
Quasi String Templates
Specification

TC39 – July 2012

Allen Wirfs-Brock

Mozilla

Ecma/TC39/2012/055

Quasis now in July ES6 draft

• $identifier substitution dropped, must use
${identifier} instead
– Lexing/parsing issues

– Confusing. Which of these is a substitution:
`I say: $ᐭ` //ᐭ is U+142B

`I say: $⏅` //⏅ is U+23C5

• Substitutions may be arbitrary expressions

• Quasis may nest unambiguously within substitution
expressions:
`outer [${`middle (${`inner ${Date()}`})`}]`

Untagged and tagged quasi have
different expression precedence

• An untagged quasi is a PrimaryExpression
PrimaryExpression :

...
QuasiLiteral

• An tagged quasi is a CallExpression
CallExpression :

...
CallExpressionQuasiLiteral

– A tagged quasi really is just a special form for a call

– The tag expression must evaluate to a function

Dealing with Lexing

• Treated similarly to RegExp

• Additional Lex grammar goal symbol InputElementQuasiTail

• Add grammar convention for identifying lexical goals
QuasiMiddleList:

[Lexical goal InputElementQuasiTail] QuasiMiddle Expression

QuasiMiddleList [Lexical goal InputElementQuasiTail] QuasiMiddle Expression

• Used with Quasi components that start with a }

QuasiSubstitutionTail ::

QuasiMiddle

QuasiTail

QuasiMiddle ::

} QuasiCharactersopt${

QuasiTail ::

} QuasiCharactersopt`

Default Escaping for Untagged Quasis

• Default substitutions for untagged quasi is cooked, not raw. All string escapes are expanded.

• For any ES string literal that does not contain an unescaped ${, replacing the string delimiters
(" or ') with back quote (`) should produce the same string value.

const name = "Allen", value="0.99";

console.log(`\u261E\t${name}\t\$${value}`);

Outputs:

☞ Allen $0.99

• LineContinuations are removed for cooked quasi literal text. This is required for consistency
with the string replacement principal stated above:

Note however that quasis can still contain literal LineTerminators that become part of the
string value. EG,

`1
2
3`

yields the same value as
"1\n2\n3”
(assuming that linefeed is the new line character used in the program text)

The raw Tag

• The raw tag is a property of the String
constructor.

String.raw`In JavaScript '\n' is a line-feed.`

produces the same value as:

"In JavaScript '\\n' is a line-feed."

Simplified Call-site Object

•Simplified the "call site object" to be an array based upon the assumption that
cooked text is the most common use case.

//pseudo JavaScript definitionof a call-site object
const ungeussableCallSiteId1234 = do { // it would sure be nice to have this in ES

let CSid = [literalSegment1, literalSegment2, ...]; //... is meta
CSid.raw = Object.freeze([rawLiteralSegment1, rawLiteralSegment2, ...]); / /... is meta
Object.freeze(CSid);

};

•Most tag functions will have a signature like:
let tag = (lits, …subs) => { ... }

and within the body lits can be directly processed as a (frozen) Array. Only if the functions actually uses raw
values would it have to do a qualified reference such as lits.raw.

Also not included

• Automatic thunking of substitution arguments

– A tagged quasi call is basically just a special form
for the argument list of a function call. Normal ES
functions don’t thunk their arguments. It isn’t
clear that these functions are special enough to
change that convention.

• Assignable substitution arguments

– Similar, this capability isn’t available to regular
functions.

