
strawman:handler_access_to_proxy [ES Wiki]

[[strawman:
handler_access_to_proxy]]

ES
Wiki

Trace: » handler_access_to_proxy

-Table of Contents

�❍ Handler access to proxies

■ Extended API

■ Proxy as optional argument

■ Proxy as additional argument

■ Proxy as argument only for

particular traps

■ Reservations

�❍ References

�❍ Feedback

Handler access to proxies

We should consider the possibility of extending the Proxy Handler API such that handlers get
access to the proxy for which they are currently intercepting. Motivating use cases:

●

A handler shared by many proxy instances may want to identify the proxy for which it is

currently “servicing” an operation. For instance, the shared handler could use a WeakMap

keyed by the proxy’s identity to store per-proxy state.

●

Without access to the proxy, the handler has no way of accessing the prototype passed to Proxy.create. It also

cannot reliably distinguish whether it is servicing an object or a function proxy. When given access to a proxy, the

handler could perform Object.getPrototypeOf(proxy), typeof proxy and proxy instanceof Fun to get

at this data (credit goes to David Bruant)

●

If the (currently fundamental) getPropertyDescriptor and getPropertyNames traps would have access to

the proxy, they can easily be turned into derived traps, as indicated in this strawman.

Extended API

The easiest way to allow a handler access to the proxy it is currently servicing is to pass the proxy as an additional
argument to the handler traps. From here, there are multiple routes to take:

1.

Add proxy as an optional last argument to all traps.

2.

Add proxy as an argument at the most appropriate position for each trap.

3.

Add proxy only as an argument to the getPropertyDescriptor and getPropertyNames traps (for the purpose

of defining their derived behavior).

Proxy as optional argument

We could add a proxy parameter as an optional last argument to all existing traps.

Pro:

●

regular API

●

traps that aren’t interested in accessing the proxy can simply ignore it

Con:

●

file:///F|/Common/EXCHANGE/Patrick/doku.php5.1.htm (1 of 4) [22.07.2011 16:53:30]

http://wiki.ecmascript.org/doku.php?id=strawman:handler_access_to_proxy&do=backlink
http://wiki.ecmascript.org/doku.php?id=strawman:handler_access_to_proxy&do=backlink
http://wiki.ecmascript.org/doku.php?id=
http://wiki.ecmascript.org/doku.php?id=
http://wiki.ecmascript.org/doku.php?id=strawman:handler_access_to_proxy
javascript:toggleToc()
javascript:toggleToc()
javascript:toggleToc()
http://wiki.ecmascript.org/doku.php?id=strawman:proxies#api
http://wiki.ecmascript.org/doku.php?id=harmony:weak_maps
http://wiki.ecmascript.org/doku.php?id=strawman:proxy_derived_traps
Patrick
Text Box
Ecma/TC39/2011/034

strawman:handler_access_to_proxy [ES Wiki]

adding an optional last argument restricts our options if one of the Object API methods would change in the future. If e.g.

Object.getOwnPropertyDescriptor takes an extra argument in a later edition, how can we reconcile this with

existing code that assumes that the second parameter is the proxy? (requires refactoring)

●

for some traps, getting the proxy as the last argument is counter-intuitive.

For example, the trap getOwnPropertyDescriptor is triggered by code like:

Object.getOwnPropertyDescriptor(proxy, name)

Yet the order in which the params are passed to the trap is reversed:

getOwnPropertyDescriptor: function(name, proxy) {...}

Passing proxy as the last argument is odd in this way for get{Own}PropertyDescriptor,
defineProperty, delete, hasOwn. It is OK for get{Own}PropertyNames, keys, fix (freeze/
seal/preventExtensions), has, enumerate. The get and set traps already have implicit access to proxy via receiver
(which is either the proxy or an object inheriting from the proxy). The proxy argument could be passed either as an
extra first argument or as an extra last argument.

Proxy as additional argument

We could add a proxy parameter as an extra argument to all existing traps. Depending on the trap, the argument is
added either as a mandatory argument or as an optional trailing argument.

Pro:

●

The position of proxy is consistent with its position in the intercepted code.

Con:

●

Less consistent.

●

Some traps can’t ignore the proxy parameter.

Below is a proposed updated API (when the proxy parameter is optional, it is enclosed in square brackets):

// fundamental traps
getOwnPropertyDescriptor: function(proxy, name) -> PropertyDescriptor | undefined //
Object.getOwnPropertyDescriptor(proxy, name)
getOwnPropertyNames: function([proxy]) -> [string] //
Object.getOwnPropertyNames(proxy)
defineProperty: function(proxy, name, propertyDescriptor) -> any //
Object.defineProperty(proxy,name,pd)
delete: function(proxy, name) -> boolean //
delete proxy.name
fix: function([proxy]) -> { string: PropertyDescriptor } //
Object.{freeze|seal|preventExtensions}(proxy)
 | undefined
// derived traps
getPropertyDescriptor: function(proxy, name) -> PropertyDescriptor | undefined //
Object.getPropertyDescriptor(proxy, name) (not in ES5)

file:///F|/Common/EXCHANGE/Patrick/doku.php5.1.htm (2 of 4) [22.07.2011 16:53:30]

strawman:handler_access_to_proxy [ES Wiki]

getPropertyNames: function([proxy]) -> [string] //
Object.getPropertyNames(proxy) (not in ES5)
has: function(name, [proxy]) -> boolean // name in proxy
hasOwn: function(proxy, name) -> boolean // ({}).hasOwnProperty.call
(proxy, name)
get: function(receiver, name, [proxy]) -> any // receiver.name
set: function(receiver, name, val, [proxy]) -> boolean // receiver.name = val
enumerate: function([proxy]) -> [string] // for (name in proxy)
(return array of enumerable own and inherited properties)
keys: function([proxy]) -> [string] // Object.keys(proxy)
(return array of enumerable own properties only)

Other ways to decide on the optionality of proxy:

●

make proxy mandatory for the traps that trap methods on Object, and optional (trailing) for all others.

●

make it optional for derived traps, mandatory for fundamental traps.

Proxy as argument only for particular traps

Only add the proxy parameter to the getPropertyDescriptor and getPropertyNames traps. Pro: keeps the
overall API simple while still allowing derived behavior for these traps. Con: inconsistent, doesn’t cater to all motivating
use cases.

Reservations

●

Should a handler really be able to distinguish whether it is handling an object or a function proxy?

●

Having access to the proxy by default increases the risk for infinite recursion hazards.

— Tom Van Cutsem 2011/02/28 06:10

References

●

Discussion thread on es-discuss (the idea originated while discussing the default behavior of

the getPropertyDescriptor and getPropertyNames traps).

Feedback

Discussed at the March 2011 TC39 meeting.

Q: Why not consider proxy as an instance variable of the handler? A: Would preclude sharing a single handler among
multiple proxies, or else handler would have to keep track of all the proxies it is serving as part of its instance state.

Q: why not bind a handler’s this to the proxy it is serving? A: confuses meta-levels (this = handler = meta-level, proxy
= base-level). Also, makes handler inheritance unworkable: can inherit from a handler, in which case this in a
parent handler should refer to the inheriting handler.

General agreement that we may want to provide the proxy as an argument to all traps.

Andreas: experimenting with DOM wrappers. All prototype-climbing traps require access to the receiver object (which is
not necessarily the proxy object), not just the get/set traps. The get and set trap may want access to both the receiver
and the proxy.

file:///F|/Common/EXCHANGE/Patrick/doku.php5.1.htm (3 of 4) [22.07.2011 16:53:30]

mailto:%26%23x74%3B%26%23x6f%3B%26%23x6d%3B%26%23x76%3B%26%23x63%3B%26%23x2e%3B%26%23x62%3B%26%23x65%3B%26%23x40%3B%26%23x67%3B%26%23x6d%3B%26%23x61%3B%26%23x69%3B%26%23x6c%3B%26%23x2e%3B%26%23x63%3B%26%23x6f%3B%26%23x6d%3B
https://mail.mozilla.org/pipermail/es-discuss/2011-January/012640.html

strawman:handler_access_to_proxy [ES Wiki]

Tom: propose to add proxy as a first argument to all traps. Andreas, Brendan, Dave: in favor of adding it as an optional
last argument:

●

in most use cases that came up thus far, there was no need for the proxy parameter

●

proxy parameter is dangerous (runaway recursion hazard), good to be able to ignore it most of the time

●

Tom: what about inconsistent ordering w.r.t the trapped code? Dave: Proxy API is for experts, they will cope.

Current consensus:

●

add receiver as a first argument to all prototype-climbing traps (get, set, has, getPropertyNames,

getPropertyDescriptor traps)

●

add proxy as an optional last argument to all traps.

— Tom Van Cutsem 2011/03/30 12:54

strawman/handler_access_to_proxy.txt · Last modified: 2011/03/30 19:57 by tomvc

file:///F|/Common/EXCHANGE/Patrick/doku.php5.1.htm (4 of 4) [22.07.2011 16:53:30]

mailto:%26%23x74%3B%26%23x6f%3B%26%23x6d%3B%26%23x76%3B%26%23x63%3B%26%23x2e%3B%26%23x62%3B%26%23x65%3B%26%23x40%3B%26%23x67%3B%26%23x6d%3B%26%23x61%3B%26%23x69%3B%26%23x6c%3B%26%23x2e%3B%26%23x63%3B%26%23x6f%3B%26%23x6d%3B
http://wiki.ecmascript.org/feed.php
http://creativecommons.org/licenses/by-nc-sa/2.0/
https://www.paypal.com/xclick/business=andi%40splitbrain.org&item_name=DokuWiki+Donation&no_shipping=1&no_note=1&tax=0¤cy_code=EUR&lc=US
http://www.php.net/
http://validator.w3.org/check/referer
http://jigsaw.w3.org/css-validator/check/referer
http://wiki.splitbrain.org/wiki:dokuwiki

strawman:proxy_drop_receiver [ES Wiki]

[[strawman:
proxy_drop_receiver]]

ES
Wiki

Trace:
»

handler_access_to_proxy » proxy_drop_receiver

Dropping receiver from get and set traps

As noted by Sean Eagan on es-discuss, the receiver parameter to the get and set traps of Proxy
handlers is not strictly necessary.

The purpose of this parameter was to allow proxy handlers to refer to the original receiver of a
property access/assignment operation, in the case where the proxy acts as a prototype:

// according to the current Proxy spec:
var p = Proxy.create({
 get: function(receiver, name) { ... }
});
var o = Object.create(p);
o.foo; // triggers p's get trap with receiver === o and name === "foo"

However, according to the ES5 [[Get]] algorithm (section 8.12.3), this is not how inherited property
lookup will occur. The algorithm calls [[GetProperty]] (section 8.12.2), which in turn walks the
prototype chain to look up a property descriptor. This will trigger p‘s getPropertyDescriptor
trap, not its get trap:

// according to the current ES5 semantics:
var p = Proxy.create({
 getPropertyDescriptor: function(name) {
 ...
 }
});
var o = Object.create(p);
o.foo; // triggers p's getPropertyDescriptor trap with name === "foo"

Under this semantics, the get trap will only ever be invoked for direct invocations on p, in which
case receiver will always be equal to p. Pending the acceptance of the strawman that adds a
proxy argument to each trap, receiver becomes unnecessary.

Note: the same reasoning applies to the set trap: ES5 [[Put]] (section 8.12.5) also calls
[[GetProperty]] to find the appropriate property descriptor when it is not found on the receiver object
itself.

Note: it is still possible for a proxy handler to get hold of the receiver object when its proxy is used
as a prototype, via the this-binding of a function data property or getter/setter:

file:///F|/Common/EXCHANGE/Patrick/doku.php5.2.htm (1 of 2) [22.07.2011 16:54:15]

http://wiki.ecmascript.org/doku.php?id=strawman:proxy_drop_receiver&do=backlink
http://wiki.ecmascript.org/doku.php?id=strawman:proxy_drop_receiver&do=backlink
http://wiki.ecmascript.org/doku.php?id=
http://wiki.ecmascript.org/doku.php?id=
http://wiki.ecmascript.org/doku.php?id=strawman:handler_access_to_proxy
http://wiki.ecmascript.org/doku.php?id=strawman:proxy_drop_receiver
http://wiki.ecmascript.org/doku.php?id=strawman:handler_access_to_proxy

strawman:proxy_drop_receiver [ES Wiki]

var p = Proxy.create({
 getPropertyDescriptor: function(name) {
 return { value: function() { /* this === receiver */ } };
 }
});
var o = Object.create(p);
o.foo(); // calls the above nested function with this === o

The above also works for accessor properties.

— Tom Van Cutsem 2011/05/04 11:55

Consequences

Dropping receiver as the first argument to get and set traps is not backwards-compatible with
the current API. Under this strawman, the first argument to get and set would be name (a string),
not receiver (an object/proxy).

References

●

discussion on es-discuss

Feedback

strawman/proxy_drop_receiver.txt · Last modified: 2011/05/04 07:01 by tomvc

file:///F|/Common/EXCHANGE/Patrick/doku.php5.2.htm (2 of 2) [22.07.2011 16:54:15]

mailto:%26%23x74%3B%26%23x6f%3B%26%23x6d%3B%26%23x76%3B%26%23x63%3B%26%23x2e%3B%26%23x62%3B%26%23x65%3B%26%23x40%3B%26%23x67%3B%26%23x6d%3B%26%23x61%3B%26%23x69%3B%26%23x6c%3B%26%23x2e%3B%26%23x63%3B%26%23x6f%3B%26%23x6d%3B
https://mail.mozilla.org/pipermail/es-discuss/2011-April/013916.html
http://wiki.ecmascript.org/feed.php
http://creativecommons.org/licenses/by-nc-sa/2.0/
https://www.paypal.com/xclick/business=andi%40splitbrain.org&item_name=DokuWiki+Donation&no_shipping=1&no_note=1&tax=0¤cy_code=EUR&lc=US
http://www.php.net/
http://validator.w3.org/check/referer
http://jigsaw.w3.org/css-validator/check/referer
http://wiki.splitbrain.org/wiki:dokuwiki

harmony:specification_drafts [ES Wiki]

[[harmony:
specification_drafts]]

ES
Wiki

Trace: » handler_access_to_proxy »
proxy_drop_receiver » specification_drafts

Draft Specification for ES.next (Ecma-262 Editon 6)
This page contains a historical record of working draft of the ES.next specification prepared by the
project editor.

Error in the current draft should be reported as bugs at bugs.ecmascript.org

Current Working Draft

July 12, 2011 Draft doc pdf This is the first working draft of the ES.next specification. Notable
changes from the ES5.1 spec include:

●

5.1.4 Introduction of the concept of supplemental grammars.

●

5.3 Introduction of concept of Static Semantic Rules

●

8.6.2 and various places. Eliminated [[Class]] internal property. Added various internal

trademark properties as a replacement.

