
 

Ecma International   Rue du Rhône 114   CH-1204 Geneva   T/F: +41 22 849 6000/01   www.ecma-international.org 
 
 

 

Minutes for the: 24th meeting of Ecma TC39  

held in: San Francisco, CA, USA 

on: 26-27 September 2011 

1 Opening, welcome and roll call  

1.1 Opening of the meeting (Mr. Neumann)  

The TC39 meeting (hosted by Mozilla in San Francisco, CA) was opened by Mr. Neumann, 
Chair of TC39 at approximately 10:15 AM on 26th September 2011 (TC39/2011/038 - Venue 
for the 24th meeting of TC39, San Francisco, CA, September 2011). 

It was noted that before the TC39 meeting, on the 17th of August 2011 the TC39 ad-hoc 
group on internationalization (i18n Ad Hoc group) has also met. The report of that meeting is 
given under 4.2 below. 

1.2 Introduction of attendees 

John Neumann – Ecma International  

Istvan Sebestyen - Ecma-International 

Alex Russell - Google  

Waldemar Horwat - Google 

Allen Wirfs-Brock - Mozilla 

Sam Tobin-Hochstadt - Northeastern University 

Douglas Crockford - Yahoo! 

Brendan Eich - Mozilla 

Mark Miller - Google 

Luke Hoban - Microsoft 

David Fugate – Microsoft 

Dave Herman - Mozilla 

Eric Arvidsson - Google 

Oliver Hunt - Apple 

Norbert Lindenberg - guest – no affiliation 

1.3 Host facilities, local logistics  

Dave Herman welcomed on behalf of Mozilla the delegates and provided logistical 
information. It was announced that Google, Mozilla and Ecma international would host a 
social event on September 26th evening. 

Ecma/TC39/2011/046 
Ecma/GA/2011/110 

(Rev. 2 – 16 November 2011) 

http://www.ecma-international.org/


 

2 

2 Adoption of the agenda (2011/039 Rev 1) 

Ecma/TC39/2011/039 Rev 1 contained the Agenda for the 24th meeting of TC39, San Francisco, 
September 2011. This was agreed. 

The relevant Ecma TC39 contributions for the meeting are the following: 

• Ecma/TC39/2011/037 Draft minutes of the 23rd meeting of TC39, Redmond, July 2011 

• Ecma/TC39/2011/038 Venue for the 24th meeting of TC39, San Francisco, September 
2011 

• Ecma/TC39/2011/039 Agenda for the 24th meeting of TC39, San Francisco, September 
2011 (Rev. 1) 

• Ecma/TC39/2011/040 Second draft Standard ECMA-262 6th edition, September 2011 

• Ecma/TC39/2011/041 1st draft Technical Report on Test262 prepared by David Fugate 
(Rev. 4) 

• Ecma/TC39/2011/042 Notes of the meeting of TC39 ad hoc group on Internationalization, 
17 August 2011 

• Ecma/TC39/2011/043 Status Report on test262 by David Fugate, September 2011 

• Ecma/TC39/2011/044 TC39 chairman's report to the CC, October 2011 

• Ecma/TC39/2011/045 Final draft Technical Report on Test262 

Other documents are mentioned via their URL to the ES Wiki. 

The more detailed technical notes by Mr. Horwat are attached to this report. 

3 Approval of minutes from July 2011 (2011/037) 

The minutes of the 23rd TC39 meeting in Redmond in July 2011 have been unanimously 
approved with no changes. 

4 Status Reports  

4.1 Report from Geneva 

Mr. Sebestyen gave a short report. Basically since the End of July Meeting in Redmond, 
WA not much has happened in Geneva, as it was holiday time.  

On the ECMAScript Trademark matters he said that it was on its way in Switzerland, the EU 
and USA. In Switzerland we have the mark, in the EU, US, Korea and Japan it is being 
processed. As soon as there is new information we will let TC39 know.  

Mr. Sebestyen points out that the internal Ecma TC39 documentation and archival is still 
not up to the requirements as they should be. The major technical contributions are being 
posted outside of Ecma (e.g. ES-Wiki), and its mirroring to the TC39 Ecma internal archive 
is not secured. For the past two TC39 meetings the Secretariat did not prepare the pdf 
document reflecting the momentarily situation of the external sites. We had some emails on 
requirements with Mr. Wirfs-Broch, but that was all. 

It was decided to do the following: 

• The Secretariat will get in static HTML format copies (snapshots) of the ES Wiki on a 
regular basis. David Fugave has volunteered to do it (maybe with some help within 
Mozilla). The requirement is that no special software should be needed to present the 
content.  



 

3 

• Also the “ES Discuss” list should be archived. Patrick Ch. should subscribe to it. “ES5 
Discuss” also exists (maintenance), and also a “Test262 discuss”. Then we will see 
how those “Discuss” lists can be archived.  

• Archival is needed from the practical point of view at least until possible patent issues 
may come up. This is about 20 years. 

It was also agreed that the TC39 RANDZ standardization goal should be put onto the TC39 
website, when the update is being done. 

Secretariat’s Note: In the October 2011 CC meeting Ms Valet-Harper brought up that in the 
recent draft minutes of the TC39 meeting it said in Ecma/TC39/2011/046 “Draft minutes of the 
24th meeting of TC39, San Francisco, September 2011 (Rev. 1)” that “it was also agreed that 
the TC39 RANDZ practice should be put onto the TC39 website, when the update is being 
done”. There was a discussion how this point should be formulated. The CC basically agreed 
that it was ok to state that the “TC has the intension (or goal) to develop a royalty free 
standard, such as for important web standards”, but of course no guarantee by Ecma can be 
given that this has been actually achieved. In other words the word “practice” should be 
avoided. The CC then requested that the new text should be first shown to the CC, before 
putting it up on the TC39 web page. As result of this “practice” in TC39/2011/046 rev2 was 
replaced by “standardization goal”.  

 

4.2 Report of the status for a Technical Report on 
interoperability/conformance tests  

4.2.1  Prototype W ebsi te  (http: / /test262.ecmascript.org  and  
http: / /test.w3.org/html/tests/reporting/report .htm  

Ecma/TC39/2011/043 Status Report on test262 by David Fugate, September 2011 
was given. Good progress, some bug removed, a bunch of new tests have been added. 
Microsoft and Google had a good co-operation on Test262. But there are some items still 
open, that are not covered in tests yet. 

The 1 page TR will be prepared for the December GA did not have the Ecma TR format. 
Correspondence took place between the Ecma Secretariat (Patrick) on the TR template 
and the Editor prepared the next draft.  

The goal is to finish the formatting and to put the draft on the Ecma private web site for 
approval in the December 2011 GA by October 8, 2011.  

But with the approval of the TR the work will continue and also ES6 Tests will be 
gradually added. 

4.3 Report from the ad hoc on Internationalization standard.  

4.3.1  Review of proposed draft s tandard  

4.3.2  Multi -system prototype testing  

4.3.3  Next steps  

On August 17, 2011 there was a meeting on internationalization. Norbert Lindenberg 
reported on it. The results of that meeting had been sent by Nebojša Ćirić – who could 
not be in this meeting – by email.  

The meeting notes of the TC39 internationalization ad-hoc meeting on August 17, 2011, 
are available here: 

The notes were primarily taken by Jungshik Shin, Google.  

Unfortunately the spec is not ready for a GA approval in December 2011. The group are 
still working on a draft document. The latest revision is available at: 

https://docs.google.com/document/pub?id=1rsUxJQ03Ql6o3bh6RN7J81dtYZXE7OVsdQB
w_h5ASnM 

http://test262.ecmascript.org/
http://test.w3.org/html/tests/reporting/report.htm
file:///C:/Users/Patrick/AppData/Local/Microsoft/Windows/Temporary%20Internet%20Files/Content.Outlook/LMCQSP1C/tc39-2011-042.doc
https://docs.google.com/document/pub?id=1rsUxJQ03Ql6o3bh6RN7J81dtYZXE7OVsdQBw_h5ASnM
https://docs.google.com/document/pub?id=1rsUxJQ03Ql6o3bh6RN7J81dtYZXE7OVsdQBw_h5ASnM


 

4 

Mark Miller and Allan Wirfs-Broch are already added as editors, but if anybody else 
wants to take a look or leave a comment I'll add them to the editor list (I'll need their email 
addresses). 

It was mentioned that additional testing was needed. The minutes of the August 17 
meeting will be added to this minutes.  

Next steps: 

In the TC39 meeting the following has been decided:  

Go for an Ecma General Assembly approval of the standard in June 2012. This delayed 
the original plan by about 6 months. 

An immediate fast-track submission to JTC 1/SC 22 is planned. 

4.4 Update of TC39 Web Page at Ecma home page  

It was decided to update the TC39 webpage. Mr. Neumann will send the update instructions 
to the Ecma Secretariat. But first he wants to know what has happened to his earlier update 
instructions (The Secretariat has checked this, and the earlier update instructions were 
apparently not received). 

4.5 Demo the ParallelArray (RiverTrail project name)  

5 Discussion of ES harmony (technical contributions are 

available and can be found on the ES wiki)  

5.1 Status of working draft 

5.2 Status of Classes 

5.3 Status update on Binary Data 

5.4 Synta Discussion 

5.4.1  http: / /wiki.ecmascript.org/doku.php?id=strawman:block_vs_object_li teral  

5.4.2  http: / /wiki.ecmascript.org/doku.php?id=strawman:block_lambda_revival  

5.4.3  http: / /wiki.ecmascript.org/doku.php?id=strawman:arrow_function_syntax  

5.4.4  http: / /wiki.ecmascript.org/doku.php?id=strawman:paren_free  

5.5 Update on Block Scoping Decisions and progress on 
specification 

5.6 The .{ operator and object literal based class definition patterns  

https://mail.mozilla.org/pipermail/es-discuss/2011-August/016187.html  

https://github.com/allenwb/ESnext-experiments/blob/master/ST80collections-exp1.js  

https://github.com/allenwb/narcissus/blob/master/harmony-extensions.md  

5.7 Leak Hazard in Private names 

6 Date and place of the next meeting(s)  

November 16-17, 2011. Location: Silicon Valley, CA, hosted by Apple.  

January 25-26, 2012. Location: Silicon Valley, CA, hosted by Yahoo. 

7 Closure 

The TC39 Meeting ended at 4:30 PM on 27 September 2011. Mr. Neumann has thanked the 
meeting participants for their good contributions, constructive discussions and the co-operative 
spirit of the group. 

http://wiki.ecmascript.org/doku.php?id=strawman:block_vs_object_literal
http://wiki.ecmascript.org/doku.php?id=strawman:block_lambda_revival
http://wiki.ecmascript.org/doku.php?id=strawman:arrow_function_syntax
http://wiki.ecmascript.org/doku.php?id=strawman:paren_free
https://mail.mozilla.org/pipermail/es-discuss/2011-August/016187.html
https://github.com/allenwb/ESnext-experiments/blob/master/ST80collections-exp1.js
https://github.com/allenwb/narcissus/blob/master/harmony-extensions.md


 

5 

The group expressed appreciation to Mozilla and to Mr. Dave Herman and Mr. Brendan Eich 
for hosting the meeting and Google, Mozilla and Ecma international for hosting the Mexican 
dinner on the 26 th September in Downtown San Francisco, CA. 



 

6 

Item 5 Attachment  

Waldemar Horwat’s Meeting Notes from September 26: 

Test262.ecmascript.org presentation 
Allen: There will be substantial changes to section numbering in ES6.  Concerned about too 
much dependence on section numbers in Test262.  However, there exist tools to rename 
Test262 files with new section numbers. 
 
Debate sparked by test262's requirement that defineProperty throw if it can't create the 
property -- that's an invariant that even host objects are not allowed to violate.  We can't test 
all possible property names and objects, so the authors of the test have chosen ones which 
some implementations are known to violate.  Is this kosher? 
Yes -- this is a normative invariant in the spec, even for implementation extensions. 
Discussion over refactoring of such tests to parametrize them over the property names known 
to violate the spec.  This way the tests can include different implementations' suspicious 
properties. 
Debate over whether errors the test finds should be labeled as DOM errors or ECMAScript 
errors. 
 
Test262 Technical Report will be submitted to the December GA.   It must be approved and 
sent to ECMA members by October 8th to make it to the December GA.  
 
Discussion about updating the ECMA TC39 web page. 
 
ParallelArray demo. 
Currently the implementation is very hacky (i.e. works mainly just for this demo), but shows 
great promise. 
Discussion:  How do we express arithmetic on number types other than IEEE double?  This is 
a different problem from typed arrays in that we want to actually compute using other types 
(int8, float32, etc.) rather than just store using those types and convert to doubles for 
computation. 
 
Allen's presentation on current state of the spec. 
Question: We have an opportunity to make function declarations create immutable bindings if 
they occur inside blocks. 
Answer: Consensus on making them consistent with function declarations outside blocks.   
Either we'd make all function bindings mutable or all immutable.  
 
Discussion about object literal attribute modifiers.  Objections to using := for immutable 
properties (intuition is opposite from that of Pascal).  Disagreement over whether immutable 
properties should be nonenumerable -- some are the same in every instance, some are 
immutable but have different values in different instances. 
No consensus on any concise way of marking properties nonenumerable.  
DaveH: Prefer to play it conservative and do nothing rather than introduce a funky new syntax.  
 
Evaluated property names: 
{ 
  [foo]:1, 
  get[1+2](){}, 
  ['prefix'+i++](){} 
} 
Waldemar: Concerned that these look too much like array literals or an array index expression 
on an array named "get", which is not a reserved word.  
These can produce property name collisions at run time.  What should happen? 
A. Rely on DefineProperty semantics, which sometimes allow rebinding of properties 
B. Throw 

http://test262.ecmascript.org/


 

7 

In choice A we'd then have to allow collisions in literal property names as well.   Leaning 
towards choice B. 
 
Method form is not a constructor.  Why?  To be consistent with built-ins.  Hotly debated 
whether we should be consistent here (and consistent with what -- with built-ins, with bind, or 
with standalone functions?) and whether the extra constructors are useful.  
 
super wiring: If 'super' is nested inside one or more functions inside an object literal, what does 
'super' bind to? 
{ 
  f:(0, function(){... super ...}), 
  g:function(){... super ...}, 
  h(){... super ...}, 
  k:... super ... 
} 
Another hot debate with no convergence. 
If it doesn't bind to anything, should super:  
A. Be a compile-time syntax error? 
B. Return null? 
C. Return an empty object? 
D. Throw an error when containing function is entered? 
E. Throw an error when evaluated? 
Not resolved.  Allen's proposal currently has choice C if super is used in a property lookup and 
the value of 'this' if super is not used in a property lookup.  
Debate over the meaning of: 
function returnUndefined() { 
  return super.foo; 
} 
What about 
function returnUndefined() { 
  super.foo = 42; 
} 
Error because there is no object. 
 
What about assignments to super.foo in general, when there is a super? 
Allen: These behave the same as assignments to this.foo 
Waldemar: These should either do the 'super' thing or be an error.   Silently changing the 
meaning to not do 'super' lookup is gratuitously unsymmetric. 
 
Commas optional after method/getter/setter definitions.  These currently always end with }.  
Note that an equivalent member definition that initializes the member to a function does not 
make the comma optional (and can't because of things like: 
{ 
  g:function(){...} 
  [expr] ... 
} 
where the [expr] is an array lookup on the function literal.  
 
Debate over whether method properties should be writable and configurable or not.  
Brendan: Use # to mark nonwritable/nonconfigurable properties.  
Waldemar: Want to have easy ways to specify both writable and non-writable nonconfigurable 
properties. 
MarkM: Nonconfigurable writable properties don't make sense because an adversary can 
freeze them. 
Waldemar: That's a design bug we have to live with, but they're still useful in the common 
case. 
Brendan: Accessors might solve this. 



 

8 

Waldemar: Accessors are too wordy and would also rely on private properties here.  
Alex: Common accessor pattern of intercepting writes but passing reads through is too wordy 
and could use better support. 
 
Waldemar: For methods, use # to mean nonconfigurable/nonwritable.  
For value properties, use # to mean nonconfigurable/writable.  
For value properties, use const to mean nonconfigurable/nonwritable.  
None of these prefixes have any effect on enumerability. 
 
Alternate proposal: use # in front of entire object to freeze (MarkM) or seal (Waldemar) object.  
 
Reached consensus on the following # proposal:  
# before an object literal seals the object 
# before a propoerty makes that property nonconfigurable and nonwritable. 
All method properties are nonenumerable. 
All value properties are enumerable. 
 
{x} desugars into {x:x} in the proposal. 
DaveH: Would prefer to turn that into {x:void 0};  
DaveH withdrew proposal, but now Waldemar wants to do that, in order to be able to define 
objects that contain uninitialized instance variables x, y, z, length:  
#{x, y, z, length, ...} 
without capturing the values of x, y, z, length from the outer environment.  
 
Allen's "class" definition pattern: 
DaveH: Too imperative for what should be a declarative construct  
Brendan: Doesn't substitute for classes 
MarkM: How would you freeze everything? 
Getting the .prototype. and .constructor. sections out of order or omitting one would lead to 
weird errors. 
 
DaveH: 
Dislike the use of .{ for object extension.  Like the idea in principle.  It's not enough to say "this 
is the semantics we want, pending finding the right syntax".  
Some like the syntax.  Debate. 
About as many syntax variants offered as there are people in the room.  
 
 
 
_______________________________________________ 
es-discuss mailing list 
es-discuss@mozilla.org 
https://mail.mozilla.org/listinfo/es-discuss 

mailto:es-discuss@mozilla.org
https://mail.mozilla.org/listinfo/es-discuss


 

9 

Meeting notes from September 27: 

Classes: 
What do you get when you access an instance property before the directive defining it has been executed? 
A. Throw (just as in temporal dead zone for let/const variables) 
B. Get undefined 
C. Property does not exist yet on the object -- prototype shows through 
 
Waldemar objects to B because it would allow observers to see const properties get mutated and is future-
hostile for guards (a guard expression would not have even been evaluated at the time of the property 
access). 
 
Allen's idea: Separate property definitions from any code that refers to "this" using a barrier statement that 
deems that the object has been initialized.  Works for single-level classes but not for inheritance, as the 
superclass could have leaked "this". 
A suggestion was made to run all property definitions in all classes in the hierarchy before running imperative 
initializations in reverse hierarchy order.  Waldemar doesn't know of any major language that does 
initializaiton backwards like this; the problem is that derived classes want to refer to the already initialized 
base class state so that they can initialize themselves. 
 
Explored a different order: doing definitions in reverse hierarchy order and imperative initialization in 
hierarchy order. 
 
At what point does a class instance acquire trademarks?  When the constructor returns. 
But then what about constructors that create a trademarked object and then put them into a registry of all 
objects with that trademark?  The constructor can't register the object because it's not trademarked yet 
before the constructor returns.  Yet another kind of two-phase initialization? 
 
Discussion of __proto__.  All implementations currently disallow using it to mutate the prototype chain of 
nonextensible objects. 
 
Should we standardize __proto__ in Annex B? 
MarkM + a few others:  Yes 
Waldemar, Doug:  No 
 
MarkM: Emphasizes that we can't allow one to add new private properties to nonextensible objects.  Allowing 
that would create a hidden communication channel between two frozen entities given access to the same 
frozen object. 
 
Back to throw/undefined/no-property debate. 
 
Brendan: Fixing the const case (preventing observation of mutation) will also fix the guard case. 
 
Exported bindings from modules are also reflectible as properties.  If these are accessed before they execute 
(i.e. in the dynamic dead zone), they throw. 
 
DaveH: Modules and classes are different things. 
 
MarkM: Only have const classes? 
Others: Only have non-const classes? 
 
DaveH: Currently have nothing exactly like a const field on an object. 
MarkM: Could specify it in terms of proxies. 
 
DaveH: Proposed read barrier on const fields; no read barrier on let fields. 
Luke: Still worried about performance of dynamic field access. 
MarkM: Dubious about performance issue because the same case already arises for accessors. 
 



 

10 

Allen: We'd need to define a new instance member state: not yet initialized. We'd use this for reflecting on 
module instances as well. 
 
DaveH: Not dogmatic about classes as sugar.  OK to extend semantics in cases where the current ones are 
inadequate. 
 
Brendan's summary: 
class Widget { 
  constructor(a, b) { 
    public const k = a*b 
    const c = a+b 
    ... 
  } 
} 
 
Similarities between const properties and lexical variables: 
- Initialize-only 
- Temporal dead zone 
Differences: 
- property vs. lexical binding (ignoring reflection on modules) 
- pedagogy 
 
Went off on a tangent to discuss a class idea: 
 
class Point(x, y) { 
  getX() {return x}  // Instance method because it refers to x 
  getY() {return y}  // Instance method because it refers to y 
  getInstanceX() {return this.x}  // prototype method 
  getInstanceY() {return this.y}  // prototype method 
  foo() {return getX();}  // Doesn't work -- need to use this.getX() 
  public x = x, y = y;  // Instance variables 
  ... constructor code here ... 
  alert(this.x); 
  public m = function() {return x+y} 
} 
No way to factor a function into two functions without indirecting via "this" as in the foo line above. 
Adding a reference to x to a function changes where it lives. 
 
Wondering why we're discussing this (which we've previously discussed) instead of discussing const and the 
dead zone. 
 
DaveH: Don't go around throwing vetoes. We should not be finding the least objectionable thing. 
 
Trying to understand Oliver's objections to the current class proposal. 
 
 
Brendan's update on post-es.next paren-free. 
Luke: concerned about gratuitously having two different ways of doing the same thing. 
Brendan: Safe; omitting braces and parentheses will just yield a syntax error. 
Waldemar: Opportunities for mischief when combined with semicolon insertion: 
Start with ES5 code: 
 
if (a + b) 
  (x.y)() 
z++ 
 
Now (erroneously) convert it to paren-free: 



 

11 

 
if a + b 
  (x.y)() 
z++ 
 
This doesn't give a syntax error; it silently changes the meaning of the program. 
 
Block-lambdas: 
Now the |'s are required (syntax doesn't work if they're not). 
 
 
 
_______________________________________________ 
es-discuss mailing list 
es-discuss@mozilla.org 
https://mail.mozilla.org/listinfo/es-discuss 

 

mailto:es-discuss@mozilla.org
https://mail.mozilla.org/listinfo/es-discuss

