
River Trail

Lots of folks from lots of places

I’m Rick Hudson, Stephan Herhut is
with us also.

Ecma/TC39/2012/016

Summary

• Intel Labs River Trail project gently extends
JavaScript with data-parallel constructs
– Unlocks vector, multi-core, and GPU from JavaScript
– Enables new richer browser experiences
– Preserves simplicity and safety of web programming
– Leverages improving computation / watt

• Prototype is up and running on Firefox
– 4-15x performance improvement on 4 core chips

• Proposed spec on wiki and ECMA site
• Various demos floating around

Goal

• Prototype announced last September
– Firefox extension now on GitHub
– Prototype leverages OpenCL but lacks close

integration with FF JITs

• Intel and Mozilla expect to partner on FF
• Several ISVs working on demos

– Feedback has helped a lot

• Goal: work with ECMA to create spec in 2012
– Final approval expected to take longer
– But this seems like a good first step

Safety and Security: no more, no less

• Performance is important

– But safety and security are requirements

• Preserves JavaScript safety model

– No pointers, just object references

– Automatic memory management

– Full array bounds checking

– Nothing more nor less than what is there now

Determinism

• Deterministic execution

– No race conditions

– No Deadlock (No Livelock)

• Value non-determinism possible

– Evaluation order in reduction operations

– Floating Point effects

Programmers’ Productivity

• Preserve familiar programming model and conventions

– Parallel kernels written in JavaScript

– Uses JavaScript’s object oriented model

• Looks like / behaves like JavaScript

– Follows JavaScript semantics

– Reference implementation in JavaScript

– Interoperates with HTML5, WebGL

ParallelArray

• Basic data type for parallel computation

• Created from

– A JavaScript array

– Typed array

– Canvas

– Comprehension

• Immutable

• Single or multiple dimensions

7

ParallelArray Methods

• Combine

• Reduce

• Scan

• Scatter

• Filter

• Map

• Plus a constructor and accessor

• Others can be built on top of the above
– Sum, Max, Add, Gather, Histogram, etc.

8

Do Few Things Well

Kernel Function

• Methods take kernel function as an argument

• This within kernel function is ParallelArray

– Orthogonality important

– Helps composition

• combine and filter arguments

– index passed as argument

– get can use the index regardless of depth (dimensionality)

• reduce, scan, and scatter conflict arguments

– 2 values passed args one value returned

9

Add 1 to Every Element in A

10

Sequential

var i;
var a = new Array (...);
var b = new Array(a.length);
for(i=0;i<a.length;i++){

b[i] = a[i] + 1;
}

Data parallel

var a = new ParallelArray(...);

var b = a.map(

function(val){return val+1;}

);

Add 1 Combine-Style

11

Sequential

var i;
var a = new Array (...);
var b = new Array(a.length);
for (i=0; i<a.length; i++) {

b[i] = a[i] + 1;
}

Data parallel

var a = new ParallelArray(...);
var b = a.combine(

function (i) {
return this.get(i) + 1;

}
);

Sum Reduce-Style

12

Sequential

var i;
var a = new Array (...);
var sum = 0;
for (i=0; i<a.length; i++) {

sum += a[i];
}

Data parallel

var myPA =
new ParallelArray(...);

var sum = myPA.reduce(
function (a, b) {

return a + b;
}

);

Data Parallelism is Beautiful

Challenges and Competition
• OpenCL today

– Useful HW abstraction appropriate for hiding implementation detail

– Extends C99 in ways appropriate to C programmers

– Allows ultimate control, performance, and access to HW

• WebCL provides thin layer around OpenCL

• WebCL faces serious security challenges

– Define the many situations where the OpenCL standard leaves things undefined,
for example out of bounds.

– OpenCL makes these the programmer’s responsibility

– OpenCL evolving to meet needs of C and HPC programmers

– Not a reasonable approach for web

• Shared challenge – GPUs do a poor job of context
switching and this creates performance hazards
• River Trail can fall back to JavaScript library or OpenCL CPU execution

• Current implementations focused on CPU

13

Goals

• Brought to ECMA today as first step

• Expect many suggestions and revision but we
believe this basic approach is the way forward

• Why Intel

– Watts for parallel instructions is low

– Must meet the challenge of parallel programming
for productivity programmer or HW and SW will
diverge or go to a lowest common denominator

