Let n = t.[[Length]]
    Let L ?= val.[[Get]](”length”)
    If L not in UInt32 || L !== n
        Throw TypeError
    Let R = a reference to a new array-block of the appropriate size for n elements of type u
    For each integer i in [0, n)
        Let V ?= val.[[Get]](i)
        Let W ?= u.[[Convert]](V)
        Copy Dereference(W) into the ith member of R
    Return R

t.[[IsSame]](u : BlockType)
    Return u.[[BlockTypeName]] = “array” &&
      t.[[ElementType]].[[IsSame]](u.[[ElementType]]) &&
      t.[[Length]] = u.[[Length]]

t.[[Construct]](val : Any) → Block
    (described below)

t.[[Reify]](R : reference[array-block])
    Let V = a new block object with
        V.[[BlockType]] = t
        V.[[Value]] = R
    Return V

t.prototype.constructor = t

t.prototype.fill(val : Any) → Void
    If !IsObject(this) || this.[[ClassName]] != “Block” || !this.[[BlockType]].[[IsSame]](t)
        Throw TypeError
    For each integer i in [0, t.[[Length]])         Let R ?= t.[[ElementType]].[[Convert]](val)
        Copy Dereference(R) into the ith element of this.[[Value]]
    Return undefined

t.elementType = elementType

file:///C|/Users/Patrick/Documents/6.htm (6 of 14) [14.09.2010 16:52:58]

strawman:binary_data [ES Wiki]

t.length = length

t.bytes = elementType.bytes x length

Array block objects

Given an array block-type object such as t above, it is possible to construct new array blocks:

a = new t()
a = new t(val)

The resulting array block object a has the following properties:

a.[[ClassName]] = “Block”

a.[[Prototype]] = t.prototype

a.[[Value]] = a newly allocated struct-block of the appropriate size for t, initialized to all zeroes
    If val is defined
        Let R ?= t.[[Convert]](val)
        Copy Dereference(R) into a.[[Value]]

a.[[BlockType]] = t

a.length = t.[[Length]]

For each i in [0, t.[[Length]]):

get a.i()
    Let R be a reference to the ith element of a.[[Value]]
    Return t.[[ElementType]].[[Reify]](R)

set a.i(x)
    Let R ?= a.[[ElementType]].[[Convert]](x)
    Copy Dereference(R) into the ith member of a.[[Value]]
    Return undefined

Struct blocks
Programmers can create struct block-type objects, which describe fixed-length sequences of block data of
heterogeneous block-types, using the following constructor.

function StructType(fields : [[string, BlockType], ...]) -> BlockType

StructType.prototype.[[Prototype]] = BlockType.prototype

StructType.prototype.constructor = StructType

Struct block-type objects

Let fields be an ECMAScript value. Then it is possible to define a new struct type object t using the StructType
constructor:

t = new StructType(fields)

Semantics
    Let n ?= fields.[[Get]](”length”)
    If n is not in UInt32

file:///C|/Users/Patrick/Documents/6.htm (7 of 14) [14.09.2010 16:52:58]

strawman:binary_data [ES Wiki]

        Throw TypeError
    For each i in [0, n)
        Let V ?= fields.[[Get]](i)
        Let L ?= V.[[Get]](”length”)
        If L !== 2
            Throw TypeError
        Let s1 ?= V.[[Get]](0)
        Let t1 ?= V.[[Get]](1)
    Let t be a new object with t.[[Fields]] = [(s0, t0), ...] and the properties below
    Return t

t.[[ClassName]] = “BlockType”

t.[[Prototype]] = StructType.prototype

t.[[BlockTypeName]] = “struct”

t.[[Convert]](val : Any) → reference[block]
    If IsObject(val) && val.[[ClassName]] = “Block”
        If val.[[BlockType]].[[IsSame]](t)
            Return val.[[Value]]
        Throw TypeError
    If !IsObject(val)
        Throw TypeError
    Let names ?= EnumerateOwn(val)
    If names != { X | (X, u) in t.[[Fields]] }
        Throw TypeError
    Let R = a reference to a new struct-block of the appropriate size for t.[[Fields]]
    For each (X, u) in t.[[Fields]]
        Let V ?= val.[[Get]](X)
        Let W ?= u.[[Convert]](V)
        Copy Dereference(W) into field X of R
    Return R

t.[[IsSame]](u : BlockType)
    Return t === u

t.[[Construct]](val : Any) → Block
    (described below)

t.[[Reify]](R : reference[struct-block])
    Let V = a new block object with
        V.[[BlockType]] = t
        V.[[Value]] = R
    Return V

t.prototype.constructor = t

t.fields = a frozen array representing t.[[Fields]], in the same format as the fields constructor argument above

t.bytes = t0.bytes + ... + tn-1.bytes

Struct block objects

Given a struct block-type object such as t above, it is possible to construct new array blocks:

s = new t()