●

10.1.2 defined the concept of “extended code” that means code that may use new Es.next

syntax. Also redefined “strict code” to mean either ES5 strict mode code or extended code.

●

11.1.4 added syntax and semantics for use of spread operator in array literals

●

11.1.5 added syntax and semantics for property value shorthand and various semantic

helper abstract operations.

●

file:///F|/Common/EXCHANGE/Patrick/doku.php5.7.htm (1 of 2) [22.07.2011 16:54:12]

http://wiki.ecmascript.org/doku.php?id=harmony:specification_drafts&do=backlink
http://wiki.ecmascript.org/doku.php?id=harmony:specification_drafts&do=backlink
http://wiki.ecmascript.org/doku.php?id=
http://wiki.ecmascript.org/doku.php?id=
http://wiki.ecmascript.org/doku.php?id=strawman:handler_access_to_proxy
http://wiki.ecmascript.org/doku.php?id=strawman:proxy_drop_receiver
http://wiki.ecmascript.org/doku.php?id=harmony:specification_drafts
https://bugs.ecmascript.org/enter_bug.cgi?product=Draft%20for%206th%20Edition
http://wiki.ecmascript.org/lib/exe/fetch.php?id=harmony%3Aspecification_drafts&cache=cache&media=harmony:working_draft_ecma-262_edition_6_7-12-11.doc
http://wiki.ecmascript.org/lib/exe/fetch.php?id=harmony%3Aspecification_drafts&cache=cache&media=harmony:working_draft_ecma-262_edition_6_7-12-11.pdf

harmony:specification_drafts [ES Wiki]

11.2, 11.2.4 added syntax and semantics for spread operator in argument lists

●

11.13 Add syntax and semantics for destructuring assignment operator.

●

12.2 Added BindingPattern syntax and partial semantics to support destructuring in

declarations and formal parameter lists.

●

13 Added syntax to support rest parameter, parameter default values, and destructuring

patterns in formal parameter lists. Also static semantics for them. However, instantiation of

such parameters is not yet done. Defined the argument list “length” for such enhanced

parameter lists.

●

15 Clarified that clause 15 function specifications are in effect the definition of [[Call]]

internal methods.

●

15.2.4.2 Respecified toString to not use [[Class]]. Note that adding an explicit extension

mechanism is still a to-do.

●

Annex B Retitled as normative optional features of Web Browser ES implementations

Older Drafts

Initial Baseline document: doc
This is the starting point for the ES.next spec. It is just the ES5.1 specification with a ES6 draft
cover and copyright notice.

harmony/specification_drafts.txt · Last modified: 2011/07/13 15:50 by allen

file:///F|/Common/EXCHANGE/Patrick/doku.php5.7.htm (2 of 2) [22.07.2011 16:54:12]

http://wiki.ecmascript.org/lib/exe/fetch.php?id=harmony%3Aspecification_drafts&cache=cache&media=harmony:baseline_draft_standard_ecma-262_6th_edition.doc
http://wiki.ecmascript.org/feed.php
http://creativecommons.org/licenses/by-nc-sa/2.0/
https://www.paypal.com/xclick/business=andi%40splitbrain.org&item_name=DokuWiki+Donation&no_shipping=1&no_note=1&tax=0¤cy_code=EUR&lc=US
http://www.php.net/
http://validator.w3.org/check/referer
http://jigsaw.w3.org/css-validator/check/referer
http://wiki.splitbrain.org/wiki:dokuwiki

harmony:object_initialiser_super [ES Wiki]

[[harmony:
object_initialiser_super]]

ES
Wiki

Trace: » handler_access_to_proxy »
proxy_drop_receiver »

specification_drafts » object_initialiser_super

-Table of Contents

● Object Initializer super references

�❍ Overview

�❍ super in Accessor Property

Definitions

�❍ Functions that reference super

�❍ Imperatively binding [[Super]]

�❍ Rationale

Object Initializer super references
In object-oriented programming languages, inheritance is used to perform behavioral
composition. An object combines together the properties it inherits from its prototypes
with new and replacement properties define for the specific object. Occasionally in
creating such compositions it necessary for the object to explicitly access prototype
behavior that is over-ridden by the object.

Traditionally this has been accomplished in object-oriented languages using the keyword
super. ECMAScript has reserved this keyword but has never supported it. One of the
reasons was that imperative object construction style that was typically used did not provide sufficient context for a
function declaration to determine how to access over-ridden properties.

Object Initialisers provide sufficient context and hence this proposal allows use of the keyword in functions defined within
an Object Initialiser.

Overview

Sometimes a method on an object that over-rides a prototype method needs to invoke the over-ridden method. Consider
for example:

var sup = {
 validate() { /* validate internal invariants */}
}

var sub = sup <| {
 validate() {
 /* validate invariants imposed by prototype */
 /* validate instance specific invariants */
 }
}

How should the object sub actually code the call to its prototype’s validate method? The idiom that would most likely be
used today would be an expression of the form:

 sup.validate.call(this);
 /* validate subclass invariants */

This formulation does the job, but is idiomatic and its intent may not be obvious to readers. Also, it requires explicitly
referencing the prototype object by name. If such references in multiple places is error prone, especially when a prototype
hierarchy is being refactored. These issues are addressed by adding a super call expression as an additional form
of PrimaryExpression:

PrimaryExpression : ...
super

The value of super is the same as the value of this but when super is used as the base of a property access the
property lookup starts with the object that is the prototype of the object defined by the object literal that contains
the reference to super.

Then above example could then be coded like:

file:///F|/Common/EXCHANGE/Patrick/doku.php5.9.htm (1 of 6) [22.07.2011 16:54:14]

http://wiki.ecmascript.org/doku.php?id=harmony:object_initialiser_super&do=backlink
http://wiki.ecmascript.org/doku.php?id=harmony:object_initialiser_super&do=backlink
http://wiki.ecmascript.org/doku.php?id=
http://wiki.ecmascript.org/doku.php?id=
http://wiki.ecmascript.org/doku.php?id=strawman:handler_access_to_proxy
http://wiki.ecmascript.org/doku.php?id=strawman:proxy_drop_receiver
http://wiki.ecmascript.org/doku.php?id=harmony:specification_drafts
http://wiki.ecmascript.org/doku.php?id=harmony:object_initialiser_super
javascript:toggleToc()
javascript:toggleToc()
javascript:toggleToc()

harmony:object_initialiser_super [ES Wiki]

var sub = sup <| {
 validate() {
 super.validate();
 /* validate instance specific invariants */
 }
}

In this example, the expression super.validate() means sup.validate.call(this). But note that sup does
not have to be referenced by name with the body of validate.

A PrimaryExpression containing super may only occur within code that is part of a function body. It is an early
SyntaxError error for super to occur in global.

Use of super is not limited to CallExpression. It can also be used to get or set the value of accessor properties and to get
the value of data properties defined by the prototype, even if the property is over-ridden by the object:

var f=0;
var sup = {
 k:= 1,
 get foo() {return f},
 set foo(v){f=v}
}

var sub = sup <| {
 get foo() {
 var supFoo = super.foo;
 print("getting foo: "+supFoo);
 return supFoo;
 },
 set foo(v){super.foo = v+super.k}
}

But note that the use of super does not change the semantics of assigning to an inherited data property. Such
assignments create own properties even if super was used to access the property.

var f=0;
var sup = {k: 1};

var sub = sup <| {
 setK () {
 print(super.k); // prints 1
 print(this.k); // prints 1 -- inherited from sup
 super.k = 2;
 print(super.k); // prints 1 -- assignment created own k
 print(this.k); // prints 2 -- own property created by assignment
 }
}

super in Accessor Property Definitions

In object initialisers the get function and set function of an accessor property are defined independently of each other
and only either one of them need to present to over-ride an inherited accessor property definition. If either the get or
set function is not present then the default definition is used:

file:///F|/Common/EXCHANGE/Patrick/doku.php5.9.htm (2 of 6) [22.07.2011 16:54:14]

harmony:object_initialiser_super [ES Wiki]

var f = 1;
var sup = {
 get f() {return f}
};

var sub = sup <| {
 set f(v) {f=v}
};
print(sup.f); //1
sub.f=2;
print(sup.f); //2
print(sub.f); //undefined

The reason sub.f prints undefined is because the definition of a set f accessor in sub implicitly cause the default
get f accessor to also be created. A default get accessor always returns the value undefined.

This problem can be avoided by explicitly defining a get f accessor that uses super to invoke the over-ridden accessor:

var f = 1;
var sup = {
 get f() {return f}
};

var sub = sup <| {
 set f(v) {f=v},
 get f() {return super.f}
};
print(sup.f); //1
sub.f=2;
print(sup.f); //2
print(sub.f); //2

Needing to over-delegate to a prototype’s get or set accessor function is common enough that a special definition form
is provided for such definitions. The syntax is:

PropertyAssignment : ...
set super get PropertyName () { FunctionBody }
get super set PropertyName (PropertySetParameterList) { FunctionBody }

These forms cause to set or get accessor function to be automatically set to a function that does a super set or
get access for that property.

Using this form of property definition, the above example object definition could be simplified to:

var sub = sup <| {
 get super set f(v) {f=v}
};
print(sup.f); //1
sub.f=2;
print(sup.f); //2
print(sub.f); //2

Functions that reference super

Any function that references super has a [[Super]] internal property whose value is the object that is used as the base

file:///F|/Common/EXCHANGE/Patrick/doku.php5.9.htm (3 of 6) [22.07.2011 16:54:14]

harmony:object_initialiser_super [ES Wiki]

for super property lookups. Functions that do not reference super do not have [[Super]] internal property. When a
function that references super is defined as part of an object literal its [[Super]] internal property is set to the same value as
the [Prototype]] internal property of the object created by the object literal. Such functions include functions defined
using method property definitions, functions defined using get or set definitions, and functions defined as
a MemberExpression within the AssignmentExpression of a PropertyAssignment.

var sub = sup <| {
 //all the the following define functions whose [[Super]] internal property is set of
the value of sup
 a() {return super.foo()}, // a method
 get b() {return super.bar}, // a get accessor
 set b(v) {super.bar=v}, // a set accessor
 c: function() {super.a()}; // a function in a property initializer
};

Functions defined outside of object literals (or class declarations) that reference super are created with their
[[Super]] internal property set to null. Property accesses based off of super always perform property lookups start with
the object that is the the value of the containing function’s [[Super]] internal property. If [[Super]] is null, the
property lookup immediately fails and produces the value undefined.

function returnUndefined() {
 return super.foo;
}
print(returnUndefined); //will print "undefined" because [[Super]] is null

If such a function with a [[Super]] internal property is subsequently extracted from its original object and installed
(for example, via property value assign or Object.defineProperty) as a data property value in some other object,
its [[Super]] internal property reference to the original object’s [[Prototype]] is not modified. Essentially, when a function
references super it is statically referencing a specific object that is identified when the function is defined and not the
[[Prototype]] of the object from which the function was most recently retrieved.

Imperatively binding [[Super]]

An object literal is the easiest way to create methods that use super and ensure that the [[Super]] internal property of
the function is correctly bounds. However, such bindings can also be made imperatively.

Object.defineMethod is a new function that creates a method property of in an object:

var obj = Object.create(proto);
Object.defineMethod(obj,'foo', function() {return super.foo});

Object.defineMethod attempts to create (or modify) a non-enumerable data property whose value is the
defineMethod call’s third argument. That argument must be a function. If the function has a [[Super]] internal
property, then a new function object is created and set as the value of the property. The new function is identical in all
ways to the argument function except that its [[Super]] internal property is set to the value of the [[Prototype]]
internal property of the object upon which the property is being defined.

Object.defineProperty and Object.defineProperties are extended for situations where they are creating
or modify the get or set function of an accessor property. In those situations where the passed get or set function has
a [[Super]] internal property it is replaced with a copy of the function with a new [[Super]] internal property in a
similar manner to Object.defineMethod.

Note that Object.defineProperty and Object.defineProperties do not create new functions or rebind [[Super]]
when modifying the value of data properties. Object.defineMethod must be used for that purpose.

Rationale

file:///F|/Common/EXCHANGE/Patrick/doku.php5.9.htm (4 of 6) [22.07.2011 16:54:14]

harmony:object_initialiser_super [ES Wiki]

A super property access is more complex then just skipping the this object when doing a property look up. That definition
of super would actually result in method loops. Consider this example:

var top = {identify() {return "top"}};
var middle = top <| {identify() {return "middle "+ super.identify()}};
var bottom = middle <| {identify() {return "bottom "+ super.identify()}};
print(bottom.identify());

If super.identify() is interpret as meaning look of the property identify starting with the object that is the
[[Prototype]] of this, then the following would happen:

1.

bottom.identify() would call the identify method defined in the object literal for bottom with this set to

bottom.

2.

That method would evaluate super.identify based upon the this value of bottom. Lookup would start with middle

(the value of bottom‘s [[Prototype]]). It would find and call the middle.identify method, but still pass bottom as

the this value.

3.

The middle.identify would evaluate super.identify based upon the this value of bottom. Lookup would start

with middle (the value of bottom‘s [[Prototype]]) and again find and call middle.identifypassing bottom as the

this value.

4.

execution continue to loop at step 3 with middle.identify calling itself.

This shows that super can’t be defined in relation to this. It has to be defined in relation to the location of the
currently executing method in the prototype hierarchy of the this value. In particular, a super lookup has to start above
the point in the hierarchy where the currently executing method was found in order to avoid looping on that method.
There are at least two plausible semantics for such a super lookup: dynamic super and static super.

For dynamic super, a super lookup would always begin with the [[Prototype]] of the object where the currently
executing method had been retrieved as an own property. This presents a reasonable (perhaps the best) usage semantics
but presents a problem. How does a super lookup site within a method know where the containing method was
retrieved from. The containing method was looked prior to its invocation so the retrieval object is only naturally
known outside the invocation of the retrieved function. The retrieval object could be passed as an additional implicit
argument in addition to the implicit this argument. This would have to occur on every method invocation. A call site
doesn’t know whether or not the function it is calling actually needs to use super but any function might so it would
always be necessary to pass the implicit retrieval object argument. Considering that the most common argument list sizes
are zero and one and additional implicit argument on every call would be significant new overhead.

For the static super approach, the object to use as the starting point of a super lookup is statically associated with each
function. This is normally, the [[Prototype]] value of the object that contains the function as an own property (method)
value. Because, the super lookup object is statically associated with a function it does not need to be passed as an
implicit augment to every function. There is no additional per call overhead. However, unlike dynamic super,
additional mechanism is needed to establish the static super lookup association whenever a function that references super
is installed as a method and this may limit a function to being used as a method of only one object.

Most programming languages including dynamic languages use some form of static super in order to avoid the per
call overhead of dynamic super. This also appears to be the best approach for JavaScript. However, it is necessary to
provide’‘Object.defineMethod” and the related semantics in order to perform the necessary static super binding for
imperatively constructed objects.

harmony/object_initialiser_super.txt · Last modified: 2011/07/06 01:28 by allen

file:///F|/Common/EXCHANGE/Patrick/doku.php5.9.htm (5 of 6) [22.07.2011 16:54:14]

http://wiki.ecmascript.org/feed.php
http://creativecommons.org/licenses/by-nc-sa/2.0/
https://www.paypal.com/xclick/business=andi%40splitbrain.org&item_name=DokuWiki+Donation&no_shipping=1&no_note=1&tax=0¤cy_code=EUR&lc=US

harmony:object_initialiser_super [ES Wiki]

file:///F|/Common/EXCHANGE/Patrick/doku.php5.9.htm (6 of 6) [22.07.2011 16:54:14]

http://www.php.net/
http://validator.w3.org/check/referer
http://jigsaw.w3.org/css-validator/check/referer
http://wiki.splitbrain.org/wiki:dokuwiki

strawman:block_vs_object_literal [ES Wiki]

[[strawman:
block_vs_object_literal]]

ES
Wiki

Trace: » handler_access_to_proxy »
proxy_drop_receiver » specification_drafts » object_initialiser_super » block_vs_object_literal

Problem Statement

Both arrow function syntax and block lambda revival want, for different reasons, blocks and
object literals to be usable in the same context: as an expression-like body of an arrow
function, as the zero-argument form of a block-lambda.

Independent interest in statements as expressions comes up on es-discuss from time to time, e.
g. here.

let expressions proposed new syntax allowing explicit wrapping of statements to make them
expressions, but this strawman was deferred.

Blocks-as-expressions and object literals must have different evaluation semantics (blocks are
quoted, their evaluation is deferred until “invocation”; object literals evaluate eagerly). The
purpose of this strawman is to refactor the grammar to eliminate grammatical conflicts that
prevent treating blocks as expressions in JS today.

Grammar Changes

Block:
 { UnlabeledStatementFirstList? }
 { WellLabeledStatement StatementList? }

UnlabeledStatementFirstList:
 UnlabeledStatement
 UnlabeledStatementFirstList Statement

Statement:
 UnlabeledStatement
 LabeledStatement

UnlabeledStatement:
 VariableStatement
 EmptyStatement
 ExpressionStatement
 ContinueStatement
 ReturnStatement
 LabelUsingStatement

file:///F|/Common/EXCHANGE/Patrick/doku.php5.11a.htm (1 of 3) [22.07.2011 16:53:59]

http://wiki.ecmascript.org/doku.php?id=strawman:block_vs_object_literal&do=backlink
http://wiki.ecmascript.org/doku.php?id=strawman:block_vs_object_literal&do=backlink
http://wiki.ecmascript.org/doku.php?id=
http://wiki.ecmascript.org/doku.php?id=
http://wiki.ecmascript.org/doku.php?id=strawman:handler_access_to_proxy
http://wiki.ecmascript.org/doku.php?id=strawman:proxy_drop_receiver
http://wiki.ecmascript.org/doku.php?id=harmony:specification_drafts
http://wiki.ecmascript.org/doku.php?id=harmony:object_initialiser_super
http://wiki.ecmascript.org/doku.php?id=strawman:block_vs_object_literal
http://wiki.ecmascript.org/doku.php?id=strawman:arrow_function_syntax
http://wiki.ecmascript.org/doku.php?id=strawman:block_lambda_revival
https://mail.mozilla.org/pipermail/es-discuss/2011-June/014933.html
http://wiki.ecmascript.org/doku.php?id=strawman:let_expressions

strawman:block_vs_object_literal [ES Wiki]

 DebuggerStatement

LabelUsingStatement:
 Block
 IfStatement
 IterationStatement
 BreakStatement
 WithStatement
 SwitchStatement
 ThrowStatement
 TryStatement

A LabelUsingStatement is a statement that might possibly use a label in ES3-5 but not in any
ES extended to support blocks-as-expressions or block-lambdas. For maximum backward
compatibility, LabeledStatement (spelled LabelledStatement in ECMA-262) remains the same,
and WellLabeledStatement restricts the statement after one or more labels to be a
LabelUsingStatement.

LabeledStatement:
 Identifier : Statement

WellLabeledStatement:
 Identifier : LabelUsingStatement
 Identifier : WellLabeledStatement

We retain the [lookahead �∉ {{, function}] restriction in ExpressionStatement. At the
start of a statement, { can be the start of a block only, never an object literal.

PrimaryExpression:
 ...
 BlockExpression

BlockExpression:
 { UnlabeledStatementFirstList }
 { WellLabeledStatement StatementList? }

PropertyAssignment:
 IdentifierName : AssignmentExpression
 StringLiteral : AssignmentExpression
 NumericLiteral : AssignmentExpression
 get PropertyName () { FunctionBody }
 set PropertyName (PropertySetParameterList) { FunctionBody }

PropertyName:

file:///F|/Common/EXCHANGE/Patrick/doku.php5.11a.htm (2 of 3) [22.07.2011 16:53:59]

http://wiki.ecmascript.org/doku.php?id=strawman:block_lambda_revival

strawman:block_vs_object_literal [ES Wiki]

 IdentifierName
 StringLiteral
 NumericLiteral

Thus non-empty blocks may be used as expressions without ambiguity. An empty pair of braces
{} other than at start of Statement is an ObjectLiteral. PropertyAssignment must inline-expand
PropertyName to avoid an LR(1) shift-reduce conflict with WellLabeledStatement.

Semantics

The refactored Block semantics are straightforward and backward-compatible. The semantics
for PrimaryExpression : BlockExpression depend on block lambda revival: a non-empty block
used as an expression is equivalent to a zero-parameter block-lambda.

Compatibility

This proposal is mostly backward-compatible. In particular, the “stray label” problem whereby

javascript:foo()

migrates from URL contexts (links, src attribute values, the browser’s address toolbar) into
script content, but not at the start of a block, continues to work. Note that such a “label” is not
used by the statement or expression to which it is affixed.

Useless labels are thus allowed other than at the start of a block (immediately after the { that
starts the block).

A block in JS today, or a block-lambda if that extension is supported, may be prefixed by a
label and actually use that label, e.g. via a break targeting that label. The grammar changes
above support such a label-using block(-lambda).

— Brendan Eich 2011/07/01 16:19

strawman/block_vs_object_literal.txt · Last modified: 2011/07/06 04:47 by brendan

file:///F|/Common/EXCHANGE/Patrick/doku.php5.11a.htm (3 of 3) [22.07.2011 16:53:59]

http://wiki.ecmascript.org/doku.php?id=strawman:block_lambda_revival
http://wiki.ecmascript.org/doku.php?id=strawman:block_lambda_revival
mailto:%26%23x62%3B%26%23x72%3B%26%23x65%3B%26%23x6e%3B%26%23x64%3B%26%23x61%3B%26%23x6e%3B%26%23x40%3B%26%23x6d%3B%26%23x6f%3B%26%23x7a%3B%26%23x69%3B%26%23x6c%3B%26%23x6c%3B%26%23x61%3B%26%23x2e%3B%26%23x6f%3B%26%23x72%3B%26%23x67%3B
http://wiki.ecmascript.org/feed.php
http://creativecommons.org/licenses/by-nc-sa/2.0/
https://www.paypal.com/xclick/business=andi%40splitbrain.org&item_name=DokuWiki+Donation&no_shipping=1&no_note=1&tax=0¤cy_code=EUR&lc=US
http://www.php.net/
http://validator.w3.org/check/referer
http://jigsaw.w3.org/css-validator/check/referer
http://wiki.splitbrain.org/wiki:dokuwiki

strawman:block_lambda_revival [ES Wiki]

[[strawman:
block_lambda_revival]]

ES
Wiki

Trace: » proxy_drop_receiver
» specification_drafts »

object_initialiser_super » block_vs_object_literal » block_lambda_revival

-Table of Contents

�❍ Prologue

�❍ Proposal

�❍ Syntax

�❍ Semantics

�❍ See Also

Prologue

As a mutually exclusive alternative to arrow function syntax, inspired by the
long es-discuss thread Allen's lambda syntax proposal and echoes and
followups since, here is a proposal for Tennent Correspondence Principle, AKA
“Principle of Abstraction” full-strength blocks as better functions, both
syntactically and semantically.

An essential part of this proposal is a paren-free call syntax, but only for calls bearing block arguments. A more general
paren_free call syntax could perhaps be separated and considered on its own, but I’m specializing and combining
proposals here to work through details holistically, and to emphasize that usability demands this syntax, based on
Smalltalk, Ruby, and E expert witness testimony.

Also, general paren-free call syntax poses parsing and compatibility challenges that add (I believe) much more
complexity than the paren-free block-argument-bearing call syntax proposed here.

— Brendan Eich 2011/05/20 21:52

Proposal

let empty = {||}; // empty block-lambda (note || not | |)

assert(empty() === undefined);
assert(typeof empty === "function"); // native and does implement [[Call]]
assert(empty.length === 0);

let identity = {|x| x}; // reformed completion is return value

assert(identity(42) === 42);
assert(identity.length === 1);

let a = [1, 2, 3, 4];
let b = a.map {|e| e * e} // paren-free call with block is
 // idiomatic control structure so
 // no semicolon at end

print(b); // [1, 4, 9, 16]

b = a.map {|e| // newline in block ok
 e * e * e} // newline after ends call

function find_first_odd(a) {
 a.forEach { |e, i|
 if (e & 1) return i; } // return from find_first_odd
 return -1;
}

file:///F|/Common/EXCHANGE/Patrick/doku.php5.11b.htm (1 of 8) [22.07.2011 16:53:58]

http://wiki.ecmascript.org/doku.php?id=strawman:block_lambda_revival&do=backlink
http://wiki.ecmascript.org/doku.php?id=strawman:block_lambda_revival&do=backlink
http://wiki.ecmascript.org/doku.php?id=
http://wiki.ecmascript.org/doku.php?id=
http://wiki.ecmascript.org/doku.php?id=strawman:proxy_drop_receiver
http://wiki.ecmascript.org/doku.php?id=harmony:specification_drafts
http://wiki.ecmascript.org/doku.php?id=harmony:object_initialiser_super
http://wiki.ecmascript.org/doku.php?id=strawman:block_vs_object_literal
http://wiki.ecmascript.org/doku.php?id=strawman:block_lambda_revival
javascript:toggleToc()
javascript:toggleToc()
javascript:toggleToc()
http://wiki.ecmascript.org/doku.php?id=strawman:arrow_function_syntax
https://mail.mozilla.org/listinfo/es-discuss
https://mail.mozilla.org/pipermail/es-discuss/2008-November/008216.html
http://wiki.ecmascript.org/doku.php?id=strawman:paren_free
mailto:%26%23x62%3B%26%23x72%3B%26%23x65%3B%26%23x6e%3B%26%23x64%3B%26%23x61%3B%26%23x6e%3B%26%23x40%3B%26%23x6d%3B%26%23x6f%3B%26%23x7a%3B%26%23x69%3B%26%23x6c%3B%26%23x6c%3B%26%23x61%3B%26%23x2e%3B%26%23x6f%3B%26%23x72%3B%26%23x67%3B

strawman:block_lambda_revival [ES Wiki]

function escape_return() {
 return {|e| return e};
}
b = escape_return();
try { b(42); } catch (e) {} // error, return from inactive function

function find_odds_in_arrays(list, // array of arrays
 skip) // if found, skip rest of current array
{
 let a = [];
 for (let i = 0; i < list.length; i++) {
 list[i].forEach {
 |e|
 if (e === skip) continue; // continue the for loop
 if (e & 1) a.push(e);
 }
 }
 return a;
}

function find_more_odds(list, stop) {
 let a = [];
 for (let i = 0; i < list.length; i++) {
 list[i].forEach {
 |e|
 if (e === stop) break; // break from the for loop
 if (e & 1) a.push(e);
 }
 }
 return a;
}

function arguments_in_block() {
 return {|| arguments};
}
b = arguments_in_block("hi", "there");
a = b();

print(Array.prototype.join.call(a)); // "hi","there"

function this_in_block() {
 return {|| this};
}
let o = {m: this_in_block};
let b = o.m();
let t = b();

assert(t === o);

let p = {};
let u = b.call(p);

assert(u === o);

/* Another block-lambdas example, courtesy Claus Reinke. */

file:///F|/Common/EXCHANGE/Patrick/doku.php5.11b.htm (2 of 8) [22.07.2011 16:53:58]

strawman:block_lambda_revival [ES Wiki]

function A() {
 let ret = {|x| return x; }; // Tennent "sequel"
 let inc = {|x| x+1 };
 let j = 0;
 while (true) {
 if (j > 3)
 ret(j); // leave function A
 j = inc(j);
 }
}

/* A Smalltalk ifTrue:ifFalse: homage requested by Peter Michaux. */

Object.defineProperty(
 Boolean.prototype,
 'ifElse',
 {
 value: function (ifTrue, ifFalse) {
 return this ? ifTrue() : ifFalse();
 }
 }
);

print(false.ifElse {|| "true"} {|| "false"}); // "false"
print(true.ifElse {|| "true"} {|| "false"}); // "true"

Syntax

Change all uses of AssignmentExpression outside of the Expression sub-grammar to InitialValue:

ElementList : // See 11.1.4
 Elision_opt InitialValue
 ElementList , Elision_opt InitialValue

PropertyAssignment : // See 11.1.5
 PropertyName : InitialValue

ArgumentList : // See 11.2
 InitialValue
 ArgumentList , InitialValue

Initialiser : // See 12.2
 = InitialValue

InitialiserNoIn : // See 12.2
 = InitialValueNoIn

InitialValue :
 AssignmentExpression
 CallWithBlockArguments

Statement :
 ...
 CallWithBlockArguments

file:///F|/Common/EXCHANGE/Patrick/doku.php5.11b.htm (3 of 8) [22.07.2011 16:53:58]

strawman:block_lambda_revival [ES Wiki]

 LeftHandSideExpression = CallWithBlockArguments
 LeftHandSideExpression AssignmentOperator CallWithBlockArguments

MemberExpression :
 ...
 BlockLambda

PrimaryExpression :
 ...
 (CallWithBlockArguments)

CallWithBlockArguments :
 CallExpression [no LineTerminator here] BlockArguments

BlockArguments :
 BlockLambda
 BlockArguments [no LineTerminator here] BlockLambda
 BlockArguments [no LineTerminator here] (InitialValue)

BlockLambda :
 { || StatementList_opt }
 { | BlockParameterList_opt | StatementList_opt }

BlockParameterList :
 BlockParameter
 BlockParameterList , BlockParameter

BlockParameter :
 Identifier BlockParameterInitialiser_opt
 Pattern BlockParameterInitialiser_opt

BlockParameterInitialiser :
 = BitwiseXorExpression

Notes:

●

The grammar above confines paren-free calls with block-lambda initial arguments and comma-free horizontal

spaces only between arguments to certain contexts:

�❍

Initial values, in object and array initialisers, argument lists, default parameter values, and variable declaration

initialiser.

�❍

Statements, either as the whole of an expression statement variant, or on the right of a left-hand side

expression followed by = or an AssignmentOperator.

●

The grammar changes show Pattern for destructuring, but I left out rest_parameters syntax for simplicity’s sake.

●

With GLR parsing for the spec grammar, we could consider, e.g. (x) {x} instead of {|x| x} with LineTerminator

file:///F|/Common/EXCHANGE/Patrick/doku.php5.11b.htm (4 of 8) [22.07.2011 16:53:58]

http://wiki.ecmascript.org/doku.php?id=harmony:destructuring
http://wiki.ecmascript.org/doku.php?id=harmony:rest_parameters

strawman:block_lambda_revival [ES Wiki]

excluded between parameters and body.

�❍

But this syntax does not look like a block, and it may lead to missing newline errors between calls and blocks

being parsed without error.

�❍

So this is a cautionary tale: we do not want something that looks like a function expression more than a block,

given TCP purity.

Semantics

8.6.2 Object Internal Properties and Methods

Table 9 – Internal Properties Only Defined for Some Objects

Internal Property Value Type Domain Description

[[Call]] SpecOp(any, a List of any) → any or
Reference or Completion

Executes code associated with the object.
Invoked via a function call expression. The
arguments to the SpecOp are this object and a
list containing the arguments passed to the
function call expression. Objects that implement
this internal method are callable. Only callable
objects that are host objects may return
Reference values. Only block-lambda objects
(11.1.7) may return Completion values (8.9)

11.1.7 Block Lambda

The production BlockLambda : { | BlockParameterListopt | StatementListopt } is evaluated as follows:

1.

Create a new native ECMAScript object and let B be that object.

2.

Set all the internal methods of B as described in 8.12.

3.

Set the [[Class]] internal property of B to “Function”.

4.

Set the [[Prototype]] internal property of B to the standard built-in Function prototype object as specified in

15.3.3.1.

5.

Set the [[Call]] internal property of B as described in 11.1.7.1.

6.

Set the [[Scope]] internal property of B to the LexicalEnvironment of the running execution context.

7.

Set the [[Context]] internal property of B to the running execution context.

8.

file:///F|/Common/EXCHANGE/Patrick/doku.php5.11b.htm (5 of 8) [22.07.2011 16:53:58]

strawman:block_lambda_revival [ES Wiki]

Let names be a List containing, in left to right textual order, the Strings corresponding to the identifiers of

BlockParameterList. If no parameters are specified, let names be the empty list.

9.

Set the [[FormalParameters]] internal property of B to names.

10.

Set the [[Code]] internal property of B to StatementListopt. If there is no StatementList, set [[Code]] to an

EmptyStatement.

11.

Set the [[Extensible]] internal property of B to true.

12.

Let len be the number of formal parameters specified in BlockParameterList. If no parameters are specified, let len

be 0.

13.

Call the [[DefineOwnProperty]] internal method of B with arguments “length”, Property Descriptor

{[[Value]]: len, [[Writable]]: false, [[Enumerable]]: false, [[Configurable]]:

false}, and false.

14.

Return the block-lambda object B.

Block-lambda parameter lists should support everything in Harmony that one can do in function formal parameter lists:
parameter default values, rest parameters, and destructuring.

The BlockParameterList, BlockParameter, and BlockParameterInitialiser productions have straightforward semantics,
elided here mainly because I don’t want to duplicate all the existing FormalParameterList, etc. semantics.

11.1.7.1 [[Call]]

When the [[Call]] internal method for a block-lambda object B is called with a list of arguments, the following steps
are taken:

1.

Let funcCtx be the result of establishing a new execution context for function code using the value of B‘s

[[FormalParameters]] internal property, the passed arguments List args, and the this value given by the

ThisBinding component of the execution context in B‘s [[Context]] internal property.

2.

Let result be the result of evaluating the StatementList or EmptyStatement that is the value of B‘s [[Code]]

internal property.

3.

Exit the execution context funcCtx, restoring the previous execution context.

4.

If result.type is normal and result.value is empty then return (normal, undefined, empty).

5.

file:///F|/Common/EXCHANGE/Patrick/doku.php5.11b.htm (6 of 8) [22.07.2011 16:53:58]

http://wiki.ecmascript.org/doku.php?id=harmony:parameter_default_values
http://wiki.ecmascript.org/doku.php?id=harmony:rest_parameters
http://wiki.ecmascript.org/doku.php?id=harmony:destructuring

strawman:block_lambda_revival [ES Wiki]

Else if result.type is break, continue, or return and the execution context in B‘s [[Context]] internal property

has already exited, throw a TypeError exception.

6.

Else if result.type is break or continue and evaluation of the label-set result.target has already completed, throw a

TypeError exception.

7.

Else return the Completion value result.

TODO: forbid var in block-lambdas via early error (yeah!)

11.2.3 Function Calls

...

TODO: Process Completion return type

The production CallWithBlockArguments : CallExpression [no LineTerminator here] BlockArguments is evaluated
in exactly the same manner, except that BlockArguments is evaluated instead of Arguments in step 3.

(This paragraph goes just before the NOTE at the bottom of 11.2.3.)

11.2.4 Argument Lists

...

The production BlockArguments : BlockLambda is evaluated as follows:

1.

Let ref be the result of evaluating BlockLambda.

2.

Let arg be GetValue(ref).

3.

Return a List whose sole item is arg.

The production BlockArguments : BlockArguments [no LineTerminator here] BlockLambda is evaluated as
follows:

1.

Let precedingArgs be the result of evaluating BlockArguments.

2.

Let ref be the result of evaluating BlockLambda.

3.

Let arg be GetValue(ref).

4.

Return a List whose length is one greater than the length of precedingArgs and whose items are the items of

precedingArgs, in order, followed at the end by arg which is the last item of the new list.

file:///F|/Common/EXCHANGE/Patrick/doku.php5.11b.htm (7 of 8) [22.07.2011 16:53:58]

strawman:block_lambda_revival [ES Wiki]

The production BlockArguments : BlockArguments [no LineTerminator here] (InitialValue) is evaluated in
exactly the same manner, except that InitialValue is evaluated instead of BlockLambda in step 2.

12.7 The continue Statement

The verbiage about “(but not crossing function boundaries)” should be clarified to exclude block-lambda boundaries,
which are treated like Block boundaries.

12.8 The break Statement

The verbiage about “(but not crossing function boundaries)” should be clarified to exclude block-lambda boundaries,
which are treated like Block boundaries.

12.9 The return Statement

The verbiage about “A return statement causes a function to cease execution and return a value to the caller” should be
clarified to include return in block-lambda attempting to exit the nearest enclosing FunctionBody.

Notes:

●

completion reform should be considered since the completion value is the return value for block lambdas.

●

Existing semantic early error checks on label use, break outside of switch and loop, etc. work as before, but

cross the block-lambda boundary.

●

The runtime semantics for block-lambda [[Call]] must handle return from an outer function activation that

has already returned.

See Also

●

arrow function syntax, an alternative considering only syntax, without new semantics

●

Allen's "Comments on Smalltalk block closure designs, part 1"

strawman/block_lambda_revival.txt · Last modified: 2011/06/05 19:31 by brendan

file:///F|/Common/EXCHANGE/Patrick/doku.php5.11b.htm (8 of 8) [22.07.2011 16:53:58]

http://wiki.ecmascript.org/doku.php?id=strawman:completion_reform
http://wiki.ecmascript.org/doku.php?id=strawman:arrow_function_syntax
http://lists.squeakfoundation.org/pipermail/squeak-dev/2001-April/008237.html
http://wiki.ecmascript.org/feed.php
http://creativecommons.org/licenses/by-nc-sa/2.0/
https://www.paypal.com/xclick/business=andi%40splitbrain.org&item_name=DokuWiki+Donation&no_shipping=1&no_note=1&tax=0¤cy_code=EUR&lc=US
http://www.php.net/
http://validator.w3.org/check/referer
http://jigsaw.w3.org/css-validator/check/referer
http://wiki.splitbrain.org/wiki:dokuwiki

strawman:arrow_function_syntax [ES Wiki]

[[strawman:
arrow_function_syntax]]

ES
Wiki

Trace: » specification_drafts »
object_initialiser_super »

block_vs_object_literal » block_lambda_revival » arrow_function_syntax

Proposal

// Empty arrow function is minimal-length
let empty = ->;

// Expression bodies needs no parentheses or braces
let identity = (x) -> x;

// Fix: object initialiser need not be parenthesized, see Grammar Changes
let key_maker = (val) -> {key: val};

// Nullary arrow function starts with arrow (cannot begin statement)
let nullary = -> preamble + ': ' + body;

// No need for parens even for lower-precedence expression body
let square = (x) -> x * x;

// Statement body needs braces, must use 'return' explicitly if not void
let oddArray = [];
array.forEach((v, i) -> { if (i & 1) oddArray[i >>> 1] = v; });

// Use # to freeze and join to nearest relevant closure
function return_pure() {
 return #(a) -> a * a;
}

let p = return_pure(),
 q = return_pure();
assert(p === q);

function check_frozen(o) {
 try {
 o.x = "expando";
 assert(! "reached");
 } catch (e) {
 // e is something like "TypeError: o is not extensible"
 assert(e.name == "TypeError");
 }
}

check_frozen(p);

function partial_mul(a) {
 return #(b) -> a * b;
}

let x = partial_mul(3),
 y = partial_mul(4),
 z = partial_mul(3);

assert(x !== y);

file:///F|/Common/EXCHANGE/Patrick/doku.php5.11c.htm (1 of 5) [22.07.2011 16:54:07]

http://wiki.ecmascript.org/doku.php?id=strawman:arrow_function_syntax&do=backlink
http://wiki.ecmascript.org/doku.php?id=strawman:arrow_function_syntax&do=backlink
http://wiki.ecmascript.org/doku.php?id=
http://wiki.ecmascript.org/doku.php?id=
http://wiki.ecmascript.org/doku.php?id=harmony:specification_drafts
http://wiki.ecmascript.org/doku.php?id=harmony:object_initialiser_super
http://wiki.ecmascript.org/doku.php?id=strawman:block_vs_object_literal
http://wiki.ecmascript.org/doku.php?id=strawman:block_lambda_revival
http://wiki.ecmascript.org/doku.php?id=strawman:arrow_function_syntax

strawman:arrow_function_syntax [ES Wiki]

assert(x !== z);
assert(y !== z);

check_frozen(x);
check_frozen(y);
check_frozen(z);

// Use ''=>'' (fat arrow) for lexical ''this'', as in CoffeeScript
// ("fat" is apt because this form costs more than ''->'')
const obj = {
 method: function () {
 return => this;
 }
};
assert(obj.method()() === obj);

// And *only* lexical ''this'' for => functions
let fake = {steal: obj.method()};
assert(fake.steal() === obj);

// But ''function'' still has dynamic ''this''
let real = {borrow: obj.method};
assert(real.borrow()() === real);

// Recap:
// use ''->'' instead of ''function'' for lighter syntax
// use ''=>'' instead of calling bind or writing a closure
const obj2 = {
 method: () -> (=> this)
};
assert(obj2.method()() === obj2);

let fake2 = {steal: obj2.method()};
assert(fake2.steal() === obj2);

let real2 = {borrow: obj2.method};
assert(real2.method()() === real2);

// An explicit ''this'' parameter can have an initializer
// Semantics are as in the "parameter default values" Harmony proposal
const self = {c: 0};
const self_bound = (this = self, a, b) -> {
 this.c = a * b;
};
self_bound(2, 3);
assert(self.c === 6);

const other = {c: "not set"};
self_bound.call(other, 4, 5);
assert(other.c === "not set");
assert(self.c === 20);

// A special form based on the default operator proposal
const self_default_bound = (this ??= self, a, b) -> {
 this.c = a * b;
}
self_default_bound(6, 7);
assert(self.c === 42);

self_default_bound.call(other, 8, 9);
assert(other.c === 72);

file:///F|/Common/EXCHANGE/Patrick/doku.php5.11c.htm (2 of 5) [22.07.2011 16:54:07]

strawman:arrow_function_syntax [ES Wiki]

assert(self.c === 42);

// ''=>'' is short for ''->'' with an explicit ''this'' parameter
function outer() {
 const bound = () => this;
 const bound2 = (this = this) -> this; // initializer has outer ''this'' in scope
 const unbound = () -> this;
 const unbound2 = (this) -> this;

 return [bound, bound2, unbound, unbound2];
}

const t = {},
 u = {};

const v = outer.call(t);

assert(v[0]() === t);
assert(v[1]() === t);
assert(v[2]() === t);
assert(v[3]() === t);

assert(v[0].call(u) === t);
assert(v[1].call(u) === t);
assert(v[2].call(u) === u);
assert(v[3].call(u) === u);

// Object intialiser shorthand: "method" = function-valued property with dynamic ''this''
const obj = {
 method() -> {
 return => this;
 }
};

// Name binding forms hoist to body (var) or block (let, const) top
var warmer(a) -> {...};
let warm(b) -> {...};
const colder(c) -> {...};
const #coldest(d) -> {...};

Grammar Changes

Extend AssignmentExpression and define ArrowFunctionExpression:

AssignmentExpression :
 ArrowFunctionExpression
 ...

ArrowFunctionExpression :
 ArrowFormalParameters_opt Arrow AssignmentExpression
 ArrowFormalParameters_opt Arrow ArrowBodyBlock_opt

ArrowFormalParameters :
 (FormalParameterList_opt)
 (this Initialiser_opt)
 (this Initialiser_opt , FormalParameterList)

Arrow : one of -> or =>

file:///F|/Common/EXCHANGE/Patrick/doku.php5.11c.htm (3 of 5) [22.07.2011 16:54:07]

strawman:arrow_function_syntax [ES Wiki]

The ArrowFormalParameters production requires GLR parsing or equivalent to disambiguate against the other right-hand
sides of AssignmentExpression. For an LR(1) grammar, we can use:

ArrowFormalParameters :
 (Expression_opt)
 (this Initialiser_opt)
 (this Initialiser_opt , Expression)

and require that Expression reductions on the right-hand sides match FormalParameterList.

This works because Expression is a cover grammar for FormalParameterList, with Identifier primary expressions
covering formal parameter names, array and object literals for destructuring, assignment for parameter default values,
and spread for rest parameters.

This cover grammar approach may be future-hostile without, e.g., extending guards to be legal in expressions.

To enable unparenthesized ObjectLiteral expressions as bodies of arrow functions, without ambiguity with Block bodies,
define ArrowBodyBlock as follows:

ArrowBodyBlock :

 { [lookahead(2) �∉ { Identifier ":", "get" Identifier, "set" Identifier }]
StatementList }

where lookahead(2) peeks ahead two tokens, correctly lexing / after Identifier as a division operator. ArrowBodyBlock is
a non-empty block not starting with a label, to parse {} as an empty object initialiser produced from
the AssignmentExpression body form. The concise object literal extensions proposal (exact still being hammered out)
wants further lookahead restrictions.

These changes are intended to be backward-compatible: existing JS parses as before, with the same semantics. New opt-
in Harmony JS may use arrow functions where allowed.

Rationale

TODO

Notes

●

Hard to beat C# and CoffeeScript here (but no unparenthesized single-parameter form as in C#)

�❍

TC39 should embrace, clean-up, and extend rather than re-invent or compete with de-facto and nearby de-jure standards

�❍

It’s hard to say what is a precedent, but CoffeeScript is “just syntax”, no elaborate compilation – JS runtime semantics

●

Main worry about -> was top-down parsing burden but olliej and I agree it’s tolerable (comparable to destructuring and top-

down LeftHandExpression parsing)

●

-> parses as if it were a low-precedence operator joining a restricted comma expression (implicitly quoted) to a body

●

() for nullary case is optional, to reduce boilerplate punctuation, after CoffeeScript and similar to shorter function syntax

file:///F|/Common/EXCHANGE/Patrick/doku.php5.11c.htm (4 of 5) [22.07.2011 16:54:07]

http://wiki.ecmascript.org/doku.php?id=harmony:destructuring
http://wiki.ecmascript.org/doku.php?id=harmony:parameter_default_values
http://wiki.ecmascript.org/doku.php?id=harmony:spread
http://wiki.ecmascript.org/doku.php?id=harmony:rest_parameters
http://wiki.ecmascript.org/doku.php?id=strawman:guards
http://wiki.ecmascript.org/doku.php?id=harmony:concise_object_literal_extensions
http://wiki.ecmascript.org/doku.php?id=strawman:shorter_function_syntax

strawman:arrow_function_syntax [ES Wiki]

●

opt-in addresses Alex’s good point that mutability should not go out window along with verbosity of function

�❍

Hash still consistently implies frozen value-type-ness, as in records and tuples

●

Probably should allow (this ?? self) as a shorthand for (this ??= self)...

●

Dependencies (some are optional pieces)

�❍

parameter default values

�❍

const functions for the joining algorithm

�❍

default_operator

�❍

soft_bind – the (this ?? self) syntax addresses this case, IINM

— Brendan Eich 2011/05/02 23:49

See Also

block lambda revival, an alternative adding new semantics, not only new syntax

strawman/arrow_function_syntax.txt · Last modified: 2011/06/05 18:18 by brendan

file:///F|/Common/EXCHANGE/Patrick/doku.php5.11c.htm (5 of 5) [22.07.2011 16:54:07]

http://wiki.ecmascript.org/doku.php?id=strawman:records
http://wiki.ecmascript.org/doku.php?id=strawman:tuples
http://wiki.ecmascript.org/doku.php?id=harmony:parameter_default_values
http://wiki.ecmascript.org/doku.php?id=strawman:const_functions
http://wiki.ecmascript.org/doku.php?id=strawman:default_operator
http://wiki.ecmascript.org/doku.php?id=strawman:soft_bind
mailto:%26%23x62%3B%26%23x72%3B%26%23x65%3B%26%23x6e%3B%26%23x64%3B%26%23x61%3B%26%23x6e%3B%26%23x40%3B%26%23x6d%3B%26%23x6f%3B%26%23x7a%3B%26%23x69%3B%26%23x6c%3B%26%23x6c%3B%26%23x61%3B%26%23x2e%3B%26%23x6f%3B%26%23x72%3B%26%23x67%3B
http://wiki.ecmascript.org/doku.php?id=strawman:block_lambda_revival
http://wiki.ecmascript.org/feed.php
http://creativecommons.org/licenses/by-nc-sa/2.0/
https://www.paypal.com/xclick/business=andi%40splitbrain.org&item_name=DokuWiki+Donation&no_shipping=1&no_note=1&tax=0¤cy_code=EUR&lc=US
http://www.php.net/
http://validator.w3.org/check/referer
http://jigsaw.w3.org/css-validator/check/referer
http://wiki.splitbrain.org/wiki:dokuwiki

strawman:paren_free [ES Wiki]

[[strawman:
paren_free]]

ES
Wiki

Trace: » object_initialiser_super »
block_vs_object_literal » block_lambda_revival » arrow_function_syntax » paren_free

Motivation

Syntax matters, keystrokes count. Both readability and writability can be impaired by too much
punctuation and unnecessary bracketing. Some languages even prefer indentation-based block
structure to bracing, and their fans report read and write (including keystroke and RSI
avoidance) wins.

JS has a number of statement forms with mandatory parentheses around the head. Can we
relax syntax without introducing ambiguity or bad human read/write factors? This proposal
makes an attempt, first described here and prototyped in Narcissus via the –paren-free option.

A specific motivation for this proposal is the irredeemable for-in loop, whose semantics have
been underspecified forever, with ongoing divergence among implementations, and where
array comprehensions and generator expressions do not want parenthesized for-in heads,
yet where users do want better semantics for all for-in variants.

History

JS derives from Java from C++ from C (via early C and B), from BCPL. BCPL had paren-free
if, etc., heads disambiguated via do reserved words to separate an expression consequent,
avoiding ambiguity.

JS style guides often favor mandatory bracing of if consequents and other sub-statement
bodies, which also suffice to avoid ambiguity about where the condition or head expression
ends and the dependent sub-statement starts.

Proposal

Consider ES5 12.5, “The if Statement”, modified as follows:

IfStatement :
 if Expression SubStatement else SubStatement
 if Expression SubStatement
 if (Expression) OtherStatement else Statement
 if (Expression) OtherStatement

Where SubStatement is

file:///F|/Common/EXCHANGE/Patrick/doku.php5.11d.htm (1 of 3) [22.07.2011 16:54:00]

http://wiki.ecmascript.org/doku.php?id=strawman:paren_free&do=backlink
http://wiki.ecmascript.org/doku.php?id=strawman:paren_free&do=backlink
http://wiki.ecmascript.org/doku.php?id=
http://wiki.ecmascript.org/doku.php?id=
http://wiki.ecmascript.org/doku.php?id=harmony:object_initialiser_super
http://wiki.ecmascript.org/doku.php?id=strawman:block_vs_object_literal
http://wiki.ecmascript.org/doku.php?id=strawman:block_lambda_revival
http://wiki.ecmascript.org/doku.php?id=strawman:arrow_function_syntax
http://wiki.ecmascript.org/doku.php?id=strawman:paren_free
http://brendaneich.com/2010/11/paren-free/
https://github.com/mozilla/narcissus/
http://wiki.ecmascript.org/doku.php?id=strawman:array_comprehensions
http://wiki.ecmascript.org/doku.php?id=strawman:generator_expressions
http://plan9.bell-labs.com/who/dmr/chist.html
http://cm.bell-labs.com/cm/cs/who/dmr/bcpl.html

strawman:paren_free [ES Wiki]

SubStatement :
 Block
 KeywordStatement

and KeywordStatement is

KeywordStatement :
 IfStatement
 IterationStatement
 ContinueStatement
 BreakStatement
 ReturnStatement
 SwitchStatement
 ThrowStatement
 TryStatement
 DebuggerStatement

This leaves

OtherStatement :
 EmptyStatement
 ExpressionStatement
 VariableStatement
 LabelledStatement

and

Statement :
 Block
 KeywordStatement
 OtherStatement

The same pattern applied to IfStatement above applies to IterationStatement,
SwitchStatement, and catch clauses in TryStatement – except catch blocks must still be
braced (as with try and finally since their introduction in ES3), so no OtherStatement
catch body production.

TODO: expand these all into a complete sub-grammar.

We allow single sub-statements starting with unconditionally reserved keywords to be unbraced
after a paren-free head, since the keyword acts as BCPL’s DO separator to disambiguate head
from body expression.

file:///F|/Common/EXCHANGE/Patrick/doku.php5.11d.htm (2 of 3) [22.07.2011 16:54:00]

strawman:paren_free [ES Wiki]

Notice how this relaxation from requiring braces around the body allows if-else-if chains
(idiomatic since K&R C and unproblematic as far as dangling-else goes) without a special case:

 if x < y {
 } else if x < z {
 } else if x < w {
 } else {
 }

instead of the perfidious rightward drift of:

 if x < y {
 } else {
 if x < z {
 } else {
 if x < w {
 } else {
 }
 }
 }

This keyword-or-brace refinement also matches some popular style guides that recommend
braced bodies except where the body is a short keyword-prefixed statement starting with
break, continue, throw, or return.

Note that the paren-free if-else production requires the else clause to be a SubStatement.
You cannot write if x > y { alert(”win”); } else alert(”lose”).

For backward compatibility, we support parenthesized heads with any sub-statement. To
preserve the LR(1) grammar this requires factoring out OtherStatement.

Thus, this proposal is intended to make no backward-incompatible syntactic or semantic
changes to ES5. “Paren-free” is now purely a relaxation of syntax rules.

— Brendan Eich 2011/06/05 21:06

strawman/paren_free.txt · Last modified: 2011/06/05 21:07 by brendan

file:///F|/Common/EXCHANGE/Patrick/doku.php5.11d.htm (3 of 3) [22.07.2011 16:54:00]

mailto:%26%23x62%3B%26%23x72%3B%26%23x65%3B%26%23x6e%3B%26%23x64%3B%26%23x61%3B%26%23x6e%3B%26%23x40%3B%26%23x6d%3B%26%23x6f%3B%26%23x7a%3B%26%23x69%3B%26%23x6c%3B%26%23x6c%3B%26%23x61%3B%26%23x2e%3B%26%23x6f%3B%26%23x72%3B%26%23x67%3B
http://wiki.ecmascript.org/feed.php
http://creativecommons.org/licenses/by-nc-sa/2.0/
https://www.paypal.com/xclick/business=andi%40splitbrain.org&item_name=DokuWiki+Donation&no_shipping=1&no_note=1&tax=0¤cy_code=EUR&lc=US
http://www.php.net/
http://validator.w3.org/check/referer
http://jigsaw.w3.org/css-validator/check/referer
http://wiki.splitbrain.org/wiki:dokuwiki

harmony:classes [ES Wiki]

[[harmony:
classes]]

ES
Wiki

Trace: » block_vs_object_literal
» block_lambda_revival »

arrow_function_syntax » paren_free » classes

-Table of Contents

● Classes

�❍ Motivation

�❍ The Proposal in a Nutshell

■ Class Body

■ Member Modifiers

�❍ The Proposal In Full

■ Class Declarations and

Expressions

■ Grammar

■ Class Adjective

■ const

■ Grammar

■ Class Members

■ Grammar

�❍ Refinements

■ Inheritance

■ Grammar

■ Constructor Chaining

■ Grammar

■ Member Delegation

■ Grammar

■ Private Instance Members

■ Grammar

■ Semantics

�❍ Proposal History

�❍ Open Issues

�❍ See

Classes

Motivation

ECMAScript already has excellent features for defining abstractions for kinds of
things. The trinity of constructor functions, prototypes, and instances are more
than adequate for solving the problems that classes solve in other languages.
The intent of this strawman is not to change those semantics. Instead, it’s to
provide a terse and declarative surface for those semantics so that programmer
intent is expressed instead of the underlying imperative machinery.

For example, here is code from three.js (simplified and modified slightly), with
comments for the intent behind each line.

// define a new type SkinnedMesh and a constructor for
it
function SkinnedMesh(geometry, materials) {
 // call the superclass constructor
 THREE.Mesh.call(this, geometry, materials);

 // initialize instance properties
 this.identityMatrix = new THREE.Matrix4();
 this.bones = [];
 this.boneMatrices = [];
 ...
};

// inherit behavior from Mesh
SkinnedMesh.prototype = Object.create(THREE.Mesh.prototype);
SkinnedMesh.prototype.constructor = SkinnedMesh;

// define an overridden update() method
SkinnedMesh.prototype.update = function(camera) {
 ...
 // call base version of same method
 THREE.Mesh.prototype.update.call(this);
};

With class syntax, this becomes:

class SkinnedMesh extends THREE.Mesh {
 constructor(geometry, materials) {
 super(geometry, materials);

 public identityMatrix = new THREE.Matrix4();
 public bones = [];
 public boneMatrices = [];

file:///F|/Common/EXCHANGE/Patrick/doku.php5.12.htm (1 of 10) [22.07.2011 16:54:11]

http://wiki.ecmascript.org/doku.php?id=harmony:classes&do=backlink
http://wiki.ecmascript.org/doku.php?id=harmony:classes&do=backlink
http://wiki.ecmascript.org/doku.php?id=
http://wiki.ecmascript.org/doku.php?id=
http://wiki.ecmascript.org/doku.php?id=strawman:block_vs_object_literal
http://wiki.ecmascript.org/doku.php?id=strawman:block_lambda_revival
http://wiki.ecmascript.org/doku.php?id=strawman:arrow_function_syntax
http://wiki.ecmascript.org/doku.php?id=strawman:paren_free
http://wiki.ecmascript.org/doku.php?id=harmony:classes
javascript:toggleToc()
javascript:toggleToc()
javascript:toggleToc()
https://github.com/mrdoob/three.js/blob/master/src/objects/SkinnedMesh.js

harmony:classes [ES Wiki]

 ...
 }

 update(camera) {
 ...
 super.update();
 }
}

The Proposal in a Nutshell

Before we lay out the detailed grammar and semantics, we’ll show the core concepts by example. If there are places
where this section disagrees with later parts of the proposal, those parts take precedence.

Class Body

A class defines four objects and their properties: a constructor function, a prototype, a new instance, and a private
record bound to the new instance. The body of a class is a collection of member definitions. This example shows each
of the kinds of members that can be defined:

class Monster {
 // The contextual keyword "constructor" followed by an argument
 // list and a body defines the body of the class’s constructor
 // function. public and private declarations in the constructor
 // declare and initialize per-instance properties. Assignments
 // such as this.foo = bar; set public properties.
 constructor(name, health) {
 public name = name;
 private health = health;
 }

 // An identifier followed by an argument list and body defines a
 // method. A “method” here is simply a function property on some
 // object.
 attack(target) {
 log('The monster attacks ' + target);
 }

 // The contextual keyword "get" followed by an identifier and
 // a curly body defines a getter in the same way that "get"
 // defines one in an object literal.
 get isAlive() {
 return private(this).health > 0;
 }

 // Likewise, "set" can be used to define setters.
 set health(value) {
 if (value < 0) {
 throw new Error('Health must be non-negative.')
 }
 private(this).health = value
 }

 // An identifier optionally followed by "=" and an expression

file:///F|/Common/EXCHANGE/Patrick/doku.php5.12.htm (2 of 10) [22.07.2011 16:54:11]

harmony:classes [ES Wiki]

 // declares a prototype property and initializes it to the value
 // of that expression. "public" as a member modifier is allowed.
 numAttacks = 0;

 // The keyword "const" followed by an identifier and an
 // initializer declares a constant prototype property.
 const attackMessage = 'The monster hits you!';
}

Member Modifiers

Since a class body defines properties on two objects, syntax is needed to indicate on which object, constructor or
prototype, the member becomes a property. Keyword prefixes are used:

class Monster {
 // "static" places the property on the constructor.
 static allMonsters = [];

 // "public" declares on the prototype.
 public numAttacks = 0;
}

The Proposal In Full

Class Declarations and Expressions

A class is both a blueprint for describing instances and a factory to create them. Like functions, a class can either be a
declaration or an expression. Both define a constructor function to represent that class. We’ll refer to that function as
a “class”. We’ll use “class definition” to refer to either a class declaration or expression when the distinction doesn’t
matter.

Like a function declaration, a class declaration defines a variable with the class’s name whose declaration is hoisted to
the beginning of the surrounding scope. This supports mutual recursion among function and class declarations. Like a
function expression, a class expression defines an anonymous class if the identifier is omitted, or, if present, binds the
class name only in the scope seen by the class being defined.

When a scope (Block, FunctionBody, Program, etc.) is entered, the variables declared by all immediately contained
function and class declarations are bound to their respective functions and classes. Then all class bodies are executed
in textual order. A class body defines and initializes class-wide properties once when the class definition is evaluated.
This includes properties on the constructor function (the “class” itself) and on its prototype property. These
initializations happen in textual order.

Grammar

We extend the Declaration production from block scoped bindings to accept a ClassDeclaration. We extend
MemberExpression to accept a ClassExpression.

Declaration :
 ClassDeclaration
 ...
ClassDeclaration :
 class Identifier { ClassBody }

MemberExpression :
 ClassExpression

file:///F|/Common/EXCHANGE/Patrick/doku.php5.12.htm (3 of 10) [22.07.2011 16:54:11]

http://wiki.ecmascript.org/doku.php?id=harmony:block_scoped_bindings

harmony:classes [ES Wiki]

 ...
ClassExpression :
 class Identifier? { ClassBody }

ExpressionStatement :

 [lookahead �∉ { "{", "function", "class" }] Expression ;

ClassBody :
 ClassElement*

// "..." means existing members defined elsewhere

Class Adjective

A class definition may be prefixed with an adjective to clarify its role. Currently, the only adjective proposed is
const, but this set may expand.

const

A const class provides high integrity. Both the constructor function and prototype object are frozen and the
variable the class is bound to is const (non-assignable). Instances of the class are sealed.

In other words, given this definition:

const class Empty { }

The variable Empty is const, the constructor function it references is frozen, and Empty.prototype is frozen.
Calling new Empty() returns a sealed object.

Grammar

We revise the previous grammar to allow adjectives before class.

ClassDeclaration :
 ClassAdjective* class Identifier { ClassBody }

ClassExpression :
 ClassAdjective* class Identifier? { ClassBody }

ClassAdjective :
 const

ExpressionStatement :

 [lookahead �∉ { "{", "function", "class", ...ClassAdjective }] Expression ;

Class Members

The body of a class definition is a collection of members each of which becomes a property on one of the objects
associated with the class. By default, data properties define enumerable prototype properties while method members
define non-enumerable prototype properties. Members of non-const classes default to writable and configurable.
Member adjectives, if present, override the default attributes of the property being defined.

A class body may contain one constructor, whose body is the code run to initialize instances of the class. This
constructor code provides the behavior of the class’s internal [[Call]] and [[Construct]] methods.

file:///F|/Common/EXCHANGE/Patrick/doku.php5.12.htm (4 of 10) [22.07.2011 16:54:11]

http://wiki.ecmascript.org/doku.php?id=harmony:const

harmony:classes [ES Wiki]

Grammar

ClassElement :
 Constructor
 PrototypePropertyDefinition
 ClassPropertyDefinition

Constructor :
 constructor (FormalParameterList?) { ConstructorBody }

ConstructorBody :
 ConstructorElement*

ConstructorElement :
 Statement
 Declaration
 InstancePropertyDefinition

PrototypePropertyDefinition :
 ExportableDefinition
 public ExportableDefinition

ClassPropertyDefinition :
 static ExportableDefinition

InstancePropertyDefinition :
 public ExportableDefinition

ExportableDefinition :
 Declaration
 Identifier = Expression ; // data property
 Identifier (FormalParameterList?) { FunctionBody } // method
 get Identifier () { FuntionBody } // getter
 set Identifier (FormalParameter) { FunctionBody } // setter
 MemberAdjective ExportableDefinition

MemberAdjective :
 // attribute control

Refinements

We refine the above syntax with additional features until we reach a complete, usable class proposal.

Inheritance

We extend this class syntax to allow users to declaratively specify the prototypal inheritance they can already express
imperatively. There are two forms: extends and prototype, each followed by an expression. When this class’s
prototype object is created, either of those clauses will be used to determine which object it inherits from. The
expression following extends or prototype is evaluated. Then, if extends is used, the prototype property of
that object will be used. If prototype is used, the object itself will be. If neither clause is given, the class’s
prototype will inherit from Object.prototype.

By example:

file:///F|/Common/EXCHANGE/Patrick/doku.php5.12.htm (5 of 10) [22.07.2011 16:54:11]

harmony:classes [ES Wiki]

class Base {}
class Derived extends Base {}

Here, Derived.prototype will inherit from Base.prototype.

let parent = {};
class Derived prototype parent {}

Here, Derived.prototype will inherit directly from parent.

Grammar

We revise the previous grammar to allow these inheritance clauses.

ClassDeclaration :
 ClassAdjective* class Identifier Heritage? { ClassBody }

ClassExpression :
 ClassAdjective* class Identifier? Heritage? { ClassBody }

Heritage :
 extends MemberExpression
 prototype MemberExpression

Constructor Chaining

Building on inheritance, we provide a cleaner syntax for invoking the parent constructor in classes defined with an
extends clause. Within the body of the constructor, an expression super(x, y) calls the superclass’s [[Call]]
method with thisArg bound to this constructor’s this and the arguments x and y. In other words, super(x, y)
acts like Superclass.call(this, x, y), as if using the original binding of Function.prototype.call. A
call like this may appear anywhere within the constructor body, excluding nested functions and classes.

These semantics for constructor chaining preclude defining classes that inherit from various distinguished built-in
constructors, such as Date, Array, RegExp, Function, Error, etc, whose [[Construct]] ignores the normal object
passed in as the this-binding and instead creates a fresh specialized object. Similar problems occur for DOM
constructors such as HTMLElement. This strawman can be extended to handle such cases, but probably at the cost of
making classes something more than syntactic sugar for functions. We leave that to other strawmen to explore.

Grammar

To enable this, we add a production to CallExpression.

CallExpression :
 ...
 super Arguments

with a post-parsing early error if this production occurs outside a ConstructorBody.

Member Delegation

Similar to constructor chaining, we extend super to allow delegating to any inherited member when called from
within the body of a class. Within the class Derived, the expression super.member evaluates to a Reference with
base this and referenced name member, but whose [[GetValue]] will look up Derived.prototype.

file:///F|/Common/EXCHANGE/Patrick/doku.php5.12.htm (6 of 10) [22.07.2011 16:54:11]

harmony:classes [ES Wiki]

[[Prototype]].member. In other words, super.member(x, y) acts like Derived.prototype.
[[Prototype]].member.call(this, x, y), as if using the original binding of Function.prototype.
call. The super.member expression may not be used as a LeftHandSideExpression.

Grammar

To enable this, we add a new production to MemberExpression.

MemberExpression :
 super . IdentifierName
 ...

with a post-parsing early error if this occurs outside a class.

Private Instance Members

A requirement of this proposal is the ability to define private per-object state that meets the following requirements:

●

A usable syntax for defining and accessing private instance state from within methods of the class.

●

Information hiding to encourage decoupling for software engineering concerns.

●

Strong encapsulation in order to support defensiveness and security.

●

An efficient implementation. The private state should be allocated with the instance as part of a single allocation,

and with no undue burden on the garbage collector.

●

The ability to have private mutable state on publicly frozen objects.

Now that the private name objects has been accepted, a pattern composing private names with classes can satisfy
the above requirements.

Grammar

To enable this, we add a new production to CallExpression as a special form to retrieve the private variable
record:

CallExpression :
 ...
 private (AssignmentExpression)

ConstructorElement :
 ...
 PrivateVariableDefinition

PrivateVariableDefinition :
 private ExportableDefinition

file:///F|/Common/EXCHANGE/Patrick/doku.php5.12.htm (7 of 10) [22.07.2011 16:54:11]

http://wiki.ecmascript.org/doku.php?id=strawman:private_name_objects

harmony:classes [ES Wiki]

Semantics

The production PrivateVariableDeclaration : private ExportableDefinition is evaluated roughly as follows:

1.

If this object does not have a private variable record, create one.

2.

Let privRec = the private variable record of the this object.

3.

Let env = NewObjectEnvironment(privRec, null).

4.

Evaluate ExportableDefinition using env to bind a property in the private variable record.

More work is needed on this semantics, but a couple of intentional design points should be apparent:

●

the private variable record cannot be accessed by the programmer, therefore it can be fused with the instance

allocation.

●

Object.freeze on the instance of the class does not freeze the private variable record.

●

You cannot use the same name in the same class for a public instance property and private instance variable.

Proposal History

This is a fork of classes_with_trait_composition that revives the idea of declarative public property and private variable
syntax within the constructor body.

That strawman is a major revision of the earlier classes and traits strawman in order to reconcile
object_initialiser_extensions, especially obj_initialiser_class_abstraction and instance_variables. A prototype
implementation of an earlier version of this reconciled strawman is described at Traceur Classes and Traits.

The strawman as presented on this page no longer supports general trait composition, abstract classes, required
members, or multiple inheritance, as we felt that was premature to propose at the May 2011 meeting, and therefore
premature to propose for inclusion in the EcmaScript to follow ES5. Instead, we have extracted those elements into
trait_composition_for_classes, whose existence demonstrates that the single inheritance shown here does
straightforwardly generalize to support these extensions.

Open Issues

●

What are the semantics of a return within a constructor body?

●

Should we avoid private and possibly public proliferation by allowing either:

�❍

private: sections a la C++;

�❍

file:///F|/Common/EXCHANGE/Patrick/doku.php5.12.htm (8 of 10) [22.07.2011 16:54:11]

http://wiki.ecmascript.org/doku.php?id=strawman:classes_with_trait_composition
http://wiki.ecmascript.org/doku.php?id=strawman:classes_with_trait_composition&rev=1299750065
http://wiki.ecmascript.org/doku.php?id=strawman:object_initialiser_extensions
http://wiki.ecmascript.org/doku.php?id=strawman:obj_initialiser_class_abstraction
http://wiki.ecmascript.org/doku.php?id=strawman:instance_variables
http://code.google.com/p/traceur-compiler/wiki/LanguageFeatures#Classes
http://wiki.ecmascript.org/doku.php?id=strawman:trait_composition_for_classes

harmony:classes [ES Wiki]

private foo = 42, bar = “hi”; – i.e., multiple definitions after the prefix keyword. [RESOLVED to this,

update and remove]

●

One or two namespaces for public properties and private instance variables [RESOLVED two, Mark’s argument]

●

numAttacks = 0; without prefix public or proto or something looks too much like an assignment (misplaced)

[RESOLVED require public prefix]

●

Should private prototype properties based on private name objects be supported? [RESOLVED via private prefix]

●

private(this), e.g., is

�❍

unbearably verbose;

�❍

leaks an implementation detail.

●

Need concise attribute controls. [RESOLVED same as revised Allen basic object literal extensions proposal]

●

Want accessor “half-override”, e.g. get super set x.... [RESOLVED same as previous, see Allen’s proposal]

●

Are static methods inherited with this bound to the class receiver? See @wycats' CoffeeScript/Ruby example

See

●

Traceur Classes and Traits

●

Encapsulation and Inheritance in Object-Oriented Programming Languages: classic 1986 paper by Alan Snyder.

●

Classes as Sugar thread which starts with pointers to earlier threads.

●

Harmonious Classes: write-up of discussion to unify this and obj_initialiser_class_abstraction proposals.

Related and historical strawmen

●

object_initialiser_extensions, especially obj_initialiser_class_abstraction and instance_variables

●

classes as sugar

file:///F|/Common/EXCHANGE/Patrick/doku.php5.12.htm (9 of 10) [22.07.2011 16:54:11]

http://wiki.ecmascript.org/doku.php?id=harmony:private_name_objects
http://wiki.ecmascript.org/doku.php?id=harmony:basic_object_literal_extensions
https://gist.github.com/1006999
http://code.google.com/p/traceur-compiler/wiki/LanguageFeatures#Classes
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.17.1949
https://mail.mozilla.org/pipermail/es-discuss/2009-March/009115.html
https://docs.google.com/document/d/1gOFRSBOKtB8VjXC5LRhhNiGi1n1QQ6z1O6LyxjrOB3g/edit?hl=en_US
http://wiki.ecmascript.org/doku.php?id=strawman:obj_initialiser_class_abstraction
http://wiki.ecmascript.org/doku.php?id=strawman:object_initialiser_extensions
http://wiki.ecmascript.org/doku.php?id=strawman:obj_initialiser_class_abstraction
http://wiki.ecmascript.org/doku.php?id=strawman:instance_variables
http://wiki.ecmascript.org/doku.php?id=strawman:classes_as_sugar

harmony:classes [ES Wiki]

●

classes as inheritance sugar (not yet ready)

●

trait_composition_for_classes

●

classes_with_trait_composition

harmony/classes.txt · Last modified: 2011/06/09 01:17 by markm

file:///F|/Common/EXCHANGE/Patrick/doku.php5.12.htm (10 of 10) [22.07.2011 16:54:11]

http://wiki.ecmascript.org/doku.php?id=strawman:classes_as_inheritance_sugar
http://wiki.ecmascript.org/doku.php?id=strawman:trait_composition_for_classes
http://wiki.ecmascript.org/doku.php?id=strawman:classes_with_trait_composition
http://wiki.ecmascript.org/feed.php
http://creativecommons.org/licenses/by-nc-sa/2.0/
https://www.paypal.com/xclick/business=andi%40splitbrain.org&item_name=DokuWiki+Donation&no_shipping=1&no_note=1&tax=0¤cy_code=EUR&lc=US
http://www.php.net/
http://validator.w3.org/check/referer
http://jigsaw.w3.org/css-validator/check/referer
http://wiki.splitbrain.org/wiki:dokuwiki

harmony:generators [ES Wiki]

[[harmony:
generators]]

ES
Wiki

Trace: »
block_lambda_revival

» arrow_function_syntax » paren_free » classes » generators

-Table of Contents

● Overview

● Examples

● API

�❍ Generator objects

● Syntax

● Generator functions

�❍ Calling

�❍ Yielding

�❍ Delegating yield

�❍ Returning

● Generator methods

�❍ Method: next

�❍ Method: send

�❍ Method: throw

�❍ Method: close

● Generator objects

�❍ States

�❍ Internal method: send

�❍ Internal method: throw

�❍ Internal method: close

�❍ Resuming generators

● References

Overview
First-class coroutines, represented as objects encapsulating suspended
execution contexts (i.e., function activations). Prior art: Python, Icon, Lua,
Scheme, Smalltalk.

Examples
The “infinite” sequence of Fibonacci numbers (notwithstanding behavior
around 253):

function* fibonacci() {
 let [prev, curr] = [0, 1];
 for (;;) {
 [prev, curr] = [curr, prev + curr];
 yield curr;
 }
}

Generators can be iterated over in loops:

for (n of fibonacci()) {
 // truncate the sequence at 1000
 if (n > 1000)
 break;
 print(n);
}

Generators are iterators:

let seq = fibonacci();
print(seq.next()); // 1
print(seq.next()); // 2
print(seq.next()); // 3
print(seq.next()); // 5
print(seq.next()); // 8

API
See the “@iter” module in iterators.

file:///F|/Common/EXCHANGE/Patrick/doku.php5.13.htm (1 of 7) [22.07.2011 16:54:09]

http://wiki.ecmascript.org/doku.php?id=harmony:generators&do=backlink
http://wiki.ecmascript.org/doku.php?id=harmony:generators&do=backlink
http://wiki.ecmascript.org/doku.php?id=
http://wiki.ecmascript.org/doku.php?id=
http://wiki.ecmascript.org/doku.php?id=strawman:block_lambda_revival
http://wiki.ecmascript.org/doku.php?id=strawman:arrow_function_syntax
http://wiki.ecmascript.org/doku.php?id=strawman:paren_free
http://wiki.ecmascript.org/doku.php?id=harmony:classes
http://wiki.ecmascript.org/doku.php?id=harmony:generators
javascript:toggleToc()
javascript:toggleToc()
javascript:toggleToc()
http://wiki.ecmascript.org/doku.php?id=harmony:iterators

harmony:generators [ES Wiki]

Generator objects

Every generator object has the following internal properties:

●

[[Prototype]] : the original value of Object.prototype

●

[[Code]] : the code for the generator function body

●

[[ExecutionContext]] : either null or an execution context

●

[[Scope]] : the scope chain for the suspended execution context

●

[[Handler]] : a standard generator handler for performing iteration

●

[[State]] : “newborn”, “executing”, “suspended”, or “closed”

●

[[Send]] : see semantics below

●

[[Throw]] : see semantics below

●

[[Close]] : see semantics below

There are four function objects, send, next, throw, and close. Every generator object has four properties,
send, next, throw, and close, all respectively pointing to their corresponding function value. The functions’
behavior is specified below.

Syntax
The function syntax is extended to add an optional * token:

FunctionDeclaration:
 "function" "*"? Identifier "(" FormalParameterList? ")" "{" FunctionBody "}"

FunctionExpression:
 "function" "*"? Identifier? "(" FormalParameterList? ")" "{" FunctionBody "}"

A function with a * token is known as a generator function. The following two unary operators are only allowed in the
immediate body of a generator function (i.e., in the body but not nested inside another function):

AssignmentExpression:

file:///F|/Common/EXCHANGE/Patrick/doku.php5.13.htm (2 of 7) [22.07.2011 16:54:09]

harmony:generators [ES Wiki]

 ...
 YieldExpression

YieldExpression:
 "yield" "*"? AssignmentExpression

An early error is raised if a yield or yield* expression occurs in a non-generator function.

Generator functions
This section describes the semantics of generator functions.

Calling

Let f be a generator function. The semantics of a function call f(x1, ..., xn) is:

    Let E = a new VariableEnvironment record with mappings for x1 ... xn
    Let S = the current scope chain extended with E
    Let V = a new generator object with
        [[Scope]] = S
        [[Code]] = f.[[Code]]
        [[ExecutionContext]] = null
        [[State]] = “newborn”
        [[Handler]] = the standard generator handler
    Return V

Yielding

The semantics of evaluating an expression of the form yield e is:

    Let V ?= Evaluate(e)
    Let K = the current execution context
    Let O = K.currentGenerator
    O.[[ExecutionContext]] := K
    O.[[State]] := “suspended”
    Pop the current execution context
    Return (normal, V, null)

Delegating yield

The yield* operator delegates to another generator. This provides a convenient mechanism for composing
generators.

The expression yield* <<expr>> is equivalent to:

let (g = <<expr>>) {
 let received = void 0, send = true, result = void 0;
 try {
 while (true) {
 let next = send ? g.send(received) : g.throw(received);
 try {
 received = yield next;
 send = true;

file:///F|/Common/EXCHANGE/Patrick/doku.php5.13.htm (3 of 7) [22.07.2011 16:54:09]

harmony:generators [ES Wiki]

 } catch (e) {
 received = e;
 send = false;
 }
 }
 } catch (e) {
 if (!isStopIteration(e))
 throw e;
 result = e.value;
 } finally {
 try { g.close(); } catch (ignored) { }
 }
 result
}

This is similar to a for-in loop over the generator, except that it propagates exceptions thrown via the outer
generator’s throw method into the delegated generator.

Returning

The semantics of return e inside a generator function is:

    Let V ?= Evaluate(e)
    Let K = the current execution context
    Let O = K.currentGenerator
    O.[[State]] := “closed”
    Let R = a new object with
        [[Class]] = “StopIteration”
    R.value := V
    Throw R

See iterators for a discussion of StopIteration.

As in ordinary functions, return; is equivalent to return (void 0);, and if control falls off the end of a
generator function body, the generator function performs an implicit return;.

Generator methods

Method: next

The next function’s behavior is:

    If this is not a generator object, Throw Error
    Call this.[[Send]] with single argument undefined
    Return the result

Method: send

The send function’s behavior is:

    If this is not a generator object, Throw Error
    Call this.[[Send]] with the first argument
    Return the result

file:///F|/Common/EXCHANGE/Patrick/doku.php5.13.htm (4 of 7) [22.07.2011 16:54:09]

http://wiki.ecmascript.org/doku.php?id=harmony:iterators

harmony:generators [ES Wiki]

Method: throw

The throw function’s behavior is:

    If this is not a generator object, Throw Error
    Call this.[[Throw]] with the first argument
    Return the result

Method: close

The close function’s behavior is:

    If this is not a generator object, Throw Error
    Call this.[[Close]] with no arguments
    Return the result

Generator objects

States

A generator object can be in one of four states:

●

“newborn”: G.[[Code]] != null �∧ G.[[ExecutionContext]] = null

●

“executing”: G.[[Code]] = null �∧ G.[[ExecutionContext]] != null �∧ G.[[ExecutionContext]] is the current

execution context

●

“suspended”: G.[[Code]] = null �∧ G.[[ExecutionContext]] != null �∧ G.[[ExecutionContext]] is not the current

execution context

●

“closed”: G.[[Code]] = null �∧ G.[[ExecutionContext]] = null

It is never the case that G.[[Code]] != null �∧ G.[[ExecutionContext]] != null.

Internal method: send

G.[[Send]]

    Let State = G.[[State]]
    If State = “executing” Throw Error
    If State = “closed” Throw Error
    Let X be the first argument
    If State = “newborn”
        If X != undefined Throw TypeError
        Let K = a new execution context as for a function call
        K.currentGenerator := G
        K.scopeChain := G.[[Scope]]
        Push K onto the stack
        Return Execute(G.[[Code]])

file:///F|/Common/EXCHANGE/Patrick/doku.php5.13.htm (5 of 7) [22.07.2011 16:54:09]

harmony:generators [ES Wiki]

    G.[[State]] := “executing”
    Let Result = Resume(G.[[ExecutionContext]], normal, X)
    Return Result

Internal method: throw

G.[[Throw]]

    Let State = G.[[State]]
    If State = “executing” Throw Error
    If State = “closed” Throw Error
    Let X be the first argument
    If State = “newborn”
        G.[[State]] := “closed”
        G.[[Code]] := null
        Return (throw, X, null)
    G.[[State]] := “executing”
    Let Result = Resume(G.[[ExecutionContext]], throw, X)
    Return Result

Internal method: close

The close method terminates a suspended generator. This informs the generator to resume roughly as if via
return, running any active finally blocks first before completing.

G.[[Close]]

    Let State = G.[[State]]
    If State = “executing” Throw Error
    If State = “closed” Return undefined
    If State = “newborn”
        G.[[State]] := “closed”
        G.[[Code]] := null
        Return (normal, undefined, null)
    G.[[State]] := “executing”
    Let Result = Resume(G.[[ExecutionContext]], return, undefined)
    G.[[State]] := “closed”
    Return Result

Resuming generators

(This operation assumes that we re-specify expressions to have completion types just like statements.)

Operation Resume(K, completionType, V)

    Push K onto the execution context stack
    Let G = K.currentGenerator
    Set the current scope chain to G.[[Scope]]
    Continue executing K as if its last expression produced (completionType, V, null)

References

●

Generators in SpiderMonkey

●

PEP 255, “Simple generators”

file:///F|/Common/EXCHANGE/Patrick/doku.php5.13.htm (6 of 7) [22.07.2011 16:54:09]

https://developer.mozilla.org/en/new_in_javascript_1.7
http://www.python.org/dev/peps/pep-0255/

harmony:generators [ES Wiki]

●

PEP 380, “Syntax for delegating to a sub-generator”

●

PEP 3152, “Cofunctions”

harmony/generators.txt · Last modified: 2011/07/20 23:15 by dherman

file:///F|/Common/EXCHANGE/Patrick/doku.php5.13.htm (7 of 7) [22.07.2011 16:54:09]

http://www.python.org/dev/peps/pep-0380/
http://www.python.org/dev/peps/pep-3152/
http://wiki.ecmascript.org/feed.php
http://creativecommons.org/licenses/by-nc-sa/2.0/
https://www.paypal.com/xclick/business=andi%40splitbrain.org&item_name=DokuWiki+Donation&no_shipping=1&no_note=1&tax=0¤cy_code=EUR&lc=US
http://www.php.net/
http://validator.w3.org/check/referer
http://jigsaw.w3.org/css-validator/check/referer
http://wiki.splitbrain.org/wiki:dokuwiki

harmony:binary_data [ES Wiki]

[[harmony:
binary_data]]

ES
Wiki

Trace: » arrow_function_syntax »
paren_free » classes » generators

» binary_data

-Table of Contents

● Binary data

�❍ Goals

�❍ Examples

● Blocks: compact binary data

�❍ Block types

�❍ Block objects

● Numeric data

● Arrays

● Structs

● Block references

Binary data
See also:

●

binary data semantics

●

binary data discussion

Goals

Provide portable, memory-safe, efficient, and structured access to compact (i.e., contiguously allocated) binary data, as well
as an interface for external binary I/O facilities such as XMLHttpRequest, HTML5 File API, and WebGL.

Desiderata:

●

expressive and convenient way to create structured binary data

●

no new primitive (i.e., non-object) ECMAScript values

●

admit architecture-native internal representation while preserving portability:

�❍

hide struct layout/padding

�❍

hide endianness

�❍

prevent multiple interpretations of the same binary data structure at different types

●

convenient conversion to native ECMAScript values

●

reference semantics without changing ECMAScript evaluation model

●

familiar behavior by analogy to C

The design of this library allows implementations to represent allocated binary data in architecture-specific formats – in
particular, using the architecture’s native padding/alignment and endianness – without exposing these details to
ECMAScript. This allows for efficient implementation while avoiding cross-platform portability hazards.

file:///F|/Common/EXCHANGE/Patrick/doku.php5.14.htm (1 of 4) [22.07.2011 16:54:06]

http://wiki.ecmascript.org/doku.php?id=harmony:binary_data&do=backlink
http://wiki.ecmascript.org/doku.php?id=harmony:binary_data&do=backlink
http://wiki.ecmascript.org/doku.php?id=
http://wiki.ecmascript.org/doku.php?id=
http://wiki.ecmascript.org/doku.php?id=strawman:arrow_function_syntax
http://wiki.ecmascript.org/doku.php?id=strawman:paren_free
http://wiki.ecmascript.org/doku.php?id=harmony:classes
http://wiki.ecmascript.org/doku.php?id=harmony:generators
http://wiki.ecmascript.org/doku.php?id=harmony:binary_data
javascript:toggleToc()
javascript:toggleToc()
javascript:toggleToc()
http://wiki.ecmascript.org/doku.php?id=harmony:binary_data_semantics
http://wiki.ecmascript.org/doku.php?id=harmony:binary_data_discussion

harmony:binary_data [ES Wiki]

Examples

const Point2D = new StructType({ x: uint32, y: uint32 });
const Color = new StructType({ r: uint8, g: uint8, b: uint8 });
const Pixel = new StructType({ point: Point2D, color: Color });

const Triangle = new ArrayType(Pixel, 3);

let t = new Triangle([{ point: { x: 0, y: 0 }, color: { r: 255, g: 255, b: 255 } },
 { point: { x: 5, y: 5 }, color: { r: 128, g: 0, b: 0 } },
 { point: { x: 10, y: 0 }, color: { r: 0, g: 0, b: 128 } }]);
...

TODO: more examples

Blocks: compact binary data
This spec introduces an internal datatype called blocks, which intuitively represent contiguously-allocated binary data.
Blocks are not themselves ECMAScript values; they live in the program store (i.e., the heap). Blocks can be:

●

numbers of various common fixed-size machine types

●

arrays of fixed length

●

structs of fixed size, with ordered fields

Block types

Every block is associated with a fixed block type, which describes the permanent shape, size, and interpretation of the
block, somewhat like a runtime type tag. All references to a given block in the program store are associated with the same
block type. Consequently, implementations can allocate blocks as untagged memory buffers (e.g., raw C data structures)
without violating memory safety.

Block type objects have a bytes property, which reports the logical size of blocks of that type, in bytes. Note that the
bytes property does not expose information about the actual size of a block type, just the logical size of its components.
This avoids exposing architecture- and implementation-specific details like struct padding.

Block types also mediate conversion from ECMAScript values to raw block data. This is specified via two internal methods:

●

[[Convert]] converts an ECMAScript value to a block

●

[[Reify]] converts a block to an ECMAScript value

In the semantics, types are compared via an internal [[IsSame]] method. Types are compared similarly to their
corresponding C types: numeric and array types are compared structurally, whereas struct types are generative and
compared “nominally.” (More on this below.)

Block objects

The spec introduces a new object type called block objects, which encapsulate references to block data as ECMAScript
values. Reads and writes to the block data underlying the object are marshalled through the conversions specified by the

file:///F|/Common/EXCHANGE/Patrick/doku.php5.14.htm (2 of 4) [22.07.2011 16:54:06]

harmony:binary_data [ES Wiki]

block types.

Numeric data
Numeric data can be stored in blocks with any of the pre-defined block types:

var uint8, uint16, uint32 : BlockType
var int8, int16, int32 : BlockType
var float32, float64 : BlockType

Each of these types defines [[Reify]] and [[Convert]] internal methods that convert to and from (respectively)
ECMAScript values in a straightforward manner. For example, the ECMAScript value 17 converts to/from the uint32
value 17, and the ECMAScript value 300 fails to convert to a uint8 with a TypeError. See binary data semantics for details.

The numeric types can also be called as functions on ECMAScript values. This acts like a C cast, and uses a more
permissive casting algorithm, based on the C casting rules.

The numeric types cannot be used as constructors to instantiate block object; using a numeric type with new throws
an exception. (Objects have reference semantics, and numeric types should have value semantics.)

See binary data discussion for discussion of 64-bit integer types uint64 and int64.

Arrays
Array block types describe fixed-length sequences of block data of homogeneous block-type. Given a block type
object elementType and a non-negative integer length, it is possible to define a new array block-type object t using
the ArrayType constructor:

t = new ArrayType(elementType, length)

The [[Convert]] operation converts an array-like ECMAScript value to block data by recursively converting its elements
in order.

The [[Reify]] operation creates an array block object.

Given an array block-type object such as t, it is possible to construct new array blocks:

a = new t()
a = new t(val)

Elements of the array are accessible by getting or setting their index.

Structs
Struct block types describe fixed-length sequences of block data of heterogeneous block-types. Given an ECMAScript
object fields, it is possible to define a new struct type object t using the StructType constructor:

t = new StructType(fields)

The implementation enumerates the own-properties of fields (in the standard enumeration order) to create the
internal struct type descriptor.

The [[Convert]] operation converts an ECMAScript object to block data by reading each of the properties described by
the struct type and converting their values.

file:///F|/Common/EXCHANGE/Patrick/doku.php5.14.htm (3 of 4) [22.07.2011 16:54:06]

http://wiki.ecmascript.org/doku.php?id=harmony:binary_data_semantics
http://wiki.ecmascript.org/doku.php?id=harmony:binary_data_discussion

harmony:binary_data [ES Wiki]

The [[Reify]] operation creates a struct block object.

Given a struct block-type object such as t, it is possible to construct new struct blocks:

s = new t()

Each of the fields of the struct can be accessed or updated by name.

Block references
Struct and array blocks are encapsulated by objects. For some high-performance applications, it may be important to
avoid the extra allocation of objects to access components of potentially very large block data structures.

For this reason, the spec also exposes a somewhat lower-level operation on struct and array objects, which allows a
program to reuse a block object by updating its reference to point to a different block of the same block type. For example,
in an array a of structs of type T, a struct object s of type T can be updated to point to subsequent elements of a:

for (i = 0; i < a.length; i++) {
 s.updateRef(a, i);
 // ...
}

As a convenience, updateRef can take more than one index or field name to refer to deeply-nested sub-blocks:

s.updateRef(a, i, "foo", "bar");

This convenience avoids the allocation of intermediate block objects without the need for the program to pre-
allocate reference objects as “temporary pointers.”

Given a struct or array type t, it is possible to create a new reference object via t.ref(). The object is initially not
pointing to any block data, and its accessors and mutators throw exceptions until it is updated to refer to valid block data.

TODO: disallow updateRef on block objects that own their data?

harmony/binary_data.txt · Last modified: 2011/04/27 23:32 by brendan

file:///F|/Common/EXCHANGE/Patrick/doku.php5.14.htm (4 of 4) [22.07.2011 16:54:06]

http://wiki.ecmascript.org/feed.php
http://creativecommons.org/licenses/by-nc-sa/2.0/
https://www.paypal.com/xclick/business=andi%40splitbrain.org&item_name=DokuWiki+Donation&no_shipping=1&no_note=1&tax=0¤cy_code=EUR&lc=US
http://www.php.net/
http://validator.w3.org/check/referer
http://jigsaw.w3.org/css-validator/check/referer
http://wiki.splitbrain.org/wiki:dokuwiki

	Local Disk
	strawman:handler_access_to_proxy [ES Wiki]

	doku.php5.2.pdf
	Local Disk
	strawman:proxy_drop_receiver [ES Wiki]

	doku.php5.7.pdf
	Local Disk
	harmony:specification_drafts [ES Wiki]

	doku.php5.9.pdf
	Local Disk
	harmony:object_initialiser_super [ES Wiki]

	doku.php5.11a.pdf
	Local Disk
	strawman:block_vs_object_literal [ES Wiki]

	doku.php5.11b.pdf
	Local Disk
	strawman:block_lambda_revival [ES Wiki]

	doku.php5.11c.pdf
	Local Disk
	strawman:arrow_function_syntax [ES Wiki]

	doku.php5.11d.pdf
	Local Disk
	strawman:paren_free [ES Wiki]

	doku.php5.12.pdf
	Local Disk
	harmony:classes [ES Wiki]

	doku.php5.13.pdf
	Local Disk
	harmony:generators [ES Wiki]

	doku.php5.14.pdf
	Local Disk
	harmony:binary_data [ES Wiki]

	BNEGDOMFDDFNFNGKHLGPFCMHKFDFMIAI:
	form1:
	x:
	f1: edit
	f2:
	f3: strawman:handler_access_to_proxy

	f4:

	form2:
	x:
	f1: revisions
	f2: strawman:handler_access_to_proxy

	f3:

	form3:
	x:
	f1: recent
	f2:

	f3:

	form4:
	x:
	f1: search
	f2:

	f3:

	form5:
	x:
	f1: edit
	f2:
	f3: strawman:handler_access_to_proxy

	f4:

	form6:
	x:
	f1: revisions
	f2: strawman:handler_access_to_proxy

	f3:

	form7:
	x:
	f1: login
	f2: strawman:handler_access_to_proxy

	f3:

	form8:
	x:
	f1: index
	f2: strawman:handler_access_to_proxy

	f3:

	form9:
	f1:

	LMKFNCBOMPBNCIKEHHBBCFPMOACPAIAF:
	form1:
	x:
	f1: edit
	f2:
	f3: strawman:proxy_drop_receiver

	f4:

	form2:
	x:
	f1: revisions
	f2: strawman:proxy_drop_receiver

	f3:

	form3:
	x:
	f1: recent
	f2:

	f3:

	form4:
	x:
	f1: search
	f2:

	f3:

	form5:
	x:
	f1: edit
	f2:
	f3: strawman:proxy_drop_receiver

	f4:

	form6:
	x:
	f1: revisions
	f2: strawman:proxy_drop_receiver

	f3:

	form7:
	x:
	f1: login
	f2: strawman:proxy_drop_receiver

	f3:

	form8:
	x:
	f1: index
	f2: strawman:proxy_drop_receiver

	f3:

	form9:
	f1:

	NBOPJNFLELMGLHLCHFNNIKDPGCHMKKDC:
	form1:
	x:
	f1: edit
	f2:
	f3: harmony:specification_drafts

	f4:

	form2:
	x:
	f1: revisions
	f2: harmony:specification_drafts

	f3:

	form3:
	x:
	f1: recent
	f2:

	f3:

	form4:
	x:
	f1: search
	f2:

	f3:

	form5:
	x:
	f1: edit
	f2:
	f3: harmony:specification_drafts

	f4:

	form6:
	x:
	f1: revisions
	f2: harmony:specification_drafts

	f3:

	form7:
	x:
	f1: login
	f2: harmony:specification_drafts

	f3:

	form8:
	x:
	f1: index
	f2: harmony:specification_drafts

	f3:

	form9:
	f1:

	LHHINNJLHIDABKFEALDFMDHMIMMOKCNO:
	form1:
	x:
	f1: edit
	f2:
	f3: harmony:object_initialiser_super

	f4:

	form2:
	x:
	f1: revisions
	f2: harmony:object_initialiser_super

	f3:

	form3:
	x:
	f1: recent
	f2:

	f3:

	form4:
	x:
	f1: search
	f2:

	f3:

	form5:
	x:
	f1: edit
	f2:
	f3: harmony:object_initialiser_super

	f4:

	form6:
	x:
	f1: revisions
	f2: harmony:object_initialiser_super

	f3:

	form7:
	x:
	f1: login
	f2: harmony:object_initialiser_super

	f3:

	form8:
	x:
	f1: index
	f2: harmony:object_initialiser_super

	f3:

	form9:
	f1:

	LKIJLONJLLOGGKMHJOKCPKMMFNLBHBDA:
	form1:
	x:
	f1: edit
	f2:
	f3: strawman:block_vs_object_literal

	f4:

	form2:
	x:
	f1: revisions
	f2: strawman:block_vs_object_literal

	f3:

	form3:
	x:
	f1: recent
	f2:

	f3:

	form4:
	x:
	f1: search
	f2:

	f3:

	form5:
	x:
	f1: edit
	f2:
	f3: strawman:block_vs_object_literal

	f4:

	form6:
	x:
	f1: revisions
	f2: strawman:block_vs_object_literal

	f3:

	form7:
	x:
	f1: login
	f2: strawman:block_vs_object_literal

	f3:

	form8:
	x:
	f1: index
	f2: strawman:block_vs_object_literal

	f3:

	form9:
	f1:

	BDAHEBFMFMLPPOHEJPAPCLBNBIIMFMDALGNF:
	form1:
	x:
	f1: edit
	f2:
	f3: strawman:block_lambda_revival

	f4:

	form2:
	x:
	f1: revisions
	f2: strawman:block_lambda_revival

	f3:

	form3:
	x:
	f1: recent
	f2:

	f3:

	form4:
	x:
	f1: search
	f2:

	f3:

	form5:
	x:
	f1: edit
	f2:
	f3: strawman:block_lambda_revival

	f4:

	form6:
	x:
	f1: revisions
	f2: strawman:block_lambda_revival

	f3:

	form7:
	x:
	f1: login
	f2: strawman:block_lambda_revival

	f3:

	form8:
	x:
	f1: index
	f2: strawman:block_lambda_revival

	f3:

	form9:
	f1:

	OKMCOICGFDMIMKMHCCKAKKGHOOENBMLG:
	form1:
	x:
	f1: edit
	f2:
	f3: strawman:arrow_function_syntax

	f4:

	form2:
	x:
	f1: revisions
	f2: strawman:arrow_function_syntax

	f3:

	form3:
	x:
	f1: recent
	f2:

	f3:

	form4:
	x:
	f1: search
	f2:

	f3:

	form5:
	x:
	f1: edit
	f2:
	f3: strawman:arrow_function_syntax

	f4:

	form6:
	x:
	f1: revisions
	f2: strawman:arrow_function_syntax

	f3:

	form7:
	x:
	f1: login
	f2: strawman:arrow_function_syntax

	f3:

	form8:
	x:
	f1: index
	f2: strawman:arrow_function_syntax

	f3:

	form9:
	f1:

	PAALJLDOACAEFNEIKHJIECIDJJODPPPJ:
	form1:
	x:
	f1: edit
	f2:
	f3: strawman:paren_free

	f4:

	form2:
	x:
	f1: revisions
	f2: strawman:paren_free

	f3:

	form3:
	x:
	f1: recent
	f2:

	f3:

	form4:
	x:
	f1: search
	f2:

	f3:

	form5:
	x:
	f1: edit
	f2:
	f3: strawman:paren_free

	f4:

	form6:
	x:
	f1: revisions
	f2: strawman:paren_free

	f3:

	form7:
	x:
	f1: login
	f2: strawman:paren_free

	f3:

	form8:
	x:
	f1: index
	f2: strawman:paren_free

	f3:

	form9:
	f1:

	PKNBACNAIECFGBMBCCFMDAMMCAIFLONOLE:
	form1:
	x:
	f1: edit
	f2:
	f3: harmony:classes

	f4:

	form2:
	x:
	f1: revisions
	f2: harmony:classes

	f3:

	form3:
	x:
	f1: recent
	f2:

	f3:

	form4:
	x:
	f1: search
	f2:

	f3:

	form5:
	x:
	f1: edit
	f2:
	f3: harmony:classes

	f4:

	form6:
	x:
	f1: revisions
	f2: harmony:classes

	f3:

	form7:
	x:
	f1: login
	f2: harmony:classes

	f3:

	form8:
	x:
	f1: index
	f2: harmony:classes

	f3:

	form9:
	f1:

	OMOOFFEGEHGJPNGLFHLJAFPEIKAHDFKA:
	form1:
	x:
	f1: edit
	f2:
	f3: harmony:generators

	f4:

	form2:
	x:
	f1: revisions
	f2: harmony:generators

	f3:

	form3:
	x:
	f1: recent
	f2:

	f3:

	form4:
	x:
	f1: search
	f2:

	f3:

	form5:
	x:
	f1: edit
	f2:
	f3: harmony:generators

	f4:

	form6:
	x:
	f1: revisions
	f2: harmony:generators

	f3:

	form7:
	x:
	f1: login
	f2: harmony:generators

	f3:

	form8:
	x:
	f1: index
	f2: harmony:generators

	f3:

	form9:
	f1:

	DDJFPJHGHIBFNDFDBAHAECFNOOCIDPOH:
	form1:
	x:
	f1: edit
	f2:
	f3: harmony:binary_data

	f4:

	form2:
	x:
	f1: revisions
	f2: harmony:binary_data

	f3:

	form3:
	x:
	f1: recent
	f2:

	f3:

	form4:
	x:
	f1: search
	f2:

	f3:

	form5:
	x:
	f1: edit
	f2:
	f3: harmony:binary_data

	f4:

	form6:
	x:
	f1: revisions
	f2: harmony:binary_data

	f3:

	form7:
	x:
	f1: login
	f2: harmony:binary_data

	f3:

	form8:
	x:
	f1: index
	f2: harmony:binary_data

	f3:

	form9:
	f1:

