
Specification	Level	Nominal	Typing	of	Objects	in	ECMASCript	5	and	Harmony	
	
There	are	at	least	two	forms	of	nominal	typing	used	within	the	ES5	specification.		
The	first	is	the	set	of	nominal	“ECMAScript	types”	defined	in	section	8	that	classify	
the	primitive	values	forms	used	within	the	specification.		A	subset	of	these,	the	
“ECMAScript	language	types”	correspond	to	the	actual	kinds	of	values	(Undefined,	
Null,	Boolean,	Number,	String,	Object)	that	are	directly	visible	to	ECMAScript	
programmers.		
	
The	second	use	of	nominal	typing	in	the	ES5	specification	is	its	internal	
subclassification	of	various	forms	of	the	Object	ECMAScript	type.		The	goal	of	this	
paper	is	to	analyze	to	use	of	this	second	form	of	nominal	Object	typing	in	order	to	
better	understand	if	and	how	it	could	be	better	reified	within	ECMAScript	Harmony	
and	whether	support	for	this	typing	model	needs	to	be	incorporated	into	Harmony	
Proxy	objects.		
	

Informal	Object	Typing	in	ES5	
	
Various	parts	of	the	ES5	specification	actually	use	several	different	semi-formal	and	
informal	techniques	to	identify	and	classify	different	kinds	of	ECMAScript	objects.		
The	techniques	include:	

• Identification	of	the	specific	string	values	with	the	[[Class]]	internal	property	
of	objects.	

• Informal	reference	to	specific	kinds	of	objects	(usually	defined	in	section	15)	
using	phrases	such	as	“String	objects”	which,	for	example,	refers	to	objects	
that	have	the	characteristics	of	“String	Instances”	as	defined	in	15.5.5.	

• Identification	by	the	presence	of	specific	internal	state	properties	such	as	
[[PrimitiveValue]].	

• Identification	by	the	presence	or	absence	of	specific	internal	methods	such	as	
[Call]].	

• Identification	by	specific	over-rides	of	common	internal	methods	such	as	
[[DefineOwnProperty]].	

	
The	use	of	each	of	these	techniques	occur	somewhere	in	the	ES5	specification	but	
not,	necessarily	in	any	systematic	manner.		The	differences	seem	to	have	arisen	over	
time	as	editorial	style	variations	by	different	specification	authors	and	also	reflect	
an	evolving	emphasis	on	specification	preciseness.		The	various	techniques	do	not	
always	yield	identical	classification	of	objects.		For	example,	the	Math	and	JSON	
objects	have	different	values	for	their	[[Class]]	internal	property	but	otherwise	
present	identical	set	of	internal	properties	and	internal	methods.	
	
Among	them,	the	object	classifications	are	used	for	various	purposes	within	the	
specification	including:	

• Explicit	data	parameterization	of	built-in	functions	based	upon	object	“type”.		
For	example,	Object.prototype.toString.	

• Explicit	behavioral	parameterization	of	built-in	functions	based	upon	object	
“type”.	For	example,	Array.prototype.concat.	

• Explicit	behavioral	parameterization	of	language	features	based	upon	the	
object	“type”	of	operands.		For	example,	the	delete	operator’s	use	of	the	
[[Delete]]	internal	method.	

• Association	of	private	runtime	state	with	specific	object	instances	where	the	
state	is	used	by	various	specification	algorithms.		For	example,	the	
[[Prototype]]	internal	property.	

• Association	of	abstracted	private	state	with	specific	object	instances	where	
the	actual	runtime	state	space	is	an	implementation	detail.		For	example,	the	
[[Scope]]	and	[[Code]]	internal	properties	of	function	objects.	

• Association	of	abstracted	private	state	with	specific	object	categories	where	
the	state	is	only	used	for	specification	purposes	and	need	not	actually	exists	
at	runtime.		For	example,	the	[[FormalParameters]]	internal	property	of	
function	objects.		

• Specifying	a	dependency	between	private	runtime	state	of	specific	object	
instances	and	specific	built-in	methods	that	use	that	state.	Date	methods	that	
depend	upon	the	[[PrimitiveValue]]	property.		

• Specifying	a	dependency	between	object	type	specific	internal	behaviors	and	
specific	built-in	methods	that	use	those	behaviors.		For	example,	
String.prototype.split	method’s	use	of	[[Match]]	internal	method.	

	
	

Impact	of	Specification	Nominal	Typing	on	Proxy	Functionality	
	
The	typing	techniques	described	above	are	all	used	exclusively	as	specification	
devices.		They	do	not	require	that	any	specific	implementation	techniques	be	used	to	
by	an	implication	to	achieve	the	specified	results.		For	example,	an	implementation	
might	use	a	tag	value	to	indicate	specific	type	or	it	might	describe	based	upon	
implementation	language	typing	such	as	a	C++	class	type.	In	addition,	modern	
ECMAScript	implementations	typically	use	other	typing	concepts	to	distinguish	
objects	for	optimization	purposes	such	as	polymorphic	inline	caching.	
	
Historically,	these	various	typing	specification	techniques	and	the	implementation	
techniques	used	to	conform	to	the	specification	had	little	if	any	impact	upon	
interoperability	among	ECMAScript	implementations.		In	particular,	existence	of	
these	typing	schemes	and	their	implementations	were	generally	not	directly	
observable	by	ECMAScript	code.	However,	the	introduction	of	Proxies	in	Harmony	
potentially	exposes	these	details.		Proxies	are	intended	to	allow	ECMAScript	code	to	
define	new	behavioral	variants	of	a	type	that	previous	could	have	only	been	
achieved	by	modify	an	implementation	of	an	ECMAScript.	These	Proxy-based	
objects	must	correctly	interact	with	the	internal	mechanisms	of	an	implementation	

including	mechanisms	that	correspond	to	the	internal	object	typing	used	within	the	
ECMAScript	specification.	This	requires	careful	identification	of	all	such	mechanisms	
used	in	the	specification	and	the	definition	of	public	ECMAScript	APIs	that	may	be	
used	by	Proxy	Handlers	to	provide	integrate	Proxy-based	objects	with	these	
implementations.	
	
While	in	the	past,	there	was	little	reason	to	be	concerned	with	the	proliferation	of	
these	specification	typing	mechanisms	the	need	to	reify	them	for	use	by	Proxy	
handlers	is	a	strong	inceptive	to	minimize	the	number	of	actual	mechanisms	that	
need	to	be	exposed	via	the	Proxy	mechanism.		For	that	reason,	we	need	to	carefully	
examine	all	existing	internal	typing	use	cases	from	that	perspective.	
	

ES5	Specification	Use	Cases	for	the	[[Class]]	Internal	Property		
	
The	ES5	specification	defines	each	objects	as	having	an	internal	string-valued	
property	named	[[Class]].		There	is	a	distinct	class	value	assigned	to	instances	of	
each	of	the	major	kinds	of	objects	defined	in	section	15	(“Object”,	“Function”,	
“Array”,	“String”,	“Boolean”,	“Number”,	“Math”,	“Date”,	“RegExp”,	“Error”,	and	
“JSON”).		In	addition,	arguments	objects	have	a	[[Class]]	value	of	“Arguments”.	Host	
objects	may	define	other	[[Class]]	values	except	that	they	many	not	assign	any	of	the	
values	already	used	within	the	ES5	specification.		However,	except	for	its	use	by	
Object.prototype.toString	such	host	object	[[Class]]	values	have	no	significance	in	
the	context	of	the	ES5	specification	other	than	being	distinct	from	the	specified	
[[Class]]	values.	
	
ECMAScript	implementations	typically	do	not	have	an	actual	string-valued	internal	
property	slot	corresponding	to	[[Class]]	for	each	object.		Instead,	they	use	internal	
mechanisms	of	map	objects	to	corresponding	[[Class]]	string	values	in	the	once	
situation	where	the	string	value	is	actually	required.		It	is	an	implementation	detail	
whether	or	not	an	open	ended	set	of	[[Class]]	string	values	may	be	associated	with	
host	objects.	

Data	Parameterization	of	Object.prototype.toString	Using		[[Class]]	Value		
	
The	essential	steps	in	the	definition	of	this	built-in	method	are:		

3. Let O be the result of calling ToObject passing the this value as the argument.
4. Let class be the value of the [[Class]] internal property of O.
5. Return the String value that is the result of concatenating the three Strings "[object

", class, and "]".

	From	this,	it	may	appear	that	for	this	usage	[[Class]]	must	be	an	actual	runtime	
value	that	is	associated	with	each	object.			However,	if	we	remember	that	this	is	a	
specification	and	not	an	actual	runtime	algorithm	we	can	recast	the	above	
specification	into	a	form	that	doesn’t	actually	use	[[Class]]	at	all:	

3. Let O be the result of calling ToObject passing the this value as the argument.

4. If O is the built-in Object prototype object (15.2.4) or an object created by the standard
built-in Object constructor (15.2.2.1) or by the [[Construct]] internal method as defined
in (13.2.2) then let class be "Object",

5. Else if O is the built-in String prototype object (15.5.4) or an object created by the
standard built-in String constructor (15.5.2.1) then let class be "String",

6. Else if O is the built-in Number prototype object (15.7.4) or an object created by the
standard built-in Number constructor (15.7.2.1) then let class be "Number",

7. Else if O is the built-in Boolean prototype object (15.6.4) or an object created by the
standard built-in Boolean constructor (15.6.2.1) then let class be "Boolean",

8. Else if O is the built-in Function prototype object (15.3.4) or an object created by
algorithm 13.2 or algorithm 13.2.3, or by the Function.prototype.bind built-
in method (15.3.4.5) or is any built-in function, method, or constructor object defined
in clause 15 then let class be "Function",

9. Else if O is the built-in Array prototype object (15.4.4) or an object created by the
standard built-in Array constructors (15.4.2.1) or (15.4.2.2) then let class be "Array",

10. Else if O is the built-in RegExp prototype object (15.10.6) or an object created by the
standard built-in RegExp constructor (15.10.4.1) then let class be "RegExp",

11. Else if O is the built-in Date prototype object (15.9.5) or an object created by the
standard built-in Date constructors (15.9.3.1), (15.9.3.2), or (15.9.3.3) then let class be
"Date",

12. Else if O is the built-in Math object (15.8) then let class be "Math",
13. Else if O is the built-in JSON object (15.12) then let class be "JSON",
14. Else if O is the built-in Error prototype object (15.11.4) or an object created by the

standard built-in Error constructors (15.11.1.1) or (15.11.2.1) then let class be
"Error",

15. Else if O is a built-in NativeError object created by an implementation (15.11.7) or an
object created by a standard built-in NativeError constructor (15.11.7.4) then let class
be "Error",

16. Else if O is an arguments object created by as specified by algorithm (10.6) then let
class be "Arguments",

17. Else if a O is an implementation defined native built-object or an object created by an
implementation defined native built-in constructor, then let class be an implementation
defined string value,

18. Else if O is a host object, then let class be an implementation defined string value.
However, in this case the value must not be one of "Arguments", "Array",
"Boolean", "Date", "Error", "Function", "JSON", "Math", "Number",
"Object", "RegExp", and "String".

19. Return the String value that is the result of concatenating the three Strings "[object
", class, and "]".

Whether	or	not	this	is	a	better	specification	form	is	probably	subject	to	debate.		
However,	this	transformation	does	demonstrate	that	the	[[Class]]	internal	property	
is	not	essential	to	the	semantics	of	Object.prototype.toString.	

Behavioral	Parameterization	of	JSON.stringify	Using	[[Class]]	Values.	
	
The	specification	for	the	built-in	function	JSONstringify	(15.12.3)	uses	a	test	for	
specific	[[Class]]	values	of	objects	to	be	processed	to	control	the	specific	processing	
behavior	applied	to	the	objects.		
	
This	is	generally	a	mess	(largely	of	my	own	doing).	Some	are	nominal	type	checks	
for	Number,	String,	or	Boolean	wrappers	objects.		These	could	be	replaces	with	

“instance	of”	checks.		Other	uses	could	be	replaced	with	toJSON	methods.		It	isn’t	
clear	why	the	replacer	array	needs	to	be	an	actual	array	object.	

Private	State	Access	of	Boolean	objects	determined	by	[[Class]]	value.		
	
The	specification	for	the	built-in	methods	Boolean.prototype.toString	(15.6.4.2)	and	
Boolean.prototype.valueOf	(15.6.4.3)	use	a	test	for	[[Class]]	equal	to	“Boolean”	to	
determine	whether	the	[[PrimitiveValue]]	internal	property	of	the	this	object	can	be	
accessed.		Other	similar	built-in	methods	are	specified	without	explicit	reference	to	
[[Class]]	and	that	could	also	be	done	here.	

Public	State	Access	of	Function	objects	determined	by	[[Class]]	value	
The	specification	for	Function.prototype.bind	(15.3.34.5)	uses	a	test	for	[[Class]]	
equal	to	“Function”	to	determine	if	the	target	function	must	have	a	length	property	
(as	defined	in	15.3.5.1)	and	then	uses	that	value	of	that	property	directly	without	
access	via	[[Get]].			This	class	test	is	independent	of	a	isCallable	test	that	determines	
whether	the	target	object	has	[[Call]]	internal	method.		(Callable	objects	need	not	be	
instances	of	Function).		
	
This	[[Class]]	test	could	be	replaces	with	an	instance	of	test.		Alternatively,	the	
specification	could	be	generalized	to	check	for	the	existence	of	a	length	property	on	
callable	objects	regardless	or	whether	they	are	actual	function	instances.		
	

Nominal	Classification	of	Array	objects	based	upon	[[Class]]	values	
The	built-in	function	Array.isArray	(15.4.3.2)	is	specified	to	test	for	[[Class]]	equal	to	
“Array”	to	determine	its	result.		Based	upon	the	known	history	of	this	function,	this	
test	probably	can	not	be	replaced	by	a	simple	instance	of	test.	In	particular,	it	is	
known	that	this	function	was	intended	to	classify	“array	objects”	as	such	even	when	
the	object	originated	in	a	different	global	context	than	the	testing	code.		In	these	
situations	the	array	object	is	not	necessarily	an	instance	of	the	Array	constructor	
object	of	the	current	global	context.		The	“Array”	[[Class]]	value	is	assumed	to	be	
independent	of	such	global	context	dependencies.	It	isn’t	clear	without	further	
analysis	which	if	any	of	the		uses	of	nominal	classification	within	ES5	should	be	context	
independent	in	this	manner.	
	
It	isn’t	clear	what	the	actual	use	cases	are	for	this	sort	of	context	independent	
typing.		It	appears	to	have	first	been	proposed	in	the	context	of	JSON	serializes	that	
need	to	a	determination	of	which	objects	to	serialize	using	array	literal	notation.			
However,	Array.isArray	is	not	actually	used	by	the	ES5	JSON.stringify	algorithm	
which	instead	directly	tests		for	[[Class]].		It	isn’t	clear	why		
	
The	only	unique	characteristic	of	Array	instances	(15.4.5)	are	the	invariants	
imposed		by	their	specialized	version	of	[[DefineOwnProperty]].		Specify	
Array.isArray	based	upon	the	presence	of	the	specific	internal	method	definition	

would,	in	the	context	of	the	ES5	specification,	be	equivalent	to	testing	for	the	“Array”	
[[Class]]	value.	
	
The	built-in	method	Array.prototype.concat	(15.4.4.4)	tests	each	of	its	arguments	
for	[[Class]]	equal	to	“Array”	to	determine	whether	the	argument	should	be	
concatenated	as	a	single	object	or	whether	it	should	be	considered	a	transparent	
container	of	objects	that	are	individually	concatenated.			Because	it	is	a	class	test	it	is	
context	independent.	
	
This	test	is	problematic	in	that	prevents	used	defined	array-like	objects	from	have	
this	same	transparent	container	behavior.		This	applied	even	to	objects	that	have	the	
Array	prototype	on	their	prototype	chain.			This	transparent	container	treatment	
has	no	fundamental	dependency	upon	the	actual	unique	semantics	of	built-in	arrays.	
It	should	be	replaced	with	a	check	for	some	user-definable	flag	property	that	
enables/disables	transparent	container	treatment.	
	
The	built-in	function	JSON.parse	(15.12.2)	uses	a	[[Class]]	equals	“Array”	test	as	it	
recursive	walks	the	tree	it	had	previous	created.		The	test	is	used	to	determine	
whether	all	properties	or	only	array	index	properties	should	be	recursively	walked.	
	
This	is	purely	a	specification	device.	The	objects	that	are	being	tested	were	created	
by	a	previous	step	of	the	algorithm	and	each	object	was	explicitly	created	as	either	
an	array	or	as	regular	object	based	upon	the	original	encoding	as	a	JSONValue.	The	
[[Class]]	test	in	the	algorithm	can	be	restated	using	language	such	as	“if	val		was	
created	in	correspondence	to	a	JSONArray”.	
	
The	built-in	function	JSON.stringify	(15.12.3)	uses	a	[[Class]]	equals	“Array”	test	on	
its	reviver	argument	to	determine	if	that	argument	is	a	collection	of	white-listed	
property	names.	Actually,	it	classifies	reviver	objects	into	three	categories:	functions	
via	isCallable,	arrays	via	[[Class]],	and	everything	else.		Object’s	in	the	everything	
else	category	are	simply	ignored.		It	isn’t	clear	why	generic	array-like	objects	are	not	
supported	as	white-list	provider.		If	the	array	and	everything	else	cases	where	
merged	into	a	generic	“array-like”	category	then	only	the	isCallable	test	would	be	
necessary	and	the	[[Class]]	test	could	be	eliminated.		Alternatively,	the	same	or	
similar	“transparent	container”	marker	property	as	proposed	for	concat	could	be	
used	to	identify	while-list	providers.	
	
JSON.stringify	also	uses	a	[[Class]]	test	to	determine	whether	an	array	literal	or	
object	literal	syntax	should	be	used	to	represent	the	object.		This	prevents	user	
defined	array-like	objects	from	being	directly	serialized	using	array	literal	notation.		
This	usage	could	be	eliminated	by	a	user-definable	property	value.		
	
As	noted	above,	many	of	these	[[Class]]-based	classification	tests	could	be	
generalized	by	using	an	explicit	object	property	to	control	the	conditional	behavior.		
Other	this	creates	a	tension	between	backwards	compatibility	and	future	usability.		
The	simplest	why	to	do	this	generalization	would	be	to	add	additional	properties	to	

Array.prototype	(for	example,	isTransparentContainer,	useJSONArray,	etc.)	and	
update	the	specification	to	remove	the	corresponding	[[Class]]	tests	and	only	test	
for	those	properties.		That	would	be	the	cleanest	specification	and	would	be	easiest	
for	future	ECMAScript	programmers.		However,	that	would	mean	that	existing	code	
that	create	non-Array	objects	that	inherit	from	Array.prototype	would	change	its	
behavior	in	those	situations.		A	compromise	would	be	to	recognize	such	new	
properties	but	to	not	add	them	to	Array.prototype.		In	addition,	the	existing	[[Class]]	
test	would	probably	be	replaced	by	an	equivalent	Array	instance	test.	This	would	
maintain	backwards	compatibility	but	would	require	future	“subclasses”	of	array	to	
explicit	opt-in	to	the	array-like	behavior	by	defining	the	necessary	properties	on	
their	own	prototype	or	instances	if	it	was	desired.		The	compatibility	and	
convenience	risks	of	each	approach	need	to	be	further	considered.	