The resulting struct block object s has the following properties:

s.[[ClassName]] = “Block”

s.[[Prototype]] = t.prototype

file:///C|/Users/Patrick/Documents/6.htm (8 of 14) [14.09.2010 16:52:58]

strawman:binary_data [ES Wiki]

s.[[Value]] = a newly allocated struct-block of the appropriate size for t, initialized to all zeroes

s.[[BlockType]] = t

s.constructor = t

For each (”fi“, ui) in t.[[Fields]]:

get s.fi()
    Let R be a reference to the ith field of s.[[Value]]
    Return ui.[[Reify]](Dereference(R))

set s.fi(x)
    Let R ?= ui.[[Convert]](x)
    Copy Dereference(R) into the ith field of s.[[Value]]
    Return undefined

Prototype hierarchy
To help visualize the prototype inheritance relationship, the following diagram illustrates a case of an array type object A
and an array block a created by A.

TODO: this is accurate for js-ctypes but may or may not be accurate for this spec – stay tuned, we’re working on it. :)

Type Constructors Type Objects Block Objects
----------------- -------------- ---------------

 to Function.p to Function.p to Object.p
 ^ ^ ^
 | [[Prototype]] | [[Prototype]] | [[Prototype]]
 | | |
 +-----------+ +-------------+ +---------------+
	----prototype--->		----prototype--->	
BlockType		Block		Block.p
	<--constructor---		<--constructor---	
 +-----------+ +-------------+ +---------------+
 ^ ^ ^
 | [[Prototype]] | [[Prototype]] | [[Prototype]]
 | | |
 +-----------+ +-------------+ +---------------+
	----prototype--->		----prototype--->	
ArrayType		ArrayType.p		ArrayType.p.p
	<--constructor---		<--constructor---	
 +-----------+ +-------------+ +---------------+
 ^ ^
 | [[Prototype]] | [[Prototype]]
 | |
 +-------------+ +---------------+
 | |----prototype--->| |
 | A | | A.p |
 | |<--constructor---| |
 +-------------+ +---------------+
 ^
 | [[Prototype]]
 |
 +---------------+
 | |
 | a |
 | |
 +---------------+

file:///C|/Users/Patrick/Documents/6.htm (9 of 14) [14.09.2010 16:52:58]

strawman:binary_data [ES Wiki]

Large integers
Some operations produce or require integers larger than the ECMAScript number type can represent. The following two
types are a simple object type that encapsulates 64-bit integers, both unsigned and signed.

Unsigned 64-bit integers

new UInt64(n : String | Number | Int64 | UInt64 = 0) -> UInt64

Semantics
    If n is a string
        Let V ?= ParseInt(n)
        If V not in [0, 264) Throw TypeError
        Let W = a new UInt64 object with W.[[Value]] = V.
        Return W
    If n is a number and n in [0, 264)
        Let W = a new UInt64 object with W.[[Value]] = n
        Return W
    If n is an Int64 object and n.[[Value]] in [0, 264)
        Let W = a new UInt64 object with W.[[Value]] = n.[[Value]]
        Return W
    If n is a UInt64 object
        Let W = a new UInt64 object with W.[[Value]] = n.[[Value]]
        Return W
    Throw TypeError

UInt64.lo(n : UInt64) -> UInt32

Returns the low-order 32-bit value of n.[[Value]].

UInt64.hi(n : UInt64) -> UInt32

Returns the high-order 32-bit value of n.[[Value]].

UInt64.join(hi : Number | Int64 | UInt64, lo : Number | Int64 | UInt64) -> UInt64

Returns a new UInt64 whose [[Value]] is computed by joining the numeric value of hi as the high-order 32 bits and the
numeric value of lo as the low-order 32 bits.

UInt64.compare(a : UInt64, b : UInt64) -> -1 | 0 | 1

If a and b are both UInt64 objects, returns -1 if a.[[Value]] < b.[[Value]], 0 if a.[[Value]] = b.[[Value]], and 1 if a.[[Value]]
> b.[[Value]]. Otherwise throws a TypeError.

UInt64.prototype.toString(radix : 2 | 10 | 16 = 10) -> String

Returns a string representation of this.[[Value]] in base radix, consisting of one or more lowercase digits of base radix.

Signed 64-bit integers

file:///C|/Users/Patrick/Documents/6.htm (10 of 14) [14.09.2010 16:52:58]

strawman:binary_data [ES Wiki]

new Int64(n : String | Number | Int64 | UInt64 = 0) -> UInt64

Semantics
    If n is a string
        Let V ?= ParseInt(n)
        If V not in [-263, 263) Throw TypeError
        Let W = a new Int64 object with W.[[Value]] = V.
        Return W
    If n is an integer and n in [-263, 263)
        Let W = a new Int64 object with W.[[Value]] = n
        Return W
    If n is a UInt64 object and n.[[Value]] in [-263, 263)
        Let W = a new Int64 object with W.[[Value]] = n.[[Value]]
        Return W
    If n is an Int64 object
        Let W = a new Int64 object with W.[[Value]] = n.[[Value]]
        Return W
    Throw TypeError

Int64.lo(n : Int64) -> UInt32

Returns the low-order 32-bit value of n.[[Value]].

Int64.hi(n : Int64) -> Int32

Returns the high-order 32-bit value of n.[[Value]].

Int64.join(hi : Number | Int64 | UInt64, lo : Number | Int64 | UInt64) -> Int64

Returns a new Int64 whose [[Value]] is computed by joining the numeric value of hi as the high-order 32 bits and the
numeric value of lo as the low-order 32 bits.

Int64.compare(a : UInt64, b : UInt64) -> -1 | 0 | 1

If a and b are both Int64 objects, returns -1 if a.[[Value]] < b.[[Value]], 0 if a.[[Value]] = b.[[Value]], and 1 if a.[[Value]]
> b.[[Value]]. Otherwise throws a TypeError.

Int64.prototype.toString(radix : 2 | 10 | 16 = 10) -> String

Returns a string representation of this.[[Value]] in base radix, consisting of a possible leading minus sign followed by one
or more lowercase digits of base radix.

Rationale

Aliasing

Block objects encapsulate references to blocks of mutable data in the program store. These references can be shared and
aliased. In other words, block objects provide a “reference semantics” for binary data.

The member accessors of array and struct blocks allow the creation of new block objects with references to shared data. As
a result, it is possible for multiple objects to refer to the same store location. Thus, the same reference may be pointed to
by two block objects that are distinguished by the strict-equality (===) operator.

An alternative would be to require memoization of block objects, so that any reference is the root reference of at most one

file:///C|/Users/Patrick/Documents/6.htm (11 of 14) [14.09.2010 16:52:58]

strawman:binary_data [ES Wiki]

block object. However, this could be difficult to implement (since a reference may always be a nested part of a larger block
in the heap), and it does not eliminate aliasing (since, again, struct and array accessors allow sharing references to nested
sub-blocks).

Numeric blocks

The numeric types are meant to simulate datatypes with non-reference semantics from languages like C. There are several
potential approaches to providing this functionality:

1.

provide a reference semantics for numeric types via block objects

2.

introduce new non-reference primitive datatypes (aka value types)

3.

memoize block objects to simulate value semantics with objects

This spec takes a simpler approach, simply eliminating immediate access to numeric blocks as ECMAScript values.

Consider Python’s struct library, or js-ctypes. In both, it is possible to construct a first-class numeric block, which is given
a separate object identity and heap-allocated cell containing a number. It is not clear that this provides much utility, since
the same can easily be achieved with a one-element array type or one-field struct. Moreover, it leads to confusing
properties such as:

(new uint32(42)) == (new uint32(42)) // false

We could attempt to patch around this problem by extending the semantics of == (but not ===, since that must always
distinguish two distinct objects), but it seems more consistent simply to avoid simulating new primitive datatypes with
reference-typed objects.

Large integers

The Int64 and UInt64 types are the simplest realization of 64-bit integers possible, but they are not ideal. It would likely be
better to add language support for bignums. In the interest of keeping this spec orthogonal, we have used Int64 and
UInt64.

Struct-type constructor API

In the js-ctypes API, struct types take as their argument an array of field descriptors expected to have exactly one own-
property:

new StructType([{ x: uint32 }, { y: uint32 }])

An even more convenient form would be to allow the use of a single object literal, using the (admittedly subtle!)
enumeration order of the properties to determine the order of the fields in the struct layout:

new StructType({ x: uint32, y: uint32 })

Because struct types are meant to be compatible with actual I/O, where the order of struct fields is significant, it must be
easy to guarantee the order of fields. For this reason, the explicit order of arrays makes it easier to reason about the order
of fields.

It might however, be good to provide a hybrid interface to the StructType constructor to allow both the convenient API
and the more explicitly-ordered API. It is not entirely clear how to distinguish the two different types of input, however,
except possibly to offer two different API‘s, e.g.:

file:///C|/Users/Patrick/Documents/6.htm (12 of 14) [14.09.2010 16:52:58]

http://wiki.ecmascript.org/doku.php?id=strawman:value_types
http://docs.python.org/library/struct.html
https://wiki.mozilla.org/Jsctypes/api

strawman:binary_data [ES Wiki]

new StructType({ x: uint32, y: uint32 })
StructType.create([["x", uint32], ["y", uint32]])

Deviations from js-ctypes

●

ConvertToJS isn’t an appropriate name; renamed to Reify

●

renamed CData to Block and CType to BlockType

●

no numeric CData, to avoid treating “value types” as reference types

●

numeric CTypes are only cast functions, not block-constructors

●

ImplicitConvert is just called Convert

●

ExplicitConvert is called Cast and only works on number block types

●

compound CTypes are only block-constructors, not cast functions

To do

●

API to produce struct descriptor

●

alternative construction forms for struct-types (object-literal convenience vs. array of arrays) and structs (positional vs

object?)

●

move update into BlockType.prototype?

●

chars and string conversion

●

note non-configurable and non-writeable attributes throughout

References
Common Lisp:

●

http://www.gigamonkeys.com/book/practical-parsing-binary-files.html

file:///C|/Users/Patrick/Documents/6.htm (13 of 14) [14.09.2010 16:52:58]

http://www.gigamonkeys.com/book/practical-parsing-binary-files.html

strawman:binary_data [ES Wiki]

Python:

●

http://docs.python.org/library/struct.html

Mozilla JavaScript:

●

https://developer.mozilla.org/en/javascript_code_modules/ctypes.jsm

●

https://wiki.mozilla.org/Jsctypes/api

Racket:

●

http://docs.racket-lang.org/foreign/types.html

●

http://www.ccs.neu.edu/scheme/pubs/scheme04-bo.pdf

Survey:

●

http://autocad.xarch.at/lisp/ffis.html

strawman/binary_data.txt · Last modified: 2010/07/31 00:10 by dherman

file:///C|/Users/Patrick/Documents/6.htm (14 of 14) [14.09.2010 16:52:58]

http://docs.python.org/library/struct.html
https://developer.mozilla.org/en/javascript_code_modules/ctypes.jsm
https://wiki.mozilla.org/Jsctypes/api
http://docs.racket-lang.org/foreign/types.html
http://www.ccs.neu.edu/scheme/pubs/scheme04-bo.pdf
http://autocad.xarch.at/lisp/ffis.html
http://wiki.ecmascript.org/feed.php
http://creativecommons.org/licenses/by-nc-sa/2.0/
https://www.paypal.com/xclick/business=andi%40splitbrain.org&item_name=DokuWiki+Donation&no_shipping=1&no_note=1&tax=0¤cy_code=EUR&lc=US
http://www.php.net/
http://validator.w3.org/check/referer
http://jigsaw.w3.org/css-validator/check/referer
http://wiki.splitbrain.org/wiki:dokuwiki

	Local Disk
	strawman:binary_data [ES Wiki]

	JIIJGCLLAKILPLDBFGDJKIPKPBOKPJID:
	form1:
	x:
	f1: edit
	f2:
	f3: strawman:binary_data

	f4:

	form2:
	x:
	f1: revisions
	f2: strawman:binary_data

	f3:

	form3:
	x:
	f1: recent
	f2:

	f3:

	form4:
	x:
	f1: search
	f2:

	f3:

	form5:
	x:
	f1: edit
	f2:
	f3: strawman:binary_data

	f4:

	form6:
	x:
	f1: revisions
	f2: strawman:binary_data

	f3:

	form7:
	x:
	f1: login
	f2: strawman:binary_data

	f3:

	form8:
	x:
	f1: index
	f2: strawman:binary_data

	f3:

	form9:
	f1:

