Cecma Draft

Ecma/TC39/2012/071

A0 ECMA-262
_ - - 6th Edition / Draft September 27, 2012

ECMAScript Language
Specification

Report Errors and Issues at: https://bugs.ecmascript.org

Product: Draft for 6th Edition
Component: choose an appropriate one
Version: September 27, 2012 Draft

Rue du Rhone 114 CH-1204 Geneva T. +41 22 849 6000 F: +41 22 849 6001

https://bugs.ecmascript.org/

A COPYRIGHT PROTECTED DOCUMENT

© Ecma International 2012

secmd

Contents Page
LA 0T LUT o] 10 o [P Vii
1 Yo o] oSO PP PP P PPPPPPPUTPPP 1
2 (OdaY a1 10] 1K= 1o =T T 1
3 o] 8 g E= AV SR = A=Y A oT 1
4 (@ V2= VAT T 1
4.1 RTAT L= o TS 1] {1 o P PSS 2
4.2 (= T T LU= Vo [T @ V2= VA= S PRRRR 2
o T @ | o= o3 SR 3
4.2.2 The Strict Variant 0f ECMASCIIPTuviiiieeiiiiiiiiee i sforettse s s sieee e e e s e snsieeeeee e s s snsnashee e s e snsnaneeeeeseannnnnns 4
4.3 NIRRT [B0 L= AL 0 o = S 4
5 Lo E=Y A Lo Y b=t IO e Y AV =T 0L {0] 1T T ST 7
5.1 Syntactic and LeXiCal GrammMarsS.........ocuuiiiiiieiis e i ieee e sfinmaeesesiaeeeesbaeeessbseeesbeeeessebeeeesbaeeesnnneeas 7
LT O A O] ¢ (=) G S =TS T =10 010 = 5 7
5.1.2 The Lexical and REGEXDP GIamIMAIsScocuiiiiiiieeeiiieiiaatbeeesasteteeatteeeaaebeeesabneeesaabeeesabseeeassbeeesabeeeeannns 8
5.1.3 The NUMEIIC StriNg GramMMaAccoiiueeeiiureeeaiieeeeaaieeeesasbaeesaiheeeessreeesastneesaasreeesabesesasseesaasneeessnsneessnnns 8
T I B L= IS YA = ol Lol €1 = 10 40 = | T SRR 8
T T I a TSI LS 1O] N] =10] 0 = T 9
T T 1 =0 0= U (0) =10 o T 9
5.2 AlGOrithm CONVENTIONS ...ttt e Tt e e e e e ettt e e e e e e bbbt e e e e e e e annbeeeeeeeeannnees 12
5.3 StALiC SEMANTIC RUIBS ..vvvieiii i s e e e f et ettt e e sesseaeeaaa s e s e sseesseseassbaba s seeeseseesbbabanseeeesssensrens 13
6 Yo 10 L oL ST 1= A PP 14
7 [IS) ToT= L O Y o RYZ=T 011 o) o F= e 15
7.1 Unicode FOrmat-Control CRHArACIEISuuuriiiii it e e e e e et e s e e e s e e e ee st s s e e eeeerenens 16
7.2 R AT LT =TS 0 T o = S SR PEEP 16
7.3 [TSI =T L= 0T 17
7.4 (©00] 1 01 1.8 =1 015 17
7.5 B IO 1 C=T £ FST ST 18
7.6 Identifier NameES @nNd IHENEITIEISiiieeee ettt e et e e et e e e e ra s e e s eaae e e s esbeeeeeranaes 19
0 R = =L T RV =To IRV AT 0] o T T 20
7.7 [U Lo AU = 10T =T 21
7.8 L] = 1 E TR 21
< 0 R (0 | B I =] = 1 £ o S 21
A N = Yo Lo (=t Y IR A= =1 T TR 21
A T T U] o X< (o N (=T = | E TR 22
AR S T S 41 o T 1 (=T = SRR 24
7.85 Regular EXPreSSION LItEralScuiiiiiiiiiiiiiiie ittt ettt ettt e e st e e st e e e sntaee e s sbaeeessnbeeeesnraeeeans 27
7.8.6 Template Literal Lexical COMPONENTSccuiiiiiiii e st e e e e e r e e e e s snnbae e e e e e s ennnnees 28
7.9 AUtOMALiC SEMICOION INSEITION covvuieeiiii ittt e e e et e et s e e e s e e e esa bbb seeesaeseesbbaaaseeeaaaes 30
7.9.1 Rules of Automatic SEMICOION INSEITION ...u.iiiiiiiiiieeeiee e e e e e e e e e e s e e ee e e s e e eeseeenens 30
7.9.2 Examples of Automatic SemMiCOlON INSEITIONccoiuiiiiiiiie e 31
8 L7 L2 PP PPPPTPTRRR 32
8.1 LI Lo 11 T 0= To I 11V oL USRI 32
8.2 LI L1 14 1= PR SSR 33
8.3 LI = e Lo 1=T= T o T 1Y L= SRR 33
8.4 RS T To T Y/ o L= T TP PU PPN 33
8.5 RIS L0 Taq] o T=T i Y7 o L= TSP URTR R 33
8.6 RILALEE O] o= 1] o L= PR UPRPPP 34
8.6.1 Property ALFIDULES ..o et e e e e e e e s bbb e e e e e e e bbb e e e e e e e e e nnne s 35

© Ecma International 2012 |

»ecma

8.6.2 Object Internal Properties and MetNOUSooiiiiiiiiiiiiie e 36
8.7 The List and Record SPeCifiCation TY P ..ottt e e s s e e e e e e e anrees 40
8.8 The Completion Record SPecCifiCation TYP @ ..o e e e e 40
8.8.1 IMPliCit COMPIELION VAIUESuieiiii et e e e e s e e e e e e e st et e e e e e s s s nantaneeeeesennneees 41
RS 2 \\ o T 4 =1L @0] 0101 o] = 410 o SR 41
RS N I o XLV = 1 T 0T (oT =T o1 1o o R 41
8.8.4 RETUIMIFADIUPT ettt e b et e e a b et e e bbbt e e sabb e e e s bbb e e e snbb e e e sabbeeesnanneas 41
8.9 The Reference SPeCifiCatioN TYPEui ittt e e abaeee e 42
I R C T A = 1 LU T (Y PSP P OO PTPPPP 42
8.9.2 PULIVAIUE (V, W) ittt ettt ekt e e h et e ekt e a bttt e skt et e e anbn e e e snnb e e e s annneas 43
8.9.3 GEtTRISVAIUE (V) ittt e e e e s et et e e et e et e e 44
8.10 The Property Descriptor and Property Identifier Specification TYpescccccvvivieiiieiiniiieenninen. 44
8.10.1 ISACCESSOIDESCIIPLON (DBSC) coiiiiiiiiiiiie ittt e ettt ettt e e e s foa bbbt e e e e e s bbb e e e e e e e e aanbeeeeaaeeeanneees 44
8.10.2 ISDAtaDESCIIPLOr (DESC) .uuuteeiiieeiiiiiiiieea e ettt e e e e sttt ee e e e e eiabeeadoaaaasanbas e b e e e e sabbbeeeeeesaaannbneeeeaeeaannnees 44
8.10.3 ISGENEriCDESCIIPION (DBSC) weiiiiiiiiiiiieie ettt ettt ee e e e o e e e e e et km e e e e Bttt e e e e e e sabbbeeeeeeeeennnnees 45
8.10.4 FromPropertyDeSCIPLIOr (DESC).uuuiuiiiiieeiiiiiiieie i esiitee e e e e s s s ar e e e e e e sestaaeesaaeaaabeeeeaeeseannteeeeeesesnnnnens 45
8.10.5 ToPropertyDeSCIPLOr (OD]) . ife e Bt e e e e e e e e s b e e e e st e aeeeeeenaneees 45
8.11 The Lexical Environment and Environment Record Specification TYpesS......cocceciiriivivieeeeeeecnnnee, 46
8.12 Algorithms for Object Internal MethOdsS.........eciie it ras e st e e e e e enneees 46
o 2 R | (1= (@ Y Y o o] o =T VA | () P SR 46
S (1= o] =T YA | I () I S PSSP 46
8.12.3 [[Get]] (P [, aCCESSOITRISVAIUEG]) uuvreiiiieeiiiiiieiieesiassnatieeeeeessionananeesssentnaneseesssssseneeeeessanssseneeeesssnnnsens 46
8.12.4 [[CANPUL]T (P) . eeeeeeiteeeeiiieie sttt e riteee e sttt e st e e seeeee s ame e e s et e skttt e e ettt e sttt e e sabe et e s bb et e e anbn e e e sabne e e s nnnneas 47
8.12.5 [[Put]] (P, V, Throw[, acCesSSOrTNISVAIUE]) ..cocuiiiiiiiiiiiiiiie ittt a7
8.12.6 [[HASPIOPEITY]] (P) .eeeeeeiieieeiiiiee e e ettt ekt e s e ettt e sttt e s st e et e s b et e e annn e e e snne e e e s nnneas a7
8.12.7 [[Delete]] (P, TRIOW) . eiiiiiiiieitiieeeiieeieeahe s easams i i e e steeeeesaneeeesammne e e e e sasee e e s aste e e e s sbe e e e annn e e e snneneesnnneas 48
8.12.8 [[DefaultValue]] (NINt) ..ot ie e eee e e it e e e e eateear e e e Sttt e e e e e s nbbbe e e e e e e e annnbeeeeeeeeannnees 48
8.12.9 [[DefineOwnProperty]] (P, DESC, TRIOW) i ...uuiiiiei ittt i teeeeesa s et e e e e e e e e e e annbeeeea e e e enneees 49
8.12.10 [[Enumerate]] (includePrototype, onlyEnumerable)ot 50
N I R | L (T = 1A= [e SRR 50
ST - 1= T = Lo Yo PR 50
LAY o] 4 = Tox @ T o 1= = o 1 g e SR 51
9.1 Y/ oL O0] e NVZ=T =70 Yo = Ua Lo I =S A o SRR 51
L 00 R 0] o €10 0T L= e SR 51
S 02 0] = T Yo =T T o PSP 52
LS 0 T 10T\ o o= OSSR 53
1S o] [(=T T PP PR P P PPPPPP P 55
9.1.5 TolInt32: (SIgNed 32 Bit TNTEGET)eiiiiiiieiiiiie ittt e e nanneas 56
9.1.6 _ToUint32: (UNSIigNed 32 Bit INTEOEI)eeeiiiiiiieiiiee ittt 56
9.1.7< ToUint16: (Unsigned 16 Bit INTEOEI)ooiiiiiiieiiiie it 56
SR R 011 4] T O TSP S PP O PP PUPPT PP 57
L N T o1 @ o] =T o3 A SR 58
L 20 0 O B o o 0] oT=T Y (= VA TP PP PT PP PP PPPPPPPPPPPP 58
9.2 Testing and CompariSION OPEIAtiONSc.ueieiiiiieeiiiieeeiiiee ettt e e st e e st e e s staeeeestaeeessrbeeeessteeeeanraeaeaas 58
9.2.1 CheCKODBJECICOEICIDIEceeeiieiiieie et e e s snba e e snbeeeesnneeeas 58
2 T~ @2 11 =1 o] = R 59
9.2.3 The SAmMeEValUE AlGOTITNIM ..o e e e e e e e e e e s st e e e e e s s snntaaeeeeesennnrees 59
9.3 (@) oL=T 1A Lol F-T0] o N @] =T o £ SRR 59
1S 20 R [1V] T PO STRP 59
10 Executable Code and EXeCULION CONTEXES ...ociiuiiiiiiiiiiiiiiiie et 60
10.1 Types Of EXECULADIE COUO ...ciiiiiiiiiiiiiii ettt e et e e e e e s e e e e e e s s s beae e e e e e s snnsntaneeeeesennnnees 60
0 0 R o o3 A1 o T =X @ Yo = PR 60
10.1.2 NON-ECMASCHIIPt FUNCLIONS ooiiiiieiiiiie ettt e e e e e et e e e e e e st e e e e e e e e annnaeeeeeeeeennneees 61
O I o= 1 =t o VT o)] o =] o € PSSR 61
10.2.1 ENVIFONMENT RECOTNAS . ..uiiiiiiiiiieiiteiie ettt e e ettt e e e e s ettt e e e e e e s s anbeeeeaeeesannbeeeeeaeesaannnbeeeaeeesannnrens 61
10.2.2 Lexical ENVIroNMENnt OPEIAtiONScoiiiiiiiiiiiieie e ettt e e ettt e e e e e e e et e e e e e e e e anbeeeeeaeesaannsteeeeeeeeaannnens 68
O JRC B Oe o [o =T 111 1= S PR UPPTT 69
10.4 EXECULION CONEEXES oiiiiiiiiiiiiiee e ettt ettt e e e e sttt et e e e e o bbbt e e e e e e e s b bbb e et e e e e s annbbeeeeaeeeaanbabeeeeeeeeannnnees 69

Il © Ecma International 2012

secmd

10.4.1 1dentifier RESOIULIONottt ettt e e e e skt e e e e e e e e snbbbr e e e e e e aannaneeeeas 70
10.4.2 GetThISENVIFONMENT ...oiiiiiiii ittt ettt e e e st e e e st e e e s bbe e e e esbe e e e e nbbeeeeanbeeeesnsaeeeannes 70
10.4.3 ThiS RESOIULION «..eeiiiiiiiie ettt ettt e e e s bttt e e st et e e et be e e e anbee e e e bbee e e snbeeeesnbeeeeennes 70
10.5 Declaration Binding INStANtiationccuiiiiiiiiiccie e e r e e e e e e e e e e s e ee s 71
10.5.1 Top-Level Declaration INStaNtiationeevieiiiiiiiiiiee e e e e e e e e e e e s aaeeeeas 71
10.5.2 Module Declaration INStaNtiAtiONcciiuiiiiiiiiee et e e e e sbe e e e s sreeeeeanes 72
10.5.3 Function Declaration INStaNtiationc..vueiiieiiiiiiiee e r e e e r e e e s s s e e e e e s enneaneeees 72
10.5.4 Block Declaration INStANTIAtIONcoiiiiiiiiiiiee ettt e e s e e e e e e st ee e e e e e s e nnteeeeeeeeeennneeees 73
10.6 ArgUMENTS ODJECT .ottt ettt e ettt e e et et e e e bb e e e ek bb e e e e bb e e e e aabe e e e annneeeannee 74
11 EXPIESSIONS oietiiie ittt ettt s et e e snb e e s e Rttt e e 77
111 Primary EXPrESSIONS ...cii ittt eite ettt ettt et e e e ssbe e e e st sd e e b ar e e e ee et e e e bt e e e e aabe e e e aabeeeeeneee 77
11.1.1 THe this KEYWOIT ..ooueiiiiiiiie ettt ettt ettt e et e dR bt e ettt e e ettt e e e b e e e e sabe e e e sanneeeenees 78
I A o 1= o L AN T = =T = o = s SRR 78
T O T I (=1 = SRR 78
O AN g -V [VL= 1= S ST ERTT TP 79
11.1.5 ODBJECE INMHAIISE ..eeiiiiiiiiieiie ettt e ettt e e e e e e e bb e e e B e e abbte e e e e e e e annaneeeeas 82
11.1.6 Function Defining EXPreSSIONScoiiiiiiiiiiiiieeeeiiiiieee ettt e e e e e e beea e e Bt e e e e e e e e nneeeeas 85
11.1.7 Generator COMPIrENENSIONSuuiiiiiie ettt e ettt e ettt e e e s e sanbeeeeeasasanbhr e e e e e s e aneeneeeeas 86
11.1.8 Regular EXPresSion LItEralS ... cafiiiiies ettt e e e e s e satre e e e e e e s s sananatie e e e s e nneneeeeas 86
I e T =T o o o = L= T =T = = s SR o SRR 86
I 0 O B I Lo] o 10T o 1T g Lo @] o= = L o] S 90
O W= 4 B o P T Uo By o [g o =] o 1SS 90
L11.2.1 PrOPEITY ACCESSOIS iiiitiiiieeeei ittt ete e s sttt e et e e e s e aaa b e e et aa 2 AR R Rttt e e e o1 b b ettt e e e s e ass e e et e e e e e snnbeee et e e e aannnneeeeas 92
A N o Y= @ 01T = 1 (o] S PR UPPPPPPPROE 92
7 B U T Yox o o T = 11 PSPPI 93
11.2.4 The super KEYWOIToiiiiiiiiiiiiiieeiite st abee e iine e ettt e e e eateeesaambe s b s be e e e snbbe e e e s beeeeebbeeessnbeeesanbaeeeennee 94
2 T AN o 10 =T = S 95
2 G I = To [=T B =T 1 T o] = Lo S PP PRP PR 96
11.3 POSHIX EXPIrESSIONS ... ectiiimmneeeoureeeeriieeesiibee s ifeesaiteeeeeaiieee e st baa e e sstee e e aabeee e abbe e e e aabe e e e abbeeeaaabeeesanbaeeeannee 96
11.3.1 POSHiX INCremMENt OPEIALOL . cciiieeie it ib et ettt ettt e e et e e e et e e e abb e e e e sabe e e s anbneeeaneee 97
11.3.2 POStiX DECIEemMENTOPEIATOL Loiiiiteeitieee it ieeith e ettt e ettt e e e atbe e e e aabe e e e abbe e e e sabe e e e abeeeesasbeeeeabeeeesanbeeeeanes 97
R O [F= T A @ 01T =1 o T PO PP TP PPPRTP 98
11.4.1 THE delete OPEIALON .. .cciiiit ettt ettt et e s ittt e e ettt e e et et e e e ekt et e e aabe e e e aabb e e e e s be e e e ebbe e e e anbeeeeannneeeannes 98
11.4.2 THEe VOLd OPEIALOTIeeee ittt i e oo eaette sttt e e e ettt e e e abe e e e e et be e e e aabe e e e anbbe e e e s beeeeebbeeeeanbeeeeannneeeannee 99
I 0 T I oI o < Y=Y @ 01T 1 o | S SRR 99
11.4.4 PrefiXx INCreMENt OPEBIALOTi.ueiieiiiiieeiti ettt ettt ettt et e st et e stbe e e sbb et e s aebe e e e aabbeeesanbeeeesnnneeas 100
11.4.5 PrefiXx DECrEMENT OPEIALOL.eetiiiiiiiiitiee ettt ee sttt e et e et e et e e st e et e e aabe e e e sbbe e e s aaae e e e aabb e e e sanneeeesanneeas 100
11.4.6 UNAIY 4 OPEOIATOI ciuceiieeiiiitee ittt et e ettt e e s et e e e s s st e e e e s s b et e e e e e e s s e e et e e e s s sanrrneeee e e s nnrnees 100
R A © o = A O o1 = {0) T PO PP PR PP 101
11.4°8 BitWiSE NOT OPEIALOT (=~) .eeeeiiirteeeiitiieeaiitte e ittt e st e ettt et be e e e st bt e e e rabe e e e abb e e e s abbe e e e aabbeeesanbaeeesnnneeas 101
e I o Lo ot I A\ L@ I @ o L= = (o1 o (TP PO P TR 101
115 MUILIPLICAtIVE OPEIALOISeeeiiiiiiieiiiiie ettt ettt e st e e st e e s bb et e s aab et e e snbb e e e s anneeeesnnneeas 101
11.5.1 APPIYING thE % OPELALOLeeiiiiiiie ittt ettt e s b bt e e s sab et e e sab bt e e s anbneeesnnreeas 102
11.5.2 APPIYING TRE / OPEIALOTeeiiiieiie ettt st e ssb e e s bb e e e e aabe e e e snb b e e e s anaeeeesnneeeas 102
ST AN oY o A AT g Lo I (=TT @ o)1= = Lo S 103
IO S T N Lo [YL @ o =T - o PSSR 103
50 70 R I o T= N0 [TR oY g 0] o L= = o (R) ISR 103
11.6.2 The SUbtraction OPEIrAtOr (=) cccueeiiieeiiiiiiiiee e e s e srre e e e e s s rer e e e e e s et e e e e e e e s snraereeeeesannrareeeeeessnannrenes 104
11.6.3 Applying the Additive Operators t0 NUMDErS ..o 104
O A =Y TS Y =B 11 A @] =] = Lo = P EER 105
O R I o Lo =] a1 A @ =T = L o T G () T PSSR 105
11.7.2 The Signed Right Shift OPErator (>3).cccuuiiiiiiiiiiiiiri e e e e s e e e e s rrar e e e e e s nnnenees 105
11.7.3 The Unsigned Right Shift Operator ((>>>) v e 106
R R S (T P T o] g o W @] o =] 2= Lo] = TP PPRT PO 106
11.8.1 RUNTIME SEMIANTICS .oiiiiiiiiiiee ettt et e e e ettt e e oo e sttt e e e e e s b bbbttt e e e e e s s bb et e e e e e e anbbbaeeeeeeaannbnees 107
R I o [V - 1] @ o =T = (o] = RS 109
11.9.1 RUNEIME SEMANTICS ..iiiiiiiieiiiiie ittt sttt ettt e e st e e sttt e e st be e e e st b ee s bbe e e e snbbeeeaneeeeesnbbeeesannaeeesnneeeas 110

© Ecma International 2012 1

»ecma

11.10 BiNAry BitWiS@ O IALOIS .. .eiiiiiiiiitiiiiee e ettt e e e ettt e e e e e st e et e e e e e s bbbe e e e e e e s assbeeeeeeeeaannbbreeeeeeeaannes 112
5 R =Y o = A o Lo otz LI @ o T= - (o] USRS 113
11.12 Conditional OPEIrator (2 2) ciiicccierereeiiiiieeeee e s srirrrrreeesssitarrreeeessatereereaeesaasbraeeeeessanrnreeeeeessansnes 114
11.13 ASSIGNMENT OPEIALOIS ...eeeiiiiiee ittt ettt e e e e e a bt ettt e e e e e s abe e et e e e e e s abbbeeeeeesaaanbeeeeeeseannrees 115
S = LTS =T 4 1= Vg 1 o= SRS TPR 115
RUNTIME SEMANTICS ..eiiiiiiiiiii ittt ra et e e st et e e s h b et e e sab bt e e e bttt e e aabbe e e e abbeeeesnsbeeesnnbeeeeanneeeean 116
11.13.1 DeStruCturing ASSIGNMENT ...cccoiiiiiiiiee et e e e e e et r e e e e e st e e e e e s sateteeeeeeesssssbaereaeeesanstnraeeeeeesannnes 116
1114 COMMEA OPEFALOT ([;) teeteiiuteieeiiteiteitieee ettt e sttt e e sttt e e s ettt e e aabbe e e s sttt e e anbbeeessbe e e s anbbeeesanbaeeeasbeeesanreas 120
12 Statements and DECIAratiONScoiuiiiiiiiii e e ettt e et e s bb e e sneeee s 121
SEALIC SEMANTICS ..uuuiiiiiii et e e e e e e e s st ee e e e e e s s ssssteaeeeeessanssneeeeeeesesnsssdansinsesnssnnneeeeesnannneneeeennn 121
RUNEIME SEMANTICS ..oiiiiiiiiiiiiieii ettt e sttt e e sebe e e e snbeeee s s afeaanab e e s sttt e e sntbeeesbeeeeennneeeean 121
520 O = oo D SRS 122
12.2 Declarations and the Variable Statement..........oooiiieiie i e 124
12.2.1 Let and CoNSt DECIAratioNS ...ccoii i et eerieer e e e s dheaaese e eeaneaasi e asbeeeeaeessansbeneeeneeenanne 124
12.2.2 Variable StAtEMENT ...t e e e e e fart e s e e s e snteeeeesasaaa b a e e eeeeeennbeeeeeeeeennneees 127
12.2.4 Destructuring Binding PatterNSoooiiiiiiiiiiieeiiiiie e afe it e e e e e e B e e e e eneeeeeeaeeeeannes 129
12.3 EMPLY STALEMENT ..oeeiiiiiieiieiee bt 134
12.4 EXPreSSioN STAtEMENTot eiiiiie e e ife e e e e sttt et e e e e e sibeteeaaeeeeabseeeesaasaadhebeeeeeaeeennneees 134
125 The 1€ SEAIEMENT...ciii ekttt e e et e st et e e e e e e e eabsbeeeeeeesannna bR e e e e e e nneees 134
12,6 teration StAt@MENTSoouiiiiiiie it fe s e snbe e e e e e e seebeeesfe e e s e Bu et ee e e e e e s abbbeeeeaessansbeeeeaaeeannnrees 135
12.6.1 The do-while Stal@MENT......coii e i b e e e o et e e e e sttt e e e e e e satbe e e e e e e e s anbereeeeeeeaannes 136
12.6.2 The while STAt@MENTueiiiiii i tre e B f bttt e e e ettt e e e e e et b be e e e e e e e nnbeeeaeeeeenneees 136
12.6.3 The £Or STALEMENT ..ottt et e e e e e e ettt e e e e e eaab bt e e e e e e e e abbbeeeeaeeaannbeeeeaeeeannnrens 137
12.6.4 The for-in and £or-0f StaleMENTS L it . i e et e e e e e e e e e e e e e e e anneeee 138
12.7 The continue StAlEMENT.o i i ittt e e e e e asee e tie e teteeeeeeeeaannbeeeeaeessansnneeeaeeeaannnes 141
D2 B N ol 3 N] = 1= 4= o | 142
12,9 The return StAlEMENTo et e e e e st e et e e e s T bn et eeeesannteaeeeaeeaaanesaneeeeessannsteneeeeesannnenes 142
2 O T I g oI v R o e R - =0 =1 o 143
2 R I g o= G ol o RS = 0 0= S 144
2 A I 1o 1 =To B L =T 1= 0 £ PP SOTPRR 148
12.13 The throw STAtEMENT et e e s e e e e e e s st eeeeaeesasstaaeeeeeessasstaneeeeeeannnenns 149
12,14 The try STAEMENT ... et e e b e e e e e s e st e e e e e s e s steaeeeae e s s staaeeeeeessasnteneeeeeeannnrnns 149
12.15 The debugger STAtEMENT ... it e crereesieees i ere e e e e s e sstereeeaeessatsteeeeeeesasssbeaeeeeassassnraeeeeessansnns 151
13 FUNCLIONS ANA GENEIALOIS ... veiiiiiiiieeitiiiieiibieae e eeteeeeateteeestbeeesssbeee e ettt e e e ssbeeeeanbaeeeaasbeeesanbeneeaasbeeesanees 152
e 70t R UV o3 7o T o =) 1 e g PP 152
13.2 ArrowW FUNCEION DEfiNITIONSiuiiiiiiiiie ittt s e st e s st e e s e nb e e s nnneas 157
R TR T | =1 o [0 To I 1= {1 Yo o S PP POTPR 159
f13.4 « Generator DEfiNITIONSc. i i e oo e e e et r e e e e e st e e e e e s e ssseaeeeeeeessnnaneeeeeeesasnnneeeens 162
R T8 O - TS =Y T 114 o] = 164
13.6 Creating Function OBjects and CONSIIUCLOIS ...ccciiuiiiiiiiiie ittt 167
13.7 Tail POSIIION CAlISiiiiiiieiiiiiiiie ettt e ettt e e e e s st e e e e e e snnee e eeaeeseaasnbeaeeeeessansnneeeeeeeannnnes 169
14 Programs . and MOTUIEScooiiiiiiiiie ettt e e s e b e e e e 169
14.1 Directive Prologues and the Use StriCt Dif€CTIVE.......coouiiiiiiiiieiiii e 170
15 Standard Built-in ECMASCIIPt ODJECISooiiiiiiiiiiee e 170
T R I o L= €1 o] o = U @ o [T o S PP RETR 171
15.1.1 Value Properties of the Global ODJECT..........oi e 172
15.1.2 Function Properties of the Global ODJECT ... 172
15.1.3 URIHandling FUNCLION PrOPEITIESociiiiiiiiieiee ettt ettt e e e e e eib e e e e e e aanees 174
15.1.4 Constructor Properties of the Global ObJECT..........c.uviiiiii i 179
15.1.5 Other Properties of the Global ObJECT ... e 180
T © o] 1= f @]] =T] £ USSP 180
15.2.1 The Object Constructor Called as a FUNCHIONuviiiiii i 180
ST N o T @ o =T od a @0 £ 1= € U (o o SRS 180
15.2.3 Properties of the ODJECt CONSTIUCTON ..c.o.uiiiiiiiiie e 181
15.2.4 Properties of the Object Prototype ODJECT.........ooiiiiiiiiie s 184
15.2.5 Properties Of ODJECT INSTANCEScoiiiiiiiiii it e st e e e eaeees 186

v © Ecma International 2012

»ecma

15.3 FUNCHON O JOCES it e e e e et e eeteeaeaaeaeeaaaaaaaaaaaaaaaeaaeaaaeaaaas 186
15.3.1 The Function Constructor Called as @ FUNCLIONcccuiiiiiiiie e 186
15.3.2 The FUNCLION CONSIIUCTON ..uiiiiiiiiie ittt sttt sttt e e sae e e st e e s bt e e e snbt e e e sanbeeeesnnneeas 186
15.3.3 Properties of the FUNCLION CONSIIUCTONuiiiiiiiiiiiieie e e e e e e e e s e e e e e e e s e e e e e e s nnnenees 187
15.3.4 Properties of the Function Prototype ODJECTuuiiiiii it 188
15.3.5 Properties of FUNCLION INSTANCESccooiuiiiiii et e e e e s ee e e e e s e e e e e e e nnnneees 190
ST N 8- | ©] oo (= PP PPTPRP 191
15.4.1 The Array Constructor Called as @ FUNCLIONc.uiiiiiiiiiiiie e 192
15.4.2 THE AITAY CONSIIUCTON 1eiiiiiiiiiiiiiie ettt ettt ettt e ekt e e sttt e e bbbt e e s abb et e s bbb e e e anbb e e e sannneeesnnneeas 192
15.4.3 Properties Of the Array CONSIIUCTONuuiii ittt sneeees 193
15.4.4 Properties of the Array Prototype ODJECTeviiiiiiiiiii e 194
15.4.5 Properties Of Array INSTANCESccoiiiiiiiiiiieiiiie ettt fo et e e 213
TSI 1 [Yo [@ o] =T ox £ R ST PRR O 215
15.5.1 The String Constructor Called as a FUNCLION ... e 215
15.5.2 The String CONSIIUCTON ...ueiiiiiiiiiiiiieite ettt e ettt e e e e sbeeesdhe e e aa e aaeeeesaeeeaihe e eeeeeessnebbaeeeeeesannenees 215
15.5.3 Properties 0f the String CONSIIUCTON........uuiiiii i ee e e e e e e s s Sbr e e e e e eaera e e e e e e s e naneeees 215
15.5.4 Properties of the String Prototype ODJECT ... i i i e 217
15.5.5 Properties Of String INSTANCESuiiiii i sfe e ia et e e e e e e s reesase e et ne e eee e e e e e s e naneeees 229
ST ST = Yo Yo 1= T= U I @ o =T o S SRS 229
15.6.1 The Boolean Constructor Called as @ FUNCLION it s 229
15.6.2 The B0OOIEaN CONSIIUCTON ..iviiiiiiiiiiiiee e e it e e e e s asntbn e e e e e s eeeeee e adenanann s aeeeeeeassnnsteneeeeesannsnnneeeeeesnnnnenees 230
15.6.3 Properties of the BOOIean CONSIIUCTONuuiiiiii ittt sdeeaeasseseiieeeeeeessssteeereaeessnsseereeeeesensnenees 230
15.6.4 Properties of the Boolean Prototype ODJECTiiiiiiiidiniirt et 230
15.6.5 Properties 0f BOOIEAN INSTANCEScoiiiiiiiiiiiiie ettt nn e snaeeas 231
T A V(01401 o =) G O] o] =T o £ T TSP O PP PTPPPPI 231
15.7.1 The Number Constructor Called as'@ FUNCHIONoooiuiiiiie i 231
15.7.2 The NUMDEr CONSIIUCTON ...iiiiiiiiiiiiisie ittt aes s oo oo tetee e e s e s s s s bae e ee e e e e e sanbbeeeeaeesanbabneeaaessannenees 231
15.7.3 Properties of the NUMDEr CONSTIUCTOT .iu..iiii it ibt et e e e e e e s eneees 231
15.7.4 Properties of the Number Prototype OBJECT ...t i 233
15.7.5 Properties 0f NUMDEr INSTANCESciiiieiedeiaiitiiiie e e e e cees e e e e s e se e e e e e e e srb e e e e e e e s sntareeeeeessannreees 237
TR T I o L=V = 1 T o] = o3 A RS 237
15.8.1 Value Properties of the Math OBJECt ... e 238
15.8.2 Function Properties of the Math ODjJECT ...t e 239
TR T I T 1 = @] o =T PSSR 246
15.9.1 Overview of Date Objects and Definitions of Abstract Operatorscccccccvveveveeiviciieeeeeeesssnene 246
15.9.2 The Date Constructor Called as a FUNCHIONc..oiiiiiiiiiiiieeriiee e 251
15.9.3 The Date CON S I UCTON ce i uurieieie ettt ite e e ettt e e e e e e et ee e e e e e et teeeaeeesanetaeeeeeesaanstaeeeeeeeeaannnneeeeeeesannnenees 251
15.9.4 Properties Of the Date CONSTIUCTONcouiiiiiiiiiiiiiiie e saeee s 252
15.9.5 Properties of the Date Prototype ODJECT..........evi it 253
15.9.6 Properties Of Dat@ INSTANCES ... ti.iiiiuiiiiiiiiie ettt ettt e e snn e e e snneeas 261
15.10 RegExp (Regular EXPression) OBJECTSccoiiiiiiiiiiieiiiiie ettt 261
LT O == =T 0 SR TPS 261
15.20.2 PAEIN SEIMANTICS .iiiiieiiiiieee ettt e et e e e ettt e e e e s ettt et e e e e e s e hbbe e e e e e e e e aanbbeeeeaeeesanbbbneeaeesaannenees 263
15.10.3 The RegExp Constructor Called as a FUNCLION ... 275
15.10.4 The REGEXDP CONSIIUCTONeiiiiiiiieiiiiie ettt ettt st e e e ssb et e e s be e e s nsee e e e snsbeeesanbaeeesnneeeas 275
15.10.5 Properties 0f the REGEXP CONSIIUCTIOT ...uuviiiiiiiiiiiiir e e e e e e s e e e e e s nnarae e e e e e s nanenees 276
15.10.6 Properties of the RegEXp Prototype ODJeCtc.cuviiiiie i 276
15.10.7 Properties OFf REGEXP INSTANCESiiviiiiiiiiiii et e et e s e e e e e s s e e e e e e st ee e e e e e e e nnnnneees 278
L T80 I R oY G oY =T o] £ RS 279
15.11.1 The Error Constructor Called as a FUNCLIONc.uuiiiiie i ee e e 279
P00 I O I o Lo o] @] 1S3 1 0o o PSS 279
15.11.3 Properties Of the Error CONSTIUCTONoouiiiiiiiiii ettt 279
15.11.4 Properties of the Error Prototype ODJECT..........ii it 280
15.11.5 Properties Of ErrOr INSTANCEScii ittt ettt et e e e snn e e e snneeas 280
15.11.6 Native Error Types Used in This Standardeooiiiiiiiiiiiiiee et 280
15.11.7 NatiVEETITOr ODJECE STFUCTUIEeeieiiiie ettt et e e e e e e s bb e e e e e e e e anbnbeeeaeeeseannenees 281
LT N LI 1T @ V@] o] =T o] A SRS 283
15.12.1 THE JSON GFAMIMAiitiiiiiieei ittt e ettt e e e e s e et ee et e e e e s s s bbb et e ea e e s abbbee et e e e e aaasbbeeeeaeeeaanbbbneeeeeesansnrnees 283
15.12.2 PArSe (1eXE [, FEVIVEE |) iiiiii it e e e e e e e e eeteeeeeeaaaaaaaaaaaaaaaaaaaeaaeanaeanaas 285

© Ecma International 2012 V

»ecma

15.12.3 stringify (value [, replaCer [, SPACE []).t ettt ettt ettt e e e e e e e e 286
15.13 BiINAry Data ObjJECESciiiiiiiiie ettt e e s e e e e e e e e e e e e e e s sateae e e e e e s e atateeeeeeeaanantaeeeeeeeaaanrees 290
15.13.1 The BiNaryData MOGUIE.......cciiii ittt e e st e e e e e st e e e e e e s sasbeaeeeeeessntnreeeeeeenannes 290
15.13.2 The BinaryData. TYPE ODJECT ... ciiiiiie et er e e e e e e e e st e e e e e e e s anbe e e e e e s sannraaeeeeeesannnes 290
15.13.3 The BinaryData. Array TYPE ODJECTccieii ittt s st e e e e e e et ae e e e e e s st e e e e e e e annnnes 290
15.13.4 The BinaryData.StruCtTYPE ODJECT ...ooiiiiiiiieeee e e e e e e s st e e e e e e nnnnnes 290
15.13.5 ArrayBUTfEIODJECTS .oiiiiiiiiiiiie ettt ettt et e e s bt et e b bt e e nb b nanaeas 290
15.13.6 TYPEATTAY ODJECT STIUCTUIESttt e e et e e s eab e e e nbeas 291
15.13.7 DAtAVIEW ODjJECESeiiiiuiiiieitiite ettt ettt r bttt e e sab et e st bt e e s bbbt e e sabb et e s bbbt e e anbb e e e sabbeeesnnnneas 296
T Y =T o I @ o] =T o £ T OO PP PU PP PUP PP 300
15.14.1 Abstract Operations FOr Map ODjJECESoiiiiiiiiiiiiiiie e s 300
15.14.2 The Map Constructor Called as a FUNCLIONoocuiiiiiiiiiiiieee it 300
15.14.3 THhe MaAP CONSIIUCTONuieiiiiiie ettt ettt e e e e ettt e e e e e e e sabbeeeeeaeesab b Re e e e e e e e abbbeeeaaaeaaaanbeeeaaaeeannnrees 301
15.14.4 Properties Of the Map CONSTIUCTOLciiiiiiiiiiiie ettt sfe e e s s e b et e e e e e e sbereeeaeeaaanenes 301
15.14.5 Properties of the Map Prototype ODjJECT........ouii i it 301
15.14.6 Properties 0f Map INSTANCESccuviiiiie e s ettt e e e e st rar e e e e s seteteeeeaaaaaaabbeeeeeeessanteneeeeeessansnes 304
15.14.7 Map [terator ODJECES ...coiiiiiieiie et e e s e e cians e bt e e e e e e st aeeeee e s e sannnabie e e s e nntaeeeeeesannnrens 304
15.15 WEAKMAP ODjJECES ..uvviiiiiiiiiiiiiiiie e s ettt e e e e e s sttt e e e e s s st adbeaaaaaestaaaeeeeessanssteeeeaessanssssanaaadiesnsnseeeeeesannnnes 305
ST SIS Y= A @ o 1= o £ S SRS 305
15.17 The REfIECT MOAUIEcoiiiiiieiie e ettt ettt sttt e e st e e s ate e e e s nea et eeenenaeas 305
T RS o o TV O o] =T o £ o PSPPI 305
16 T 0] P e PSP PPTTR R PPPPPPNE 305
Annex A (informative) Grammar SUMMAIYcooiiueieiiieeeaiieiisssssaeesteeeeaatseeessbeeeesatseeessbeeessnsseesssseeeesnes 308
Al LeXICAl GraMIMA ... eeiiiieeeiiiiieeeee e s e e e e atteeeeaeeesnsteeeesaeeaadhe e eeeeaeeseannnbeeeeeeeeaannbeeeeaaeeaansnseeeaeeanns 308
A.2 N TU] gl o=t g @ T V=T] o T o B R SSPRRR 314
A3 SN g o] =3 [0 [T e ST SO PO P PP PRSP 315
A4 S =T £ 1= 0] K T TSP TR PR PROTPRPUPPPPPRt 319
A5 FUNCLIONS and Programs ...t eeifeee et e s e et e e e e ettt e e e e e et e e e e e e e e annnbeeeaaeaeas 321
A.6 Universal Resource ldentifier Character CIaSSESccociiiiiiiiiiiiee e 322
A7 e LU LoV ot o = ToX=Y (o = PP PRR 322
A.8 0811 @ S S PPSRO 324
A.8.1 JSON LEXICAI GIIMIMIA ... eieiituieeitieeeeiteeeesabeeeaiereeesateeeesasteeesssteeesaatseeesasteeeesasseessssseeeesasseesssnseeeesnes 324
A.8.2 JSON SYNTACHIC GramMIMaArieeereeeeiiiureeeeeeesiiiisrebeeeesassteteeeeeesssssstereeeaessaastsreeeeessaassrenreeeesssnssreneeeenaan 325
Annex B (normative) Additional ECMAScript Features for Web BrowsSerscccccccovvcvveeeeeeiivciiieneeennn 328
B.1 F o o L1 Ao T = TS Y = O eSS SSUPPRER 328
2 00 Ot [0 T o Y= ol = =Y RS 328
2 S 1 1 [I L (=] = 1 SRS OTPRPPPP 328
B.2 F o o T A Lol at= I el fe] oL=T 4 A [=T T PO P P OPPRP 329
B.2.1* Additional Properties of the Global ODJECT..........c..oii i 329
B.2.2° Additional Properties of the String.prototype ODJECTcc.eviiiiiiiiiiiiee e 330
B.2.3 Additional Properties of the Date.prototype ODJECTcccuiiiiiiiiiiii e 333
B.3 Other AdditioNal FEALUIEScooiiiiiiie ettt e e e e s sttt e e e e e sanbrbeeeaeeeaannnes 334
B.3.1 The _ _Proto__ PSEUOO PrOPEITY...cccueiiiiiiiieiitet ettt ettt ettt et e s st e s e e snn e e nanneee s 334
Annex C (informative) The Strict Mode Of ECMASCIIPE...uiiiiiiie et sieee e staee et e s sraee e sreeeeanes 336
Annex D (informative) Corrections and Clarifications with Possible Compatibility Impact 338
T o 11 o T o T T RSP STURP PRI 338
TS T00 R =T T3 (10 o = RSP RPTR 338
IN S EQItION 5 oottt ettt ettt ettt ae b e bt et e st e ae b e et et et enaebeeteete et eneereebeereete st ennene e 339
Annex E (informative) Additions and Changes that Introduce Incompatibilities with Prior

o 1 (T 1 PSR 342
IN @ B EGItION ... bbb 342
IN ERE B EGItION .. bbb 342
Annex F (informative) Static Semantic Rule Cross Referenceccocvviiiieiiiiiiii e 346
ST od = 1o I o (=T o PP P PP PPTPRPPUPPPRPP 348

VI © Ecma International 2012

© Ecma International 2012

VI

»ecma

Introduction

This Ecma Standard is based on several originating technologies, the most well known being JavaScript
(Netscape) and JScript (Microsoft). The language was invented by Brendan Eich at Netscape and first
appeared in that company’s Navigator 2.0 browser. It has appeared in all subsequent browsers from Netscape
and in all browsers from Microsoft starting with Internet Explorer 3.0.

The development of this Standard started in November 1996. The first edition of this Ecma Standard was
adopted by the Ecma General Assembly of June 1997.

That Ecma Standard was submitted to ISO/IEC JTC 1 for adoption<under the fast-track procedure, and
approved as international standard ISO/IEC 16262, in April 1998. The Ecma General Assembly of June 1998
approved the second edition of ECMA-262 to keep it fully aligned with ISO/IEC 16262. Changes between the
first and the second edition are editorial in nature.

The third edition of the Standard introduced powerful regular expressions, better string handling, new control
statements, try/catch exception handling, tighter definition of errors, formatting for numeric output and minor
changes in anticipation of forthcoming internationalisation facilities and future language growth. The third
edition of the ECMAScript standard was adopted by the Ecma General Assembly of December 1999 and
published as ISO/IEC 16262:2002 in June 2002.

Since publication of the third edition, ECMAScript has.achieved massive adoption in conjunction with the
World Wide Web where it has become the programming language that is supported by essentially all web
browsers. Significant work was done to develop a fourth edition of. ECMAScript. Although that work was not
completed and not published?! as the fourth edition of ECMASecript, it-informs continuing evolution of the
language. The fifth edition of ECMAScript (published as ECMA-262 5 edition) codifies de facto
interpretations of the language specification that have become common among browser implementations and
adds support for new features that have emerged since the publication of the third edition. Such features
include accessor properties, reflective’ creation and inspection of objects, program control of property
attributes, additional array manipulation functions, support for the JSON object encoding format, and a strict
mode that provides enhanced error checking and program security.

The edition 5.1 of the ECMAScript Standard has been fully aligned with the third edition of the international
standard ISO/IEC 16262:2011.

This present sixth edition of the Standard.........

ECMAScript is a vibrant language and the evolution of the language is not complete. Significant technical
enhancement will continue with future editions of this specification.

This Ecma Standard has been adopted by the General Assembly of <month> <year>.

1 Note: Please note that for ECMAScript Edition 4 the Ecma standard number “ECMA-262 Edition 4” was reserved but not
used in the Ecma publication process. Therefore “ECMA-262 Edition 4” as an Ecma International publication does not
exist.

VIII © Ecma International 2012

»ecma

"DISCLAIMER

This draft document may be copied and furnished to others, and derivative works that comment on or
otherwise explain it or assist in its implementation may be prepared, copied, published, and distributed,
in whole or in part, without restriction of any kind, provided that the above copyright notice and this
section are included on all such copies and derivative works. However, this document itself may not be
modified in any way, including by removing the copyright notice or references.to Ecma International,
except as needed for the purpose of developing any document or deliverable produced by Ecma
International.

This disclaimer is valid only prior to final version of this document. After approval all rights on the
standard are reserved by Ecma International.

The limited permissions are granted through the standardization phase and will not be revoked by
Ecma International or its successors or assigns during this time.

This document and the information contained herein is provided on an "AS IS" basis and ECMA
INTERNATIONAL DISCLAIMS ALL WARRANTIES, EXPRESS OR IMPLIED, INCLUDING BUT NOT
LIMITED TO ANY WARRANTY THAT THE USE OF THE INFORMATION HEREIN WILL NOT INFRINGE
ANY OWNERSHIP RIGHTS OR ANY IMPLIED WARRANTIES OF MERCHANTABILITY OR FITNESS FOR
A PARTICULAR PURPOSE."

© Ecma International 2012 IX

secma

ECMAScript Language Specification

1 Scope

This Standard defines the ECMAScript scripting language.

2 Conformance

A conforming implementation of ECMAScript must provide and support<all the types, values, objects,
properties, functions, and program syntax and semantics described in this specification.

A conforming implementation of this Standard shall interpret characters in conformance with the Unicode
Standard, Version 5.1.0 or later and ISO/IEC 10646. If the adopted ISO/IEC 10646-1 subset is not otherwise
specified, it is presumed to be the Unicode set, collection 10646:

A conforming implementation of ECMAScript is permitted to provide additional types, values, objects,
properties, and functions beyond those described in this specification. In particular, a conforming
implementation of ECMAScript is permitted to provide properties not described in this specification, and
values for those properties, for objects that are described in this specification.

A conforming implementation of ECMAScript<is permitted to support program and regular expression syntax
not described in this specification. In particular, a conforming implementation of ECMAScript is permitted to
support program syntax that makes use of the “future reserved words” listed in 7.6.1.2 of this specification.

3 Normative references

The following referenced documents are indispensable for the application of this document. For dated
references, only the edition cited applies. For undated references, the latest edition of the referenced
document (including any amendments) applies.

ISO/IEC 9899:1996, Programming Languages — C, including amendment 1 and technical corrigenda 1 and 2
ISO/IEC 10646:2003: Information Technology — Universal Multiple-Octet Coded Character Set (UCS) plus
Amendment 1:2005, Amendment 2:2006, Amendment 3:2008, and Amendment 4:2008, plus additional
amendments and corrigenda; or successor

The Unicode Standard, Version 5.0, as amended by Unicode 5.1.0, or successor

Unicode Standard Annex #15, Unicode Normalization Forms, version Unicode 5.1.0, or successor

Unicode Standard Annex #31, Unicode Identifiers and Pattern Syntax, version Unicode 5.1.0, or successor.

4 Overview
This section contains a non-normative overview of the ECMAScript language.

ECMAScript is an object-oriented programming language for performing computations and manipulating
computational objects within a host environment. ECMAScript as defined here is not intended to be
computationally self-sufficient; indeed, there are no provisions in this specification for input of external data or
output of computed results. Instead, it is expected that the computational environment of an ECMAScript
program will provide not only the objects and other facilities described in this specification but also certain
environment-specific objects, whose description and behaviour are beyond the scope of this specification
except to indicate that they may provide certain properties that can be accessed and certain functions that can
be called from an ECMAScript program.

© Ecma International 2012 1

secma

A scripting language is a programming language that is used to manipulate, customise, and automate the
facilities of an existing system. In such systems, useful functionality is already available through a user
interface, and the scripting language is a mechanism for exposing that functionality to program control. In this
way, the existing system is said to provide a host environment of objects and facilities, which completes the
capabilities of the scripting language. A scripting language is intended for use by both professional and non-
professional programmers.

ECMAScript was originally designed to be a Web scripting language, providing a mechanism to enliven Web
pages in browsers and to perform server computation as part of a Web-based client-server architecture.
ECMAScript can provide core scripting capabilities for a variety of host environments, and therefore the core
scripting language is specified in this document apart from any particular host environment.

Some of the facilities of ECMAScript are similar to those used in other programming languages; in particular
Java™, Self, and Scheme as described in:

Gosling, James, Bill Joy and Guy Steele. The Java™ Language Specification. Addison Wesley Publishing Co.,
1996.

Ungar, David, and Smith, Randall B. Self: The Power of Simplicity. OOPSLA '87 Conference Proceedings, pp.
227-241, Orlando, FL, October 1987.

IEEE Standard for the Scheme Programming Language. |IEEE Std 1178-1990.

4.1 Web Scripting

A web browser provides an ECMAScript host environment for client-side computation including, for instance,
objects that represent windows, menus, pop-ups, dialog boxes; text areas, anchors, frames, history, cookies,
and input/output. Further, the host environment provides a_means to. attach scripting code to events such as
change of focus, page and image loading, unloading, error and abort, selection, form submission, and mouse
actions. Scripting code appears-within'.the HTML and-the displayed page is a combination of user interface
elements and fixed and computed text and images. The scripting code is reactive to user interaction and there
is no need for a main program.

A web server provides a different host.environment for server-side computation including objects representing
requests, clients, and files; and mechanisms to lock-and share data. By using browser-side and server-side
scripting together, it is possible to distribute computation between the client and server while providing a
customised user interface for a Web-based application.

Each Web browser and server that supports ECMAScript supplies its own host environment, completing the
ECMAScript execution environment.

4.2 Language Overview

The following is an informal overview of ECMAScript—not all parts of the language are described. This
overview is not part of the standard proper.

ECMAScript is object-based: basic language and host facilities are provided by objects, and an ECMAScript
program is a cluster of communicating objects. An ECMAScript object is a collection of properties each with
zero or more attributes that determine how each property can be used—for example, when the Writable
attribute for a property is set to false, any attempt by executed ECMAScript code to change the value of the
property fails. Properties are containers that hold other objects, primitive values, or functions. A primitive
value is a member of one of the following built-in types: Undefined, Null, Boolean, Number, and String; an
object is a member of the remaining built-in type Object; and a function is a callable object. A function that is
associated with an object via a property is a method.

ECMAScript defines a collection of built-in objects that round out the definition of ECMAScript entities. These

built-in objects include the global object, the Object object, the Function object, the Array object, the String
object, the Boolean object, the Number object, the Math object, the Date object, the RegExp object, the

2 © Ecma International 2012

»ecma

JSON object, and the Error objects Error, EvalError, RangeError, ReferenceError, SyntaxError,
TypeError and URIError.

ECMAScript also defines a set of built-in operators. ECMAScript operators include various unary operations,
multiplicative operators, additive operators, bitwise shift operators, relational operators, equality operators,
binary bitwise operators, binary logical operators, assignment operators, and the comma operator.

ECMAScript syntax intentionally resembles Java syntax. ECMAScript syntax is relaxed to enable it to serve as
an easy-to-use scripting language. For example, a variable is not required to have its type declared nor are
types associated with properties, and defined functions are not required to have their declarations appear
textually before calls to them.

4.2.1 Objects

ECMAScript does not use classes such as those in C++, Smalltalk, or Java. Instead objects may be created in
various ways including via a literal notation or via constructors which create objects and then execute code
that initialises all or part of them by assigning initial values to their properties. Each constructor is a function
that has a property named “prototype” that is used to implement prototype-based inheritance and shared
properties. Objects are created by using constructors in new expressions; for example, new
Date (2009,11) creates a new Date object. Invoking a constructor without-using new has consequences that
depend on the constructor. For example, Date () produces a string representation of the current date and
time rather than an object.

Every object created by a constructor has an implicit reference (called the object’s prototype) to the value of
its constructor’'s “prototype” property. Furthermore, a prototype may have a non-null implicit reference to its
prototype, and so on; this is called the prototype chain. When a reference is made to a property in an object,
that reference is to the property of that name in the first object.in the prototype chain that contains a property
of that name. In other words, first the object mentioned directly is examined for such a property; if that object
contains the named property, that is the property to which the reference refers; if that object does not contain
the named property, the prototype for that object is'examined next; and so on.

A A ... >
--------- o implicit prototype link
prototype > CFRy | ..
Pl
- — explicit prototype property

--------- Cfl s Cf2 Cf3 Cf4 Cf5
ql ql ql gl ql
q2 q2 g2 a2 g2

Figure 1 — Object/Prototype Relationships
In a class-based object-oriented language, in general, state is carried by instances, methods are carried by

classes, and inheritance is only of structure and behaviour. In ECMAScript, the state and methods are carried
by objects, while structure, behaviour, and state are all inherited.

© Ecma International 2012 3

secma

All objects that do not directly contain a particular property that their prototype contains share that property
and its value. Figure 1 illustrates this:

CF is a constructor (and also an object). Five objects have been created by using new expressions: cfi, cfy,
cfs, cfs, and cfs. Each of these objects contains properties named g1 and g2. The dashed lines represent the
implicit prototype relationship; so, for example, cfs's prototype is CF,. The constructor, CF, has two properties
itself, named P1 and P2, which are not visible to CFy, cfy, cfa, cfs, cfs, or cfs. The property named CFP1 in CFp
is shared by cfy, cf,, cfs, cfs, and cfs (but not by CF), as are any properties found in CFy’s implicit prototype
chain that are not named g1, g2, or CFP1. Notice that there is no implicit prototype link between CF and CF,.

Unlike class-based object languages, properties can be added to objects dynamically by assigning values to
them. That is, constructors are not required to name or assign values to all or.any of the constructed object’s
properties. In the above diagram, one could add a new shared propertyfor cfi, cf,, cfs, cfs, and cfs by
assigning a new value to the property in CFy.

4.2.2 The Strict Variant of ECMAScript

The ECMAScript Language recognises the possibility that some users of the language may wish to restrict
their usage of some features available in the language. They might do so in the interests of security, to avoid
what they consider to be error-prone features, to get enhanced error checking, or for other reasons of their
choosing. In support of this possibility, ECMAScript defines a strict variant of the language. The strict variant
of the language excludes some specific syntactic and semantic features of the regular ECMAScript language
and modifies the detailed semantics of some features. The strict variant also specifies additional error
conditions that must be reported by throwing error exceptions in situations that are not specified as errors by
the non-strict form of the language.

The strict variant of ECMAScript is commonly referred to as.the strict mode of the language. Strict mode
selection and use of the strict mode syntax and semantics of ECMAScript is explicitly made at the level of
individual ECMAScript code units. Because strict mode is selected at the level of a syntactic code unit, strict
mode only imposes restrictions_that have local effect within such a code unit. Strict mode does not restrict or
modify any aspect of the ECMAScript semantics that must operate consistently across multiple code units. A
complete ECMAScript program may be composed for both strict mode and non-strict mode ECMAScript code
units. In this case, stricttmode only applies when actually. executing code that is defined within a strict mode
code unit.

In order to conform to this specification, an ECMAScript implementation must implement both the full
unrestricted ECMAScript language and the strict mode variant of the ECMAScript language as defined by this
specification. In addition, an implementation must support the combination of unrestricted and strict mode
code units into a single composite program.

4.3 Terms and definitions

For the purposes of this document, the following terms and definitions apply.

43.1

type

set of data values as defined in Clause 8 of this specification

4.3.2

primitive value

member of one of the types Undefined, Null, Boolean, Number, or String as defined in Clause 8
NOTE A primitive value is a datum that is represented directly at the lowest level of the language implementation.
4.3.3

object

member of the type Object

NOTE An object is a collection of properties and has a single prototype object. The prototype may be the null value.

4 © Ecma International 2012

»ecma

4.3.4
constructor
function object that creates and initialises objects

NOTE The value of a constructor's “prototype” property is a prototype object that is used to implement inheritance
and shared properties.

4.35
prototype
object that provides shared properties for other objects

NOTE When a constructor creates an object, that object implicitly references the constructor’s “prototype” property
for the purpose of resolving property references. The constructor's “prototype” property can be referenced by the
program expression constructor.prototype, and properties added to an object’s. prototype are shared, through
inheritance, by all objects sharing the prototype. Alternatively, a new object may be created with an explicitly specified
prototype by using the Object. create built-in function.

4.3.6

ordinary object

object that has the default behaviour for the internal methods that must be supported by all. ECMAScript
objects.

4.3.7

built-in object

object supplied by an ECMAScript implementation, independent of the host environment, that is present at the
start of the execution of an ECMAScript program

NOTE Standard built-in objects are defined in this specification, and.an ECMAScript implementation may specify and
define others. A built-in constructor is a built-in object that is also a constructor.

4.3.8

exotic object

object that has some alternative behaviour for one or more of the internal methods that must be supported by
all ECMAScript objects:

NOTE Any object that is not an ordinary object is an exotic object.

4.3.9
undefined value
primitive value used when a variable has not been assigned a value

4.3.10
Undefined type
type whose sole value is the undefined value

43.11
null value
primitive value that represents the intentional absence of any object value

4.3.12

Null type

type whose sole value is the null value
4.3.13

Boolean value

member of the Boolean type

NOTE There are only two Boolean values, true and false.

© Ecma International 2012 5

secma

4.3.14
Boolean type
type consisting of the primitive values true and false

4.3.15
Boolean object
member of the Object type that is an instance of the standard built-in Boolean constructor

NOTE A Boolean object is created by using the Boolean constructor in a new expression, supplying a Boolean
value as an argument. The resulting object has an internal property whose value is the Boolean value. A Boolean object
can be coerced to a Boolean value.

4.3.16
String value
primitive value that is a finite ordered sequence of zero or more 16-bit unsigned integer

NOTE A String value is a member of the String type. Each integer value in the sequence usually represents a single
16-bit unit of UTF-16 text. However, ECMAScript does not place any restrictions or requirements on the values except that
they must be 16-bit unsigned integers.

4.3.17
String type
set of all possible String values

4.3.18
String object
member of the Object type that is an instance of the standard built-in String constructor

NOTE A String object is created by using the String constructor in a new expression, supplying a String value as
an argument. The resulting object has an.internal property whose value is the String value. A String object can be coerced
to a String value by calling the String constructor as a function (15.5.1).

4.3.19
Number value
primitive value corresponding to a double-precision 64-bit binary format IEEE 754 value

NOTE A Number value is a member of the Number type and is a direct representation of a number.

4.3.20

Number type

set of all possible Number values including the special “Not-a-Number” (NaN) value, positive infinity, and
negative infinity

4.3.21
Number object
member of the Object type that is an instance of the standard built-in Number constructor

NOTE A Number object is created by using the Number constructor in a new expression, supplying a Number value
as an argument. The resulting object has an internal property whose value is the Number value. A Number object can be
coerced to a Number value by calling the Number constructor as a function (15.7.1).

4.3.22
Infinity
number value that is the positive infinite Number value

4.3.23

NaN
number value that is a IEEE 754 “Not-a-Number” value

6 © Ecma International 2012

»ecma

4.3.24

function

member of the Object type that is an instance of the standard built-in Function constructor and that may be
invoked as a subroutine

NOTE In addition to its named properties, a function contains executable code and state that determine how it
behaves when invoked. A function’s code may or may not be written in ECMAScript.

4.3.25
built-in function
built-in object that is a function

NOTE Examples of built-in functions include parseInt and Math.exp. An implementation may provide
implementation-dependent built-in functions that are not described in this specification.

4.3.26

property
association between a name and a value that is a part of an object

NOTE Depending upon the form of the property the value.-may be represented either directly as a data value (a
primitive value, an object, or a function object) or indirectly by a-pair of accessor functions.

4.3.27
method
function that is the value of a property

NOTE When a function is called as a method of an object, the object is passed to the function as its this value.

4.3.28
built-in method
method that is a built-in function

NOTE Standard built-in‘methods are defined in this specification, and an ECMAScript implementation may specify
and provide other additional built-in methods:

4.3.29
attribute
internal value that defines some characteristic of a property

4.3.30

own.property

property that is directly contained by its object
4.3.31

inherited property

property of an object thatis not an own property but is a property (either own or inherited) of the object’s
prototype

5 Notational Conventions

5.1 Syntactic and Lexical Grammars

5.1.1 Context-Free Grammars

A context-free grammar consists of a number of productions. Each production has an abstract symbol called a

nonterminal as its left-hand side, and a sequence of zero or more nonterminal and terminal symbols as its
right-hand side. For each grammar, the terminal symbols are drawn from a specified alphabet.

© Ecma International 2012 7

secma

A chain production is a production that has exactly one nonterminal symbol on its right-hand side along with
zero or more terminal symbols.

Starting from a sentence consisting of a single distinguished nonterminal, called the goal symbol, a given
context-free grammar specifies a language, namely, the (perhaps infinite) set of possible sequences of
terminal symbols that can result from repeatedly replacing any nonterminal in the sequence with a right-hand
side of a production for which the nonterminal is the left-hand side.

5.1.2 The Lexical and RegExp Grammars

A lexical grammar for ECMAScript is given in clause 7. This grammar has as its terminal symbols characters
(Unicode code units) that conform to the rules for SourceCharacter defined in‘Clause 6. It defines a set of
productions, starting from the goal symbol InputElementDiv or InputElementRegExp, that describe how
sequences of such characters are translated into a sequence of input elements.

Input elements other than white space and comments form the terminal symbols for the syntactic grammar for
ECMAScript and are called ECMAScript tokens. These tokens are the reserved words, identifiers, literals, and
punctuators of the ECMAScript language. Moreover, line terminators, although not considered to be tokens,
also become part of the stream of input elements and guide the process of automatic semicolon insertion (7.9).
Simple white space and single-line comments are discarded and do not appear in the stream of input
elements for the syntactic grammar. A MultiLineComment (that is, a comment of the form “/*...* /” regardless
of whether it spans more than one line) is likewise simply discarded.if it contains no line terminator; but if a
MultiLineComment contains one or more line terminators, then it is. replaced by a single line terminator, which
becomes part of the stream of input elements for the syntactic grammar.

A RegExp grammar for ECMAScript is given in 15.10. This grammar also has as its terminal symbols the
characters as defined by SourceCharacter. It defines a set of productions, starting from the goal symbol Pattern,
that describe how sequences of characters are translated into regular expression patterns.

Productions of the lexical and RegExp.grammars are distinguished by having two colons “::” as separating
punctuation. The lexical and RegEXp grammars share some productions.

5.1.3 The Numeric String Grammar

Another grammar is used for translating Strings into-numeric values. This grammar is similar to the part of the
lexical grammar having to do with numeric literals and has as its terminal symbols SourceCharacter. This
grammar appearsin9.3.1.

Productions of the numeric string grammar are distinguished by having three colons “:::” as punctuation.
5.1.4 The Syntactic Grammar

The syntactic grammar for ECMAScript is given in clauses 11, 12, 13 and 14. This grammar has ECMAScript
tokens defined by the lexical grammar as its terminal symbols (5.1.2). It defines a set of productions, starting
from the goal symbol Program, that describe how sequences of tokens can form syntactically correct
ECMAScript programs.

When a stream of characters is to be parsed as an ECMAScript program, it is first converted to a stream of
input elements by repeated application of the lexical grammar; this stream of input elements is then parsed by
a single application of the syntactic grammar. The program is syntactically in error if the tokens in the stream
of input elements cannot be parsed as a single instance of the goal nonterminal Program, with no tokens left
over.

Productions of the syntactic grammar are distinguished by having just one colon “:” as punctuation.

The syntactic grammar as presented in clauses 11, 12, 13 and 14 is actually not a complete account of which
token sequences are accepted as correct ECMAScript programs. Certain additional token sequences are also
accepted, namely, those that would be described by the grammar if only semicolons were added to the
sequence in certain places (such as before line terminator characters). Furthermore, certain token sequences

8 © Ecma International 2012

»ecma

that are described by the grammar are not considered acceptable if a terminator character appears in certain
“awkward” places.

In certain cases in order to avoid ambiguities the syntactic grammar uses generalize productions that permit
token sequences that are not valid ECMAScript programs. For example, this technique is used in with object
literals and object destructuring patterns. In such cases a more restrictive supplemental grammar is provided
that further restricts the acceptable token sequences. In certain contexts, when explicitly specific, the input
elements corresponding to such a production are parsed again using a goal symbol of a supplemental
grammar. The program is syntactically in error if the tokens in the stream of input elements cannot be parsed
as a single instance of the supplemental goal symbol, with no tokens left over.

5.1.5 The JSON Grammar

The JSON grammar is used to translate a String describing a set of ECMAScript objects into actual objects.
The JSON grammar is given in 15.12.1.

The JSON grammar consists of the JSON lexical grammar and<the JSON syntactic grammar. The JSON
lexical grammar is used to translate character sequences into tokens and is similar to parts of the ECMAScript
lexical grammar. The JSON syntactic grammar describes how sequences of tokens from the JSON lexical
grammar can form syntactically correct JSON object descriptions.

Productions of the JSON lexical grammar are distinguished by having two colons “::” as separating
punctuation. The JSON lexical grammar uses some productions from the ECMAScript lexical grammar. The
JSON syntactic grammar is similar to parts of the ECMAScript syntactic grammar. Productions of the JSON
syntactic grammar are distinguished by using.one colon “:” as separating punctuation.

5.1.6 Grammar Notation

Terminal symbols of the lexical, RegExp, and numeric string grammars, and some of the terminal symbols of
the other grammars, are shown in fixed width font, both in the productions of the grammars and
throughout this specification whenever the text directly refers to such a terminal symbol. These are to appear
in a program exactly as written. All terminal symbol characters specified in this way are to be understood as
the appropriate Unicode character from the ASCII range, as opposed to any similar-looking characters from
other Unicode ranges.

Nonterminal symbols are shown in italic type. The definition of a nonterminal (also called a “production”) is
introduced by _the-name of the nonterminal being defined followed by one or more colons. (The number of
colons indicates to which.grammar the production belongs.) One or more alternative right-hand sides for the
nonterminal then follow on succeeding lines. For example, the syntactic definition:

WhileStatement :
while (Expression) Statement

states that the nonterminal WhileStatement represents the token while, followed by a left parenthesis token,
followed by an Expression, followed by a right parenthesis token, followed by a Statement. The occurrences of
Expression and Statement are themselves nonterminals. As another example, the syntactic definition:

ArgumentList :
AssignmentExpression
ArgumentList , AssignmentExpression

states that an ArgumentList may represent either a single AssignmentExpression or an ArgumentList, followed by
a comma, followed by an AssignmentExpression. This definition of ArgumentList is recursive, that is, it is defined
in terms of itself. The result is that an ArgumentList may contain any positive number of arguments, separated
by commas, where each argument expression is an AssignmentExpression. Such recursive definitions of
nonterminals are common.

© Ecma International 2012 9

secma

The subscripted suffix “opt”, which may appear after a terminal or nonterminal, indicates an optional symbol.
The alternative containing the optional symbol actually specifies two right-hand sides, one that omits the
optional element and one that includes it. This means that:

VariableDeclaration :
Identifier Initialiserqp

is a convenient abbreviation for:
VariableDeclaration :
ldentifier
Identifier Initialiser

and that:

IterationStatement :
for (ExpressionNolnepy ; Expressionep: ; Expressionep) Statement

is a convenient abbreviation for:
IterationStatement :
for (; Expressiongy: ; EXpressiongy) Statement
for (ExpressionNoln ; Expressioney ; Expressionest) Statement
which in turn is an abbreviation for:
IterationStatement :
for (; ; Expressiong:) Statement
for (; Expression ; Expressionept) Statement

for (ExpressionNoln ; ; Expressionop) Statement
for (ExpressionNoln ; Expression ; EXpressiong:) Statement

which in turn is an abbreviation for:

IterationStatement :

for (; ;) Statement

for (;.; Expression) Statement

for (; Expression ;) Statement

for (; Expression ; Expression) Statement

for (ExpressionNoln ; ;) Statement

for (ExpressionNoln ; ; Expression) Statement

for (ExpressionNoln ; Expression ;) Statement
(

for ExpressionNoln ; Expression ; Expression) Statement

so the nonterminal IterationStatement actually has eight alternative right-hand sides.

When the words “one of” follow the colon(s) in a grammar definition, they signify that each of the terminal
symbols on the following line or lines is an alternative definition. For example, the lexical grammar for
ECMAScript contains the production:

NonZeroDigit :: one of
1 2 3 4 5 6 7 8 9

which is merely a convenient abbreviation for:

10 © Ecma International 2012

»ecma

NonZeroDigit ::

wWoJdJonUld WN R

If the phrase “[empty]” appears as the right-hand side of a production, it indicates that the production's right-
hand side contains no terminals or nonterminals.

If the phrase “[lookahead ¢ set]” appears in the right-hand side of a production, it indicates that the production
may not be used if the immediately following input token is a member of the given set. The set can be written
as a list of terminals enclosed in curly braces. For convenience, the set can also be written as a nonterminal,
in which case it represents the set of all terminals to which that nonterminal could expand. For example, given
the definitions

DecimalDigit :: one of
0 1 2 3 4 5 6 7 8 9

DecimalDigits ::
DecimalDigit
DecimalDigits DecimalDigit

the definition

LookaheadExample ::
n [lookahead ¢ {1, 3, 5, 7, 9}] DecimalDigits
DecimalDigit [lookahead ¢ DecimalDigit]

matches either the letter n followed by ane or more decimal digits the first of which is even, or a decimal digit
not followed by another decimal digit.

If the phrase “[no LineTerminator here]” appears in the right-hand side of a production of the syntactic grammar, it
indicates that the production is a restricted production: it may not be used if a LineTerminator occurs in the
input stream at the indicated position. For example, the production:

ThrowStatement :
throw [no LineTerminator here] Expression ;

indicates that the production may not be used if a LineTerminator occurs in the program between the throw
token and the Expression.

Unless the presence of a LineTerminator is forbidden by a restricted production, any number of occurrences of
LineTerminator may appear between any two consecutive tokens in the stream of input elements without
affecting the syntactic acceptability of the program.

The lexical grammar has multiple goal symbols and the appropriate goal symbol to use depends upon the
syntactic grammar context. If a phrase of the form “[Lexical goal LexicalGoalSymbol]” appears on the right-hand-
side of a syntactic production then the next token must be lexically recognized using the indicated goal symbol.
In the absence of such a phrase the default lexical goal symbol is used.

When an alternative in a production of the lexical grammar or the numeric string grammar appears to be a
multi-character token, it represents the sequence of characters that would make up such a token.

© Ecma International 2012 11

secma

The right-hand side of a production may specify that certain expansions are not permitted by using the phrase
“but not” and then indicating the expansions to be excluded. For example, the production:

Identifier ::
IdentifierName but not ReservedWord

means that the nonterminal Identifier may be replaced by any sequence of characters that could replace
IdentifierName provided that the same sequence of characters could not replace ReservedWord.

Finally, a few nonterminal symbols are described by a descriptive phrase in sans-serif type in cases where it
would be impractical to list all the alternatives:

SourceCharacter ::
any Unicode character

5.2 Algorithm Conventions

The specification often uses a numbered list to specify steps in an algorithm. These algorithms are used to
precisely specify the required semantics of ECMAScript language constructs. The algorithms are not intended
to imply the use of any specific implementation technique.<In practice, there may be more efficient algorithms
available to implement a given feature.

Algorithms may be explicitly parameterized, in which case the names and usage of the parameters must be
provided as part of the algorithm’s definition. In order to facilitate their use in multiple parts of this specification,
some algorithms, called abstract operations, are named and written in parameterised functional form so that
they may be referenced by name from within other algorithms.

Algorithms may be associated with productions of one of the ECMAScript grammars. A production that has
multiple alternative definitions will typically have a distinct algorithm for each alternative. When an algorithm is
associated with a grammar production, it may reference the terminal and non-terminal symbols of the
production alternative as if they were parameters of the algorithm. When used in this manner, non-terminal
symbols refer to the actual alternative definition that is matched when parsing the program souce code.

Unless explicitly specified otherwise, all chain productions have an implicit associated definition for every
algorithm that is might be applied to that production’s left-hand side nonterminal. The implicit simply reapplies
the same algorithm name with the same parameters, if any, to the chain production’s sole right-hand side
nonterminal and-then result. For example, assume there is a production

Block :
{ StatementList }

but there is no evalution algorithm that is explicitly specified for that production. If in some algorithm there is a
statement of the form: “Return the result of evaluating Block” it is implicit that the algorithm has an evalution
algorithm of the form:

Runtime Semantics: Evaluation

Block : { StatementList }

1. Return the result of evaluating StatementList
For clarity of expression, algorithm steps may be subdivided into sequential substeps. Substeps are indented
and may themselves be further divided into indented substeps. Outline numbering conventions are used to
identify substeps with the first level of substeps labelled with lower case alphabetic characters and the second
level of substeps labelled with lower case roman numerals. If more than three levels are required these rules
repeat with the fourth level using numeric labels. For example:

1. Top-level step
a. Substep.

12 © Ecma International 2012

»ecma

b. Substep
i Subsubstep.
ii. Subsubstep.
1. Subsubsubstep
a Subsubsubsubstep

A step or substep may be written as an “if” predicate that conditions its substeps. In this case, the substeps
are only applied if the predicate is true. If a step or substep begins with the word “else”, it is a predicate that is
the negation of the preceding “if” predicate step at the same level.

A step may specify the iterative application of its substeps.

A step may assert an invariant condition of its algorithm. Such assertions are used to make explicit
algorithmic invariants that would otherwise be implicit. Such assertions add no additional semantic
requirements and hence need not be checked by an implementation.< They are used simply to clarify
algorithms.

Mathematical operations such as addition, subtraction, negation, multiplication, division, and the mathematical
functions defined later in this clause should always be understood as computing exact mathematical results
on mathematical real numbers, which do not include infinities and do not include a negative zero that is
distinguished from positive zero. Algorithms in this standard that model floating-point arithmetic include explicit
steps, where necessary, to handle infinities and signed zero and to perform rounding. If a mathematical
operation or function is applied to a floating-point number, it should be understood as being applied to the
exact mathematical value represented by that floating-point number; such a floating-point number must be
finite, and if it is +0 or —0 then the corresponding mathematical value is simply 0.

The mathematical function abs(x) yields the absolute value of x, which'is —x.if x is negative (less than zero) and
otherwise is x itself.

The mathematical function sign(x) yields 1 if x is positive and -1 if x'is negative. The sign function is not used in
this standard for cases when x is-zero.

The notation “x modulo y” (y must be finite and nonzero) computes a value k of the same sign as y (or zero)
such that abs(k) < abs(y).and x—k = q x y for some integer g.

The mathematical function floor(x) yields the largest integer (closest to positive infinity) that is not larger than x.
NOTE floor(x) = x=(x modulo 1).

If an algorithm is defined to “throw an exception”, execution of the algorithm is terminated and no result is
returned. The calling algorithms are also terminated, until an algorithm step is reached that explicitly deals
with the exception, using terminology such as “If an exception was thrown...”. Once such an algorithm step
has been encountered the exception is no longer considered to have occurred.

5.3 Static Semantic Rules

Context-free grammars.are not sufficiently powerful to express all the rules that define whether a stream of
input elements make up a valid ECMAScript program that may be evaluated. In some situations additional
rules are needed that may be expressed using either ECMAScript algorithm conventions or prose
requirements. Such rules are always associated with a production of a grammar and are called the static
semantics of the production.

Static Semantic Rules have names and typically are defined using an algorithm. Named Static Semantic
Rules are associated with grammar productions and a production that has multiple alternative definitions will
typically have for each alternative a distinct algorithm for each applicable named static semantic rule.

Unless otherwise specified every grammar production alternative in this specification implicitly has a definition

for a static semantic rule named Contains which takes an argument named symbol whose value is a terminal or
non-terminal of the grammer that includes the associated production. The default definition of Contains is:

© Ecma International 2012 13

secma

1. For each terminal and non-terminal grammar symbol, sym, in the definition of this production do
a. If sym is the same grammar symbol as symbol, return true.
b. If sym is a non-terminal, then
i Let contained be the result of Contains for sym with argument symbol.
il If contained is true, return true.
2. Return false.

The above definition is explicitly over-ridden for specific productions.

A special kind of static semantic rule is an Early Error Rule. Early error rules define early error conditions (see
clause 16) that are associate with specific grammar productions. Evaluation of most early error rules are not
explicitly invoked within the algorithms of this specification. A comforming implementation must, prior to the
first evaluation of a Program, validate all of the early error rules of the productions used to parse that Program.
If any of the early error rules are violated the Program is invalid and can not'be evaluated.

6 Source Text

Syntax

SourceCharacter ::
any Unicode character

The ECMAScript code is expressed using Unicode, version 5.1<or later. ECMAScript source text is a
sequence of Unicode characters. The phrase “Unicode character’ refers to the abstract linguistic or
typographical unit represented by a single Unicode scalar value. The actual encodings used to store and
interchange ECMAScript source text is not relevant to. this specification.. Any well defined encoding such as
UTF-32 or UTF-16 may be used. Source text might even be externally represented using a non-Unicode
character encoding. Regardless of the external source text encoding, a conforming ECMAScript
implementation processes the source text as if it was an equivalent sequence of SourceCharacter values. Each
SourceCharacter being an abstract Unicode character with a corresponding Unicode scalar value. Conforming
ECMAScript implementations are not required to perform any normalisation of text, or behave as though they
were performing normalisation of text.

The phrase “code point” refers to such a Unicode scalar value. “Unicode character” only refers to entities
represented by single Unicode scalar values: the components of a combining character sequence are still
individual “Unicode characters;” even though a user might think of the whole sequence as a single character.

In string literals, regular. expression literals,template literals and identifiers, any Unicode characters may also
be expressed as a Unicode escape sequence that explicitly express a code point's numeric value. Within a
comment, such an escape sequence is effectively ignored as part of the comment. Within other contexts, such
an escape sequence contextually contributes one Unicode character.

NOTE ECMAScript differs from the Java programming language in the behaviour of Unicode escape sequences. In a
Java program, if the Unicode escape sequence \u0002, for example, occurs within a single-line comment, it is interpreted
as a line terminator. (Unicode character 000A is line feed) and therefore the next Unicode character is not part of the
comment. Similarly, if the Unicode escape sequence \u000A occurs within a string literal in a Java program, it is likewise
interpreted as a line terminator, which is not allowed within a string literal—one must write \n instead of \u0O0O0A to cause
a line feed to be part of the string value of a string literal. In an ECMAScript program, a Unicode escape sequence
occurring within a comment is never interpreted and therefore cannot contribute to termination of the comment. Similarly, a
Unicode escape sequence occurring within a string literal in an ECMAScript program always contributes a Unicode
character to the literal and is never interpreted as a line terminator or as a quote mark that might terminate the string literal.

ECMAScript String values (8.4) are computational sequences of 16-bit integer values called “code units”.
ECMAScript language constructs that generate string values from SourceCharacter sequences use UTF-16
encoding to generate the code unit values.

Static Semantics: UTF-16 Encoding

The UTF-16 Encoding of a numeric code point value, cp, is deterimined as follows:

14 © Ecma International 2012

»ecma

Assert: 0 < cp < 0x10FFFF

If cp < 65535, then return cp.

Let cul be floor((cp — 65536) / 1024) + 55296. NOTE 55296 is 0xD800.
Let cu2 be ((cp — 65536) modulo 1024) + 56320. NOTE 56320 is 0xDCOO.
Return the code unit sequence consisting of cul followed by cu2.

g E

7 Lexical Conventions

The source text of an ECMAScript program is first converted into a sequence of input elements, which are
tokens, line terminators, comments, or white space. The source text is scanned from left to right, repeatedly
taking the longest possible sequence of characters as the next input element.

There are several situations where the identification of lexical input elements is sensitive to the syntactic
grammar context that is consuming the input elements. This requires multiple goal symbols for the lexical
grammar. The InputElementDiv goal symbol is the default goal symbol and is used in those syntactic grammar
contexts where a leading division (/) or division-assignment (/=) operator. is permitted. The
InputElementRegExp goal symbol is used in all syntactic grammar.contexts where a RegularExpressionLiteral is
permitted. The InputElementTemplateTail goal is used in syntactic grammar contexts where a TemplateLiteral
logically continues after a substitution element.

NOTE There are no syntactic grammar contexts where both a leading division or division-assignment, and a leading
RegularExpressionLiteral are permitted. This is not affected by semicolon insertion (see 7.9); in examples such as the
following:

a=>b
/hi/g.exec(c) .map(d) ;

where the first non-whitespace, non-comment character after a LineTerminator is slash'(/) and the syntactic context allows
division or division-assignment, no semicolon is inserted at the LineTerminator.. That is, the above example is interpreted in
the same way as:

a =b / hi / g.exec(c).map(d);
Syntax

InputElementDiv ::
WhiteSpace
LineTerminator
Comment
Token
DivPunctuator
RightBracePunctuator

InputElementRegExp ::
WhiteSpace
LineTerminator
Comment
Token
RightBracePunctuator
RegularExpressionLiteral

InputElementTemplateTail ::
WhiteSpace
LineTerminator
Comment
Token
DivPunctuator
TemplateSubstitutionTail

© Ecma International 2012 15

secmd

7.1 Unicode Format-Control Characters

The Unicode format-control characters (i.e., the characters in category “Cf’ in the Unicode Character
Database such as LEFT-TO-RIGHT MARK or RIGHT-TO-LEFT MARK) are control codes used to control the
formatting of a range of text in the absence of higher-level protocols for this (such as mark-up languages).

It is useful to allow format-control characters in source text to facilitate editing and display. All format control
characters may be used within comments, and within string literals, template literals, and regular expression
literals.

<ZWNJ> and <ZWJ> are format-control characters that are used to make necessary distinctions when forming
words or phrases in certain languages. In ECMAScript source text, <ZWNJ> and <ZWJ> may also be used in
an identifier after the first character.

<BOM> is a format-control character used primarily at the start of a text to mark it.as Unicode and to allow
detection of the text's encoding and byte order. <BOM> characters intended for this purpose can sometimes
also appear after the start of a text, for example as a result of concatenating files. <BOM> characters are
treated as white space characters (see 7.2).

The special treatment of certain format-control characters outside of comments, string literals, and regular
expression literals is summarised in Table 1.

Table 1 — Format-Control Character Usage

Code Point Name Formal Name Usage
U+200C Zero width non-joiner <ZWNJ> IdentifierPart
U+200D Zero width joiner <ZWJ> IdentifierPart
U+FEFF Byte Order Mark <BOM> Whitespace

7.2 White Space

White space characters are used to improve source text readability and to separate tokens (indivisible lexical
units) from each other,/but are otherwise insignificant. White space characters may occur between any two
tokens and at the start or end of input.-White space characters may occur within a StringLiteral, a
RegularExpressionLiteral, a Template, or a TemplateSubstitutionTail where they are considered significant
characters forming part of a literal value. They may also occur within a Comment, but cannot appear within any
other kind of token.

The ECMAScript white space characters are listed in Table 2.

Table 2 — Whitespace Characters

Code Point Name Formal Name
U+0009 Tab <TAB>
U+000B Vertical Tab <VT>
U+000C Form Feed <FF>
U+0020 Space <SP>
U+00A0 No-break space <NBSP>
U+FEFF Byte Order Mark <BOM>
Other category “Zs” Any other Unicode <USP>
“space separator”

ECMAScript implementations must recognise all of the white space characters defined in Unicode 5.1. Later
editions of the Unicode Standard may define other white space characters. ECMAScript implementations may
recognise white space characters from later editions of the Unicode Standard.

16 © Ecma International 2012

»ecma

Syntax

WhiteSpace ::
<TAB>
<VT>
<FF>
<SpP>
<NBSP>
<BOM>
<USP>

7.3 Line Terminators

Like white space characters, line terminator characters are used to improve source text readability and to
separate tokens (indivisible lexical units) from each other. However, .unlike white space characters, line
terminators have some influence over the behaviour of the syntactic'grammar. In general, line terminators
may occur between any two tokens, but there are a few places where they are forbidden by the syntactic
grammar. Line terminators also affect the process of automatic semicolon insertion (7.9). A line terminator
cannot occur within any token except a StringLiteral, Template, or TemplateSubstitutionTail. Line terminators may
only occur within a StringLiteral token as part of a LineContinuation.

A line terminator can occur within a MultiLineComment (7.4) but.cannot occur within a SingleLineComment.

Line terminators are included in the set of white space characters that are matched by the \s class in regular
expressions.

The ECMAScript line terminator characters are listed in Table 3.

Table 3 — Line Terminator Characters

Code Point Name Formal Name
U+000A Line Feed <LF>
U+000D Carriage Return <CR>
U+2028 Line separator <LS>
U+2029 Paragraph separator <PS>

Only the Unicode characters in Table 3 are treated as line terminators. Other new line or line breaking
Unicode characters.are treated as white space but not as line terminators. The sequence <CR><LF> is
commonly used as a line terminator. It should be considered a single SourceCharacter for the purpose of
reporting line numbers.

Syntax

LineTerminator ::
<LF>
<CR>
<LS>
<pPS>

LineTerminatorSequence ::
<LF>
<CR> [lookahead ¢ <LF>]
<LS>
<PS>
<CR> <LF>

7.4 Comments

Comments can be either single or multi-line. Multi-line comments cannot nest.

© Ecma International 2012 17

secma

Because a single-line comment can contain any Unicode character except a LineTerminator character, and
because of the general rule that a token is always as long as possible, a single-line comment always consists
of all characters from the // marker to the end of the line. However, the LineTerminator at the end of the line is
not considered to be part of the single-line comment; it is recognised separately by the lexical grammar and
becomes part of the stream of input elements for the syntactic grammar. This point is very important, because
it implies that the presence or absence of single-line comments does not affect the process of automatic
semicolon insertion (see 7.9).

Comments behave like white space and are discarded except that, if a MultiLineComment contains a line
terminator character, then the entire comment is considered to be a LineTerminator for purposes of parsing by
the syntactic grammar.

Syntax

Comment ::
MultiLineComment
SingleLineComment

MultiLineComment ::
/* MultiLineCommentCharsgp: * /

MultiLineCommentChars ::
MultiLineNotAsteriskChar MultiLineCommentCharsopt
* PostAsteriskCommentCharsept

PostAsteriskCommentChars ::
MultiLineNotForwardSlashOrAsteriskChar MultiLineCommentCharsgpt
* PostAsteriskCommentCharsept

MultiLineNotAsteriskChar ::
SourceCharacter but not *

MultiLineNotForwardSlashOrAsteriskChar ::
SourceCharacter but not one of /.or *

SingleLineComment ::
// SingleLineCommentCharsgpt

SingleLineCommentChars ::
SingleLineCommentChar SingleLineCommentCharsopt

SingleLineCommentChar ::
SourceCharacter but not LineTerminator

7.5 Tokens

Syntax

Token ::
IdentifierName
Punctuator
NumericLiteral
StringLiteral
Template

NOTE The DivPunctuator, RegularExpressionLiteral, RightBracePunctuator, and TemplateSubstitutionTail productions
define tokens, but are not included in the Token production.

18 © Ecma International 2012

»ecma

7.6 ldentifier Names and ldentifiers

IdentifierName, Identifier, and ReservedWord are tokens that are interpreted according to the Default Identifier
Syntax given in Unicode Standard Annex #31, Identifier and Pattern Syntax, with some small modifications.
ReservedWord is is an enumerated subset of IdentifierName and ldentifier is an IdentifierName that is not a
ReservedWord (see 7.6.1). The Unicode identifier grammar is based on character properties specified by the
Unicode Standard. The Unicode characters in the specified categories in version 5.1.0 of the Unicode
standard must be treated as in those categories by all conforming ECMAScript implementations.

NOTE This standard specifies specific character additions: The dollar sign (U+0024) and the underscore (U+005£)
are permitted anywhere in an ldentifierName, and the characters zero width non-joiner (U+200C) and zero width joiner
(U+200D) are permitted anywhere after the first character of an IdentifierName.

Unicode escape sequences are permitted in an IdentifierName, where they contribute a single Unicode
character to the IdentifierName. The code point of the contributed character is expressed by the HexDigits of
the UnicodeEscapeSequence (see 7.8.4). The \ preceding the UnicodeEscapeSequence and the u and { }
characters, if they appear, do not contribute characters to the IdentifierName. A UnicodeEscapeSequence cannot
be used to put a character into an IdentifierName that would otherwise be illegal. In other words, if a
\ UnicodeEscapeSequence sequence were replaced by the Unicode character it constributes, the result must
still be a valid IdentifierName that has the exact same sequence of characters as the original ldentifierName. All
interpretations of IdentifierName within this specification are based upon-their actual characters regardless of
whether or not an escape sequence was used to contribute any particular characters.

Two ldentifierName that are canonically equivalent according to the Unicode standard are not equal unless
they are represented by the exact same sequence of code units (in other words, conforming ECMAScript
implementations are only required to do bitwise comparison on IdentifierName values).

ECMAScript implementations may recognise identifier characters.defined in later editions of the Unicode
Standard. If portability is a concern, programmers should only employ identifier characters defined in Unicode
3.0.

Syntax

Identifier ::
IdentifierName but not ReservedWord

IdentifierName ::
IdentifierStart
IdentifierName ldentifierPart

IdentifierStart ::
UnicodelDStart
$

\ UnicodeEscapeSequence
IdentifierPart ::

UnicodelDContinue

$

\ UnicodeEscapeSequence

<ZWNJ>

<ZWJ>

UnicodelDStart ::
any Unicode character with the Unicode property “ID_Start”.

UnicodelDContinue ::
any Unicode character with the Unicode property “ID_Continue”

© Ecma International 2012 19

secma

The definitions of the nonterminal UnicodeEscapeSequence is given in 7.8.4
Static Semantics: StringValue

Identifier :: IdentifierName but not ReservedWord

1. Return the StringValue of IdentifierName.

IdentifierName ::
IdentifierStart
IdentifierName IdentifierPart

1. Return the String value consisting of the sequence of code units corresponding to IdentifierName. In
determining the sequence any occurrences of \ UnicodeEscapeSequence-are first replaced with the code
point represented by the UnicodeEscapeSequence and and then the code points of the entire IdentifierName
are converted to code units by UTF-16 Encoding (clause 6) each code point.

7.6.1 Reserved Words
A reserved word is an IdentifierName that cannot be used as an Identifier.

Syntax

ReservedWord ::
Keyword
FutureReservedWord
NullLiteral
BooleanLiteral

The ReservedWord definitions are specified as literal sequences of Unicode characters. However, any Unicode
character in a ReservedWord can also be expressed by a \ UnicodeEscapeSequence that expresses that same
Unicode character's code point. Use of such escape sequences does not change the meaning of the
ReservedWord.

7.6.1.1 Keywords

The following tokens are ECMAScript keywords and may not be used as ldentifiers in ECMAScript programs.

Syntax

Keyword :: one of
break delete import this
case do in throw
catch else instanceof try
class export let typeof
continue finally new var
const for return void
debugger function super while
default if switch with

7.6.1.2 Future Reserved Words

The following words are used as keywords in proposed extensions and are therefore reserved to allow for the
possibility of future adoption of those extensions.

20 © Ecma International 2012

»ecma

Syntax
FutureReservedWord :: one of

enum

extends

The following tokens are also considered to be FutureReservedWords when they occur within strict mode code
(see 10.1.1). The occurrence of any of these tokens within strict mode code in any context where the
occurrence of a FutureReservedWord would produce an error must also produce an equivalent error:

implements

interface package

7.7 Punctuators

Syntax

Punctuator :: one of
{ ()

4 14

>= == '=
+ - *
<< >> >>>
! ~ &&
= += -
>>= >>>= &=
DivPunctuator :: one of
/ /=
RightBracePunctuator ::
}
7.8 Literals

7.8.1° Null Literals

Syntax
NullLiteral ::
null
7.8.2 Boolean Literals

Syntax

BooleanLiteral ::
true
false

© Ecma International 2012

private public
protected static
[1
< > <=
=== 1==
% ++ --
& | ~
N ?
*= %= <<=
= A= =>

yield

21

secma

7.8.3 Numeric Literals

Syntax

NumericLiteral ::
DecimalLiteral
BinaryIntegerLiteral
OctallntegerLiteral
HexIntegerLiteral

DecimalLiteral ::
DecimallntegerLiteral . DecimalDigitsope ExponentPartop
. DecimalDigits ExponentPartop:
DecimallntegerLiteral ExponentPartop:

DecimallntegerLiteral ::
0

NonZeroDigit DecimalDigitSopt

DecimalDigits ::
DecimalDigit
DecimalDigits DecimalDigit

DecimalDigit :: one of
0 1 2 3 4 5 6 7 8 9

NonZeroDigit :: one of
1 2 3 4 5 6 7 8 9

ExponentPart ::
Exponentindicator Signedinteger

ExponentIndicator :: one of
e E

Signedinteger ::
DecimalDigits
+ DecimalDigits
- DecimalDigits

BinarylntegerLiteral ::
0b BinaryDigit
OB BinaryDigit
BinarylntegerLiteral BinaryDigit

BinaryDigit :: one of
01

OctallntegerLiteral ::
0o OctalDigit
00 OctalDigit
OctallntegerLiteral OctalDigit

OctalDigit :: one of
0123 4 567

HexIntegerLiteral ::

0x HexDigits
0x HexDigits

22 © Ecma International 2012

»ecma

HexDigits ::
HexDigit
HexDigits HexDigit

HexDigit :: one of
0 1 2 3 4 5 6 7 8 9 a b ¢ d e £ A B C D E F

The SourceCharacter immediately following a NumericLiteral must not be an IdentifierStart or DecimalDigit.
NOTE For example:
3in

is an error and not the two input elements 3 and in.

A conforming implementation, when processing strict mode code (see 10:1.1), must not extend the syntax of

NumericLiteral to include OctalintegerLiteral as described in B.1.1.

Static Semantics: MV’s

A numeric literal stands for a value of the Number type. This value is determined in two steps: first, a
mathematical value (MV) is derived from the literal, second, this mathematical value is rounded as described

below.

. The MV of NumericLiteral :: DecimalLiteral is the MV of DecimalLiteral.

e The MV of NumericLiteral :: BinarylntegerLiteral is the MV of BinaryIntegerLiteral.

e The MV of NumericLiteral :: OctallntegerLiteral.is the MV of OctallntegerLiteral.

e The MV of NumericLiteral :: HexIntegerLiteral is the MV of HexIntegerLiteral.

e The MV of DecimalLiteral :: DecimalintegerLiteral . is the MV of DecimallntegerLiteral.

e The MV of DecimalLiteral :: DecimallntegerLiteral . DecimalDigits.is the MV of DecimallntegerLiteral plus

(the MV of DecimalDigits times 10™), where n'is the number of characters in DecimalDigits.

e The MV of DecimalLiteral«:: DecimalintegerLiteral . ExponentPart is the MV of DecimallntegerLiteral times

10°, where e is the MV _of ExponentPart.

e The MV of DecimalLiteral :: DecimallntegerLiteral . DecimalDigits ExponentPart is (the MV of
DecimalintegerLiteral plus (the MV of DecimalDigits times 10™")) times 10°, where n is the number of

characters in DecimalDigits ande is the MV of ExponentPart.

e The MV of DecimalLiteral ::. DecimalDigits is the MV of DecimalDigits times 10", where n is the number of

characters in DecimalDigits.

e The MV of DecimalLiteral :: . DecimalDigits ExponentPart is the MV of DecimalDigits times 10°", where n is

the'number of characters in DecimalDigits and e is the MV of ExponentPart.
e .The MV of DecimalLiteral :: DecimallntegerLiteral is the MV of DecimallntegerLiteral.

e The MV of DecimalLiteral :: DecimallntegerLiteral ExponentPart is the MV of DecimalintegerLiteral times 10°,

where e is the MV of ExponentPart.
e The MV of DecimalintegerLiteral :: 0 is O.
e The MV of DecimalintegerLiteral :: NonZeroDigit is the MV of NonZeroDigit.

e The MV of DecimalintegerLiteral :: NonZeroDigit DecimalDigits is (the MV of NonZeroDigit times 10") plus

the MV of DecimalDigits, where n is the number of characters in DecimalDigits.
e The MV of DecimalDigits :: DecimalDigit is the MV of DecimalDigit.

e The MV of DecimalDigits :: DecimalDigits DecimalDigit is (the MV of DecimalDigits times 10) plus the MV of

DecimalDigit.

e The MV of ExponentPart :: Exponentindicator Signedinteger is the MV of Signedinteger.

e The MV of Signedinteger :: DecimalDigits is the MV of DecimalDigits.

e The MV of Signedinteger :: + DecimalDigits is the MV of DecimalDigits.

e The MV of Signedinteger :: - DecimalDigits is the negative of the MV of DecimalDigits.

e The MV of DecimalDigit :: 0 or of HexDigit :: 0 or of OctalDigit :: 0 or of BinaryDigit:: 0 is 0.

e The MV of DecimalDigit :: 1 or of NonZeroDigit :: 1 or of HexDigit :: 1 or of OctalDigit :: 1 or
of BinaryDigit:: 1 is 1.

© Ecma International 2012

23

secma

e The MV of DecimalDigit :: 2 or of NonZeroDigit :: 2 or of HexDigit :: 2 or of OctalDigit :: 2 is 2.
e The MV of DecimalDigit :: 3 or of NonZeroDigit :: 3 or of HexDigit :: 3 or of OctalDigit :: 3 is 3.
e The MV of DecimalDigit :: 4 or of NonZeroDigit :: 4 or of HexDigit :: 4 or of OctalDigit :: 4 is 4.
e The MV of DecimalDigit :: 5 or of NonZeroDigit :: 5 or of HexDigit :: 5 or of OctalDigit:: 5 is 5.
e The MV of DecimalDigit :: 6 or of NonZeroDigit :: 6 or of HexDigit :: 6 or of OctalDigit :: 6 is 6.
e The MV of DecimalDigit :: 7 or of NonZeroDigit :: 7 or of HexDigit :: 7 or of OctalDigit:: 7is 7.
e The MV of DecimalDigit :: 8 or of NonZeroDigit :: 8 or of HexDigit :: 8 is 8.

e The MV of DecimalDigit :: 9 or of NonZeroDigit :: 9 or of HexDigit :: 9is 9.

. The MV of HexDigit :: a or of HexDigit :: A is 10.
e The MV of HexDigit :: b or of HexDigit :: B is 11.
e The MV of HexDigit :: ¢ or of HexDigit :: Cis 12.
e The MV of HexDigit :: d or of HexDigit :: D is 13.
e The MV of HexDigit :: e or of HexDigit :: E is 14.
e The MV of HexDigit :: £ or of HexDigit :: Fis 15.

e The MV of BinaryIntegerLiteral :: 0b BinaryDigit is the MV of BinaryDigit.

e The MV of BinaryIntegerLiteral :: 0B BinaryDigit is the MV of BinaryDigit.

e The MV of BinarylntegerLiteral :: BinarylntegerLiteral BinaryDigit is (the MV of BinarylIntegerLiteral times 2)
plus the MV of BinaryDigit.

e The MV of OctallntegerLiteral :: 0o OctalDigit is the MV of OctalDigit.

. The MV of OctallntegerLiteral :: 00 OctalDigit is the MV of OctalDigit.

e The MV of OctalintegerLiteral :: OctallntegerLiteral OctalDigit is (the MV of OctallntegerLiteral times 8) plus
the MV of OctalDigit.

e The MV of HexIntegerLiteral :: 0x HexDigits is the MV of HexDigits.

e The MV of HexIntegerLiteral :: 0X HexDigits is the MV of HexDigits.

e The MV of HexDigits :: HexDigit is the MV of HexDigit.

e The MV of HexDigits :: HexDigits HexDigit is (the MV of HexDigits times 16) plus the MV of HexDigit.

Once the exact MV for a_ numeric literal has been determined, it is then rounded to a value of the Number type.
If the MV is 0, then the'rounded value is +0; otherwise, the rounded value must be the Number value for the
MV (as specified in 8.5), unless the literal is a DecimalLiteral and the literal has more than 20 significant digits,
in which case the Number value may be either the Number value for the MV of a literal produced by replacing
each significant digit after the 20th with a 0 digit or the Number value for the MV of a literal produced by
replacing each significant digit after the 20th with a 0 digit and then incrementing the literal at the 20th
significant digit position. A digit is significant if it is not part of an ExponentPart and

e _jtisnot 0; or
o there.is a nonzero digit to its left and there is a nonzero digit, not in the ExponentPart, to its right.

7.8.4 String Literals

NOTE A string literal is.zero or more Unicode code points enclosed in single or double quotes. Unicode code points
may also be be represented by an escape sequence. All characters may appear literally in a string literal except for the
closing quote character, backslash, carriage return, line separator, paragraph separator, and line feed. Any character may
appear in the form of an escape sequence. String literals evaluate to ECAMScript String values. When generating these
string values Unicode code points are UTF-16 encoded as defined in clause 6. Code points belonging to Basic Multilingual
Plane are encode as a single code unit element of the string. All other code points are encode as two code unit elements
of the string.

Syntax

StringLiteral ::
" DoubleStringCharactersgpt "
' SingleStringCharactersgp; !

DoubleStringCharacters ::
DoubleStringCharacter DoubleStringCharactersopt

24

© Ecma International 2012

»ecma

SingleStringCharacters ::
SingleStringCharacter SingleStringCharactersopt

DoubleStringCharacter ::
SourceCharacter but not one of " or \ or LineTerminator
\ EscapeSequence
LineContinuation

SingleStringCharacter ::
SourceCharacter but not one of ' or \ or LineTerminator
\ EscapeSequence
LineContinuation

LineContinuation ::
\ LineTerminatorSequence

EscapeSequence ::
CharacterEscapeSequence
0 [lookahead ¢ DecimalDigit]
HexEscapeSequence
UnicodeEscapeSequence

A conforming implementation, when processing strict mode code (see 10.1.1), must not extend the syntax of
EscapeSequence to include OctalEscapeSequence as described in B.1.2.

CharacterEscapeSequence ::
SingleEscapeCharacter
NonEscapeCharacter

SingleEscapeCharacter :: one of
' " \ b £ n . r t v

NonEscapeCharacter ::
SourceCharacter .but not one of EscapeCharacter or LineTerminator

EscapeCharacter ::
SingleEscapeCharacter
DecimalDigit
X

u

HexEscapeSequence ::
x HexDigit HexDigit

UnicodeEscapeSequence ::
u HexDigit HexDigit HexDigit HexDigit
u{ HexDigits }

The definition of the nonterminal HexDigit is given in 7.8.3. SourceCharacter is defined in clause 6.

NOTE A line terminator character cannot appear in a string literal, except as part of a LineContinuation to produce the
empty character sequence. The correct way to cause a line terminator character to be part of the String value of a string
literal is to use an escape sequence such as \n or \uOOOA.

Static Semantics
Static Semantics: Early Errors

UnicodeEscapeSequence :: u{ HexDigits }

© Ecma International 2012 25

secma

It is a Syntax Error if the MV of HexDigits > 1114111.

Static Semantics: SV’s and CV’s

A string literal stands for a value of the String type. The String value (SV) of the literal is described in terms of
code unit values (CV) contributed by the various parts of the string literal. As part of this process, some
Unicode characters within the string literal are interpreted as having a mathematical value (MV), as described
below or in 7.8.3.

26

The SV of StringLiteral :: " is the empty code unit sequence.

The SV of StringLiteral :: ' ' is the empty code unit sequence.

The SV of StringLiteral :: " DoubleStringCharacters " is the SV of DoubleStringCharacters.

The SV of StringLiteral :: ' SingleStringCharacters ' is the SV of SingleStringCharacters.

The SV of DoubleStringCharacters :: DoubleStringCharacter is a sequence of one or two code units that is
the CV of DoubleStringCharacter.

The SV of DoubleStringCharacters :: DoubleStringCharacter DoubleStringCharacters is a. sequence of one or
two code units that is the CV of DoubleStringCharacter followed by all the code units in the SV of
DoubleStringCharacters in order.

The SV of SingleStringCharacters :: SingleStringCharacter is a sequence-of one or two code units that is the
CV of SingleStringCharacter.

The SV of SingleStringCharacters :: SingleStringCharacter SingleStringCharacters is a sequence of one or
two code units that is the CV of SingleStringCharacter followed by all the code units in the SV of
SingleStringCharacters in order.

The SV of LineContinuation :: \ LineTerminatorSequence is the empty code unit sequence.

The CV of DoubleStringCharacter :: SourceCharacter but.not one of " or. \ or LineTerminator is the UTF-16
Encoding (clause 6) of the code point value of SourceCharacter.

The CV of DoubleStringCharacter :: \ EscapeSequence is the CV of the EscapeSequence.

The CV of DoubleStringCharacter :: LineContinuation‘is the empty character sequence.

The CV of SingleStringCharacter :: SourceCharacter but not one of ' or \ or LineTerminator is the UTF-16
Encoding (clause 6) of the code point value of SourceCharacter .

The CV of SingleStringCharacter :: \' EscapeSequence is the CV of the EscapeSequence.

The CV of SingleStringCharacter i LineContinuation is the empty character sequence.

The CV of EscapeSequence :: CharacterEscapeSequence is the CV of the CharacterEscapeSequence.

The CV of EscapeSequence :: 0 [lookahead ¢ DecimalDigit] is the code unit value 0.

The CV of EscapeSequence :: HexEscapeSequence is the CV of the HexEscapeSequence.

The CV of EscapeSequence :: UnicodeEscapeSequence is the CV of the UnicodeEscapeSequence.

The CV of CharacterEscapeSequence :: SingleEscapeCharacter is the character whose code unit value is
determined by the SingleEscapeCharacter according to Table 4:

Table 4 — String Single Character Escape Sequences

Escape Sequence Code Unit Value Name Symbol

\b 0x0008 backspace <BS>
\t 0x0009 horizontal tab <HT>
\n 0x000A line feed (new line) <LF>
\v 0x000B vertical tab <VT>
\f 0x000C form feed <FF>
\r 0x000D carriage return <CR>
\" 0x0022 double quote "

\' 0x0027 single quote !

\\ 0x005C backslash \

The CV of CharacterEscapeSequence :: NonEscapeCharacter is the CV of the NonEscapeCharacter.

© Ecma International 2012

»ecma

e The CV of NonEscapeCharacter :: SourceCharacter but not one of EscapeCharacter or LineTerminator is the
UTF-16 Encoding (clause 6) of the code point value of SourceCharacter .

e The CV of HexEscapeSequence :: x HexDigit HexDigit is the code unit value that is (16 times the MV of the
first HexDigit) plus the MV of the second HexDigit.

e The CV of UnicodeEscapeSequence :: u HexDigit HexDigit HexDigit HexDigit is the code unit value that is
(4096 times the MV of the first HexDigit) plus (256 times the MV of the second HexDigit) plus (16 times the
MV of the third HexDigit) plus the MV of the fourth HexDigit.

e The CV of UnicodeEscapeSequence :: u{ HexDigits }is the is the UTF-16 Encoding (clause 6) of the MV of
HexDigits.

7.8.5 Regular Expression Literals

NOTE A regular expression literal is an input element that is converted to a RegEXxp object (see 15.10) each time the
literal is evaluated. Two regular expression literals in a program evaluate to regular expression objects that never compare
as === to each other even if the two literals' contents are identical. A RegExp object may also be created at runtime by

new RegExp (see 15.10.4) or calling the RegExp constructor as a function (15.10.3).

The productions below describe the syntax for a regular expression literal and are used by the input element
scanner to find the end of the regular expression literal. The source code comprising the
RegularExpressionBody and the RegularExpressionFlags are subsequently<parsed using the more stringent
ECMAScript Regular Expression grammar (15.10.1).

An implementation may extend the ECMAScript Regular Expression grammar defined in 15.10.1, but it must
not extend the RegularExpressionBody and RegularExpressionFlags productions defined below or the productions
used by these productions.

Syntax

RegularExpressionLiteral ::
/ RegularExpressionBody / RegularExpressionFlags

RegularExpressionBody ::
RegularExpressionFirstChar RegularExpressionChars

RegularExpressionChars ::
[empty] _ _
RegularExpressionChars RegularExpressionChar

RegularExpressionFirstChar ::
RegularExpressionNonTerminator but not one of * or \ or / or [
RegularExpressionBackslashSequence
RegularExpressionClass

RegularExpressionChar :;
RegularExpressionNonTerminator but not one of \ or / or [
RegularExpressionBackslashSequence
RegularExpressionClass

RegularExpressionBackslashSequence ::
\ RegularExpressionNonTerminator

RegularExpressionNonTerminator ::
SourceCharacter but not LineTerminator

RegularExpressionClass ::
[RegularExpressionClassChars]

RegularExpressionClassChars ::
[empty]
RegularExpressionClassChars RegularExpressionClassChar

© Ecma International 2012 27

secma

RegularExpressionClassChar ::
RegularExpressionNonTerminator but not one of] or \
RegularExpressionBackslashSequence

RegularExpressionFlags ::
[empty]
RegularExpressionFlags IdentifierPart

NOTE Regular expression literals may not be empty; instead of representing an empty regular expression literal, the
characters // start a single-line comment. To specify an empty regular expression, use: / (?:)/.

Static Semantics: BodyText

RegularExpressionLiteral :: / RegularExpressionBody / RegularExpressionFlags
1. Return the source code that was recognized as RegularExpressionBody.
Static Semantics: FlagText

RegularExpressionLiteral :: / RegularExpressionBody / RegularExpressionFlags

1. Return the source code that was recognized as RegularExpressionFlags.
7.8.6 Template Literal Lexical Components

Syntax

Template ::
NoSubstitutionTemplate
TemplateHead

NoSubstitutionTemplate ::
* TemplateCharactersopt

TemplateHead ::
* TemplateCharactersept $ {

TemplateSubstitutionTail ::
TemplateMiddle
TemplateTail

TemplateMiddle ::
} TemplateCharactersqp: ${

TemplateTail ::
} TemplateCharactersgpt

TemplateCharacters ::
TemplateCharacter TemplateCharactersept

TemplateCharacter ::
SourceCharacter but not one of “or \ or $
$ [lookahead ¢ {]
\ EscapeSequence
LineContinuation

Static Semantics: TV’s and TRV’s

A template literal component is interpreted as a sequence of Unicode characters. The Template Value (TV) of
a literal component is described in terms of code unit values (CV, 7.8.4) contributed by the various parts of the

28 © Ecma International 2012

»ecma

template literal cmponent. As part of this process, some Unicode characters within the template component
are interpreted as having a mathematical value (MV, 7.8.3). In determining a TV, escape sequences are
replaced by the code unit of the Unicode characters represented by the escape sequence. The Template
Raw Value (TRV) is similar to a Template Value with the difference that in TRVs escape sequences are
interpreted literally.

The TV and TRV of NoSubstitutionTemplate :: * * is the empty code unit sequence.

The TV and TRV of TemplateHead :: “${ isthe empty code unit sequence.

The TV and TRV of TermplateMiddle :: } ${ is the empty code unit sequence.

The TV and TRV of TemplateTail :: } * is the empty code unit sequence.

The TV of NoSubstitutionTemplate :: * TemplateCharacters * is the TV of TemplateCharacters.
The TV of TemplateHead :: * TemplateCharacters $ { is the TV of TemplateCharacters.

The TV of TemplateMiddle :: } TemplateCharacters ${ is the TV of TemplateCharacters.

The TV of TemplateTail :: } TemplateCharacters ° is the TV of TemplateCharacters.

The TV of TemplateCharacters:: TemplateCharacter is the TV of TemplateCharacter.

The TV of TemplateCharacters :: TemplateCharacter TemplateCharacters is a sequence. consisting of the
code units in the TV of TemplateCharacter followed by all.the code units in the TV of TemplateCharacters in
order.

The TV of TemplateCharacter :: SourceCharacter but not one of * or.\ or $ is the UTF-16 Encoding (clause
6) of the code point value of SourceCharacter.

The TV of TemplateCharacter :: $ [lookahead ¢ {] is the code unit value 0x0024.

The TV of TemplateCharacter :: \ EscapeSequence is the CV of EscapeSequence.

The TV of TemplateCharacter :: LineContinuation is.the TV of LineContinuation.

The TV of LineContinuation :: \ LineTerminatorSequence is the empty code unit sequence.

The TRV of NoSubstitutionTemplate :: * TemplateCharacters ™ is the TRV of TemplateCharacters.
The TRV of TemplateHead ::> TemplateCharacters ${ is the TRV of TemplateCharacters.

The TRV of TemplateMiddle :: } TemplateCharacters ${ is the TRV of TemplateCharacters.

The TRV of TemplateTail :: } TemplateCharacters * is the TRV of TemplateCharacters.

The TRV of TemplateCharacters:: TemplateCharacter is the TRV of TemplateCharacter.

The TRV of TemplateCharacters:: TemplateCharacter TemplateCharacters is a sequence consisting of the
code units in the TRV. of TemplateCharacter followed by all the code units in the TRV of
TemplateCharacters, in order.

The TRV of TemplateCharacter :: SourceCharacter but not one of * or \ or § is the UTF-16 Encoding
(clause 6) of the code point value of SourceCharacter.

The TRV of TemplateCharacter :: $ [lookahead ¢ {] is the code unit value 0x0024.

The TRV of TemplateCharacter :: \ EscapeSequence is the sequence consisting of the code unit value
0x005C followed by the code units of TRV of EscapeSequence.

The TRV of TemplateCharacter:: LineContinuation is the TRV of LineContinuation.

The TRV of EscapeSequence :: CharacterEscapeSequence is the TRV of the CharacterEscapeSequence.

The TRV of EscapeSequence :: 0 [lookahead ¢ DecimalDigit] iS the code unit value 0x0030.

The TRV of EscapeSequence :: HexEscapeSequence is the TRV of the HexEscapeSequence.

The CRYV of EscapeSequence :: UnicodeEscapeSequence is the CRV of the UnicodeEscapeSequence.

The TRV of CharacterEscapeSequence :: SingleEscapeCharacter is the TRV of the SingleEscapeCharacter.

The TRV of CharacterEscapeSequence :: NonEscapeCharacter is the CV of the NonEscapeCharacter.

The TRV of SingleEscapeCharacter :: oneof ' " \ b £ n r t v istheCVofthe
SourceCharacter that is that single character.

The TRV of HexEscapeSequence :: x HexDigit HexDigit is the sequence consisting of code unit value
0x0078 followed by TRV of the first HexDigit followed by the TRV of the second HexDigit.

The TRV of UnicodeEscapeSequence :: u HexDigit HexDigit HexDigit HexDigit is the sequence consisting of
code unit value 0x0075 followed by TRV of the first HexDigit followed by the TRV of the second HexDigit
followed by TRV of the third HexDigit followed by the TRV of the fourth HexDigit.

© Ecma International 2012 29

secma

e The TRV of UnicodeEscapeSequence :: u{ HexDigits }is the sequence consisting of code unit value 0x0075
followed by code unit value 0x007B followed by TRV of HexDigit followed by code unit value 0x007D.

e The TRV of HexDigits :: HexDigit is the TRV of HexDigit.

e The TRV of HexDigits :: HexDigits HexDigit is the sequence consisting of TRV of HexDigits followed by
TRV of HexDigit.

e The TRV of a HexDigit is CV of the SourceCharacter that is that HexDigit.

e The TRV of LineContinuation :: \ LineTerminatorSequence is the sequence consisting of the code unit value
0x005C followed by the code units of TRV of LineTerminatorSequence.

e The TRV of LineTerminatorSequence :: <LF> is the code unit value 0x000A.

. The TRV of LineTerminatorSequence :: <CR> [lookahead ¢ <LF>] is the code unit value 0x000D.

e The TRV of LineTerminatorSequence :: <LS> is the code unit value 0x2028.

e The TRV of LineTerminatorSequence :: <PS> is the code unit value 0x2029.

e The TRV of LineTerminatorSequence :: <CR><LF> is the sequence consisting of the code unit value
0x000D followed by the code unit value 0x000A.

NOTE TV excludes the code units of LineContinuation while TRV includes them.
7.9 Automatic Semicolon Insertion

Certain ECMAScript statements (empty statement, variable statement, expression statement, do-while
statement, continue statement, break statement, return statement, and throw statement) must be
terminated with semicolons. Such semicolons may always appear explicitly in the source text. For
convenience, however, such semicolons may be omitted from the source text in certain situations. These
situations are described by saying that semicolons-are automatically inserted into the source code token
stream in those situations.

7.9.1 Rules of Automatic Semicolon Insertion
There are three basic rules of semicolon insertion:

1. When, as the program is parsed from left to right, a token (called the offending token) is encountered that
is not allowed by.any production of the grammar, then a semicolon is automatically inserted before the
offending token if one or more of-the following conditions is true:

e The offending token is separated from the previous token by at least one LineTerminator.
e The offending token is }.

2. When, as the program is parsed from left to right, the end of the input stream of tokens is encountered
and the parser is unable to parse the input token stream as a single complete ECMAScript Program, then
a semicolon is automatically inserted at the end of the input stream.

3. When, as the program is parsed from left to right, a token is encountered that is allowed by some
production of the grammar, but the production is a restricted production and the token would be the first
token for a terminal or nonterminal immediately following the annotation “[no LineTerminator here]” within the
restricted production (and therefore such a token is called a restricted token), and the restricted token is
separated from the previous token by at least one LineTerminator, then a semicolon is automatically
inserted before the restricted token.

However, there is an additional overriding condition on the preceding rules: a semicolon is never inserted
automatically if the semicolon would then be parsed as an empty statement or if that semicolon would become
one of the two semicolons in the header of a for statement (see 12.6.3).

NOTE The following are the only restricted productions in the grammar:

PostfixExpression :
LeftHandSideExpression [no LineTerminator here] ++
LeftHandSideExpression [no LineTerminator here] —-

30 © Ecma International 2012

»ecma

ContinueStatement :
continue [no LineTerminator here] Identifier ;

BreakStatement :
break [no LineTerminator here] ldentifier ;

ReturnStatement :
return [no LineTerminator here] Expression ;

ThrowStatement :
throw [no LineTerminator here] Expression)

The practical effect of these restricted productions is as follows:

When a ++ or -- token is encountered where the parser would treat it as a postfix operator, and at least one
LineTerminator occurred between the preceding token and the ++ or -~ token, then a semicolon is automatically
inserted before the ++ or -- token.

When a continue, break, return, or throw token is encountered and a LineTerminator is encountered before
the next token, a semicolon is automatically inserted after the continue, break, return, or throw token.

The resulting practical advice to ECMAScript programmersis:

A postfix ++ or -- operator should appear on the same line as its operand.

An Expression in a return or throw statement should start on the same line as the return or throw token.

An ldentifier in a break or continue statement should be onthe same line as the break or continue token.
7.9.2 Examples of Automatic Semicolon Insertion

The source

{121}.3
is not a valid sentence in the ECMAScript grammar, even with the automatic semicolon insertion rules. In
contrast, the source

{1

2} 3

is also not a valid ECMAScript sentence, but is transformed by automatic semicolon insertion into the
following:

{1

72 7} 3;
which is a valid ECMAScript sentence.

The source

for (a; b

)
is not a valid ECMAScript sentence and is not altered by automatic semicolon insertion because the
semicolon is needed for the header of a for statement. Automatic semicolon insertion never inserts one of
the two semicolons in the header of a £or statement.

The source
return
a+b
is transformed by automatic semicolon insertion into the following:
return;
a + b;

© Ecma International 2012 31

secma

NOTE The expression a + b is not treated as a value to be returned by the return statement, because a
LineTerminator separates it from the token return.

The source
a=>b
++c
is transformed by automatic semicolon insertion into the following:
a =b;
++c;
NOTE The token ++ is not treated as a postfix operator applying to the variable b, because a LineTerminator occurs

between b and ++.

The source
if (a > b)
else c =d
is not a valid ECMAScript sentence and is not altered by automatic semicolon insertion before the else token,

even though no production of the grammar applies at that point, because an automatically inserted semicolon
would then be parsed as an empty statement.

The source

a=>b+ c

(d + e) .print()
is not transformed by automatic semicolon insertion; because the parenthesised expression that begins the
second line can be interpreted as an argument list for a function call:

a=>b + c(d + e) .print()

In the circumstance that an assignment statement must-begin with a left parenthesis, it is a good idea for the
programmer to provide an explicit semicolon at the end of the preceding statement rather than to rely on
automatic semicolon insertion.

8 Types

Algorithms within this specification‘manipulate values each of which has an associated type. The possible
value types are exactly those defined in this clause. Types are further subclassified into ECMAScript language
types and specification.types.

An ECMAScript language type corresponds to values that are directly manipulated by an ECMAScript
programmer using the ECMAScript language. The ECMAScript language types are Undefined, Null, Boolean,
String, Number, and Object.

A specification type corresponds to meta-values that are used within algorithms to describe the semantics of
ECMAScript language constructs and ECMAScript language types. The specification types are Reference,
List, Completion, Property.Descriptor, Property Identifier, Lexical Environment, Environment Record, and Data
Block. Specification type values are specification artefacts that do not necessarily correspond to any specific
entity within an ECMAScript implementation. Specification type values may be used to describe intermediate
results of ECMAScript expression evaluation but such values cannot be stored as properties of objects or
values of ECMAScript language variables.

Within this specification, the notation “Type(x)” is used as shorthand for “the type of X” where “type” refers to the
ECMAScript language and specification types defined in this clause.

8.1 The Undefined Type

The Undefined type has exactly one value, called undefined. Any variable that has not been assigned a value
has the value undefined.

32 © Ecma International 2012

»ecma

8.2 The Null Type

The Null type has exactly one value, called null.

8.3 The Boolean Type

The Boolean type represents a logical entity having two values, called true and false.
8.4 The String Type

The String type is the set of all finite ordered sequences of zero or more 16-bit unsigned integer values
(“elements”). The String type is generally used to represent textual data in a running ECMAScript program, in
which case each element in the String is treated as a UTF-16 code unit value. Each element is regarded as
occupying a position within the sequence. These positions are indexed with nonnegative integers. The first
element (if any) is at position 0, the next element (if any) at position 1, and so on. The length of a String is the
number of elements (i.e., 16-bit values) within it. The empty String has length zero and therefore contains no
elements.

Where ECMAScript operations interpret String values, each element is interpreted as a single UTF-16 code
unit. However, ECMAScript does not place any restrictions or requirements on the sequence of code units in a
String value, so they may be ill-formed when interpreted as UTF-16 code unit sequences. Operations that do
not interpret String contents treat them as sequences of undifferentiated 16-bit unsigned integers. No
operations ensure that Strings are in a normalized form. Only operations that are explicitly specified to be
language or locale sensitive produce language-sensitive results

NOTE The rationale behind this design was to keep the implementation of Strings as simple and high-performing as
possible. If ECMAScript source code is in Normalised Form C, string literals are guaranteed to also be normalised, as long
as they do not contain any Unicode escape sequences.

Some operations interpret String contents as UTF-16 encoded Unicode code points. In that case the
interpretation is:

e A code unit in the range 0 to OXD7FF or in the range 0XE000 to OxFFFF is interpreted as a code point
with the same value.

e A sequence of two code units,;where the first code unit c1 is in the range 0xD800 to 0xDBFF and the
second code unit ¢2 is in therange 0XDCO00 to. OXDFFF, is a surrogate pair and is interpreted as a code
point with the value (c1 - 0xD800) x 0x400 + (c2 — 0xDCO00) + 0x10000.

e A codewunitthat is in the range 0xD800 to OXDFFF, but is not part of a surrogate pair, is interpreted as
a code point with the same value.

8.5 .The Number Type

The Number type has exactly 18437736874454810627 (that is, 2%4-2%+3) values, representing the double-
precision 64-bit format IEEE 754 values as specified in the IEEE Standard for Binary Floating-Point Arithmetic,
except that the 9007199254740990 (that is, 253-2) distinct “Not-a-Number” values of the IEEE Standard are
represented in ECMAScript as a single special NaN value. (Note that the NaN value is produced by the
program expression NaN.) In some implementations, external code might be able to detect a difference
between various Not-a-Number values, but such behaviour is implementation-dependent; to ECMAScript code,
all NaN values are indistinguishable from each other.

There are two other special values, called positive Infinity and negative Infinity. For brevity, these values
are also referred to for expository purposes by the symbols +w and —o, respectively. (Note that these two
infinite Number values are produced by the program expressions +Infinity (or simply Infinity) and -
Infinity.)

The other 18437736874454810624 (that is, 2%4-2%) values are called the finite numbers. Half of these are

positive numbers and half are negative numbers; for every finite positive Number value there is a
corresponding negative value having the same magnitude.

© Ecma International 2012 33

secma

Note that there is both a positive zero and a negative zero. For brevity, these values are also referred to for
expository purposes by the symbols +0 and -0, respectively. (Note that these two different zero Number
values are produced by the program expressions +0 (or simply 0) and -0.)

The 18437736874454810622 (that is, 264-25%-2) finite nonzero values are of two kinds:
18428729675200069632 (that is, 24-254) of them are normalised, having the form

s xmx 2°

where s is +1 or -1, m is a positive integer less than 2% but not less than 2%, and € is an integer ranging from
—1074 to 971, inclusive.

The remaining 9007199254740990 (that is, 2%-2) values are denormalised, having the form

sxmx 2°

where s is +1 or -1, m is a positive integer less than 2%, and e is ~1074.

Note that all the positive and negative integers whose magnitude is no greater than 2% are representable in
the Number type (indeed, the integer 0 has two representations, +0 and -0).

A finite number has an odd significand if it is nonzero and the integer m used to express it (in one of the two
forms shown above) is odd. Otherwise, it has an even significand.

In this specification, the phrase “the Number value for x” where X represents an exact nonzero real
mathematical quantity (which might even be an irrational number such as ©) means a Number value chosen in
the following manner. Consider the set of all finite values of the Number type, with —0 removed and with two
additional values added to it that are not representable in‘the Number type, namely 2% (which is +1 x 25 x
2°) and —2%92* (which is -1 x 2%3'x 2°7Y). Choose the member of this set that is closest in value to x. If two
values of the set are equally close, then the one with an even significand is chosen; for this purpose, the two
extra values 2% and -2%% are considered to have even significands. Finally, if 21?* was chosen, replace it
with +oo; if —219%* was choesen, replace it with —o; if +0 was chosen, replace it with =0 if and only if x is less than
zero; any other chosen value is used unchanged. The result is the Number value for x. (This procedure
corresponds exactly to the behaviour of the IEEE 754 “round to nearest” mode.)

Some ECMAScript operators deal only with integers in the range —23! through 23!-1, inclusive, or in the range
0 through 2%%-1, inclusive. These operators accept any value of the Number type but first convert each such
value toone of 2% integer values. See the descriptions of the ToInt32 and ToUint32 operators in 9.5 and 9.6,
respectively.

8.6 The Object Type

An Object is a collection of properties. Each property is either a named data property, a named accessor
property, or an internal property:

e A named data property associates a hame with an ECMAScript language value and a set of Boolean
attributes.

e A named accessor property associates a hame with one or two accessor functions, and a set of Boolean
attributes. The accessor functions are used to store or retrieve an ECMAScript language value that is
associated with the property.

e An internal property has no name and is not directly accessible via ECMAScript language operators.
Internal properties exist purely for specification purposes.

There are two kinds of access for named (non-internal) properties: get and put, corresponding to retrieval and
assignment, respectively.

34 © Ecma International 2012

eCmna

8.6.1 Property Attributes

Attributes are used in this specification to define and explain the state of nhamed properties. A named data
property associates a hame with the attributes listed in Table 5.

Table 5 — Attributes of a Named Data Property

Attribute Name Value Domain Description
[[Value]] Any ECMAScript The value retrieved by reading the property.
language type
[[Writable]] Boolean If false, attempts by ECMAScript code to change the
property’s [[Value]] attribute using [[Put]] will not succeed.
[[Enumerable]] Boolean If true, the property will be enumerated by a for-in

enumeration (see 12.6.4). Otherwise, the property is said
to be non-enumerable.

[[Configurable]] Boolean If false, attempts to delete the property, change the
property to be an accessor property, or change its
attributes (other-than [[Value]]) will fail.

A named accessor property associates a name with the attributes listed in Table 6.

Table 6 — Attributes of a Named Accessor Property

Attribute Name Value Domain Description
[[Get]] Object or If the value is an Object it must be a function Object. The
Undefined function’s [[Call]] internal method (8.6.2) is called with an

empty arguments list to return the property value each time
a get access of the property is performed.

[[Set]] Object or If the value is an Object it must be a function Object. The
Undefined function’s{[Call]] internal method (8.6.2) is called with an
arguments list containing the assigned value as its sole
argument each time a set access of the property is
performed. The effect of a property's [[Set]] internal method
may, but is not required to, have an effect on the value
returned by subsequent calls to the property's [[Get]]
internal method.

[[Enumerable]] Boolean If true, the property is to be enumerated by a for-in
enumeration (see 12.6.4). Otherwise, the property is said to
be non-enumerable.

[[Configurable]] Boolean If false, attempts to delete the property, change the
property to be a data property, or change its attributes will
fail.

If the value of an attribute is not explicitly specified by this specification for a named property, the default value
defined in Table 7 is used.

Table 7 — Default Attribute Values

Attribute Name Default Value
[[Value]] undefined
[[Get]] undefined
[[Set]] undefined
[[Writable]] false
[[Enumerable]] false
[[Configurable]] false

© Ecma International 2012 35

secma

8.6.2 Object Internal Properties and Methods

This specification uses various internal properties to define the semantics of object values. These internal
properties are not part of the ECMAScript language. They are defined by this specification purely for
expository purposes. An implementation of ECMAScript must behave as if it produced and operated upon
internal properties in the manner described here. The names of internal properties are enclosed in double
square brackets [[]]. When an algorithm uses an internal property of an object and the object does not
implement the indicated internal property, a TypeError exception is thrown.

Table 8 summarises the internal properties used by this specification that are applicable to all ECMAScript
objects. Table 9 summarises the internal properties used by this specification that.are only applicable to some
ECMAScript objects.

Clause 8.12 provides the algorithms that defined the default behaviour for the internal methods in Table 8. An
ordinary object is an object that uses all of these default algorithms. An exotic object is an object that uses
some other algorithm to provide alternative behaviour for one or more of these internal methods.

The “Value Type Domain” columns of the following tables define the types of values associated with internal
properties. The type names refer to the types defined in Clause 8 augmented by the following additional
names. “any” means the value may be any ECMAScriptdlanguage type. “primitive” means Undefined, Null,
Boolean, String, or Number. “SpecOp” means the internal property is an'internal method, an implementation
provided procedure defined by an abstract operation specification. “SpecOp” is followed by a list of descriptive
parameter names. If a parameter name is the same as a type nhame then the name describes the type of the
parameter. If a “SpecOp” returns a value, its parameter list is followed by the symbol “—” and the type of the
returned value.

36 © Ecma International 2012

F
pe

Table 8 — Internal Properties Common to All Objects

Internal Property Value Type Domain Description
[[Prototypel]] Object or Null The prototype of this object.
[[Extensible]] Boolean If true, own properties may be added to the
object.
[[Get]] SpecOp(propertyName) — | Returns the value of the named property.
any
[[GetOwnProperty]] SpecOp (propertyName) — | Returns the Property Descriptor of the named
Undefined or Property own property of this object, or undefined if
Descriptor absent.
[[GetProperty]] SpecOp (propertyName) — | Returns the fully populated Property Descriptor
Undefined or Property of the named< property of this object, or
Descriptor undefined if absent.
[[Put]] SpecOp (propertyName, Sets the specified named property to the value
any, Boolean) of the second parameter. The flag controls
failure’handling.
[[CanPut]] SpecOp (propertyName) — | Returns a Boolean value indicating whether a
Boolean [[Put]] operation with PropertyName can be
performed.
[[HasProperty]] SpecOp (propertyName) — | Returns a Boolean value indicating whether the
Boolean object already has a property with the given
name.
[[Delete]] SpecOp (propertyName, Removes the specified named own property
Boolean) — Boolean from the . object. The flag controls failure
handling.
[[DefaultValue]] SpecOp (Hint) — primitive Hint is a String. Returns a default value for the
object.
[[DefineOwnProperty]] | SpecOp (propertyName, Creates or-alters the named own property to
PropertyDescriptor, have the state described by a Property
Boolean) — Boolean Descriptor. The flag controls failure handling.
[[Enumerate]] SpecOp()—Object Returns an object that can enumerate the string
values of the keys of the enumerable properties
of the object. The returned object is an Iterator
object.
[[iterate]] SpecOp()—Object Returns an object that can enumerate the logical
component values of the object. The returned
object is an Iterator object.

Every object must implement all of the internal properties listed in Table 8. However, the [[DefaultValue]]
internal method may, for some objects, simply throw a TypeError exception.

All objects have an internal property called [[Prototype]]. The value of this property is either null or an object
and is used for implementing inheritance. Whether or not an ordinary object can have an exotic object as its
[[Prototype]] depends on the implementation. Every [[Prototype]] chain must have finite length (that is, starting
from any object, recursively accessing the [[Prototype]] internal property must eventually lead to a null value).
Named data properties of the [[Prototype]] object are inherited (are visible as properties of the child object) for
the purposes of get access, but not for put access. Named accessor properties are inherited for both get
access and put access.

Every ECMAScript object has a Boolean-valued [[Extensible]] internal property that controls whether or not
named properties may be added to the object. If the value of the [[Extensible]] internal property is false then
additional named properties may not be added to the object. In addition, if [[Extensible]] is false the value of
[[Prototype]] internal properties of the object may not be modified. Once the value of an [[Extensible]] internal
property has been set to false it may not be subsequently changed to true.

NOTE This specification defines no ECMAScript language operators or built-in functions that permit a program to
modify an object’s [[Prototype]] internal properties or to change the value of [[Extensible]] from false to true.

© Ecma International 2012 37

secma

Implementation specific extensions that modify [[Prototype]] or [[Extensible]] must not violate the invariants defined in the
preceding paragraph.

Unless otherwise specified, the common internal methods of native ECMAScript objects behave as described
in 8.12. Array objects have a slightly different implementation of the [[DefineOwnProperty]] internal method
(see 15.4.5.1) and String objects have a slightly different implementation of the [[GetOwnProperty]] internal
method (see 15.5.5.2). Arguments objects (10.6) have different implementations of [[Get]], [[GetOwnProperty]],
[[DefineOwnProperty]], and [[Delete]]. Function objects (15.3) have a different implementation of [[Get]].

Exotic objects may implement these internal methods in any manner unless specified otherwise; for example,
one possibility is that [[Get]] and [[Put]] for a particular exotic object indeed fetch and store property values but
[[HasProperty]] always generates false. However, if any specified manipulation‘of an exotic object's internal
properties is not supported by an implementation, that manipulation must throw a TypeError exception when
attempted.

The [[GetOwnProperty]] internal method of all objects must conform to the following invariants for each
property of the object:

e |f a property is described as a data property and it may return different values over time, then either or
both of the [[Writable]] and [[Configurable]] attributes must be true even if no mechanism to change the
value is exposed via the other internal methods.

o If a property is described as a data property and its [[Writable]] .and [[Configurable]] are both false, then
the SameValue (according to 9.12) must be returned for the [[Value]] attribute of the property on all calls
to [[GetOwnProperty]].

e |f the attributes other than [[Writable]] may change over time or if the property might disappear, then the
[[Configurable]] attribute must be true.

o [f the [[Writable]] attribute may change from false to true, then the [[Configurable]] attribute must be true.
e |f the value of the object’s [[Extensible]] internal property has been observed by ECMAScript code to be
false, then if a call to'[[GetOwnProperty]] describes a property as non-existent all subsequent calls must

also describe that property as non-existent.

The [[DefineOwnProperty]] internal‘'method of all objects must not permit the addition of a new property to an
object if the [[Extensible]] internal property of that object has been observed by ECMAScript code to be false.

If the [[Extensible]] internal property of an object has been observed by ECMAScript code to be false then it
must not subsequently become true.

38 © Ecma International 2012

secma

Table 9 — Internal Properties Only Defined for Some Objects

Internal Property Value Type Description
Domain

[[NativeBrand]] Members of the A tag value used by this specification to categorize various
NativeBrand kinds of native ECMAScript objects defined in this
enumeration. specification. Host objects do not have this internal property.

[[PrimitiveValue]] primitive Internal state information associated with this object. Of the

standard built-in ECMAScript objects, only Boolean, Date,
Number, and String objects implement [[PrimitiveValue]].

[[Construct]]

SpecOp(a List of
any) — Object

Creates an object. Invoked via‘the new operator. The
arguments to the SpecOp are the arguments passed to the
new operator. Objects that implement this internal method
are called constructors.

[[Call]]

SpecOp(any, a List
of any) — any or
Reference

Executes code associated with the object. Invoked via a
function call expression. The arguments to the SpecOp are
this object and a list containing the arguments passed to the
function call expression. Objects that implement this internal
method are callable. Only callable objects that are host
objects may return Reference values.

[[HasInstance]]

SpecOp(any) —
Boolean

Returnsia Boolean value'indicating whether the argument is
likely an Object that was constructed by this object. Of the
standard built-in ECMAScript objects, only Function objects
implement [[Haslnstance]].

[[Scopel]]

Lexical Environment

A lexical environment. that is the environment in which a
Function object is executed. Of the standard built-in
ECMAScript.. objects, “only. Function objects implement
[[Scope]].

[[FormalParameters]]

Parse Tree

A parse’ tree for ~ECMAScript code parsed with
FormalParameterList as the goal symbol. Of the standard
built-in ECMAScript objects, only Function objects
implement [[FormalParameters]].

[[Code]]

Parse Tree

A parse tree for ECMAScript code parsed with FunctionBody
as the goal symbol. Of the standard built-in ECMAScript
objects, only Function objects implement [[Code]].

[[Strict]]

Boolean

True if a Function object is a strict mode function. Of the
standard built-in ECMAScript objects, only Function objects
implement [[Strict]].

[[TargetFunction]]

Object

The target function of a function object created using the
standard built-in Function.prototype.bind method. Only
ECMAScript objects created using Function.prototype.bind
have a [[TargetFunction]] internal property.

[[BoundThis]]

any

The pre-bound this value of a function Object created using
the standard built-in Function.prototype.bind method. Only
ECMAScript objects created using Function.prototype.bind
have a [[BoundThis]] internal property.

[[BoundArguments]]

List of any

The pre-bound argument values of a function Object created
by the standard built-in Function.prototype.bind method.
Only objects created by Function.prototype.bind have a
[[BoundArguments]] internal property.

[[Match]]

SpecOp(String,
index) —
MatchResult

Tests for a regular expression match and returns a
MatchResult value (see 15.10.2.1). Of the standard built-in
ECMAScript objects, only RegExp objects implement
[[Match]].

[[ParameterMap]]

Object

Provides a mapping between the properties of an arguments
object (see 10.6) and the formal parameters of the
associated function. Only objects that are arguments objects
have a [[ParameterMap]] internal property.

© Ecma International 2012

39

oechna

The [[NativeBrand]] internal property is used to identify native ECMASCiript objects as objects that conform to
specific parts of this specification. The value of a [[NativeBrand]] property is a single member of this set of
enumerated values: NativeFunction, NativeArray, StringWrapper, BooleanWrapper, NumberWrapper,
NativeMath, NativeDate, NativeRegExp, NativeError, NativeJSON, NativeArguments, NativePrivateName.
The actual value of the [[NativeBrand]] internal property is only used to identify specific kinds of native
ECMAScript objects. Host objects do not have this internal property,

Table 10 — Values of the [[NativeBrand]] Internal Property

Value Category Description
NativeFunction Function objects
NativeArray Array objects
StringWrapper String objects
BooleanWrapper Boolean objects
NumberWrapper Number objects
NativeMath The Math object
NativeDate Date objects
NativeRegExp RegExp objects
NativeError Error objects
NativeJSON The JSON object
NativeArguments Arguments objects
NativePrivateName Private Name objects

8.7 The List and Record Specification Type

The List type is used to explain the evaluation of argument lists (see 11.2.4) in new expressions, in function
calls, and in other algorithms where a simple list of values is needed. Values of the List type are simply
ordered sequences of values. These sequences may be of any length.

The Record type is used to.describe data aggregations within the algorithms of this specification. A Record
type value consists of one‘or more named fields. The value of each field is either an ECMAScript value or an
abstract value represented by a name associated with the Record type. Field names are always enclosed in
double brackets, for example [[value]]

For notational convenience within this specification, an object literal-like syntax can be used to express a
Record value: For example, {[[field1]]: 42, [[field2]]: false, [[field3]]: empty} defines a Record value that has
three fields each of which is initialized to a specific value. Field name order is not significant. Any fields that
are not.explicitly listed are considered to be absent.

In specification text and algorithms, dot notation may be used to refer to a specific field of a Record value. For
example, if R is the record shown in the previous paragraph then R.[[field2]] is shorthand for “the field of R
named [[field2]]".

Schema for commonly used Record field combinations may be named, and that name may be used as a
prefix to a literal Record value to identify the specific kind of aggregations that is being described. For
example: Property Descriptor {[[Value]]: 42, [[Writable]]: false, [[Configurable]]: true}.

8.8 The Completion Record Specification Type

The Completion type is a Record used to explain the runtime propagation of values and control flow such as
the behaviour of statements (break, continue, return and throw) that perform nonlocal transfers of

control.

Values of the Completion type are Record values whole fields are defined as by Table 11.

40 © Ecma International 2012

»ecma

Table 11 — Completion Record Fields

Field Name | Value Meaning
[[typell One of normal, break, continue, return, | The type of completion that occurred.
or throw
[[value]] any ECMAScript language value or empty | The value that was produced.
[[target]] any ECMAScript identifier or empty The target label for directed control transfers.

The term “abrupt completion” refers to any completion with a [[type]] value other than normal.

8.8.1 Implicit Completion Values

The algorithms of this specification often implicitly return Completion Records whose [[type]] is normal.
Unless it is otherwise obvious from the context, an algorithm statement that returns a value that is not a
Completion Record, such as:

1. Return the String "Infinity".

mean the same things as:

1. Return Completion {[[type]]: normal, [[value]]: String "In€finity", [[target]]:empty}.

Similarly, any reference to a Completion Record value that is in a context that does not explicitly require a
complete Completion Record value is equivalent to an explicit reference to the [[value]] field of the Completion
Record value unless the Completion Record is an abrupt completion.

8.8.2 NormalCompletion

The abstract operation NormalCompletion with a single argument, such as:

1. Return NormalCompletion(argument).

Is a short hand that is defined as follows:

1. Return Completion {[[type]]: normal, [[value]]: argument, [[target]]:empty}.

8.8.3 Throw an Exception

Algorithms steps that say to throw an exception, such as

1. Throwa TypeError exception.

Mean the same things as:

1. Return Completion {[[type]]: throw, [[value]]: a newly created TypeError object, [[target]]:empty}.

8.8.4 ReturnlfAbrupt

Algorithms steps that say

1. ReturnlfAbrupt(argument).

mean the same things as:

1. Ifargument is an abrupt completion, then return argument.
2. Else if argument is a Completion Record, then let argument be argument.[[value]].

© Ecma International 2012 41

secma

8.9 The Reference Specification Type

NOTE The Reference type is used to explain the behaviour of such operators as delete, typeof£, the assignment
operators, the super keyword and other lanauge features.. For example, the left-hand operand of an assignment is
expected to produce a reference.

A Reference is a resolved name binding. A Reference consists of three components, the base value, the
referenced name and the Boolean valued strict reference flag. The base value is either undefined, an Object, a
Boolean, a String, a Number, or an environment record (10.2.1). A base value of undefined indicates that the
Reference could not be resolved to a binding. The referenced name is a String.

A Super Reference is a Reference that is used to represents a name binding-that was expressed using the
super keyword. A Super Reference has an additional thisValue component and its base value will never be an
environment record.

The following abstract operations are used in this specification to access the components of references:

GetBase(V). Returns the base value component of the reference V.

GetReferencedName(V). Returns the referenced nhame component of the reference V.
IsStrictReference(V). Returns the strict reference component of the reference V.

HasPrimitiveBase(V). Returns true if the base value is a Boolean, String, or Number.
IsPropertyReference(V). Returns true if either the base value is an object or HasPrimitiveBase(V) is true;
otherwise returns false.

IsUnresolvableReference(V). Returns true if the base value is undefined and false otherwise.

e |sSuperReference(V). Returns true if this reference has a thisValue component.

The following abstract operations are used in this specification to.operate on references:
8.9.1 GetValue (V)

ReturnlfAbrupt(V).
If Type(V) is not Reference, return V.
Let base be the result of calling GetBase(V).
If IsUnresolvableReference(V), throw a-ReferenceError exception.
If IsPropertyReference(V), then

a. If HasPrimitiveBase(V) is false, then let get be the [[Get]] internal method of base, otherwise let get

be the special [[Get]] internal method defined below.
b.< If IsSuperReference(V) is false, then
i Return the result of calling get as an internal method of base passing
GetReferencedName(V) for the argument.

A

c.. Else,
i Return the result of calling get as an internal method of base passing
GetReferencedName(V) and GetThisValue(V) as the arguments.
6. Else, base must be an environment record.
a. Return the result of calling the GetBindingValue (see 10.2.1) concrete method of base passing
GetReferencedName(V) and IsStrictReference(V) as arguments.

The following [[Get]](P [, accessorThisValue]) internal method is used by GetValue when V is a property
reference with a primitive base value. base is the value the internal method is called upon with property name
P as its argument. The following steps are taken:

Let O be ToObject(base).

Let desc be the result of calling the [[GetProperty]] internal method of O with property name P.
If desc is undefined, return undefined.

If IsDataDescriptor(desc) is true, return desc.[[Value]].

Otherwise, IsAccessorDescriptor(desc) must be true so, let getter be desc.[[Get]] (see 8.10).

If getter is undefined, return undefined.

If the accessorThisValue argument is not present, let accessorThisValue be base

NookrwphpE

42 © Ecma International 2012

»ecma

8. Return the result of calling the [[Call]] internal method of getter providing accessorThisValue as the this
value and providing no arguments.

NOTE The object that may be created in step 1 is not accessible outside of the above method. An implementation
might choose to avoid the actual creation of the object. The only situation where such an actual property access that uses
this internal method can have visible effect is when it invokes an accessor function.

8.9.2 PutValue (V, W)

ReturnIfAbrupt(V).
ReturnIfAbrupt(W).
If Type(V) is not Reference, throw a ReferenceError exception.
Let base be the result of calling GetBase(V).
If IsUnresolvableReference(V), then
a. If IsStrictReference(V) is true, then
i Throw ReferenceError exception.
b. Return the result of calling the [[Put]] internal method of the global object, passing
GetReferencedName(V) for the property name, W for the value, and false for the Throw flag.
6. Else if IsPropertyReference(V), then
a. If HasPrimitiveBase(V) is false, then let put be the [[Put]] internal method of base, otherwise let put
be the special [[Put]] internal method defined below.
b. If IsSuperReference(V) is false, then
i. Return the result of calling put as an internal. method of base passing
GetReferencedName(V) for the property name, W for the value, and IsStrictReference(V) for
the Throw flag.

agpwbE

c. Else,

i. Return the result of calling put as an-internal method of base passing
GetReferencedName(V) for the property name, W for the value, IsStrictReference(V) for
the Throw flag, and GetThisValue(V) as the accessorThisValue argument.

7. Else base must be a reference whose base is an environment record. So;
a. Return the result of calling the SetMutableBinding (10.2.1) concrete method of base, passing
GetReferencedName(V), W, and IsStrictReference(V) as arguments.
8. Return undefined.

The following [[Put]] internal method is used by PutValue when V is a property reference with a primitive base
value. base is the value the internal method-is-called upon with property name P, value W, and Boolean flag
Throw as required arguments and optional argument accessorThisValue. The following steps are taken:

1. Let O be-ToObject(base).
2. If the result of calling the [[CanPut]] internal method of O with argument P is false, then
a. If Throw is true, then throw a TypeError exception.
b. Else return undefined.
3. Let ownDesc be the result of calling the [[GetOwnProperty]] internal method of O with argument P.
4. If IsDataDescriptor(ownDesc) is true, then
a. If Throw is true, then throw a TypeError exception.
b. Else return undefined.
5. Let desc be the result of calling the [[GetProperty]] internal method of O with argument P. This may be
either an own or inherited accessor property descriptor or an inherited data property descriptor.
6. If IsAccessorDescriptor(desc) is true, then
a. Letsetter be desc.[[Set]] (see 8.10) which cannot be undefined.
b. If accessorThisValue is not present, then let accessorThisValue be base.
c. Return the result of calling the [[Call]] internal method of setter providing accessorThisValue as the
this value and an argument list containing only W.
7. Else, this is a request to create an own property on the transient object O
a. |If Throw is true, then throw a TypeError exception.
8. Return undefined.

NOTE The object that may be created in step 1 is not accessible outside of the above method. An implementation
might choose to avoid the actual creation of that transient object. The only situations where such an actual property
assignment that uses this internal method can have visible effect are when it either invokes an accessor function or is in
violation of a Throw predicated error check. When Throw is true any property assignment that would create a new property
on the transient object throws an error.

© Ecma International 2012 43

secma

8.9.3 GetThisValue (V)

ReturnlfAbrupt(V).
If Type(V) is not Reference, return V.
If IsUnresolvableReference(V), throw a ReferenceError exception.
If IsSuperReference(V), then
a. Return the value of the thisValue component of the reference V.
5. Return GetBase(V).

PR

8.10 The Property Descriptor and Property Identifier Specification Types

The Property Descriptor type is used to explain the manipulation and reification' of named property attributes.
Values of the Property Descriptor type are records composed of named fields where each field’s name is an
attribute name and its value is a corresponding attribute value as specified in 8.6.1. In addition, any field may
be present or absent.

Property Descriptor values may be further classified as data property descriptors and accessor property
descriptors based upon the existence or use of certain fields. A data property descriptor is one that includes
any fields named either [[Value]] or [[Writable]]. An accessor property descriptor is one that includes any fields
named either [[Get]] or [[Set]]. Any property descriptor may have fields named [[Enumerable]] and
[[Configurable]]. A Property Descriptor value may not be both a data property descriptor and an accessor
property descriptor; however, it may be neither. A generic property descriptor is a Property Descriptor value
that is neither a data property descriptor nor an accessor property descriptor. A fully populated property
descriptor is one that is either an accessor property descriptor or a data property descriptor and that has all of
the fields that correspond to the property attributes defined in either 8.6.1 Table 5 or Table 6.

For notational convenience within this specification, an object literal-like syntax can be used to define a
property descriptor value. For example, Property Descriptor {[[Value]]: 42, [[Writable]]: false, [[Configurable]]:
true} defines a data property descriptor. Field name order is not significant. Any fields that are not explicitly
listed are considered to be absent:

In specification text and algorithms, dot notation may. be used to refer to a specific field of a Property
Descriptor. For example; if D is a property descriptor then D.[[Value]] is shorthand for “the field of D named
[[Valuel]".

The Property Identifier type is used to associate a property nhame with a Property Descriptor. Values of the
Property Identifier type are pairs of the form (name, descriptor), where name is a String and descriptor is a
Property Descriptor value.

The following abstract operations are used.in this specification to operate upon Property Descriptor values:
8.10.1 IsAccessorDescriptor (Desc)

When the abstract operation ISAccessorDescriptor is called with property descriptor Desc, the following steps
are taken:

2. If Desc is undefined, then return false.
3. If both Desc.[[Get]] and Desc.[[Set]] are absent, then return false.
4, Return true.

8.10.2 IsDataDescriptor (Desc)

When the abstract operation IsDataDescriptor is called with property descriptor Desc, the following steps are
taken:

1. If Desc is undefined, then return false.

2. Ifboth Desc.[[Value]] and Desc.[[Writable]] are absent, then return false.
3. Return true.

44 © Ecma International 2012

eCmna

8.10.3 IsGenericDescriptor (Desc)

When the abstract operation IsGenericDescriptor is called with property descriptor Desc, the following steps
are taken:

1.
2.
3.
8.

If Desc is undefined, then return false.
If IsAccessorDescriptor(Desc) and IsDataDescriptor(Desc) are both false, then return true.
Return false.

10.4 FromPropertyDescriptor (Desc)

When the abstract operation FromPropertyDescriptor is called with property descriptor Desc, the following
steps are taken:

The following algorithm assumes that Desc is a fully populated Property Descriptor, such as that returned from
[[GetOwnProperty]] (see 8.12.1).

1.
2.
3.

6.

7.

If Desc is undefined, then return undefined.
Let obj be the result of the abstract operation ObjectCreate (15.2).
If IsDataDescriptor(Desc) is true, then
a. Call the [[DefineOwnProperty]] internal method of obj with arguments "value", Property Descriptor
{[[\Value]]: Desc.[[Value]], [[Writable]]: true, [[Enumerable]]: true, [[Configurable]]: true}, and false.
b. Call the [[DefineOwnProperty]] internal method of obj with arguments "writable", Property Descriptor
{[[\Value]]: Desc.[[Writable]], [[Writable]]: true, [[Enumerable]]: true, [[Configurable]]: true}, and false.
Else, IsAccessorDescriptor(Desc) must be true, so
a. Call the [[DefineOwnProperty]] internal method of obj with arguments "get", Property Descriptor
{[[\Value]]: Desc.[[Get]], [[Writable]]: true, [[Enumerable]]: true, [[Configurable]]: true}, and false.
b. Call the [[DefineOwnProperty]] internal method of obj with arguments 'set", Property Descriptor
{[[Value]]: Desc.[[Set]], [[Writable]]: true, [[Enumerable]]: true, [[Configurable]]: true}, and false.
Call the [[DefineOwnProperty]] internal method of obj with-arguments “enumerable", Property Descriptor
{[[Value]]: Desc.[[Enumerable]], [[Writable]]: true, [[Enumerable]]: true, [[Configurable]]: true}, and false.
Call the [[DefineOwnProperty]] internal method of obj with arguments "configurable", Property Descriptor
{[[Value]]: Desc.[[Configurable]], [[Writable]]: true, [[Enumerable]]: true, [[Configurable]]: true}, and false.
Return obj.

8.10.5 ToPropertyDescriptor (Obj)

When the abstract operation ToPropertyDescriptor is called with object Obj, the following steps are taken:

1
2.
3.
4

ReturnifAbrupt(Obj).
If Type(Obj) is not Object throw a TypeError exception.
Let desc be the result of creating a new Property Descriptor that initially has no fields.
Ifthe result of calling the [[HasProperty]] internal method of Obj with argument "enumerable" is true,
then
a. - Letenum be the result of calling the [[Get]] internal method of Obj with "enumerable".
b. ReturnlfAbrupt(enum).
c. Setthe [[Enumerable]] field of desc to ToBoolean(enum).
If the result of calling the [[HasProperty]] internal method of Obj with argument "configurable" is true,
then
a. Letconf be the result of calling the [[Get]] internal method of Obj with argument
"configurable".
b. ReturnlfAbrupt(conf).
c. Setthe [[Configurable]] field of desc to ToBoolean(conf).
If the result of calling the [[HasProperty]] internal method of Obj with argument "value" is true, then
a. Letvalue be the result of calling the [[Get]] internal method of Obj with argument “value”.
b. ReturnlfAbrupt(value).
c. Setthe [[Value]] field of desc to value.
If the result of calling the [[HasProperty]] internal method of Obj with argument "writable" is true, then
a. Letwritable be the result of calling the [[Get]] internal method of Obj with argument "writable".
b. ReturnlifAbrupt(writable).

© Ecma International 2012 45

secma

c. Setthe [[Writable]] field of desc to ToBoolean(writable).

8. If the result of calling the [[HasProperty]] internal method of Obj with argument "get" is true, then
a. Let getter be the result of calling the [[Get]] internal method of Obj with argument "get".
b. ReturnlfAbrupt(getter).
c. If IsCallable(getter) is false and getter is not undefined, then throw a TypeError exception.
d. Setthe [[Get]] field of desc to getter.

9. If the result of calling the [[HasProperty]] internal method of Obj with argument "set" is true, then
a. Let setter be the result of calling the [[Get]] internal method of Obj with argument "set".
b. ReturnlfAbrupt(setter).
c. If IsCallable(setter) is false and setter is not undefined, then throw a TypeError exception.
d. Setthe [[Set]] field of desc to setter.

10. If either desc.[[Get]] or desc.[[Set]] are present, then
a. If either desc.[[Value]] or desc.[[Writable]] are present, then throw' a TypeError exception.

11. Return desc.

8.11 The Lexical Environment and Environment Record Specification Types

The Lexical Environment and Environment Record types are used to explain the behaviour of name resolution
in nested functions and blocks. These types and the operations upon them are defined in Clause 10.

8.12 Algorithms for Object Internal Methods

In the following algorithm descriptions, assume O is a native ECMAScript object, P is a String, Desc is a
Property Description record, and Throw is a Boolean flag.

8.12.1 [[GetOwnProperty]] (P)

When the [[GetOwnProperty]] internal method of O is called with.property name P, the following steps are
taken:

If O doesn’t have an own property with name P, return undefined.
Let D be a newly created Property Descriptor with no fields.
Let X be O’s own property named P.
If X is a data property, then
a. Set D.[[Value]] to the value of X’s [[Value]] attribute.
b. Set D.[[Writable]] to the value of X’s [[Writable]] attribute
5. Else X is an accessor property, so
a. Set D.[[Get]] to the value of X’s [[Get]] attribute.
b Set D.[[Set]] to the value of X’s [[Set]] attribute.
6. Set D.[[Enumerable]] to the value of X’s [[Enumerable]] attribute.
7. Set D.[[Configurable]] to the value of X’s [[Configurable]] attribute.
8. ReturnD.

PR

However, if O is a String object it has a more elaborate [[GetOwnProperty]] internal method defined in 15.5.5.2.
8.12.2 [[GetProperty]] (P)
When the [[GetProperty]] internal method of O is called with property name P, the following steps are taken:

Let prop be the result of calling the [[GetOwnProperty]] internal method of O with property name P.
If prop is not undefined, return prop.

Let proto be the value of the [[Prototype]] internal property of O.

If proto is null, return undefined.

Return the result of calling the [[GetProperty]] internal method of proto with argument P.

gRrwNPE

8.12.3 [[Get]] (P [, accessorThisValue])
When the [[Get]] internal method of O is called with property name P, the following steps are taken:

1. Let desc be the result of calling the [[GetProperty]] internal method of O with property name P.

46 © Ecma International 2012

»ecma

If desc is undefined, return undefined.

If IsDataDescriptor(desc) is true, return desc.[[Value]].

Otherwise, IsAccessorDescriptor(desc) must be true so, let getter be desc.[[Get]].

If getter is undefined, return undefined.

If accessorThisValue is not present, then let accessorThisValue be O.

Return the result calling the [[Call]] internal method of getter providing accessorThisValue as the this value
and providing no arguments.

8.12.4 [[CanPut]] (P)

Noakwn

When the [[CanPut]] internal method of O is called with property name P, the following steps are taken:

1. Let desc be the result of calling the [[GetOwnProperty]] internal method of O with argument P.
2. Ifdesc is not undefined, then
a. If IsAccessorDescriptor(desc) is true, then
i. If desc.[[Set]] is undefined, then return false.
ii. Else return true.
b. Else, desc must be a DataDescriptor so return the value‘of desc.[[Writable]].
Let proto be the [[Prototype]] internal property of O.
If proto is null, then return the value of the [[Extensible]]«internal property of O.
Let inherited be the result of calling the [[GetProperty]] internal method.of proto with property name P.
If inherited is undefined, return the value of the [[Extensible]] internal property of O.
If IsAccessorDescriptor(inherited) is true, then
a. If inherited.[[Set]] is undefined, then return false.
b. Else return true.
8. Else, inherited must be a DataDescriptor
a. If the [[Extensible]] internal property of Q is false, return false.
b. Else return the value of inherited.[[Writable]].

Nookw

Exotic objects may define additional constraints upon [[Put]] operations.. If possible, exotic objects should not
allow [[Put]] operations in situations where this definition-of [[CanPut]] returns false.

8.12.5 [[Put]] (P, V, Throw[, accessorThisValue])

When the [[Put]] internal method of O is called with property P, value V, and Boolean flag Throw, the following
steps are taken:

1. If the result of calling the [[CanPut]] internal method of O with argument P is false, then
a. Af Throw is true, then throw a TypeError exception.
bs Else return undefined.
2. Let ownDesc be the result of calling the [[GetOwnProperty]] internal method of O with argument P.
3. If IsDataDescriptor(ownDesc) is true, then
a. « Let valueDesc be the Property Descriptor {[[Value]]: V}.
b.. Return the result of calling the [[DefineOwnProperty]] internal method of O passing P, valueDesc,
and Throw as arguments.
4. Letdesc be the result of calling the [[GetProperty]] internal method of O with argument P. This may be
undefined or either an‘own or inherited accessor property descriptor or an inherited data property descriptor.
5. If IsAccessorDescriptor(desc) is true, then
a. Let setter be desc.[[Set]] which cannot be undefined.
b. If accessorThisValue is not present, then let accessorThisValue be O.
c. Return the result of calling the [[Call]] internal method of setter providing accessorThisValue as the
this value and providing V as the sole argument.
6. Else, create a named data property named P on object O as follows
a. Let newDesc be the Property Descriptor
{[[Value]]: V, [[Writable]]: true, [[Enumerable]]: true, [[Configurable]]: true}.
b. Return the result of calling the [[DefineOwnProperty]] internal method of O passing P, newDesc,
and Throw as arguments.

8.12.6 [[HasProperty]] (P)

When the [[HasProperty]] internal method of O is called with property name P, the following steps are taken:

© Ecma International 2012 47

secma

1. Let desc be the result of calling the [[GetProperty]] internal method of O with property name P.
2. Ifdesc is undefined, then return false.

3. Elsereturn true.
8.

12.7 [[Delete]] (P, Throw)

When the [[Delete]] internal method of O is called with property name P and the Boolean flag Throw, the
following steps are taken:

1. Let desc be the result of calling the [[GetOwnProperty]] internal method of O with property name P.
2. Ifdesc is undefined, then return true.
3. If desc.[[Configurable]] is true, then
a. Remove the own property with name P from O.
b. Return true.
4. Else if Throw, then throw a TypeError exception.
5. Return false.

8.12.8 [[DefaultValue]] (hint)
When the [[DefaultValue]] internal method of O is called with hint String, the following steps are taken:

1. LettoString be the result of calling the [[Get]] internal method of object O with argument "toString".
2. ReturnlfAbrupt(toString).
3. If IsCallable(toString) is true then,
a. Let str be the result of calling the [[Call]] internal method of toString, with O as the this value and
an empty argument list.
b. ReturnlfAbrupt(str).
c. Ifstrisa primitive value, return str.
4. Let valueOf be the result of calling the [[Get]] internal method of object O with argument "valueOf".
ReturnlfAbrupt(valueOf).
If IsCallable(valueOf) is true-then,
a. Letval be the result of calling the [[Call]] internal method of valueOf, with O as the this value and
an empty argument list.
b. ReturnlfAbrupt(val).
c. Ifvalis a primitive value, return val.
7. Throw a TypeError exception.

ow

When the [[DefaultValue]] internal method of O is called with hint Number, the following steps are taken:

1. Let valueOf be the result of callingthe [[Get]] internal method of object O with argument "valueOf".
ReturnIfAbrupt(valueOf).
3. If IsCallable(valueOf) is true then,
a.. Letval be the result of calling the [[Call]] internal method of valueOf, with O as the this value and
an empty argument list.
b. “ReturnlfAbrupt(val).
c. Ifvalis a primitive value, return val.
4. Let toString be the result of calling the [[Get]] internal method of object O with argument "toString".
ReturnlfAbrupt(toString).
6. If IsCallable(toString) is true then,
a. Let str be the result of calling the [[Call]] internal method of toString, with O as the this value and
an empty argument list.
b. ReturnlfAbrupt(str).
c. Ifstrisa primitive value, return str.
7. Throw a TypeError exception.

>

o

When the [[DefaultValue]] internal method of O is called with no hint, then it behaves as if the hint were
Number, unless O is a Date object (see 15.9.6), in which case it behaves as if the hint were String.

The above specification of [[DefaultValue]] for ordinary objects can return only primitive values. If an exotic

object implements its own [[DefaultValue]] internal method, it must ensure that its [[DefaultValue]] internal
method can return only primitive values.

48 © Ecma International 2012

»ecma

8.12.9 [[DefineOwnProperty]] (P, Desc, Throw)

In the following algorithm, the term “Reject” means “If Throw is true, then throw a TypeError exception,
otherwise return false”. The algorithm contains steps that test various fields of the Property Descriptor Desc for
specific values. The fields that are tested in this manner need not actually exist in Desc. If a field is absent
then its value is considered to be false.

When the [[DefineOwnProperty]] internal method of O is called with property name P, property descriptor Desc,
and Boolean flag Throw, the following steps are taken:

1. Let current be the result of calling the [[GetOwnProperty]] internal method of O with property name P.
2. Letextensible be the value of the [[Extensible]] internal property of O.
3. Ifcurrent is undefined and extensible is false, then Reject.
4. If current is undefined and extensible is true, then
a. |If IsGenericDescriptor(Desc) or IsDataDescriptor(Desc) is true, then

i. Create an own data property named P of object O whose [[Value]], [[Writable]],
[[Enumerable]] and [[Configurable]] attribute values are described by Desc. If the value of
an attribute field of Desc is absent, the attribute of the newly created property is set to its
default value.

b. Else, Desc must be an accessor Property Descriptor so,

i Create an own accessor property named P of object O.whose [[Get]], [[Set]],
[[Enumerable]] and [[Configurable]] attribute values are described by Desc. If the value of
an attribute field of Desc is absent, the attribute of the newly created property is set to its
default value.

c. Return true.
5. Return true, if every field in Desc is absent.
6. Return true, if every field in Desc also occurs in current and the value of every field in Desc is the same

value as the corresponding field in current when compared using.the SameValue algorithm (9.12).
7. If the [[Configurable]] field of current is false then
a. Reject, if the [[Configurable]] field of Desc is true.
b. Reject, if the [[Enumerable]] field of Desc is present and the [[Enumerable]] fields of current and
Desc are the Boolean negation of each other.
If IsGenericDescriptor(Desc) is true, then no further validation is required.
9. Else, if IsDataDescriptor(current) and IsDataDescriptor(Desc) have different results, then
a. Reject, if the [[Configurable]] field of current is false.
b. If IsDataDescriptor(current) is true, then
i Convert the property named P of object O from a data property to an accessor property.
Preserve the existing values of the converted property’s [[Configurable]] and
[[Enumerable]] attributes and set the rest of the property’s attributes to their default values.

®

c. Else,
i. Convert the property named P of object O from an accessor property to a data property.
Preserve the existing values of the converted property’s [[Configurable]] and
[[Enumerable]] attributes and set the rest of the property’s attributes to their default values.
10. Else, if IsDataDescriptor(current) and IsDataDescriptor(Desc) are both true, then
a. Ifthe [[Configurable]] field of current is false, then
i Reject, if the [[Writable]] field of current is false and the [[Writable]] field of Desc is true.
ii. If the [[Writable]] field of current is false, then
1. Reject, if the [[Value]] field of Desc is present and SameValue(Desc.[[Value]],
current.[[Value]]) is false.
b. else, the [[Configurable]] field of current is true, so any change is acceptable.
11. Else, IsAccessorDescriptor(current) and IsAccessorDescriptor(Desc) are both true so,
a. If the [[Configurable]] field of current is false, then
i Reject, if the [[Set]] field of Desc is present and SameValue(Desc.[[Set]], current.[[Set]]) is
false.
ii. Reject, if the [[Get]] field of Desc is present and SameValue(Desc.[[Get]], current.[[Get]])
is false.
12. For each attribute field of Desc that is present, set the correspondingly named attribute of the property
named P of object O to the value of the field.
13. Return true.

© Ecma International 2012 49

secma

However, if O has an [[NativeBrand]] internal property whose value is NativeArray O also has a more
elaborate [[DefineOwnProperty]] internal method defined in 15.4.5.1.

NOTE Step 10.b allows any field of Desc to be different from the corresponding field of current if current’s
[[Configurable]] field is true. This even permits changing the [[Value]] of a property whose [[Writable]] attribute is false.
This is allowed because a true [[Configurable]] attribute would permit an equivalent sequence of calls where [[Writable]] is
first set to true, a new [[Value]] is set, and then [[Writable]] is set to false.

8.12.10 [[Enumerate]] (includePrototype, onlyEnumerable)

When the [[Enumerate]] internal method of O is called with Boolean arguments includePrototype and
onlyEnumerable, the following steps are taken:

1. Return an Iterator object (reference xxxx) whose next method iterates over all the keys of enumerable
property keys of O. If includePrototype is false, then only own properties of O are included. If
onlyEnumerable is false, then all properties that do not have private name keys are included. The mechanics
and order of enumerating the properties is not specified but musticonform to the rules specified below.

Enumerated properties do not include properties whose property key is a private name. Properties of the
object being enumerated may be deleted during enumeration. If a property that has not yet been visited during
enumeration is deleted, then it will not be visited. If new properties are added to the object being enumerated
during enumeration, the newly added properties are not guaranteed to be visited in the active enumeration. A
property name must not be visited more than once in any enumeration.

Enumerating the properties of an object includes enumerating properties of its prototype, and the prototype of
the prototype, and so on, recursively; but a property of a prototype is not enumerated if it is “shadowed”
because some previous object in the prototype chain has a property with the same name. The values of
[[Enumerable]] attributes are not considered when determining if a property of a prototype object is shadowed
by a previous object on the prototype chain.

The following is an informative algorithm that conforms to these rules

1. LetobjbeO.
2. Let proto be the value of the [[Prototype]] internal property of O.
3. IfincludePrototype is false or proto is the value null, then
a. LetpropList be a new.empty List.
4. Else
a. <Let propList be the result of calling the [[Enumerate]] internal method of proto with arguments true
and onlyEnumerable.
5. For each string name that is the property key of an own property of O
a. Let desc be the result of calling the [[GetOwnProperty]] internal method of O with argument name.
b. If name is an element of propList, then remove name as an element of propList.
c.. IfonlyEnumerable is false or desc.[[Enumerable]] is true, then add name as an element of propList.
6. Order the elements of propList in an implementation defined order.
7. Return propList.

8.12.11 [[lterate]] ()
When the [[lIterate]] internal method of O is called the following steps are taken:

1. Letitr be the result of performing Invoke with arguments %iterator%, O and an empty argument List.
2. Return itr.

8.13 Data Blocks

This section is a placeholder for describing the Data Block internal type. The
following material is verbatium from the the Binary Data ES wiki proposal. The
material has not yet been reviewed or integrated with the rest of this spec.

50 © Ecma International 2012

»ecma

This spec introduces a new, spec-internal block datatype, intuitively representing a contiguously allocated
block of binary data. Blocks are not ECMAScript values and appear only in the program store (aka heap).

A block is one of:

e anumber-block
e an array-block]t, n]
e astruct-block]tl, ..., tn]

A number-block is one of:

e an unsigned-integer; i.e., one of uint8, uint16, uint32, or uint64
e asigned-integer; i.e., one of int8, int16, int32, or int64
o a floating-point; i.e., one of float32 or float64

A uintk is an integer in the range [0, 2k). An intk is an integer in the range [-2k-1, 2k-1). A floatk is a floating-
point number representable as a k-bit IEE754 value.

An array-block[t, n] is an ordered sequence of n blocks of -homogeneous block type t. Each element of the
array is stored at in independently addressable location in the program store, and multiple Data objects may
contain references to the element.

A struct-block[tl, ..., tn] is an ordered sequence of n blocks of heterogeneous types t1 to tn, respectively. Each
field of the struct is stored at in independently.addressable location in the program store, and multiple Data
objects may contain references to the field.

The spec also introduces a datatype of Data objects, which are ECMAScript values that encapsulate
references to block data in the program store. Every Data object has the following properties:

[[Class]] = “Data”
[[Value]] : reference[block] — a reference to a block in the program store

[[DataType]] : reference[Type] — a reference to a Type object describing this object’s data block

9 Abstract Operations

These operations are not a part of the ECMAScript language; they are defined here to solely to aid the
specification of the semantics of the ECMAScript Language. Other, more specialized abstract operations are
defined throughout this specification.

9.1 Type Conversion and Testing

The ECMAScript language implicitly performs automatic type conversion as needed. To clarify the semantics
of certain constructs it is‘useful to define a set of conversion abstract operations.. The conversion abstract
operations are polymorphic; that is, they can accept a value of any ECMAScript language type, but not of
specification types.

9.1.1 ToPrimitive
The abstract operation ToPrimitive takes an input argument and an optional argument PreferredType. The
abstract operation ToPrimitive converts its input argument to a non-Object type. If an object is capable of

converting to more than one primitive type, it may use the optional hint PreferredType to favour that type.
Conversion occurs according to Table 12:

© Ecma International 2012 51

secmd

Table 12 — ToPrimitive Conversions

Input Type

Result

Completion Record

If argument is an abrupt completion, return argument. Otherwise return
ToPrimitive(argument.[[value]])

Undefined Return argument t (no conversion).
Null Return argument (no conversion).
Boolean Return argument (no conversion).
Number Return argument (no conversion).
String Return argument (no conversion).
Object Perform the following steps:

1. Let default be the result of calling the [[DefaultValue]] internal method of
argument, passing the optional hint PreferredType.

2. Return ToPrimitive(default).

The behaviour of the [[DefaultValue]] internal method is defined by this
specification for all native ECMAScript objects in 8.12.8.

9.1.2 ToBoolean

The abstract operation ToBoolean converts itsargument to a value of type Boolean according to Table 13:

52

Table 13 — ToBoolean Conversions

Argument Type

Result

Completion Record

If argument is an abrupt completion, return the argument. Otherwise return
ToBoolean(argument.[[value]])

Undefined Return false

Null Return false

Boolean Return the input argument (no conversion).

Number Return false if the argument is +0, -0, or NaN; otherwise return true.

String Return false if the argument is the empty String (its length is zero);
otherwise return true.

Object Return true

© Ecma International 2012

ecing

9.1.3 ToNumber
The abstract operation ToNumber converts its argument to a value of type Number according to Table 14:

Table 14 — To Number Conversions

Argument Type Result
Completion Record | If argument is an abrupt completion, return argument. Otherwise return
ToNumber(argument.[[value]])
Undefined Return NaN
Null Return +0
Boolean Return 1 if argument is true. Return +0 if argument is false.
Number Return argument (no conversion).
String See grammar and note below.
Object Apply the following steps:
1. Let primValue be ToPrimitive(argument, hint Number).
2. Return ToNumber(primValue):

9.1.3.1 ToNumber Applied to the String Type

ToNumber applied to Strings applies the following grammar to the input String. If the grammar cannot interpret
the String as an expansion of StringNumericLiteral, then the result of ToNumber is NaN.

Syntax

StringNumericLiteral :::
StrWhiteSpaceqpt
StrWhiteSpaceqp: StrNumericLiteral StrWhiteSpacegpt

StrWhiteSpace :::
StrWhiteSpaceChar StrWhiteSpaceopt

StrWhiteSpaceChar :::
WhiteSpace
LineTerminator

StrNumericLiteral :::
StrDecimalLiteral
HexIntegerLiteral

StrDecimalLiteral :::
StrUnsignedDecimalLiteral
+ StrUnsignedDecimalLiteral
- StrUnsignedDecimalLiteral

StrUnsignedDecimalLiteral :::
Infinity
DecimalDigits . DecimalDigitsopt: ExponentPartopt
. DecimalDigits ExponentPartopt
DecimalDigits ExponentPartopt

DecimalDigits :::
DecimalDigit
DecimalDigits DecimalDigit

DecimalDigit ::: one of
0 1 2 3 4 5 6 7 8 9

© Ecma International 2012 53

ecCmna

ExponentPart :::

Exponentindicator Signedinteger

Exponentindicator ::: one of

e E

Signedinteger :::

DecimalDigits
+ DecimalDigits
- DecimalDigits

HexIntegerLiteral :::

0x HexDigit
0x HexDigit
HexIntegerLiteral HexDigit

HexDigit ::: one of

0 1 2 3 4 5 6 7 8 9 a b c d e £ A B C D E F

NOTE Some differences should be noted between the syntax of a StringNumericLiteral and a NumericLiteral (see
7.8.3):

. A StringNumericLiteral may be preceded and/or followed by white space and/or line terminators.

. A StringNumericLiteral that is decimal may have any number of leading 0 digits.

. A StringNumericLiteral that is decimal may be preceded by + or - to indicate its sign.

A StringNumericLiteral that is empty or contains only white space is .converted to +0.
Infinity and -Infinity are recognized as a StringNumericLiteral but not as a NumericLiteral.

Runtime Semantics

The conversion of a String to a Number value is similar overall to the determination of the Number value for a
numeric literal (see 7.8.3), but.some of the details are different, so the process for converting a String numeric
literal to a value of Number type is given here in full. This value is determined in two steps: first, a
mathematical value (MV).is derived from the String numeric literal; second, this mathematical value is rounded
as described below.

54

The MV of StringNumericLiteral::: [empty] iS 0.

The MV of StringNumericLiteral ::: StrWhiteSpace is 0.

The MV of StringNumericLiteral ::: StrWhiteSpaceo,: StrNumericLiteral StrWhiteSpaceo,: is the MV of
StrNumericLiteral, no matter whether white space is present or not.

The MV of StrNumericLiteral ::: StrDecimalLiteral is the MV of StrDecimalLiteral.

The MV of StrNumericLiteral ::: HexIntegerLiteral is the MV of HexIntegerLiteral.

The MV. of StrDecimalLiteral ::: StrUnsignedDecimalLiteral is the MV of StrUnsignedDecimalLiteral.

The MV of StrDecimalLiteral ::: + StrUnsignedDecimalLiteral is the MV of StrUnsignedDecimalLiteral.

The MV of StrDecimalLiteral ::: - StrUnsignedDecimalLiteral is the negative of the MV of
StrUnsignedDecimalLiteral. (Note that if the MV of StrUnsignedDecimalLiteral is O, the negative of this MV is
also 0. The rounding rule described below handles the conversion of this signless mathematical zero to a
floating-point +0 or —0 as appropriate.)

The MV of StrUnsignedDecimalLiteral::: Infinity is 101%°% (a value so large that it will round to +o).

The MV of StrUnsignedDecimalLiteral::: DecimalDigits. is the MV of DecimalDigits.

The MV of StrUnsignedDecimalLiteral::: DecimalDigits . DecimalDigits is the MV of the first DecimalDigits
plus (the MV of the second DecimalDigits times 10™), where n is the number of characters in the second
DecimalDigits.

The MV of StrUnsignedDecimalLiteral::: DecimalDigits. ExponentPart is the MV of DecimalDigits times 10°,
where e is the MV of ExponentPart.

The MV of StrUnsignedDecimalLiteral::: DecimalDigits. DecimalDigits ExponentPart is (the MV of the first
DecimalDigits plus (the MV of the second DecimalDigits times 10™")) times 10°, where n is the number of characters
in the second DecimalDigits and e is the MV of ExponentPart.

© Ecma International 2012

ecing

The MV of StrUnsignedDecimalLiteral:::.

DecimalDigits is the MV of DecimalDigits times 10™", where n is the

number of characters in DecimalDigits.

The MV of StrUnsignedDecimalLiteral::: .

DecimalDigits ExponentPart is the MV of DecimalDigits times 10°™",

where n is the number of characters in DecimalDigits and e is the MV of ExponentPart.

The MV of StrUnsignedDecimalLiteral:::
The MV of StrUnsignedDecimalLiteral:::

DecimalDigits is the MV of DecimalDigits.
DecimalDigits ExponentPart is the MV of DecimalDigits times 10°,

where e is the MV of ExponentPart.

The MV of DecimalDigits :::
The MV of DecimalDigits :::

DecimalDigit.

The MV of ExponentPart :::
The MV of Signedinteger :::
The MV of Signedinteger :::
The MV of Signedinteger :::

DecimalDigit is the MV of DecimalDigit.
DecimalDigits DecimalDigit is (the MV of DecimalDigits times 10) plus the MV of

Exponentindicator Signedinteger is the MV of Signedinteger.
DecimalDigits is the MV of DecimalDigits.

+ DecimalDigits is the MV of DecimalDigits.

- DecimalDigits is the negative of the MV .of DecimalDigits.

The MV of DecimalDigit ::: 0 or of HexDigit ::: 0is 0.
The MV of DecimalDigit ::: 1 or of HexDigit ::: 1 is 1.
The MV of DecimalDigit ::: 2 or of HexDigit ::: 2 is 2.
The MV of DecimalDigit ::: 3 or of HexDigit ::: 3 is 3.
The MV of DecimalDigit ::: 4 or of HexDigit ::: 4 is 4.
The MV of DecimalDigit ::: 5 or of HexDigit ::: 5 is 5.
The MV of DecimalDigit ::: 6 or of HexDigit ::: 6 is 6.
The MV of DecimalDigit ::: 7 or of HexDigit ::: 7.is 7.
The MV of DecimalDigit ::: 8 or of HexDigit ::: 8'is 8.
The MV of DecimalDigit ::: 9 or of HexDigit ::: 9.is 9.

e The MV of HexDigit ::: a or of HexDigit ::: A is 10.

e The MV of HexDigit ::: b or of HexDigit ::: B is 11.

e The MV of HexDigit ::: ¢ or of HexDigit::: C is 12.

e The MV of HexDigit :::d or of HexDigit ::: D is 13.

e The MV of HexDigit::: e or of HexDigit ::: E is 14.

e The MV of HexDigit ::: £ or of HexDigit ::: Fis15.

e The MV of HexIntegerLiteral :::'0x HexDigit is the MV of HexDigit.
e The MV of HexlIntegerLiteral ::: 0X HexDigit is the MV of HexDigit.

e The MV of HexlIntegerLiteral ::: HexIntegerLiteral HexDigit is (the MV of HexIntegerLiteral times 16) plus the
MV of HexDigit.

Once the exact MV for a String numeric literal has been determined, it is then rounded to a value of the
Number type. If the MV is 0, then the rounded value is +0 unless the first non white space character in the
String numeric literal is ‘-’, in which case the rounded value is —0. Otherwise, the rounded value must be the
Number value for the MV (in the sense defined in 8.5), unless the literal includes a StrUnsignedDecimalLiteral
and the literal has more than 20 significant digits, in which case the Number value may be either the Number
value for the MV of a literal produced by replacing each significant digit after the 20th with a 0 digit or the
Number value for the MV of a literal produced by replacing each significant digit after the 20th with a 0 digit
and then incrementing the literal at the 20th digit position. A digit is significant if it is not part of an ExponentPart
and

e itisnotO; or

e there is a nonzero digit to its left and there is a nonzero digit, not in the ExponentPart, to its right.

9.1.4 Tolnteger

The abstract operation Tolnteger converts its argument to an integral numeric value. This abstract operation
functions as follows:

1. Let number be the result of calling ToNumber on the input argument.
2. ReturnlfAbrupt(number).

© Ecma International 2012 55

secma

3. If number is NaN, return +0.

4. If number is +0, —0, +o0, Or —oo, return number.

5. Return the result of computing sign(number) x floor(abs(number)).
9.

1.5 TolInt32: (Signed 32 Bit Integer)

The abstract operation Tolnt32 converts its argument to one of 2% integer values in the range —2% through
2311, inclusive. This abstract operation functions as follows:

Let number be the result of calling ToNumber on the input argument.

ReturnlfAbrupt(number).

If number is NaN, +0, =0, +o0, or —oo, return +0.

Let posint be sign(number) * floor(abs(number)).

Let int32bit be posint modulo 2%; that is, a finite integer value k of Number type with positive sign and less
than 2% in magnitude such that the mathematical difference of posint and k is.mathematically an integer
multiple of 232,

6. If int32bit is greater than or equal to 23, return int32bit — 232, otherwise return int32bit.

gRhwbdE

NOTE Given the above definition of ToInt32:

e The TolInt32 abstract operation is idempotent: if applied to a-result that it produced, the second application leaves that
value unchanged.

e ToInt32(ToUint32(x)) is equal to Tolnt32(x) for all values of x. (It is to preserve this latter property that +o and —oo are
mapped to +0.)

e ToInt32 maps -0 to +0.

9.1.6 ToUint32: (Unsigned 32 Bit Integer)

The abstract operation ToUint32 converts its argument to one of 2%2.integer values in the range 0 through 2%2-1,
inclusive. This abstract operation functions as follows:

Let number be the result of calling ToNumber on the input argument.

ReturnlfAbrupt(number).

If number is NaN, +0; =0, +, or —oo, return +0.

Let posint be sign(number) x floor(abs(humber)).

Let int32bit be posint modulo 2%2; that is, a finite.integer value k of Number type with positive sign and less
than 2% in magnitude such that the mathematical difference of posint and k is mathematically an integer
multiple of 232,

6. Return.int32bit.

g wbE

NOTE Given the above definition of ToUInt32:

Step 5.is the only difference between ToUint32 and Tolnt32.

e The ToUint32 abstract operation is idempotent: if applied to a result that it produced, the second application leaves
that value unchanged.

e ToUint32(Tolnt32(x)) is equal to ToUint32(x) for all values of x. (It is to preserve this latter property that +oo and — are
mapped to +0.)

e ToUint32 maps -0 to +0.

9.1.7 ToUintl6: (Unsigned 16 Bit Integer)

The abstract operation ToUint16 converts its argument to one of 21¢ integer values in the range 0 through 2%6-1,
inclusive. This abstract operation functions as follows:

Let number be the result of calling ToNumber on the input argument.

ReturnlfAbrupt(number).

If number is NaN, +0, -0, +o, or —oo, return +0.

Let posint be sign(number) x floor(abs(number)).

Let int16bit be posint modulo 21; that is, a finite integer value k of Number type with positive sign and less
than 2% in magnitude such that the mathematical difference of posint and k is mathematically an integer
multiple of 216,

g E

56 © Ecma International 2012

6.

ecna

Return intl6bit.

NOTE Given the above definition of ToUint16:

The substitution of 21 for 232 in step 4 is the only difference between ToUint32 and ToUint16.
ToUint1l6 maps —0 to +0.

9.1.8 ToString

The abstract operation ToString converts its argument to a value of type String according to Table 15:

Table 15 — ToString Conversions

Argument Type Result

Completion Record | If argument is an abrupt completion, return<argument. Otherwise return
ToString(argument.[[value]])

Undefined "undefined"
Null "null"
Boolean If argument is true, then return "true".
If argument is false, then return "false".
Number See 9.8.1.
String Return argument (no conversion)
Object Apply the following steps:

1. Let primValue be ToPrimitive(argument, hint String).
2. Return ToString(primValue).

9.1.8.1 ToString Applied to the Number Type

The abstract operation ToString converts.a Number m to String format as follows:

appwbdE

10.

If m is NaN, return the'String "NaN".

If m is +0 or -0, return the String "0".

If m is less than zero, return the String concatenation of the String "-" and ToString(—m).

If m is infinity, return the String "Infinity".

Otherwise, let-n, k, and s be integers such that k > 1, 10! <'s < 10%, the Number value for s x 10"* is m, and
k is as small as possible. Note that k is the number of digits in the decimal representation of s, that s is not
divisible by 10, and that the least significant digit of s is not necessarily uniquely determined by these
criteria.

Ifk <.n <21, return the String consisting of the k digits of the decimal representation of s (in order, with no
leading zeroes), followed by n—k occurrences of the character ‘0°.

If 0 <'n <21, return the String consisting of the most significant n digits of the decimal representation of s,
followed by a decimal point ., followed by the remaining k—n digits of the decimal representation of s.

If —6 < n < 0, return the'String consisting of the character <0’, followed by a decimal point °.’, followed by
—n occurrences of the character ‘0’, followed by the k digits of the decimal representation of s.

Otherwise, if k = 1, return the String consisting of the single digit of s, followed by lowercase character ‘e’,
followed by a plus sign ‘+’ or minus sign ‘—’ according to whether n—1 is positive or negative, followed by
the decimal representation of the integer abs(n—1) (with no leading zeroes).

Return the String consisting of the most significant digit of the decimal representation of s, followed by a
decimal point °.’, followed by the remaining k-1 digits of the decimal representation of s, followed by the
lowercase character ‘e’, followed by a plus sign ‘+’ or minus sign ‘-’ according to whether n—1 is positive
or negative, followed by the decimal representation of the integer abs(n—1) (with no leading zeroes).

NOTE 1 The following observations may be useful as guidelines for implementations, but are not part of the normative
requirements of this Standard:

If x is any Number value other than -0, then ToNumber(ToString(x)) is exactly the same Number value as x.
The least significant digit of s is not always uniquely determined by the requirements listed in step 5.

© Ecma International 2012 57

secma

NOTE 2 For implementations that provide more accurate conversions than required by the rules above, it is
recommended that the following alternative version of step 5 be used as a guideline:

Otherwise, let n, k, and s be integers such that k > 1, 10%1 < 5 < 10X, the Number value for s x 10"* is m, and k is as small as
possible. If there are multiple possibilities for s, choose the value of s for which s x 10" is closest in value to m. If there are
two such possible values of s, choose the one that is even. Note that k is the number of digits in the decimal representation of
s and that s is not divisible by 10.

NOTE 3 Implementers of ECMAScript may find useful the paper and code written by David M. Gay for binary-to-decimal
conversion of floating-point numbers:
Gay, David M. Correctly Rounded Binary-Decimal and Decimal-Binary Conversions. Numerical Analysis,
Manuscript 90-10. AT&T Bell Laboratories (Murray Hill, New Jersey). November 30,2990. Available as
http://cm.bell-labs.com/cm/cs/doc/90/4-10.ps.gz. Associated code available as
http://cm.bell-labs.com/netlib/fp/dtoa.c.gz and as
http://cm.bell-labs.com/netlib/fp/g_fmt.c.gz and may also be found at the various netlib mirror sites.

9.1.9 ToObject

The abstract operation ToObject converts its argument to a valueof type Object according to Table 16:
Table 16 — ToObject

Argument Type Result

Completion Record | If argument is an abrupt completion, return argument. Otherwise return
ToObject(argument.[[value]])

Undefined Throw a TypeError. exception.

Null Throw a TypeError exception.

Boolean Return a new Boolean object whose [[PrimitiveValue]] internal property is
set to the value of argument. See 15.6 for a description of Boolean objects.

Number Return a new Number object whose [[PrimitiveValue]] internal property is
set'to the value of argument. See 15.7 for a description of Number objects.

String Return a new String object whose [[PrimitiveValue]] internal property is set
to the value of argument. See 15.5 for a description of String objects.

Object Return argument (no conversion).

9.1.10 ToPropertyKey

The abstract operation ToPropertyKey converts its argument to a value that can be used as a property key by
performing the following steps:

1. ReturnlfAbrupt(argument).
2. If Type(argument) is Object, then
a. Ifargument has a [[NativeBrand]] internal property whose value is NativePrivateName, then
i Return argument.
3. Return ToString(argument).
9.2 Testing and Comparision Operations
9.2.1 CheckObjectCoercible

The abstract operation CheckObjectCoercible throws an error if its argument is a value that cannot be
converted to an Object using ToObject. It is defined by Table 17:

58 © Ecma International 2012

secmd

Table 17 — CheckObjectCoercible Results

Argument Type Result

Completion Record | If argument is an abrupt completion, return argument. Otherwise return
CheckObjectCoercible(argument.[[value]])

Undefined Throw a TypeError exception.

Null Throw a TypeError exception.

Boolean Return argument

Number Return argument

String Return argument

Object Return argument

9.2.2 IsCallable

The abstract operation IsCallable determines if its argument, which-must be an ECMAScript language value,
is a callable function Object according to Table 18:

Table 18 — IsCallable Results

Argument Type

Result

Completion Record

If argument is an abrupt completion, return argument. Otherwise return
IsCallable(argument.[[value]])

Undefined Return false.
Null Return false.
Boolean Return false.
Number Return false.
String Return false.
Object If argument has a [[Call]] internal method, then return true, otherwise

return false.

9.2.3 The SameValue Algorithm

The internal comparison abstract operation SameValue(x, y), where x and y are ECMAScript language values,
produces true orfalse. Such a comparison is performed as follows:

ook wnE

7.

8.
9.

ReturnlfAbrupt(x).
ReturnIfAbrupt(y).

If Type(x) is different from Type(y), return false.
If Type(x) is Undefined, return true.
If Type(x) is Null, return true.
If Type(x) is Number, then.
a. Ifxis NaN and y is NaN, return true.
b. Ifxis+0andy is -0, return false.
c. Ifxis-0andyis +0, return false.
d. Ifxisthe same Number value as y, return true.

e. Return false.

If Type(x) is String, then return true if x and y are exactly the same sequence of characters (same length and
same characters in corresponding positions); otherwise, return false.

If Type(x) is Boolean, return true if x and y are both true or both false; otherwise, return false.

Return true if x and y are the same Object value. Otherwise, return false.

9.3 Operations on Objects

9.3.1 Invoke

The abstract operation Invoke is used to call a method property of an object. The operation is called with
arguments P, O, and args where P is the property key, O serves as both the lookup point for the property and

© Ecma International 2012

59

secma

the this value of the call, and args is the list of arguments values passed to the method. This abstract
operation perform, the following steps:

Let obj be ToObject(O).

ReturnlfAbrupt(obj).

Let func be the result of calling the [[Get]] internal method of obj passing P as the argument.
ReturnlfAbrupt(func).

If IsCallable(func) is false, throw a TypeError exception.

Return the result of calling the [[Call]] internal method of func passing O as the this value and argument list
args.

ourwhdE

10 Executable Code and Execution Contexts
10.1 Types of Executable Code
There are three types of ECMAScript executable code:

e Global code is source text that is treated as an ECMAScript Program. The global code of a
particular Program does not include any source text that is parsed as part of a FunctionBody.

e Eval code is the source text supplied to the built-in eval function. More precisely, if the parameter
to the built-in eval function is a String, it is treated as an ECMAScript Program. The eval code for a
particular invocation of eval is the global code portion of that Program.

e Function code is source text that is parsed to supply the value of the [[Code]] internal property (see
13.5) of function and generator objects. The function code of a particular function or generator
does not include any source text that is parsed as the function code of a nested function or
generator.

NOTE Function code is generally provided as the bodies of Function Definitions (13.1), Arrow Function Definditions
(13.2), Method Definitions (13.3) and Generator Definitions (13.4). Function code is also derived from the last argument to
the Function constructor (15.3).

10.1.1 Strict Mode Code

An ECMAScript Program. syntactic unit may be processed using either unrestricted or strict mode syntax and
semantics. When processed using strict mode the three types of ECMAScript code are referred to as strict
global.code, strict eval code, and strict function code. Code is interpreted as strict mode code in the following
situations:

e Global code is strict global code if it begins with a Directive Prologue that contains a Use Strict Directive
(see 14.1).

e Eval code is strict. eval code if it begins with a Directive Prologue that contains a Use Strict Directive or if
the call to eval is a direct call (see 15.1.2.1.1) to the eval function that is contained in strict mode code.

e Function code that is part of a FunctionDeclaration, FunctionExpression, or accessor PropertyDefinition is
strict function code if its FunctionDeclaration, FunctionExpression, or PropertyDefinition is contained in strict
mode code or if the function code begins with a Directive Prologue that contains a Use Strict Directive.

e Function code that is supplied as the last argument to the built-in Function constructor is strict function
code if the last argument is a String that when processed as a FunctionBody begins with a Directive
Prologue that contains a Use Strict Directive.

The term “base code” is used to designate code that is not strict code.

60 © Ecma International 2012

»ecma

10.1.2 Non-ECMAScript Functions

An ECMAScript implementation may support the evaluation of function objects whose evaluative behaviour is
expressed in some implementation defined form of executable code other than via ECMAScript code.
Whether a function object is an ECMAScript code function or a non-ECMAScript function is not semantically
observable from the perspective of an ECMAScript code function that calls or is called by such a non-
ECMAScript function.

10.2 Lexical Environments

A Lexical Environment is a specification type used to define the association of Identifiers to specific variables
and functions based upon the lexical nesting structure of ECMAScript code. A Lexical Environment consists of
an Environment Record and a possibly null reference to an outer Lexical'Environment. Usually a Lexical
Environment is associated with some specific syntactic structure of ECMAScript code such as a
FunctionDeclaration, a BlockStatement, or a Catch clause of a TryStatement and a new Lexical Environment is
created each time such code is evaluated.

An Environment Record records the identifier bindings that are created within the scope of its associated
Lexical Environment.

The outer environment reference is used to model the logical nesting<of Lexical Environment values. The
outer reference of a (inner) Lexical Environment is a reference to<the Lexical Environment that logically
surrounds the inner Lexical Environment. An outer Lexical Environment may, of course, have its own outer
Lexical Environment. A Lexical Environment may serve as the outer environment for multiple inner Lexical
Environments. For example, if a FunctionDeclaration contains two nested FunctionDeclarations then the Lexical
Environments of each of the nested functions will have as their outer Lexical Environment the Lexical
Environment of the current evaluation of the surrounding function.

A global environment is a Lexical Environment which .does not have an outer environment. The global
environment’s outer environment reference is null. A global environment’'s environment record may be
prepopulated with identifier bindings and includes an associated global object whose properties provide some
of the global environment’s‘identifier bindings. This global object is the value of a global environment's this
bindingAs ECMAScript code is executed, additional properties may be added to the global object and the
initial properties may be modified.

A method environment is a Lexical Environment that corresponds to the invocation of an ECMAScript function
object that establishes a new this binding. A method environment also captures the state necessary to
support the'super method invocations.

Lexical Environments and Environment Record values are purely specification mechanisms and need not
correspond to any specific artefact of an ECMAScript implementation. It is impossible for an ECMAScript
program to directly access or manipulate such values.

10.2.1 Environment Records

There are two kinds of Environment Record values used in this specification: declarative environment records
and object environment records. Declarative environment records are used to define the effect of ECMAScript
language syntactic elements such as FunctionDeclarations, VariableDeclarations, and Catch clauses that directly
associate identifier bindings with ECMAScript language values. Object environment records are used to define
the effect of ECMAScript elements such as Program and WithStatement that associate identifier bindings with
the properties of some object.

For specification purposes Environment Record values can be thought of as existing in a simple object-
oriented hierarchy where Environment Record is an abstract class with two concrete subclasses, declarative
environment record and object environment record. The abstract class includes the abstract specification
methods defined in Table 19. These abstract methods have distinct concrete algorithms for each of the
concrete subclasses.

© Ecma International 2012 61

secmd

Table 19 — Abstract Methods of Environment Records

Method

Purpose

HasBinding(N)

Determine if an environment record has a binding for an
identifier. Return true if it does and false if it does not. The
String value N is the text of the identifier.

CreateMutableBinding(N, D)

Create a new mutable binding in an environment record. The
String value N is the text of the bound name. If the optional
Boolean argument D is true the binding is may be subsequently
deleted.

SetMutableBinding(N,V, S)

Set the value of an already existing mutable binding in an
environment record. The String«value N is the text of the bound
name. V is the value for the binding and may be a value of any
ECMAScript language type. S is a Boolean flag. If Sis true and
the binding cannot be set throw a TypeError exception. S is
used to identify strict. mode references.

GetBindingValue(N,S)

Returns the value of an already existing binding from an
environment record. The String value N is the text of the bound
name. S is used to identify strict mode references. If S is true
and the binding does not exist or is uninitialised throw a
ReferenceError exception.

DeleteBinding(N)

Delete a binding from an environment record. The String value N
is.the text of the bound name If a binding for N exists, remove
the binding and return true. If the binding exists but cannot be
removed return false. If the binding does not exist return true.

CreateVarBinding(N, D)

Used for global var and function bindings. Create a new
mutable binding in‘an environment record. The String value N is
the text of the bound name. If the optional Boolean argument D
is true the binding is may be subsequently deleted. This is
logically equivalent to CreateMutableBinding but it allows var
and function declaration to receive special treatment.

HasThisBinding()

Determine if an environment record establishes a this binding.
Return true if it does and false if it does not.

HasSuperBinding()

Determine if an environment record establishes a super
method binding. Return true if it does and false if it does not.

WithBaseObiject ()

If this environment record is associated with a with statement,
return the with object. Otherwise, return undefined.

10.2.1.1 Declarative Environment Records

Each declarative environment record is associated with an ECMAScript program scope containing variable,
constant, and/or function declarations. A declarative environment record binds the set of identifiers defined by

the declarations contained within its scope.

In addition to the mutable bindings supported by all Environment Records, declarative environment records
also provide for immutable bindings. An immutable binding is one where the association between an identifier
and a value may not be modified once it has been established. Creation and initialisation of declarative
binding are distinct steps so it is possible for such bindings to exist in either an initialised or uninitialised state.
Declarative environment records support the methods listed in Table 20 in addition to the Environment Record

abstract specification methods:

62

© Ecma International 2012

secmd

Table 20 — Additional Methods of Declarative Environment Records

Method Purpose

CreatelmmutableBinding(N) Create a new but uninitialised immutable binding in an
environment record. The String value N is the text of the bound
name.

InitializeBinding(N,V) Set the value of an already existing but uninitialised binding in
an environment record. The String value N is the text of the
bound name. V is the value for the binding and is a value of any
ECMAScript language type.

The behaviour of the concrete specification methods for Declarative Environment Records is defined by the
following algorithms.

10.2.1.1.1 HasBinding(N)

The concrete environment record method HasBinding for declarative environment records simply determines
if the argument identifier is one of the identifiers bound by the record:

1. LetenvRec be the declarative environment record for which the method was invoked.
2. If envRec has a binding for the name that is the value of N, return true.
3. Ifitdoes not have such a binding, return false.

10.2.1.1.2 CreateMutableBinding (N, D)

The concrete Environment Record method CreateMutableBinding for declarative environment records creates
a new mutable binding for the name N that is initialised to.the value undefined. A binding must not already
exist in this Environment Record for-N. If Boolean argument D is provided and has the value true the new
binding is marked as being subject to deletion.

1. LetenvRec be the declarative environment record for which the method was invoked.

2. Assert: envRec does not already have a binding for N.

3. Create a mutable binding.in envRec for N and-and record that it is uninitialised. If D is true record that the
newly created binding may be deleted by a subsequent DeleteBinding call.

4. Return NormalCompetion(empty)

10.2.1.1.3 < SetMutableBinding (N,V,S)

The concrete Environment Record method SetMutableBinding for declarative environment records attempts to
change the bound value of the current binding of the identifier whose name is the value of the argument N to
the value of argument V. A binding for N must already exist. If the binding is an immutable binding, a
TypeErroris thrown if S is true.

Let envRec be the declarative environment record for which the method was invoked.

Assert: envRec must have a binding for N.

Assert: The binding for N in envRec has already been initialised.

If the binding for Nin envRec is a mutable binding, change its bound value to V.

Else if binding for N in envRec has not yet been initialized throw a ReferenceError exception.

Else this must be an attempt to change the value of an immutable binding so if S is true throw a TypeError
exception.

7. Return NormalCompletion(undefined).

10.2.1.1.4 GetBindingValue(N,S)

S o

The concrete Environment Record method GetBindingValue for declarative environment records simply
returns the value of its bound identifier whose name is the value of the argument N. The binding must already
exist. If S is true and the binding is an uninitialised immutable binding throw a ReferenceError exception.

© Ecma International 2012 63

secma

1. LetenvRec be the declarative environment record for which the method was invoked.
Assert: envRec has a binding for N.
3. If the binding for N in envRec is an uninitialised binding, then
a. If Sis false, return the value undefined, otherwise throw a ReferenceError exception.
4. Else, return the value currently bound to N in envRec.

10.2.1.1.5 DeleteBinding (N)

L

The concrete Environment Record method DeleteBinding for declarative environment records can only delete
bindings that have been explicitly designated as being subject to deletion.

Let envRec be the declarative environment record for which the method was invoked.
If envRec does not have a binding for the name that is the value of N, return true.

If the binding for N in envRec is cannot be deleted, return false.

Remove the binding for N from envRec.

Return true.

10.2.1.1.6 CreateVarBinding (N, D)

gRrwnPE

The concrete Environment Record method CreateVarBinding for declarative environment records performs
the same action as the CreateMutableBinding concrete method of the same environment Record.

1. Let envRec be the declarative environment record for which the method was invoked.
2. Return the result of calling envRec’s CreateMutableBinding concrete method with arguments N and D.
10.2.1.1.7 HasThisBinding ()

Regular Declarative Environment Records do not provide a this binding.

1. Return false.
10.2.1.1.8 HasSuperBinding«()

Regular Declarative Environment Records do not provide a super binding.

1. Return false.
10.2.1.1.9 WithBaseObject()

Declarative Environment Records always return undefined as their WithBaseObject.

1. Return undefined.
10.2.1.1.10 CreatelmmutableBinding (N)

The concrete Environment Record method CreatelmmutableBinding for declarative environment records
creates a new immutable binding for the name N that is initialised to the value undefined. A binding must not
already exist in this environment record for N.

1. LetenvRec be the declarative environment record for which the method was invoked.
2. Assert: envRec does not already have a binding for N.
3. Create an immutable binding in envRec for N and record that it is uninitialised.

10.2.1.1.11 InitializeBinding (N,V)
The concrete Environment Record method InitializeBinding for declarative environment records is used to set

the bound value of the current binding of the identifier whose name is the value of the argument N to the value
of argument V. An uninitialised binding for N must already exist.

1. LetenvRec be the declarative environment record for which the method was invoked.

2. Assert: envRec must have an uninitialised binding for N.
3. Set the bound value for N in envRec to V.

64 © Ecma International 2012

»ecma

4. Record that the binding for N in envRec has been initialised.

10.2.1.2 Object Environment Records

Each object environment record is associated with an object called its binding object. An object environment
record binds the set of identifier names that directly correspond to the property names of its binding object.
Property names that are not an IdentifierName are not included in the set of bound identifiers. Both own and
inherited properties are included in the set regardless of the setting of their [[Enumerable]] attribute. Because
properties can be dynamically added and deleted from objects, the set of identifiers bound by an object
environment record may potentially change as a side-effect of any operation that adds or deletes properties.
Any bindings that are created as a result of such a side-effect are considered to be:a mutable binding even if
the Writable attribute of the corresponding property has the value false. Immutable bindings do not exist for
object environment records.

Object environment records created for with statements (12.10) can<provide their binding object as an
implicit this value for use in function calls. The capability is controlled by a withEnvironment Boolean value that
is associated with each object environment record. By default, the value of withEnvironment is false for any
object environment record.

The behaviour of the concrete specification methods for-Object Environment Records is defined by the
following algorithms.

10.2.1.2.1 HasBinding(N)

The concrete Environment Record method HasBinding for object environment records determines if its
associated binding object has a property whose name.is the value of the argument N:

1. LetenvRec be the object environment record for which the method was invoked.
2. Let bindings be the binding object for envRec.
3. Return the result of calling the [[HasProperty]] internal method of bindings, passing N as the property name.

10.2.1.2.2 CreateMutableBinding (N, D)

The concrete Environment Record method CreateMutableBinding for object environment records creates in
an environment record’s associated binding object a property whose name is the String value and initialises it
to the value undefined. A property named N must not already exist in the binding object. If Boolean argument
D is provided and has the value true the new property’s [[Configurable]] attribute is set to true, otherwise it is
set to false.

1. Let envRec be the object environment record for which the method was invoked.

2. Let bindings be the binding object for envRec.

3. Assert: The result of calling the [[HasProperty]] internal method of bindings, passing N as the property
name, is false.

4. If D is true then let configValue be true otherwise let configValue be false.

5. Return the result of calling the [[DefineOwnProperty]] internal method of bindings, passing N, Property
Descriptor {[[Value]]:undefined, [[Writable]]: true, [[Enumerable]]: true , [[Configurable]]: configValue},
and true as arguments.

10.2.1.2.3 SetMutableBinding (N,V,S)

The concrete Environment Record method SetMutableBinding for object environment records attempts to set
the value of the environment record’s associated binding object’'s property whose name is the value of the
argument N to the value of argument V. A property named N should already exist but if it does not or is not
currently writable, error handling is determined by the value of the Boolean argument S.

1. LetenvRec be the object environment record for which the method was invoked.

2. Let bindings be the binding object for envRec.
3. Return the result of calling the [[Put]] internal method of bindings with arguments N, V, and S.

© Ecma International 2012 65

secma

10.2.1.2.4 GetBindingValue(N,S)

The concrete Environment Record method GetBindingValue for object environment records returns the value
of its associated binding object’s property whose name is the String value of the argument identifier N. The
property should already exist but if it does not the result depends upon the value of the S argument:

1. Let envRec be the object environment record for which the method was invoked.
2. Let bindings be the binding object for envRec.
3. Letvalue be the result of calling the [[HasProperty]] internal method of bindings, passing N as the property
name.
4. Ifvalue is false, then
a. If Sis false, return the value undefined, otherwise throw a ReferenceError exception.
5. Return the result of calling the [[Get]] internal method of bindings, passing‘N for the argument.

10.2.1.2.5 DeleteBinding (N)
The concrete Environment Record method DeleteBinding for object environment records can only delete

bindings that correspond to properties of the environment object whose [[Configurable]] attribute have the
value true.

1. LetenvRec be the object environment record for which.the method was invoked.
2. Let bindings be the binding object for envRec.
3. Return the result of calling the [[Delete]] internal method of bindings, passing N and false as arguments.

10.2.1.2.6 CreateVarBinding (N, D)

The concrete Environment Record method CreateVarBinding for object environment records performs the
same action as the CreateMutableBinding concrete method of the same environment Record.

1. Let envRec be the declarative environment record for which the method was invoked.
2. Return the result of calling envRec’s CreateMutableBinding concrete method with arguments N and D.
10.2.1.2.7 HasThisBinding ()

Regular Object Environment Records do not provide a this binding.

1. Return false.
10.2.1.2.8 HasSuperBinding ()

Regular.Object Environment Records do. not provide a super binding.

1. Return false.
10.2.1.2.9 WithBaseObject()

Object Environment Records return undefined as their WithBaseObject unless their withEnvironment flag is
true.

1. LetenvRec be the object environment record for which the method was invoked.
2. If the withEnvironment flag of envRec is true, return the binding object for envRec.
3. Otherwise, return undefined.

10.2.1.3 Method Environment Records

A method environment record is a declarative environment record that is used to represent the outer most
scope of a function that provides a this binding. In addition to its identifier bindings, a method environment
record contains the this value used within its scope. If such a function references super, its method
environment record also contains the state that is used to perform super method invocations from within the
function.

66 © Ecma International 2012

secmd

Method environment records store their this binding as the value of their thisValue. If the associated function
references super, the environment record stores in HomeObject the object that the function is bound to as a
method and in MethodName the property key used for unqualified super invocations from within the function.
The default value for HomeObject and MethodName is undefined.

Methods environment records support all of Declarative Environment Record methods listed in Table 19 and
Table 20 and share the same specifications for those metjhods. In addition, declarative environment records
support the methods listed in Table 21:

Table 21 — Additional Methods of Method Environment Records

Method Purpose
GetThisBinding() Return the value of this environment record’'s this binding.
GetSuperBase() Return the object that is the base for super property accesses

bound in this environment record. The object.is derived from this
environment record’s HomeObject binding. If the value is Empty,
return undefined.

GetMethodName() Return the value of <this environment record’s MethodName
binding.

The behaviour of the additional concrete specification methods for Method Environment Records is defined by
the following algorithms:

10.2.1.3.1 HasThisBinding ()
Regular Method Environment Records always provide a this binding.

1. Return true.
10.2.1.3.2 HasSuperBinding ()

1. Ifthis environment record’s HomeObject has the value Empty, then return false. Otherwise, return true.
10.2.1.3.3 GetThisBinding ()

1. Return the value of this environment record’s thisValue.
10.2.1.3.4¢ GetSuperBase ()

1. Let home be the value of this environment record’s HomeObject.
2. Ifhome has the value Empty, then return undefined.

3. Assert Type(home) is Object.

4. Return the value of home s/ [[Prototype]] internal property..

10.2.1.3.5 GetMethodName ()

1. Return the value of this environment record’s MethodName.

10.2.1.4 Global Environment Records

A global environment is is used to represent the outer most scope of a ECMAScript Program. If such a function
references super, A global environment provides the bindings for built-in globals (15.1), properties of the
global object, and for all declarations that are not function code and that occur within Program productions.. All
ECMAScript Program productions that are processed iin a specific Realm (10.3) share the same global
environment record..

The behaviour of the concrete specification methods for Global Environment Records is defined by the
following algorithms.

© Ecma International 2012 67

secma

10.2.2 Lexical Environment Operations
The following abstract operations are used in this specification to operate upon lexical environments:
10.2.2.1 GetldentifierReference (lex, name, strict)

The abstract operation GetldentifierReference is called with a Lexical Environment lex, a String name, and a
Boolean flag strict. The value of lex may be null. When called, the following steps are performed:

1. If lex is the value null, then
a. Return a value of type Reference whose base value is undefined, whose referenced name is name,
and whose strict mode flag is strict.
Let envRec be lex’s environment record.
3. Let exists be the result of calling the HasBinding(N) concrete method of envRec passing name as the
argument N.
4. Ifexists is true, then
a. Return a value of type Reference whose base value is envRec, whose referenced.name is name, and
whose strict mode flag is strict.

N

5. Else
a. Let outer be the value of /ex’s outer environment reference.
b. Return the result of calling GetldentifierReference passing outer, name, and strict as arguments.

10.2.2.2 NewDeclarativeEnvironment (E)

When the abstract operation NewDeclarativeEnvironment is called with either a Lexical Environment or null
as argument E the following steps are performed:

Let env be a new Lexical Environment.

Let envRec be a new declarative environment record containing no bindings.
Set env’s environment record to_be envRec.

Set the outer lexical environment reference of env to E.

Return env.

10.2.2.3 NewObjectEnvironment (O, E)

agppwbdPE

When the abstract operation NewObjectEnvironment.is called with an Object O and a Lexical Environment E
(or null) as arguments, the following steps are performed:

Let env-be a new Lexical Environment.

Let envRec be a new object environment record containing O as the binding object.
Set env’s environment record to be envRec.

Set the outer lexical environment reference of env to E.

Return env.

10.2.2.4 NewMethodEnvironment (F, T)

grwnPE

When the abstract operation NewObjectEnvironment is called with an ECMAScript function Object F and a
ECMAScript value T as arguments, the following steps are performed:

Let env be a new Lexical Environment.
Let envRec be a new method environment record containing containing no bindings.
Set envRec’s thisValue to T.
If F has a [[Home]] internal property, then
a. SetenvRec’s HomeObiject to the value of F’s [[Home]] internal property.
b. SetenvRec’s MethodName to the value of F’s [[MethodName]] internal property.
Else, Set envRec’s home to Empty.
Set env’s environment record to be envRec.
Set the outer lexical environment reference of env to the value of F’s [[Scope]] internal property.
Return env.

PR

N o

68 © Ecma International 2012

secmd

10.3 Code Realms

Before it is evaluated, all ECMAScript code must be associated with a Realm. Conceptually, a realm consists
as of an set of intrinsic objects, an ECMAScript global environment, all of the ECMAScript code that is loaded
within the scope of that global environment, a Loader object that can associate new ECMAScript code with the

realm, and other associated state and resources.

A Realm is specified as a Record with the fields specified in Table 22:

Table 22 — Realm Record Fields

Field Name

Value

Meaning

[[intrinsics]]

A record whose field names are intrinsic
keys and whose values are objects

These are the intrinsic values used by code
associated with this Realm

[[this]] An ECMAScript object The global object for this Realm
[[globalEnv]] | A ECMAScript environment The'global environment for this Realm
[[loader]] any ECMAScript identifier or empty The Loader object that can associate

ECMAScript code with this Realm

10.4 Execution Contexts

An execution context is an specification device. that is used to track the runtime evaluation of code by an
ECMAScript implementation. At any point in time, there is at most one execution context that is actually
executing code. This is known as the running execution context. A stack is.used to track execution contexts.
The running execution context is always to top element of this.stack. A new execution context is created
whenever control is transferred from the executable code associated with the currently running execution
context to executable code that is.not associated with that execution context. The newly created execution
context is pushed onto the stack and becomes the running execution context.

An execution context contains whatever implementation specific state is necessary to track the execution
progress of its associated code. Each execution context has the state components listed in Table 23 .

Table 23 —State Components-for All Execution Contexts

Component Purpose

Any state needed to perform, suspend, and resume evaluation of the
code associated with this execution context.

The Realm from which associated code accesses ECMAScript
resources.

code evaluation state

Realm

Evaluation of code by the running execution context may be suspended at various points defined within this
specification. Once the running execution context has been suspended a different execution context may
become the running execution context and commence evaluating its code. At some latter time a suspended
execution context may again become the running execution context and continue evaluating its code at the
point where it had previously been suspended. Transition of the running execution context status among
execution contexts usually occurs in stack-like last-in/first-out manner. However, some ECMAScript features
require non-LIFO transitions of the running execution context.

Execution contexts for ECMAScript code have the additional state components listed in Table 24.

© Ecma International 2012 69

secma

Table 24 —Additional State Components for ECMAScript Code Execution Contexts

Component Purpose

LexicalEnvironment Identifies the Lexical Environment used to resolve identifier references
made by code within this execution context.

VariableEnvironment Identifies the Lexical Environment whose environment record holds
bindings created by VariableStatements within this execution context.

The LexicalEnvironment and VariableEnvironment components of an execution context are always Lexical
Environments. When an execution context is created its LexicalEnvironment and VariableEnvironment
components initially have the same value. The value of the VariableEnvironment component never changes
while the value of the LexicalEnvironment component may change during execution of code within an
execution context.

In most situations only the running execution context (the top of the execution context stack) is directly
manipulated by algorithms within this specification. Hence when the terms “LexicalEnvironment”, and
“VariableEnvironment” are used without qualification they are.in reference to those components of the running
execution context.

An execution context is purely a specification mechanism and need not correspond to any particular artefact
of an ECMAScript implementation. It is impossible for an ECMAScript program to directly access or observe
an execution context.

10.4.1 Identifier Resolution

Identifier resolution is the process of determining the binding of an IdentifierName using the
LexicalEnvironment of the running execution context. During execution of ECMAScript code, Identifier
Resolution is performed using the-following algorithm:

1. Letenv be the running execution context’s LexicalEnvironment.

2. If the syntactic production that is being evaluated is contained in a strict mode code, then let strict be true,
else let strict be false.

3. Return the result of calling GetldentifierReference abstract operation passing env, the StringValue of
IdentifierName, and strict as arguments.

The result of evaluating an identifier is always a value of type Reference with its referenced name component
equal to the Identifier String.

10.4.2 GetThisEnvironment

The abstract operation GetThisEnviroment finds the lexical environment that currently supplies the binding of
the keyword this. GetThisEnviroment performs the following steps:

1. Let lex be the running execution context’s LexicalEnvironment.

2. Repeat
a. LetenvRec be lex’s environment record.
b. Let exists be the result of calling the HasThisBinding concrete method of envRec.
c. Ifexistsis true, then return envRec.
d. Let outer be the value of /ex’s outer environment reference.
e. Letlex be outer.

10.4.3 This Resolution

The abstract operation ThisResolution is the process of determining the binding of the keyword this using the
LexicalEnvironment of the running execution context. ThisResolution performs the following steps:

1. Letenv be the result of performing the GetThisEnvironment abstract operation.
2. Return the result of calling the GetThisBinding concrete method of env.

70 © Ecma International 2012

eCina

10.5 Declaration Binding Instantiation
10.5.1 Top-Level Declaration Instantiation

NOTE When an execution context is established for evaluating non-function code declarations are instantiated in the
current VariableEnvironment. Each top-level level variable, constant, or function declarated in the code is instantiated.

Top-level Declaration Instantiation for base code is performed as follows:

1. Letenv be the environment record component of the running execution context’s VariableEnvironment.
2. If code is eval code, then let configurableBindings be true else let configurableBindings be false.
3. Ifcode is strict code, then let strict be true else let strict be false.
4. For each FunctionDeclaration f in code, in source text order do
a. Let fn be the Identifier in FunctionDeclaration f.
b. Let fo be the result of performing Instantiate Function Declaration for f.
c. LetfuncAlreadyDeclared be the result of calling env’s HasBinding concrete method passing fn as
the argument.
d. If funcAlreadyDeclared is false, then
i. Call env’s CreateVarBinding concrete method passing fn and configurableBindings as the
arguments.
ii. Call env’s InitializeBinding concrete method passing fn, and undefined as the arguments.
e. Else if env is the environment record component of the global environment then
i. Let go be the global object.
ii. Let existingProp be the result of calling the [[GetOwnProperty]] internal method of go with
argument fn.
iii. If existingProp is undefined or existingProp.[[Configurable]] is true, then
1. Call the [[DefineOwnProperty]] internal method of go, passing fn, Property
Descriptor {[[Value]]: undefined, [[Writable]]: true, [[Enumerable]]: true ,
[[Configurable]]: configurableBindings }, and.true as arguments.
iv. Else if IsAccessorDescriptor(existingProp) or existingProp does not have attribute values
{[[Writable]]: true, [[Enumerable]]: true}, then
1. <Throw a TypeError exception.
f. Let status bethe result of calling env’s SetMutableBinding concrete method passing fn, fo, and strict
as the arguments.
g. ReturnlfAbrupt(status).
5. For each VariableDeclaration and VariableDeclarationNoln d in code, in source text order do
a. Letdn.be the Identifier in d.
b. et varAlreadyDeclared be the result of calling env’s HasBinding concrete method passing dn as the
argument.
c. IfvarAlreadyDeclared is false, then
i Let status be the result of calling env’s CreateMutableBinding concrete method passing dn
and configurableBindings as the arguments.
ii. ReturnlfAbrupt(status).
iii. Call env’s'InitializeBinding concrete method passing dn, and undefined as the arguments.
[\2 Let status be the result of calling env’s SetMutableBinding concrete method passing dn,
undefined, and strict as the arguments.
V. ReturnlfAbrupt(status).
d. elseif envisthe environment record component of the global environment then
i. Let go be the global object.
ii. Let existingProp be the result of calling the [[GetOwnProperty]] internal method of go with
argument dn.
iii. If existingProp is undefined, then
1. Call the [[DefineOwnProperty]] internal method of go, passing dn, Property
Descriptor {[[Value]]: undefined, [[Writable]]: true, [[Enumerable]]: true ,
[[Configurable]]: configurableBindings }, and true as arguments.

© Ecma International 2012 71

secma

10.5.2 Module Declaration Instantiation

10.5.3 Function Declaration Instantiation

NOTE When an execution context is established for evaluating function code a new Declarative Environment Record is
created and bindings for each formal parameter, and each function level variable, constant, or function declarated in the
function are instantiated in the environment record. Formal parameters and functions are initialized as part of this process.
All other bindings are initialized during execution of the function code.

Function Declaration Instantiation is performed as follows using arguments func, argumentsList, and env. func
is the function object that for which the execution context is being established. env is the declarative
environment record in which bindings are to be created.

Let code be the value of the [[Code]] internal property of func.
Let strict be the value of the [[Strict]] internal property of func.
Let formals be the value of the [[FormalParameterList]].internal property.of func.
Let parameterNames be the BoundNames of formals.
For each String argName in parameterNames, in list order do
a. LetalreadyDeclared be the result of calling env’s HasBinding concrete method passing argName as
the argument.
b. NOTE Duplicate parameter names can.only occur in non-strict Normal functions.
c. IfalreadyDeclared is false, then
i Let status be the result of calling env’s CreateMutableBinding concrete method passing
argName as the argument.
il ReturnlfAbrupt(status).
iii. If strict is false, then
1. Call env’s InitializeBinding concrete method passing argName, and undefined as
the arguments.
6. Letdeclarations be the LexicalDeclarations of code.
7. Ifstrictis true, then
a. Letao be the result of CreateStrictArgumentsObject with argument argumentsList.
b. Let formalStatus be the result of performing Binding Initialisation for formals with ao and env as

grwNPE

arguments.
8. Else,
a: Let names be BoundNames of formals.
b. NOTE Because F is a none strict function it is not extended code. Hence formals does not

contain the names of any destructuring BindingProperties, rest parameters, or parameters with default
value initialisers.

c. Let ao be the result of performing the abstract operation CreateMappedArgumentsObject with
arguments func, names, env, and argumentsList.

d. Let formalStatus.be the result of performing Binding Initialisation for formals with ao and
undefined as arguments.

9. NOTE Binding Initialisation for formals is performed prior to instantiating any non-parameter declarations in
order to ensure that any such local declarations are not visible to any parameter Initialisation code that may
be evaluated.

10. ReturnlfAbrupt(formalStatus).

11. For each element d in declarations do

a. For each element dn of the BoundNames of d do
i Let alreadyDeclared be the result of calling env’s HasBinding concrete method passing dn
as the argument.
ii. If alreadyDeclared is false, then
1. If IsConstantDeclaration of d is true, then
a Call env’s CreatelmmutableBinding concrete method passing dn as the
argument.
2. Else,

72 © Ecma International 2012

»ecma

a Call env’s CreateMutableBinding concrete method passing dn and false as
the arguments.

12. Let argumentsAlreadyDeclared be the result of calling env’s HasBinding concrete method passing
"arguments" as the argument.

13. NOTE If argumentsAlreadyDeclared is true then the value of ao is not directly observable to ECMAScript
code and need not actually exist. In that case, its use in the above steps is strictly as a device for specifying
formal parameter initialisation semantics.

14. If argumentsAlreadyDeclared is false, then

a. Ifstrictis true, then

i. Call env’s CreatelmmutableBinding concrete method passing the String "arguments™ as
the argument.

b. Else,

i. Call env’s CreateMutableBinding concrete method passingthe String "arguments™ as the
argument.

c. Call env’s InitializeBinding concrete method passing "arguments' and ao as arguments.

15. Let varNames be the VarDeclaredNames of code.

16. For each String varName in varNames, in list order do

a. LetalreadyDeclared be the result of calling env’s HasBinding concrete method passing varName as
the argument.

b. NOTE A VarDeclaredNames is only instantiated and initialied_here if it is not also the name of a
formal parameter or a FunctionDeclarations. Such duplicate declarations may only occur in non-
extended code.

c. IfalreadyDeclared is false, then

i Call env’s CreateMutableBinding concrete method passing varName as the argument.
il Call env’s InitializeBinding concrete method passing varName, and undefined as the
arguments.

17. Let initializedFunctions be an emptyList.

18. For each FunctionDeclaration f in declarations,.in reverse list-order do

a. NOTE If there are multiple FunctionDeclarations for the same name, the last declaration is used.
Multiple FunctionDeclarations for the same name is only valid in non-extended code.

b. Letfn be the sole element of the BoundNames of f.

c. Iffnis not an element of initializedFunctions, then

i. Append fn to initializedFunctions.
ii. Letfo be the result of performing Instantiate Function Declaration for f.
iii. Call env’s InitializeBinding concrete method passing fn, and fo as the arguments.

19. Return NormalCompletion(empty)..

10.5.4 Block-Declaration Instantiation

NOTE When a Block or CaseBlock production is evaluated a new Declarative Environment Record is created and
bindings for each block scoped variable, constant, or function declarated in the block are instantiated in the environment
record.

Block Declaration Instantiation is performed as follows using arguments code and env. code is the grammar
production corresponding to'the body of the block. env is the declarative environment record in which
bindings are to be.

1. Let declarations be the LexicalDeclarations of code.
2. For each element d in declarations do
a. For each element dn of the BoundNames of d do
i. If IsConstantDeclaration of d is true, then
1. Call env’s CreatelmmutableBinding concrete method passing dn as the argument.
ii. Else,
1. Call env’s CreateMutableBinding concrete method passing dn and false as the arguments.
3. For each FunctionDeclaration f in declarations, in list order do
a. Let fn be the sole element of the BoundNames of f.
b. Let fo be the result of performing Instantiate Function Declaration for f.
c. Call env’s InitializeBinding concrete method passing fn, and fo as the arguments.

© Ecma International 2012 73

secma

10.6 Arguments Object

When function code is evaluated, an arguments object is created unless (as specified in 10.5) the identifier
arguments occurs as an ldentifier in the function’s FormalParameterList or occurs as the Bindingldentifier of a
Declaration contained in the function code.

The abstract operation CreateStrictArgumentsObject called with argument list args performs the following steps:
Let len be the number of elements in args.

1
2. Let obj be the result of the abstract operation InstantiateArgumentsObject with argument len.
3. Letindx=len - 1.

Bl

Repeat while indx >= 0,

a. Letval be the element of args at 0-origined list position indx.

b. Call the [[DefineOwnProperty]] internal method on obj passing ToString(indx), the Property Descriptor
{[[\Value]]: val, [[Writable]]: true, [[Enumerable]]: true, [[Configurable]]: true}, and false as
arguments.

c. Letindx=indx-1

5. Let thrower be the [[ThrowTypeError]] function Object (13.6:3).
6. Call the [[DefineOwnProperty]] internal method of obj with arguments "caller", PropertyDescriptor

{[[Get]]: thrower, [[Set]]: thrower, [[Enumerable]]: false, [[Configurable]]: false}, and false.

7. Call the [[DefineOwnProperty]] internal method of obj with arguments "callee™, PropertyDescriptor
{[[Get]]: thrower, [[Set]]: thrower, [[Enumerable]]: false, [[Configurable]]: false}, and false.

8. Return obj

The abstract operation CreateMappedArgumentsObject called with object func, List names, environment record
env, and argument list args performs the following steps:

Let len be the number of elements in args.

Let obj be the result of the abstract operation InstantiateArgumentsObject with argument len.
Let map be the result of creating-a.new ECMAScript object.

Set all the internal methods-of map as specified in 8.12.

Let mappedNames be an-empty List.

Letindx = len - 1.

Repeat while indx >= 0,

a. Letval be the element of args at 0-origined list position indx.

b. Call the [[DefineOwnProperty]] internal method on obj passing ToString(indx), the Property
Descriptor {[[Value]]: val, [[Writable]]: true, [[Enumerable]]: true, [[Configurable]]: true}, and
false as arguments.

¢ Ifindx is less than the number of elements in names, then

i Let name be the element of names at 0-origined list position indx.
ii. If name is not an element of mappedNames, then
1. Add name as an element of the list mappedNames.
2. Let g be the result of calling the MakeArgGetter abstract operation with arguments
name and env.
3. Let p be the result of calling the MakeArgSetter abstract operation with arguments
name and env.
4. Call the [[DefineOwnProperty]] internal method of map passing ToString(indx), the
Property Descriptor {[[Set]]: p, [[Get]]: g, [[Configurable]]: true}, and false as
arguments.
d. Letindx =indx -1
8. If mappedNames is not empty, then
a. Set the [[ParameterMap]] internal property of obj to map.
b. Setthe [[Get]], [[GetOwnProperty]], [[DefineOwnProperty]], and [[Delete]] internal methods of obj
to the definitions provided below.
9. Call the [[DefineOwnProperty]] internal method on obj passing "callee", the Property Descriptor
{[[\Value]]: func, [[Writable]]: true, [[Enumerable]]: false, [[Configurable]]: true}, and false as arguments.
10. Return obj

NookwhE

The abstract operation InstantiateArgumentsObject called with an argument len performs the following steps:

74 © Ecma International 2012

»ecma

Let obj be the result of creating a new ECMAScript object.

Set all the internal methods of obj as specified in 8.12.

Add the [[NativeBrand]] internal property to obj with value NativeArguments.

Set the [[Prototype]] internal property of obj to the standard built-in Object prototype object (15.2.4).

Call the [[DefineOwnProperty]] internal method on obj passing ""length", the Property Descriptor
{[[Value]]: len, [[Writable]]: true, [[Enumerable]]: false, [[Configurable]]: true}, and false as arguments.
6. Return obj

g E

The abstract operation MakeArgGetter called with String name and environment record env creates a function
object that when executed returns the value bound for name in env. It performs the following steps:

Let bodyText be the result of concatenating the Strings "return ", name, and **; ".

Let body be the result of parsing bodyText using FunctionBody as the goal symbol.

Let parameters be a FormalParameterList : [empty] production.

Return the result of creating a function object as described in 13.6 using parameters as
FormalParameterList, body for FunctionBody, env as Scope, and true for Strict.

PoNPE

The abstract operation MakeArgSetter called with String name and‘environment record env creates a function
object that when executed sets the value bound for name in env.<It performs the following steps:

1. Let paramText be the String name concatenated with the'String " arg".

2. Let parameters be the result of parsing paramText using FormalParameterList as the goal symbol.

3. Let bodyText be the String ""'<name> = <param>; " with <name> replaced by the value of name and
<param> replaced by the value of paramText.

4. Let body be the result of parsing bodyText using FunctionBody as the goal symbol.

5. Return the result of creating a function object as.described in 13.6 using parameters as
FormalParameterList, body for FunctionBady, env as Scope, and true for Strict.

The [[Get]] internal method of an arguments object for a non-strict mode function with formal parameters when
called with a property name P performs the following steps:

1. Let map be the value of the [[ParameterMap]] internal property of the arguments object.
2. LetisMapped be the result of calling the [[GetOwnProperty]] internal method of map passing P as the
argument.
3. If the value of isMapped is undefined, then
a. Letv be the result of calling the default [[Get]] internal method (8.12.3) on the arguments object
passing P as the argument.
b. IfPis"caller™ andv is a strict mode Function object, throw a TypeError exception.
c. Returnv.
4. Else;map contains a formal parameter mapping for P so,
a. Return the result of calling the [[Get]] internal method of map passing P as the argument.

The [[GetOwnProperty]] internal method of an arguments object for a non-strict mode function with formal
parameters when called with a property name P performs the following steps:

1. Let desc be the result of calling the default [[GetOwnProperty]] internal method (8.12.1) on the arguments
object passing P as theargument.

2. Ifdesc is undefined then return desc.

3. Let map be the value of the [[ParameterMap]] internal property of the arguments object.

4. LetisMapped be the result of calling the [[GetOwnProperty]] internal method of map passing P as the
argument.

5. If the value of isMapped is not undefined, then

a. Set desc.[[Value]] to the result of calling the [[Get]] internal method of map passing P as the
argument.
6. Return desc.

The [[DefineOwnProperty]] internal method of an arguments object for a non-strict mode function with formal
parameters when called with a property name P, Property Descriptor Desc, and Boolean flag Throw performs
the following steps:

1. Let map be the value of the [[ParameterMap]] internal property of the arguments object.

© Ecma International 2012 75

secma

2. LetisMapped be the result of calling the [[GetOwnProperty]] internal method of map passing P as the
argument.
3. Let allowed be the result of calling the default [[DefineOwnProperty]] internal method (8.12.9) on the
arguments object passing P, Desc, and false as the arguments.
4. If allowed is false, then
a. If Throw is true then throw a TypeError exception, otherwise return false.
5. If the value of isMapped is not undefined, then
a. If IsAccessorDescriptor(Desc) is true, then
i Call the [[Delete]] internal method of map passing P, and false as the arguments.
b. Else
i If Desc.[[Value]] is present, then
1. Call the [[Put]] internal method of map passing P, Desc.[[Value]], and Throw as the
arguments.
ii. If Desc.[[Writable]] is present and its value is false, then
1. Call the [[Delete]] internal method of map passing P and false as arguments.
6. Return true.

The [[Delete]] internal method of an arguments object for a non-strict mode function with. formal parameters
when called with a property name P and Boolean flag Throw performs the following steps:

1. Let map be the value of the [[ParameterMap]] internal property of the arguments object.

2. LetisMapped be the result of calling the [[GetOwnProperty]] internal. method of map passing P as the
argument.

3. Let result be the result of calling the default [[Delete]] internal method (8.12.7) on the arguments object
passing P and Throw as the arguments.

4. Ifresultis true and the value of isMapped is not.undefined, then

a. Call the [[Delete]] internal method of map passing P, and false as the arguments.
5. Return result.

NOTE 1 For non-strict mode functions the array index (defined in 15.4) named data properties of an arguments object
whose numeric name values are less.than the number of formal parameters of the corresponding function object initially
share their values with the corresponding argument bindings in the function’s execution context. This means that changing
the property changes the corresponding value of the argument binding and vice-versa. This correspondence is broken if
such a property is deleted and then redefined or if the property is changed into an accessor property. For strict mode
functions, the values of the arguments object’s properties are simply a copy of the arguments passed to the function and
there is no dynamic linkage between the property values and the formal parameter values.

NOTE 2 The ParameterMap object and its property values are used as a device for specifying the arguments object
correspondence._to-argument bindings. The ParameterMap object and the objects that are the values of its properties are
not directly accessible from ECMAScript code. An ECMAScript implementation does not need to actually create or use
such objects to implement the specified semantics.

NOTE 3 = Arguments objects for strict mode functions define non-configurable accessor properties named "caller" and
"callee" which throw a TypeError exception on access. The "callee" property has a more specific meaning for non-
strict mode functions and a "caller" property has historically been provided as an implementation-defined extension by
some ECMAScript implementations. The strict mode definition of these properties exists to ensure that neither of them is
defined in any other manner by conforming ECMAScript implementations.

76 © Ecma International 2012

»ecma

11 Expressions
11.1 Primary Expressions

Syntax

PrimaryExpression :
this
Identifier
Literal
Arraylnitialiser
ObjectLiteral
FunctionExpression
ClassExpression
GeneratorExpression
GeneratorComprehension
RegularExpressionLiteral
TemplateLiteral
CoverParenthesizedExpressionAndArrowParameters

CoverParenthesizedExpressionAndArrowParameters:
(Expression)

()
(... ldentifier)
(Expression , ... Identifier)

Supplemental Syntax

When processing the production PrimaryExpression : CoverParenthesizedExpressionAndArrowParameters the

following grammar is used to refine the interpretation of CoverParenthesizedExpressionAndArrowParameters.

ParenthesizedExpression :
(FormalParameterList)

Static Semantics
Static Semantics: Early Errors
PrimaryExpression : CoverParenthesizedExpressionAndArrowParameterList
e |tis a Syntax Error if the lexical token sequence matched by
CoverParenthesizedExpressionAndArrowParameterList cannot be parsed with no tokens left over using
ParenthesizedExpression as the goal symbol.
o All'Early Errors rules for ParenthesizedExpression and its derived productions also apply to the
CoveredParenthesizedExpression of CoverParenthesizedExpressionAndArrowParameterList.
Static Semantics: CoveredParenthesizedExpression

CoverParenthesizedExpressionAndArrowParameters : (Expression)

1. Return the result of parsing the lexical token stream matched by
CoverParenthesizedExpressionAndArrowParameters using ParenthesizedExpression as the goal symbol.

© Ecma International 2012

77

secma

Static Semantics: IsValidSimpleAssignmentTarget

PrimaryExpression :
this
Literal
Arraylnitialiser
ObijectLiteral
FunctionExpression
ClassExpression
GeneratorExpression
GeneratorComprehension
RegularExpressionLiteral
TemplateLiteral

1. Return false.
PrimaryExpression : Identifier

2. If this PrimaryExpression is contained in strict codeand StringValue of Identifier is "eval™ or
"arguments", then return false.
3. Return true.

PrimaryExpression : CoverParenthesizedExpressionAndArrowParameterList

1. Let expr be CoveredParenthesizedExpression of CoverParenthesizedExpressionAndArrowParameterList.
2. Return IsValidSimpleAssignmentTarge of expr.

11.1.1 The this Keyword
Runtime Semantics: Evaluation
PrimaryExpression : this

1. Letenv be the result of performing the GetThisEnvironment abstract operation.
2. Return the result of calling the GetThisBinding concrete method of env.

11.1.2 Identifier Reference
Runtime Semantics: Evaluation
PrimaryExpression : ldentifier

1. Let ref be the result of performing Identifier Resolution as specified in 10.3.1 using the IdentifierName
corresponding to Identifier,
2. Return ref.

NOTE: The result of evaluating an Identifier is always a value of type Reference.
11.1.3 Literals

Syntax

Literal :
NullLiteral
ValueLiteral

ValueLiteral :
BooleanLiteral
NumericLiteral
StringLiteral

78 © Ecma International 2012

secma

Runtime Semantics

Runtime Semantics: Evaluation
Literal : NullLiteral

1. Return null.

ValueLiteral : BooleanLiteral

1. Return false if BooleanLiteral is the token BooleanLiteral :; false
2. Return true if BooleanLiteral is the token BooleanLiteral :: true

ValueLiteral : NumericLiteral
1. Return the number whose value is MV of NumericLiteral as defined in 7.8.3.
ValueLiteral : StringLiteral

1. Return the string whose elements are the SV of StringLiteral as defined in 7.8.4.

11.1.4 Array Initialiser

Syntax

Arraylnitialiser :
ArrayLiteral
ArrayComprehension

11.1.4.1 Array Literal

NOTE An ArrayLiteral'is an expression /describing the initialisation of an Array object, using a list, of zero or more
expressions each of which represents an-array-element, enclosed in square brackets. The elements need not be literals;
they are evaluated each time the array.initialiser is evaluated.

Array elements may be elided at the beginning, middle or end of the element list. Whenever a comma in the element list is
not preceded by an AssignmentExpression (i.e., a comma at the beginning or after another comma), the missing array
element contributes to the length of the Array and increases the index of subsequent elements. Elided array elements are
not defined. If an element is elided at the end of an array, that element does not contribute to the length of the Array.

Syntax

ArrayLiteral :
[Elisiongp 1
[ElementList]
[ElementList , Elisiongy]

ElementList :
Elisiongp: AssignmentExpression
Elisiongp: SpreadElement
ElementList , Elisiongp: AssignmentExpression
ElementList , Elisiongp SpreadElement

Elision :

4

Elision ,

© Ecma International 2012 79

secma

SpreadElement :
... AssignmentExpression

Static Semantics

Static Semantics: Elision Width
Elision : ,

1. Return the numeric value 1.
Elision : Elision ,

1. Let preceding be the Elision Width of Elision.
2. Return preceding+1.

Runtime Semantics

Runtime Semantics: Array Accumulation
With parameters array and nextindex.

ElementList : Elisiones: AssignmentExpression

Let padding be the Elision Width of Elision; if Elision is not present, use the numeric value zero.

Let initResult be the result of evaluating AssignmentExpression.

Let initValue be GetValue(initResult).

ReturnlfAbrupt(initValue).

Call the [[DefineOwnProperty]] internal method of array with arguments
ToString(ToUint32(nextIndex+padding)), the Property Descriptor { [[Value]]: initValue, [[Writable]]: true,
[[Enumerable]]: true, [[Configurable]]: true}, and false.

6. Return nextindex+padding+1.

grwbdPE

ElementList : Elisione < SpreadElement

1. Let padding be the Elision Width of Elision; if Elision is not present, use the numeric value zero.
2. Return the result of performing Array Accumulation for SpreadElement with arguments array and
nextindex+padding.

ElementList : ElementList , Elisiong,: AssignmentExpression

1. Letpostindex be the result of performing Array Accumulation for ElementList with arguments array and
nextindex.

ReturnlfAbrupt(postindex).

Let padding be the Elision Width of Elision; if Elision is not present, use the numeric value zero.

Let initResult be the result of evaluating AssignmentExpression.

Let initValue be GetValue(initResult).

ReturnlfAbrupt(initValue).

Call the [[DefineOwnProperty]] internal method of array with arguments
ToString(ToUint32((postindex+padding)) and the Property Descriptor { [[Value]]: initValue, [[Writable]]:
true, [[Enumerable]]: true, [[Configurable]]: true}, and false.

8. Return postindex+padding+1.

Nooakwn

ElementList : ElementList , Elisiongy SpreadElement

1. Let postindex be the result of performing Array Accumulation for ElementList with arguments array and
nextindex.

2. ReturnlfAbrupt(postindex).

3. Let padding be the Elision Width of Elision; if Elision is not present, use the numeric value zero.

80 © Ecma International 2012

4,

ecima

Return the result of performing Array Accumulation for SpreadElement with arguments array and
postindex+padding.

SpreadElement : ... AssignmentExpression

COoONaR~WNE

Let spreadRef be the result of evaluating AssignmentExpression.
Let spreadValue be GetValue(spreadRef).
Let spreadObj be ToObject(spreadValue).
ReturnlfAbrupt(spreadObj).
Let lenVal be the result of calling the [[Get]] internal method of spreadObj with argument “length” .
Let spreadLen be ToUint32(lenVal).
ReturnlfAbrupt(spreadLen).
Let n=0;
Repeat, while n < spreadLen
a. Let exists be the result of calling the [[HasProperty]] internal method of spreadObj with ToString(n).
b. If exists is true then,
i. Letv be the result of calling the [[Get]] internal method of spreadObj passing ToString(n) as the
argument.

ii. ReturnlfAbrupt(v).

iii. Call the [[DefineOwnProperty]] internal method of array with arguments
ToString(ToUint32(nextIndex)), Property Descriptor {[[Value]]: v, [[Writable]]: true,
[[Enumerable]]: true, [[Configurable]]: true}, and false.

c. Letn=n+l.
d. Let nextindex = nextindex +1.

10. Return nextlndex.

NOTE

[[DefineOwnProperty]] is used to ensure that own properties are defined for the array even if the standard

built-in Array prototype object has been modified in @ manner that would preclude the creation of new own properties
using [[Put]].

Runtime Semantics: Evaluation

ArrayLiteral : [Elisiongp 1]

1.
2.
3.
4.

Let array be the result of the abstract operation. ArrayCreate (15.4) with argument 0.

Let pad be the Elision Width of Elision; if Elision is not present, use the numeric value zero.
Call the [[Put]] internal method of array with arguments "length", pad, and false.

Return array.

ArrayLiteral : [ElementList 1]

abrwbdPE

Let array be the result of the abstract operation ArrayCreate (15.4) with argument 0.

Let len be result of performing Array Accumulation for ElementList with arguments array and 0.
ReturnlfAbrupt(len).

Call the [[Put]].internal method of array with arguments "length", len, and false.

Return array.

ArrayLiteral : [ElementList , Elisiongg 1]

oukrkwnE

Let array be the result of the abstract operation ArrayCreate (15.4) with argument 0.

Let len be result of performing Array Accumulation for ElementList with arguments array and 0.
ReturnIfAbrupt(len).

Let padding be the Elision Width of Elision; if Elision is not present, use the numeric value zero.

Call the [[Put]] internal method of array with arguments "length", ToUint32(padding+len), and false.
Return array.

© Ecma International 2012

81

secma

11.1.4.2 Array Comprehension

Syntax

ArrayComprehension :
[AssignmentExpression ComprehensionForList]
[AssignmentExpression ComprehensionForList if Expression]

ComprehensionForList :
ComprehensionFor
ComprehensionForList ComprehensionFor

ComprehensionFor :
for ForBinding of Expression

ForBinding :
Bindingldentifier
BindingPattern

Runtime Semantics
Runtime Semantics: Binding Initialisation
With arguments value and environment.
NOTE undefined is passed for environment to indicate that a PutValue operation should be used to assign the
initialisation value. This is the case for var statements formal parameter lists of non-strict functions. In those cases a

lexical binding is hosted and preinitialized prior to evaluation of its initializer.

ForBinding : BindingPattern

1. Letobj be ToObject(value).

2. ReturnlfAbrupt(obj).

3. Return the result ofperforming Binding Initialisation for BindingPattern passing obj and environment as the
arguments.

Runtime Semantics: Evaluation
ArrayComprehension : [ElementList]

Let array be the result of the abstract operation ArrayCreate (15.4) with argument 0.

Let len be result of performing Array Accumulation for ElementList with arguments array and 0.
ReturnlfAbrupt(len).

Call the [[Put]] internal method of array with arguments "length", len, and false.

Return array.

gRrwnPE

11.1.5 Object Initialiser

NOTE An object initialiser is an expression describing the initialisation of an Object, written in a form resembling a
literal. It is a list of zero or more pairs of property names and associated values, enclosed in curly braces. The values need
not be literals; they are evaluated each time the object initialiser is evaluated.

Syntax

ObijectLiteral :
{1}
{ PropertyDefinitionList }
{ PropertyDefinitionList , 1}

82 © Ecma International 2012

»ecma

PropertyDefinitionList :
PropertyDefinition
PropertyDefinitionList , PropertyDefinition

PropertyDefinition :
IdentifierName
CoverlnitialisedName
PropertyName : AssignmentExpression
MethodDefinition

PropertyName :
IdentifierName
StringLiteral
NumericLiteral

CoverlnitialisedName :
IdentifierName Initialiser

Initialiser :
= AssignmentExpression

NOTE 1 MethodDefinition is defined in 13.3.

NOTE 2 In certain contexts, ObjectLiteral is used as a cover grammar for a more restricted secondary grammar. The
CoverlnitialisedName production is necessary to fully cover these secondary grammars. However, use of this production
results in an early Syntax Error in normal contexts'where an actual ObjectLiteral is expected.

Static Semantics

Static Semantics: Early Errors

In addition to describe an actual object initialiser the ObjectLiteral productions are used as a cover grammar
for ObjectAssignmentPattern (11.13.1). When ObjectLiteral appears in a context where ObjectAssignmentPattern

is required, the following Early Error rules are not applied.

ObjectLiteral : { PropertyDefinitionkist }
and
ObijectLiteral : { PropertyDefinitionList , }

o |t'is a Syntax Error if PropertyNameList of PropertyDefinitionList contains any duplicate entries, unless
one of the following conditions are true for each duplicate entry:

1. The source cade corresponding to PropertyDefinitionList is not strict code and all occurrences
in the list of the duplicated entry were obtained from productions of the form
PropertyDefinition : PropertyName : AssignmentExpression.

2. The duplicated entry occurs exactly twice in the list and one occurrence was obtained from a
get accessor MethodDefinition and the other occurrence was obtained from a set accessor
MethodDefinition.

PropertyDefinition : MethodDefinition

e Itis a Syntax Error if ReferencesSuper of MethodDefinition is true.
PropertyDefinition : IdentifierName

e Itis a Syntax Error if IdentifierName is a ReservedWord.
PropertyDefinition : CoverlnitialisedName

e Always throw a Syntax Error if this production is present

© Ecma International 2012 83

secma

NOTE This production exists so that ObjectLiteral can serve as a cover grammar for ObjectAssignmentPattern (11.13.1).

It can not occur in an actual object initialiser.
Static Semantics: Contains

With parameter symbol.
PropertyDefinition : MethodDefinition

1. If symbol is MethodDefinition, return true.
2. Return false.

NOTE Static semantic rules that depend upon substructure generally do not look.into function definitions.

PropertyName : IdentifierName

1. If symbol is a ReservedWord, return false.

2. If symbol is an Identifier and StringValue of symbol is the same value as the StringValue of IdentifierName,

return true;
3. Return false.

Static Semantics: IsValidSimpleAssignmentTarget
PrimaryExpression : Literal

1. Return false.

Static Semantics: PropName

PropertyDefinition : ldentifierName

1. Return StringValue of IdentifierName.
PropertyDefinition : PropertyName : AssignmentExpression
1. Return PropName of PropertyName.

PropertyName : StringLiteral

1. Return a String values whose characters are the SV of the StringLiteral.

PropertyName : NumericLiteral

1. Letnbr be the result of forming the value of the NumericLiteral.
2. Return ToString(nbr).

Static Semantics: PropertyNameList

PropertyDefinitionList : PropertyDefinition

1. Return a new List containing PropName of PropertyDefinition.
PropertyDefinitionList : PropertyDefinitionList , PropertyDefinition
1. Let list be PropertyNameList of PropertyDefinitionList.

2. Append PropName of PropertyDefinition to the end of list.
3. Return list.

84

© Ecma International 2012

»ecma

Runtime Semantics
Runtime Semantics: Evaluation
ObjectLiteral : { }

1. Return a new object created as if by the expression new Object () where Object is the standard built-
in constructor with that name.

ObijectLiteral :
{ PropertyDefinitionList }
{ PropertyDefinitionList , }

=

Let obj be the result of the abstract operation ObjectCreate (15.2).

2. Let status be the result of performing Property Definition Evaluationof PropertyDefinitionList with
argument obj.

ReturnIfAbrupt(status).

4. Return obj.

w

Runtime Semantics: Property Definition Evaluation
With parameter object.
PropertyDefinitionList : PropertyDefinitionList , PropertyDefinition

1. Let status be the result of performing Property Definition Evaluation of PropertyDefinitionList with
argument object.

2. ReturnlfAbrupt(status).

3. Return the result of performing Property Definition Evaluation of PropertyDefinition with argument object.

PropertyDefinition : IdentifierName

Let propName be PropName of IdentifierName.

Let exprValue be the result of performing ldentifier Resolution as specified in 10.3.1 using ldentifierName.
Let propValue be GetValue(exprValue).

ReturnlfAbrupt(propValue).

Let desc bethe Property Descriptor{[[Value]]: propValue, [[Writable]]: true, [[Enumerable]]: true,
[[Configurable]]: true}

6. Return the result of calling the [[DefineOwnProperty]] internal method of object with arguments propName,
desc, and false.

agrwnPE

PropertyDefinition : PropertyName : AssignmentExpression

Let propName be PropName of PropertyName.

Let exprValue be the result of evaluating AssignmentExpression.

Let propValue be GetValue(exprValue).

ReturnlfAbrupt(propValue).

Let desc be the Property Descriptor{[[VValue]]: propValue, [[Writable]]: true, [[Enumerable]]: true,
[[Configurable]]: true}

Return the result of calling the [[DefineOwnProperty]] internal method of object with arguments propName,
desc, and false.

agbrwndE

Sk

11.1.6 Function Defining Expressions
See 13.1 for PrimaryExpression : FunctionExpression.
See 13.4 for PrimaryExpression : GeneratorExpression.

See 13.5 for PrimaryExpression : ClassExpression.

© Ecma International 2012 85

secma

11.1.7 Generator Comprehensions

Syntax

GeneratorComprehension ;
(Expression ComprehensionForList)
(Expression ComprehensionForList if Expression)

11.1.8 Regular Expression Literals

Syntax
See 7.8.5.

Static Semantics
Static Semantics: Early Errors
PrimaryExpression : RegularExpressionLiteral

e |tis a Syntax Error if BodyText of RegularExpressionLiteral can not be recognized using the goal symbol
Pattern of the ECMAScript RegExp grammar specified.in 15.10.

e |tis a Syntax Error if FlagText of RegularExpressionLiteral contains any character other than "g", "i",
"m", "u", or "y", or if it contains the same character more than once.

Runtime Semantics
Runtime Semantics: Evaluation
PrimaryExpression : RegularExpressionLiteral

1. Aregular expression literal evaluates to a value of the Object type that is an instance of the standard built-
in constructor RegExp. This value is determined in two steps: first, the characters comprising the regular
expression's RegularExpressionBody: and RegularExpressionFlags production expansions are collected
uninterpreted into two Strings Pattern-and. Flags, respectively. Then each time the literal is evaluated, a
new object is created as if by.the expression new. RegExp (Pattern, Flags) where RegExp is the
standard built-in constructor with that name. The newly constructed object becomes the value of the
RegularExpressionLiteral.

11.1.9 Template Literals

Syntax
TemplateLiteral.:

NoSubstitutionTemplate

TemplateHead. Expression [Lexical goal InputElementTemplateTail] TemplateSpans
TemplateSpans:

TemplateTail

TemplateMiddleList [Lexical goal InputElementTemplateTail] TemplateTail
TemplateMiddleList:

TemplateMiddle Expression

TemplateMiddleList [Lexical goal InputElementTemplateTail] TemplateMiddle Expression
Static Semantics
Static Semantics: TemplateStrings

With parameter raw.

86 © Ecma International 2012

»ecma

TemplateLiteral : NoSubstitutionTemplate

1. Ifraw is false, then

a. Letstring be the TV of NoSubstitutionTemplate.
2. Else, Let string be the TRV of NoSubstitutionTemplate.
3. Return a List containing the single element, string.

TemplateLiteral : TemplateHead Expression [Lexical goal InputElementTemplateTail] TemplateSpans

1. Ifraw is false, then
a. Lethead be the TV of TemplateHead.
2. Else,
a. Lethead be the TRV of TemplateHead.
3. Let tail be TemplateStrings of TemplateSpans with argument raw.
4. Return a List containing head followed by the element, in order of tail:

TemplateSpans : TemplateTail

1. Ifraw is false, then
a. Lettail be the TV of TemplateTail.
2. Else,
a. Lettail be the TRV of TemplateTail.
3. Return a List containing the single element, tail.

TemplateSpans : TemplateMiddleList [Lexical goaldnputElementTemplateTail] TemplateTail

1. Let middle be TemplateStrings of TemplateMiddleList with argument raw.
2. Ifraw is false, then
a. Lettail be the TV of TemplateTail.
3. Else,
a. Let tail be the TRV of TemplateTail.
4. Return a List containing.the elements, in order, of middle followed by tail.

TemplateMiddleList : TemplateMiddle Expression

1. Ifraw is false, then

a. Letstring be the TV of TemplateMiddle.
2. Else,

a. Letstring be the TRV of TemplateMiddle.
3. Return a List containing the single element, string.

TemplateMiddleList : TemplateMiddleList [Lexical goal InputElementTemplateTail] TemplateMiddle Expression

1. Let front be TemplateStrings of TemplateMiddleList with argument raw.
2. [Ifraw is false, then
a. Let last be the TV of TemplateMiddle.
3. Else,
a. Letlast be the TRV of TemplateMiddle.
4. Append last as the last elemnt of the List front.
5. Return front.

Runtime Semantics

Runtime Semantics: ArgumentListEvaluation

TemplateLiteral : NoSubstitutionTemplate

1. Let siteObj be the result of the abstraction operation GetTemplateCallSite passing this TemplateLiteral

production as the argument.
2. Return a List containing the one element which is siteObj.

© Ecma International 2012 87

secma

TemplateLiteral : TemplateHead Expression [Lexical goal InputElementTemplateTail] TemplateSpans

1. Let siteObj be the result of the abstraction operation GetTemplateCallSite passing this TemplateLiteral
production as the argument.

Let firstSub be the result of evaluating Expression.

ReturnlfAbrupt(firstSub).

Let restSub be SubstitutionEvaluation of TemplateSpans.

ReturnlfAbrupt(restSub).

Assert, restSub is a List.

Return a List whose first element is siteObj, whose second elements is firstSub, and whose subsequent
elements are the elements of restSub, in order. restSub may contain no elements.

Nogakkwd

The abstract operation GetTemplateCallSite is called with a grammar production, templateLiteral, as an
argument. It performs the following steps:

1. Ifa call site object for the source code corresponding to templateLiteral has already been created by a
previous call to this abstract operation, then return that call site object.
Let cookedStrings be TemplateStrings of templateLiteral with-argument false.
Let rawStrings be TemplateStrings of templateLiteral with.argument true.
Let count be the number of elements in the List cookedStrings.
Let siteObj be the result of the abstraction operation ArrayCreate with argument count.
Let rawObj be the result of the abstraction operation ArrayCreate with argument count.
Let index be 0.
Repeat while index < count
a. Let prop be ToString(index).
b. Let cookedValue be the string value at 0-based position index of the List cookedStrings.
c. Call the [[DefineOwnProperty]] internal method of siteObj with arguments prop, Property
Descriptor {[[Value]]: cookedValue, [[Writable]]: false, [[Configurable]]: false}, and false.
d. LetrawValue be the string value at 0-based position index of the List rawStrings.
e. Call the [[DefineOwnProperty]] internal method of rawObj with arguments prop, Property
Descriptor {[[Value]]: rawValue, [[Writable]]: false, [[Configurable]]: false}, and false.
f. Letindex be index+1.
9. Call the FreezeObjectabstract operation with argument rawObj.
10. Call the [[DefineOwnProperty]] internal method of siteObj with arguments "raw"', Property Descriptor
{[[Value]]: rawObj, [[Writable]]: false, [[Enumerable]]: false, [[Configurable]]: false}, and false.
11. Call the FreezeObject abstract operation with argument siteObj.
12. Remember an association bhetween the source code corresponding to templateLiteral and siteObj such that
siteObj can be retrieve in subsequent calls to this abstract operation.
13. Return siteObj.

PN R~LN

NOTE 1 The creation of a call site object can'not result in an abrupt completion.

NOTE 2 = Each TemplateLiteral in the program code is associated with a unique Template call site object that is used in
the evaluation of tagged Templates (11.2.6). The same call site object is used each time a specific tagged Template is
evaluated. Whether call site objects are created lazily upon first evaluation of the TemplateLiteral or eagerly prior to first
evaluation is an implementation choice that is not observable to ECMAScript code.

Runtime Semantics: SubstitutionEvaluation

TemplateSpans : TemplateTail

1. Return an empty List.

TemplateSpans : TemplateMiddleList [Lexical goal InputElementTemplateTail] TemplateTail
1. Return the result of SubstitutionEvaluation of TemplateMiddleList.
TemplateMiddleList : TemplateMiddle Expression

1. Letsub be the result of evaluating Expression.

88 © Ecma International 2012

»ecma

2. ReturnlfAbrupt(sub).
3. Return a List containing only sub.

TemplateMiddleList : TemplateMiddleList [Lexical goal InputElementTemplateTail] TemplateMiddle Expression

Let preceeding be the result of SubstitutionEvaluation of TemplateMiddleList .
ReturnIfAbrupt(preceeding).

Let next be the result of evaluating Expression.

ReturnlfAbrupt(next).

Append next as the list element of the List preceeding.

Return preceeding.

ourwhE

Runtime Semantics: Evaluation

TemplateLiteral : NoSubstitutionTemplate

1. Return the string value whose elements are the TV of NoSubstitutionTemplate as defined in 7.8.6.
TemplateLiteral : TemplateHead Expression [Lexical goal InputElementTemplateTail] TemplateSpans

Let head be the TV of TemplateHead as defined in 7.8:6.

Let sub be the result of evaluating Expression.

Let middle be ToString(sub).

ReturnlfAbrupt(middle).

Let tail be the result of evaluating TemplateSpans .

ReturnlfAbrupt(tail).

Return the string value whose elements are the code units..of head followed by the code units of tail.

NogkrwbE

TemplateSpan : TemplateTail

1. Lettail be the TV of TemplateTail as defined in 7.8.6.
2. Return the string whose elements are the code units of tail.

TemplateSpan : TemplateMiddleList [Lexical goal InputElementTemplateTail] TemplateTail

1. Let head be the result of evaluating TemplateMiddleList.

2. ReturnlfAbrupt(head).

3. Let tail be the TV of TemplateTail as defined in 7.8.6.

4. Return the string whose elements are the code units elements of head followed by the code units of tail.

TemplateMiddleList : TemplateMiddle Expression

Let head be the TV of TemplateMiddle as defined in 7.8.6.

Let sub be the result of evaluating Expression.

Let middle be ToString(sub).

ReturnlfAbrupt(middle).

Return the sequence of characters consisting of the code units of head followed by the elements of middle.

A o

TemplateMiddleList : TemplateMiddleList [Lexical goal InputElementTemplateTail] TemplateMiddle Expression

Let rest be the result of evaluating TemplateMiddleList .

ReturnlfAbrupt(rest).

Let middle be the TV of TemplateMiddle as defined in 7.8.6.

Let sub be the result of evaluating Expression.

Let last be ToString(sub).

ReturnlfAbrupt(last).

Return the sequence of characters consisting of the elements of rest followed by the code units of middle
followed by the elements of last.

NogkrwbdE

© Ecma International 2012

secma

11.1.10 The Grouping Operator
Static Semantics: IsValidSimpleAssignmentTarget
PrimaryExpression : CoverParenthesizedExpressionAndArrowParameterList

1. Let expr be CoveredParenthesizedExpression of CoverParenthesizedExpressionAndArrowParameterList.
2. Return IsValidSimpleAssignmentTarge of expr.

ParenthesizedExpression : (Expression)

1. Return IsValidSimpleAssignmentTarge of Expression.

Runtime Semantics: Evaluation

PrimaryExpression : CoverParenthesizedExpressionAndArrowParameterList

1. Letexpr be CoveredParenthesizedExpression of CoverParenthesizedExpressionAndArrowParameterList.
2. Return the result of evaluating expr.

ParenthesizedExpression : (Expression)

1. Return the result of evaluating Expression. This may be of type Reference.

NOTE This algorithm does not apply GetValue to the result of evaluating Expression. The principal motivation for this
is so that operators such as delete and typeof may be applied to parenthesised expressions.

11.2 Left-Hand-Side Expressions

Syntax

MemberExpression :
[Lexical goal InputElementRegExp] PrimaryExpression
MemberExpression [Expression]
MemberExpression . ldentifierName
MemberExpression TemplateLiteral
super [Expression]
super . ldentifierName
new MemberExpression Arguments

NewExpression :
MemberExpression
new NewExpression

CallExpression :
MemberExpression Arguments
super Arguments
CallExpression Arguments
CallExpression [Expression]
CallExpression . IdentifierName
CallExpression TemplateLiteral

Arguments :

()
(ArgumentList)

90 © Ecma International 2012

»ecma

ArgumentList :
AssignmentExpression
. AssignmentExpression
ArgumentList , AssignmentExpression
ArgumentList , ... AssignmentExpression

LeftHandSideExpression :
NewExpression
CallExpression

Static Semantics

Static Semantics: Contains

With parameter symbol.

MemberExpression : MemberExpression . ldentifierName

1. If MemberExpression contains symbol is true, return true:

2. If symbol is a ReservedWord, return false.

3. If symbol is an Identifier and StringValue of symbol is the same value as the StringValue of IdentifierName,

return true;
4. Return false.

MemberExpression : super . IdentifierName

1. If symbol is the ReservedWord super, return true.

2. If symbol is a ReservedWord, return false.

3. If symbol is an Identifier and StringValue of symbol is.the same value as the StringValue of IdentifierName,

return true;
4. Return false.

CallExpression : CallExpression . IdentifierName

1. If CallExpression contains symbol is true, returntrue.

2. If symbol is a ReservedWord, return false.

3. If symbol.is-an Identifier and StringVValue of symbol is the same value as the StringValue of IdentifierName,

return true;
4. Return false.

Static Semantics: IsValidSimpleAssignmentTarget

CallExpression :
MemberExpression Arguments
super Arguments
CallExpression Arguments
CallExpression [Expression]
CallExpression . ldentifierName

MemberExpression :
MemberExpression [Expression]
MemberExpression . IdentifierName
super [Expression]
super . ldentifierName

1. Return true.

© Ecma International 2012

91

secma

CallExpression : CallExpression TemplateLiteral
NewExpression : new NewExpression
MemberExpression : new MemberExpression Arguments

1. Return false.

11.2.1 Property Accessors

Properties are accessed by name, using either the dot notation:
MemberExpression . IdentifierName
CallExpression . ldentifierName

or the bracket notation:

MemberExpression [Expression]
CallExpression [Expression]

The dot notation is explained by the following syntactic conversion:
MemberExpression . ldentifierName
is identical in its behaviour to
MemberExpression [<identifier-name-string>]
and similarly
CallExpression . IdentifierName
is identical in its behaviour to
CallExpression [<identifier-name-string>]

where <identifier-name-string> is‘a string literal containing the same sequence of characters after processing
of Unicode escape sequences as the ldentifierName.

Runtime Semantics: Evaluation
MemberExpression : MemberExpression [Expression]

Let baseReference be the result of evaluating MemberExpression.
Let baseValue be GetValue(baseReference).
ReturnlfAbrupt(baseValue).
Let propertyNameReference be the result of evaluating Expression.
Let propertyNameValue be GetValue(propertyNameReference).
ReturnlfAbrupt(propertyNameValue).
ReturnlfAbrupt(CheckObjectCoercible(baseValue)).
Let propertyNameString be ToString(propertyNameValue).
If the code matched by the syntactic production that is being evaluated is strict mode code, let strict be true,
else let strict be false:
. Return a value of type Reference whose base value is baseValue and whose referenced name is
propertyNameString, and whose strict mode flag is strict.

CeNooUREWbE

-
o

CallExpression : CallExpression [Expression]

Is evaluated in exactly the same manner as MemberExpression : MemberExpression [Expression] except that
the contained CallExpression is evaluated in step 1.

11.2.2 The new Operator
Runtime Semantics: Evaluation

NewExpression : new NewEXxpression

92 © Ecma International 2012

»ecma

Let ref be the result of evaluating NewExpression.

Let constructor be GetValue(ref).

ReturnlfAbrupt(constructor).

If Type(constructor) is not Object, throw a TypeError exception.

If constructor does not implement the [[Construct]] internal method, throw a TypeError exception.
Return the result of calling the [[Construct]] internal method on constructor with an empty List as the
argument.

ocoprwhE

MemberExpression : new MemberExpression Arguments

Let ref be the result of evaluating MemberExpression.

Let constructor be GetValue(ref).

ReturnIfAbrupt(constructor).

Let argList be the result of evaluating Arguments, producing an internal List of argument values (11.2.4).
ReturnlfAbrupt(argList).

If Type(constructor) is not Object, throw a TypeError exception.

If constructor does not implement the [[Construct]] internal method, throw a TypeError exception.
Return the result of calling the [[Construct]] internal method on constructor, passing arglist as the
argument.

NN E

11.2.3 Function Calls
Runtime Semantics: Evaluation
CallExpression : MemberExpression Arguments

1. Let ref be the result of evaluating MemberExpression.
2. If this CallExpression is in a tail position (13.7) then let tailCall.be true, otherwise let tailCall be false.
3. Return the result of the abstract operation EvaluateCall with arguments.ref, Arguments, and tailCall.

CallExpression : CallExpression/Arguments

1. Let ref be the result of evaluating CallExpression.
2. If this CallExpression is in a tail position (13.7) then'let tailCall be true, otherwise let tailCall be false.
3. Return the result of the abstract operation EvaluateCall with arguments ref, Arguments, and tailCall.

The abstract operation EvaluateCall takes as arguments a value ref, and a syntactic grammar production
arguments, .and a Boolean argument tailPosition. It performs the following steps:

Let func be GetValue(ref).
ReturnlfAbrupt(func).
Let argList be the result of performing ArgumentListEvaluation of Arguments.
ReturnlfAbrupt(argList).
If Type(func).is not Object, throw a TypeError exception.
If IsCallable(func) is false, throw a TypeError exception.
If Type(ref) is Reference, then
a. If IsPropertyReference(ref) is true, then
i. Let thisValue be GetThisValue(ref).
b. Else, the base of ref is an Environment Record
i. Let thisValue be the result of calling the WithBaseObject concrete method of GetBase(ref).

8. Else, Type(ref) is not Reference.

a. Let thisValue be undefined.
9. If tailPosition is true, then

a. Let leafContext be the running execution context.

b. Suspend leafContext.

c. Pop leafContext from the execution context context stack. The execution context now on the top of

the stack becomes the running execution context, however it remains in its suspended state.

d. Assert: leafContext has no further use. It will never be activated as the running execution context.
10. Let result be the result of calling the [[Call]] internal method on func, passing thisValue and argList as the
argument values

Nogk~rwbhE

© Ecma International 2012 93

secma

11. Assert: If tailPosition is true, the above call will not return here, but instead evaluation will continue with
the resumption of leafCallerContext as the running execution context.
12. Return result.

A tail position call must either release any transient internal resources associated with the currently executing
function execution context before invoking the target function or reuse those resources in support of the target
function.

NOTE 1 For example, a tail position call should only grow an implementation’s activication record stack by the amount
that the size of the target function’s activation record exceeds the size of the calling function’s activation record. If the
target function’s activation record is smaller, then the total size of the stack should decrease.

NOTE 2 The returned result will never be of type Reference if func is an ordinary object. Whether calling an exotic
object can return a value of type Reference is implementation-dependent. If a value of type Reference is returned, it must
be a non-strict Property Reference.

11.2.4 The super Keyword
Static Semantics
Static Semantics: Early Errors

MemberExpression :
super [Expression]
super . ldentifierName

e ltis a Syntax Error if the source code parsed with this production is global code that is not eval code.
e ltis a Syntax Error if the source code parsed with this production is eval code and the source code is
not being processed by a direct call to eval that is contained in-function code.

CallExpression : super Arguments

e |tis a Syntax Error if the source code parsed with this production is global code that is not eval code.
e ltis a Syntax Error if the source code parsed with this production is eval code and the source code is
not being processed by a direct call to eval that is contained in function code.

Runtime Semantics: Evaluation
MemberExpression : super [Expression]

LLet env be the result of performing the GetThisEnvironment abstract operation.
If the result of calling the HasSuperBinding concrete method of env is false, then throw ReferenceError.
Let actualThis be the result of calling the GetThisBinding concrete method of env.
Let baseValue be the result of calling the GetSuperBase concrete method of env.
Let propertyNameReference be the result of evaluating Expression.
Let propertyNameValue be GetValue(propertyNameReference).
ReturnlfAbrupt(CheckObjectCoercible(baseValue)).
Let propertyKey be ToPropertyKey(propertyNameValue).
If the code matched by the syntactic production that is being evaluated is strict mode code, let strict be true,
else let strict be false.
. Return a value of type Reference that is a Super Reference whose base value is baseValue, whose referenced
name is propertyKey, whose thisValue is actualThis, and whose strict mode flag is strict.

CoOoNoOR~WNE

[y
o

MemberExpression : super . ldentifierName

Let env be the result of performing the GetThisEnvironment abstract operation.

If the result of calling the HasSuperBinding concrete method of env is false, then throw ReferenceError.
Let actualThis be the result of calling the GetThisBinding concrete method of env.

Let baseValue be the result of calling the GetSuperBase concrete method of env.
ReturnlfAbrupt(CheckObjectCoercible(baseValue)).

agppwbPE

94 © Ecma International 2012

eCina

6. Let propertyKey be StringValue of IdentifierName.

7. If the code matched by the syntactic production that is being evaluated is strict mode code, let strict be true,
else let strict be false.

8. Return a value of type Reference that is a Super Reference whose base value is baseValue, whose referenced
name is propertyKey, whose thisValue.

CallExpression : super Arguments

Let env be the result of performing the GetThisEnvironment abstract operation.

If the result of calling the HasSuperBinding concrete method of env is false, then throw ReferenceError.

Let actualThis be the result of calling the GetThisBinding concrete method of env.

Let baseValue be the result of calling the GetSuperBase concrete method of env.

ReturnlfAbrupt(CheckObjectCoercible(baseValue)).

Let propertyKey be the result of calling the GetMethodName concrete method of env.

If the code matched by the syntactic production that is being evaluated is strict mode code, let strict be true,

else let strict be false.

8. Let ref be a value of type Reference that is a Super Reference whose base value is baseValue, whose
referenced name is propertyKey, whose thisValue.

9. If this CallExpression is in a tail position (13.7) then let tailCall be true, otherwise let tailCall be false.

10. Return the result of the abstract operation EvaluateCall with arguments ref, Arguments, and tailCall.

NogkrwbE

11.2.5 Argument Lists

The evaluation of an argument list produces a List of values (see 8.7).
Runtime Semantics

Runtime Semantics: ArgumentListEvaluation

Arguments : ()

1. Return an empty List.

ArgumentList : AssignmentExpression

Let ref be the result of evaluating AssignmentExpression.

Let arg be GetValue(ref).

ReturnlfAbrupt(arg).
Return a List whose sole item is arg.

PobPE

ArgumentList : ... AssignmentExpression

1. Let list be an empty List.
2. Let spreadRef be the result of evaluating AssignmentExpression.
3. Let spreadValue be GetValue(spreadRef).
4. Let spreadObj be ToObject(spreadValue).
5. ReturnlfAbrupt(spreadObj).
6. Let lenVal be the result of calling the [[Get]] internal method of spreadObj with argument “length” .
7. LetspreadLen be ToUint32(lenVal).
8. ReturnlfAbrupt(spreadLen).
9. Letn=0.
10. Repeat, while n < spreadlLen

a. Let nextArg be the result of calling the [[Get]] internal method of spreadObj passing ToString(n) as the

argument.

b. ReturnlfAbrupt(nextArg).

c. Append nextArg as the last element of list.

d. Letn=n+l.
11. Return list.

© Ecma International 2012 95

secma

ArgumentList : ArgumentList , AssignmentExpression

Let precedingArgs be the result of evaluating ArgumentList.

ReturnlfAbrupt(precedingArgs).

Let ref be the result of evaluating AssignmentExpression.

Let arg be GetValue(ref).

ReturnlfAbrupt(arg).

Return a List whose length is one greater than the length of precedingArgs and whose items are the items of
precedingArgs, in order, followed at the end by arg which is the last item of the new list.

ouhkhwhE

ArgumentList : ArgumentList , .. AssignmentExpression

1. Let precedingArgs be an empty List.
2. Let spreadRef be the result of evaluating AssignmentExpression.
3. LetspreadValue be GetValue(spreadRef).
4. Let spreadObj be ToObject(spreadValue).
5. ReturnlfAbrupt(spreadObj).
6. LetlenVal be the result of calling the [[Get]] internal method.of spreadObj with argument “1ength” .
7. LetspreadLen be ToUint32(lenVal).
8. ReturnlfAbrupt(spreadLen).
9. Letn=0.
10. Repeat, while n < spreadLen

a. Let nextArg be the result of calling the [[Get]] internal method of spreadObj passing ToString(n) as the

argument.

b. ReturnlfAbrupt(nextArg).

c. Append nextArg as the last element of precedingArgs.

d. Letn=n+l.
11. Return precedingArgs.

11.2.6 Tagged Templates
Runtime Semantics

The runtime semantics of production:
CallExpression : CallExpression TemplateLiteral
is identical to that of
MemberExpression: MemberExpression TemplateLiteral
but with evaluation of CallExpression substituted for the evaluation of MemberExpression.

Runtime Semantics: Evaluation
MemberExpression : MemberExpression TemplateLiteral

1. Let tagRef be the result of evaluating MemberExpression.

2. If this MemberExpression is in a tail position (13.7) then let tailCall be true, otherwise let tailCall be false.

3. Return the result of the abstract operation EvaluateCall with arguments tagRef, TemplateLiteral, and
tailCall.

11.3 Postfix Expressions

Syntax

PostfixExpression :
LeftHandSideExpression
LeftHandSideExpression [no LineTerminator here] ++
LeftHandSideExpression [no LineTerminator here] —-

Static Semantics

96 © Ecma International 2012

secma

Static Semantics: Early Errors

PostfixExpression :
LeftHandSideExpression
LeftHandSideExpression [no LineTerminator here] ++
LeftHandSideExpression [no LineTerminator here] —-

e |t is a Syntax Error if the derived LeftHandSideExpression is PrimaryExpression : ObjectLiteral and
ContainsNonObjectLiteralProductions of ObjectLiteral is true.

e |t is a Syntax Error if the derived LeftHandSideExpression is PrimaryExpression : (Expression) and
Expression derived a production that if used in place of LeftHandSideExpression would produce a Syntax
Error according to these rules. This rule is recursively applied.

PostfixExpression :
LeftHandSideExpression [no LineTerminator here] ++
LeftHandSideExpression [no LineTerminator here] —-

e |tis an early Reference Error if IsValidSimpleAssignmentTarget of LeftHandSideExpression is false.
Static Semantics: IsValidSimpleAssignmentTarget

PostfixExpression :
LeftHandSideExpression [no LineTerminator here] ++
LeftHandSideExpression [no LineTerminator here] —-

1. Return false.

11.3.1 Postfix Increment Operator

Runtime Semantics: Evaluation

PostfixExpression : LeftHandSideExpression [no LineTerminator here] ++

Let lhs be the result of evaluating LeftHandSideExpression.

Let oldValue be ToNumber(GetValue(lhs)).

ReturnifAbrupt(oldVvalue).

Let newValue be the result of adding the value 1 to oldValue, using the same rules as for the + operator (see
11.6.3).

5. Letstatus be PutValue(lhs, newValue).

6. ReturnlfAbrupt(status).

7. Return.oldValue.

bbb

11.3.2 Postfix Decrement Operator

Runtime Semantics: Evaluation

PostfixExpression : LeftHandSideExpression [no LineTerminator here] —-
1. Let Ihs be the result of evaluating LeftHandSideExpression.

2. LetoldValue be ToNumber(GetValue(lhs)).

3. Let newValue be the result of subtracting the value 1 from oldValue, using the same rules as for the -
operator (11.6.3).

4. Let status be PutValue(lhs, newValue).
5. ReturnIfAbrupt(status).
6. Return oldValue.

© Ecma International 2012 97

secma

11.4 Unary Operators

Syntax

UnaryExpression :
PostfixExpression
delete UnaryExpression
void UnaryExpression
typeof UnaryExpression
++ UnaryExpression
-- UnaryExpression
+ UnaryExpression
- UnaryExpression
~ UnaryExpression
! UnaryExpression

Static Semantics
Static Semantics: Early Errors

UnaryExpression :
delete UnaryExpression

e ltis a Syntax Error if the UnaryExpression is contained in strict code and the derived UnaryExpression is
the Identifier eval or the Identifier arguments.

e ltis a Syntax Error if the derived UnaryExpression.is PrimaryExpression : (Expression) and Expression
derived a production that if used in place of UnaryExpression would produce a Syntax Error according
to these rules. This rule is recursively applied.

UnaryExpression :
++ UnaryExpression
-- UnaryExpression

e ltis an early Reference Error if IsValidSimpleAssignmentTarget of UnaryExpression is false.
Static Semantics: IsValidSimpleAssignmentTarget

UnaryExpression :
delete UnaryExpression
void UnaryExpression
typeof UnaryExpression
++ UnaryExpression
-- UnaryExpression
+ UnaryExpression
- UnaryExpression
~ UnaryExpression
! UnaryExpression

1. Return false.
11.4.1 The delete Operator
Static Semantics: Early Errors

UnaryExpression : delete UnaryExpression

e |t is a Syntax Error if the UnaryExpression is contained in strict code and the UnaryExpression derives
an ldentifier that statically resolves to a environment record.

98 © Ecma International 2012

»ecma

Runtime Semantics: Evaluation
UnaryExpression : delete UnaryExpression

Let ref be the result of evaluating UnaryExpression.
ReturnIfAbrupt(ref).
If Type(ref) is not Reference, return true.
If IsUnresolvableReference(ref) is true, then,
a. If IsStrictReference(ref) is true, throw a SyntaxError exception.
b. Else, return true.
5. If IsPropertyReference(ref) is true, then
a. If IsSuperReference(ref), then throw a ReferenceError exception.
b. Return the result of calling the [[Delete]] internal method on ToObject(GetBase(ref)) providing
GetReferencedName(ref) and IsStrictReference(ref) as the arguments.
6. Else, ref is a Reference to an Environment Record binding, so
a. Letbindings be GetBase(ref).
b. Return the result of calling the DeleteBinding concrete method of bindings, providing
GetReferencedName(ref) as the argument.

el NS S

NOTE When a delete operator occurs within strict mode code, a SyntaxError exception is. thrown if its
UnaryExpression is a direct reference to a variable, function argument, or function‘-name. In addition, if a delete operator
occurs within strict mode code and the property to be deleted has the attribute { [[Configurable]]: false }, a TypeError
exception is thrown.

11.4.2 The void Operator

Runtime Semantics: Evaluation

UnaryExpression : void UnaryExpression

1. Let expr be the result of evaluating UnaryExpression.

2. Call GetValue(expr).

3. ReturnIfAbrupt(expr):

4. Return undefined.

NOTE GetValue must be called even thoughits value is not used because it may have observable side-effects.

11.4.3 The typeof Operator

Runtime Semantics: Evaluation

UnaryExpression : typeo£ UnaryExpression

1. Let val be the result of evaluating UnaryExpression.

2. If Type(val) is Reference; then
a. If IsUnresolvableReference(val) is true, return "undefined".
b. Letval be GetValue(val).

3. ReturnIfAbrupt(val).

4. Return a String determined by Type(val) according to Table 25.

Table 25 — typeof Operator Results

© Ecma International 2012 99

secma

Type of val Result
Undefined "undefined"
Null "object"
Boolean "boolean"
Number "number"
String "string"
Object (native and does "object"

not implement [[Call]])

Object (native or host and | "function"
does implement [[Call]])
Object (host and does not | Implementation-defined e€xcept may
implement [[Call]]) not be "undefined”, "boolean",
"number", Of "string".

11.4.4 Prefix Increment Operator
Runtime Semantics: Evaluation
UnaryExpression : ++ UnaryExpression

Let expr be the result of evaluating UnaryExpression.

Let oldValue be ToNumber(GetValue(expr)):

ReturnlfAbrupt(oldValue).

Let newValue be the result of adding the value 1 to oldValue, using the same rules as for the + operator (see
11.6.3).

5. Let status be PutValue(expr, newValue).

6. ReturnlfAbrupt(status).

7. Return newValue.

b

11.4.5 Prefix Decrement Operator

Runtime Semantics: Evaluation

UnaryExpression : —- UnaryExpression

1. Let expr be the result of evaluating UnaryExpression.

2. LetoldValue be ToNumber(GetValue(expr)).

3. ReturnlfAbrupt(oldValue).

4. LetnewValue be the result of subtracting the value 1 from oldValue, using the same rules as for the -

operator (see 11.6.3).
5. Let status be PutValue(expr, newValue).
6. ReturnlfAbrupt(status).
7. Return newValue.
11.4.6 Unary + Operator
NOTE The unary + operator converts its operand to Number type.
Runtime Semantics: Evaluation

UnaryExpression : + UnaryExpression

1. Letexpr be the result of evaluating UnaryExpression.
2. Return ToNumber(GetValue(expr)).

100 © Ecma International 2012

»ecma

11.4.7 Unary - Operator

NOTE The unary - operator converts its operand to Number type and then negates it. Negating +0 produces -0, and
negating —0 produces +0.

Runtime Semantics: Evaluation
UnaryExpression : - UnaryExpression

Let expr be the result of evaluating UnaryExpression.

Let oldValue be ToNumber(GetValue(expr)).

ReturnIfAbrupt(oldValue).

If oldValue is NaN, return NaN.

Return the result of negating oldValue; that is, compute a Number with the same magnitude but opposite
sign.

agrwnE

11.4.8 Bitwise NOT Operator (~)
Runtime Semantics: Evaluation
UnaryExpression : ~ UnaryExpression

1. Let expr be the result of evaluating UnaryExpression.
2. Let oldValue be Tolnt32(GetValue(expr)).
3. ReturnIifAbrupt(oldValue).

4. Return the result of applying bitwise complement to oldValue. The result.is a signed 32-bit integer.

11.4.9 Logical NOT Operator (!)
Runtime Semantics: Evaluation
UnaryExpression : ! UnaryExpression

Let expr be the result of evaluating UnaryExpression.
Let oldValue be ToBoolean(GetValue(expr)).
ReturnIfAbrupt(oldVvalue).

If oldValue-is true, return false.

Return-true.

agrwnE

11.5 Multiplicative Operators

Syntax

MultiplicativeExpression :
UnaryExpression
MultiplicativeExpression * UnaryExpression
MultiplicativeExpression / UnaryExpression
MultiplicativeExpression $ UnaryExpression

Static Semantics: IsValidSimpleAssignmentTarget
MultiplicativeExpression :
MultiplicativeExpression * UnaryExpression
MultiplicativeExpression / UnaryExpression
MultiplicativeExpression % UnaryExpression

1. Return false.

© Ecma International 2012 101

secma

Runtime Semantics: Evaluation

The production MultiplicativeExpression : MultiplicativeExpression @ UnaryExpression, where @ stands for one
of the operators in the above definitions, is evaluated as follows:

Hoo~NokwbE

Let left be the result of evaluating MultiplicativeExpression.

Let leftValue be GetValue(left).

ReturnlfAbrupt(leftValue).

Let right be the result of evaluating UnaryExpression.

Let rightValue be GetValue(right).

Let Inum be ToNumber(leftValue).

ReturnlfAbrupt(Inum).

Let rnum be ToNumber(rightValue).

ReturnlfAbrupt(rnum).

0. Return the result of applying the specified operation (*, /, or %) to Inum and rnum. See the Notes below

11.5.1,11.5.2,11.5.3.

11.5.1 Applying the * Operator

The * operator performs multiplication, producing the product of its operands. Multiplication is commutative.
Multiplication is not always associative in ECMAScript, because of finite precision.

The result of a floating-point multiplication is governed by the rules of IEEE 754 binary double-precision

arithmetic:

If either operand is NaN, the result is NaN.

The sign of the result is positive .if both operands have the same sign, negative if the
operands have different signs.

Multiplication of an infinity by a zero results in NaN.

Multiplication of an infinity. by an infinity results in an infinity. The sign is determined by the
rule already stated above.

Multiplication of an infinity by a finite nonzero value results in a signed infinity. The sign is
determined by the rule already stated above.

In the remaining cases, where.neither an infinity or NaN is involved, the product is computed
and rounded to the nearest representable value using IEEE 754 round-to-nearest mode. If
the magnitude is too'large to represent, the result is then an infinity of appropriate sign. If
the-magnitude is too small to represent, the result is then a zero of appropriate sign. The
ECMAScript language requires support of gradual underflow as defined by IEEE 754.

11.5.2 Applying the / Operator

The / operator performs division, producing the quotient of its operands. The left operand is the dividend and
the right operand is the divisor. ECMAScript does not perform integer division. The operands and result of all
division operations are double-precision floating-point numbers. The result of division is determined by the
specification of IEEE 754 arithmetic:

102

If either operand is NaN, the result is NaN.

The sign of the result is positive if both operands have the same sign, negative if the
operands have different signs.

Division of an infinity by an infinity results in NaN.

Division of an infinity by a zero results in an infinity. The sign is determined by the rule
already stated above.

Division of an infinity by a nonzero finite value results in a signed infinity. The sign is
determined by the rule already stated above.

Division of a finite value by an infinity results in zero. The sign is determined by the rule
already stated above.

Division of a zero by a zero results in NaN; division of zero by any other finite value results
in zero, with the sign determined by the rule already stated above.

© Ecma International 2012

»ecma

e Division of a nonzero finite value by a zero results in a signed infinity. The sign is
determined by the rule already stated above.

¢ In the remaining cases, where neither an infinity, nor a zero, nor NaN is involved, the
guotient is computed and rounded to the nearest representable value using IEEE 754 round-
to-nearest mode. If the magnitude is too large to represent, the operation overflows; the
result is then an infinity of appropriate sign. If the magnitude is too small to represent, the
operation underflows and the result is a zero of the appropriate sign. The ECMAScript
language requires support of gradual underflow as defined by IEEE 754.

11.5.3 Applying the % Operator

The % operator yields the remainder of its operands from an implied division; the'left operand is the dividend
and the right operand is the divisor.

NOTE In C and C++, the remainder operator accepts only integral operands; in ECMAScript, it also accepts floating-
point operands.

The result of a floating-point remainder operation as computed by the % operator is not the same as the
‘remainder” operation defined by IEEE 754. The IEEE 754 “remainder”’ operation computes the remainder
from a rounding division, not a truncating division, and so its behaviour is not analogous to that of the usual
integer remainder operator. Instead the ECMAScript language defines®% on floating-point operations to
behave in a manner analogous to that of the Java integer remainder operator; this may be compared with the
C library function fmod.

The result of an ECMAScript floating-point remainder operation is determined by the rules of IEEE arithmetic:
o If either operand is NaN, the result is NaN.
e The sign of the result equals the sign of the dividend.
o If the dividend is an infinity, or the divisor is a zero, orboth, the result is NaN.
o |If the dividend is finite and the divisor is an-infinity, the result equals the dividend.

o If the dividend is a zero and the divisor is nonzero and finite, the result is the same as the
dividend.

e In the remaining cases, where neither an infinity, nor a zero, nor NaN is involved, the
floating-point remainder r from a dividend n and a divisor d is defined by the mathematical
relation r = n —(d x g)'where q is-an_integer that is negative only if n/d is negative and
positive only if n/d .is positive, and whose magnitude is as large as possible without
exceeding the magnitude of the true mathematical quotient of n and d. r is computed and
rounded to the nearest representable value using IEEE 754 round-to-nearest mode.

11.6 Additive Operators

Syntax
AdditiveExpression :
MultiplicativeExpression
AdditiveExpression +-MultiplicativeExpression
AdditiveExpression = MultiplicativeExpression
Static Semantics: IsValidSimpleAssignmentTarget
AdditiveExpression :
AdditiveExpression + MultiplicativeExpression
AdditiveExpression - MultiplicativeExpression
1. Return false.
11.6.1 The Addition operator (+)

NOTE The addition operator either performs string concatenation or numeric addition.

© Ecma International 2012 103

secma

Runtime Semantics: Evaluation
AdditiveExpression : AdditiveExpression + MultiplicativeExpression

Let Iref be the result of evaluating AdditiveExpression.
Let Ival be GetValue(lref).
ReturnlfAbrupt(lval).
Let rref be the result of evaluating MultiplicativeExpression.
Let rval be GetValue(rref).
ReturnlfAbrupt(rval).
Let Iprim be ToPrimitive(lval).
ReturnlfAbrupt(lprim).
Let rprim be ToPrimitive(rval).
ReturnlfAbrupt(rprim).
If Type(lprim) is String or Type(rprim) is String, then
a. Return the String that is the result of concatenating ToString(lprim) followed by ToString(rprim)
Return the result of applying the addition operation to ToNumber(lprim) and ToNumber(rprim). See the
Note below 11.6.3.

NOTE 1 No hint is provided in the calls to ToPrimitive in steps 5 and 6. All native ECMAScript objects except Date
objects handle the absence of a hint as if the hint Number were given; Date objects handle the absence of a hint as if the
hint String were given. Exotic objects may handle the absence of a hint in some_other manner.

PP OO~NOOOTA,WNE

-
A

NOTE 2 Step 7 differs from step 3 of the comparison algorithm for the relational operators (11.8.1), by using the
logical-or operation instead of the logical-and operation.

11.6.2 The Subtraction Operator (-)
Runtime Semantics: Evaluation
AdditiveExpression : AdditiveExpression = MultiplicativeExpression

Let Iref be the result of evaluating AdditiveExpression.

Let Ival be GetValue(lref).

ReturnlfAbrupt(lval)..

Let rref be the result of evaluating MultiplicativeExpression.
Let rval be GetValue(rref).

ReturnIfAbrupt(rval).

Let Inum be ToNumber(lval).

ReturnlfAbrupt(Inum).

9. Let rnum be ToNumber(rval).

10. ReturnlfAbrupt(rnum).

11. Return the result of applying the subtraction operation to Inum and rnum. See the note below 11.6.3.

N~ E

11.6.3 Applying the Additive Operators to Numbers

The + operator performs addition when applied to two operands of numeric type, producing the sum of the
operands. The - operator performs subtraction, producing the difference of two numeric operands.

Addition is a commutative operation, but not always associative.

The result of an addition is determined using the rules of IEEE 754 binary double-precision arithmetic:
o |[f either operand is NaN, the result is NaN.
e The sum of two infinities of opposite sign is NaN.
e The sum of two infinities of the same sign is the infinity of that sign.
e The sum of an infinity and a finite value is equal to the infinite operand.

e The sum of two negative zeroes is —0. The sum of two positive zeroes, or of two zeroes of
opposite sign, is +0.
e The sum of a zero and a nonzero finite value is equal to the nonzero operand.

104 © Ecma International 2012

»ecma

e The sum of two nonzero finite values of the same magnitude and opposite sign is +0.

¢ In the remaining cases, where neither an infinity, nor a zero, nor NaN is involved, and the
operands have the same sign or have different magnitudes, the sum is computed and
rounded to the nearest representable value using IEEE 754 round-to-nearest mode. If the
maghnitude is too large to represent, the operation overflows and the result is then an infinity
of appropriate sign. The ECMAScript language requires support of gradual underflow as
defined by IEEE 754.

The - operator performs subtraction when applied to two operands of numeric type, producing the difference
of its operands; the left operand is the minuend and the right operand is the subtrahend. Given numeric
operands a and b, it is always the case that a-b produces the same result as a + (<b).

11.7 Bitwise Shift Operators

Syntax

ShiftExpression :
AdditiveExpression
ShiftExpression << AdditiveExpression
ShiftExpression >> AdditiveExpression
ShiftExpression >>> AdditiveExpression

Static Semantics: IsValidSimpleAssignmentTarget

ShiftExpression :
ShiftExpression << AdditiveExpression
ShiftExpression >> AdditiveExpression
ShiftExpression >>> AdditiveExpression

1. Return false.

11.7.1 The Left Shift Operator (<<)

NOTE Performs a bitwise left shift operation on the left operand by the amount specified by the right operand.
Runtime Semantics: Evaluation

ShiftExpression : ShiftExpression << AdditiveExpression

Let Iref be the result of evaluating ShiftExpression.

Let Ival be GetValue(lref).

ReturnlfAbrupt(lval).

Let rref be the result of evaluating AdditiveExpression.

Let rval be GetValue(rref).

ReturnlfAbrupt(rval).

Let Inum be Tolnt32(lval).

ReturnlfAbrupt(Inum).

. Let rnum be ToUint32(rval).

0. ReturnIfAbrupt(rnum).

1. Let shiftCount be the result of masking out all but the least significant 5 bits of rnum, that is, compute rnum
& Ox1F.

12. Return the result of left shifting Inum by shiftCount bits. The result is a signed 32-bit integer.

HRBO®oOo~NoOR~wONE

11.7.2 The Signed Right Shift Operator (>>)

NOTE Performs a sign-filling bitwise right shift operation on the left operand by the amount specified by the right
operand.

© Ecma International 2012 105

secma

Runtime Semantics: Evaluation
ShiftExpression : ShiftExpression >> AdditiveExpression

Let Iref be the result of evaluating ShiftExpression.

Let Ival be GetValue(lref).

ReturnlfAbrupt(lval).

Let rref be the result of evaluating AdditiveExpression.

Let rval be GetValue(rref).

ReturnlfAbrupt(rval).

Let Inum be Tolnt32(lval).

ReturnlfAbrupt(lnum).

Let rnum be ToUint32(rval).

ReturnlfAbrupt(rnum).

Let shiftCount be the result of masking out all but the least significant’5 bits of rnum, that is, compute rnum
& Ox1F.

Return the result of performing a sign-extending right shift of Inum by shiftCount bits. The most significant
bit is propagated. The result is a signed 32-bit integer.

PP OO~NOOOTA,WNE

-
A

11.7.3 The Unsigned Right Shift Operator (>>>)

NOTE Performs a zero-filling bitwise right shift operation on the left operand by the amount specified by the right
operand.

Runtime Semantics: Evaluation
ShiftExpression : ShiftExpression >>> AdditiveExpression

Let Iref be the result of evaluating ShiftExpression.
Let Ival be GetValue(lref).
ReturnlfAbrupt(lval).
Let rref be the result of evaluating AdditiveExpression.
Let rval be GetValue(rref).
ReturnlfAbrupt(rval).
Let Inum be ToUint32(lval).
ReturnlfAbrupt(Inum).
Let rnum be ToUint32(rval).
. ReturnlfAbrupt(rnum).
. Let shiftCount be the result of masking out all but the least significant 5 bits of rnum, that is, compute rnum
& Ox1F.
. Return the result of performing a zero-filling right shift of Inum by shiftCount bits. Vacated bits are filled
with zero. The result is an unsigned 32-bit integer.

PP O0O~NOOOTPA,WNE

-
N

11.8 Relational Operators

NOTE The result of evaluating a relational operator is always of type Boolean, reflecting whether the relationship
named by the operator holds between its two operands.

Syntax

RelationalExpression :
ShiftExpression
RelationalExpression < ShiftExpression
RelationalExpression > ShiftExpression
RelationalExpression <= ShiftExpression
RelationalExpression >= ShiftExpression
RelationalExpression instanceo£ ShiftExpression
RelationalExpression in ShiftExpression

106 © Ecma International 2012

»ecma

RelationalExpressionNoln :
ShiftExpression
RelationalExpressionNoln < ShiftExpression
RelationalExpressionNoln > ShiftExpression
RelationalExpressionNoln <= ShiftExpression
RelationalExpressionNoln >= ShiftExpression
RelationalExpressionNoln instanceof ShiftExpression

The semantics of the RelationalExpressionNoln productions are the same as the RelationalExpression
productions except that the contained RelationalExpressionNoln is used in place of the contained
RelationalExpression.

NOTE The “Noln” variants are needed to avoid confusing the in operator in‘a relational expression with the in
operator in a for statement.

Static Semantics: IsValidSimpleAssignmentTarget

RelationalExpression :
RelationalExpression < ShiftExpression
RelationalExpression > ShiftExpression
RelationalExpression <= ShiftExpression
RelationalExpression >= ShiftExpression
RelationalExpression instanceo£ ShiftExpression
RelationalExpression in ShiftExpression

1. Return false.
11.8.1 Runtime Semantics
Runtime Semantics: The Abstract Relational Comparison Algorithm

The comparison x <y, where x and y are values, produces true, false, or undefined (which indicates that at
least one operand is NaN). In addition'to x and y the algorithm takes a Boolean flag named LeftFirst as a
parameter. The flag is used to control the-order in which operations with potentially visible side-effects are
performed upon x and y. It is necessary because ECMAScript specifies left to right evaluation of expressions.
The default value of LeftFirst is true and indicates that the x parameter corresponds to an expression that
occurs to the-left of the y parameter's corresponding expression. If LeftFirst is false, the reverse is the case
and operations must be performed upon y before x. Such a comparison is performed as follows:

1. ReturnIfAbrupt(x).
2. ReturnlfAbrupt(y).
3. If the LeftFirst flag is true, then
a. Letpx be the result of calling ToPrimitive(x, hint Number).
b. ReturnlfAbrupt(px).
c. Letpy be the result of calling ToPrimitive(y, hint Number).
d. ReturnlfAbrupt(py).
4. Else the order of evaluation needs to be reversed to preserve left to right evaluation
a. Let py be the result of calling ToPrimitive(y, hint Number).
b. ReturnlfAbrupt(py).
c. Let px be the result of calling ToPrimitive(x, hint Number).
d. ReturnlfAbrupt(px).
5. [Ifitis not the case that both Type(px) is String and Type(py) is String, then
a. Let nx be the result of calling ToNumber(px). Because px and py are primitive values evaluation
order is not important.
Let ny be the result of calling ToNumber(py).
If nx is NaN, return undefined.
If ny is NaN, return undefined.
If nx and ny are the same Number value, return false.
If nx is +0 and ny is -0, return false.

NN l=a

© Ecma International 2012 107

secma

g. Ifnxis—0and ny is +0, return false.

h. If nx is +oo, return false.

i. Ifnyis +oo, return true.

j. Ifnyis —oo, return false.

k. If nx is —oo, return true.

I. If the mathematical value of nx is less than the mathematical value of ny —note that these
mathematical values are both finite and not both zero—return true. Otherwise, return false.

6. Else, both px and py are Strings

a. |Ifpyisa prefix of px, return false. (A String value p is a prefix of String value q if q can be the
result of concatenating p and some other String r. Note that any String is a prefix of itself, because r
may be the empty String.)

b. If px is a prefix of py, return true.

c. Letk be the smallest nonnegative integer such that the character at‘position k within px is different
from the character at position k within py. (There must be such a k, for neither String is a prefix of
the other.)

d. Letm be the integer that is the code unit value for the character at position k within px.

Let n be the integer that is the code unit value for the character at position k within py.
f. If m <n, return true. Otherwise, return false.

@

NOTE 1 Step 3 differs from step 7 in the algorithm for the addition operator + (11.6.1) in using and instead of or.

NOTE 2 The comparison of Strings uses a simple lexicographic ordering on sequences of code unit values. There is no
attempt to use the more complex, semantically oriented definitions of character or string equality and collating order
defined in the Unicode specification. Therefore String values that are canonically equal according to the Unicode standard
could test as unequal. In effect this algorithm assumes that both Strings are already in normalised form. Also, note that for
strings containing supplementary characters, lexicographic ordering on sequences of UTF-16 code unit values differs from
that on sequences of code point values.

Runtime Semantics: Evaluation
RelationalExpression : RelationalExpression < ShiftExpression

Let Iref be the result of evaluating RelationalExpression.

Let Ival be GetValue(lref).

ReturnlfAbrupt(lval).

Let rref be the result of evaluating ShiftExpression.

Let rval be GetValue(rref).

Let r be the result of performing abstract relational comparison lIval < rval. (see 11.8.5)
ReturnlfAbrupt(r).

If riis undefined, return false. Otherwise, return r.

N~ E

RelationalExpression : RelationalExpression > ShiftExpression

Let Iref be the result of evaluating RelationalExpression.

Let lval be GetValue(lIref).

ReturnIfAbrupt(lval).

Let rref be the result of evaluating ShiftExpression.

Let rval be GetValue(rref).

Let r be the result of performing abstract relational comparison rval < lval with LeftFirst equal to false..
ReturnlfAbrupt(r).

If r is undefined, return false. Otherwise, return r.

N~ E

RelationalExpression : RelationalExpression <= ShiftExpression

Let Iref be the result of evaluating RelationalExpression.
Let Ival be GetValue(lref).

ReturnlfAbrupt(lval).

Let rref be the result of evaluating ShiftExpression.

Let rval be GetValue(rref).

Al o o

108 © Ecma International 2012

6.
7.
8.

ecind

Let r be the result of performing abstract relational comparison rval < Ival with LeftFirst equal to false..

ReturnIfAbrupt(r).
If r is true or undefined, return false. Otherwise, return true.

RelationalExpression : RelationalExpression >= ShiftExpression

N~ E

Let Iref be the result of evaluating RelationalExpression.

Let Ival be GetValue(lref).

ReturnIfAbrupt(lval).

Let rref be the result of evaluating ShiftExpression.

Let rval be GetValue(rref).

Let r be the result of performing abstract relational comparison Ival < rval.
ReturnlfAbrupt(r).

If r is true or undefined, return false. Otherwise, return true.

RelationalExpression: RelationalExpression instanceof ShiftExpression

OCOoNooO~WNE

Let Iref be the result of evaluating RelationalExpression.

Let lval be GetValue(lref).

ReturnlfAbrupt(lval).

Let rref be the result of evaluating ShiftExpression.

Let rval be GetValue(rref).

ReturnlfAbrupt(rval).

If Type(rval) is not Object, throw a TypeError exception.

If rval does not have a [[HasInstance]] internal-method, throw a TypeError exception.
Return the result of calling the [[HasInstance]] internal method of rval with argument Ival.

RelationalExpression : RelationalExpression in ShiftExpression

N~ E

Let Iref be the result of evaluating Relational Expression.

Let Ival be GetValue(lref):

ReturnlfAbrupt(lval).

Let rref be the result.of evaluating ShiftExpression.

Let rval be GetValue(rref).

ReturnlfAbrupt(rval).

If Type(rval) is not Object, throw a TypeError exception.

Return the result.of calling the [[HasProperty]] internal method of rval with argument ToString(Ival).

11.9 Equality Operators

NOTE

named by the operator holds between its two operands.

Syntax

EqualityExpression :

RelationalExpression

EqualityExpression == RelationalExpression
EqualityExpression '= RelationalExpression
EqualityExpression === RelationalExpression

EqualityExpression !'== RelationalExpression
EqualityExpression [no LineTerminator here] is RelationalExpression
EqualityExpression [no LineTerminator here] isnt RelationalExpression

© Ecma International 2012

The result of evaluating an equality operator is always of type Boolean, reflecting whether the relationship

109

secma

EqualityExpressionNoln :
RelationalExpressionNoln

EqualityExpressionNoln == RelationalExpressionNoln
EqualityExpressionNoln !'= RelationalExpressionNoln
EqualityExpressionNoln === RelationalExpressionNoln
EqualityExpressionNoln !'== RelationalExpressionNoln

EqualityExpression [no LineTerminator here] is RelationalExpression
EqualityExpression [no LineTerminator here] isnt RelationalExpression

The semantics of the EqualityExpressionNoln productions are the same as the EqualityExpression productions
except that the contained EqualityExpressionNoln and RelationalExpressionNoln<are used in place of the
contained EqualityExpression and RelationalExpression, respectively.

Static Semantics: IsValidSimpleAssignmentTarget

EqualityExpression :

EqualityExpression == RelationalExpression
EqualityExpression !'= RelationalExpression
EqualityExpression === RelationalExpression

EqualityExpression !== RelationalExpression
EqualityExpression [no LineTerminator here] is RelationalExpression
EqualityExpression [no LineTerminator here] isnt RelationalExpression

1. Return false.

11.9.1 Runtime Semantics
Runtime Semantics: The Abstract Equality Comparison Algorithm

The comparison x ==y, where X and y are values, produces true or false. Such a comparison is performed as
follows:

1. If Type(x) is the same as Type(y), then
a. Return the result of performingstrict equality comparison algorithm x ===y.

2. Ifxis null andy is undefined, return true.
3. Ifxis undefined and y is null, return true.
4. If Type(x) is Number and Type(y) is String,

return-the result of the comparison x == ToNumber(y).
5. If Type(x) is String and Type(y) is Number,
return the result of the comparison ToNumber(x) ==y.
If Type(x) is Boolean, return the result of the comparison ToNumber(x) ==y.
If Type(y) is Boolean, return the result of the comparison x == ToNumber(y).
8. If Type(x) is either String or Number and Type(y) is Object,

return the result of the comparison x == ToPrimitive(y).
9. If Type(x) is Object and Type(y) is either String or Number,

return the result of the comparison ToPrimitive(x) ==.
10. Return false.

No

NOTE 1 Given the above definition of equality:

e String comparison can be forced by: "" + a == "" + b.
e Numeric comparison can be forced by: +a == +b.
e Boolean comparison can be forced by: 'a == !b.

NOTE 2 The equality operators maintain the following invariants:
e A !=Bis equivalentto ! (A ==B).
e A ==Bis equivalent to B==A, except in the order of evaluation of A and B.

110 © Ecma International 2012

»ecma

NOTE 3 The equality operator is not always transitive. For example, there might be two distinct String objects, each
representing the same String value; each String object would be considered equal to the String value by the == operator,
but the two String objects would not be equal to each other. For Example:

e new String("a") =="a" and "a" == new String("a")are both true.
e new String("a") ==new String("a") is false.

NOTE 4 Comparison of Strings uses a simple equality test on sequences of code unit values. There is no attempt to
use the more complex, semantically oriented definitions of character or string equality and collating order defined in the
Unicode specification. Therefore Strings values that are canonically equal according to the Unicode standard could test as
unequal. In effect this algorithm assumes that both Strings are already in normalised form.

Runtime Semantics: The Strict Equality Comparison Algorithm

The comparison x ===y, where x and y are values, produces true or false. Such a comparison is performed
as follows:

1. If Type(x) is different from Type(y), return false.

2. |If Type(x) is Undefined, return true.

3. If Type(x) is Null, return true.

4. If Type(x) is Number, then

If x is NaN, return false.
Ify is NaN, return false.
If x is the same Number value as y, return true.
If x is +0 and y is -0, return true.
If x is —0 and y is +0, return true.
f. Return false.
5. If Type(x) is String, then
a. Ifxandy are exactly the same sequence of characters (same length and same characters in
corresponding positions), return true.
b. Else, return false.
6. If Type(x) is Boolean, then
a. Ifxandy are both true or bath false, return true.
b. Else, return false.
7. Ifxandy are the same Object value,return true.
8. Return false.

®PoooTw

NOTE This algorithm differs from the SameValue Algorithm (9.12) in its treatment of signed zeroes and NaNs.
Runtime Semantics: Evaluation
EqualityExpression : EqualityExpression == RelationalExpression

Let Iref be the result of evaluating EqualityExpression.

Let Ival be GetValue(lref).

ReturnlfAbrupt(lval).

Let rref be the result of evaluating RelationalExpression.

Let rval be GetValue(rref).

ReturnlfAbrupt(rval).

Return the result of performing abstract equality comparison algorithm rval == lval.

NogohkwbdE

EqualityExpression : EqualityExpression != RelationalExpression

Let Iref be the result of evaluating EqualityExpression.

Let Ival be GetValue(lref).

ReturnlfAbrupt(lval).

Let rref be the result of evaluating RelationalExpression.

Let rval be GetValue(rref).

ReturnIfAbrupt(rval).

Let r be the result of performing abstract equality comparison algorithm rval == Ival.
If r is true, return false. Otherwise, return true.

N~ E

© Ecma International 2012 111

secma

EqualityExpression : EqualityExpression === RelationalExpression

1. Let Iref be the result of evaluating EqualityExpression.

2. Let lval be GetValue(lref).

3. ReturnlfAbrupt(lval)

4. Let rref be the result of evaluating RelationalExpression.

5. Let rval be GetValue(rref).

6. ReturnlfAbrupt(rval).

7. Return the result of performing the strict equality comparison algorithm rval === lval.
EqualityExpression : EqualityExpression !== RelationalExpression

Let Iref be the result of evaluating EqualityExpression.
Let Ival be GetValue(lref).

ReturnIfAbrupt(lval).

Let rref be the result of evaluating RelationalExpression.
Let rval be GetValue(rref).

ReturnlfAbrupt(r).

N~ E

Ifr is true, return false. Otherwise, return true.

EqualityExpression : EqualityExpression [no LineTerminator here] is RelationalExpression

Let Iref be the result of evaluating EqualityExpression.
Let Ival be GetValue(lref).

ReturnlfAbrupt(lval).

Let rref be the result of evaluating RelationalExpression.
Let rval be GetValue(rref).

Return the result of performing SameValue(rval, lval).

oukwhE

EqualityExpression : EqualityExpression [no LineTerminator here] isnt RelationalExpression

Let Iref be the result.of evaluating EqualityExpression.
Let Ival be GetValue(lref).

ReturnIfAbrupt(lval).

Let rref be the result of evaluating RelationalExpression.
Let rval be GetValue(rref).

Let r bethe result of performing SameValue(rval, lval).
ReturnlfAbrupt(r).

If ris true, return false. Otherwise, return true.

Nk wWNE

11.10 Binary Bitwise Operators

Syntax

BitwiseANDEXxpression. :
EqualityExpression
BitwiseANDEXxpression & EqualityExpression

BitwiseANDEXxpressionNoln :
EqualityExpressionNoln
BitwiseANDExpressionNoln & EqualityExpressionNoln

BitwiseXORExpression :
BitwiseANDEXxpression
BitwiseXORExpression ~ BitwiseANDExpression

BitwiseXORExpressionNoln :

BitwiseANDExpressionNoln
BitwiseXORExpressionNoln ~ BitwiseANDExpressionNoln

112

Let r be the result of performing strict equality comparison-algorithm rval === lval.

© Ecma International 2012

»ecma

BitwiseORExpression :
BitwiseXORExpression
BitwiseORExpression | BitwiseXORExpression

BitwiseORExpressionNoln :
BitwiseXORExpressionNoln
BitwiseORExpressionNoln | BitwiseXORExpressionNoln

Static Semantics: IsValidSimpleAssignmentTarget

BitwiseANDEXxpression : BitwissANDExpression & EqualityExpression
BitwiseXOREXxpression : BitwiseXORExpression ~ BitwiseANDEXxpression
BitwiseORExpression : BitwiseORExpression | BitwiseXORExpression

1. Return false.
Runtime Semantics: Evaluation

The production A: A @ B, where @ is one of the bitwise operators in the productions above, is evaluated as
follows:

Let Iref be the result of evaluating A.
Let Ival be GetValue(lref).
ReturnIfAbrupt(lval).

Let rref be the result of evaluating B.
Let rval be GetValue(rref).
ReturnlfAbrupt(rval).

Let Inum be Tolnt32(lval).
ReturnlfAbrupt(Inum).

9. Let rnum be Tolnt32(rval).

10. ReturnlfAbrupt(rnum).

11. Return the result of applying the bitwise operator @ to Inum and rnum. The result is a signed 32 bit integer.

NN E

11.11 Binary Logical Operators

Syntax

Logical ANDEXxpression :
BitwiseOREXxpression
Logical ANDExpression && BitwiseORExpression

Logical ANDExpressionNoln :
BitwiseORExpressionNoln
LogicalANDExpressionNoln && BitwiseORExpressionNoln

Logical ORExpression :
Logical ANDEXxpression
LogicalORExpression | | LogicalANDEXxpression

Logical ORExpressionNoln :
LogicalANDEXxpressionNoln
LogicalORExpressionNoln | | Logical ANDExpressionNoln

The semantics of the Logical ANDExpressionNoln and LogicalORExpressionNoln productions are the same
manner as the LogicalANDExpression and LogicalORExpression productions except that the contained
Logical ANDExpressionNoln, BitwiseORExpressionNoln and LogicalORExpressionNoln are used in place of the
contained LogicalANDEXxpression, BitwiseORExpression and LogicalORExpression, respectively.

NOTE The value produced by a && or | | operator is not necessarily of type Boolean. The value produced will always
be the value of one of the two operand expressions.

© Ecma International 2012 113

secma

Static Semantics: IsValidSimpleAssignmentTarget

LogicalANDExpression : LogicalANDExpression && BitwiseOREXxpression
Logical ORExpression : LogicalORExpression | | LogicalANDExpression

1. Return false.
Runtime Semantics: Evaluation
LogicalANDEXxpression : LogicalANDExpression && BitwiseORExpression

Let Iref be the result of evaluating Logical ANDExpression.
Let Ival be ToBoolean(GetValue(lref)).
ReturnlfAbrupt(lval).

If lval is false, return Ival.

Let rref be the result of evaluating BitwiseORExpression.
Return GetValue(rref).

oukwhE

LogicalORExpression : LogicalORExpression | | LogicalANDExpression

Let Iref be the result of evaluating LogicalORExpression.
Let Ival be ToBoolean(GetValue(lref)).
ReturnlfAbrupt(lval).

If lval is true, return lval.

Let rref be the result of evaluating LogicalANDEXxpression.
Return GetValue(rref).

eogkwnPE

11.12 Conditional Operator (? :)

Syntax

ConditionalExpression :

Logical ORExpression

Logical ORExpression ? AssignmentExpression : AssignmentExpression
ConditionalExpressionNoln :

Logical ORExpressionNoln

LogicalORExpressionNoln 2 AssignmentExpression : AssignmentExpressionNoln
The semantics of the ConditionalExpressionNoln production is the same as the ConditionalExpression production
except that the contained LogicalORExpressionNoln, AssignmentExpression and AssignmentExpressionNoln are
used in place of the contained Logical ORExpression, first AssignmentExpression and second AssignmentExpression,
respectively.

NOTE The grammar for a.ConditionalExpression in ECMAScript is a little bit different from that in C and Java, which
each allow the second subexpression to be an Expression but restrict the third expression to be a ConditionalExpression.
The motivation for this difference in ECMAScript is to allow an assignment expression to be governed by either arm of a
conditional and to eliminate the confusing and fairly useless case of a comma expression as the centre expression.

Static Semantics: IsValidSimpleAssignmentTarget

ConditionalExpression : LogicalORExpression ? AssignmentExpression : AssignmentExpression
1. Return false.

Runtime Semantics: Evaluation

ConditionalExpression : LogicalORExpression ? AssignmentExpression : AssignmentExpression

1. Let Iref be the result of evaluating Logical ORExpression.

114 © Ecma International 2012

»ecma

Let Ival be ToBoolean(GetValue(lref)).

ReturnIfAbrupt(lval).

4. If lval is true, then
a. LettrueRef be the result of evaluating the first AssignmentExpression.
b. Return GetValue(trueRef).

5. Else

wn

a. Let falseRef be the result of evaluating the second AssignmentExpression.
b. Return GetValue(falseRef).

11.13 Assignment Operators

Syntax

AssignmentExpression :
ConditionalExpression
YieldExpression
ArrowFunction
LeftHandSideExpression = AssignmentExpression
LeftHandSideExpression AssignmentOperator AssignmentExpression

AssignmentExpressionNoln :
ConditionalExpressionNoln
YieldExpression
ArrowFunction
LeftHandSideExpression = AssignmentExpressionNoln
LeftHandSideExpression AssignmentOperator AssignmentExpressionNoln

AssignmentOperator : one of

*= /= $= += -= <K= >>= >>>= &= A= |=
The semantics of the AssignmentExpressionNoln productions are the same manner as the AssignmentExpression
productions except that the contained ConditionalExpressionNoln and AssignmentExpressionNoln are used in
place of the contained ConditionalExpression and AssignmentExpression, respectively.

Static Semantics
Static Semantics: Early Errors
AssignmentExpression : LeftHandSideExpression = AssignmentExpression

e _tisa Syntax Error LeftHandSideExpression is either an ObjectLiteral or an ArrayLiteral and if the lexical
token sequence matched by LeftHandSideExpression cannot be parsed with no tokens left over using
AssignmentPattern as the goal symbol.

o If LeftHandSideExpression is either an ObjectLiteral or an ArrayLiteral and if the lexical token sequence
matched by LeftHandSideExpression can be parsed with no tokens left over using AssignmentPattern as
the goal symbol then the following rules are not applied. Instead, the Early Error rules for
AssignmentPattern are used.

o |t is a Syntax Error if the LeftHandSideExpression is an Identifier that can be statically determined to
always resolve to a declarative environment record binding and the resolved binding is an immutable
binding.

e |t is an early Reference Error if LeftHandSideExpression is neither an ObjectLiteral nor an ArrayLiteral
and IsValidSimpleAssignmentTarget of LeftHandSideExpression is false.

AssignmentExpression : LeftHandSideExpression AssignmentOperator AssignmentExpression
e |t is a Syntax Error if the LeftHandSideExpression is an Identifier that can be statically determined to
always resolve to a declarative environment record binding and the resolved binding is an immutable

binding.
e |tis an early Reference Error if IsValidSimpleAssignmentTarget of LeftHandSideExpression is false.

© Ecma International 2012 115

secma

Static Semantics: IsValidSimpleAssignmentTarget

AssignmentExpression :
YieldExpression
ArrowFunction
LeftHandSideExpression = AssignmentExpression
LeftHandSideExpression AssignmentOperator AssignmentExpression

1. Return false.

Runtime Semantics

Runtime Semantics: Evaluation

AssignmentExpression : LeftHandSideExpression = AssignmentExpression

1. If LeftHandSideExpression is neither an ObjectLiteral nor an ArrayLiteral then
Let Iref be the result of evaluating LeftHandSideExpression.
ReturnIfAbrupt(Iref).
Let rref be the result of evaluating AssignmentExpression.
Let rval be GetValue(rref).
Let status be PutValue(lref, rval).
ReturnlfAbrupt(status).
g. Returnrval.
2. Let AssignmentPattern be the parse of the source code corresponding to LeftHandSideExpression using
AssignmentPattern as the goal symbol.
Let rref be the result of evaluating AssignmentExpression.
Let rval be ToObject(GetValue(rref)).
ReturnlfAbrupt(rval).
Let status be the result of performing Destructuring Assignment Evaluation of AssignmentPattern using rval
as the argument.
ReturnlfAbrupt(status).
8. Return rval.

~o o0 T

ook w

~

AssignmentExpression : LeftHandSideExpression AssignmentOperator AssignmentExpression

Let Iref be the result of evaluating LeftHandSideExpression.
Let lval-be GetValue(lref).

ReturnlfAbrupt(lval).

Let'rref be the result of evaluating AssignmentExpression.
Let rval be GetValue(rref).

ReturnifAbrupt(rval).

Let operator be the @ where AssignmentOperator is @=
Let r be the result of applying operator @ to Ival and rval.
9. Let status be PutValue(lref, r).

10. ReturnlfAbrupt(status).

11. Returnr.

GNook~wbE

NOTE When an assignment occurs within strict mode code, it is an runtime error if Iref in step 1.e of the first
algorithm or step 9 of the second algorithm it is an unresolvable reference. If it is, a ReferenceError exception is thrown.
The LeftHandSide also may not be a reference to a data property with the attribute value {[[Writable]]:false}, to an accessor
property with the attribute value {[[Set]]:undefined}, nor to a non-existent property of an object whose [[Extensible]] internal
property has the value false. In these cases a TypeError exception is thrown.

11.13.1 Destructuring Assignment

Supplemental Syntax

In certain circumstances when processing the production AssignmentExpression : LeftHandSideExpression =
AssignmentExpression the following grammar is used to refine the interpretation of LeftHandSideExpression.

116 © Ecma International 2012

»ecma

AssignmentPattern :
ObjectAssignmentPattern
ArrayAssignmentPattern

ObjectAssignmentPattern :
{1}
{ AssignmentPropertyList }
{ AssignmentPropertyList , }

ArrayAssignmentPattern :
[Elisiongy: AssignmentRestElementop: 1
[AssignmentElementList]
[AssignmentElementList , Elisiong,: AssignmentRestElementop: 1

AssignmentPropertyList :
AssignmentProperty
AssignmentPropertyList , AssignmentProperty

AssignmentElementList :
Elisiongp: AssignmentElement
AssignmentElementList , Elisionop: AssignmentElement

AssignmentProperty :
Identifier Initialiseropt
PropertyName : AssignmentElement

AssignmentElement :
LeftHandSideExpression Initialiserop

AssignmentRestElement :
... LeftHandSideExpression

Static Semantics
Static Semantics: Early Errors
AssignmentProperty-:-ldentifier “Initialiser g

e Itis a Syntax Error if Identifier is.the Identifier eval or the Identifier arguments.

o Itis a Syntax Error if Identifier is the Identifier this or the Identifier super.

e It is a Syntax Error if Identifier does not statically resolve to a declarative environment record binding
or if the resolved binding is an immutable binding.

AssignmentElement.: LeftHandSideExpression Initialiserop

e |tis a Syntax Error if LeftHandSideExpression is the Identifier eval or the Identifier arguments.

e |tis a Syntax Error if LeftHandSideExpression is the Identifier this or the Identifier super.

e ltis a Syntax Error if the LeftHandSideExpression is a Literal, a FunctionExpression or a ClassExpression.

e |t is a Syntax Error if the LeftHandSideExpression is an ldentifier that does not statically resolve to a
declarative environment record binding or if the resolved binding is an immutable binding.

e ltis a Syntax Error if IsinvalidAssignmentPattern of LeftHandSideExpression is true.

e |t is a Syntax Error if the LeftHandSideExpression is PrimaryExpression : (Expression) and Expression
derived a production that would produce a Syntax Error according to these rules. This rule is
recursively applied.

AssignmentRestElement : ... LeftHandSideExpression

e Itis a Syntax Error if LeftHandSideExpression is the Identifier eval or the Identifier arguments.

© Ecma International 2012 117

secma

e ltis a Syntax Error if LeftHandSideExpression is the Identifier this or the ldentifier super.

e It is a Syntax Error if the LeftHandSideExpression is a Literal, an ObjectLiteral, an ArrayLiteral, a
FunctionExpression, or a ClassExpression.

e |t is a Syntax Error if the LeftHandSideExpression is an Identifier that does not statically resolve to a
declarative environment record binding or if the resolved binding an immutable binding.

e It is a Syntax Error if the LeftHandSideExpression is PrimaryExpression : (Expression) and Expression
derived a production that would produce a Syntax Error according to these rules. This rule is
recursively applied.

Runtime Semantics
Runtime Semantics: Destructuring Assignment Evaluation
with parameter obj

ObjectAssignmentPattern : { }

and
ArrayAssignmentPattern :
[]
[Elision]

1. Return NormalCompletion(empty).
AssignmentPropertyList : AssignmentPropertyList ;. AssignmentProperty

1. Let status be the result of performing Destructuring Assignment Evaluation for AssignmentPropertyList
using obj as the argument.

2. ReturnlfAbrupt(status).

3. Return the result of performing Destructuring Assignment Evaluation of AssignmentProperty for
AssignmentProperty using obj as the argument.

AssignmentProperty : Identifier Initialiseropt

Let P be StringValue of Identifier,

Let v be the result of calling the [[Get]] internal method of obj with argument P.

ReturnlfAbrupt(v).

If Initialiseropt IS present and v is undefined, then
a. Let defaultValue be the result of evaluating Initialiser.
b. Letvbe ToObject(defaultValue).

ReturnlfAbrupt(v).

6. Let Iref be the result of performing Identifier Resolution(10.3.1) with the IdentifierName corresponding to
Identifier.

7. Return PutValue(lref,v).

PR

o

AssignmentProperty : PropertyName : AssignmentElement

1. Let name be PropName of PropertyName.

2. Return the result of performing Keyed Destructuring Assignment Evaluation of AssignmentElement with obj
and name as the arguments.

ArrayAssignmentPattern : [Elisionep: AssignmentRestElement]

1. Let skip be the Elision Width of Elision; if Elision is not present, use the numeric value zero.

2. Return the result of performing Indexed Destructuring Assignment Evaluation of AssignmentRestElement
with obj and skip as the arguments.

ArrayAssignmentPattern : [AssignmentElementList 1]

118 © Ecma International 2012

»ecma

1. Return the result of performing Indexed Destructuring Assignment Evaluation of AssignmentElementList
using obj and 0 as the arguments.

ArrayAssignmentPattern : [AssignmentElementList , Elisiongy: AssignmentRestElementop:]

1. Let lastindex be the result of performing Indexed Destructuring Assignment Evaluation of
AssignmentElementList using obj and 0 as the arguments.

2. ReturnlfAbrupt(lastindex).

3. Let skip be the Elision Width of Elision; if Elision is not present, use the numeric value zero.

4. If AssignmentRestElement is present, then return the result of performing Indexed Destructuring Assignment
Evaluation of AssignmentRestElement with obj and lastindex+skip as the arguments.

5. Return lastIndex.

Runtime Semantics: Indexed Destructuring Assignment Evaluation
with parameters obj and index
AssignmentElementList : Elisiongy: AssignmentElement

1. Let skip be the Elision Width of Elision; if Elision is not present, use the.numeric value zero.

Let name be ToString(index+skip).

3. Let status be the result of performing Keyed Destructuring Assignment Evaluation of AssignmentElement
with obj and name as the arguments.

4. ReturnlfAbrupt(status).

5. Return index+skip+1.

N

AssignmentElementList : AssignmentElementList , Elisionop: AssignmentElement

1. Let listNext be the result of performing Indexed Destructuring Assignment Evaluation of
AssignmentElementList using obj as.the obj parameter and index as the index parameter

Let skip be the Elision Width of Elision; if Elision is not present, use the numeric value zero.
ReturnIfAbrupt(listNext).

Let name be ToString(listNext+skip).

Let status be the result of performing Keyed Destructuring Assignment Evaluation of AssignmentElement
with obj and name p as the arguments.

ReturnlfAbrupt(status).

7. Return listNext+skip+1.

abwn

S

AssignmentRestElement : ... LeftHandSideExpression

Let Iref be the result of evaluating LeftHandSideExpression.
ReturnlfAbrupt(Iref).
Let lenVal be the result of calling the [[Get]] internal method of obj with argument “1ength” .
Let len be ToUint32(lenVal).
ReturnlfAbrupt(len).
Let A be the result of the abstract operation ArrayCreate (15.4) with argument 0.
Let n=0;
Repeat, while index < len
a. Let P be ToString(index).
b. Let exists be the result of calling the [[HasProperty]] internal method of obj with argument P.
c. |Ifexists is true, then
i. Letv be the result of calling the [[Get]] internal method of obj passing ToString(index) as the
argument.

ii. ReturnIfAbrupt(len).

iii. Call the [[DefineOwnProperty]] internal method of A with arguments ToString(n), Property
Descriptor {[[Value]]: v, [[Writable]]: true, [[Enumerable]]: true, [[Configurable]]: true}, and
false.

d. Letn=n+l.
e. Letindex = index+1.

PN AWNhE

© Ecma International 2012 119

secma

9. Return PutValue(lref,A).
Runtime Semantics: Keyed Destructuring Assignment Evaluation
with parameters obj and propertyName

AssignmentElement : LeftHandSideExpression Initialiseropt

=

Let v be the result of calling the [[Get]] internal method of obj with argument propertyName.
ReturnlfAbrupt(v).
3. If Initialiserqy is present and v is undefined, then
a. Letv be the result of evaluating Initialiser.
4. If LeftHandSideExpression is an ObjectLiteral or an ArrayLiteral then
a. Let AssignmentPattern be the parse of the source code corresponding to LeftHandSideExpression
using AssignmentPattern as the goal symbol
b. Let vObj be ToObject(v).
c. ReturnlfAbrupt(vObj).
d. Return the result of performing Destructuring Assignment Evaluation of AssignmentPattern with
vObj as the argument.
5. ReturnlfAbrupt(v).
6. Let Iref be the result of evaluating LeftHandSideExpression.
7. Return PutValue(lref,v).

L

11.14 Comma Operator (,)

Syntax
Expression :
AssignmentExpression
Expression , AssignmentExpression
ExpressionNoln :
AssignmentExpressionNoln
ExpressionNoln ,AssignmentExpressionNoln
The semantics of the ExpressionNoln production is the same manner as the Expression production except that
the contained ExpressionNoln and AssignmentExpressionNoln are used in place of the contained Expression and
AssignmentExpression, respectively.
Static Semantics: IsValidSimpleAssignmentTarget
Expression : Expression , AssignmentExpression
1. Return false.

Runtime Semantics: Evaluation

Expression : Expression , AssignmentExpression

1. Let Iref be the result of evaluating Expression.

2. ReturnlfAbrupt(GetValue(lref))

3. Let rref be the result of evaluating AssignmentExpression.

4. Return GetValue(rref).

NOTE GetValue must be called even though its value is not used because it may have observable side-effects.

120 © Ecma International 2012

»ecma

12 Statements and Declarations

Syntax

Statement :
BlockStatement
VariableStatement
EmptyStatement
ExpressionStatement
IfStatement
BreakableStatement
ContinueStatement
BreakStatement
ReturnStatement
WithStatement
LabelledStatement
ThrowStatement
TryStatement
DebuggerStatement

Declaration :
FunctionDeclaration
GeneratorDeclaration
ClassDeclaration
LexicalDeclaration

BreakableStatement :
IterationStatement
SwitchStatement
Static Semantics
Static Semantics: VarDeclaredNames
Statement :
EmptyStatement
ExpressionStatement
ContinueStatement
BreakStatement
ReturnStatement
ThrowStatement
DebuggerStatement
1. Returna new empty List.
Runtime Semantics
Runtime Semantics: Labelled Evaluation
With argument labelSet.
BreakableStatement : IterationStatement
1. Let stmtResult be the result of performing Labelled Evaluation of IterationStatement with argument labelSet.
2. If stmtResult.[[type]] is break and stmtResult.[[target]] is empty, then
a. Let stmtResult be NormalCompletion(stmtResult.[[value]])

3. Return stmtResult.

BreakableStatement : SwitchStatement

© Ecma International 2012 121

secma

3. Let stmtResult be the result of evaluating SwitchStatement.
4. If stmtResult.[[type]] is break and stmtResult.[[target]] is empty, then
a. Let stmtResult be NormalCompletion(stmtResult.[[value]])

5. Return stmtResult.
NOTE A BreakableStatement is one that can be exited via an unlabelled BreakStatement.
Runtime Semantics: Evaluation
BreakableStatement :

IterationStatement

SwitchStatement

1. LetnewlLabelSet be a new empty List.
2. Return the result of performing Labelled Evaluation of this BreakableStatement with argument newLabelSet.

12.1 Block

Syntax

BlockStatement :
Block

Block :
{ StatementListop }

StatementList :
StatementListltem
StatementList StatementListltem
StatementListltem :
Statement
Declaration
Static Semantics

Static Semantics: Early Errors

Block : { StatementList }

o |tis a Syntax Error if the LexicallyDeclaredNames of StatementList contains any duplicate entries.
e |tiis a Syntax Error if any element of the LexicallyDeclaredNames of StatementList also occurs in the
VarDeclaredNames of StatementList.
Static Semantics: LexicalDeclarations
StatementList : StatementList StatementListltem
1. Let declarations be LexicalDeclarations of StatementList.
2. Append to declarations the elements of the LexicalDeclarations of StatementListltem.
3. Return declarations.
StatementListltem : Statement
1. Return a new empty List.

StatementListltem : Declaration

1. Return a new List containing Declaration.

122 © Ecma International 2012

secma

Static Semantics: LexicallyDeclaredNames

Block: { }

1. Return a new empty List.

StatementList : StatementList StatementListltem

1. Let names be LexicallyDeclaredNames of StatementList.
2. Append to names the elements of the LexicallyDeclaredNames of StatementListltem.
3. Return names.

StatementListitem : Statement

1. Return a new empty List.

StatementL.istltem : Declaration

1. Return the BoundNames of Declaration.

Static Semantics: VarDeclaredNames

Block : { }

1. Return a new empty List.

StatementList : StatementList StatementListltem

1. Let names be VarDeclaredNames of StatementList.

2. Append to names the elementsof the VarDeclaredNames of StatementListltem.
3. Return names.

StatementListltem : Declaration

1. Return a new empty List.

Runtime Semantics

RuntimeSemantics: Evaluation

Block: { }

1. Return NormalCompletion(empty).

Block : { StatementList }

Let oldEnv be the running execution context’s LexicalEnvironment.

Let blockEnv be the result of calling NewDeclarativeEnvironment passing oldEnv as the argument.
Perform Block Declaration Instantiation using StatementList and blockEnv.

Set the running execution context’s LexicalEnvironment to blockEnv.

Let blockValue be the result of evaluating StatementL.ist.

Set the running execution context’s LexicalEnvironment to oldEnv.

Return blockValue.

NogkrwbhE

NOTE No matter how control leaves the Block the LexicalEnvironment is always restored to its former state.
StatementList : StatementList StatementListltem

1. Letsl be the result of evaluating StatementL.ist.

© Ecma International 2012 123

secma

2. ReturnlfAbrupt(sl).

3. Let s be the result of evaluating Statement.

4. Ifs.[[type]] is throw, returns.

5. Ifs.[[value]] is empty, let V = sl.[[value]], otherwise let V = s.[[value]].

6. Return Completion {[[type]]: s.[[typell. [[value]]: V, [[target]]: s.[[target]]}.

NOTE Steps 4 and 5 of the above algoritm ensure that the value of a StatementList is the value of the last value

producing Statement in the StatementList. For example, the following calls to the eval function all return the value 1:

eval("1;{}")
eval("l;var a;")

12.2 Declarations and the Variable Statement
12.2.1 Let and Const Declarations

NOTE A 1let and const declarations define variables that are scoped to the running execution context’s
LexicalEnvironment. The variables are created when their containing.Lexical Environment is instantiated but may not be
accessed in any way until the variable’s LexicalBinding is evaluated. A variable defined by a LexicalBinding with an
Initialiser is assigned the value of its Initialiser’s AssignmentExpression when the LexicalBinding is evaluated, not when the
variable is created. If a LexicalBinding in a let declaration does not have an_an Initialiser the variable is assigned the
value undefined when the LexicalBinding is evaluated.

Syntax

LexicalDeclaration :
LetOrConst BindingList ;

LexicalDeclarationNoln :
LetOrConst BindingListNoln

LetOrConst :
let
const

BindingList :
LexicalBinding
BindingList , LexicalBinding

BindingListNoln :
LexicalBindingNoln
BindingListNoln , LexicalBindingNoln

LexicalBinding :
Bindingldentifier Initialiserqp:
BindingPattern. Initialiser

LexicalBindingNoln :
Bindingldentifier InitialiserNolnep:
BindingPattern InitialiserNoln

Bindingldentifier :
Identifier

InitialiserNoln :
= AssignmentExpressionNoln

The semantics of the LexicalDeclarationNoln, BindingListNoln, LexicalBindingNoln and InitialiserNoln
productions are the same as the LexicalDeclaration, BindingList, LexicalBinding and Initialiser productions

124 © Ecma International 2012

»ecma

except that the contained BindingListNoln, LexicalBindingNoln, InitialiserNoln and AssignmentExpressionNoln are
used in place of the contained BindingList, LexicalBinding, Initialiser and AssignmentExpression, respectively.

Static Semantics
Static Semantics: Early Errors
LexicalBinding : Bindingldentifier
e ltis a Syntax Error if IsConstantDeclaration of the LexicalDeclaration containing this production is true.

Bindingldentifier : Identifier

e It is a Syntax Error if the Bindingldentifier is contained in strict code and.if the Identifier is eval or
arguments.

Static Semantics: BoundNames

LexicalDeclaration : LetOrConst BindingList ;

1. Return the BoundNames of BindingList.

BindingList : BindingList , LexicalBinding

1. Let names be the BoundNames of BindingList.

2. Append to names the elements of the BoundNames of LexicalBinding.
3. Return names.

LexicalBinding : Bindingldentifier Initialiserop

1. Return the BoundNames.of Bindingldentifier.
LexicalBinding: BindingPattern Initialiser

1. Return the BoundNames of BindingPattern.
Bindingldentifier : ldentifier

1. Return a new List containing the StringValue of Identifier.
Static Semantics: IsConstantDeclaration
LexicalDeclaration : LetOrConst BindingList ;

1. Return IsConstantDeclaration of LetOrConst.

LetOrConst: let

1. Return false.

LetOrConst: const

1. Return true.

© Ecma International 2012 125

secma

Runtime Semantics
Runtime Semantics: Binding Initialisation
With arguments value and environment.

NOTE undefined is passed for environment to indicate that a PutValue operation should be used to assign the
initialisation value. This is the case for var statements formal parameter lists of non-strict functions. In those cases a

lexical binding is hosted and preinitialized prior to evaluation of its initializer.
Bindingldentifier : ldentifier

1. If environment is not undefined, then
a. Let name be StringValue of Identifier.
b. Letenv be the environment record component of environment.
c. Call the InitializeBinding concrete method of env passing name and value as the arguments.
d. Return NormalCompletion(undefined).
2. Else
Let lhs be the result of evaluating Identifier as described in 11.1.2.
Return PutValue(lhs, value).

oo

Runtime Semantics: Evaluation
LexicalDeclaration : LetOrConst BindingList ;

1. Let next be the result of evaluating BindingList.
2. ReturnlfAbrupt(next).
3. Return NormalCompletion(empty).

BindingList : BindingList , LexicalBinding

1. Let next be the result of‘evaluating BindingList.
2. ReturnlfAbrupt(next):
3. Return the result of evaluating LexicalBinding.

LexicalBinding : Bindingldentifier

1. Let env.be the running execution context’s LexicalEnvironment.
2. Return the result of performing Binding Initialisation for Bindingldentifier passing undefined and env as the
arguments.

NOTE A static semantics rule ensures that this form of LexicalBinding never occurs in a const declaration.
LexicalBinding : Bindingldentifier Initialiser

Let rhs be the result of evaluating Initialiser.

Let value be GetValue(rhs).

ReturnlfAbrupt(value).

Let env be the running execution context’s LexicalEnvironment.

Return the result of performing Binding Initialisation for Bindingldentifier passing value and env as the
arguments.

gRpwbdE

LexicalBinding: BindingPattern Initialiser

Let rhs be the result of evaluating Initialiser.

Let value be ToObject(GetValue(rhs)).

ReturnlfAbrupt(rval).

Let env be the running execution context’s LexicalEnvironment.

oMb

126 © Ecma International 2012

»ecma

5. Return the result of performing Binding Initialisation for BindingPattern using value as the obj parameter
and env as the environment parameter.

12.2.2 Variable Statement

NOTE A var statement declares variables that are scoped to the running execution context's VariableEnvironment.
Var variables are created when their containing Lexical Environment is instantiated and are initialised to undefined when
created. Within the scope of any VariableEnvironemnt a common Identifier may appear in more than one
VariableDeclaration but those declarations collective define only one variable. A variable defined by a VariableDeclaration
with an Initialiser is assigned the value of its Initialiser’s AssignmentExpression when the VariableDeclaration is executed, not
when the variable is created.

Syntax
VariableStatement :
var VariableDeclarationList ;

VariableDeclarationList :
VariableDeclaration
VariableDeclarationList , VariableDeclaration

VariableDeclarationListNoln :

VariableDeclarationNoln

VariableDeclarationListNoln , VariableDeclarationNoln
VariableDeclaration :

Bindingldentifier Initialiserqp:

BindingPattern Initialiser
VariableDeclarationNoln :

Bindingldentifier InitialiserNolngpt

BindingPattern InitialiserNoln
The semantics of the VariableDeclarationListNoln, VariableDeclarationNoln and InitialiserNoln productions are
the same as the VariableDeclarationList, VariableDeclaration and Initialiser productions except that the
contained VariableDeclarationListNoln, VariableDeclarationNoln, InitialiserNoln and AssignmentExpressionNoln
are used in of the contained VariableDeclarationList, VariableDeclaration, Initialiser and AssignmentExpression,
respectively.
Static Semantics
Static Semantics: BoundNames
VariableDeclarationList : VariableDeclarationList , VariableDeclaration

1. Let names be BoundNames of VariableDeclarationList.

2. Append to names the elements of BoundNames of VariableDeclaration.
3. Return names.

VariableDeclaration : Bindingldentifier Initialiserqp

1. Return the BoundNames of Bindingldentifier.

VariableDeclaration : BindingPattern Initialiser

1. Return the BoundNames of BindingPattern.

© Ecma International 2012 127

secma

Runtime Semantics
Runtime Semantics: Binding Initialisation

With arguments value and environment.
NOTE undefined is passed for environment to indicate that a PutValue operation should be used to assign the
initialisation value. This is the case for var statements formal parameter lists of non-strict functions. In those cases a
lexical binding is hosted and preinitialized prior to evaluation of its initializer.

VariableDeclaration : Bindingldentifier

1. Return the result of performing Binding Initialisation for Bindingldentifier passing value and undefined as
the arguments.

VariableDeclaration : Bindingldentifier Initialiser

1. Return the result of performing Binding Initialisation for Bindingldentifier passing value.and undefined as
the arguments.

VariableDeclaration : BindingPattern Initialiser

1. Return the result of performing Binding Initialisation for BindingPattern passing value and undefined as the
arguments.

Runtime Semantics: Evaluation

VariableStatement : var VariableDeclarationList ;

1. Let next be the result of evaluating VariableDeclarationList.
2. ReturnlfAbrupt(next).

3. Return NormalCompletion(empty).

VariableDeclarationList: VariableDeclarationList , VariableDeclaration
1. Let next be the result of evaluating VariableDeclarationList.

2. ReturnlfAbrupt(next).

3. Return_ the result of evaluating VariableDeclaration.
VariableDeclaration : Bindingldentifier

1. Return NormalCompletion(empty).

VariableDeclaration : Bindingldentifier Initialiser

1. Letrhs be the result of evaluating Initialiser.

2. Letvalue be GetValue(rhs).

3. ReturnlfAbrupt(value).

4. Return the result of performing Binding Initialisation for Bindingldentifier passing value and undefined as
the arguments.

NOTE If a VariableDeclaration is nested within a with statement and the Identifier in the VariableDeclaration is the

same as a property name of the binding object of the with statement’s object environment record, then step 3 will assign
value to the property instead of to the VariableEnvironment binding of the Identifier.

VariableDeclaration : BindingPattern Initialiser
2. Let rhs be the result of evaluating Initialiser.

3. Letrval be ToObject(GetValue(rhs)).
4. ReturnlfAbrupt(rval).

128 © Ecma International 2012

»ecma

5. Return the result of performing Binding Initialisation for BindingPattern passing rval and undefined as
arguments.

12.2.4 Destructuring Binding Patterns

Syntax

BindingPattern :
ObjectBindingPattern
ArrayBindingPattern

ObjectBindingPattern :
{1}
{ BindingPropertyList }
{ BindingPropertyList , 1}

ArrayBindingPattern :
[Elisione BindingRestElementqp:]

[BindingElementList]
[BindingElementList , Elisiongy: BindingRestElementspt

BindingPropertyList :

BindingProperty

BindingPropertyList , BindingProperty
BindingElementList :

Elisiongp: BindingElement

BindingElementList , Elisiongp: BindingElement
BindingProperty :

SingleNameBinding

PropertyName : BindingElement
BindingElement :

SingleNameBinding

BindingPattern Initialiserqp:

SingleNameBinding :
Bindingldentifier Initialiseropt

BindingRestElement :
... Bindingldentifier

Static Semantics
Static Semantics: Early Errors
BindingPattern : ObjectBindingPattern

e |tis a Syntax Error if the BoundNames of ObjectBindingPattern contains the string “eval” or the string
“‘arguments”.

BindingPattern : ObjectBindingPattern

e |tis a Syntax Error if the BoundNames of ArrayBindingPattern contains the string “eval” or the string
“‘arguments”.

Static Semantics: BoundNames

© Ecma International 2012 129

secma

ObjectBindingPattern: { 1}

1. Return an empty List.

ArrayBindingPattern : [Elisionopt]

1. Return an empty List.

ArrayBindingPattern : [Elisione,: BindingRestElement]

1. Return the BoundNames of BindingElementList.
ArrayBindingPattern : [BindingElementList , Elisionop:]

1. Return the BoundNames of BindingElementList.
ArrayBindingPattern : [BindingElementList , Elisionoy: BindingRestElement]
1. Let names be BoundNames of BindingElementList.

2. Append to names the elements of BoundNames of BindingRestElement.
3. Return names.

BindingPropertyList : BindingPropertyList , BindingProperty

1. Let names be BoundNames of BindingPropertyList.

2. Append to names the elements of BoundNames of BindingProperty.
3. Return names.

BindingElementList : Elisioney: BindingElement

1. Return BoundNames of BindingElement.

BindingElementList : BindingElementList , Elisionep: BindingElement

1. Let names be BoundNames of BindingElementList:

2. Append to names the elements‘of BoundNames of BindingElement.
3. Return names.

BindingProperty : PropertyName : BindingElement

1. Return the BoundNames of BindingElement.

SingleNameBinding : Bindingldentifier Initialiserqp

1. Return the BoundNames of Bindingldentifier.

BindingElement : BindingPattern Initialiserop

1. Return the BoundNames of BindingPattern.

Static Semantics: Haslnitialiser

BindingElement : BindingPattern

1. Return false.

BindingElement : BindingPattern Initialiser

1. Return true.

130 © Ecma International 2012

secma

SingleNameBinding : Bindingldentifier

1. Return false.

SingleNameBinding : Bindingldentifier Initialiser

1. Return true.

Runtime Semantics

Runtime Semantics: Binding Initialisation
With parameters value and environment.

NOTE When undefined is passed for environment it indicates that a PutValue operation should be used to assign the

initialisation value. This is the case for formal parameter lists of non-strict functions. In that case the formal parameter

bindings are preinitialized in order to deal with the possibility of multiple parameters with the same name.

BindingPattern : ObjectBindingPattern

1. Assert: Type(value) is Object

2. Return the result of performing Binding Initialisation for ObjectBindingPattern using obj and environment
as arguments.

BindingPattern : ArrayBindingPattern

1. Assert: Type(value) is Objec

2. Return the result of performing Indexed Binding Initialisation for ArrayBindingPattern using array, 0, and
environment as arguments.

ObjectBindingPattern: { }

1. Return NormalCompletion(empty).

BindingPropertyList : BindingPropertyList , BindingProperty

1. Let status betheresult of performing Binding Initialisation for BindingPropertyList using value and
environment as arguments.

2. ReturnlfAbrupt(status).

3. Return the result of performing Binding. Initialisation for BindingProperty using value and environment as
arguments.

BindingProperty : SingleNameBinding

1. Let name be the string that is the only element of BoundNames of SingleNameBinding.

2. Return the result of performing Keyed Binding Initialisation for SingleNameBinding using value,
environment, and name as the arguments.

BindingProperty : PropertyName : BindingElement

1. Let P be the PropName of PropertyName

2. Return the result of performing Keyed Binding Initialisation for BindingElement using value, environment,
and P as arguments.

Runtime Semantics: Indexed Binding Initialisation

With parameters array, nextindex, and environment.

© Ecma International 2012 131

secma

NOTE When undefined is passed for environment it indicates that a PutValue operation should be used to assign the
initialisation value. This is the case for formal parameter lists of non-strict functions. In that case the formal parameter
bindings are preinitialized in order to deal with the possibility of multiple parameters with the same name.

ArrayBindingPattern : [Elisiongp]

1. Return NormalCompletion(empty).

ArrayBindingPattern: [Elisiong, BindingRestElement]

1. Let nextIindex be the Elision Width of Elision; if Elision is not present, use the numeric value zero.
2. Return the result of performing Indexed Binding Initialisation for BindingRestElement using array,
nextlndex, and environment as arguments.

ArrayBindingPattern: [BindingElementList]

1. Return the result of performing Indexed Binding Initialisation for BindingElementList using array,
nextlndex, and environment as arguments.

ArrayBindingPattern: [BindingElementList , Elisionop]

1. Return the result of performing Indexed Binding Initialisation for BindingElementList using array,
nextlndex, and environment as arguments.

ArrayBindingPattern: [BindingElementList , Elisiongy:. BindingRestElement.]

1. Let next be the result of performing Indexed Binding Initialisation for BindingElementList using array ,
nextindex, and environment as arguments.

2. ReturnlfAbrupt(next).

3. Let skip be the Elision Width of Elision; if Elision is‘'not present, use the numeric value zero.

4. Return the result of performing Indexed Binding Initialisation for BindingRestElement using array,
next+skip , and environment as arguments.

BindingElementList : Elisiongp: BindingElement

=

Let skip be the Elision Width.of Elision; if Elision is not present, use the numeric value zero.

2. Let status-be theresult of performing Indexed Binding Initialisation for BindingElement using array,
nextindex+skip , and environment as arguments.

ReturnlfAbrupt(status).

4. Return nextindex +skip+1.

w

BindingElementList : BindingElementList , Elisionep: BindingElement

1. Let listNext be the result of performing Indexed Binding Initialisation for BindingElementList using array,
nextindex, and environment as arguments.

ReturnIfAbrupt(listNext).

Let skip be the Elision Width of Elision; if Elision is not present, use the numeric value zero.

4. Let status be the result of performing Indexed Binding Initialisation for BindingElement using array,
listNext+skip , and environment as arguments.

ReturnlfAbrupt(status).

6. Return listNext +skip+1.

wmn

o

BindingElement: SingleNameBinding

1. Return the result of performing Keyed Binding Initialisation for SingleNameBinding using array,
environment, and ToString(nextIndex) as the arguments.

BindingElement: BindingPattern Initialiserqp:

132 © Ecma International 2012

»ecma

1. Let P be ToString(nextindex).
2. Letv be the result of calling the [[Get]] internal method of array with argument P.
3. ReturnIfAbrupt(v).
4. If Initialiserqp is present and v is undefined, then
a. LetdefaultValue be the result of evaluating Initialiser.
b. Letvbe ToObject(defaultValue).
5. ReturnlfAbrupt(v).
6. Return the result of performing Binding Initialisation for BindingPattern passing v and environment as

arguments.
BindingRestElement : ... Bindingldentifier

Let A be the result of the abstract operation ArrayCreate (15.4) with argument 0.
Let lenVal be the result of calling the [[Get]] internal method of array with argument “length” .
Let arrayLength be ToUint32(lenVal).
ReturnlfAbrupt(arraylLength).
Let n=0.
Let index = nextIndex.
Repeat, while index < arrayLength
a. Let P be ToString(index).
b. Let exists be the result of calling the [[HasProperty]] internal method of array with argument P.
c. Ifexists is true, then
i. Letv be the result of calling the [[Get]] internal method of @array passing P as the argument.
ii. ReturnIfAbrupt(v).
iii. Call the [[DefineOwnProperty]] internal. method of A with arguments ToString(n), Property
Descriptor {[[Value]]: v, [[Writable]]: true, [[Enumerable]]: true, [[Configurable]]: true}, and false.

d. Letn=n+l.
e. Letindex = index+1.
9. Return the result of performing Binding Initialisation for Bindingldentifier using A and environment as
arguments.

PN RE LN

Runtime Semantics: Keyed Binding Initialisation
With parameters obj, environment, and propertyName.

NOTE When undefined is passedfor environment it indicates that a PutValue operation should be used to assign the
initialisation value..This is the case for formal parameter lists of non-strict functions. In that case the formal parameter
bindings are preinitialized in.order to deal with the possibility of multiple parameters with the same name.

BindingElement: BindingPattern . Initialiseropt

1. Letv be the result of calling the [[Get]] internal method of obj with argument propertyName.

2. ReturnlfAbrupt(v).

3. If Initialiserep is present and v is undefined, then

a. Let defaultValue be the result of evaluating Initialiser.

b. Letvbe ToObject(defaultValue).

ReturnlfAbrupt(v).

Return the result of performing Binding Initialisation for BindingPattern passing v and environment as
arguments.

oas

SingleNameBinding : Bindingldentifier Initialiseropt

=

Let v be the result of calling the [[Get]] internal method of obj passing propertyName as the argument.
ReturnIfAbrupt(v).

3. If Initialiserop is present and v is undefined, then

a. Letv be the result of evaluating Initialiser.

ReturnlfAbrupt(v).

5. Return the result of performing Binding Initialisation for Bindingldentifier passing v and environment as
arguments.

N

e

© Ecma International 2012 133

secma

12.3 Empty Statement

Syntax
EmptyStatement :

Runtime Semantics

Runtime Semantics: Evaluation
EmptyStatement : ;

1. Return NormalCompletion(empty).
12.4 Expression Statement

Syntax
ExpressionStatement :
[lookahead ¢ {{, function, class }] Expression ;

NOTE An ExpressionStatement cannot start with an opening curly brace because that might make it ambiguous with a
Block. Also, an ExpressionStatement cannot start with the function or class keywords because that would make it
ambiguous with a FunctionDeclaration, a GeneratorDeclaration, or a ClassDeclaration.

Runtime Semantics

Runtime Semantics: Evaluation

ExpressionStatement : [lookahead ¢ {{, function, class}] Expression;
Let exprRef be the result of evaluating Expression.

Let value be GetValue(exprRef).

ReturnlfAbrupt(value).
Return NormalCompletion(value):

PO E

12.5 The if Statement

Syntax

IfStatement :
if (Expression) Statement else Statement
if (Expression) Statement

Each else for which the choice of associated if is ambiguous shall be associated with the nearest possible
if that would otherwise have no corresponding else.

Static Semantics: VarDeclaredNames
IfStatement : i £ (Expression) Statement else Statement
1. Let names be VarDeclaredNames of the first Statement.

2. Append to names the elements of the VarDeclaredNames of the second Statement.
3. Return names.

IfStatement : i £ (Expression) Statement

1. Return the VarDeclaredNames of Statement.

134 © Ecma International 2012

»ecma

Runtime Semantics
Runtime Semantics: Evaluation
IfStatement : 1 £ (Expression) Statement else Statement

Let exprRef be the result of evaluating Expression.
Let exprValue be ToBoolean(GetValue(exprRef)).
ReturnlfAbrupt(exprValue).
If exprValue is true, then
a. Return the result of evaluating the first Statement.
5. Else,
a. Return the result of evaluating the second Statement.

el NS S

IfStatement : i £ (Expression) Statement

Let exprRef be the result of evaluating Expression.

Let exprValue be ToBoolean(GetValue(exprRef)).
ReturnlfAbrupt(exprValue).

If exprValue is false, return NormalCompletion(undefined).
Return the result of evaluating Statement.

agbhwbE

12.6 lteration Statements

Syntax

IterationStatement :
do Statement while (Expression)
while (Expression) Statement
for (ExpressionNolngp; Expressiongp: ; Expressiongpt) Statement
for (var VariableDeclarationListNoln ; Expressionep: ; Expressiong) Statement
for (LexicalDeclarationNoln; Expressionop: ; EXpressiongp:) Statement
for (LeftHandSideExpression in Expression) Statement
for (var ForBinding in Expression) Statement
for (ForDeclaration in Expression) Statement
for (LeftHandSideExpression of Expression) Statement
for (var ForBinding of Expression) Statement
for (‘ForDeclaration of Expression) Statement

ForDeclaration :
LetOrConst ForBinding

NOTE 1 ForBinding is defined in 11.1.4.2.

NOTE 2 A semicolon is not required after a do-while statement.

Runtime Semantics

The abstract operation LoopContinues with arguments completion and labelSet is defined by the following step:
If completion.[[type]] is normal, then return true.

If completion.[[type]] is not continue, then return false.

If completion.[[target]] is empty, then return true.

If completion.[[target]] is an element of labelSet, then return true.
Return false.

SA A

NOTE Within the Statement part of an IterationStatement a ContinueStatement may be used to begin a new iteration.

© Ecma International 2012 135

secma

12.6.1 The do-while Statement
Static Semantics: VarDeclaredNames
IterationStatement : do Statement while (Expression)
1. Return the VarDeclaredNames of Statement.
Runtime Semantics
Runtime Semantics: Labelled Evaluation

With argument labelSet.
IterationStatement : do Statement while (Expression)

1. LetV = undefined.

2. Repeat
a. Letstmt be the result of evaluating Statement.
b. If stmt.[[value]] is not empty, let V = stmt.[[value]].
c. If stmtis an abrupt completion and LoopContinues (stmt,labelSet) is false, return stmt.
d. LetexprRef be the result of evaluating Expression.
e. LetexprValue be ToBoolean(GetValue(exprRef)).
f. If exprValue is false, Return NormalCompletion(V).
g. Elseif exprValue is a Completion.Record, then

i Assert: exprValue is an abrupt completion.
il If LoopContinues (exprValue,labelSet) is false, return exprValue.

12.6.2 The while Statement

Static Semantics: VarDeclaredNames

IterationStatement : while (Expression) Statement

1. Return the VarDeclaredNames of Statement.

Runtime Semantics

Runtime Semantics: Labelled Evaluation

With argument labelSet.

IterationStatement : while (Expression) Statement

1. LetV = undefined.

2. Repeat
a. LetexprRef be the result of evaluating Expression.
b. LetexprValue be ToBoolean(GetValue(exprRef)).
c. IfexprValue is false, return NormalCompletion(V).
d. Else if exprValue is a Completion Record, then

i. Assert: exprValue is an abrupt completion.
ii. If LoopContinues (exprValue,labelSet) is false, return exprValue.

e. Let stmt be the result of evaluating Statement.
f. If stmt.[[value]] is not empty, let V = stmt.[[value]].
g. If LoopContinues (stmt,labelSet) is false, return stmt.

136 © Ecma International 2012

»ecma

12.6.3 The for Statement

Static Semantics

Static Semantics: VarDeclaredNames

IterationStatement : for (ExpressionNolngy ; Expressiongp: ; Expressiongy) Statement

1. Return the VarDeclaredNames of Statement.

IterationStatement : for (var VariableDeclarationListNoln ; Expressiongy ; Expressiong:) Statement

1. Let names be BoundNames of VariableDeclarationListNoln.
2. Append to names the elements of the VarDeclaredNames of Statement.
3. Return names.

IterationStatement : for (LexicalDeclarationNoln; Expressiongp: ; Expressiongy) Statement
1. Return the VarDeclaredNames of Statement.
Runtime Semantics
Runtime Semantics: Labelled Evaluation
With argument labelSet.
IterationStatement : for (ExpressionNolngy: ; EXpressiongp: ; EXpressiongpt) Statement

1. If ExpressionNoln is present, then.
a. Let exprRef be the result of evaluating ExpressionNoln.
b. LetexprValue be GetValue(exprRef). (This value is not used but the call may have side-effects.)
c. If LoopContinues(exprValue,labelSet) is false, return exprValue.
2. Return the result of performing For Body Evaluation with the first Expression as the testExpr argument, the
second Expression as the incrementExpr argument and with labelSet.

The abstract operation For Body Evaluation with arguments testExpr, incrementExpr, and labelSet is performed
as follows:

1. LetV = undefined,.
2. Repeat
a.. If testExpr is not [empty], then
i. Let testExprRef be the result of evaluating testExpr.
ii. Let testExprValue be ToBoolean(GetValue(testExprRef))
iii. If testExprValue is false, return NormalCompletion(V).
iv. Else if LoopContinues (testExprValue,labelSet) is false, return testExprValue.
Let stmt be the result of evaluating Statement.
If stmt.[[value]] is not empty, let V = stmt.[[value]].
If LoopContinues (stmt,labelSet) is false, return stmt.
If incrementExpr is not [empty], then
i Let incExprRef be the result of evaluating incrementExpr.
ii. Let incExprValue be GetValue(incExprRef).
iii. If LoopContinues(incExprValue,labelSet) is false, return incExprValue.

® o0 o

IterationStatement : for (var VariableDeclarationListNoln ; Expressiongs: ; Expressiongs:) Statement

=

Let varDcl be the result of evaluating VariableDeclarationListNoln.

If LoopContinues(varDcl,labelSet) is false, return varDcl.

3. Return the result of performing For Body Evaluation with the first Expression as the testExpr argument, the
second Expression as the incrementExpr argument and with labelSet.

N

© Ecma International 2012 137

secma

IterationStatement : for (LexicalDeclarationNoln ; Expressiong: ; Expressiong:) Statement

b N S

No o

8.

9.
10.

Let oldEnv be the running execution context’s LexicalEnvironment.
Let loopEnv be the result of calling NewDeclarativeEnvironment passing oldEnv as the argument.
Let isConst be the result of performing IsConstantDeclaration of d.
For each element dn of the BoundNames of LexicalDeclarationNoln do
a. IfisConst is true, then
i Call loopEnv’s CreateImmutableBinding concrete method passing dn as the argument.
b. Else,
i Call loopEnv’s CreateMutableBinding concrete method passing dn and false as the
arguments.
Set the running execution context’s LexicalEnvironment to loopEnv.
Let forDcl be the result of evaluating LexicalDeclarationNoln.
If LoopContinues(forDcl,labelSet) is false, then
a. Setthe running execution context’s LexicalEnvironment to oldEnv.
b. Return forDcl.
Let bodyResult be the result of performing For Body Evaluation with the first Expression as the testExpr
argument, the second Expression as the incrementExpr argument and with labelSet.
Set the running execution context’s LexicalEnvironment.to oldEnv.
Return bodyResult.

12.6.4 The for-in and for-of Statements

Static Semantics

Static Semantics: Early Errors

IterationStatement :
for (LeftHandSideExpression in Expression) Statement
for (LeftHandSideExpression-of Expression) Statement

It is a Syntax Errorif the IterationStatement is contained in strict code and LeftHandSideExpression is the

Identifier eval or the Identifier arguments.

It is a Syntax Error if the LeftHandSideExpression is an Identifier that statically resolves to a declarative

environment record binding and the resolved binding is an immutable binding.

It is a Syntax Error if the LeftHandSideExpression is PrimaryExpression : (Expression) and Expression
derived a production that would produce a Syntax Error according to these rules. This rule is

recursively applied.
It is a Syntax Error if IsInvalidAssignmentPattern of LeftHandSideExpression is true.

IterationStatement :
for (ForDeclaration in Expression) Statement
for (ForDeclaration of Expression) Statement

It is a Syntax.Error if any element of the LexicallyDeclaredNames of ForDeclaration also occurs in the

VarDeclaredNames of Statement.

Static Semantics: BoundNames

ForDeclaration : LetOrConst ForBinding

1. Return the BoundNames of ForBinding.

Static Semantics: VarDeclaredNames

IterationStatement : for (LeftHandSideExpression in Expression) Statement

1. Return the VarDeclaredNames of Statement.

138

© Ecma International 2012

»ecma

IterationStatement : for (var ForBinding in Expression) Statement

1. Let names be the BoundNames of ForBinding.

2. Append to names the elements of the VarDeclaredNames of Statement.
3. Return names

IterationStatement : for (ForDeclaration in Expression) Statement

1. Return the VarDeclaredNames of Statement.

IterationStatement : for (LeftHandSideExpression of Expression) Statement

1. Return the VarDeclaredNames of Statement.

IterationStatement : for (var ForBinding of Expression) Statement

1. Let names be the BoundNames of ForBinding.

2. Append to names the elements of the VarDeclaredNames of Statement.

3. Return names

IterationStatement : for (ForDeclaration of Expression) Statement
1. Return the VarDeclaredNames of Statement.
Runtime Semantics
Runtime Semantics: Binding Instantiation
With arguments value and environment.
ForDeclaration : LetOrConst ForBinding

1. For each element name of the BoundNames of ForBinding do
a. If IsConstantDeclaration of/LetOrConst is false, then
i Call environment’s CreateMutableBinding concrete method with argument name.
b. Else,
i Call environment’s CreatelmmutableBinding concrete method with argument name.
2. Return.the result of performing Binding Initialisation for ForBinding passing value and environment as the
arguments.

Runtime Semantics: Labelled Evaluation
With argument labelSet.
IterationStatement : for (LeftHandSideExpression in Expression) Statement

1. Let keyResult be the result of performing For In/Of Expression Evaluation with Statement, enumerate, and
labelSet.

2. ReturnlfAbrupt(keyResult).

3. Return the result of performing For In/Of Body Evaluation with LeftHandSideExpression, Statement,
keyResult, assignment, and labelSet.

IterationStatement : for (var ForBinding in Expression) Statement

1. Let keyResult be the result of performing For In/Of Expression Evaluation with Statement, enumerate, and
labelSet.

2. ReturnlfAbrupt(keyResult).

3. Return the result of performing For In/Of Body Evaluation with ForBinding, Statement, keyResult,
varBinding, and labelSet.

© Ecma International 2012 139

secma

IterationStatement : for (ForDeclaration in Expression) Statement

1. Let keyResult be the result of performing For In/Of Expression Evaluation with Statement, enumerate, and
labelSet.

2. ReturnlfAbrupt(keyResult).

3. Return the result of performing For In/Of Body Evaluation with ForDeclaration, Statement, keyResult,
lexicalBinding, and labelSet.

IterationStatement ; for (LeftHandSideExpression of Expression) Statement

1. Let keyResult be the result of performing For In/Of Expression Evaluation with -Statement, iterate, and
labelSet.

2. ReturnlfAbrupt(keyResult).

3. Return the result of performing For In/Of Body Evaluation with LeftHandSideExpression, Statement,
keyResult, assignment, and labelSet.

IterationStatement : for (var ForBinding of Expression) Statement

1. Let keyResult be the result of performing For In/Of Expression Evaluation with Expression, iterate, and
labelSet.

2. ReturnlfAbrupt(keyResult).

3. Return the result of performing For In/Of Body Evaluation with ForBinding, Statement, keyResult,
varBinding, and labelSet.

IterationStatement : for (ForDeclaration of Expression) Statement

1. Let keyResult be the result of performing For In/Of Expression Evaluation with Expression, iterate, and
labelSet.

2. ReturnlfAbrupt(keyResult).

3. Return the result of performing For In/Of Body Evaluation with ForDeclaration, Statement, keyResult,
lexicalBinding, and labelSet.

The abstract operation‘For In/Of Expression Evaluation is called with arguments expr, iterationKind, and
labelSet. The value of iterationKind is either enumerate or iterate.

1. Let exprRef be the result of evaluating the production that is expr.
2. Let experValue be GetValue(exprRef).
3. IfexperValue is an abrupt completion,
a. If LoopContinues(experValue,labelSet) is false, then return experValue.
b. Else, return Completion {[[type]]: break, [[value]]: empty, [[target]]: empty}.
4. IfexperValue.[[value]] is'null or undefined, return Completion {[[type]]: break, [[value]]: empty,
[[target]]: empty}.
5. Let obj be ToObject(experValue).
6. If iterationKind is enumerate, then
a. Letkeysbe theresult of calling the [[Enumerate]] internal method of obj with arguments true and
true.
7. Else,
a. Assert iterationKind is iterate.
b. Let keys be the result of calling the [[Iterate]] internal method of obj.
8. Ifkeys is an abrupt completion, then
a. If LoopContinues(experValue,labelSet) is false, then return experValue.
b. Assert: keys.[[type]] is continue
c. Return Completion {[[type]]: break, [[value]]: empty, [[target]]: empty}.
9. Return keys.

The abstract operation For In/Of Body Evaluation is called with arguments lhs, stmt, keys, IhsKind, and labelSet.
The value of lhsKind is either assignment, varBinding or lexicalBinding.

1. Let oldEnv be the running execution context’s LexicalEnvironment.

140 © Ecma International 2012

eCina

2. LetV = undefined .

3. Repeat
a. Let next be the result of performing Invoke with arguments "next", keys, and an empty arguments
List.
b. If IteratorComplete(next) is true, then return NormalCompletion(V).
c. If LoopContinues(next,labelSet) is false, then return next.
d. If nextis an abrupt completion, then let status be next.
e. Else,

i. Assert next.[[type]] is normal.
ii. Let nextValue be next.[[value]].
iii. If IhsKind is assignment, then
1. Assert: lhs is a LeftHandSideExpression.
2. If lhs is neither an ObjectLiteral nor an ArrayLiteral then
a Let IhsRef be the result of evaluating Ihs (it may be evaluated repeatedly).
b Let status be the result of performing PutValue(lhsRef, nextValue).
3. Else
a Let AssignmentPattern be the parse of the source code corresponding to lhs
using AssignmentPattern as_the goal symbol.
b Let rval be ToObject(nextValue).
¢ Ifrval is an abrupt completion, then let status be rval.
d Else, let status be the result of performing Destructuring Assignment
Evaluation of AssignmentPattern using rval as the argument.
iv. Else if InsKind is varBinding, then
Assert: Ihs is a ForBinding.
2. Let status be the result of performing Binding Initialisation for lhs passing
nextValue and undefined as.the arguments.

=

1. Assert IhsKind is lexicalBinding.
2. Assert: lhs is a ForDeclaration:
3. Let iterationEnv be the result of calling NewDeclarativeEnvironment passing
oldEnv as the argument.
4. Perform Binding Instantiation for lhs passing nextValue and iterationEnv as
arguments.
5. Let status be NormalCompletion(empty)
6. Set the running execution context’s LexicalEnvironment to iterationEnv.
vi. If status.[[type]] is normal, then
1. Let status be the result of evaluating stmt.
2. If status.[[type]] is normal and status.[[value]] is not empty, then
a Let V = status.[[value]].

Vii. Set the running execution context’s LexicalEnvironment to oldEnv.
viii. If status is an abrupt completion and LoopContinues(status,labelSet) is false, then return
status.

12.7 The continue Statement

Syntax
ContinueStatement :
continue ;
continue [no LineTerminator here] Identifier;
Static Semantics
Static Semantics: Early Errors

ContinueStatement : continue ;

e It is a Syntax Error if this production is not nested, directly or indirectly (but not crossing
function boundaries), within an IterationStatement.

© Ecma International 2012 141

secma

ContinueStatement : continue [no LineTerminator here] ldentifier ;

e It is a Syntax Error if Identifier does not appear in the CurrentLabelSet of an enclosing (but
not crossing function boundaries) lterationStatement.

Runtime Semantics

Runtime Semantics: Evaluation

ContinueStatement : continue ;

1. Return Completion {[[type]]: continue, [[value]]: empty, [[target]]: empty}:
ContinueStatement : continue [no LineTerminator here] Identifier ;

1. Return Completion {[[type]]: continue, [[value]]: empty, [[target]]: Identifier}.
12.8 The break Statement

Syntax
BreakStatement :

break ;

break [no LineTerminator here] ldentifier ;
Static Semantics

Static Semantics: Early Errors

BreakStatement : break ;

e It is a Syntax Error if this production not nested, directly or indirectly (but not crossing
function boundaries), within an lterationStatement or a SwitchStatement.

BreakStatement : break [no LineTerminatorhere] Identifier ;

e |t is a Syntax Errorif Identifier does not appear in the CurrentLabelSet of an enclosing (but
not crossing function boundaries) Statement.

Runtime Semantics

Runtime Semantics: Evaluation

BreakStatement : break ;

1. Return Completion {[[type]]: break, [[value]]: empty, [[target]]: empty}.
BreakStatement : break [no LineTerminator here] Identifier ;

1. Return Completion {[[type]]: break, [[value]]: empty, [[target]]: Identifier}.
12.9 The return Statement

Syntax

ReturnStatement :
return ;

return [no LineTerminator here] Expression ;

142 © Ecma International 2012

»ecma

NOTE A return statement causes a function to cease execution and return a value to the caller. If Expression is
omitted, the return value is undefined. Otherwise, the return value is the value of Expression.

Static Semantics
Static Semantics: Early Errors
e |tis a Syntax Error if a return statement is not within a FunctionBody.
Runtime Semantics
Runtime Semantics: Evaluation
ReturnStatement : return ;
1. Return Completion {[[type]]: return, [[value]]: undefined, [[target]]: empty}.
ReturnStatement : return [no LineTerminator here] Expression ;
Let exprRef be the result of evaluating Expression.
Let exprValue be GetValue(exprRef).

ReturnlfAbrupt(exprValue).
Return Completion {[[type]]: return, [[value]]: exprValue, [[target]]: empty}.

PONME

12.10 The with Statement

Syntax

WithStatement :
with (Expression) Statement

NOTE The with statement adds an object environment record for a computed object to the lexical environment of the
running execution context. At then executes a statement using this augmented lexical environment. Finally, it restores the
original lexical environment.
Static Semantics
Static Semantics: Early Errors
WithStatement : with (Expression) Statement
e ltisa Syntax Error if the code that matches this production is contained in strict code.
Static Semantics: VarDeclaredNames
WithStatement : with (Expression) Statement
1. Return the VarDeclaredNames of Statement.
Runtime Semantics
Runtime Semantics: Evaluation
WithStatement : with (Expression) Statement
Let val be the result of evaluating Expression.
Let obj be ToObject(GetValue(val)).

ReturnIfAbrupt(obj)j.
Let oldEnv be the running execution context’s LexicalEnvironment.

el NS S

© Ecma International 2012 143

secma

5. Let newEnv be the result of calling NewObjectEnvironment passing obj and oldEnv as the arguments.
6. Set the withEnvironment flag of newEnv to true.

7. Set the running execution context’s LexicalEnvironment to newEnv.

8. Let C be the result of evaluating Statement.

9. Set the running execution context’s Lexical Environment to oldEnv.

10. Return C.

NOTE No matter how control leaves the embedded Statement, whether normally or by some form of abrupt
completion or exception, the LexicalEnvironment is always restored to its former state.

12.11 The switch Statement

Syntax
SwitchStatement :
switch (Expression) CaseBlock

CaseBlock :
{ CaseClausesept }
{ CaseClausesop: DefaultClause CaseClausesqpt }

CaseClauses :
CaseClause
CaseClauses CaseClause

CaseClause :
case Expression : StatementListopt

DefaultClause :
default : StatementListop

Static Semantics
Static Semantics: Early Errors
CaseBlock : { CaseClauses }

e Itis a'Syntax Error if the LexicallyDeclaredNames of CaseClauses contains any duplicate entries.
e ltdis a Syntax Error if any element of the LexicallyDeclaredNames of CaseClauses also occurs in the
VarDeclaredNames of CaseClauses.

Static Semantics: LexicalDeclarations
CaseBlock : { }

1. Return a new empty List.
CaseBlock : { CaseClausesqp: DefaultClause CaseClausesqp: }

If the first CaseClauses is present, let declarations be the LexicalDeclarations of the first CaseClauses.
Else let declarations be a new empty List.

Append to declarations the elements of the LexicalDeclarations of the DefaultClause.

If the second CaseClauses is not present, return declarations.

Else return the result of appending to declarations the elements of the LexicalDeclarations of the second
CaseClauses.

grwbdPE

CaseClauses : CaseClauses CaseClause

1. Let declarations be LexicalDeclarations of CaseClauses.
2. Append to declarations the elements of the LexicalDeclarations of CaseClause.

144 © Ecma International 2012

»ecma

3. Return declarations.

CaseClause : case Expression : StatementListopt

1. If the StatementList is present, return the LexicalDeclarations of StatementList.
2. Else return a new empty List.

DefaultClause : default : StatementLiStop

1. If the StatementList is present, return the LexicalDeclarations of StatementList.
2. Else return a new empty List.

Static Semantics: LexicallyDeclaredNames
CaseBlock : { }

1. Return a new empty List.

CaseBlock : { CaseClausesop: DefaultClause CaseClauseSqp: }
Else let names be a new empty List.

Append to names the elements of the LexicallyDeclaredNames of the DefaultClause.
If the second CaseClauses is not present, return names.

agbrwndE

CaseClauses.
CaseClauses : CaseClauses CaseClause
1. Let names be LexicallyDeclaredNames of CaseClauses.
2. Append to names the elements of the LexicallyDeclaredNames of CaseClause.
3. Return names.

CaseClause : case Expression : StatementLiStop:

1. If the StatementList is present,return the LexicallyDeclaredNames of StatementList.
2. Else return.a-new.empty List.

DefaultClause : default : StatementLiStop:

1. If the StatementList is present, return the LexicallyDeclaredNames of StatementList.
2. Elsereturn a new empty List.

Static Semantics: VarDeclaredNames
SwitchStatement : switch (Expression) CaseBlock

1. Return the VarDeclaredNames of CaseBlock.
CaseBlock : { }

1. Return a new empty List.

CaseBlock : { CaseClausesop: DefaultClause CaseClausesep: }
Else let names be a new empty List.

Append to names the elements of the VarDeclaredNames of the DefaultClause.
If the second CaseClauses is not present, return names.

PobPE

© Ecma International 2012

If the first CaseClauses is present, let names be the LexicallyDeclaredNames of the first CaseClauses.

Else return the result of appending to names the elements of the LexicallyDeclaredNames of the second

If the first CaseClauses is present, let names be the VarDeclaredNames of the first CaseClauses.

secma

5. Else return the result of appending to names the elements of the VarDeclaredNames of the second
CaseClauses.

CaseClauses : CaseClauses CaseClause

1. Let names be VarDeclaredNames of CaseClauses.

2. Append to names the elements of the VarDeclaredNames of CaseClause.
3. Return names.

CaseClause : case Expression : StatementLiStop

1. If the StatementList is present, return the VarDeclaredNames of StatementList:
2. Else return a new empty List.

DefaultClause : default : StatementListop

1. If the StatementList is present, return the VarDeclaredNames of StatementList.
2. Else return a new empty List.

Runtime Semantics
Runtime Semantics: Case Block Evaluation
With argument input.

CaseBlock : { CaseClausesgpt }

1. LetV = undefined.
2. Let A be the list of CaseClause items in source text order.
3. Letsearching be true.
4. Repeat, while searching is true
a. Let C be the next CaseClause in A. If there is no such CaseClause, return NormalCompletion(V).
b. Let clauseSelector be the result of evaluating C.
c. ReturnlfAbrupt(clauseSelector).
d. Ifinputis equal toclauseSelector as defined.by the Strict Equality Comparision Algorithm (11.9.1), then
i. Set searching to false.
il If C has a StatementList, then
1. Evaluate C’s StatementList and let R be the result.
2. ReturnlfAbrupt(r).
3. LetV=R.[[value]l].
5. Repeat

a. Let C be the next CaseClause in A. If there is no such CaseClause, return NormalCompletion(V).
b.. If C has a StatementList, then
i. Evaluate C’s StatementList and let R be the result.
ii. If R.[[value]] is not empty, then let V = R.[[value]].
iii. If R is‘an abrupt completion, then return Completion {[[type]]l: R.[[typell, [[value]]: V, [[target]]:

R.[[target]]}.

CaseBlock : { CaseClausesop: DefaultClause CaseClausesqpt }

Let V = undefined..
Let A be the list of CaseClause items in the first CaseClauses, in source text order.
Let found be false.
Repeat letting C be in order each CaseClause in A
a. If found is false, then
i Let clauseSelector be the result of Case Selector Evaluation of C.
ii. If clauseSelector is an abrupt completion, then
1. If clauseSelector.[[value]] is empty, then return Completion {[[type]]:
clauseSelector.[[type]], [[value]]: undefined, [[target]]: clauseSelector.[[target]]}.

NS S

146 © Ecma International 2012

eCina

2. Else, return clauseSelector.
iii. If input is equal to clauseSelector as defined by the Strict Equality Comparision Algorithm
(11.9.1), then set found to true.
b. Iffound is true, then
i. Evaluate CaseClause C and let R be the result.
ii. If R.[[value]] is not empty, then let V = R.[[value]].
iii. If R is an abrupt completion, then return Completion {[[type]]l: R.[[typell, [[value]]: V, [[target]]:
R.[[target]]}.
Let foundInB be false.
6. If found is false, then
a. Let B beanew list of the CaseClause items in the second CaseClauses, in source text order.
b. Repeat, letting C be in order each CaseClause in B
i If foundInB is false, then
1. Let clauseSelector be the result of Case Selector Evaluation of C.
2. If clauseSelector is an abrupt completion, then.

a IfclauseSelector.[[value]] is empty, then return Completion {[[type]]:
clauseSelector.[[type]], [[value]]:. undefined, [[target]]:
clauseSelector.[[target]]}.

b Else, return clauseSelector.

3. Ifinputis equal to clauseSelector.as defined by the Strict Equality Comparision
Algorithm (11.9.1), then set foundInB to true.
ii. If foundInB is true, then
1. Evaluate CaseClause and let R be the result.
2. IfR.[[value]] is not empty, then let V = R.[[value]].
3. IfRis an abrupt completion, then return Completion {[[type]ll: R.[[typell, [[value]]: V,
[[target]]: R.[[target]]}.
If foundInB is true, then return NormalCompletion(V).
Evaluate DefaultClause and let R be the result.
9. IfR.[[value]] is not empty, then let V = R.[[value]].
10. If R is an abrupt completion, thenreturn Completion {[[typell: R.[[type]], [[value]]: V, [[target]]: R.[[target]]}.
11. Let B be a new list of the CaseClause items in the second CaseClauses, in source text order.
12. Repeat, letting C be in order each CaseClause in B (NOTE this is another complete iteration of the second CaseClauses)
b. Evaluate CaseClause C and let R be the result.
c. IfR.[[value]] is not empty, then let V = R.[[value]].
d. IfRis an abrupt completion; thenreturn.Completion {[[typel]: R.[[typel], [[value]]: V, [[target]]:

R.[[target]]}.
13. Return NormalCompletion(V).

o

o N

Runtime Semantics: Case Selector Evaluation
CaseClause : case Expression : StatementListop

1. LetexprRef be the result of evaluating Expression.
2. Return GetValue(exprRef).

NOTE Case Selector Evaluation does not execute the associated StatementList. It simply evaluates the Expression and
returns the value, which the CaseBlock algorithm uses to determine which StatementList to start executing.

Runtime Semantics: Evaluation
SwitchStatement : switch (Expression) CaseBlock

Let exprRef be the result of evaluating Expression.

Let switchValue be GetValue(exprRef).

ReturnlfAbrupt(switchValue).

Let oldEnv be the running execution context’s LexicalEnvironment.

Let blockEnv be the result of calling NewDeclarativeEnvironment passing oldEnv as the argument.
Perform Block Declaration Instantiation using CaseBlock and blockEnv.

Let R be the result of performing Case Block Evaluation of CaseBlock with argument switchValue.
Set the running execution context’s LexicalEnvironment to oldEnv.

N~ E

© Ecma International 2012 147

secma

9. Return R.

NOTE No matter how control leaves the SwitchStatement the LexicalEnvironment is always restored to its former state.
CaseClause : case Expression : [empty]

1. Return NormalCompletion(empty).

CaseClause : case Expression : StatementList

1. Return the result of evaluating StatementList.

DefaultClause : default: [empty]

1. Return NormalCompletion(empty).

DefaultClause : default: StatementList

1. Return the result of evaluating StatementList.

12.12 Labelled Statements

Syntax

LabelledStatement :
Identifier : Statement

NOTE A Statement may be prefixed by a label. Labelled statements-are only used in conjunction with labelled break
and continue statements. ECMAScript has no goto statement. A Statement can be part of a LabelledStatement, which
itself can be part of a LabelledStatement, and so on. The labels introduced this way are collectively referred to as the
“current label set” when describing the semantics of individual statements. A LabelledStatement has no semantic meaning

other than the introduction of a label to a label set. The label set of an IterationStatement or a SwitchStatement initially
contains the single element empty. The label set of any other statement is initially empty.

Static Semantics
Static Semantics: Early Errors
e |t is a Syntax Error if a LabelledStatement is enclosed by a LabelledStatement with the same Identifier as
label. This does not apply to labels appearing within the body of a FunctionDeclaration that is nested,
directly or indirectly, within a labelled statement.
Static Semantics: VarDeclaredNames
LabelledStatement : Identifier : Statement
1. Return the VarDeclaredNames of Statement.
Runtime Semantics
Runtime Semantics: Labelled Evaluation
With argument labelSet.

LabelledStatement : Identifier : Statement

1. Let label be the StringValue of Identifier.

148 © Ecma International 2012

»ecma

Let newLabelSet be a new List containing label and the elements of labelSet.

3. If Statement is either LabelledStatement or BreakableStatement, then

a. Let stmtResult be the result of performing Labelled Evaluation of Statement with argument
newLabelSet.

N

4. Else,
a. LetstmtResult be the result of evaluating Statement.

5. If stmtResult.[[type]] is break and stmtResult.[[target]] is the same value as label, then
a. Letresult be NormalCompletion(stmtResult.[[value]]).

6. Else, let result be stmtResult.

7. Return result.

Runtime Semantics: Evaluation

LabelledStatement : Identifier : Statement

3. Let newLabelSet be a new empty List.
4. Return the result of performing Labelled Evaluation of this LabelledStatement with argument newLabelSet.

12.13 The throw Statement

Syntax
ThrowStatement :

throw [no LineTerminator here] Expression ;
Runtime Semantics: Evaluation

The production ThrowStatement ;: throw [no LineTerminator here] Expression ; is evaluated as follows:

Let exprRef be the result of evaluating Expression.

Let exprValue be GetValue(exprRef).

ReturnlfAbrupt(exprValue).

Return Completion {[[type]]: throw, [[value]]: GetValue(exprRef), [[target]]: empty}.

PONE

12.14 The try Statement

Syntax

TryStatement :
try Block Catch
try Block Finally
try Block Catch Finally

Catch :
catch (CatchParameter) Block

Finally :
finally Block

CatchParameter :

Bindingldentifier

BindingPattern
NOTE The try statement encloses a block of code in which an exceptional condition can occur, such as a runtime
error or a throw statement. The catch clause provides the exception-handling code. When a catch clause catches an
exception, its Identifier is bound to that exception.

Static Semantics

Static Semantics: Early Errors

© Ecma International 2012 149

secma

Catch : catch (CatchParameter) Block

e |t is a Syntax Error if any element of the BoundNames of CatchParameter also occurs in the
LexicallyDeclaredNames of Block.

e It is a Syntax Error if any element of the BoundNames of CatchParameter also occurs in the
VarDeclaredNames of Block.

Static Semantics: VarDeclaredNames

TryStatement : try Block Catch

1. Let names be VarDeclaredNames of Block.

2. Append to names the elements of the VarDeclaredNames of Catch.
3. Return names.

TryStatement : try Block Finally

1. Let names be VarDeclaredNames of Block.
2. Append to names the elements of the VarDeclaredNames of Finally.
3. Return names.

TryStatement : try Block Catch Finally

Let names be VarDeclaredNames of Block.

Append to names the elements of the VarDeclaredNames of Catch.
Append to names the elements of the VarDeclaredNames of Finally.
Return names.

PR

Catch : catch (CatchParameter) Block
1. Return the VarDeclaredNames of Block.
Runtime Semantics
Runtime Semantics: Binding Initialisation
With arguments value and environment.
NOTE _undefined is passed for environment to indicate that a PutValue operation should be used to assign the
initialisation value. This is the case for var statements formal parameter lists of non-strict functions. In those cases a

lexical binding is hosted and preinitialized prior to evaluation of its initializer.

CatchParameter: BindingPattern

4. Let exceptionObj be ToObject(value).

5. ReturnlfAbrupt(exceptionObyj).

6. Return the result of performing Binding Initialisation for BindingPattern passing exceptionObj and
environment as the arguments.

Runtime Semantics: Catch Clause Evaluation
with parameter thrownValue

Catch : catch (CatchParameter) Block

1. LetoldEnv be the running execution context’s LexicalEnvironment.

2. Let catchEnv be the result of calling NewDeclarativeEnvironment passing oldEnv as the argument.

3. For each element argName of the BoundNames of CatchParameter, do
a. Call the CreateMutableBinding concrete method of catchEnv passing argName as the argument.

150 © Ecma International 2012

»ecma

4. Let status be the result of performing Binding Initialisation for CatchParameter passing thrownValue and
catchEnv as arguments.

ReturnIfAbrupt(status).

Set the running execution context’s LexicalEnvironment to catchEnv.

Let B be the result of evaluating Block.

Set the running execution context’s LexicalEnvironment to oldEnv.

Return B.

©oNo G

NOTE No matter how control leaves the Block the LexicalEnvironment is always restored to its former state.
Runtime Semantics: Evaluation

TryStatement : try Block Catch

1. Let B be the result of evaluating Block.

2. If B.[[type]] is not throw, return B.

3. Return the result of performing Catch Clause Evaluation of Catch with parameter B.[[value]].

TryStatement : try Block Finally

Let B be the result of evaluating Block.
Let F be the result of evaluating Finally.
If F.[[type]] is normal, return B.

Return F.

PO E

TryStatement : try Block Catch Finally

1. Let B be the result of evaluating Block.
2. If B.[[type]] is throw, then
a. Let C be the result of performing Catch Clause Evaluation of Catch with parameter B.value.
3. Else, B.[[type]] is not throw,
a. LetCbeB.
4. Let F be the result of evaluating Finally.
5. If F.[[type]] is normal, return C.
6. Return F.

12.15 The debugger Sstatement

Syntax

DebuggerStatement :
debugger ;

Runtime Semantics: Evaluation

NOTE Evaluating the DebuggerStatement production may allow an implementation to cause a breakpoint when run
under a debugger. If a debugger is not present or active this statement has no observable effect.

The production DebuggerStatement : debugger ; is evaluated as follows:

1. Ifan implementation defined debugging facility is available and enabled, then
a. Perform an implementation defined debugging action.
b. Let result be an implementation defined Completion value.

2. Else
a. Letresult be NormalCompletion(empty).

3. Return result.

© Ecma International 2012 151

secma

13 Functions and Generators
13.1 Function Definitions

Syntax

FunctionDeclaration :
function Bindingldentifier (FormalParameterList) { FunctionBody }

FunctionExpression :
function Bindingldentifierop: (FormalParameterList) { FunctionBody }

FormalParameterList :
[empty]
FunctionRestParameter
FormalsList
FormalsList, FunctionRestParameter

FormalsList :
FormalParameter
FormalsList , FormalParameter

FunctionRestParameter :
. . . Bindingldentifier

FormalParameter :
BindingElement

FunctionBody :
StatementListopt

Static Semantics
Static Semantics: Early Errors

FunctionDeclaration : function Bindingldentifier (FormalParameterList) { FunctionBody }
and
FunctionExpression : function Bindingldentifiery,: (FormalParameterList) { FunctionBody }

e It is a Syntax Error if any element of the BoundNames of FormalParameterList also occurs in the
LexicallyDeclaredNames of FunctionBody.
e ltis a Syntax Error if FunctionBody Contains YieldExpression.

FunctionBody : StatementList

e ltis a Syntax Error if the LexicallyDeclaredNames of StatementList contains any duplicate entries.
e It is a Syntax Error if any element of the LexicallyDeclaredNames of StatementList also occurs in the
VarDeclaredNames of StatementList.

FormalParameterList : FormalsList

e |tis a Syntax Error if FormalParameterList Contains YieldExpression.

e |t is a Syntax Error if BoundNames of FormalsList contains any duplicate elements and either
FormalsList Contains BindingPattern or FormalsList Contains Initialiser.

e It is a Syntax Error if BoundNames of FormalsList contains either "eval” or "arguments” and either
FormalsList Contains BindingPattern or FormalsList Contains Initialiser.

FormalParameterList : FormalsList, FunctionRestParameter

152 © Ecma International 2012

»ecma

e ltis a Syntax Error if BoundNames of FormalsList contains any duplicate elements.
e |t is a Syntax Error if BoundNames of FormalsList contains any element of the BoundNames of
FunctionRestParameter.

FormalsList : FormalsList, FormalParameter

e |t is a Syntax Error if the source code matching this production is strict code and BoundNames of
FormalsList contains any element which is also contained in BoundNames of FormalParameter.

FunctionRestParameter : ... Bindingldentifier

e ltis a Syntax Error if the StringValue of the sole element of the BoundNames of Bindingldentifier is eval
Or arguments.

FormalParameter : BindingElement
e ltis a Syntax Error if BoundNames of BindingElement contains any duplicate elements.
Static Semantics: BoundNames
FunctionDeclaration : function Bindingldentifier (FormalParameterList)" { FunctionBody }
1. Return the BoundNames of Bindingldentifier.
FormalParameterList : [empty]
1. Return an empty List.
FormalParameterList : FormalsList , FunctionRestParameter
1. Let names be BoundNames of FormalsList.
2. Append to names the BoundNames of FunctionRestParameter.

3. Return names.

FormalsList : FormalsList , FormalParameter
1. Let names be BoundNames of FormalsList.
2. Append to names the elements of BoundNames of FormalParameter.
3. Return names.
Static Semantics: Contains
With parameter symbol.
FunctionDeclaration : function Bindingldentifier (FormalParameterList) { FunctionBody }
1. Return false.
FunctionExpression : function Bindingldentifierop: (FormalParameterList) { FunctionBody }
3. Return false.
NOTE Static semantic rules that depend upon substructure generally do not look into function definitions.
Static Semantics: ExpectedArgumentCount
FormalParameterList :

[empty]
FunctionRestParameter

© Ecma International 2012 153

secma

1. ReturnO.

FormalParameterList :
FormalsList , FunctionRestParameter

1. Return the ExpectedArgumentCount of FormalsList.

NOTE The ExpectedArgumentCount of a FormalParameterList is the number of FormalParameters to the left of either the
rest parameter or the first FormalParameter with an Initialiser. A FormalParameter without an initializer is allowed after the
first parameter with an initializer but such parameters are considered to be optional with undefined as their default value.

FormalsList : FormalParameter

1. If HaslInitialiser of FormalParameter is false return 0
2. Return1.

FormalsList : FormalsList, FormalParameter

1. Let count be the ExpectedArgumentCount of FormalsList.

2. If HaslInitialiser of FormalsList is true or Haslnitialiser of FormalParameter is true, then return count.
3. Return count+1.

Static Semantics: Haslnitialiser

FormalsList : FormalsList , FormalParameter

1. If HasInitialiser of FormalsList is true, then return true.
2. Return Haslnitialiser of FormalParameter.

Static Semantics: IsConstantDeclaration

FunctionDeclaration : function Bindingldentifier (FormalParameterList) { FunctionBody }
1. Return false.

Static Semantics: IsStrict

FunctionBody : StatementListop:

1. If this FunctionBody is contained in strict code or if StatementList is strict code, then return true.
Otherwise, return false.

Static Semantics:. LexicallyDeclaredNames

FunctionDeclaration : function Bindingldentifier (FormalParameterList) { FunctionBody }
1. Return the BoundNames of Bindingldentifier.

FunctionBody : [empty]

1. Return an empty List.

Static Semantics: VarDeclaredNames

FunctionDeclaration : function Bindingldentifier (FormalParameterList) { FunctionBody }

1. Return an empty List.

154 © Ecma International 2012

»ecma

FunctionBody : [empty]
1. Return an empty List.
Runtime Semantics
Runtime Semantics: Binding Initialisation

With parameters value and environment and optional parameter index.
NOTE When undefined is passed for environment it indicates that a PutValue operation should be used to assign the
initialisation value. This is the case for formal parameter lists of non-strict functions. In that case the formal parameter
bindings are preinitialized in order to deal with the possibility of multiple parameters with the same name.
FormalParameterList : [empty]
1. Return NormalCompletion(empty).

FormalParameterList : FunctionRestParameter

1. Return the result of performing Indexed Binding Initialisation for FunctionRestParameter using value, 0,
and environment as the arguments..

FormalParameterList : FormalsList

1. Return the result of performing Indexed Binding Initialisation for FormalsList using value, 0, and
environment as the arguments.

FormalParameterList : FormalsList , FunctionRestParameter.

1. Let restindex be the result-of performing Indexed Binding Initialisation for FormalsList using value, 0, and

environment as the arguments.

ReturnIfAbrupt(restindex).

3. Return the result of performing Indexed Binding Initialisation for FunctionRestParameter using value,
restindex, and environment as the‘arguments.

N

Runtime Semantics:.Indexed Binding Initialisation
With‘parameters array, nextindex, and environment.
FormalsList : FormalParameter

1. Let status be the result of performing Indexed Binding Initialisation for FormalParameter using array,
nextlndex, and environment as the arguments.

2. ReturnlfAbrupt(status).

3. Return nextindex + 1.

FormalsList : FormalsList , FormalParameter

1. Let lastindex be the result of performing Indexed Binding Initialisation for FormalsList using array,
nextlndex, and environment as the arguments.

ReturnIfAbrupt(lastindex).

3. Let status be the result of performing Indexed Binding Initialisation for FormalParameter using array,
lastindex, and environment as the arguments.

ReturnIfAbrupt(status).

Return lastindex + 1.

N

o s

© Ecma International 2012 155

ecimnd

FunctionRestParameter : . . . Bindingldentifier
1. Assert: array is a well formed arguments object and hence it has a valid integer valued "length"
property.
2. Let status be the result of calling the [[Get]] internal method of array with argument "length".
3. Let argumentsLength be status.[[value]].
4. Let A be the result of the abstract operation ArrayCreate (15.4) with argument 0.
5. Let n=0;
6. Repeat, while nextlndex < argumentsLength
a. Let P be ToString(nextindex).
b. Assert: array is a well formed arguments object, hence it must have a property P.
c. Letv be the result of calling the [[Get]] internal method of array passingP as the argument.
d. Call the [[DefineOwnProperty]] internal method of A with arguments ToString(n), Property Descriptor
{[[Value]l]: v.[[value]], [[Writable]]: true, [[Enumerable]]: true, [[Configurable]]: true}, and false.
e. Letn=n+l.
f. Let nextIndex = nextindex +1.
7. Return the result of performing Binding Initialisation for Bindingldentifier using A and environment as

arguments.

Runtime Semantics: Instantiate Function Declaration

FunctionDeclaration : function Bindingldentifier (FormalParameterList) { FunctionBody }

1.

2.
3.

4.
5

If the FunctionDeclaration is contained in strict code or if its FunctionBody is strict code, then let strict be true.
Otherwise let strict be false.

Let scope be the LexicalEnvironment of the running execution context.

Let F be the result of performing the FunctionCreate . abstract operation with arguments Normal,
FormalParameterList, FunctionBody, scope, and strict.

Perform the abstract operation MakeConstructor with argument F.

Return F.

Runtime Semantics: Evaluation

FunctionDeclaration : funetion Bindingldentifier (FormalParameterList) { FunctionBody }

1.

Return (normal, empty, empty).

FunctionExpression : function (FormalParameterList) { FunctionBody }

1.

o s

If the FunctionExpression is contained in strict code or if its FunctionBody is strict code, then let strict be true.
Otherwise let strict be false.

Let scope be the LexicalEnvironment of the running execution context.

Let closure be the result’ of performing the FunctionCreate abstract operation with arguments Normal,
FormalParameterList, FunctionBody, scope, and strict.

Perform the abstract operation MakeConstructor with argument closure.

Return closure.

FunctionExpression : function Bindingldentifier (FormalParameterList) { FunctionBody }

1.

o

o ks w

If the FunctionExpression is contained in strict code or if its FunctionBody is strict code, then let strict be true.
Otherwise let strict be false.

Let funcEnv be the result of calling NewDeclarativeEnvironment passing the running execution context’s Lexical
Environment as the argument

Let envRec be funcEnv’s environment record.

Let name be StringValue of Bindingldentifier.

Call the CreatelmmutableBinding concrete method of envRec passing name as the argument.

Let closure be the result of performing the FunctionCreate abstract operation with arguments Normal,
FormalParameterList, FunctionBody, funcEnv, and strict.

Perform the abstract operation MakeConstructor with argument closure.

156 © Ecma International 2012

»ecma

8. Call the InitializeBinding concrete method of envRec passing name and closure as the arguments.
9. Return NormalCompletion(closure).

NOTE 1 The Bindingldentifier in a FunctionExpression can be referenced from inside the FunctionExpression's
FunctionBody to allow the function to call itself recursively. However, unlike in a FunctionDeclaration, the Bindingldentifier in
a FunctionExpression cannot be referenced from and does not affect the scope enclosing the FunctionExpression.

NOTE 2 A prototype property is automatically created for every function defined using a FunctionDeclaration or
FunctionExpression, to allow for the possibility that the function will be used as a constructor.

FunctionBody : StatementListop:

1. The code of this FunctionBody is strict mode code if it is contained in strict mode code or if the Directive Prologue
(14.1) of its StatementList contains a Use Strict Directive or if any of the conditions in 10.1.1 apply. If the code of
this FunctionBody is strict mode code, StatementList is evaluated in the following steps as strict mode code.
Otherwise, StatementList is evaluated in the following steps as non-strict mode code.

2. If StatementList is present return the result of evaluating StatementList:

3. Else return NormalCompletion(undefined).

13.2 Arrow Function Definitions

Syntax
ArrowFunction :
ArrowParameters => ConciseBody

ArrowParameters :
Bindingldentifier
CoverParenthesizedExpressionAndArrowParameter List

ConciseBody :
[lookahead ¢ { { }] AssignmentExpression
{ FunctionBody }

Supplemental Syntax

When processing the production ArrowParameters : CoverParenthesizedExpressionAndArrowParameterList the
following grammar is used to refine the interpretation of CoverParenthesizedExpressionAndArrowParameterList.

ArrowFormalParameterList :
(FormalParameterList)

Static Semantics
Static Semantics: Early Errors
ArrowFunction : ArrowParameters => ConciseBody
e |t is a Syntax Error if any element of the LexicallyDeclaredNames of ConciseBody also occurs in the
VarDeclaredNames of ConciseBody.
e |t is a Syntax Error if any element of the BoundNames of ArrowParameters also occurs in the
LexicallyDeclaredNames of ConciseBody.
e |tis a Syntax Error if ConciseBody Contains YieldExpression.

ArrowParameters : Bindingldentifier

e |tis a Syntax Error if the StringValue of the sole element of the BoundNames of Bindingldentifier is eval
Or arguments.

© Ecma International 2012 157

secma

ArrowParameters : CoverParenthesizedExpressionAndArrowParameterList

e |tis a Syntax Error if the lexical token sequence matched by
CoverParenthesizedExpressionAndArrowParameterList cannot be parsed with no tokens left over using
ArrowFormalParameterList as the goal symbol.

e All Early Errors rules for FormalParameterList and its derived productions also apply to the
CoveredFormalsList of CoverParenthesizedExpressionAndArrowParameterList.

Static Semantics: BoundNames

ArrowParameters : CoverParenthesizedExpressionAndArrowParameterList

1. Let formals be CoveredFormalsList of CoverParenthesizedExpressionAndArrowParameterList.
2. Return the BoundNames of formals.

Static Semantics: Contains
With parameter symbol.
ArrowFunction : ArrowParameters => ConciseBody

1. If ArrowParameters Contains symbol is true, return true;
2. Return ConciseBody Contains symbol .

ArrowParameters : CoverParenthesizedExpressionAndArrowParameterList

1. Let formals be CoveredFormalsList of CoverParenthesizedExpressionAndArrowParameterList.
2. Return formals Contains symbol.

NOTE Contains is used to detect yield and super usage within an ArrowFunction.
Static Semantics: CoveredFormalsList

CoverParenthesizedExpressionAndArrowParameters:
(Expression)

()
(... ldentifier)
(Expression , ... Identifier)

1. Return the result of parsing the lexical token stream matched by
CoverParenthesizedExpressionAndArrowParameters using ArrowFormalParameterList as the goal symbol.

Static Semantics: ExpectedArgumentCount

ArrowParameters : Bindingldentifier

1. Return1.

ArrowParameters : CoverParenthesizedExpressionAndArrowParameterList

1. Let formals be CoveredFormalsList of CoverParenthesizedExpressionAndArrowParameterList.
2. Return the ExpectedArgumentCount of formals.

Static Semantics: LexicallyDeclaredNames
ConciseBody : [lookahead ¢ { { }] AssignmentExpression

1. Return an empty List.

158 © Ecma International 2012

»ecma

Runtime Semantics
Runtime Semantics: Binding Initialisation

With parameters value and environment and optional parameter index.
NOTE When undefined is passed for environment it indicates that a PutValue operation should be used to assign the
initialisation value. This is the case for formal parameter lists of non-strict functions. In that case the formal parameter
bindings are preinitialized in order to deal with the possibility of multiple parameters with the same name.

ArrowParameters : Bindingldentifier

1. Return the result of performing Indexed Binding Initialisation for Bindingldentifier using value, 0, and
environment as the arguments.

ArrowParameters : CoverParenthesizedExpressionAndArrowParameterList

1. Letformals be CoveredFormalsList of CoverParenthesizedExpressionAndArrowParameterList.

2. Return the result of perfroming Binding initialization of formals with arguments value and environment and
optional argument index, if index was passed to this routine.

Runtime Semantics: Evaluation

ArrowFunction : ArrowParameters => ConciseBody

=

Let strict be true.

Let scope be the LexicalEnvironment of the running execution context.

3. Let closure be the result of performing the FunctionCreate abstract operation with arguments Arrow,
ArrowParameters, ConciseBody, scope, and strict.

4. Return closure.

N

ConciseBody : [lookahead ¢ { { }] AssignmentExpression

1. The code of this ConciseBody is strictimode code if it is'contained in strict mode code or if any of the conditions in
10.1.1 apply If the code of this<ConciseBody is-strict mode code, AssignmentExpression is evaluated in the
following steps as strict mode. code. Otherwise, AssignmentExpression is evaluated in the following steps as non-
strict mode_code:

Let exprRef be the result of evaluating AssignmentExpression.

Let exprValue be GetValue(exprRef).

ReturnlfAbrupt(exprValue).

Return Completion {[[type]]: return, [[value]]: exprValue, [[target]]: empty}.

arwn

13.3 Method Definitions

Syntax

MethodDefinition :
PropertyName (FormalParameterList) { FunctionBody }
* PropertyName (FormalParameterList) { FunctionBody }
get PropertyName () { FunctionBody }
set PropertyName (PropertySetParameterList) { FunctionBody }

PropertySetParameterList :

Bindingldentifier
BindingPattern

Static Semantics

Early Errors

© Ecma International 2012 159

secma

MethodDefinition : PropertyName (FormalParameterList) { FunctionBody }
and
MethodDefinition : * PropertyName (FormalParameterList) { FunctionBody }

e It is a Syntax Error if any element of the LexicallyDeclaredNames of FormalParameterList also occurs
in the VarDeclaredNames of FunctionBody.

e It is a Syntax Error if any element of the BoundNames of FormalParameterList also occurs in the
LexicallyDeclaredNames of FunctionBody.

MethodDefinition : PropertyName (FormalParameterList) { FunctionBody }

e ltis a Syntax Error if FunctionBody Contains YieldExpression.

MethodDefinition : * PropertyName (FormalParameterList) { FunctionBody }

e ltis a Syntax Error if FunctionBody Contains YieldExpression is false.

MethodDefinition : get PropertyName () { FunctionBody }

e ltis a Syntax Error if FunctionBody Contains YieldExpression.

MethodDefinition : set PropertyName (PropertySetParameterList) < { FunctionBody }

e It is a Syntax Error if any element of<the BoundNames of PropertySetParameterList also occurs in the
LexicallyDeclaredNames of FunctionBody.

e Itis a Syntax Error if PropertySetParameterList Contains YieldExpression.

e ltis a Syntax Error if FunctionBody Contains YieldExpression.

PropertySetParameterList : BindingPattern
e ltis a Syntax Errorif BoundNames of BindingPattern contains any duplicate elements.
Static Semantics: ExpectedArgumentCount
PropertySetParameterList : Bindingldentifier
1. Returnd.
PropertySetParameterList : BindingPattern
1. Return 1.
Static Semantics: PropName
MethodDefinition :
PropertyName *(FormalParameterList) { FunctionBody }
* PropertyName (FormalParameterList) { FunctionBody }

get PropertyName () { FunctionBody }
set PropertyName (PropertySetParameterList) { FunctionBody }

1. Return PropName of PropertyName.

Static Semantics: ReferencesSuper

160 © Ecma International 2012

»ecma

MethodDefinition :
PropertyName (FormalParameterList) { FunctionBody }
* PropertyName (FormalParameterList) { FunctionBody }
get PropertyName () { FunctionBody }
set PropertyName (PropertySetParameterList) { FunctionBody }

1. Return FunctionBody Contains super.
Static Semantics: SpecialMethod
MethodDefinition : PropertyName (FormalParameterList) { FunctionBody }

1. Return false.

MethodDefinition :
* PropertyName (FormalParameterList) { FunctionBody }
get PropertyName () { FunctionBody }
set PropertyName (PropertySetParameterList) { FunctionBody }

1. Return true.
Runtime Semantics
Runtime Semantics: Property Definition Evaluation
With parameter object.
MethodDefinition : PropertyName (FormalParameterList) { FunctionBody }

Let propName be PropName of PropertyName.

Let strict be IsStrict of FunctionBody.

Let scope be the running‘execution context’s LexicalEnvironment.

Let needsSuperBinding be the result of FunctionBody Contains super.

If needsSuperBinding is false, then let needsSuperBinding be the result of FormalParameterList Contains super.

If needsSuperBinding, then

a. Let closure be the result of performing the FunctionCreate abstract operation with arguments Method,

FormalParameterList, FunctionBody, scope, and strict and with object as the homeObject optional
argument and propName as the methodName optional argument.

IR

7. Else
a. Let closure be the result of performing the FunctionCreate abstract operation with arguments Method,
FormalParameterList, FunctionBody, scope, and strict.

8. Let desc be the Property Descriptor{[[Value]]: closure, [[Writable]]: true, [[Enumerable]]: true, [[Configurable]]:
true}.

9. Let status be the result of calling the [[DefineOwnProperty]] internal method of object with arguments propName,
desc, and false.

10. ReturnlfAbrupt(status).

11. NormalCompletion(closure).

MethodDefinition : * PropertyName (FormalParameterList) { FunctionBody }

Let propName be PropName of PropertyName.

Let strict be IsStrict of FunctionBody.

Let scope be the running execution context’s LexicalEnvironment.

Let needsSuperBinding be the result of FunctionBody Contains super.

If needsSuperBinding is false, then let needsSuperBinding be the result of FormalParameterList Contains super.

If needsSuperBinding, then

a. Let closure be the result of performing the FunctionCreate abstract operation with arguments Method,

FormalParameterList, FunctionBody, scope, and strict and with object as the homeObject optional
argument and propName as the methodName optional argument.

o~ E

© Ecma International 2012 161

secma

7. Else
a. Let closure be the result of performing the FunctionCreate abstract operation with arguments Method,
FormalParameterList, FunctionBody, scope, and strict.

8. Let desc be the Property Descriptor{[[Value]]: closure, [[Writable]]: true, [[Enumerable]]: true, [[Configurable]]:
true}.

9. Let status be the result of calling the [[DefineOwnProperty]] internal method of object with arguments propName,
desc, and false.

10. ReturnlfAbrupt(status).

11. NormalCompletion(closure).

MethodDefinition : get PropertyName () { FunctionBody }

Let propName be PropName of PropertyName.

Let strict be IsStrict of FunctionBody.

Let scope be the running execution context’s LexicalEnvironment.

Let formalParameterList be the production FormalParameterList : [empty]

Let needsSuperBinding be the result of FunctionBody Contains super.

If needsSuperBinding, then

a. Let closure be the result of performing the FunctionCreate abstract operation with arguments Method,

formalParameterList, FunctionBody, scope, and strict and with object as the homeObject optional argument
and propName as the methodName optional argument.

oukhwnE

7. Else
a. Let closure be the result of performing the FunctionCreate abstract operation with arguments Method,
formalParameterList, FunctionBody, scope, and strict.
8. Let desc be the Property Descriptor {[[Get]]: closure, [[Enumerable]]: true, [[Configurable]]: true}
9. Let status be the result of calling the [[DefineOwnProperty]] internal method of object with arguments propName,
desc, and false.
10. ReturnlfAbrupt(status).
11. NormalCompletion(closure).

MethodDefinition : set PropertyName (PropertySetParameterList) { FunctionBody }

Let propName be PropName of PropertyName.

Let strict be IsStrict«of FunctionBody.

Let scope be the running execution context’s LexicalEnvironment.

Let needsSuperBinding be the result of FunctionBody Contains super.

If needsSuperBinding is false, then let needsSuperBinding be the result of PropertySetParameterList contains

super.

6. If needsSuperBinding, then

a. Let closure be the result of performing the FunctionCreate abstract operation with arguments Method,
PropertySetParameterList, FunctionBody, scope, and strict and with object as the homeObject optional
argument and propName as the methodName optional argument.

grpONDE

7. Else
a. Let closure be the'result of performing the FunctionCreate abstract operation with arguments Method,
PropertySetParameterList, FunctionBody, scope, and strict.
8. Let desc be the Property Descriptor {[[Set]]: closure, [[Enumerable]]: true, [[Configurable]]: true}
9. Let status be the result of calling the [[DefineOwnProperty]] internal method of object with arguments propName,
desc, and false.
10. ReturnlfAbrupt(status).
11. NormalCompletion(closure).

f13.4 Generator Definitions

Syntax

GeneratorDeclaration :
function * Bindingldentifier (FormalParameterList) { FunctionBody }

GeneratorExpression :
function * Bindingldentifierqy (FormalParameterList) { FunctionBody }

162 © Ecma International 2012

»ecma

YieldExpression :
yield YieldDelegatoropt [Lexical goal InputElementRegExp] AssignmentExpression

YieldDelegator :
*

Static Semantics
Static Semantics: Early Errors
GeneratorDeclaration : function * Bindingldentifier (FormalParameterList) { FunctionBody }
ggﬂeratorExpression : function * Bindingldentifiery,: (FormalParameterList)) { FunctionBody }
e |t is a Syntax Error if any element of the BoundNames of FormalParameterList also occurs in the
LexicallyDeclaredNames of FunctionBody.
e |tis a Syntax Error if FunctionBody Contains YieldExpressionis false.
YieldExpression : yield YieldDelegatorep: AssignmentExpression
e |tis a Syntax Error if any AssignmentExpression Contains YieldExpression.
Static Semantics: BoundNames
GeneratorDeclaration : function * Bindingldentifier. (FormalParameterList) { FunctionBody }
1. Return the BoundNames of Bindingldentifier.
Static Semantics: Contains
With parameter symbol.
GeneratorDeclaration : funetion * Bindingldentifier (FormalParameterList) { FunctionBody }
1. Return false.
GeneratorExpression : function * Bindingldentifieroy: (FormalParameterList) { FunctionBody }
1. Return false.
NOTE Static semantic rules that depend upon substructure generally do not look into function definitions.
Static Semantics: IsConstantDeclaration
GeneratorDeclaration: funetion * Bindingldentifier (FormalParameterList) { FunctionBody }
1. Return false.
Static Semantics: LexicallyDeclaredNames
GeneratorDeclaration : function * Bindingldentifier (FormalParameterList) { FunctionBody }
1. Return the BoundNames of Bindingldentifier.
Static Semantics: VarDeclaredNames

GeneratorDeclaration : function * Bindingldentifier (FormalParameterList) { FunctionBody }

1. Return an empty List.

© Ecma International 2012 163

secma

Runtime Semantics
13.5 Class Definitions

Syntax

ClassDeclaration:
class Bindingldentifier ClassTail

ClassExpression :
class Bindingldentifiery,: ClassTail

ClassTail :
ClassHeritageop: { ClassBodyop: }

ClassHeritage:
extends AssignmentExpression

ClassBody :
ClassElementList

ClassElementList :
ClassElement
ClassElementList ClassElement

ClassElement :
MethodDefinition

’

Static Semantics
Static Semantics: Early Errors
ClassDeclaration : class Bindingldentifier ClassTail
and
ClassExpression : class Bindingldentifier ClassTail
e |tis.a Syntax Error if BoundNames of Bindingldentifier contains either "eval” or "arguments”
ClassBody : ClassElementList
e |t is a Syntax Error if PropertyNameList of ClassElementList contains any duplicate entries, unless the
following condition is true for each duplicate entry: The duplicated entry occurs exactly twice in the
list and one occurrence was obtained from a get accessor MethodDefinition and the other occurrence
was obtained from a'set accessor MethodDefinition.

ClassElement : MethodDefinition

e |t is a Syntax Error if PropName of MethodDefinition is "constructor” and SpecialMethod of
MethodDefinition is true.

Static Semantics: BoundNames
ClassDeclaration: class Bindingldentifier ClassTail
1. Return the BoundNames of Bindingldentifier.

Static Semantics: ConstructorMethod

164 © Ecma International 2012

»ecma

ClassBody : ClassElementList

1. Let list be MethodDefinitions of ClassElementList.
2. For each MethodDefinition min list, do

a. If PropName of mis "constructor”, return m.
3. Return empty.

NOTE Early Error rules ensure that there is only one method definition named “constructor” and that it isn't an

accessor property or generator definition.
Static Semantics: Contains
With parameter symbol.

ClassTail : ClassHeritageop: { ClassBody }

1. If symbol is ClassBody, return true.

2. If ClassHeritage is not present, return false.

3. If symbol is ClassHeritage, return true.

4. Return the result of Contains for ClassHeritage with argument symbol.

NOTE Static semantic rules that depend upon substructure generally do not look into class bodies.

Static Semantics: IsConstantDeclaration
ClassDeclaration: class Bindingldentifier ClassTail
1. Return false.

Static Semantics: LexicallyDeclaredNames
ClassDeclaration: class Bindingldentifier ClassTail
1. Return the BoundNames of Bindingldentifier.
Static Semantics: MethodDefinitions
ClassElementList : ClassElement

1. If.PropName of ClassElement is empty, return a new empty List.
2. Return a List containing ClassElement,

ClassElementList : ClassElementList ClassElement

Let list be MethodDefinitions of ClassElementList.
If PropName of ClassElement is empty, return list.
Append ClassElement to the end of list.

Return list.

©®No o

Static Semantics: PropName
ClassElement : ;

1. Return empty.

Static Semantics: PropertyNameList

ClassElementList : ClassElement

© Ecma International 2012

165

secma

1. If PropName of ClassElement is empty, return a new empty List.
2. Return a List containing PropName of ClassElement.

ClassElementList : ClassElementList ClassElement

Let list be PropertyNameList of ClassElementList.

If PropName of ClassElement is empty, return list.
Append PropName of ClassElement to the end of list.
Return list.

PR

Static Semantics: VarDeclaredNames

ClassDeclaration: class Bindingldentifier ClassTail

1. Return an empty List.

Runtime Semantics

Runtime Semantics: ClassDefinitionEvaluation
With parameter className.

ClassTail : ClassHeritageop: { ClassBody }

1. If ClassHeritageop: is not present, then
a. let protoParent be the intrinsic object %ObjectPrototype%.
b. Let constructorParent be the intrinsic object %FunctionPrototype%.
2. Else
Let superclass be the result of evaluating ClassHeritage.
ReturnIfAbrupt(superclass).
c. Ifsuperclass is null; then
i. Let protoParent be null.
ii. Let constructorParent be the intrinsic object %FunctionPrototype%.
d. Else if Type(superclass) is not Object, throw a TypeError exception.
e. Else if superclass does not-have a [[Construct]] internal property, then
i. Let protoParent be superclass.
iis Let constructorParent be the intrinsic object %FunctionPrototype%.
f. Else
i. Let protoParent be.the result of calling the [[Get]] internal method of superclass passing
"prototype" asthe argument.
ii. ReturnIfAbrupt(protoParent).
iii. If Type(protoParent) is neither Object or Null, throw a TypeError exception.
iv. Let constructorParent be superclass.
Let proto be the result of the abstract operation ObjectCreate with argument protoParent.
Let lex be the LexicalEnvironment of the running execution context.
If className is not undefined, then
a. Let scope be the result of calling NewDeclarativeEnvironment passing lex as the argument
b. LetenvRec be scope’s environment record.
c. Call the CreatelImmutableBinding concrete method of envRec passing className as the argument.
d. Set the running execution context’s LexicalEnvironment to scope.
Let constructor be ConstructorMethod of ClassBody.
7. If constructor is empty, then
a. Let constructor be the result of parsing the String "constructor(...
args) {super.constructor(...args) ;}" using the syntactic grammar with the goal symbol
MethodDefinition.
8. Ifthe ClassTail is contained in strict code or if constructor is strict code, then let strict be true. Otherwise let strict
be false.
9. Let F be the result of performing Property Definition Evaluation for constructor with argument proto.

oo

a s w

o

166 © Ecma International 2012

»ecma

10. Perform the abstract operation MakeConstructor with argument F and false as the optional writablePrototype
argument and proto as the optional prototype argument.
11. Let desc be the Property Descriptor{[[Enumerable]]: false, [[Writable]]: true, [[Configurable]]: true}.
12. Call the [[DefineOwnProperty]] internal method of proto with arguments "constructor", desc, and false.
13. Let methods be MethodDefinitions of ClassBody.
14. For each MethodDefinition m in order from methods
a. Perform Property Definition Evaluation for m with argument proto.
15. Set the running execution context’s LexicalEnvironment to lex.
16. Return F.

Runtime Semantics: Evaluation
ClassDeclaration: class Bindingldentifier ClassTail

Let value be the result of ClassDefinitionEvaluation of ClassTail with'argument undefined.
ReturnlfAbrupt(value).

Let env be the running execution context’s LexicalEnvironment.

Let status be the result of performing Binding Initialisationfor Bindingldentifier passing value and env as
the arguments.

5. ReturnlfAbrupt(status).

6. Return NormalCompletion(empty).

PobPE

NOTE The argument to ClassDefinitionEvaluation controls whether or not the class that is defined with a
Bindingldentifier has a local binding to the identifier. Only a ClassExpression gets a local name binding of its name. A
ClassDeclaration never has such a binding. This maintains the parallel with FunctionExpression and FunctionDeclaration.

ClassExpression: class Bindingldentifierop: ClassTail

If Bindingldentifieroy is not present, then let className be undefined.

Else, let className be StringValue.of Bindingldentifier.

Let value be the result of ClassDefinitionEvaluation of ClassTail with argument className.
ReturnIfAbrupt(value).

Return NormalCompletion(value).

agbrwdE

13.6 Creating Function Objects-and Constructors

The abstract operation FunctionCreate requires the arguments: kind which is one of (Normal, Method, Arrow),
an parameter list specified by FormalParameterList, a body specified by FunctionBody, a Lexical Environment
specified by Scope, a Boolean flag Strict, and optionally, an object functionPrototype, an object homeObject and a
string methodName. FunctionCreate performs the following steps:

Create a. new native ECMAScript object and let F be that object.
Set all the internal methods, except for [[GetProperty]], of F as described in 8.12.
Add the [[NativeBrand]] internal property with value NativeFunction to F.
If the functionPrototype argument was not provided,then
a. Let functionPrototype be the intrinsic object %FunctionPrototype%.
5. Set the [[Prototype]] internal property of F to functionPrototype..
6. Set the [[GetProperty]] internal property of F as described in 15.3.5.4.
7
8

PoONPE

Set the [[Call]] internal property of F as described in 13.5.1.

. Set the [[Scope]] internal property of F to the value of Scope.
9. Set the [[FormalParameters]] internal property of F to FormalParameterList. .
10. Set the [[Code]] internal property of F to FunctionBody.
11. Set the [[Extensible]] internal property of F to true.
12. Set the [[Realm]] internal property of F to the running execution context’s Realm.
13. If the homeObject argument was provided, set the [[Home]] internal property of F to homeObject.
14. 1f the methodName argument was provided, set the [[MethodName]] internal property of F to methodName.
15. Ifkind is Arrow, then set the [[ThisMode]] internal property of F to lexical.
16. Else if Strict is true, then set the [[ThisMode]] internal property of F to strict.
17. Else set the [[ThisMode]] internal property of F to global.
18. Let len be the ExpectedArgumentCount of FormalParameterList.

© Ecma International 2012 167

secma

19. Call the [[DefineOwnProperty]] internal method of F with arguments "length", Property Descriptor {[[Value]]:
len, [[Writable]]: false, [[Enumerable]]: false, [[Configurable]]: false}, and false.
20. Ifkind is Normal and Strict is true, then
a. Letthrower be the [[ThrowTypeError]] function Object (13.5.3).
b. Call the [[DefineOwnProperty]] internal method of F with arguments "caller", PropertyDescriptor
{[[Get]]: thrower, [[Set]]: thrower, [[Enumerable]]: false, [[Configurable]]: false}, and false.
c. Call the [[DefineOwnProperty]] internal method of F with arguments "arguments", PropertyDescriptor
{[[Get]]: thrower, [[Set]]: thrower, [[Enumerable]]: false, [[Configurable]]: false}, and false.
21. Set the [[Strict]] internal property of F to Strict.
22. Return F.

The abstract operation MakeConstructor requires a Function argument F and optionally, a Boolean
writablePrototype and an object prototype. If prototype is provided it is<assume to already contain a
"constructor" whose value is F. It converts F into a constructor by performs the following steps:

1. LetinstallNeeded be false.
2. Ifthe prototype argument was not provided,then
a. LetinstallNeeded be true.
b. Let prototype be the result of the abstract operation ObjectCreate (15.2).
3. Ifthe writablePrototype argument was not provided,then
a. Let writablePrototype be true.
Set the [[Construct]] internal property of F as described in 13.5.2.
Set the [[HaslInstance]] internal property of F as described in 15.3.5.3.
If installNeeded, then
a. Call the [[DefineOwnProperty]] internal method of prototype with arguments "constructor", Property
Descriptor {[[Value]]: F, [[Writable]]: writablePrototype, " [[Enumerable]]: false, [[Configurable]]:
writablePrototype }, and false.
7. Call the [[DefineOwnProperty]] internal method of F with arguments "prototype", Property Descriptor
{[[alue]]: prototype , [[Writable]]: writablePrototype , [[Enumerable]]: false, [[Configurable]]: false}, and false.
8. Return.

o ok

13.6.1 [[Call]]

The [[Call]] internal method. for a Function object F is called with parameters thisArgument and argumentsList, a
List of ECMAScript values. The following steps are taken:

Let callerContext be the running execution context.
If, callerContext is not.already suspended, then Suspend callerContext.
Let calleeContext be a new ECMAScript Code execution context.
Set calleeContext’s Realm to the value of F’s [[Realm]] internal property
Let thisMode be the value of F’s [[ThisMode]] internal property.
If thisMode is lexical, then
a. Let localEnv be the result of calling NewDeclarativeEnvironment passing the value of the [[Scope]]
internal property of F as the argument.

ourwhE

7. Else,
a. If thisMode is strict, set thisValue to thisArgument.
b. Else
i if thisArgument is null or undefined, set thisValue to %GlobalObject%.
il Else if Type(thisArgument) is not Object, set the thisValue to ToObject(thisArgument).
iii. Else set the thisValue to thisArgument.
c. LetlocalEnv be the result of calling NewMethodEnvironment passing F and thisValue as the
arguments.
8. Set the LexicalEnvironment of calleeContext to localEnv.
9. Set the VariableEnvironment of calleeContext to localEnv.
10. Push calleeContext on to the execution context stack; calleeContext is now the running execution context.
11. Let status be the result of performing Function Declaration Binding Instantiation using the function F,
argumentsList , and localEnv as described in 10.5.3.
12. If status is an abrupt completion, then

168 © Ecma International 2012

/

13.
14.

15.
16.

ecna

a. Remove calleeContext from the execution context stack and restore callerContext as the running
execution context.

b. Return status.
Let result be the result of evaluating the FunctionBody that is the value of F's [[Code]] internal property.
Remove calleeContext from the execution context stack and restore callerContext as the running execution
context.
If result.type is return then return NormalCompletion(result.[[value]]).
Return result.

13.6.2 [[Construct]]

The [[Construct]] internal method for a Function object F is called with a single parameter argumentsList which
is a possibly empty List of ECMAScript values. The following steps are taken:

aogrwnE

No

Let proto be the value of calling the [[Get]] internal property of F with argument "prototype".
ReturnlfAbrupt(proto).

If Type(proto) is Object, let obj be the result of the abstract operation ObjectCreate with argument proto.

Else, let obj be the result of the abstract operation ObjectCreate.

Let result be the result of calling the [[Call]] internal property ofF, providing obj as the this value and providing the
argument list passed into [[Construct]] as args.

ReturnlfAbrupt(result).

If Type(result) is Object then return result.

Return NormalCompletion(obj).

13.6.3 The [[ThrowTypeError]] Function Object

The [[ThrowTypeError]] object is a unique function object that is defined once as follows:

N~ WDNE

©

10.
11.

Create a new native ECMAScript object and let F be that object.

Set all the internal methods of F as described in 8.12.

Add the [[NativeBrand]] internal property with value NativeFunction to F.

Set the [[Prototype]] internal property of F to the standard built-in Function prototype object as specified in 15.3.3.1.
Set the [[Call]] internal property of F as described in 13.6.1.

Set the [[Scope]] internal property of F to the Global Environment.

Set the [[FormalParameters]] internal property of F to the FormalParameterList : [empty] production.

Set the [[Code]] internal property of F to be a FunctionBody that unconditionally throws a TypeError exception and
performs no other action.

Call the [[DefineOwnProperty]] internal method of F with arguments "length", Property Descriptor {[[Value]]: O,
[[Writable]]: false, [[Enumerable]]: false, [[Configurable]]: false}, and false.

Set the [[Extensible]] internal property of F to false.

Let [[ThrowTypeError]] be F.

13.7 Tail Position Calls

14 Programs and Modules

Syntax

Program :

ProgramBodypt

ProgramBody :

StatementList

Static Semantics: Early Errors

ProgramBody : StatementList

e Itis a Syntax Error if StatementList Contains super.
e ltis a Syntax Error if StatementList Contains YieldExpression.

© Ecma International 2012 169

secma

Runtime Semantics

Runtime Semantics: Program Evaluation
With argument realm.

Program : ProgramBodyopt

1. The code of this Program is strict mode code if the Directive Prologue (14.1) of its ProgramBody contains a
Use Strict Directive or if any of the conditions of 10.1.1 apply. If the code of this Program is strict mode
code, ProgramBody is evaluated in the following steps as strict mode code. Otherwise ProgramBody is
evaluated in the following steps as non-strict mode code.
If ProgramBody is not present, return NormalCompletion(empty).
Let progCxt be a new execution context.
Set the progCxt’s Realm to realm.
Set the progCxt’s VariableEnvironment to realm.[[globalEnv]].
Set the progCxt’s LexicalEnvironment to realm.[[globalEnv]].
Push progCxt on to the execution context stack; progCxt is now the running execution context.
If ProgramBody is present, then
a. Perform Global Binding Instantiation as described in 10.5.x using the global code.
Let result be the result of evaluating ProgramBody.
10. Suspend progCxt and remove it from the execution context stack. The stack is now empty and there is no
running execution context.
11. Return result.

N~ wWN

©

NOTE The processes for initiating the evaluation of a Program and for dealing with the result of such an evaluation
are defined by an ECMAScript implementation and not by this specification.

14.1 Directive Prologues and the Use Strict Directive

A Directive Prologue is the dongest sequence of ExpressionStatement productions occurring as the initial
StatementListltem productions of a ProgramBody or FunctionBody and where each ExpressionStatement in the
sequence consists entirely of a StringLiteral token followed a semicolon. The semicolon may appear explicitly
or may be inserted by automatic semicolon insertion. A Directive Prologue may be an empty sequence.

A Use Strict Directive is an ExpressionStatement in a Directive Prologue whose StringLiteral is either the exact
character sequences "use strict" or 'use strict'. A Use Strict Directive may not contain an
EscapeSequence or LineContinuation.

A Directive Prologue may contain more than one Use Strict Directive. However, an implementation may issue
a warning if this occurs.

NOTE The ExpressionStatement productions of a Directive Prologue are evaluated normally during evaluation of the
containing production. Implementations may define implementation specific meanings for ExpressionStatement productions
which are not a Use Strict Directive and which occur in a Directive Prologue. If an appropriate notification mechanism
exists, an implementation should issue a warning if it encounters in a Directive Prologue an ExpressionStatement that is not
a Use Strict Directive or which does not have a meaning defined by the implementation.

15 Standard Built-in ECMAScript Objects

There are certain built-in objects available whenever an ECMAScript program begins execution. One, the
global object, is part of the lexical environment of the executing program. Others are accessible as initial
properties of the global object.

Unless specified otherwise, a built-in object has the [[NativeBrand]] internal property with value NativeFunction

if that built-in object has a [[Call]] internal property. Unless specified otherwise, the [[Extensible]] internal
property of a built-in object initially has the value true.

170 © Ecma International 2012

»ecma

Many built-in objects are functions: they can be invoked with arguments. Some of them furthermore are
constructors: they are functions intended for use with the new operator. For each built-in function, this
specification describes the arguments required by that function and properties of the Function object. For each
built-in constructor, this specification furthermore describes properties of the prototype object of that
constructor and properties of specific object instances returned by a new expression that invokes that
constructor.

Unless otherwise specified in the description of a particular function, if a function or constructor described in
this clause is given fewer arguments than the function is specified to require, the function or constructor shall
behave exactly as if it had been given sufficient additional arguments, each such argument being the
undefined value.

Unless otherwise specified in the description of a particular function, if a function or constructor described in
this clause is given more arguments than the function is specified to allow; the extra arguments are evaluated
by the call and then ignored by the function. However, an implementation may define implementation specific
behaviour relating to such arguments as long as the behaviour is not the throwing of a TypeError exception
that is predicated simply on the presence of an extra argument.

NOTE Implementations that add additional capabilities to the<set of built-in functions are encouraged to do so by
adding new functions rather than adding new parameters to existing functions.

Every built-in function and every built-in constructor has the Function prototype object, which is the initial value
of the expression Function.prototype (15.3.4), as the value of its [[Prototype]] internal property.

Unless otherwise specified every built-in prototype. object has the Object prototype object, which is the initial
value of the expression Object.prototype (15.2.4), as the value of its [[Prototype]] internal property,
except the Object prototype object itself.

None of the built-in functions described in this clause that are not constructors shall implement the
[[Construct]] internal method unless otherwise specified in the description of a particular function. The
behavior specified in this clause for each built-in function is the specification of the [[Call]] internal method
behavior for that function. <None of the built-in functions described in this clause shall have a prototype
property unless otherwise specified in the description of a particular function.

This clause generally describes distinct behaviours for when a constructor is “called as a function” and for
when it is “called as part of a.new expression”. The “called as a function” behaviour corresponds to the
invocation of the constructor’'s [[Call]] internal method and the “called as part of a new expression” behaviour
corresponds to the invocation of the constructor’s [[Construct]] internal method.

Every built-in Function object described in this clause—whether as a constructor, an ordinary function, or
both—has a 1ength property whose value is an integer. Unless otherwise specified, this value is equal to the
largest number of named arguments shown in the subclause headings for the function description, including
optional parameters.

NOTE For example, the Function object that is the initial value of the s1ice property of the String prototype object is

described under the subclause heading “String.prototype.slice (start, end)” which shows the two named arguments start
and end; therefore the value of the 1ength property of that Function object is 2.

In every case, the length property of a built-in Function object described in this clause has the attributes
{ [[Writable]]: false, [[Enumerable]]: false, [[Configurable]]: false }. Every other property described in this
clause has the attributes { [[Writable]]: true, [[Enumerable]]: false, [[Configurable]]: true } unless otherwise
specified.

15.1 The Global Object

The unique global object is created before control enters any execution context.

© Ecma International 2012 171

secma

Unless otherwise specified, the standard built-in properties of the global object have attributes {[[Writable]]:
true, [[Enumerable]]: false, [[Configurable]]: true}.

The global object does not have a [[Construct]] internal property; it is not possible to use the global object as a
constructor with the new operator.

The global object does not have a [[Call]] internal property; it is not possible to invoke the global object as a
function.

The value of the [[Prototype]] internal property of the global object is implementation-dependent.

In addition to the properties defined in this specification the global object may have additional host defined
properties. This may include a property whose value is the global object . itself; for example, in the HTML
document object model the window property of the global object is the global object itself.

15.1.1 Value Properties of the Global Object
15.1.1.1 NaN

The value of NaN is NaN (see 8.5). This property has the attributes { [[Writable]]: false, [[Enumerable]]: false,
[[Configurable]]: false }.

15.1.1.2 Infinity

The value of Infinity is +oo (see 8.5). This property has the attributes { [[Writable]]: false, [[Enumerable]]:
false, [[Configurable]]: false }.

15.1.1.3 undefined

The value of undefined is.undefined (see 8.1). This property has the attributes { [[Writable]]: false,
[[Enumerable]]: false, [[Configurable]]: false }.

15.1.2 Function Properties of the Global Object
15.1.2.1 eval (x)
When the ewval function.is called with one argument x, the following steps are taken:

1. If Type(x) is not String, return x.

2. Lt prog be the ECMAScript code that is the result of parsing x, interpreted as UTF-16 encoded Unicode text as
described in 8.4, for the goal symbol Program. If the parse fails or any early errors are detected, throw a
SyntaxError exception (but see also clause 16).

3. LetevalCtx be the result of establishing a new execution context (10.4.2) for the eval code prog.

4. If there is no calling context or if the eval code is not being evaluated by a direct call (15.1.2.1.1) to the eval
function then,

a. Initialise the execution context as if it was a global execution context using the eval code as C as
described in 10.4.1.1.

5. Else,

a. Setthe ThisBinding to the same value as the ThisBinding of the calling execution context.

b. Setthe LexicalEnvironment to the same value as the LexicalEnvironment of the calling execution
context.

c. Setthe VariableEnvironment to the same value as the VariableEnvironment of the calling execution
context.

6. If the eval code is strict code, then

a. LetstrictvarEnv be the result of calling NewDeclarativeEnvironment passing the
LexicalEnvironment as the argument.
b. Setthe LexicalEnvironment to strictVarEnv.
c. Setthe VariableEnvironment to strictVarEnv.
7. Perform Declaration Binding Instantiation as described in 10.5 using the eval code.

172 © Ecma International 2012

»ecma

8. Let result be the result of evaluating the program prog.

9. Exit the running execution context evalCtx, restoring the previous execution context.

10. Ifresult.type is normal and its completion value is a value V, then return the value V.

11. Ifresult.type is normal and its completion value is empty, then return the value undefined.
12. Otherwise, result.type must be throw. Throw result.value as an exception.

NOTE The eval code cannot instantiate variable or function bindings in the variable environment of the calling context
that invoked the eval if either the code of the calling context or the eval code is strict code. Instead such bindings are
instantiated in a new VariableEnvironment that is only accessible to the eval code.

15.1.2.1.1 Direct Call to Eval

A direct call to the eval function is one that is expressed as a CallExpression that meets the following two
conditions:

The Reference that is the result of evaluating the MemberExpression in the CallExpression has an environment
record as its base value and its reference name is "eval".

The result of calling the abstract operation GetValue with that' Reference as the argument is the standard built-
in function defined in 15.1.2.1.

15.1.2.2 parselnt (string , radix)

The parseInt function produces an integer value dictated by interpretation of the contents of the string
argument according to the specified radix. Leading -white space in string.is ignored. If radix is undefined or O,
it is assumed to be 10 except when the number begins with the character pairs 0x or 0X, in which case a radix
of 16 is assumed. If radix is 16, the number may also optionally begin with the character pairs 0x or 0X.

When the parseInt function is called, the following steps are taken:

1. Let inputString be ToString(string).

2. ReturnlfAbrupt(string):

3. Let S be a newly created substring of inputString consisting of the first character that is not a
StrWhiteSpaceChar and. all characters.following that character. (In other words, remove leading white
space.) If inputString does not contain any such characters, let S be the empty string.

4. Letsignbe 1.

5. If Sis notempty and the first character of S is a minus sign -, let sign be —1.

6. If Sisnot empty and the first character of S is a plus sign + or a minus sign -, then remove the first character
from S.

7. Let R= Tolnt32(radix).

8. ReturnlfAbrupt(R).

9. Let stripPrefix be true.

10. If R # 0, then
a. IfR <2 orR > 36, then return NaN.
b. If R% 16, let stripPrefix be false.
11. Else, R=0
a. LetR=10.
12. If stripPrefix is true, then
a. If the length of S is at least 2 and the first two characters of S are either “0Xx” or “0X”, then remove
the first two characters from S and let R = 16.

13. If S contains any character that is not a radix-R digit, then let Z be the substring of S consisting of all
characters before the first such character; otherwise, let Z be S.

14. If Z is empty, return NaN.

15. Let mathint be the mathematical integer value that is represented by Z in radix-R notation, using the letters
A-Z and a-z for digits with values 10 through 35. (However, if R is 10 and Z contains more than 20
significant digits, every significant digit after the 20th may be replaced by a 0 digit, at the option of the
implementation; and if R is not 2, 4, 8, 10, 16, or 32, then mathInt may be an implementation-dependent
approximation to the mathematical integer value that is represented by Z in radix-R notation.)

16. Let number be the Number value for mathint.

© Ecma International 2012 173

secma

17. Return sign x number.

NOTE parseInt may interpret only a leading portion of string as an integer value; it ignores any characters that
cannot be interpreted as part of the notation of an integer, and no indication is given that any such characters were
ignored.

15.1.2.3 parseFloat (string)

The parseFloat function produces a Number value dictated by interpretation of the contents of the string
argument as a decimal literal.

When the parseFloat function is called, the following steps are taken:

1. LetinputString be ToString(string).

2. ReturnlfAbrupt(string).

3. Let trimmedString be a substring of inputString consisting of<the leftmaost character that is not a
StrWhiteSpaceChar and all characters to the right of that character. (In other words, remove leading white
space.) If inputString does not contain any such characters, let.trimmedString be the empty string.

4. If neither trimmedString nor any prefix of trimmedString satisfies the syntax of a StrDecimalLiteral (see
9.3.1), return NaN.

5. Let numberString be the longest prefix of trimmedString, which might be trimmedString itself, that satisfies
the syntax of a StrDecimalLiteral.

6. Return the Number value for the MV of numberString.

NOTE parseFloat may interpret only a leading portion of string as a Number value; it ignores any characters that
cannot be interpreted as part of the notation of an decimal literal, and no indication is given that any such characters were
ignored.

15.1.2.4 isNaN (number)

Returns true if the argument coerces:to NaN, and otherwise returns false.

1. Let num be ToNumber(number).

2. ReturnlfAbrupt(num):

3. Ifnum is NaN, return true.

4. Otherwise, return false.

NOTE A reliable way for ECMAScript code to test if a value X is a NaN is an expression of the form x !== X. The

result will be trueif and-only if X is.a NaN.

15.1.2.5¢ isFinite (number)

Returns false if the argument coerces to NaN, +o, or —0, and otherwise returns true.
Let num be ToNumber(number).

ReturnlfAbrupt(num).

If ToNumber(num) is NaN, +w, or —oo, return false.
Otherwise, return true.

PoONE

15.1.3 URI Handling Function Properties

Uniform Resource Identifiers, or URISs, are Strings that identify resources (e.g. web pages or files) and transport protocols
by which to access them (e.g. HTTP or FTP) on the Internet. The ECMAScript language itself does not provide any
support for using URIs except for functions that encode and decode URIs as described in 15.1.3.1, 15.1.3.2, 15.1.3.3 and
15.1.3.4.

NOTE Many implementations of ECMAScript provide additional functions and methods that manipulate web pages;
these functions are beyond the scope of this standard.

A URI is composed of a sequence of components separated by component separators. The general form is:

174 © Ecma International 2012

»ecma

Scheme : First / Second ; Third ? Fourth

where the italicised names represent components and “:”, “/”, “;” and “?” are reserved characters used as
separators. The encodeURI and decodeURI functions are intended to work with complete URIs; they
assume that any reserved characters in the URI are intended to have special meaning and so are not
encoded. The encodeURIComponent and decodeURIComponent functions are intended to work with the
individual component parts of a URI; they assume that any reserved characters represent text and so must be
encoded so that they are not interpreted as reserved characters when the component is part of a complete
URI.

The following lexical grammar specifies the form of encoded URIs.

Syntax
uri
uriCharactersopt

uriCharacters :::
uriCharacter uriCharactersopt

uriCharacter :::
uriReserved
uriUnescaped
uriEscaped

uriReserved ::: one of
;0 / 0?2 @ & = + $

uriUnescaped :::
uriAlpha
DecimalDigit
uriMark

uriEscaped :::
% HexDigit HexDigit

uriAlpha ::: one of
a b e d e £ g h i j k 1 m n o p g r s t uv w x y z
A B C D E F G H I J KL MNUOU P G QIR S T UV W X Y Z
uriMark ::: one of
= A PV A ()
NOTE The above syntax is based upon RFC 2396 and does not reflect changes introduced by the more recent RFC

3986.
Runtime Semantics

When a character to be included in a URI is not listed above or is not intended to have the special meaning
sometimes given to the reserved characters, that character must be encoded. The character is transformed
into its UTF-8 encoding, with surrogate pairs first converted from UTF-16 to the corresponding code point
value. (Note that for code units in the range [0,127] this results in a single octet with the same value.) The
resulting sequence of octets is then transformed into a String with each octet represented by an escape
sequence of the form “$xx”.

The encoding and escaping process is described by the abstract operation Encode taking two String
arguments string and unescapedSet.

1. LetstrLen be the number of characters in string.
2. Let R be the empty String.

© Ecma International 2012 175

eCina

3. LetkbeO.
4. Repeat

a. Ifkequals strLen, return R.
b. Let C be the character at position k within string.
c. IfCisin unescapedSet, then

Let S be a String containing only the character C.
Let R be a new String value computed by concatenating the previous value of R and S.

d. Else, Cis not in unescapedSet

Vi.

If the code unit value of C is not less than 0xDCO0O0 and not greater than OXDFFF, throw a
URIError exception.
If the code unit value of C is less than 0xD800 or greater than OXDBFF, then
1. LetV be the code unit value of C.
Else,
1. Increase k by 1.
2. Ifk equals strLen, throw a URIError exception.
3. Let kChar be the code unit value of the character at position k within string.
4. If kChar is less than 0xDCO0 or greater than OxDFFF, throw a URIError
exception.
5. Let V be (((the code unit value of C) — 0xD800) x 0x400 + (kChar — 0xDCO00) +
0x10000).
Let Octets be the array of octets resulting by applying the UTF-8 transformation to V, and
let L be the array size.
Let j be 0.
Repeat, while j < L
1. Let jOctet be the value at position j within Octets.
2. Let S be a String containing three characters “%XY” where XY are two uppercase
hexadecimal digits encoding the value of jOctet.
3. Let R be a new String value computed by concatenating the previous value of R and
S.
4. Increasej.by 1.

e. Increase k by 1.

The unescaping and decoding process is described by the abstract operation Decode taking two String
arguments string and reservedSet.

Let strLen be the number of characters in string.
Let R be the empty String.

a. Ifk equals strLen, return R.
b. Let C be the character at position k within string.
c. . If Cisnot ‘%’, then

Let S be the String containing only the character C.

d. Else, Cis ‘%’

1.

2.

3. Letkbe.O.

4. Repeat
ii.
iii.
iv.
V.
Vi.
Vil.

176

Let start‘be k.
If k +.2 is greater than or equal to strLen, throw a URIError exception.
If the characters at position (k+1) and (k + 2) within string do not represent hexadecimal
digits, throw a URIError exception.
Let B be the 8-bit value represented by the two hexadecimal digits at position (k + 1) and (k
+2).
Increment k by 2.
If the most significant bit in B is 0, then
1. Let C be the character with code unit value B.
2. IfCisnot in reservedSet, then
a LetS be the String containing only the character C.
3. Else, Cisin reservedSet
a LetS be the substring of string from position start to position k included.
Else, the most significant bitin B is 1
1. Letn be the smallest non-negative number such that (B << n) & 0x80 is equal to 0.
2. Ifnequals 1 ornis greater than 4, throw a URIError exception.

© Ecma International 2012

eCina

Let Octets be an array of 8-bit integers of size n.
Put B into Octets at position 0.
Ifk + (3 x (n— 1)) is greater than or equal to strLen, throw a URIError exception.
Letjbe 1.
Repeat, while j <n
a Incrementk by 1.
b If the character at position k is not ‘%, throw a URIError exception.
¢ If the characters at position (k +1) and (k + 2) within string do not
represent hexadecimal digits, throw a URIError exception.
d Let B be the 8-bit value represented by the two hexadecimal digits at
position (k + 1) and (k + 2).
e If the two most significant bits in B are not 10, throw a URIError
exception.
f Increment k by 2.
g Put B into Octets at position j.
h Incrementj by 1.

8. Let V be the value obtained by applyingthe UTF-8 transformation to Octets, that is,
from an array of octets into a 21-bit value. If Octets does not contain a valid UTF-8
encoding of a Unicode code point.throw an URIError exception.

9. IfVis less than 0x10000, then

a Let C be the character with code unit value V.
b If Cis not in reservedSet, then
i Let S be the String containing only the character C.
¢ Else, Cis in reservedSet
i Let S be the substring of string from position start to position k
included.
10. Else, Vis > 0x10000
a LetL be (((V—0x10000) & 0x3FF) + 0xDCO00).
b LetH be ((((V—0x10000) >> 10) & 0x3FF) + 0xD800).
¢ Let S be the String_containing the two characters with code unit values H
and L.
e. Let R bea new String value computed by concatenating the previous value of R and S.
f. Increase k by 4.

Noo ko

NOTE This syntax of Uniform Resource Identifiers is based upon RFC 2396 and does not reflect the more recent
RFC 3986 which replaces RFC 2396. Aformal description.and implementation of UTF-8 is given in RFC 3629.

In UTF-8, characters are encoded using sequences of 1 to 6 octets. The only octet of a "sequence" of one has the higher-
order bit set-to 0, the remaining 7 bits being used to encode the character value. In a sequence of n octets, n>1, the initial
octet has-the n higher-order bits set to 1, followed by a bit set to 0. The remaining bits of that octet contain bits from the
value of the character to be encoded. The following octets all have the higher-order bit set to 1 and the following bit set to
0, leaving 6 bits in each to contain bits from the character to be encoded. The possible UTF-8 encodings of ECMAScript
characters are specified in Table 26.

Table 26 — UTF-8 Encodings

Code Unit Value Representation 1t Octet 2"d Octet 39 Octet 4" Octet
0x0000 - O0xO007F 00000000 Ozzzzzzz O0zzzzzzz
0x0080 - Ox07FF 00000yyy yyzzzzzz 110yyyyy 10zzzzzz
0x0800 - OxD7FF XXXXYYYY YVZZZZZZ 1110xxxx 10yyyyyy 10zzzzzz
0xD800 - OxDBFF 110110vV VVWWWWXX
followed by followed by 11110uuu 10uuwwww 10xxyyyy 10zzzzzz

0xDCO0 - OxXDFFF 110111yy yyzzzzzz
0xD800 - OxDBFF

not followed by causes URIError
0xDCO00 - OxDFFF
0xDCO0 - OxDFFF causes URIError
0xE000 - OXFFFF XXXXYYYY YVZZZZZZ 1110xxxx 10yyyyyy 10zzzzzz

Where

© Ecma International 2012 177

secma

uuuuu=vvvv +1

to account for the addition of 0x10000 as in Surrogates, section 3.7, of the Unicode Standard.

The range of code unit values 0xD800-OxDFFF is used to encode surrogate pairs; the above transformation combines a
UTF-16 surrogate pair into a UTF-32 representation and encodes the resulting 21-bit value in UTF-8. Decoding
reconstructs the surrogate pair.

RFC 3629 prohibits the decoding of invalid UTF-8 octet sequences. For example, the invalid sequence CO 80 must not
decode into the character U+0000. Implementations of the Decode algorithm are required to throw a URIError when
encountering such invalid sequences.

15.1.3.1 decodeURI (encodedURI)

The decodeURI function computes a new version of a URI in which<each escape sequence and UTF-8
encoding of the sort that might be introduced by the encodeURTI function is replaced with the character that it
represents. Escape sequences that could not have been introduced by encodeURI are not replaced.

When the decodeURI function is called with one argument encodedURI, the following steps are taken:

1. LeturiString be ToString(encodedURI).

2. ReturnlfAbrupt(uriString).

3. LetreservedURISet be a String containing one instance of each character valid in uriReserved plus “#”.
4. Return the result of calling Decode(uriString, reservedURISet)

NOTE The character “#” is not decoded from escape sequences even though. it is not a reserved URI character.

15.1.3.2 decodeURIComponent (encodedURIComponent)

The decodeURIComponent function.computes a hew version of a URI in which each escape sequence and
UTF-8 encoding of the sort that might be introduced by the encodeURIComponent function is replaced with
the character that it represents.

When the decodeURIComponent function is called with one argument encodedURIComponent, the following
steps are taken:

Let componentString be ToString(encodedURIComponent).
ReturnlfAbrupt(componentString).

Let reservedURIComponentSet be the empty String.

Return the result of calling Decode(componentString, reservedURIComponentSet)

PR

15.1.3.3 encodeURI (uri)

The encodeURI function computes a new version of a URI in which each instance of certain characters is
replaced by one, two, three; or four escape sequences representing the UTF-8 encoding of the character.

When the encodeURT function is called with one argument uri, the following steps are taken:

1. LeturiString be ToString(uri).

2. ReturnlfAbrupt(uriString).

3. LetunescapedURISet be a String containing one instance of each character valid in uriReserved and
uriUnescaped plus “#”.

4. Return the result of calling Encode(uriString, unescapedURISet)

NOTE The character “#” is not encoded to an escape sequence even though it is not a reserved or unescaped URI
character.

178 © Ecma International 2012

»ecma

15.1.3.4 encodeURIComponent (uriComponent)

The encodeURIComponent function computes a new version of a URI in which each instance of certain
characters is replaced by one, two, three, or four escape sequences representing the UTF-8 encoding of the
character.

When the encodeURIComponent function is called with one argument uriComponent, the following steps are
taken:

1. Let componentString be ToString(uriComponent).

2. ReturnlfAbrupt(componentString).

3. Let unescapedURIComponentSet be a String containing one instance of each character valid in
uriUnescaped.

4. Return the result of calling Encode(componentString, unescapedURIComponentSet)

15.1.4 Constructor Properties of the Global Object

15.1.4.1 Object (.. .)

See 15.2.1 and 15.2.2.

15.1.4.2 Function (...)

See 15.3.1 and 15.3.2.

15.1.4.3 Array (...)

See 15.4.1 and 15.4.2.

15.1.4.4 String (...)

See 15.5.1 and 15.5.2.

15.1.4.5 Boolean (...)

See 15.6.1 and 15.6.2.

15.1.4.6 Number (...)

See 15.7.1 and 15.7.2.

15.1.4.7 Date(...)

See 15.9.2.

15.1.4.8 RegExp (...)

See 15.10.3 and 15.10.4.

15.1.4.9 Error(...)

See 15.11.1 and 15.11.2.

15.1.4.10 EvalError (...)

See 15.11.6.1.

© Ecma International 2012 179

secma

15.1.4.11 RangeError (...)
See 15.11.6.2.

15.1.4.12 ReferenceError (...)
See 15.11.6.3.

15.1.4.13 SyntaxError (...)
See 15.11.6.4.

15.1.4.14 TypeError (...)

See 15.11.6.5.

15.1.4.15 URIError (...)

See 15.11.6.6.

15.1.5 Other Properties of the Global Object
15.1.5.1 Math

See 15.8.

15.1.5.2 JSON

See 15.12.

15.2 Object Objects

The abstract operation<ObjectCreate with optional argument proto (an object or null) is used to specify the
creation of new Object objects. It performs the following steps:

If proto was not provided, let proto be the intrinsic %ObjectPrototype%

Let obj bea newly created ECMAScript object.

Set the [[Prototype]] internal property of obj to proto.

Set.obj’s common internal methods to.the default definitions specified in 8.12.
Set the [[Extensible]] internal property of obj to true.

Return obj.

eouhkrwnE

15.2.1 The Object Constructor Called as a Function
When object is called as a function rather than as a constructor, it performs a type conversion.
15.2.1.1 Object ([value])

When the object function is called with no arguments or with one argument value, the following steps are
taken:

1. Ifvalue is null, undefined or not supplied, return the result of the abstract operation ObjectCreate.
2. Return ToObject(value).

15.2.2 The Object Constructor

When Object is called as part of a new expression, it is a constructor that may create an object.

180 © Ecma International 2012

»ecma

15.2.2.1 new Object ([value])

When the Object constructor is called with no arguments or with one argument value, the following steps are
taken:

1. If value is supplied, then

a. If Type(value) is Object, then return value.

b. If Type(value) is String, return ToObject(value).

c. If Type(value) is Boolean, return ToObject(value).

d. If Type(value) is Number, return ToObject(value).
2. Assert: The argument value was not supplied or its type was Null or Undefined.
3. Return the result of the abstract operation ObjectCreate.

15.2.3 Properties of the Object Constructor

The value of the [[Prototype]] internal property of the Object constructor is the standard built-in Function
prototype object.

Besides the internal properties and the length property (whose value is 1), the Object constructor has the
following properties:

15.2.3.1 Object.prototype
The initial value of Object.prototype is the standard built-in Object prototype object (15.2.4).

This property has the attributes {[[Writable]]: false, [[Enumerable]]: false, [[Configurable]]: false }.
15.2.3.2 Object.getPrototypeOf (O)

When the getPrototypeOf£ function is.called with argument O, the following steps are taken:
1. If Type(O) is not Object throw a TypeError exception.

2. Return the value of the [[Prototype]] internal property of O.
15.2.3.3 Object.getOwnPropertyDescriptor (O, P)

When the getOwnPropertyDescriptor function is called, the following steps are taken:

If Type(O) is not Object throw a TypeError exception.

Let name be ToString(P).

ReturnIfAbrupt(name).

Let desc be the result of calling the [[GetOwnProperty]] internal method of O with argument name.
Return the result of calling FromPropertyDescriptor(desc) (8.10.4).

15.2.3.4 Object.getOwnPropertyNames (O)

g E

When the getOwnPropertyNames function is called, the following steps are taken:

If Type(O) is not Object throw a TypeError exception.

Let array be the result of the abstract operation ArrayCreate (15.4) with argument 0.
Let n be 0.

For each named own property P of O

a. Let name be the String value that is the name of P.

b. Call the [[DefineOwnProperty]] internal method of array with arguments ToString(n), the
PropertyDescriptor {[[Value]]: name, [[Writable]]: true, [[Enumerable]]: true, [[Configurable]]:
true}, and false.

c. Incrementn by 1.

5. Return array.

PobPE

NOTE If O is a String instance, the set of own properties processed in step 4 includes the implicit properties defined
in 15.5.5.2 that correspond to character positions within the object’s [[PrimitiveValue]] String.

© Ecma International 2012 181

secma

15.2.3.5 Object.create (O [, Properties])

The create function creates a new object with a specified prototype. When the create function is called, the
following steps are taken:

1. If Type(O) is not Object or Null throw a TypeError exception.
2. Letobj be the result of the abstract operation ObjectCreate with argument O.
3. If the argument Properties is present and not undefined, then
a. Return the result of the abstract operation ObjectDefineProperties with arguments obj and
Properties.
4. Return obj.

15.2.3.6 Object.defineProperty (O, P, Attributes)

The defineProperty function is used to add an own property and/or update the attributes of an existing own
property of an object. When the defineProperty function is called, the following steps are taken:

If Type(O) is not Object throw a TypeError exception.

Let name be ToString(P).

ReturnlfAbrupt(name).

Let desc be the result of calling ToPropertyDescriptor with Attributes asthe argument.

Call the [[DefineOwnProperty]] internal method of O with arguments.name, desc, and true.
Return O.

15.2.3.7 Object.defineProperties (O, Properties)

ouhkwnPE

The defineProperties function is used to add own properties and/or update the attributes of existing own
properties of an object. When the defineProperties functionis called, the following steps are taken:

1. Return the result of the abstract operation ObjectDefineProperties with.argu ments O and Properties.

The abstract operation ObjectDefineProperties with arguments O and Properties performs the following steps:

If Type(O) is not Object throw a TypeError exception.
Let props be ToObject(Properties).
Let names be an internal list containing the names of each enumerable own property of props.
Let descriptors be an empty internal List.
For each element P of names in list order,
a. Let descObj be the result of calling the [[Get]] internal method of props with P as the argument.
b. ReturnlfAbrupt(descObj).
c.. Let desc be the result of calling ToPropertyDescriptor with descObj as the argument.
d. ReturnlfAbrupt(desc).
e. Append the pair (a'two element List) consisting of P and desc to the end of descriptors.
6. For each pair from descriptors in list order,
a. Let P be the first element of pair.
b. Let desc be the second element of pair.
c. Let status be the result of calling the [[DefineOwnProperty]] internal method of O with arguments
P, desc, and true.
d. ReturnlfAbrupt(status).
7. Return O.

gRrwnPE

If an implementation defines a specific order of enumeration for the for-in statement, that same enumeration
order must be used to order the list elements in step 3 of this algorithm.

15.2.3.8 Object.seal (O)
When the seal function is called, the following steps are taken:

1. If Type(O) is not Object throw a TypeError exception.

182 © Ecma International 2012

eCina

2. For each named own property name P of O,
a. Letdesc be the result of calling the [[GetOwnProperty]] internal method of O with P.
b. If desc.[[Configurable]] is true, set desc.[[Configurable]] to false.
c. Let status be the result of calling the [[DefineOwnProperty]] internal method of O with P, desc, and
true as arguments.
d. ReturnlfAbrupt(status).
3. Set the [[Extensible]] internal property of O to false.
4. Return O.

15.2.3.9 Object.freeze (O)
When the freeze function is called, the following steps are taken:

1. If Type(O) is not Object throw a TypeError exception.
2. For each named own property name P of O,
a. Let desc be the result of calling the [[GetOwnProperty]] internal method of © with P.
b. If IsDataDescriptor(desc) is true, then
i If desc.[[Writable]] is true, set desc.[[Writable]] to false.
c. Ifdesc.[[Configurable]] is true, set desc.[[Configurable]] to false.
d. Let status be the result of calling the [[DefineOwnProperty]] internal method of O with.P, desc, and
true as arguments.
e. ReturnIfAbrupt(status).
3. Set the [[Extensible]] internal property of O to false.
4. Return O.

15.2.3.10 Object.preventExtensions (O)
When the preventExtensions function is called, the following steps are taken:

1. If Type(O) is not Object throw a TypeError exception:
2. Set the [[Extensible]] internal property of O to false:
3. Return O.

15.2.3.11 Object.isSealed (O)
When the isSealed function is called with argument O, the following steps are taken:

1. If Type(O) is-not Object throw a TypeError exception.

2. For each'named own property name P of O,
a: Let desc be the result of calling the [[GetOwnProperty]] internal method of O with P.
b. If desc.[[Configurable]] is true, then return false.

3. If the [[Extensible]] internal property of O is false, then return true.

4. Otherwise, return false.

15.2.3.12 Object.isFrozen (Q)
When the isFrozen function is called with argument O, the following steps are taken:

1. If Type(O) is not Object throw a TypeError exception.
2. For each named own property name P of O,
a. Letdesc be the result of calling the [[GetOwnProperty]] internal method of O with P.
b. If IsDataDescriptor(desc) is true then
i. If desc.[[Writable]] is true, return false.
c. Ifdesc.[[Configurable]] is true, then return false.
3. If the [[Extensible]] internal property of O is false, then return true.
4. Otherwise, return false.

15.2.3.13 Object.isExtensible (O)

When the isExtensible function is called with argument O, the following steps are taken:

© Ecma International 2012 183

secma

1. If Type(O) is not Object throw a TypeError exception.
2. Return the Boolean value of the [[Extensible]] internal property of O.

15.2.3.14 Object.keys (0O)
When the keys function is called with argument O, the following steps are taken:

If the Type(O) is not Object, throw a TypeError exception.
Let n be the number of own enumerable properties of O
Let array be the result of the abstract operation ArrayCreate (15.4) with argument n.
Let index be 0.
For each own enumerable property of O whose name String is P
a. Call the [[DefineOwnProperty]] internal method of array with arguments ToString(index), the
PropertyDescriptor {[[Value]]: P, [[Writable]]: true, [[Enumerable]]: true, [[Configurable]]: true},
and false.
b. Increment index by 1.
6. Return array.

g0 PE

If an implementation defines a specific order of enumeration for the for-in statement, that same enumeration
order must be used in step 5 of this algorithm.

15.2.4 Properties of the Object Prototype Object

The value of the [[Prototype]] internal property of the Object prototype object is null and the initial value of the
[[Extensible]] internal property is true.

15.2.4.1 Object.prototype.constructor
The initial value of Object.prototype.constructor is the standard built-in Object constructor.
15.2.4.2 Object.prototype.toString ()

When the toString method is called, the following steps are taken:

1. If the this value is'undefined, return " [object Undefined]".

2. If the this value is null, return "{object Null]".

3. Let O be the result of calling ToObject passing the this value as the argument.

4. If O has a[[NativeBrand]] internal property, let tag be the corresponding value from the
5. Table 27.

6. Else

a.. LethasTag be the result of calling the [[HasProperty]] internal method of O with argument
@@toStringTag.

b. If hasTag is false, let tag be "Object".

c. Else,

i Let tag be the result of calling the [[Get]] internal method of O with argument
@@toStringTag.

ii. If tag is an abrupt completion, let tag be NormalCompletion("??2?2").

iii. Let tag be tag.[[value]].

iv. If Type(tag) is not String, let tag be "2??2°?".

V. If tag is any of "Arguments", "Array", "Boolean", "Date", "Error",
"Function", "JSON", "Math", "Number", "Object", "RegExp", or "String"
then let tag be the string value "~" concatenated with the current value of tag.

7. Return the String value that is the result of concatenating the three Strings "[object ", tag, and "]".

Table 27 — Tags for Classified Native Objects

[[NativeBrand]] Value tag Value
NativeFunction "Function"

184 © Ecma International 2012

»ecma

NativeArray "Array"
StringWrapper "String"
BooleanWrapper "Boolean"
NumberWrapper "Number"
NativeMath "Math"
NativeDate "Date"
NativeRegExp "RegExp"
NativeError "Error"
NativeJSON "JSON"
NativeArguments "Arguments"
NOTE Historically, this function was occasionally used to access the string value of the [[Class]] internal property that

was used in previous editions of this specification as a nominal type tag for various built-in objects. This definition of
toString preserves the ability to use it as a reliable test for those specific kinds of built-in objects but it does not provide
a reliable type testing mechanism for other kinds of built-in or program defined objects.

15.2.4.3 Object.prototype.toLocaleString ()
When the toLocaleString method is called, the following.steps are taken:

1. Let O be the this value.

2. ReturnlfAbrupt(O).

3. Return the result of the abstract operation Invoke with arguments "toString", O, and an empty arguments
List.

NOTE 1 This function is provided to give all Objects a generic toLocaleString interface, even though not all may
use it. Currently, Array, Number, and Date provide their own locale-sensitive toLocaleString methods.

NOTE 2 The first parameter to this function is likely to be used in a future version of this standard; it is recommended
that implementations do not use this parameter position for anything else.

15.2.4.4 Object.prototype.valueOf ()
When the valueOf method is. called, the following steps are taken:

1. Let O be the result of calling ToObject passing the this value as the argument.
2. Return O.

15.2.4.5 Object.prototype.hasOwnProperty (V)
When the hasOwnProperty method is called with argument V, the following steps are taken:

Let P be ToString(V).

ReturnIfAbrupt(P).

Let O be the result.of calling ToObject passing the this value as the argument.

ReturnlfAbrupt(O).

Let desc be the result of calling the [[GetOwnProperty]] internal method of O passing P as the argument.
If desc is undefined, return false.

Return true.

NogkwbhE

NOTE 1 Unlike [[HasProperty]] (8.12.6), this method does not consider objects in the prototype chain.

NOTE 2 The ordering of steps 1 and 2 is chosen to ensure that any exception that would have been thrown by step 1
in previous editions of this specification will continue to be thrown even if the this value is undefined or null.

15.2.4.6 Object.prototype.isPrototypeOf (V)

When the isPrototypeOf method is called with argument V, the following steps are taken:

© Ecma International 2012 185

secma

If V is not an object, return false.
Let O be the result of calling ToObject passing the this value as the argument.
ReturnlfAbrupt(O).
Repeat
a. LetV be the value of the [[Prototype]] internal property of V.
b. if Vis null, return false
c. If O and V refer to the same object, return true.

PR

NOTE The ordering of steps 1 and 2 is chosen to preserve the behaviour specified by previous editions of this
specification for the case where V is not an object and the this value is undefined or null.

15.2.4.7 Object.prototype.propertylsEnumerable (V)
When the propertyIsEnumerable method is called with argument V, the following steps are taken:

Let P be ToString(V).

ReturnlfAbrupt(P).

Let O be the result of calling ToObject passing the this value as the argument.

ReturnlfAbrupt(O).

Let desc be the result of calling the [[GetOwnProperty]].internal method of O passing P as the argument.
If desc is undefined, return false.

Return the value of desc.[[Enumerable]].

NogkwbE

NOTE 1 This method does not consider objects in the prototype chain.

NOTE 2 The ordering of steps 1 and 2 is chosen to ensure that any exception that would have been thrown by step 1
in previous editions of this specification will continue to be thrown even if the this value is undefined or null.

15.2.5 Properties of Object Instances

Object instances have no special properties beyond those inherited from the Object prototype object.
15.3 Function Objects

15.3.1 The Function Constructor Called as-a Function

When Function is called as a function rather than as a constructor, it creates and initialises a new Function
object. Thus the function call Function(..) is equivalent to the object creation expression new
Function (..) with the same arguments.

15.311.1 . Function (p1, p2, ..., pn, body)

When the Function function is called with some arguments pl, p2, ..., pn, body (where n might be 0, that is,

there are no “p” arguments, and where body might also not be provided), the following steps are taken:

1. Create and return a. new Function object as if the standard built-in constructor Function was used in a new
expression with the same arguments (15.3.2.1).

15.3.2 The Function Constructor
When Function is called as part of a new expression, it is a constructor: it initialises the newly created object.
15.3.2.1 new Function (p1, p2, ..., pn, body)

The last argument specifies the body (executable code) of a function; any preceding arguments specify formal
parameters.

When the Function constructor is called with some arguments pl, p2, ..., pn, body (where n might be 0, that

is, there are no “p” arguments, and where body might also not be provided), the following steps are taken:

186 © Ecma International 2012

»ecma

Let argCount be the total number of arguments passed to this function invocation.

Let P be the empty String.

If argCount = 0, let bodyText be the empty String.

Else if argCount = 1, let bodyText be that argument.

Else, argCount > 1

Let firstArg be the first argument.

Let P be ToString(firstArg).

ReturnlfAbrupt(P).

Let k be 2.

Repeat, while k < argCount

i. Let nextArg be the k’th argument.
ii. Let nextArgString be ToString(nextArg).
iii. ReturnlfAbrupt(nextArgString).
iv. Let P be the result of concatenating the previous value of P, the String ", " (a comma), and
nextArgString.
V. Increase k by 1.
f. Let bodyText be the k’th argument.

6. Let bodyText be ToString(bodyText).

ReturnIfAbrupt(bodyText).

8. Let parameters be the result of parsing P, interpreted as UTF-16 encoded Unicode text as described in 8.4,
using FormalParameterList as the goal symbol. Throw a SyntaxError.exception if the parse fails.

9. Let body be the result of parsing bodyText, interpreted as UTF-16 encoded Unicode text as described in 8.4,
using FunctionBody as the goal symbol. Throw a SyntaxError exception if the parse fails or if any static
semantics errors are detected.

10. If bodyText is strict mode code (see 10.1.1).then let strict be true, else let strict be false.

11. Return a new Function object created as specified in.13.6 passing parameters as the FormalParameterList

and body as the FunctionBody. Pass in the Global Environment as the Scope parameter and strict as the

Strict flag.

g E

PoooTw

~

A prototype property is automatically created for every function, to provide for the possibility that the
function will be used as a constructor.

NOTE It is permissible’ but not necessary to have one argument for each formal parameter to be specified. For
example, all three of the following expressions produce the same result:

new Function("a", "b", "c", '"return at+b+c")
new Function("a, b, c¢", "return a+b+c")
new Function("a,b", "c¢", "return a+b+c")
15.3:3 Properties of the Function Constructor
The Function constructor is itself a Function object and has a [[NativeBrand]] internal property whose value is
NativeFunction. . The value of the [[Prototype]] internal property of the Function constructor is the standard
built-in Function prototype object (15.3.4).
The value of the [[Extensible]] internal property of the Function constructor is true.
The Function constructor has the following properties:
15.3.3.1 Function.prototype

The initial value of Function.prototype is the standard built-in Function prototype object (15.3.4).

This property has the attributes { [[Writable]]: false, [[Enumerable]]: false, [[Configurable]]: false }.

© Ecma International 2012 187

secma

15.3.3.2 Function.length

This is a data property with a value of 1. This property has the attributes { [[Writable]]: false, [[Enumerable]]:
false, [[Configurable]]: false }.

15.3.4 Properties of the Function Prototype Object

The Function prototype object is itself a Function object and has a [[NativeBrand]] internal property whose
value is NativeFunction . When invoked, it accepts any arguments and returns undefined.

The value of the [[Prototype]] internal property of the Function prototype object is.the standard built-in Object
prototype object (15.2.4). The initial value of the [[Extensible]] internal property of the Function prototype
object is true.

The Function prototype object does not have a valueOf property of its.own; however, it inherits the valueOf
property from the Object prototype Object.

The length property of the Function prototype object is O.

15.3.4.1 Function.prototype.constructor

The initial value of Function.prototype.constructor is the built-in Function constructor.
15.3.4.2 Function.prototype.toString ()

An implementation-dependent representation of the function is returned. This representation has the syntax of
a FunctionDeclaration. Note in particular that the use and placement of white space, line terminators, and
semicolons within the representation String is implementation-dependent.

The toString function is not-generic;.it throws a TypeError exception if its this value is not a Function
object. Therefore, it cannot be transferred to other kinds of objects for use as a method.

15.3.4.3 Function.prototype.apply (thisArg, argArray)

When the apply method is called.on an object func with arguments thisArg and argArray, the following steps
are taken:

1. If IsCallable(func) is false, then throw a TypeError exception.
2. If argArray is null or undefined, then
a. Return the result of calling the [[Call]] internal method of func, providing thisArg as the this value
and an empty list of arguments.
If Type(argArray) is not Object, then throw a TypeError exception.
Let len be the result of calling the [[Get]] internal method of argArray with argument "length".
Let n be ToUint32(len).
ReturnlfAbrupt(n).
Let argList be an empty List.
Let index be 0.
Repeat while index < n
a. LetindexName be ToString(index).
b. Let nextArg be the result of calling the [[Get]] internal method of argArray with indexName as the
argument.
c. ReturnlfAbrupt(nextArg).
d. Append nextArg as the last element of argList.
e. Setindex to index + 1.
10. Return the result of calling the [[Call]] internal method of func, providing thisArg as the this value and
argList as the list of arguments.

CEeNoU W

The length property of the apply method is 2.

188 © Ecma International 2012

»ecma

NOTE The thisArg value is passed without modification as the this value. This is a change from Edition 3, where a
undefined or null thisArg is replaced with the global object and ToObject is applied to all other values and that result is
passed as the this value.

15.3.4.4 Function.prototype.call (thisArg[,arg1[,arg2,...1])

When the call method is called on an object func with argument thisArg and optional arguments argl, arg2
etc, the following steps are taken:

1. If IsCallable(func) is false, then throw a TypeError exception.

2. LetargList be an empty List.

3. If this method was called with more than one argument then in left to right order starting with argl append
each argument as the last element of argList

4. Return the result of calling the [[Call]] internal method of func, providing thisArg as the this value and
argList as the list of arguments.

The length property of the call method is 1.

NOTE The thisArg value is passed without modification as the this value. This is a change from Edition 3, where a
undefined or null thisArg is replaced with the global object and ToObject is applied to all other values and that result is
passed as the this value.

15.3.4.5 Function.prototype.bind (thisArg [, arg1 [, arg2, ...]])

The bind method takes one or more arguments, thisArg and (optionally) argl, arg2, etc, and returns a new
function object by performing the following steps:

1. Let Target be the this value.

2. If IsCallable(Target) is false, throw a TypeError exception.

Let A be a new (possibly empty) internal list consistingof all of the argument values provided after thisArg
(argl, arg?2 etc), in order.

4. Let F be a new native ECMAScript object .

5. Set all the internal methods of F as specified in 8.12.

6. Setthe [[Extensible]]internal property of F to true.
7
8

w

Set the [[TargetFunction]] internal property of F to Target.
. Set the [[BoundThis]] internal property of F to the value of thisArg.
9. Setthe [[BoundArgs]] internal property of F to A.
10. Add the [[NativeBrand]] internal property with value NativeFunction to F.
11. Set the [[Prototype]] internal property of F to the intrinsic %FunctionPrototype%.
12. Set the [[Call]] internal property of F as described in 15.3.4.5.1.
13. Set the [[Construct]] internal property of F as described in 15.3.4.5.2.
14. Set the [[HasInstance]] internal property of F as described in 15.3.4.5.3.
15. If Target has the [[NativeBrand]] internal property with value NativeFunction, then
a. Let targetLen be the result of calling the [[Get]] internal method of Target with argument
"length".
b. ReturnlfAbrupt(targetLen).
c. Let L be the larger of 0 and the result of targetLen minus the number of elements of A.
16. Else let L be 0.
17. Call the [[DefineOwnProperty]] internal method of F with arguments "length", PropertyDescriptor
{[[value]]: L, [[Writable]]: false, [[Enumerable]]: false, [[Configurable]]: false}, and false.
18. Let thrower be the [[ThrowTypeError]] function Object (13.5.3).
19. Call the [[DefineOwnProperty]] internal method of F with arguments "caller", PropertyDescriptor
{[[Get]]: thrower, [[Set]]: thrower, [[Enumerable]]: false, [[Configurable]]: false}, and false.
20. Call the [[DefineOwnProperty]] internal method of F with arguments "arguments", PropertyDescriptor
{[[Get]]: thrower, [[Set]]: thrower, [[Enumerable]]: false, [[Configurable]]: false}, and false.
21. Return F.

The length property of the bind method is 1.

NOTE Function objects created using Function.prototype.bind do not have a prototype property or the
[[Code]], [[FormalParameters]], and [[Scope]] internal properties.

© Ecma International 2012 189

secma

15.3.4.5.1 [[Call]]

When the [[Call]] internal method of a function object, F, which was created using the bind function is called
with a this value and a list of arguments ExtraArgs, the following steps are taken:

Let boundArgs be the value of F’s [[BoundArgs]] internal property.

Let boundThis be the value of F’s [[BoundThis]] internal property.

Let target be the value of F’s [[TargetFunction]] internal property.

Let args be a new list containing the same values as the list boundArgs in the same order followed by the
same values as the list ExtraArgs in the same order.

5. Return the result of calling the [[Call]] internal method of target providing boundThis as the this value and
providing args as the arguments.

15.3.4.5.2 [[Construct]]

PO E

When the [[Construct]] internal method of a function object, F that was.created using the bind function is called
with a list of arguments ExtraArgs, the following steps are taken:

Let target be the value of F’s [[TargetFunction]] internal property.

If target has no [[Construct]] internal method, a TypeError exception is thrown.

Let boundArgs be the value of F’s [[BoundArgs]] internal property.

Let args be a new list containing the same values as the list boundArgs in the same order followed by the
same values as the list ExtraArgs in the same order.

5. Return the result of calling the [[Construct]] internal method of target providing args as the arguments.

15.3.4.5.3 [[HaslInstance]] (V)

b

When the [[HasInstance]] internal method of a function object F, that was created using the bind function is
called with argument V, the following steps are taken:

1. Let target be the value of F’s [[TargetFunction]] internal property.
2. If target has no [[HasInstance]] internal method, a TypeError exception is thrown.
3. Return the result of calling the [[HaslInstance]] internal method of target providing V as the argument.

15.3.5 Properties of Function Instances

In addition to the required internal-properties, every function instance has a [[Call]] internal property and in
most cases uses a different version of the [[Get]] internal property. Depending on how they are created (see
8.6.2, 13.6, 15, and 15.3.4.5), function instances may have a [[HasInstance]] internal property, a [[Scope]]
internal property, a [[Construct]] internal property, a [[FormalParameters]] internal property, a [[Code]] internal
property, a [[TargetFunction]].internal property, a [[BoundThis]] internal property, and a [[BoundArgs]] internal

property.
Every function instance has a [[NativeBrand]] internal property whose value is NativeFunction.

Function instances that correspond to strict mode functions (13.6) and function instances created using the
Function.prototype:bind method (15.3.4.5) have properties named “caller” and “arguments” that throw a
TypeError exception. An ECMAScript implementation must not associate any implementation specific
behaviour with accesses of these properties from strict mode function code.

15.3.5.1 length

The value of the length property is an integer that indicates the “typical” number of arguments expected by
the function. However, the language permits the function to be invoked with some other number of arguments.
The behaviour of a function when invoked on a number of arguments other than the number specified by its
length property depends on the function. This property has the attributes { [[Writable]]: false, [[Enumerable]]:
false, [[Configurable]]: false }.

190 © Ecma International 2012

»ecma

15.3.5.2 prototype

The value of the prototype property is used to initialise the [[Prototype]] internal property of a newly created
object before the Function object is invoked as a constructor for that newly created object. This property has
the attribute { [[Writable]]: true, [[Enumerable]]: false, [[Configurable]]: false }.

NOTE Function objects created using Function.prototype .bind do not have a prototype property.
15.3.5.3 [[HasInstance]] (V)

Assume F is a Function object.

When the [[Haslnstance]] internal method of F is called with value V, the following steps are taken:

If Vis not an object, return false.
Let O be the result of calling the [[Get]] internal method of F with property name "prototype".
ReturnlfAbrupt(O).
If Type(O) is not Object, throw a TypeError exception.
Repeat
a. LetV be the value of the [[Prototype]] internal property of V.
b. IfVis null, return false.
c. IfOand V refer to the same object, return true.

aorwhE

NOTE Function objects created using Function.prototype.bind have a different implementation of
[[HaslInstance]] defined in 15.3.4.5.3.

15.3.5.4 [[Get]] (P)

Function objects use a variation of the [[Get]] internal method used for other native ECMAScript objects
(8.12.3).

Assume F is a Function object. When the [[Get]] internal method of F is called with property name P, the
following steps are taken:

1. Letv be the result of calling the default [[Get]] internal method (8.12.3) on F passing P as the property name
argument.

2. IfPis "callexr" andv isa strict mode Function object, throw a TypeError exception.

3. Returnwv.

NOTE Function objects created using Function.prototype .bind use the default [[Get]] internal method.
15.4 Array Objects

Array objects give special treatment to a certain class of property names. A property name P (in the form of a
String value) is an array index if and only if ToString(ToUint32(P)) is equal to P and ToUint32(P) is not equal to
232_-1. A property whose property name is an array index is also called an element. Every Array object has a
length property whose value is always a nonnegative integer less than 2%, The value of the length
property is numerically greater than the name of every property whose name is an array index; whenever a
property of an Array object is created or changed, other properties are adjusted as necessary to maintain this
invariant. Specifically, whenever a property is added whose name is an array index, the length property is
changed, if necessary, to be one more than the numeric value of that array index; and whenever the 1length
property is changed, every property whose name is an array index whose value is not smaller than the new
length is automatically deleted. This constraint applies only to own properties of an Array object and is
unaffected by 1ength or array index properties that may be inherited from its prototypes.

An object, O, is said to be sparse if the following algorithm returns true:

1. Let len be the result of calling the [[Get]] internal method of O with argument "length™.
2. For each integer i in the range 0<i<ToUint32(len)

© Ecma International 2012 191

secma

a. Let elem be the result of calling the [[GetOwnProperty]] internal method of O with argument
ToString(i).
b. Ifelem is undefined, return true.
3. Return false.

The abstract operation ArrayCreate with argument length (a positive integer) is used to specify the creation of
new Array objects. It performs the following steps:

1. Let Abeanewly created ECMAScript object.

Set the [[Prototype]] internal property of A to the intrinsic object %ArrayPrototype%.

3. Set A’s common internal methods except for [[DefineOwnProperty]] to the default definitions specified in
8.12.

Set A’s [[DefineOwnProperty]] internal method to the definition given in 15:4.5.1.

Set the [[NativeBrand]] internal property of A to the value NativeArray.

Set the [[Extensible]] internal property of A to true.

Call the default [[DefineOwnProperty]] internal method (8.12.9) on ‘A with arguments "length'', Property
Descriptor {[[Value]]: length, [[Writable]]: true, [[Enumerable]]: false, [[Configurable]]: false}, and false.
8. Return A.

n

No ok

15.4.1 The Array Constructor Called as a Function

NOTE When Array is called as a function rather than as a constructor, it creates and initialises a new Array object.
Thus the function call Array (..) is equivalent to the object creation expression new Array (..) with the same arguments.

15.4.1.1 Array ([iteml[, item2[,...11])
When the Array function is called the following steps are taken:

1. Return the result that would be obtained if this functions'had been called with the same arguments, as
constructor. This result is defined by 15.4.2.1 or 15.4.2.2 depending upon the actual number of arguments.

15.4.2 The Array Constructor

NOTE When Array is called as part of @ new expression, it is a constructor: it initialises the newly created object.
15.4.2.1 new Array ([itemO[,item1[,...11]1)

This description applies if. and only if the Array constructor is given no arguments or at least two arguments.

Let len be the number of arguments passed to this constructor call.

Let array be the result of the abstract operation ArrayCreate (15.4) with argument len.
ReturnifAbrupt(array).

Let k be 0.

Let items be a zero-origined List contain the argument items in order.

Repeat, while k< len

a. Let Pk be ToString (k).

b. LetitemK be k' element of items.

c. Let defineStatus be the result of calling the [[DefineOwnProperty]] internal method of array with
arguments Pk, Property Descriptor {[[Value]]: itemK, [[Writable]]: true, [[Enumerable]]: true,
[[Configurable]]: true}, and true.

d. ReturnlfAbrupt(defineStatus).

e. Increase k by 1.

7. Let putStatus be the result of calling the [[Put]] internal method of array with arguments "length", len,
and true.

8. ReturnlfAbrupt(putStatus).

9. Return array.

ourwhdE

192 © Ecma International 2012

»ecma

15.4.2.2 new Array (len)
This description applies if and only if the Array constructor is given exactly one argument.

1. If Type(len) is not Number, then

a. Letarray be the result of the abstract operation ArrayCreate (15.4) with argument 1.

b. ReturnlfAbrupt(array).

c. Let defineStatus be the result of calling the [[DefineOwnProperty]] internal method of array with
arguments "0", Property Descriptor {[[\Value]]: len, [[Writable]]: true, [[Enumerable]]: true,
[[Configurable]]: true}, and true.

d. ReturnlfAbrupt(defineStatus).

e. Return array.

Let intLen be ToUint32(len).

If intLen # len, then throw a RangeError exception.

Let array be the result of the abstract operation ArrayCreate (15.4) with argument intLen.
Return array.

abkowd

15.4.3 Properties of the Array Constructor

The value of the [[Prototype]] internal property of the Array constructor. is the Function prototype object
(15.3.4).

Besides the internal properties and the length property (whose value is 1), the Array constructor has the
following properties:

15.4.3.1 Array.prototype

The initial value of Array.prototype is the Array prototype object (15.4.4).

This property has the attributes {[[Writable]]: false, [[Enumerable]]: false, [[Configurable]]: false }.
15.4.3.2 Array.isArray (arg)

The isArray function takes one argument arg, and returns the Boolean value true if the argument is an object
whose class internal property is "Array"; otherwise it.returns false. The following steps are taken:

1. If Type(arg) is not-Object, return false.
2. Ifarg has the [[NativeBrand]] internal property with value NativeArray, then return true.
3. Return false.

15.4.3.3 Array.of (...items)
When the of method is called with any humber of arguments, the following steps are taken:

Let lenValue be the result of calling the [[Get]] internal method of items with the argument "length".
Let len be Tolnteger(lenValue).
Let C be the this value.
If isConstructor(C) is true, then
a. Let newObj be the result of calling the [[Construct]] internal method of C with an argument list
containing the single item len.
b. Let A be ToObject(newObj).
5. Else,
a. Let A be the result of the abstract operation ArrayCreate (15.4) with argument len.
6. ReturnlfAbrupt(A).
Let k be 0.
8. Repeat, while k < len
a. Let Pk be ToString(k).
b. Let kValue be the result of calling the [[Get]] internal method of items with argument PKk.

Ll e

~

© Ecma International 2012 193

9.

10.
11.

ecCmna

c. Let defineStatus be the result of calling the [[DefineOwnProperty]] internal method of A with
arguments Pk, Property Descriptor {[[Value]]: kValue.[[value]], [[Writable]]: true, [[Enumerable]]:
true, [[Configurable]]: true}, and true.

d. ReturnlfAbrupt(defineStatus).

e. Increase k by 1.

Let putStatus be the result of calling the [[Put]] internal method of A with arguments "length", len, and
true.

ReturnlfAbrupt(putStatus).

Return A.

The length property of the of method is 0.

NOTE 1 The items argument is assume to be a well-formed rest argument value.

NOTE 2 The of function is an intentionally generic factory method; it does not require that its this value be the Array
constructor. Therefore it can be transferred to or inherited by other constructors that may be called with a single numeric
argument.

15.4.3.4 Array.from (arrayLike)

When the £rom method is called with argument arrayLike, the following steps are taken:

NookwbE

10.
11.

12,

13.
14,

Let items be ToObject(arrayLike).
ReturnlfAbrupt(items).
Let lenValue be the result of calling the [[Get]] internal method of items with the argument "length".
Let len be Tolnteger(lenValue).
ReturnlfAbrupt(len).
Let C be the this value.
If isConstructor(C) is true, then
a. Let newObj be the result of calling the [[Construct]] internal method of C with an argument list
containing the single item len.
b. Let A be ToObject(newObj).
Else,
a. Let A be the‘result of the abstract operation ArrayCreate (15.4) with argument len.
ReturnlfAbrupt(A).
Let k be 0.
Repeat, while k < len
a. Let Pk be ToString(k).
b. Let kPresent be the result of calling the [[HasProperty]] internal method of items with argument Pk.
c. IfkPresent is true, then
i Let kValue be the result of calling the [[Get]] internal method of items with argument Pk.
il ReturnIfAbrupt(kValue).
iii. Let defineStatus be the result of calling the [[DefineOwnProperty]] internal method of A
with arguments Pk, Property Descriptor {[[Value]]: kValue.[[value]], [[Writable]]: true,
[[Enumerable]]: true, [[Configurable]]: true}, and true.
iv. ReturnifAbrupt(defineStatus).
d. Increase k by 1.
Let putStatus be the result of calling the [[Put]] internal method of A with arguments "length™", len, and
true.
ReturnlfAbrupt(putStatus).
Return A.

NOTE The £rom function is an intentionally generic factory method; it does not require that its this value be the Array
constructor. Therefore it can be transferred to or inherited by any other constructors that may be called with a single
numeric argument.

15.4.4 Properties of the Array Prototype Object

The value of the [[Prototype]] internal property of the Array prototype object is the standard built-in Object
prototype object (15.2.4).

194

© Ecma International 2012

»ecma

The Array prototype object is itself an array; it has an [[NativeBrand]] internal property with value NativeArray,
and it has a 1length property (whose initial value is +0) and the special [[DefineOwnProperty]] internal method
described in 15.4.5.1.

In following descriptions of functions that are properties of the Array prototype object, the phrase “this object”
refers to the object that is the this value for the invocation of the function. It is permitted for the this to be an
object which does not have an [[NativeBrand]] internal property with value NativeArray.

NOTE The Array prototype object does not have a valueOf property of its own; however, it inherits the valueOf
property from the standard built-in Object prototype Object.

15.4.4.1 Array.prototype.constructor
The initial value of Array.prototype.constructor is the standard built-in Axray constructor.
15.4.4.2 Array.prototype.toString ()

When the toString method is called, the following steps are taken:

6. Let array be the result of calling ToObject on the this value.

7. ReturnlfAbrupt(array).

8. Let func be the result of calling the [[Get]] internal method of array ‘with argument "join".

9. ReturnlfAbrupt(func).

10. If IsCallable(func) is false, then let func be the standard built-in. method Object.prototype.toString (15.2.4.2).

11. Return the result of calling the [[Call]] internal method of func providing array as the this value and an
empty arguments list.

NOTE The toString function is intentionally generic; it does not require that its this value be an Array object.

Therefore it can be transferred to other kinds of objects for use as a method. Whether the toString function can be
applied successfully to an exotic object that.is not an Array is implementation-dependent.

15.4.4.3 Array.prototype:toLocaleString ()
The elements of the array are converted to Strings using their toLocaleString methods, and these Strings
are then concatenated, separated by occurrences. of a separator String that has been derived in an

implementation-defined locale-specific way. The result of calling this function is intended to be analogous to
the result of toString, except that the result of this function is intended to be locale-specific.

The result is calculated as follows:

1. Let array be the result of calling ToObject passing the this value as the argument.

2. ReturnlfAbrupt(array).

3. Let arrayLen be the result of calling the [[Get]] internal method of array with argument "length".

4. Letlen be ToUint32(arrayLen).

5. ReturnlfAbrupt(len).

6. Let separator be the String value for the list-separator String appropriate for the host environment’s current
locale (this is derived in an implementation-defined way).

7. Iflenis zero, return'the empty String.

8. Let firstElement be the result of calling the [[Get]] internal method of array with argument "0".

9. ReturnlfAbrupt(firstElement).

10. If firstElement is undefined or null, then

a. Let R be the empty String.
11. Else
a. Let R be the result of calling Invoke with arguments "toLocaleString", firstElement, and an
empty arguments List.
b. Let R be ToString(R).
c. ReturnlfAbrupt(R).
12. Letk be 1.
13. Repeat, while k < len

© Ecma International 2012 195

secma

a. LetS be a String value produced by concatenating R and separator.
b. Let nextElement be the result of calling the [[Get]] internal method of array with argument
ToString(k).
c. ReturnlfAbrupt(nextElement).
d. If nextElement is undefined or null, then
i Let R be the empty String.
e. Else
i Let R be the result of calling Invoke with arguments "toLocaleString", nextElement,
and an empty arguments List.
ii. Let R be ToString(R).
iii. ReturnIfAbrupt(R).
f. Let R bea String value produced by concatenating S and R.
g. Increasek by 1.
14. Return R.

NOTE 1 The first parameter to this function is likely to be used in a future‘version of this standard; it is recommended
that implementations do not use this parameter position for anything else.

NOTE 2 The toLocaleString function is intentionally generic; it does not require that its this value be an Array object.
Therefore it can be transferred to other kinds of objects for use asa method. Whether the toLocaleString function can
be applied successfully to an exotic object that is not an Array is implementation-dependent.

15.4.4.4 Array.prototype.concat ([item1 [, item2[,...11])

When the concat method is called with zero.or more arguments.iteml, item2, etc., it returns an array
containing the array elements of the object followed by the array elements of each argument in order.

The following steps are taken:

1. Let O be the result of calling ToObject passing the this value as the argument.

2. ReturnlfAbrupt(O).

3. Let A be the result of the‘abstract operation ArrayCreate (15.4) with argument 0.

4. LetnbeO.

5. Letitems be an internal List whose first element is O and whose subsequent elements are, in left to right
order, the arguments that were passed to this function invocation.

6. Repeat, while items is not empty

a. Remove the first element from items and let E be the value of the element.
b. _If E has the [[NativeBrand]] internal property with value NativeArray, then
i Letk be 0.
il Let len be the result of calling the [[Get]] internal method of E with argument "length".
iii. ReturnlfAbrupt(len).
iv. Repeat, while k < len
1. Let P be ToString(k).
2. Let exists be the result of calling the [[HasProperty]] internal method of E with P.
3. Af exists is true, then
a Let subElement be the result of calling the [[Get]] internal method of E
with argument P.
b Call the [[DefineOwnProperty]] internal method of A with arguments
ToString(n), Property Descriptor {[[Value]]: subElement, [[Writable]]:
true, [[Enumerable]]: true, [[Configurable]]: true}, and false.
4. Increase n by 1.
5. Increase k by 1.
c. Else, Eis not an Array
i Call the [[DefineOwnProperty]] internal method of A with arguments ToString(n), Property
Descriptor {[[Value]]: E, [[Writable]]: true, [[Enumerable]]: true, [[Configurable]]: true},
and false.
ii. Increase n by 1.
7. Let putStatus be the result of calling the [[Put]] internal method of A with arguments "length", n, and
true.
8. ReturnlfAbrupt(putStatus).

196 © Ecma International 2012

»ecma

9. Return A.
The length property of the concat method is 1.

NOTE 1 The explicit setting of the length property in step 7 is necessary to ensure that its value is correct in
situations where the trailing elements of the result Array are not present.

NOTE2 The concat function is intentionally generic; it does not require that its this value be an Array object.
Therefore it can be transferred to other kinds of objects for use as a method. Whether the concat function can be applied
successfully to an exotic object that is not an Array is implementation-dependent.

15.4.4.5 Array.prototype.join (separator)

The elements of the array are converted to Strings, and these Strings are then concatenated, separated by
occurrences of the separator. If no separator is provided, a single commais used as the separator.

The join method takes one argument, separator, and performs the following steps:

1. Let O be the result of calling ToObject passing the this value as the argument.
2. ReturnlfAbrupt(O).
3. LetlenVal be the result of calling the [[Get]] internal method of O with:argument "length".
4. Letlen be ToUint32(lenVal).
5. ReturnlfAbrupt(len).
6. If separator is undefined, let separator be the single-character String ", ".
7. Letsep be ToString(separator).
8. Iflenis zero, return the empty String.
9. LetelementO be the result of calling the [[Get]] internal method of O with argument "0".
10. If element0 is undefined or null, let R be the empty String; otherwise, Let R be ToString(element0).
11. ReturnlfAbrupt(R).
12. Letk be 1.
13. Repeat, while k < len
a. LetS be the String value produced by concatenating R and sep.
b. Letelement be the result of calling the [[Get]] internal method of O with argument ToString(k).
c. Ifelementis undefined or null, Let next be the empty String; otherwise, let next be
ToString(element).
d. ReturnlfAbrupt(next).
e. LetRbea String value produced by concatenating S and next.
f. Increase k by 1.
14. Return R.

The 1ength property of the join method is 1.

NOTE The join function is intentionally generic; it does not require that its this value be an Array object. Therefore,
it can be transferred to other kinds of objects for use as a method. Whether the join function can be applied successfully
to an exotic object that is not an Array is implementation-dependent.

15.4.4.6 Array.prototype.pop ()

The last element of the array is removed from the array and returned.

1. Let O be the result of calling ToObject passing the this value as the argument.
2. ReturnlfAbrupt(O).
3. Let lenVal be the result of calling the [[Get]] internal method of O with argument "length".
4. Letlen be ToUint32(lenVal).
5. ReturnlfAbrupt(len).
6. If lenis zero,
a. Let putStatus be the result of calling the [[Put]] internal method of O with arguments "length", 0,
and true.

b. ReturnlfAbrupt(putStatus).

© Ecma International 2012 197

secma

c. Return undefined.
7. Else, len>0
Let newLen be len-1.
Let indx be ToString(newLen).
Let element be the result of calling the [[Get]] internal method of O with argument indx.
ReturnlfAbrupt(element).
Let deleteStatus be the result of calling the [[Delete]] internal method of O with arguments indx and
true.
ReturnlfAbrupt(deleteStatus).
Let putStatus be the result of calling the [[Put]] internal method of O with arguments "length",
newLen, and true.
h. ReturnlfAbrupt(putStatus).
i. Return element.

PoooTe

«Q

NOTE The pop function is intentionally generic; it does not require that its this value be an Array object. Therefore it
can be transferred to other kinds of objects for use as a method. Whether the‘pop function can be applied successfully to
an exotic object that is not an Array is implementation-dependent.

15.4.4.7 Array.prototype.push ([item1 [, item2[,...1]11)

The arguments are appended to the end of the array, in the order in which they appear. The new length of the
array is returned as the result of the call.

When the push method is called with zero or more arguments item1, item2, etc., the following steps are taken:

Let O be the result of calling ToObject passing the this value as the argument.
ReturnIfAbrupt(O).
Let lenVal be the result of calling the [[Get]] internal method of O with argument "length".
Let n be ToUint32(lenVal).
ReturnlfAbrupt(n).
Let items be an internal List whose elements are, in left to right order, the arguments that were passed to this
function invocation.
7. Repeat, while items is‘not empty
a. Remove the first element from items and let E be the value of the element.
b. Let putStatus be the result of calling the [[Put]] internal method of O with arguments ToString(n), E,
and true.
c. ReturnlfAbrupt(putStatus).
d. Increase n by 1.
8. Let putStatus be the result of calling the [[Put]] internal method of O with arguments "length", n, and

Uk whE

true.
9. ReturnlfAbrupt(putStatus).
10. Return n.

The length property of the push method is 1.

NOTE The push function is intentionally generic; it does not require that its this value be an Array object. Therefore
it can be transferred to other kinds of objects for use as a method. Whether the push function can be applied successfully
to an exotic object that is not an Array is implementation-dependent.

15.4.4.8 Array.prototype.reverse ()

The elements of the array are rearranged so as to reverse their order. The object is returned as the result of
the call.

Let O be the result of calling ToObject passing the this value as the argument.
ReturnlfAbrupt(O).

Let lenVal be the result of calling the [[Get]] internal method of O with argument "length".
Let len be ToUint32(lenVal).

ReturnlfAbrupt(len).

gRhwbdE

198 © Ecma International 2012

~

9.

eCina

Let middle be floor(len/2).
Let lower be 0.
Repeat, while lower = middle

SQ 000 o

m.

n.

Let upper be len— lower —-1.
Let upperP be ToString(upper).
Let lowerP be ToString(lower).
Let lowerValue be the result of calling the [[Get]] internal method of O with argument lowerP.
ReturnlfAbrupt(lowerValue).
Let upperValue be the result of calling the [[Get]] internal method of O with argument upperP .
ReturnlfAbrupt(upperValue).
Let lowerExists be the result of calling the [[HasProperty]] internal method of O with argument
lowerP.
Let upperExists be the result of calling the [[HasProperty]] internal'method of O with argument
upperP.
If lowerExists is true and upperExists is true, then
i. Let putStatus be the result of calling the [[Put]] internal method of O with arguments
lowerP, upperValue, and true .
ii. ReturnlfAbrupt(putStatus).
i Let putStatus be the result of calling the [[Put]] internal method of O with arguments
upperP, lowerValue, and true .
iv. ReturnlfAbrupt(putStatus).
Else if lowerExists is false and upperExists is true, then
i Let putStatus be the result of calling the [[Put]].internal method of O with arguments
lowerP, upperValue, and true .
ii. ReturnlfAbrupt(putStatus):
iii. Let deleteStatus be the result of calling the [[Delete]] internal method of O, with arguments
upperP and true.
iv. ReturnlfAbrupt(deleteStatus).
Else if lowerExists is true and upperExists is false, then
i. Let deleteStatus be the result of calling the [[Delete]] internal method of O, with arguments
lowerP and true .
ii. ReturnlfAbrupt(deleteStatus).
iii. Let putStatus be the result of calling the [[Put]] internal method of O with arguments
upperP, lowerValue, and true .
iv. ReturnlfAbrupt(putStatus).
Else, both lowerExists and upperExists are false
i, No action is required.
Increase lower by 1.

Return O .

NOTE
Therefore, it can be transferred to other kinds of objects for use as a method. Whether the reverse function can be
applied successfully to an exotic object that is not an Array is implementation-dependent.

The reverse function is intentionally generic; it does not require that its this value be an Array object.

15.4.4.9 Array.prototype.shift ()

The first element of the array is removed from the array and returned.

ook whE

Let O be the result of calling ToObject passing the this value as the argument.
ReturnlfAbrupt(O).

Let lenVal be the result of calling the [[Get]] internal method of O with argument "length".
Let len be ToUint32(lenVal).

ReturnlfAbrupt(len).

If len is zero, then

a.

b.
.

Let putStatus be the result of calling the [[Put]] internal method of O with arguments "length", 0,
and true.

ReturnIfAbrupt(putStatus).

Return undefined.

Let first be the result of calling the [[Get]] internal method of O with argument "0".
ReturnlfAbrupt(first).

© Ecma International 2012 199

secma

9. Letkbel.
10. Repeat, while k < len
a. Letfrom be ToString(k).
b. Letto be ToString(k-1).
c. LetfromPresent be the result of calling the [[HasProperty]] internal method of O with argument
from.
d. If fromPresent is true, then
i Let fromVal be the result of calling the [[Get]] internal method of O with argument from.
ii. ReturnlfAbrupt(fromval).
iii. Let putStatus be the result of calling the [[Put]] internal method of O with arguments to,
fromVal, and true.
iv. ReturnlfAbrupt(putStatus).
e. Else, fromPresent is false
i Let deleteStatus be the result of calling the [[Delete]] internal method of O with arguments
to and true.
il. ReturnlfAbrupt(deleteStatus).
f. Increase k by 1.
11. Let deleteStatus be the result of calling the [[Delete]] internal.method of O with arguments ToString(len-1)
and true.
12. ReturnlfAbrupt(deleteStatus).
13. Let putStatus be the result of calling the [[Put]] internal method of O with arguments "length", (len-1),
and true.
14. ReturnlfAbrupt(putStatus).
15. Return first.

NOTE The shift function is intentionally generic; it does not require that its.this value be an Array object. Therefore
it can be transferred to other kinds of objects for use as a method. Whether the shift function can be applied
successfully to an exotic object that is not an Array is implementation-dependent.

15.4.4.10 Array.prototype.slice (start, end)

The slice method takes two arguments, start and end, and returns an array containing the elements of the
array from element start‘up to, but not including, element end (or through the end of the array if end is
undefined). If start is.negative, it is treated as length+start where length is the length of the array. If end is
negative, it is treated as length+end where length-is the length of the array. The following steps are taken:

1. Let O be the result of calling ToObject passing the this value as the argument.

2. ReturnlfAbrupt(O).

3. Let Abe the result of the abstract operation ArrayCreate (15.4) with argument 0.

4. LetlenVal be the result of calling the [[Get]] internal method of O with argument "length".

5. Let len be ToUint32(lenVal).

6. ReturnifAbrupt(len).

7. Let relativeStart be Tolnteger(start).

8. ReturnlfAbrupt(relativeStart).

9. If relativeStart.is negative, let k be max((len + relativeStart),0); else let k be min(relativeStart, len).
10. If end is undefined, let relativeEnd be len; else let relativeEnd be Tolnteger(end).

11. ReturnlfAbrupt(relativeEnd).

12. If relativeEnd is negative, let final be max((len + relativeEnd),0); else let final be min(relativeEnd, len).
13. Letn beO.

14. Repeat, while k < final

a. Let Pk be ToString(k).
b. Let kPresent be the result of calling the [[HasProperty]] internal method of O with argument Pk.
c. IfkPresent is true, then

i Let kValue be the result of calling the [[Get]] internal method of O with argument Pk.

il ReturnlfAbrupt(kValue).

iii. Call the [[DefineOwnProperty]] internal method of A with arguments ToString(n), Property
Descriptor {[[Value]]: kValue, [[Writable]]: true, [[Enumerable]]: true, [[Configurable]]:
true}, and false.

. Increase k by 1.
e. Increasen by 1.

200 © Ecma International 2012

»ecma

15. Let putStatus be the result of calling the [[Put]] internal method of A with arguments "length™, final, and
true.

16. ReturnlfAbrupt(putStatus).

17. Return A.

The length property of the slice method is 2.

NOTE 1 The explicit setting of the 1length property of the result Array in step 15 is necessary to ensure that its value is
correct in situations where the trailing elements of the result Array are not present.

NOTE 2 The slice function is intentionally generic; it does not require that its this value'be an Array object. Therefore
it can be transferred to other kinds of objects for use as a method. Whether the .slice function can be applied
successfully to an exotic object that is not an Array is implementation-dependent.

15.4.4.11 Array.prototype.sort (comparefn)

The elements of this array are sorted. The sort is not necessarily stable (that is, elements that compare equal
do not necessarily remain in their original order). If comparefn is not undefined, it should be a function that
accepts two arguments x and y and returns a negative value ifx <y, zero if x =y, or a positive value if x > y.

Let obj be the result of calling ToObject passing the this value as the argument.

Let len be the result of applying Uint32 to the result of calling the [[Get]] internal method of obj with argument
"length".

If comparefn is not undefined and is not a consistent comparison function for the elements of this array (see
below), the behaviour of sort is implementation-defined.

Let proto be the value of the [[Prototype]] internal property-of obj. If protois not null and there exists an integer
j such that all of the conditions below are satisfied then the behaviour of sort is implementation-defined:

e 0bjis sparse (15.4)
e 0O<j<len
e The result of calling the [[HasProperty]] internal method of proto with argument ToString(j) is true.

The behaviour of sort is also implementation defined if obj is sparse and any of the following conditions are
true:

e _The [[Extensible]] internal property of obj is false.
o Any array index property of obj whose name is a nonnegative integer less than len is a data property
whose [[Configurable]] attribute is false.

The behaviour of sort is also implementation defined if any array index property of obj whose name is a
nonnegative integer less than len is an accessor property or is a data property whose [[Writable]] attribute is
false.

Otherwise, the following steps are taken.

1. Perform an implementation-dependent sequence of calls to the [[Get]] , [[Put]], and [[Delete]] internal
methods of obj and to SortCompare (described below), where the first argument for each call to [[Get]],
[[Put]], or [[Delete]] is a nonnegative integer less than len and where the arguments for calls to SortCompare
are results of previous calls to the [[Get]] internal method. The throw argument to the [[Put]] and [[Delete]]
internal methods will be the value true. If obj is not sparse then [[Delete]] must not be called. If an abrupt
completion is returned from any of these operations, it is immediately returned as the value of this function.

2. Return obj.

© Ecma International 2012 201

secma

The returned object must have the following two properties.

e There must be some mathematical permutation & of the nonnegative integers less than len, such that
for every nonnegative integer j less than len, if property old[j] existed, then new[n(j)] is exactly the
same value as old[j],. But if property old[j] did not exist, then new[r(j)] does not exist.

e Then for all nonnegative integers j and k, each less than len, if SortCompare(j,k) <0 (see SortCompare
below), then =(j) < w(k).

Here the notation old[j] is used to refer to the hypothetical result of calling the [[Get]] internal method of obj
with argument j before this function is executed, and the notation new[j] to refer to the hypothetical result of
calling the [[Get]] internal method of obj with argument j after this function has been executed.

A function comparefn is a consistent comparison function for a set of values<S if all of the requirements below
are met for all values a, b, and c (possibly the same value) in the.set S: The notation a<crb means
comparefn(a,b) < 0; a =cr b means comparefn(a,b) = 0 (of either sign); anda >cr b means.comparefn(a,b) > 0.

e Calling comparefn(a,b) always returns the same value v when_given a specific pair of values a and b as its two
arguments. Furthermore, Type(v) is Number, and v is not NaN. Note that this implies that exactly one of a <cr b,
a =cr b, and a >c¢ b will be true for a given pair of a and b.

Calling comparefn(a,b) does not modify the this object.

a=cra (reflexivity)

Ifa=ceb, thenb=cra (symmetry)

Ifa=cebandb=cec,thena=cec (transitivity of =c)

Ifa<cebandb <cec, thena<cec (transitivity of <ce)

Ifa>ceband b >cec, thena>cec (transitivity of >c)

NOTE The above conditions are necessary and sufficient to ensure.that comparefn divides the set S into equivalence
classes and that these equivalence classes are totally ordered.

When the SortCompare abstract operation is called with two arguments j and k, the following steps are taken:

1. Let jString be ToString(j).

2. LetkString be ToString(k).

3. Let hasj be the result of calling the [[HasProperty]] internal method of obj with argument jString.
4. Let hask be the result of calling.the [[HasProperty]] internal method of obj with argument kString.
5. If hasj and hask are both false, then return +0.

6. If hasj is-false, then return 1.

7. If hask'is false, then return —1.

8. Letx be the result of calling the [[Get]] internal method of obj with argument jString.

9. ReturnIfAbrupt(x).

10. Lety be the result of calling the [[Get]] internal method of obj with argument kString.

11. ReturnlfAbrupt(y).

12. If x and y are both undefined, return +0.

13. If x is undefined, return 1.

14. Ify is undefined, return —1.

15. If the argument comparefn is not undefined, then

a. If IsCallable(comparefn) is false, throw a TypeError exception.
b. Return the result of calling the [[Call]] internal method of comparefn passing undefined as the this
value and with arguments x and y.
16. Let xString be ToString(x).
17. ReturnlfAbrupt(xString).
18. Let yString be ToString(y).
19. ReturnlfAbrupt(yString).
20. If xString < yString, return —1.
21. If xString > yString, return 1.
22. Return +0.

NOTE 1 Because non-existent property values always compare greater than undefined property values, and
undefined always compares greater than any other value, undefined property values always sort to the end of the result,
followed by non-existent property values.

202 © Ecma International 2012

»ecma

NOTE 2 The sort function is intentionally generic; it does not require that its this value be an Array object. Therefore,
it can be transferred to other kinds of objects for use as a method. Whether the sort function can be applied successfully
to an exotic object that is not an Array is implementation-dependent.

15.4.4.12 Array.prototype.splice (start, deleteCount [, item1 [, item2[,...]1]11)

When the splice method is called with two or more arguments start, deleteCount and (optionally) item1, item2,
etc., the deleteCount elements of the array starting at array index start are replaced by the arguments iteml,
item2, etc. An Array object containing the deleted elements (if any) is returned. The following steps are taken:

Let O be the result of calling ToObject passing the this value as the argument.
ReturnlfAbrupt(O).
Let A be the result of the abstract operation ArrayCreate (15.4) with argument 0.
Let lenVal be the result of calling the [[Get]] internal method of O with argument "length".
Let len be ToUint32(lenVal).
ReturnlfAbrupt(len).
Let relativeStart be Tolnteger(start).
ReturnIfAbrupt(relativeStart).
If relativeStart is negative, let actualStart be max((len + relativeStart),0); else let actualStart be
min(relativeStart, len).
10. Let actualDeleteCount be min(max(Tolnteger(deleteCount),0), len — actualStart).
11. Letk be 0.
12. Repeat, while k < actualDeleteCount
a. Letfrom be ToString(actualStart+k).
b. Let fromPresent be the result of calling.the [[HasProperty]] internal method of O with argument
from.
c. IffromPresent is true, then
i Let fromValue be the result of calling the [[Get]] internal method of O with argument from.
ii. ReturnlfAbrupt(fromValue).
iii. Call the [[DefineOwnProperty]] internal method of A with arguments ToString(k), Property
Descriptor{[[Value]]: fromValue, [[Writable]]: true, [[Enumerable]]: true,
[[Configurable]]: true}, and false,
d. Incrementk by 1.
13. Let putStatus be the result of calling.the [[Put]] internal method of A with arguments "length™",
actualDeleteCount, and true.
14. ReturnlfAbrupt(putStatus).
15. Let items be an.internal List whose elements are, in left to right order, the portion of the actual argument list
starting.with item1. The list will be empty if no such items are present.
16. Let itemCount be the number of elements in items.
17. If itemCount < actualDeleteCount, then
a. Letk be actualStart.
b. . Repeat, while k <'(len — actualDeleteCount)
i Let from be ToString(k+actualDeleteCount).
ii. Let to be ToString(k+itemCount).
iii. Let fromPresent be the result of calling the [[HasProperty]] internal method of O with
argument from.
iv. If fromPresent is true, then
1. Let fromValue be the result of calling the [[Get]] internal method of O with
argument from.
2. ReturnlfAbrupt(fromValue).
3. Let putStatus be the result of calling the [[Put]] internal method of O with
arguments to, fromValue, and true.
4. ReturnIfAbrupt(putStatus).
V. Else, fromPresent is false
1. Let deleteStatus be the result of calling the [[Delete]] internal method of O with
arguments to and true.
2. ReturnlfAbrupt(deleteStatus).
Vi. Increase k by 1.
c. Letkbelen.
d. Repeat, while k > (len — actualDeleteCount + itemCount)

©COoNoO Wb E

© Ecma International 2012 203

eCina

i Let deleteStatus be the result of calling the [[Delete]] internal method of O with arguments
ToString(k—-1) and true.
il ReturnlfAbrupt(deleteStatus).
iii. Decrease k by 1.
18. Else if itemCount > actualDeleteCount, then
a. Letkbe (len —actualDeleteCount).
b. Repeat, while k > actualStart
i Let from be ToString(k + actualDeleteCount — 1).
ii. Let to be ToString(k + itemCount — 1)
iii. Let fromPresent be the result of calling the [[HasProperty]] internal method of O with
argument from.
iv. If fromPresent is true, then
1. Let fromValue be the result of calling the [[Get]] internal method of O with
argument from.
2. ReturnIfAbrupt(fromValue).
3. Let putStatus be the result of calling the [[Put]] internal method of O with
arguments to, fromValue, and true.
4. ReturnIfAbrupt(putStatus).
V. Else, fromPresent is false
1. Let deleteStatus be the result ofcalling the [[Delete]] internal method of O with
argument to and true.
2. ReturnIfAbrupt(deleteStatus).
vi. Decrease k by 1.
19. Let k be actualStart.
20. Repeat, while items is not empty
a. Remove the first element from items and let.E be the value of that element.
b. Let putStatus be the result of calling the [[Put]] internal method of O with arguments ToString(k), E,
and true.
c. ReturnlfAbrupt(putStatus).
d. Increase k by 1.
21. Let putStatus be the result of calling the [[Put]] internal method of O with arguments "length", (len -
actualDeleteCount + itemCount), and true.
22. ReturnlfAbrupt(putStatus).
23. Return A.

The length property of the splice method is 2.

NOTE 1 Theexplicit setting of the 1ength property of the result Array in step 13 is necessary to ensure that its value is
correct in situations where its trailing elements are not present.

NOTE2 The splice function is intentionally generic; it does not require that its this value be an Array object.
Therefore it can be transferred to other kinds of objects for use as a method. Whether the splice function can be applied
successfully to an exotic object that is not an Array is implementation-dependent.

15.4.4.13 Array.prototype.unshift ([item1 [, item2[,...1]1])

The arguments are prepended to the start of the array, such that their order within the array is the same as the
order in which they appear in the argument list.

When the unshift method is called with zero or more arguments iteml, item2, etc., the following steps are
taken:

Let O be the result of calling ToObject passing the this value as the argument.
ReturnlfAbrupt(O).

Let lenVal be the result of calling the [[Get]] internal method of O with argument "length".
Let len be ToUint32(lenVal).

ReturnlfAbrupt(len).

Let argCount be the number of actual arguments.

Let k be len.

Repeat, while k > 0,

PN~ WNE

204 © Ecma International 2012

eCina

Let from be ToString(k—1).
Let to be ToString(k+argCount —1).
c. LetfromPresent be the result of calling the [[HasProperty]] internal method of O with argument
from.
d. IffromPresent is true, then
i Let fromValue be the result of calling the [[Get]] internal method of O with argument from.
ii. ReturnlfAbrupt(fromValue).
iii. Let putStatus be the result of calling the [[Put]] internal method of O with arguments to,
fromValue, and true.
iv. ReturnlfAbrupt(putStatus).
e. Else, fromPresent is false
i. Let deleteStatus be the result of calling the [[Delete]] internal'method of O with arguments
to, and true.
ii. ReturnlfAbrupt(deleteStatus).
f. Decrease k by 1.
9. LetjbeO.
10. Let items be an internal List whose elements are, in left to right order, the arguments that were passed to this
function invocation.
11. Repeat, while items is not empty
a. Remove the first element from items and let E be'the value of that element.
b. Let putStatus be the result of calling the [[Put]] internal method of O with arguments ToString(j), E,
and true.
c. ReturnlfAbrupt(putStatus).
d. Increasej by 1.
12. Let putStatus be the result of calling the [[Put]] internal method of O with arguments "length",
len+argCount, and true.
13. ReturnlfAbrupt(putStatus).
14. Return len+argCount.

oo

The 1length property of the unshift method is 1.

NOTE The unshift function is intentionally generic; it does not require that its this value be an Array object.
Therefore it can be transferred to other kinds of objects for use as a method. Whether the unshift function can be
applied successfully to an‘exotic object that is not an Array is implementation-dependent.

15.4.4.14 Array.prototype.indexOf (searchElement [, fromiIndex])

indexOf compares searchElement to the elements of the array, in ascending order, using the internal Strict
Equality Comparison Algorithm (11.9.1), and if found at one or more positions, returns the index of the first
such position; otherwise, -1 is returned.

The optional second argument fromindex defaults to O (i.e. the whole array is searched). If it is greater than or
equal to the length of the array, -1 is returned, i.e. the array will not be searched. If it is negative, it is used as
the offset from the end of the array to compute fromindex. If the computed index is less than 0, the whole array
will be searched.

When the indexOf method is called with one or two arguments, the following steps are taken:

1. Let O be the result of calling ToObject passing the this value as the argument.
2. ReturnlfAbrupt(O).
3. LetlenValue be the result of calling the [[Get]] internal method of O with the argument "1length™.
4. Letlen be ToUint32(lenValue).
5. ReturnlfAbrupt(len).
6. |Iflenis O, return -1.
7. Ifargument fromIndex was passed let n be Tolnteger(fromlindex); else let n be 0.
8. ReturnlfAbrupt(n).
9. Ifn=>len,return-1.
10. If n >0, then
a. Letkben.

© Ecma International 2012 205

secma

11. Else, n<0
a. Letk be len -abs(n).
b. Ifk <0, then let k be 0.
12. Repeat, while k<len
a. LetkPresent be the result of calling the [[HasProperty]] internal method of O with argument
ToString(k).
b. IfkPresent is true, then
i Let elementK be the result of calling the [[Get]] internal method of O with the argument
ToString(k).
ii. ReturnlfAbrupt(elementK).
iii. Let same be the result of performing the Strict Equality Comparison Algorithm

searchElement === elementK.
iv. If same is true, return k.
c. Increase k by 1.

13. Return -1.
The length property of the indexOf method is 1.

NOTE The indexOf function is intentionally generic; it does not require that its this value be an Array object.
Therefore it can be transferred to other kinds of objects for use.as a method. Whether the indexO£ function can be
applied successfully to an exotic object that is not an Array is implementation-dependent.

15.4.4.15 Array.prototype.lastindexOf (searchElement [, fromIndex])

lastIndexOf compares searchElement to the elements of the array.in descending order using the internal
Strict Equality Comparison Algorithm (11.9.1), and if found at one or more positions, returns the index of the
last such position; otherwise, -1 is returned.

The optional second argument fromindex defaults to the array's length minus one (i.e. the whole array is
searched). If it is greater than or equal to the length of‘the array, the whole array will be searched. If it is
negative, it is used as the offset from the end of the array to compute fromindex. If the computed index is less
than 0, -1 is returned.

When the 1astIndex0Of method is called with one or two arguments, the following steps are taken:

1. Let O be the result of calling ToObject passing the this value as the argument.
2. ReturnlfAbrupt(O).
3. LetlenValue be the result of calling the [[Get]] internal method of O with the argument "length™.
4. Letlen be ToUint32(lenValue).
5. ReturnlfAbrupt(len).
6. Iflenis 0, return -1.
7. Ifargument fromindex was passed let n be Tolnteger(fromlindex); else let n be len-1.
8. ReturnlfAbrupt(n).
9. Ifn >0, then let k be min(n, len — 1).
10. Else, n<0
a. Letkbelen - abs(n).
11. Repeat, while k=0
a. LetkPresent be the result of calling the [[HasProperty]] internal method of O with argument
ToString(k).
b. If kPresent is true, then
i Let elementK be the result of calling the [[Get]] internal method of O with the argument
ToString(k).
ii. ReturnlfAbrupt(elementK).
iii. Let same be the result of performing Strict Equality Comparison Algorithm

searchElement === elementK.
iv. If same is true, return k.
c. Decreasek by 1.

12. Return -1.
The length property of the LastIndexOf method is 1.

206 © Ecma International 2012

»ecma

NOTE The lastIndexOf function is intentionally generic; it does not require that its this value be an Array object.
Therefore it can be transferred to other kinds of objects for use as a method. Whether the 1astIndexOf function can be
applied successfully to an exotic object that is not an Array is implementation-dependent.

15.4.4.16 Array.prototype.every (callbackfn [, thisArg])

callbackfn should be a function that accepts three arguments and returns a value that is coercible to the
Boolean value true or false. every calls callbackfn once for each element present in the array, in ascending
order, until it finds one where callbackfn returns false. If such an element is found, every immediately returns
false. Otherwise, if callbackfn returned true for all elements, every will return true. callbackfn is called only for
elements of the array which actually exist; it is not called for missing elements of the array.

If a thisArg parameter is provided, it will be used as the this value for each invocation of callbackfn. If it is not
provided, undefined is used instead.

callbackfn is called with three arguments: the value of the element, the index of the element, and the object
being traversed.

every does not directly mutate the object on which it is called but the object may be mutated by the calls to
callbackfn.

The range of elements processed by every is set before the first'call to callbackfn. Elements which are
appended to the array after the call to every begins will not be visited by callbackfn. If existing elements of the
array are changed, their value as passed to. callbackfn will be the value at the time every visits them;
elements that are deleted after the call to every begins and before being visited are not visited. every acts
like the "for all" quantifier in mathematics. In particular, foran empty array, it returns true.

When the every method is called with one or two arguments, the following steps are taken:

Let O be the result of calling ToObject passing the this value as the argument.
ReturnlfAbrupt(O).
Let lenValue be the result of calling the [[Get]] internal method of O with the argument "length".
Let len be ToUint32(lenValue).
ReturnlfAbrupt(len).
If IsCallable(callbackfn) is false; throw a TypeError exception.
If thisArg was supplied, let T be thisArg; else let T be undefined.
Let k be 0:
Repeat, while k <'len
a. Let Pk be ToString(k).
b. Let kPresent be the result of calling the [[HasProperty]] internal method of O with argument Pk.
c... If kPresent is true, then
i. Let kValue be the result of calling the [[Get]] internal method of O with argument Pk.
ii. ReturnlfAbrupt(kValue).
iii. Let testResult be the result of calling the [[Call]] internal method of callbackfn with T as the
this value and argument list containing kValue, k, and O.
iv. ReturnlfAbrupt(testResult).
V. If ToBoolean(testResult) is false, return false.
d. Increase k by 1.
10. Return true.

COoONOAWNE

The 1length property of the every method is 1.

NOTE The every function is intentionally generic; it does not require that its this value be an Array object. Therefore
it can be transferred to other kinds of objects for use as a method. Whether the every function can be applied
successfully to an exotic object that is not an Array is implementation-dependent.

15.4.4.17 Array.prototype.some (callbackfn [, thisArg])

callbackfn should be a function that accepts three arguments and returns a value that is coercible to the
Boolean value true or false. some calls callbackfn once for each element present in the array, in ascending

© Ecma International 2012 207

secma

order, until it finds one where callbackfn returns true. If such an element is found, some immediately returns
true. Otherwise, some returns false. callbackfn is called only for elements of the array which actually exist; it is
not called for missing elements of the array.

If a thisArg parameter is provided, it will be used as the this value for each invocation of callbackfn. If it is not
provided, undefined is used instead.

callbackfn is called with three arguments: the value of the element, the index of the element, and the object
being traversed.

some does not directly mutate the object on which it is called but the object may be mutated by the calls to
callbackfn.

The range of elements processed by some is set before the first call to callbackfn. Elements that are appended
to the array after the call to some begins will not be visited by callbackfn. If existing elements of the array are
changed, their value as passed to callbackfn will be the value at the.time that some Visits them; elements that
are deleted after the call to some begins and before being visited are not visited. some acts like the "exists"
quantifier in mathematics. In particular, for an empty array, it returns false.

When the some method is called with one or two arguments, the following steps are taken:

Let O be the result of calling ToObject passing the this value as the argument.
ReturnlfAbrupt(O).
Let lenValue be the result of calling the [[Get]] internal method of O with the argument "length".
Let len be ToUint32(lenValue).
ReturnlfAbrupt(len).
If IsCallable(callbackfn) is false, throw a TypeError exception.
If thisArg was supplied, let T be thisArg; else let T be undefined.
Letk be 0.
Repeat, while k < len
a. Let Pk be ToString(k).
b. Let kPresent be the result of calling the [[HasProperty]] internal method of O with argument Pk.
c. IfkPresentds true, then
i Let kValue be theresultof-calling the [[Get]] internal method of O with argument Pk.
il ReturnlfAbrupt(kValue).
iii. Let testResult be the result of calling the [[Call]] internal method of callbackfn with T as the
this value and argument list containing kValue, k, and O.
iv. ReturnifAbrupt(testResult).
V. If ToBoolean(testResult) is true, return true.
d. Increase k by 1.
10. Return false.

N R WNE

The 1ength property of the some method is 1.

NOTE The some function is intentionally generic; it does not require that its this value be an Array object. Therefore
it can be transferred to other kinds of objects for use as a method. Whether the some function can be applied successfully
to an exotic object that is not an Array is implementation-dependent.

15.4.4.18 Array.prototype.forEach (callbackfn [, thisArg])
callbackfn should be a function that accepts three arguments. forEach calls callbackfn once for each element
present in the array, in ascending order. callbackfn is called only for elements of the array which actually exist;

it is not called for missing elements of the array.

If a thisArg parameter is provided, it will be used as the this value for each invocation of callbackfn. If it is not
provided, undefined is used instead.

callbackfn is called with three arguments: the value of the element, the index of the element, and the object
being traversed.

208 © Ecma International 2012

»ecma

forEach does not directly mutate the object on which it is called but the object may be mutated by the calls to
callbackfn.

The range of elements processed by forEach is set before the first call to callbackfn. Elements which are
appended to the array after the call to forEach begins will not be visited by callbackfn. If existing elements of
the array are changed, their value as passed to callback will be the value at the time forEach visits them;
elements that are deleted after the call to forEach begins and before being visited are not visited.

When the forEach method is called with one or two arguments, the following steps are taken:

Let O be the result of calling ToObject passing the this value as the argument.
ReturnlfAbrupt(O).
Let lenValue be the result of calling the [[Get]] internal method of O with'the argument "length".
Let len be ToUint32(lenValue).
ReturnlfAbrupt(len).
If IsCallable(callbackfn) is false, throw a TypeError exception.
If thisArg was supplied, let T be thisArg; else let T be undefined.
Let k be 0.
Repeat, while k < len
a. Let Pk be ToString(k).
b. Let kPresent be the result of calling the [[HasProperty]] internal method of O with argument Pk.
c. IfkPresentis true, then
i Let kValue be the result of calling the [[Get]] internal method of O with argument Pk.
ii. ReturnlfAbrupt(kValue).
iii. Let funcResult be the result of calling the [[Call]] internal method of callbackfn with T as
the this value and argument list containing kValue, k, and O.
iv. ReturnlfAbrupt(funcResult).
d. Increase k by 1.
10. Return undefined.

CoNoGO~WNE

The 1length property of the £forEach method is 1.

NOTE The forEach function is intentionally generic; it does not require that its this value be an Array object.
Therefore it can be transferred to other kinds of objects for use as a method. Whether the forEach function can be
applied successfully to an exatic object that is not an Array is implementation-dependent.

15.4.4.19 Array.prototype.map.(callbackfn [, thisArg])
callbackfn should be a function that accepts three arguments. map calls callbackfn once for each element in the
array, in‘ascending order, and constructs a new Array from the results. callbackfn is called only for elements of

the array which actually exist; it.is not called for missing elements of the array.

If a thisArg parameter is provided, it will be used as the this value for each invocation of callbackfn. If it is not
provided, undefined is used instead.

callbackfn is called with three arguments: the value of the element, the index of the element, and the object
being traversed.

map does not directly mutate the object on which it is called but the object may be mutated by the calls to
callbackfn.

The range of elements processed by map is set before the first call to callbackfn. Elements which are
appended to the array after the call to map begins will not be visited by callbackfn. If existing elements of the

array are changed, their value as passed to callbackfn will be the value at the time map visits them; elements
that are deleted after the call to map begins and before being visited are not visited.

When the map method is called with one or two arguments, the following steps are taken:

1. Let O be the result of calling ToObject passing the this value as the argument.

© Ecma International 2012 209

secma

ReturnlfAbrupt(O).
Let lenValue be the result of calling the [[Get]] internal method of O with the argument "length".
Let len be ToUint32(lenValue).
ReturnlfAbrupt(len).
If IsCallable(callbackfn) is false, throw a TypeError exception.
If thisArg was supplied, let T be thisArg; else let T be undefined.
Let A be the result of the abstract operation ArrayCreate (15.4) with argument len.
. LetkbeO.
0. Repeat, while k < len
a. Let Pk be ToString(k).
b. Let kPresent be the result of calling the [[HasProperty]] internal method-of O with argument Pk.
c. IfkPresent is true, then
i Let kValue be the result of calling the [[Get]] internal method of O with argument Pk.
ii. ReturnIfAbrupt(kValue).
iii. Let mappedValue be the result of calling the [[Call]] internal method of callbackfn with T as
the this value and argument List containing kValue, k, and O.
iv. ReturnlfAbrupt(mappedValue).
V. Let defineStatus be the result of calling the [[DefineOwnProperty]] internal method of A
with arguments Pk, Property Descriptor {[[Value]]: mappedValue, [[Writable]]: true,
[[Enumerable]]: true, [[Configurable]]:-true}, and false.
Vi. ReturnlfAbrupt(defineStatus).
d. Increase k by 1.
11. Return A.

HOoo~No ko

The 1length property of the map method is 1.

NOTE The map function is intentionally generic; it does not require that its this value be an Array object. Therefore it
can be transferred to other kinds of objects for use as a method. Whether the map function can be applied successfully to
an exotic object that is not an Array is implementation-dependent.

15.4.4.20 Array.prototype.filter (-callbackfn [, thisArg])

callbackfn should be a function that accepts three arguments and returns a value that is coercible to the
Boolean value true or false. £filter calls callbackfn once for each element in the array, in ascending order,
and constructs a new array of all the values for which callbackfn returns true. callbackfn is called only for
elements of the array which actually exist; it is not-called for missing elements of the array.

If a thisArg parameter is provided, it will be used as the this value for each invocation of callbackfn. If it is not
provided, undefined is used instead.

callbackfn is called with three arguments: the value of the element, the index of the element, and the object
being traversed.

filter does not directly mutate the object on which it is called but the object may be mutated by the calls to
callbackfn.

The range of elements processed by filter is set before the first call to callbackfn. Elements which are
appended to the array after the call to £ilter begins will not be visited by callbackfn. If existing elements of
the array are changed their value as passed to callbackfn will be the value at the time £ilter visits them;
elements that are deleted after the call to £ilter begins and before being visited are not visited.

When the £ilter method is called with one or two arguments, the following steps are taken:

Let O be the result of calling ToObject passing the this value as the argument.

ReturnlfAbrupt(O).

Let lenValue be the result of calling the [[Get]] internal method of O with the argument "length".
Let len be ToUint32(lenValue).

ReturnlfAbrupt(len).

If IsCallable(callbackfn) is false, throw a TypeError exception.

If thisArg was supplied, let T be thisArg; else let T be undefined.

Nook~wbhE

210 © Ecma International 2012

»ecma

8. Let A be the result of the abstract operation ArrayCreate (15.4) with argument 0.
9. LetkbeO.
10. Letto beO.
11. Repeat, while k < len
a. Let Pk be ToString(k).
b. Let kPresent be the result of calling the [[HasProperty]] internal method of O with argument Pk.
c. IfkPresent is true, then
i. Let kValue be the result of calling the [[Get]] internal method of O with argument Pk.
ii. ReturnlfAbrupt(kValue).
iii. Let selected be the result of calling the [[Call]] internal method of callbackfn with T as the
this value and argument list containing kValue, k, and O.
iv. ReturnlfAbrupt(selected).
V. If ToBoolean(selected) is true, then
1. Let defineStatus be the result of calling the [[DefineOwnProperty]] internal method
of A with arguments ToString(to), Property Descriptor {[[Value]]: kValue,
[[Writable]]: true, [[Enumerable]]: true, [[Configurable]]: true}, and false.
2. ReturnlfAbrupt(defineStatus).
3. Increase to by 1.
d. Increase k by 1.
12. Return A.

The length property of the £ilter method is 1.

NOTE The filter function is intentionally generic; it does not require that its this value be an Array object.
Therefore it can be transferred to other kinds of objects for use as a method. Whether the £ilter function can be applied
successfully to an exotic object that is not an Array.is implementation-dependent.

15.4.4.21 Array.prototype.reduce (callbackfn [, initialValue])

callbackfn should be a function that takes four arguments..reduce calls the callback, as a function, once for
each element present in the array;in-ascending order.

callbackfn is called with four’arguments: the previousValue (or value from the previous call to callbackfn), the
currentValue (value of the current element), the currentindex, and the object being traversed. The first time
that callback is called, the previousValue and currentValue can be one of two values. If an initialValue was
provided in the call to reduce, then previousValue will be equal to initialValue and currentValue will be equal
to the first value in the array. If no-nitialValue was provided, then previousValue will be equal to the first value
in the array and.currentValue will be equal to the second. It is a TypeError if the array contains no elements
and initialValue is not provided.

reduce does not directly mutate the object on which it is called but the object may be mutated by the calls to
callbackfn.

The range of elements processed by reduce is set before the first call to callbackfn. Elements that are
appended to the array after the call to reduce begins will not be visited by callbackfn. If existing elements of
the array are changed, their value as passed to callbackfn will be the value at the time reduce visits them;
elements that are deleted after the call to reduce begins and before being visited are not visited.

When the reduce method is called with one or two arguments, the following steps are taken:

Let O be the result of calling ToObject passing the this value as the argument.
ReturnlfAbrupt(O).
Let lenValue be the result of calling the [[Get]] internal method of O with the argument "length".
Let len be ToUint32(lenValue).
ReturnlfAbrupt(len).
If IsCallable(callbackfn) is false, throw a TypeError exception.
If len is 0 and initialValue is not present, throw a TypeError exception.
Letk be 0.
If initialValue is present, then
a. Set accumulator to initialValue.

COoONOORrWNE

© Ecma International 2012 211

secma

10. Else, initialValue is not present
a. Let kPresent be false.
b. Repeat, while kPresent is false and k < len
i Let Pk be ToString(k).
ii. Let kPresent be the result of calling the [[HasProperty]] internal method of O with argument
Pk.
iii. If kPresent is true, then
1. Let accumulator be the result of calling the [[Get]] internal method of O with
argument PK.
2. ReturnlfAbrupt(accumulator).
iv. Increase k by 1.
c. IfkPresent is false, throw a TypeError exception.
11. Repeat, while k < len
a. Let Pk be ToString(k).
b. Let kPresent be the result of calling the [[HasProperty]] internal method of O with argument Pk.
c. IfkPresentis true, then
i Let kValue be the result of calling the [[Get]] internal method of O with argument Pk.
ii. ReturnlfAbrupt(kValue).
iii. Let accumulator be the result of calling the [[Call]] internal method of callbackfn with
undefined as the this value and argument list containing accumulator, kValue, k, and O.
iv. ReturnlfAbrupt(accumulator).
d. Increase k by 1.
12. Return accumulator.

The length property of the reduce method is 1.

NOTE The reduce function is intentionally generic; it does not require that its this value be an Array object.
Therefore it can be transferred to other kinds of objects for use as.a method. Whether the reduce function can be applied
successfully to an exotic object that is not an Array is implementation-dependent.

15.4.4.22 Array.prototype.reduceRight (callbackfn [initialValue])

callbackfn should be a function that takes four arguments. reduceRight calls the callback, as a function,
once for each element present in the array, in descending order.

callbackfn is called with four.arguments: the previousValue (or value from the previous call to callbackfn), the
currentValue (value of the current element), the currentindex, and the object being traversed. The first time the
function is called,.the previousValue and currentValue can be one of two values. If an initialValue was provided
in the call to.reduceRight, then previousValue will be equal to initialvValue and currentValue will be equal to the
last value'in the array. If no.initialValue was provided, then previousValue will be equal to the last value in the
array and currentValue will be equal to the second-to-last value. It is a TypeError if the array contains no
elements and initialValue is not provided.

reduceRight does not directly mutate the object on which it is called but the object may be mutated by the
calls to callbackfn.

The range of elements processed by reduceRight is set before the first call to callbackfn. Elements that are
appended to the array after the call to reduceRight begins will not be visited by callbackfn. If existing
elements of the array are changed by callbackfn, their value as passed to callbackfn will be the value at the
time reduceRight Vvisits them; elements that are deleted after the call to reduceRight begins and before
being visited are not visited.

When the reduceRight method is called with one or two arguments, the following steps are taken:

Let O be the result of calling ToObject passing the this value as the argument.

ReturnlfAbrupt(O).

Let lenValue be the result of calling the [[Get]] internal method of O with the argument "length".
Let len be ToUint32(lenValue).

ReturnlfAbrupt(len).

If IsCallable(callbackfn) is false, throw a TypeError exception.

ok wnE

212 © Ecma International 2012

»ecma

7. Iflenis 0 and initialValue is not present, throw a TypeError exception.
8. Letk belen-1.
9. IfinitialValue is present, then
a. Setaccumulator to initialValue.
10. Else, initialValue is not present
a. Let kPresent be false.
b. Repeat, while kPresent is false and k>0
i. Let Pk be ToString(k).
ii. Let kPresent be the result of calling the [[HasProperty]] internal method of O with argument
Pk.
iii. If kPresent is true, then
1. Let accumulator be the result of calling the [[Get]] internal method of O with
argument PK.
2. ReturnlfAbrupt(accumulator).
iv. Decrease k by 1.
c. IfkPresentis false, throw a TypeError exception.
11. Repeat, while k>0
a. Let Pk be ToString(k).
b. Let kPresent be the result of calling the [[HasProperty]] internal method of O with argument Pk.
c. IfkPresentis true, then
i Let kValue be the result of calling the[[Get]] internal method of O with argument Pk.
ii. ReturnlfAbrupt(kValue).
iii. Let accumulator be the result of calling the [[Call]] internal method of callbackfn with
undefined as the this value and argument list containing accumulator, kValue, k, and O.
iv. ReturnlfAbrupt(accumulator).
d. Decrease k by 1.
12. Return accumulator.

The 1ength property of the reduceRight method is 1.

NOTE The reduceRight function.is intentionally generic; it does not require that its this value be an Array object.
Therefore it can be transferred to.other kinds of objects for use as a method. Whether the reduceRight function can be
applied successfully to an exotic object that is not an Array is implementation-dependent.

15.4.5 Properties of Array Instances

Array instances inherit properties from the Array prototype object and have the [[NativeBrand]] internal
property with value NativeArray. Array instances also have the following properties.

15.4.5.1 <[[DefineOwnProperty]] (P, Desc, Throw)

Array objects use a variation of the [[DefineOwnProperty]] internal method used for other native ECMAScript
objects (8.12.9).

Assume A is an Array object, Desc is a Property Descriptor, and Throw is a Boolean flag.

In the following algorithm,the term “Reject” means “If Throw is true, then throw a TypeError exception, otherwise
return false.”

When the [[DefineOwnProperty]] internal method of A is called with property P, Property Descriptor Desc, and
Boolean flag Throw, the following steps are taken:

1. LetoldLenDesc be the result of calling the [[GetOwnProperty]] internal method of A passing "'length™ as
the argument. The result will never be undefined or an accessor descriptor because Array objects are
created with a length data property that cannot be deleted or reconfigured.
Let oldLen be oldLenDesc.[[Value]].
3. IfPis"length", then
a. If the [[Value]] field of Desc is absent, then
i. Return the result of calling the default [[DefineOwnProperty]] internal method (8.12.9) on A
passing "length', Desc, and Throw as arguments.

N

© Ecma International 2012 213

eCina

Let newLenDesc be a copy of Desc.
Let newLen be ToUint32(Desc.[[Value]]).
If newLen is not equal to ToNumber(Desc.[[Value]]), throw a RangeError exception.
Set newLenDesc.[[Value]] to newLen.
If newLen >oldLen, then
i Return the result of calling the default [[DefineOwnProperty]] internal method (8.12.9) on A
passing "length', newLenDesc, and Throw as arguments.
Reject if oldLenDesc.[[Writable]] is false.
If newLenDesc.[[Writable]] is absent or has the value true, let newWritable be true.
i. Else,
i Need to defer setting the [[Writable]] attribute to false in case any elements cannot be
deleted.
ii. Let newWritable be false.
iii. Set newLenDesc.[[Writable]] to true.
j. Letsucceeded be the result of calling the default [[DefineOwnProperty]] internal method (8.12.9) on
A passing "length', newLenDesc, and Throw as arguments.
k. If succeeded is false, return false.
I. While newLen < oldLen repeat,
i Set oldLen to oldLen — 1.
il Let deleteSucceeded be the result of calling the [[Delete]] internal method of A passing
ToString(oldLen) and false as arguments.
iii. If deleteSucceeded is false, then
1. Set newLenDesc.[[Value]] to oldLen+1.
2. If newWritable is false, set newLenDesc.[[WTritable]] to false.
3. Call the default [[DefineOwnProperty]] internal method (8.12.9) on A passing
"length", newlLenDesc, and false as arguments.
4. Reject.
m. If newWritable is false, then
i Call the default [[DefineOwnProperty]]internal method (8.12.9) on A passing "length",
Property Descriptor{[[WTritable]]: false}, and false as arguments. This call will always
return true.
n. Return true.
4. Elseif Pisan array index (15.4), then
Let index be ToUint32(P).
ReturnlfAbrupt(index).
Reject if index > oldLen and oldLenDesc.[[Writable]] is false.
Let succeeded be the result of calling the default [[DefineOwnProperty]] internal method (8.12.9) on
A passing P, Desc, and false as arguments.
Reject if succeeded is false.
If index > oldLen
i Set oldLenDesc.[[Value]] to index + 1.
ii. Call the default [[DefineOwnProperty]] internal method (8.12.9) on A passing ""length",
oldLenDesc, and false as arguments. This call will always return true.
g. Return true.
5. Return the result of calling the default [[DefineOwnProperty]] internal method (8.12.9) on A passing P,
Desc, and Throw as arguments.

15.4.5.2 length

D OoO0oT

@

oo

—h o

The length property of this Array object is a data property whose value is always numerically greater than
the name of every deletable property whose name is an array index.

The length property initially has the attributes { [[Writable]]: true, [[Enumerable]]: false, [[Configurable]]: false }.

NOTE Attempting to set the length property of an Array object to a value that is numerically less than or equal to the
largest numeric property hame of an existing array indexed non-deletable property of the array will result in the length
being set to a numeric value that is one greater than that largest numeric property name. See 15.4.5.1.

214 © Ecma International 2012

»ecma

15.5 String Objects

15.5.1 The String Constructor Called as a Function

When string is called as a function rather than as a constructor, it performs a type conversion.
15.5.1.1 String ([value])

Returns a String value (not a String object) computed by ToString(value). If value is not supplied, the empty
String " " is returned.

15.5.2 The String Constructor
When string is called as part of a new expression, it is a constructor: it initialises the newly created object.
15.5.2.1 new String ([value])

The [[Prototype]] internal property of the newly constructed object is set to the standard built-in String
prototype object that is the initial value of String.prototype (15.5.3.1).

The newly constructed object has the [[NativeBrand]] internal property with value StringWrapper.
The [[Extensible]] internal property of the newly constructed object is set to true.

The [[PrimitiveValue]] internal property of the ‘newly constructed object is set to ToString(value), or to the empty
String if value is not supplied.

15.5.3 Properties of the String Constructor

The value of the [[Prototype]] internal property of the String constructor is the standard built-in Function
prototype object (15.3.4).

Besides the internal properties and the 1length property (whose value is 1), the String constructor has the
following properties:

15.5.3.1 String.prototype

The initial'value of String.prototype is the standard built-in String prototype object (15.5.4).
This‘property has the attributes { [[Writable]]: false, [[Enumerable]]: false, [[Configurable]]: false }.
15.5.3.2 " String.fromCharCode (...codeUnits)

The String.fromCharCode function may be called with a variable number of arguments which form the
rest parameter codeUnits..The following steps are taken:

Assert: codeUnits is'a well-formed rest parameter object.
Let length be the result of calling the [[Get]] internal method of codeUnits with argument "length".
Let elements be a new List.
Let nextIndex be 0.
Repeat while nextindex < length
a. Let next be the result of calling the [[Get]] internal method of codeUnits with argument
ToString(nextindex).
Let nextCU be ToUint16(next).
ReturnlfAbrupt(nextCU).
Append nextCU to the end of elements.
Let nextindex be nextindex + 1.

aorwhE

® o0 o

© Ecma International 2012 215

secma

6. Return the string value whose elements are, in order, the elements in the List elements. If length is 0, the
empty string is returned.

The length property of the £romCharCode function is 1.
15.5.3.3 String.fromCodePoint (...codePoints)

The String. fromCodePoint function may be called with a variable number of arguments which form the
rest parameter codePoints. The following steps are taken:

Assert: codePoints is a well-formed rest parameter object.
Let length be the result of calling the [[Get]] internal method of codePoints with argument "length" .
Let elements be a new List.
Let nextIndex be 0.
Repeat while nextIndex < length

a. Let next be the result of calling the [[Get]] internal method of codePoints with argument
ToString(nextindex).
Let nextCP be ToNumber(next).
ReturnlfAbrupt(nextCP).
If SameValue(nextCP, Tolnteger(nextCP)) is false,then throw a RangeError exception.
If nextCP < 0 or nextCP > Ox10FFFF, then throw a RangeError exception.
Append the elements of the UTF-16 Encoding (clause 6) of nextCP to the end of elements.

g. Letnextindex be nextindex + 1.

6. Return the string value whose elements are, in order, the elements in the List elements. If length is 0, the
empty string is returned.

AR A o

D o0 o

The length property of the fromCodePoint function is 0.
15.5.3.4 String.raw (callSite, ...substitutions)

The string.raw function may be called with a variable number of arguments. The first argument is callSite
and the remainder of the arguments form the rest parameter substitutions. The following steps are taken:

Assert: substitutions is a well-formed rest parameter object.
Let cooked be ToObject(callSite).
ReturnlfAbrupt(cooked).
Let rawValue be the result of calling the [[Get]] internal method of cooked with argument "raw" .
Let raw be ToObject(rawValue).
ReturnlfAbrupt(raw).
Let len be the result of calling the [[Get]] internal method of raw with argument "length".
Let literalSegments be ToUint(len).
ReturnlfAbrupt(literalSegments).
. If literalSegments = 0, then return the empty string.
. Let stringElements be a new List.
. Let nextindex be 0.
. Repeat while nextlndex < literalSegments
Let nextKey be ToString(nextindex).
Let next be the result of calling the [[Get]] internal method of raw with argument nextKey.
Let nextSeg be ToString(next).
ReturnlfAbrupt(nextSeg).
Append in order the code unit elements of nextSeg to the end of stringElements.
If nextindex + 1 = literalSegments, then
i Return the string value whose elements are, in order, the elements in the List
stringElements. If length is 0, the empty string is returned.
Let next be the result of calling the [[Get]] internal method of substitutions with argument nextKey.
Let nextSub be ToString(next).
ReturnlfAbrupt(nextSub).
Append in order the code unit elements of nextSub to the end of stringElements.
Let nextlndex be nextindex + 1.

NN E

el el
WN RO

~fo o0 T

T Ta

216 © Ecma International 2012

»ecma

The length property of the raw function is 1.

NOTE String.raw is intended for use as a tag function of a Tagged Template String (11.2.6). When called as such
the first argument will be a well formed template call site object and the rest parameter will contain the substitution values.

15.5.4 Properties of the String Prototype Object

The String prototype object is itself a String object whose value is an empty String. The String prototype object
has the [[NativeBrand]] internal property with value StringWrapper.

The value of the [[Prototype]] internal property of the String prototype object is the standard built-in Object
prototype object (15.2.4).

15.5.4.1 String.prototype.constructor
The initial value of String.prototype.constructor is the built-in String constructor.
15.5.4.2 String.prototype.toString ()

Returns this String value. (Note that, for a String object, the toString method happens to return the same
thing as the valueOf method.)

The toString function is not generic; it throws a TypeError exception if its this value is not a String or a
String object. Therefore, it cannot be transferred to other kinds of objects for use as a method.

15.5.4.3 String.prototype.valueOf ()
Returns this String value.

The valueOf function is not generic; it throws a TypeError exception if its this value is not a String or String
object. Therefore, it cannot be transferred to other kinds of objects for use as a method.

15.5.4.4 String.prototype.charAt (pos)
NOTE Returns a single element String containing the code unit at element position pos in the String value resulting
from converting this object to a String. If there is no element at that position, the result is the empty String. The result is a

String value, not'a String.object.

If pos is<a value of Number type that is .an integer, then the result of x.charAt(pos) is equal to the result of
x.substring (pos, pos+1).

When the charAt method is called with one argument pos, the following steps are taken:

1. ReturnlfAbrupt(CheckObjectCoercible(this value)).

2. Let S be the result of calling ToString, giving it the this value as its argument.

3. ReturnlfAbrupt(S).

4. Let position be Tolnteger(pos).

5. ReturnlfAbrupt(position).

6. Let size be the number of elements in S.

7. If position < O or position > size, return the empty String.

8. Return a String of length 1, containing one code unit from S, namely the code unit at position position,
where the first (leftmost) code unit in S is considered to be at position 0, the next one at position 1, and so
on.

NOTE The charAt function is intentionally generic; it does not require that its this value be a String object.

Therefore, it can be transferred to other kinds of objects for use as a method.

© Ecma International 2012 217

secma

15.5.4.5 String.prototype.charCodeAt (pos)

NOTE Returns a Number (a nonnegative integer less than 2%) that is the code unit value of the string element at
position pos in the String resulting from converting this object to a String. If there is no element at that position, the result is
NaN.

When the charCodeAt method is called with one argument pos, the following steps are taken:

1. ReturnlfAbrupt(CheckObjectCoercible(this value)).

2. Let S be the result of calling ToString, giving it the this value as its argument.

3. ReturnlfAbrupt(S).

4. Let position be Tolnteger(pos).

5. ReturnlfAbrupt(position).

6. Let size be the number of elements in S.

7. If position < 0 or position > size, return NaN.

8. Return a value of Number type, whose value is the code unit value of the element at position position in the
String S, where the first (Ieftmost) element in S is considered to be at position 0, the next one at position 1,
and so on.

NOTE The charCodeAt function is intentionally generic; it.does not require that its this value be a String object.

Therefore it can be transferred to other kinds of objects for use as a method.

15.5.4.6 String.prototype.concat (...args)

NOTE When the concat method is called with.zero or more arguments, it returns a String consisting of the string
elements of this object (converted to a String) followed by.the string elements of each of the arguments converted to a

String. The result is a String value, not a String object.

The following steps are taken:

1. Assert: args is a well-formed rest parameter object.
2. ReturnlfAbrupt(CheckObjectCoercible(this value)).
3. Let S be the result of calling ToString, giving it the this value as its argument.
4. ReturnlfAbrupt(S).
5. Let args be an internal list that is a.copy-of.the argument list passed to this function.
6. LetRbesS.
7. Repeat, while args is not empty
a. Remove the first element from args and let next be the value of that element.
b. Let nextString be ToString(next)
c. ReturnlfAbrupt(nextString).
d. LetR be the String value consisting of the string elements in the previous value of R followed by the
string elements of nextString.
8. Return R.

The length property of the concat method is 1.

NOTE The conecat function is intentionally generic; it does not require that its this value be a String object.
Therefore it can be transferred to other kinds of objects for use as a method.

15.5.4.7 String.prototype.indexOf (searchString, position)
If searchString appears as a substring of the result of converting this object to a String, at one or more positions

that are greater than or equal to position, then the index of the smallest such position is returned;
otherwise, -1 is returned. If position is undefined, 0 is assumed, so as to search all of the String.

The index0Of method takes two arguments, searchString and position, and performs the following steps:
1. ReturnlfAbrupt(CheckObjectCoercible(this value)).

2. Let S be the result of calling ToString, giving it the this value as its argument.
3. ReturnlfAbrupt(S).

218 © Ecma International 2012

»ecma

Let searchStr be ToString(searchString).

ReturnlfAbrupt(searchString).

Let pos be Tolnteger(position). (If position is undefined, this step produces the value 0).
ReturnlfAbrupt(pos).

Let len be the number of elements in S.

Let start be min(max(pos, 0), len).

Let searchLen be the number of elements in searchStr.

Return the smallest possible integer k not smaller than start such that k+ searchLen is not greater than len,
and for all nonnegative integers j less than searchLen, the code unit at position k+j of S is the same as the
code unit at position j of searchStr; but if there is no such integer k, then return the value -1.

HBboo~NoO M

= o

The length property of the index0f method is 1.

NOTE The indexOf function is intentionally generic; it does not require that its this value be a String object.
Therefore, it can be transferred to other kinds of objects for use as a method.

15.5.4.8 String.prototype.lastindexOf (searchString, position)

If searchString appears as a substring of the result of converting this object to a String at one or.more positions
that are smaller than or equal to position, then the index of the greatest such position is returned;
otherwise, -1 is returned. If position is undefined, the length of the String value is assumed, so as to search
all of the String.

The lastIndexOf method takes two arguments, searchString and position, and performs the following steps:

ReturnlfAbrupt(CheckObjectCoercible(this value)).

Let S be the result of calling ToString, giving it the this value as its argument.

ReturnIfAbrupt(S).

Let searchStr be ToString(searchString).

ReturnlfAbrupt(searchString):

Let numPos be ToNumber(position). (If position is undefined, this step produces the value NaN).
ReturnIfAbrupt(numPaos).

If numPos is NaN, let pos be +wo; otherwise, let pos be Tolnteger(numPos).

Let len be the number of elements in S.

10. Let start min(max(pos, 0); len).

11. Let searchLen be the number of elements in searchStr.

12. Return the largest.possible nonnegative integer k not larger than start such that k+ searchLen is not greater
than len; and for all nonnegative integers j less than searchlLen, the code unit at position k+j of S is the same
as the code unit at position j of searchStr; but if there is no such integer k, then return the value -1.

NGO RWNE

The 1ength property of the lastIndexOf method is 1.

NOTE The lastIndexOf function is intentionally generic; it does not require that its this value be a String object.
Therefore, it can be transferred to other kinds of objects for use as a method.

15.5.4.9 String.prototype.localeCompare (that)

When the 1localeCompare method is called with one argument that, it returns a Number other than NaN that
represents the result of a locale-sensitive String comparison of the this value (converted to a String) with that
(converted to a String). The two Strings are S and That. The two Strings are compared in an implementation-
defined fashion. The result is intended to order String values in the sort order specified by the system default
locale, and will be negative, zero, or positive, depending on whether S comes before That in the sort order, the
Strings are equal, or S comes after That in the sort order, respectively.

Before perform the comparisons the following steps are performed to prepare the Strings:
1. ReturnlfAbrupt(CheckObjectCoercible(this value)).

2. Let S be the result of calling ToString, giving it the this value as its argument.
3. ReturnlfAbrupt(S).

© Ecma International 2012 219

secma

4. Let That be ToString(that).
5. ReturnlfAbrupt(That).

The localeCompare method, if considered as a function of two arguments this and that, is a consistent
comparison function (as defined in 15.4.4.11) on the set of all Strings.

The actual return values are implementation-defined to permit implementers to encode additional information
in the value, but the function is required to define a total ordering on all Strings and to return 0 when
comparing Strings that are considered canonically equivalent by the Unicode standard.

If no language-sensitive comparison at all is available from the host environment, this function may perform a
bitwise comparison.

NOTE 1 The localeCompare method itself is not directly suitable as an argument to Array.prototype.sort
because the latter requires a function of two arguments.

NOTE 2 This function is intended to rely on whatever language-sensitive, comparison functionality is available to the
ECMAScript environment from the host environment, and to compare according to the rules of the host environment’s
current locale. It is strongly recommended that this function treat Strings that are canonically equivalent according to the
Unicode standard as identical (in other words, compare the Strings as if they had both been converted to Normalised
Form C or D first). It is also recommended that this function not honour Unicode compatibility equivalences or
decompositions.

NOTE 3 The second parameter to this function is likely to be used in a future version of this standard; it is
recommended that implementations do not use this parameter position for anything else.

NOTE 4 The localeCompare function is intentionally generic; it does not require that its this value be a String object.
Therefore, it can be transferred to other kinds of objects for use as a method.

15.5.4.10 String.prototype.match (regexp)

When the match method is called with argument regexp, the following steps are taken:

1. ReturnlfAbrupt(CheckObjectCoercible(this value)).

2. Let S be the result of calling ToString, giving it the this value as its argument.

3. ReturnlfAbrupt(S).

4. If Type(regexp) is Object and.regexp has a [[NativeBrand]] internal property whose value is NativeRegEXxp,
then let rx-be regexp;

5. Else, let rx be the result of the abstract operation RegExpCreate (15.10.4.1) with arguments regexp and
undefined.

6. ReturnlfAbrupt(rx).

7. Let global be the result of calling the [[Get]] internal method of rx with argument "global".

8. ReturnlfAbrupt(global).

9. |Ifglobalisnot true, then

a. Return the result of calling the abstract operation RegExpExec (see 15.10.6.2) with arguments rx
and'S.
10. Else, global is true
a. Let putStatus be the result of calling the [[Put]] internal method of rx with arguments
"lastIndex", 0, and true.
ReturnlfAbrupt(putStatus).
Let A be the result of the abstract operation ArrayCreate (15.4) with argument 0.
Let previousLastIndex be 0.
Let n be 0.
Let lastMatch be true.
Repeat, while lastMatch is true
i Let result be the result of calling the abstract operation RegExpExec (see 15.10.6.2) with
arguments rx and S.
il ReturnlfAbrupt(result).
iii. If result is null, then set lastMatch to false.
iv. Else, result is not null

QD oo0CT

220 © Ecma International 2012

1. Letthisindex be the result of calling the [[Get]] internal method of rx with
argument "lastIndex".
2. ReturnlfAbrupt(thisindex).
3. If thisIndex = previousLastIindex then
a Let putStatus be the result of calling the [[Put]] internal method of rx with
arguments "lastIndex", thisindex+1, and true.
b ReturnlfAbrupt(putStatus).
¢ Set previousLastindex to thisindex+1.
4. Else, set previousLastindex to thisIndex.
5. Let matchStr be the result of calling the [[Get]] internal method of result with
argument "0".
6. ReturnlfAbrupt(matchStr).
7. Let defineStatus be the result of calling the [[DefineOwnProperty]] internal method
of A with arguments ToString(n), the Property Descriptor {[[Value]]: matchStr,
[[Writable]]: true, [[Enumerable]]: true, [[configurable]]: true}, and false.
8. ReturnlfAbrupt(defineStatus).
9. Increment n.
h. 1fn =0, then return null.
i. Return A.

NOTE The match function is intentionally generic; it does‘not require that its'this value be a String object. Therefore,
it can be transferred to other kinds of objects for use as a method.

15.5.4.11 String.prototype.replace (searchValue, replaceValue)
First set string according to the following steps:

1. ReturnlfAbrupt(CheckObjectCoercible(this value)).
2. Let string be the result of calling ToString, giving it the-this value as its argument.
3. ReturnlfAbrupt(string).

If searchValue is a regular expression (an object that has a [[NativeBrand]] internal property whose value is
NativeRegExp), do the following: If searchValue.global is false, then search string for the first match of the
regular expression searchValue. If searchValue.global is true, then search string for all matches of the regular
expression searchValue. Do the search'in the.same manner as in String.prototype.match, including the
update of searchValue.lastIndex.Let m be the number of left capturing parentheses in searchValue (using
NcapturingParens as specified in 15.10.2.1).

If searchValue is not a regular expression, let searchString be ToString(searchValue) and search string for the first
occurrence of searchString. Let m be 0.

If replaceValue is a function, then for each matched substring, call the function with the following m + 3
arguments. Argument 1 is the substring that matched. If searchValue is a regular expression, the next m
arguments are all of the captures in the MatchResult (see 15.10.2.1). Argument m + 2 is the offset within string
where the match occurred, and argument m + 3 is string. The result is a String value derived from the original
input by replacing each matched substring with the corresponding return value of the function call, converted
to a String if need be.

Otherwise, let newstring denote the result of converting replaceValue to a String. The result is a String value
derived from the original input String by replacing each matched substring with a String derived from newstring
by replacing elements in newstring by replacement text as specified in Table 28. These $ replacements are
done left-to-right, and, once such a replacement is performed, the new replacement text is not subject to
further replacements. For example, "$1,$2".replace(/(\$(\d))/g, "$$1-$13$2") returns "$1-
$11,$1-$22". A $ in newstring that does not match any of the forms below is left as is.

Table 28 — Replacement Text Symbol Substitutions

Code unit Unicode Replacement text
Characters

© Ecma International 2012 221

secma

0x0024, 0x0024 $$ $

0x0024, 0x0026 $& The matched substring.

0x0024, 0x0060 $° The portion of string that precedes the matched substring.

0x0024, 0x0027 $! The portion of string that follows the matched substring.

0x0024, N where $n where [The n'" capture, where n is a single digit in the range 1 to 9 and $n is

0x0030 <N <0x0039 n isoneof |not followed by a decimal digit. If n<m and the nth capture i
0 1 2 3 4 jundefined, use the empty String instead. If n>m, the result is
5 6 7 8 9 implementation-defined.

0x0024, N, N where |$nn where [The nn' capture, where nn is a two-digit decimal number in the range
0x0030 <N <0x0039 |n isoneof [01 to 99. If nn<m and the nn™ capture is undefined, use the empty
0 1 2 3 4 |String instead. If nn>m, the result is implementation-defined.

567 89

NOTE The replace function is intentionally generic; it does not require<that its this value be a String object.
Therefore, it can be transferred to other kinds of objects for use as a method.

15.5.4.12 String.prototype.search (regexp)
When the search method is called with argument regexp, the following steps are taken:

ReturnlfAbrupt(CheckObjectCoercible(this value)).

Let string be the result of calling ToString, giving it the this value as its argument.

ReturnlfAbrupt(string).

If Type(regexp) is Object and regexp has a [[NativeBrand]] internal property whose value is NativeRegEXxp ,

then let rx be regexp;

5. Else, let rx be the result of the abstract operation RegExpCreate (15.10.4.1) with arguments regexp and
undefined.

6. ReturnlfAbrupt(rx).

7. Search the value string from its beginning for an occurrence of the regular expression pattern rx. Let result
be a Number indicating the offset within string where the pattern matched, or —1 if there was no match. If an
abrupt completion occurs.during the search, result is that Completion Record. The 1astIndex and
global properties of regexp are ignored when performing the search. The 1lastIndex property of regexp
is left unchanged.

8. Return result.

PR

NOTE The search function is -intentionally generic; it does not require that its this value be a String object.
Therefore, it can be transferred to other kinds of objects for use as a method.

15.5.4.13/ String.prototype.slice (start, end)

The slice method takes two arguments, start and end, and returns a substring of the result of converting this
object to a String, starting from element position start and running to, but not including, element position end
(or through the end of the String if end is undefined). If start is negative, it is treated as sourcelLength+start
where sourceLength is the length of the String. If end is negative, it is treated as sourceLength+end where
sourceLength is the length of the String. The result is a String value, not a String object. The following steps are
taken:

ReturnlfAbrupt(CheckObjectCoercible(this value)).

Let S be the result of calling ToString, giving it the this value as its argument.
ReturnlfAbrupt(S).

Let len be the number of elements in S.

Let intStart be Tolnteger(start).

If end is undefined, let intEnd be len; else let intEnd be Tolnteger(end).

If intStart is negative, let from be max(len + intStart,0); else let from be min(intStart, len).
If intEnd is negative, let to be max(len + intEnd,0); else let to be min(intEnd, len).

Let span be max(to — from,0).

0. Return a String value containing span consecutive elements from S beginning with the element at position
from.

HOooNohwN P

222 © Ecma International 2012

»ecma

The 1length property of the slice method is 2.

NOTE The slice function is intentionally generic; it does not require that its this value be a String object. Therefore
it can be transferred to other kinds of objects for use as a method.

15.5.4.14 String.prototype.split (separator, limit)

Returns an Array object into which substrings of the result of converting this object to a String have been
stored. The substrings are determined by searching from left to right for occurrences of separator; these
occurrences are not part of any substring in the returned array, but serve to divide up the String value. The
value of separator may be a String of any length or it may be a RegExp object (i.e., an object with a
[[NativeBrand]] internal property whose value is NativeRegEXp ; see 15.10).

The value of separator may be an empty String, an empty regular expression, or a regular expression that can
match an empty String. In this case, separator does not match the empty substring at the beginning or end of
the input String, nor does it match the empty substring at the end of the previous separator match. (For
example, if separator is the empty String, the String is split up into.individual code unit elements; the length of
the result array equals the length of the String, and each substring contains one code unit.) If separator is a
regular expression, only the first match at a given position of the this String is considered, even if
backtracking could yield a non-empty-substring match at that position. (For example, "ab" .split(/a*?/)
evaluates to the array ["a","b"], while "ab" .split (/a*/) evaluatesto the array["","b"].)

If the this object is (or converts to) the empty String, the result depends on whether separator can match the
empty String. If it can, the result array contains no elements. Otherwise, the result array contains one element,
which is the empty String.

If separator is a regular expression that contains capturing parentheses, then each time separator is matched
the results (including any undefined results) of the capturing parentheses are spliced into the output array.
For example,

"Aboldand<CODE>coded</CODE>".split (/< (\/) 2 ([*<>]+)>/)

evaluates to the array
["A", undefined, "B", "bold", "/", "B", "and", undefined,
IICODEII , " codedll , ll/ll , "coDEll , " ll]

If separator is undefined, then the result array contains just one String, which is the this value (converted to a
String). If limit_is.not undefined, then the output array is truncated so that it contains no more than limit
elements.

When the split method is called, the following steps are taken:

ReturnlfAbrupt(CheckObjectCoercible(this value)).
Let S be the result of calling ToString, giving it the this value as its argument.
ReturnIfAbrupt(S).
Let A be the result of the‘abstract operation ArrayCreate with argument 0.
Let lengthA be 0.
If limit is undefined, let lim = 232-1; else let lim = ToUint32(limit).
Let s be the number of elements in S.
Letp =0.
If separator has a [[NativeBrand]] internal property whose value is NativeRegExp , let R be separator;
otherwise let R be ToString(separator).
10. ReturnlfAbrupt(separator).
11. If lim = 0, return A.
12. If separator is undefined, then
a. Call the [[DefineOwnProperty]] internal method of A with arguments "0", Property Descriptor
{[[\Value]]: S, [[Writable]]: true, [[Enumerable]]: true, [[Configurable]]: true}, and false.
b. Assert: the previous step will never result in an abrupt completion.
c. Return A.
13. If s =0, then

COoNoO~WNE

© Ecma International 2012 223

secma

Call SplitMatch(S, 0, R) and let z be its MatchResult result.
If z is not failure, return A.
c. Call the [[DefineOwnProperty]] internal method of A with arguments "0", Property Descriptor
{[[\Value]]: S, [[Writable]]: true, [[Enumerable]]: true, [[Configurable]]: true}, and false.
d. Assert: the previous step will never result in an abrupt completion.
e. Return A.
14. Letqg =p.
15. Repeat, while g = s
a. Call SplitMatch(S, g, R) and let z be its MatchResult result.
b. Ifzis failure, then let g = q+1.
c. Else, zisnot failure
i z must be a State. Let e be z's endIndex and let cap be z's captures array.
ii. If e = p, then let g = q+1.
iii. Else,e=p
1. Let T be a String value equal to the substring'of S consisting of the elements at
positions p (inclusive) through q (exclusive).
2. Call the [[DefineOwnProperty]] internal method of A with arguments
ToString(lengthA), Property Descriptor {[[Value]]: T, [[Writable]]: true,
[[Enumerable]]: true, [[Configurable]]: true}, and false.
Assert: the previous step will never result in an abrupt completion.
Increment lengthA by 1.
If lengthA = lim, return A.
Letp=e.
Leti=0.
Repeat, while i is-not-equal to the number of elements in cap.
a Leti=i+l
b Call the [[DefineOwnProperty]] internal method of A with arguments
ToString(lengthA), Property Descriptor {[[Value]]: cap[i], [[Writable]]:
true, [[Enumerable]]: true, [[Configurable]]: true}, and false.
¢ Assert: the previousstep will neverresult in an abrupt completion.
d Increment lengthA by 1.
e If lengthA = lim, return A.
9. Letg=np.
16. Let T be a String value equal to the substring of S consisting of the elements at positions p (inclusive)
through s (exclusive).
17. Call the [[DefineOwnProperty]] internal method of A with arguments ToString(lengthA), Property Descriptor
{[[Valuel]: T, [[Writable]]: true, [[Enumerable]]: true, [[Configurable]]: true}, and false.
18. Assert: the previous step will never result in an abrupt completion.
19. Return A.

oo

NG RA~®

The @abstract operation SplitMatch takes three parameters, a String S, an integer g, and a String or RegExp R,
and performs the following in order to return a MatchResult (see 15.10.2.1):

1. If R has a [[NativeBrand]] internal property whose value is NativeRegExp , then
a. Call the [[Match]] internal method of R giving it the arguments S and g, and return the MatchResult
result.

2. Type(R) must be String. Let r be the number of elements in R.

3. Let s be the number of elements in S.

4. If g+r > s then return the MatchResult failure.

5. If there exists an integer i between O (inclusive) and r (exclusive) such that the code unit at position g+i of S
is different from the code unit at position i of R, then return failure.

6. Letcap be an empty array of captures (see 15.10.2.1).

7. Return the State (g+r, cap). (see 15.10.2.1)
The length property of the split method is 2.
NOTE 1 The split method ignores the value of separator.global for separators that are RegExp objects.

NOTE 2 The split function is intentionally generic; it does not require that its this value be a String object. Therefore,
it can be transferred to other kinds of objects for use as a method.

224 © Ecma International 2012

»ecma

15.5.4.15 String.prototype.substring (start, end)

The substring method takes two arguments, start and end, and returns a substring of the result of converting
this object to a String, starting from element position start and running to, but not including, element position
end of the String (or through the end of the String is end is undefined). The result is a String value, not a String
object.

If either argument is NaN or negative, it is replaced with zero; if either argument is larger than the length of the
String, it is replaced with the length of the String.

If start is larger than end, they are swapped.
The following steps are taken:

ReturnlfAbrupt(CheckObjectCoercible(this value)).

Let S be the result of calling ToString, giving it the this value as its argument.
ReturnlfAbrupt(S).

Let len be the number of elements in S.

Let intStart be Tolnteger(start).

If end is undefined, let intEnd be len; else let intEnd be Tolnteger(end).

Let finalStart be min(max(intStart, 0), len).

Let finalEnd be min(max(intEnd, 0), len).

Let from be min(finalStart, finalEnd).

Let to be max(finalStart, finalEnd).

Return a String whose length is to - from, containing code units from S, namely the code units with indices
from through to —1, in ascending order.

RBboo~Noakrwn P

o

The length property of the substring method is 2.

NOTE The substring function is intentionally generic; it does not require that its this value be a String object.
Therefore, it can be transferred to other kinds of objects for use as a method.

15.5.4.16 String.prototype.toLowerCase ()

This function interprets a string value as a sequence of code points, as described in 8.4. The following steps
are taken:

ReturnlfAbrupt(CheckObjectCoercible(this value)).

Let S‘be the result of calling ToString, giving it the this value as its argument.

ReturnIfAbrupt(S).

Let cpList be a List containing in order the code points as defned in 8.4 of S, starting at the first element of

S.

5. For each code point c in cpList, if the Unicode Character Database provides a language insensitive lower
case equivalent of ¢ then replace c in cpList with that equivalent code point(s).

6. LetculList be a new List.

7. For each code point c.in cpList, in order, append to culList the elements of the UTF-16 Encoding (clause 6)

PR

of c.
8. Let L be a String whose elements are, in order, the elements of cuList .
9. Return L.

The result must be derived according to the case mappings in the Unicode character database (this explicitly
includes not only the UnicodeData.txt file, but also the SpecialCasings.txt file that accompanies it).

NOTE 1 The case mapping of some code points may produce multiple code points . In this case the result String may
not be the same length as the source String. Because both toUpperCase and toLowerCase have context-sensitive
behaviour, the functions are not symmetrical. In other words, s.toUpperCase () .toLowerCase () is not necessarily
equal to s. toLowerCase ().

NOTE 2 The toLowerCase function is intentionally generic; it does not require that its this value be a String object.
Therefore, it can be transferred to other kinds of objects for use as a method.

© Ecma International 2012 225

secma

15.5.4.17 String.prototype.toLocaleLowerCase ()
This function interprets a string value as a sequence of code points, as described in 8.4.

This function works exactly the same as toLowerCase except that its result is intended to yield the correct
result for the host environment’s current locale, rather than a locale-independent result. There will only be a
difference in the few cases (such as Turkish) where the rules for that language conflict with the regular
Unicode case mappings.

NOTE 1 The first parameter to this function is likely to be used in a future version of this standard; it is recommended
that implementations do not use this parameter position for anything else.

NOTE 2 The toLocaleLowerCase function is intentionally generic; it does not require that its this value be a String
object. Therefore, it can be transferred to other kinds of objects for use as a method:

15.5.4.18 String.prototype.toUpperCase ()
This function interprets a string value as a sequence of code points, as described in 8.4.

This function behaves in exactly the same way as String.prototype. toLowerCase, except that code
points are mapped to their uppercase equivalents as specified in the Unicode Character Database.

NOTE The toUpperCase function is intentionally generic; it does not require that its this value be a String object.
Therefore, it can be transferred to other kinds of objects for use as a method.

15.5.4.19 String.prototype.toLocaleUpperCase ()
This function interprets a string value as a sequence of code points;.as described in 8.4.

This function works exactly the same-as toUpperCase except that its result is intended to yield the correct
result for the host environment’s current locale, rather than a locale-independent result. There will only be a
difference in the few cases (such as Turkish) where the rules for that language conflict with the regular
Unicode case mappings.

NOTE 1 The first parameter to this function is likely to.be used in a future version of this standard; it is recommended
that implementations do not use this parameter position for anything else.

NOTE 2 The toLocaleUpperCase function is intentionally generic; it does not require that its this value be a String
object. Therefore, it can be transferred to other kinds of objects for use as a method.

15.54.20 String.prototype.trim ()
This function interprets a string value as a sequence of code points, as described in 8.4.

The following steps are taken:

1. ReturnlfAbrupt(CheckObjectCoercible(this value)).

2. Let S be the result of calling ToString, giving it the this value as its argument.

3. ReturnlfAbrupt(S).

4. Let T be a String value that is a copy of S with both leading and trailing white space removed. The definition
of white space is the union of WhiteSpace and LineTerminator. When determining whether a Unicode
character is in Unicode general category “Zs”, code unit sequences are interpreted as UTF-16 encoded code
point sequences as specified in 8.4.

5. ReturnT.

NOTE The trim function is intentionally generic; it does not require that its this value be a String object. Therefore, it

can be transferred to other kinds of objects for use as a method.

226 © Ecma International 2012

»ecma

15.5.4.21 String.prototype.repeat (count)
The following steps are taken:

ReturnlfAbrupt(CheckObjectCoercible(this value)).

Let S be the result of calling ToString, giving it the this value as its argument.
ReturnIfAbrupt(S).

Let n be the result of calling Tolnteger(count).

ReturnlfAbrupt(n).

Ifn <0, then throw a RangeError exception.

Ifnis +oo, then rhow a RangeError Exception.

Let T be a String value that is made from n copies of S appended together.
Return T.

COoNoarWNE

NOTE 1 This method creates a String consisting of the string elements of .this object (converted to String) repeated
count time.

NOTE2 The repeat function is intentionally generic; it does not require that its this value be a String object.
Therefore, it can be transferred to other kinds of objects for use as a.method.

15.5.4.22 String.prototype.startsWith (searchString [,position])

The following steps are taken:

1. ReturnlfAbrupt(CheckObjectCoercible(this value)).

2. Let S be the result of calling ToString, giving it the this value as its argument.

3. ReturnlfAbrupt(S).

4. Let searchStr be ToString(searchString).

5. ReturnlfAbrupt(searchsStr).

6. Let pos be Tolnteger(position).-(If position is undefined, this step produces the value 0).
7. ReturnlfAbrupt(pos).

8. Let len be the number of elements in S.

9. Let start be min(max(pos, 0), len).

10. Let searchLength be the number of elements in searchString.

11. If searchLength+start is greater than len; return false.

12. If the searchLength sequence of elements of S starting at start is the same as the full element sequence of

searchString, return true.
13. Otherwise, return false.

The length property of the startsWith method is 1.

NOTE1 This method returns true if the sequence of elements of searchString converted to a String is the same as the
corresponding elements of this object (converted to a String) starting at position. Otherwise returns false.

NOTE 2 The startsWith function is intentionally generic; it does not require that its this value be a String object.
Therefore, it can be transferred to other kinds of objects for use as a method.

15.5.4.23 String.prototype.endsWith (searchString [, endPosition])
The following steps are taken:

ReturnlfAbrupt(CheckObjectCoercible(this value)).

Let S be the result of calling ToString, giving it the this value as its argument.
ReturnIfAbrupt(S).

Let searchStr be ToString(searchString).

ReturnlfAbrupt(searchStr).

Let len be the number of elements in S.

If endPosition is undefined, let pos be len, else let pos be Tolnteger(endPosition).
ReturnlfAbrupt(pos).

Let end be min(max(pos, 0), len).

OOoNoo~WNE

© Ecma International 2012 227

secma

10. Let searchLength be the number of elements in searchString.

11. Let start be end - searchLength.

12. If start is less than 0O, return false.

13. If the searchLength sequence of elements of S starting at start is the same as the full element sequence of
searchsString, return true.

14. Otherwise, return false.

The length property of the endsWith method is 1.

NOTE 1 Returns true if the sequence of elements of searchString converted to a String is the same as the
corresponding elements of this object (converted to a String) starting at endPosition — length(this). Otherwise returns
false.

NOTE 2 The endsWith function is intentionally generic; it does not require that its this value be a String object.
Therefore, it can be transferred to other kinds of objects for use as a method.

15.5.4.24 String.prototype.contains (searchString [, position])
The contains method takes two arguments, searchString and position, and performs the following steps:

ReturnlfAbrupt(CheckObjectCoercible(this value)).

Let S be the result of calling ToString, giving it the this value as its argument.

ReturnlfAbrupt(S).

Let searchStr be ToString(searchString).

ReturnlfAbrupt(searchStr).

Let pos be Tolnteger(position). (If position is undefined, this step produces the value 0).
ReturnlfAbrupt(pos).

Let len be the number of elements in S.

Let start be min(max(pos, 0), len).

Let searchLen be the number of characters in searchStr.

If there exists any integer k not smaller than start such that k + searchLen is not greater than len, and for all
nonnegative integers j less than searchLen, the character at position k+j of S is the same as the character at
position j of searchStrreturn true; but if there is no such integer k, return false.

RHoNoo b E

= o

The length property of the contains method.is 1.

NOTE 1 If searchString appears-as a substring of the result of converting this object to a String, at one or more
positions that are greater than or equal to position, then return true; otherwise, returns false. If position is undefined, 0 is
assumed, so as to search all.of the String.

NOTE2 The contains function is intentionally generic; it does not require that its this value be a String object.
Therefore, it can be transferred to other kinds of objects for use as a method.

15.5.4.25 String.prototype.codePointAt (pos)

NOTE Returns a Number (a nonnegative integer less than 1114112) that is the UTF-16 encoded code point value
starting at the string element at position pos in the String resulting from converting this object to a String. If there is no
element at that position, the result is NaN. If a valid UTF-16 surrogate pair does not begin at pos, the result is the code unit
at pos.

When the codePointAt method is called with one argument pos, the following steps are taken:

ReturnlfAbrupt(CheckObjectCoercible(this value)).

Let S be the result of calling ToString, giving it the this value as its argument.
ReturnlfAbrupt(S).

Let position be Tolnteger(pos).

ReturnlfAbrupt(position).

Let size be the number of elements in S.

If position < 0 or position > size, return undefined.

Let first be the code unit value of the element at index position in the String S..
If first < 0xD800 or first > OXDBFF or position+1 = size, then return first.

N E

228 © Ecma International 2012

»ecma

10. Let second be the code unit value of the element at position position+1 in the String S.
11. If second < 0xDCOO or first > OxXDFFF, then return first.
12. Return ((first — 0xD800) x 1024) + (second — 0xDCO00) + 0x10000.

NOTE The codePointAt function is intentionally generic; it does not require that its this value be a String object.
Therefore it can be transferred to other kinds of objects for use as a method.

15.5.5 Properties of String Instances

String instances inherit properties from the String prototype object and have a [[NativeBrand]] internal property
with value StringWrapper. String instances also have a [[PrimitiveValue]] internal property, a 1length property,

and a set of enumerable properties with array index names.

The [[PrimitiveValue]] internal property is the String value represented by this String object. The array index
named properties correspond to the individual elements of the String value. A special [[GetOwnProperty]]
internal method is used to specify the number, values, and attributes of the array index named properties.

15.5.5.1 length
The number of elements in the String value represented by:this String object.

Once a String object is created, this property is unchanging. It has the attributes { [[Writable]]: false,
[[Enumerable]]: false, [[Configurable]]: false }.

15.5.5.2 [[GetOwnProperty]] (P)

String objects use a variation of the [[GetOwnProperty]] internal method used for other native ECMAScript
objects (8.12.1). This special internal method provides access to. named properties corresponding to the
individual elements of String objects.

Assume S is a String object and P is a String.

When the [[GetOwnProperty]] internal method of S is called with property hame P, the following steps are
taken:

1. Let desc be the result of calling the default [[GetOwnProperty]] internal method (8.12.1) on S with argument

P.

If desc is not undefined return desc.

If ToString(abs(Tolnteger(P))) is not the same value as P, return undefined.

Let str be the String value of the [[PrimitiveValue]] internal property of S.

Let index be Tolnteger(P).

Let len be the number of elements in str.

If len < index, return undefined.

Let resultStr be a String of length 1, containing one code unit from str, specifically the code unit at position

index, where the first (leftmost) element in str is considered to be at position 0, the next one at position 1,

and so on.

9. Return a Property Descriptor { [[Value]]: resultStr, [[Enumerable]]: true, [[Writable]]: false,
[[Configurable]]: false }

15.6 Boolean Objects

N~ LN

15.6.1 The Boolean Constructor Called as a Function
When Boolean is called as a function rather than as a constructor, it performs a type conversion.
15.6.1.1 Boolean (value)

Returns a Boolean value (not a Boolean object) computed by ToBoolean(value).

© Ecma International 2012 229

secma

15.6.2 The Boolean Constructor
When Boolean is called as part of a new expression it is a constructor: it initialises the newly created object.
15.6.2.1 new Boolean (value)

The [[Prototype]] internal property of the newly constructed object is set to the original Boolean prototype
object, the one that is the initial value of Boolean.prototype (15.6.3.1).

The newly constructed Boolean object has a [[NativeBrand]] internal property with value BooleanWrapper.
The [[PrimitiveValue]] internal property of the newly constructed Boolean objectis set to ToBoolean(value).
The [[Extensible]] internal property of the newly constructed object is set to true.

15.6.3 Properties of the Boolean Constructor

The value of the [[Prototype]] internal property of the Boolean constructor is the Function prototype object
(15.3.4).

Besides the internal properties and the length property (whose value.is 1), the Boolean constructor has the
following property:

15.6.3.1 Boolean.prototype

The initial value of Boolean.prototype is the Boolean prototype object (15.6.4).

This property has the attributes { [[Writable]]: false, [[Enumerable]]: false, [[Configurable]]: false }.
15.6.4 Properties of the Boolean Prototype Object

The Boolean prototype object is itself a Boolean object whose value is false. The Boolean prototype object
has a [[NativeBrand]] internal property whose value is BooleanWrapper.

The value of the [[Prototype]] internal property of the Boolean prototype object is the standard built-in Object
prototype object (15.2.4).

15.6.4.1 <Boolean.prototype.constructor

The initial value of Boolean.prototype.constructor is the built-in Boolean constructor.

15.6.4.2 Boolean.prototype.toString ()

The following steps. are taken:

1. Let B be the this value.

2. If Type(B) is Boolean, then let b be B.

3. Elseif Type(B) is Object and B has a [[NativeWrapper]] internal property whose value is BooleanWrapper,
then let b be the value of the [[PrimitiveVValue]] internal property of B.

4. Elsethrow a TypeError exception.

5. Ifbistrue, then return "true"; else return "false".

15.6.4.3 Boolean.prototype.valueOf ()

The following steps are taken:

1. Let B be the this value.
2. If Type(B) is Boolean, then let b be B.

230 © Ecma International 2012

»ecma

3. Elseif Type(B) is Object and B has a [[NativeWrapper]] internal property whose value is BooleanWrapper,
then let b be the value of the [[PrimitiveValue]] internal property of B.

4. Else throw a TypeError exception.

5. Returnb.

15.6.5 Properties of Boolean Instances

Boolean instances inherit properties from the Boolean prototype object and have a [[NativeBrand]] internal
property whose value is BooleanWrapper. Boolean instances also have a [[PrimitiveValue]] internal property.

The [[PrimitiveValue]] internal property is the Boolean value represented by this Boolean object.
15.7 Number Objects

15.7.1 The Number Constructor Called as a Function

When Number is called as a function rather than as a constructor, it performs a type conversion.
15.7.1.1 Number ([value])

Returns a Number value (not a Number object) computed by ToNumber(value) if value was supplied, else
returns +0.

15.7.2 The Number Constructor
When Number is called as part of a new expression it is a.constructor: it initialises the newly created object.
15.7.2.1 new Number ([value])

The [[Prototype]] internal property of the newly constructed object is set to the original Number prototype
object, the one that is the initial value of Number . prototype (15.7.3.1).

The newly constructed.object is has a [[NativeBrand]] internal property whose value is NumberWrapper.

The [[PrimitiveValue]] internal property of the newly constructed object is set to ToNumber(value) if value was
supplied, else to +0.

The [[Extensible]] internal property of the newly constructed object is set to true.
15.7.3 Properties of the Number Constructor

The value of the [[Prototype]] internal property of the Number constructor is the Function prototype object
(15.3.4).

Besides the internal properties and the length property (whose value is 1), the Number constructor has the
following properties:

15.7.3.1 Number.prototype

The initial value of Number . prototype is the Number prototype object (15.7.4).

This property has the attributes { [[Writable]]: false, [[Enumerable]]: false, [[Configurable]]: false }.
15.7.3.2 Number.MAX_VALUE

The value of Number.MAX VALUE is the largest positive finite value of the Number type, which is
approximately 1.7976931348623157 x 10°%,

© Ecma International 2012 231

secma

This property has the attributes { [[Writable]]: false, [[Enumerable]]: false, [[Configurable]]: false }.
15.7.3.3 Number.MIN_VALUE

The value of Number .MIN_ VALUE is the smallest positive value of the Number type, which is approximately
5 x 107324,

In the IEEE-764 double precission binary representation, the smallest possible value is a denormalized
numbered. If an implementation does not support denormalized values, the value of Number .MIN VALUE
must be the smallest non-zero positive value that can actually be represented by the implementation.

This property has the attributes { [[Writable]]: false, [[Enumerable]]: false, [[Configurable]]: false }.

15.7.3.4 Number.NaN

The value of Number .NaN is NaN.

This property has the attributes { [[Writable]]: false, [[Enumerable]]: false, [[Configurable]]: false }.

15.7.3.5 Number.NEGATIVE_INFINITY

The value of Number.NEGATIVE_INFINITY is —o.

This property has the attributes { [[Writable]]: false, [[Enumerable]]: false, [[Configurable]]: false }.

15.7.3.6 Number.POSITIVE_INFINITY

The value of Number.POSITIVE_INFINITY is +oo.

This property has the attributes { [[Writable]]: false, [[Enumerable]]: false, [[Configurable]]: false }.

15.7.3.7 Number.EPSILON

The value of Number.EPSILON is thedifference -between 1 and the smallest value greater than 1 that is
representable as a Number value, which is approximately 2.2204460492503130808472633361816 x 10-16,

This property has the attributes { [[Writable]]: false, [[Enumerable]]: false, [[Configurable]]: false }.
15.7.3.8 Number.MAX INTEGER

The value of Number.MAX_INTEGER is the largest integer value that can be represented as a Number value
without losing. precision, which is 9007199254740991.

This property has the attributes { [[Writable]]: false, [[Enumerable]]: false, [[Configurable]]: false }.
15.7.3.9 Number.parselnt (string, radix)

Same as 15.1.2.2.

15.7.3.10 Number.parseFloat (string)

Same as 15.1.2.3.

15.7.3.11 Number.isNaN (number)

When the Number . isNaN is called with one argument number, the following steps are taken:

1. If Type(number) is not Number, return false.

232 © Ecma International 2012

»ecma

2. If number is NaN, return true.
3. Otherwise, return false.

NOTE This function differs from the global isNaN function (15.1.2.4) is that it does not convert its argument to a
Number before determining whether it is NaN.
15.7.3.12 Number.isFinite (hnumber)

When the Number . isFinite is called with one argument number, the following steps are taken:

1. If Type(number) is not Number, return false.
2. If number is NaN, +o0, or —oo, return false.
3. Otherwise, return true.

15.7.3.13 Number.isinteger (number)
When the Number . isInteger is called with one argument number, the following steps are taken:

1. If Type(number) is not Number, return false.
2. Let integer be Tolnteger(number).

3. Ifinteger is not equal to number, return false.
4. Otherwise, return true.

15.7.3.14 Number.toint (number)
When the Number . toInt is called with one argument number, the following steps are taken:

1. Return Tolnteger(number).

15.7.4 Properties of the Number Prototype Object

The Number prototype object is itself a Number object with a [[NativeBrand]] internal property whose value is
NumberWrapper. Its value is +0.

The value of the [[Prototype]] internal property of the Number prototype object is the standard built-in Object
prototype object (15.2.4).

Unless explicitly stated otherwise, the methods of the Number prototype object defined below are not generic
and the this value passed to them must be either a Number value or an object that has a [[NativeBrand]]
internal property whose value is NumberWrapper.

In the following descriptions of functions that are properties of the Number prototype object, the phrase “this
Number object” refers to either the object that is the this value for the invocation of the function or, if
Type(this value) is Number, / an object that is created as if by the expression new Number (this value)
where Number is the standard built-in constructor with that name. Also, the phrase “this Number value” refers
to either the Number value represented by this Number object, that is, the value of the [[PrimitiveValue]]
internal property of this Number object or the this value if its type is Number. A TypeError exception is
thrown if the this value is neither an object that has a [[NativeBrand]] internal property whose value is
NumberWrapper or a value whose type is Number.

15.7.4.1 Number.prototype.constructor

The initial value of Number . prototype.constructor is the built-in Number constructor.

15.7.4.2 Number.prototype.toString ([radix])

The optional radix should be an integer value in the inclusive range 2 to 36. If radix not present or is undefined

the Number 10 is used as the value of radix. If Tolnteger(radix) is the Number 10 then this Number value is
given as an argument to the ToString abstract operation; the resulting String value is returned.

© Ecma International 2012 233

secma

If Tolnteger(radix) is not an integer between 2 and 36 inclusive throw a RangeError exception. If
Tolnteger(radix) is an integer from 2 to 36, but not 10, the result is a String representation of this Number value
using the specified radix. Letters a-z are used for digits with values 10 through 35. The precise algorithm is
implementation-dependent if the radix is not 10, however the algorithm should be a generalisation of that
specified in 9.8.1.

The toString function is not generic; it throws a TypeError exception if its this value is not a Number or a
Number object. Therefore, it cannot be transferred to other kinds of objects for use as a method.

15.7.4.3 Number.prototype.toLocaleString()

Produces a String value that represents this Number value formatted accordingto the conventions of the host
environment’s current locale. This function is implementation-dependent;” and it is permissible, but not
encouraged, for it to return the same thing as toString.

NOTE The first parameter to this function is likely to be used in a future version of this standard; it is recommended
that implementations do not use this parameter position for anything else,

15.7.4.4 Number.prototype.valueOf ()

1. Let x be this Number value.
2. Return x.

The valueOf function is not generic; it throws a TypeError exception if its this value is not a Number or a
Number object. Therefore, it cannot be transferred to other kinds of objects for use as a method.

15.7.4.5 Number.prototype.toFixed (fractionDigits)

Return a String containing this Number value represented in decimal fixed-point notation with fractionDigits
digits after the decimal point. If fractionDigits is undefined, 0 is assumed. Specifically, perform the following
steps:

3. Letfbe Tolnteger(fractionDigits). (If fractionDigits is undefined, this step produces the value 0).
4. ReturnIfAbrupt(f).

5. Iff<0orf> 20, throwa RangeError exception.

6. Letx be this Number value.

7. ReturnlfAbrupt(x).

8. If x is NaN, return the String "NaN".

9. Letsbethe empty String.

1

0. Ifx <0, then
a. Letsbe"-".
b. Letx=-x.

11. If x > 102, then
a. Letm = ToString(x).
12. Else, x < 10%
a. Letn be an integer for which the exact mathematical value of n + 10" — x is as close to zero as
possible. If there are two such n, pick the larger n.
b. 1fn =0, let mbe the String "0". Otherwise, let m be the String consisting of the digits of the
decimal representation of n (in order, with no leading zeroes).
c. Iff=0,then
i Let k be the number of elements in m.
ii. If k <f, then
1. Letz be the String consisting of f+1—k occurrences of the code unit 0x0030.
2. Let m be the concatenation of Strings z and m.
3. Letk=f+1.
iii. Let a be the first k—f elements of m, and let b be the remaining f elements of m.
iv. Let m be the concatenation of the three Strings a, ". ", and b.
13. Return the concatenation of the Strings s and m.

234 © Ecma International 2012

»ecma

The 1length property of the toFixed method is 1.

If the toFixed method is called with more than one argument, then the behaviour is undefined (see
clause 15).

An implementation is permitted to extend the behaviour of toFixed for values of fractionDigits less than O or
greater than 20. In this case toFixed would not necessarily throw RangeError for such values.

NOTE The output of toFixed may be more precise than toString for some values because toString only prints
enough significant digits to distinguish the number from adjacent number values. For example,

(1000000000000000128) . toString () returns "1000000000000000100",

while (1000000000000000128) . toFixed (0) returns "1000000000000000128".

15.7.4.6 Number.prototype.toExponential (fractionDigits)

Return a String containing this Number value represented in decimal exponential notation with one digit before
the significand's decimal point and fractionDigits digits after the significand's decimal point. If fractionDigits is
undefined, include as many significand digits as necessary-to uniquely specify the Number (just like in
ToString except that in this case the Number is always output in exponential notation). Specifically, perform
the following steps:

Let x be this Number value.
ReturnlfAbrupt(x).
Let f be Tolnteger(fractionDigits).
ReturnlfAbrupt(f).
If x is NaN, return the String "NaN".
Let s be the empty String.
Ifx <0, then
a. Letsbe"-r.
b. Letx=-x.
8. Ifx = +oo, then
a. Return the concatenation of the Strings s and "Infinity".
9. If fractionDigits is not undefined and (f < 0 or f > 20), throw a RangeError exception.
10. If x =0, then
a. If fractionDigits is undefined, then let f = 0.
b. Letm be the String consisting of f+1 occurrences of the code unit 0x0030.
c. Lete=0:
11. Else, x# 0
a. If fractionDigits is not undefined, then
i Let e and n be integers such that 10" < n < 10! and for which the exact mathematical value
of n x 10%f— x is as close to zero as possible. If there are two such sets of e and n, pick the
e and n for which n x 10° is larger.
b. " Else, fractionDigits is undefined
i. . Lete, n,and f be integers such that f > 0, 10" < n < 10™!, the number value for n x 10 is x,
and f is as small as possible. Note that the decimal representation of n has f+1 digits, n is
not.divisible by 10, and the least significant digit of n is not necessarily uniquely
determined by these criteria.
c. Letm be the String consisting of the digits of the decimal representation of n (in order, with no
leading zeroes).
12. If f = 0, then
a. Leta be the first element of m, and let b be the remaining f elements of m.

NookrwbdE

b. Let m be the concatenation of the three Strings a, ". ", and b.
13. Ife =0, then

a. Letc="+".

b. Letd="o0o".
14. Else

a. Ife>0,thenletc="4+".

b. Else,e<0

© Ecma International 2012 235

secma

i Letc="-".
ii. Lete =—e.
c. Letd be the String consisting of the digits of the decimal representation of e (in order, with no
leading zeroes).
15. Let m be the concatenation of the four Strings m, "e", ¢, and d.
16. Return the concatenation of the Strings s and m.

The length property of the toExponential method is 1.

If the toExponential method is called with more than one argument, then the behaviour is undefined (see
clause 15).

An implementation is permitted to extend the behaviour of toExponential for values of fractionDigits less
than O or greater than 20. In this case toExponential would not necessarily throw RangeError for such
values.

NOTE For implementations that provide more accurate conversions than required by the rules above, it is
recommended that the following alternative version of step 9.b.i be used as a guideline:

i. Let e, n, and f be integers such that f > 0, 10" <.n < 10™!, the number value for n x 10°is x,.and f is as small
as possible. If there are multiple possibilitiesfor n, choose the valde of n for which n x 10°-is closest in value
to x. If there are two such possible values of n, choose the one that is even.

15.7.4.7 Number.prototype.toPrecision (precision)

Return a String containing this Number value represented either in decimal exponential notation with one digit
before the significand's decimal point and precision-1 digits.after the significand's decimal point or in decimal
fixed notation with precision significant digits. If precision is-undefined, call ToString (9.8.1) instead.
Specifically, perform the following steps:

Let x be this Number value:

ReturnlfAbrupt(x).

If precision is undefined, return ToString(x).

Let p be Tolnteger(precision).

ReturnlfAbrupt(p).

If x is NaN, return the String "NaN".

Let s be the empty String.

If x < 0,then
as Letshbe "=,

b. Letx=-x.
9. Ifx=+oo, then
a. -~ Return the concatenation of the Strings sand "Infinity".
10. If p <1 orp > 21, throw a RangeError exception.
11. If x =0, then
a. Letm be the String consisting of p occurrences of the code unit 0x0030 (the Unicode character <0°).
b. Lete=0.

12. Else x # 0,

a. Lete and nbe integers such that 10P* < n < 10P and for which the exact mathematical value of n x
10%P*1 _x is as close to zero as possible. If there are two such sets of e and n, pick the e and n for
which n x 10%P* is larger.

b. Let m be the String consisting of the digits of the decimal representation of n (in order, with no
leading zeroes).

c. Ife<-6ore>p,then

i Let a be the first element of m, and let b be the remaining p—1 elements of m.
ii. Let m be the concatenation of the three Strings a, ". ", and b.
iii. Ife =0, then
1. Letc="+"andd="0".
iv. Else e = 0,
1. Ife>0, then

N~ E

236 © Ecma International 2012

»ecma

a Letc="+".

2. Elsee <0,
a Letc="-",
b Lete=-e.

3. Letd be the String consisting of the digits of the decimal representation of e (in
order, with no leading zeroes).
V. Let m be the concatenation of the five Strings s, m, "e", ¢, and d.
13. If e = p-1, then return the concatenation of the Strings s and m.
14. Ife >0, then
a. Let m be the concatenation of the first e+1 elements of m, the code unit 0X002E (Unicode character
¢.”), and the remaining p— (e+1) elements of m.
15. Elsee <0,
a. Let m be the concatenation of the String "0.", —(e+1) occurrences of code unit 0x0030 (the
Unicode character ‘0°), and the String m.
16. Return the concatenation of the Strings s and m.

The length property of the toPrecision method is 1.

If the toPrecision method is called with more than one argument, then the behaviour is undefined (see
clause 15).

An implementation is permitted to extend the behaviour of toPrecision for values of precision less than 1 or
greater than 21. In this case toPrecision would not necessarily throw RangeError for such values.

15.7.4.8 Number.prototype.clz ()
When the Number . prototype.clz is called with one argument number, the following steps are taken:

Let x be this Number value.

Let n be ToUint32(x).

ReturnIfAbrupt(n).

Let p be the number ofdeading zero bits in the 32-bit binary representation of n.
Return p.

agbrwnE

NOTE If nis 0, p will be 32. "If the most significant bit of the 32-bit binary encoding of n is 1, p will be 0.
15.7.5 Properties of Number Instances

Number-instances inherit properties from the Number prototype object and have a [[NativeBrand]] internal
property whose value is NumberWrapper. Number instances also have a [[PrimitiveValue]] internal property.

The [[PrimitiveValue]] internal property is the Number value represented by this Number object.
15.8 The Math Object
The Math object is a single object that has some named properties, some of which are functions.

The value of the [[Prototype]] internal property of the Math object is the standard built-in Object prototype
object (15.2.4). The Math object has a [[NativeBrand]] internal property whose value is NativeMath.

The Math object does not have a [[Construct]] internal property; it is not possible to use the Math object as a
constructor with the new operator.

The Math object does not have a [[Call]] internal property; it is not possible to invoke the Math object as a
function.

NOTE In this specification, the phrase “the Number value for x” has a technical meaning defined in 8.5.

© Ecma International 2012 237

secma

15.8.1 Value Properties of the Math Object

158.1.1 E

The Number value for e, the base of the natural logarithms, which is approximately 2.7182818284590452354.
This property has the attributes { [[Writable]]: false, [[Enumerable]]: false, [[Configurable]]: false }.
15.8.1.2 LN10

The Number value for the natural logarithm of 10, which is approximately 2.302585092994046.
This property has the attributes { [[Writable]]: false, [[Enumerable]]: false, [[Configurable]]: false }.
15.8.1.3 LN2

The Number value for the natural logarithm of 2, which is approximately 0.6931471805599453.
This property has the attributes { [[Writable]]: false, [[Enumerable]]: false, [[Configurable]]: false }.
15.8.1.4 LOGZ2E

The Number value for the base-2 logarithm of e, the base of the natural logarithms; this value is approximately
1.4426950408889634.

This property has the attributes { [[Writable]]: false, [[Enumerable]]: false, [[Configurable]]: false }.
NOTE The value of Math . LOG2E is approximately the reciprocal of the value of Math . LN2.
15.8.1.5 LOGI10E

The Number value for the base-10 logarithm of ‘e, the base of the natural logarithms; this value is
approximately 0.4342944819032518.

This property has the attributes { [[Writable]]: false, [[Enumerable]]: false, [[Configurable]]: false }.
NOTE Thevalue of Math . LOG10E is approximately the reciprocal of the value of Math.LN10.
15.8.1.6° PI

The Number value for &, the ratio of the circumference of a circle to its diameter, which is approximately
3.1415926535897932.

This property has the attributes { [[Writable]]: false, [[Enumerable]]: false, [[Configurable]]: false }.
15.8.1.7 SQRT1_2

The Number value for the square root of %, which is approximately 0.7071067811865476.

This property has the attributes { [[Writable]]: false, [[Enumerable]]: false, [[Configurable]]: false }.
NOTE The value of Math.SQRT1_2 is approximately the reciprocal of the value of Math . SQRT2.
15.8.1.8 SQRT2

The Number value for the square root of 2, which is approximately 1.4142135623730951.

This property has the attributes { [[Writable]]: false, [[Enumerable]]: false, [[Configurable]]: false }.

238 © Ecma International 2012

»ecma

15.8.2 Function Properties of the Math Object

Each of the following Math object functions applies the ToNumber abstract operator to each of its arguments
(in left-to-right order if there is more than one). If ToNumber returns an abrupt completion, that completion
record is immediately returned. Otherwise, functction performs a computation on the resulting Number
value(s).

In the function descriptions below, the symbols NaN, -0, +0, —« and +« refer to the Number values described
in 8.5.

NOTE The behaviour of the functions acos, asin, atan, atan2, cos, exp, log, pow, sin, sqrt, and tan is not
precisely specified here except to require specific results for certain argument values that represent boundary cases of
interest. For other argument values, these functions are intended to compute approximations to the results of familiar
mathematical functions, but some latitude is allowed in the choice of approximation algorithms. The general intent is that
an implementer should be able to use the same mathematical library for ECMAScript on a given hardware platform that is
available to C programmers on that platform.

Although the choice of algorithms is left to the implementation, it is recommended (but not specified by this standard) that
implementations use the approximation algorithms for IEEE 754 arithmetic contained in £d1ibm, the freely distributable
mathematical library from Sun Microsystems (http://www.netlib.org/fdlibm) .

15.8.2.1 abs (x)
Returns the absolute value of x; the result has the same magnitude as x but has positive sign.

e |fxis NaN, the result is NaN.
e |Ifxis -0, theresultis +0.
e |fxis—oo, the result is +oo.

15.8.2.2 acos (x)

Returns an implementation-dependent approximation to the arc cosine of x. The result is expressed in radians
and ranges from +0 to +x.

If x is NaN, the result is NaN.

If x is greater than 1, theresult is NaN.
If x-is less.than —1, the result is NaN.
If X is exactly 1, the result is. +0.

15.8.2.3 asin (x)

Returns an implementation-dependent approximation to the arc sine of x. The result is expressed in radians
and ranges from —n/2 to +r/2.

If x is NaN, the result is NaN.

If x is greaterthan 1, the result is NaN.
If x is less than —1, the result is NaN.

e Ifxis+0, the result is +0.

e Ifxis—0, theresultis -0.

15.8.2.4 atan (x)

Returns an implementation-dependent approximation to the arc tangent of x. The result is expressed in
radians and ranges from —n/2 to +mr/2.

e |Ifxis NaN, the result is NaN.

e |fxis +0, the result is +0.
e |fxis -0, the result is 0.

© Ecma International 2012 239

secma

If x is +o0, the result is an implementation-dependent approximation to +n/2.
If x is —oo, the result is an implementation-dependent approximation to —m/2.

15.8.2.5 atan2 (y, x)

Returns an implementation-dependent approximation to the arc tangent of the quotient y/x of the arguments y
and x, where the signs of y and x are used to determine the quadrant of the result. Note that it is intentional
and traditional for the two-argument arc tangent function that the argument named y be first and the argument
named x be second. The result is expressed in radians and ranges from —r to +.

If either x or y is NaN, the result is NaN.

If y>0 and x is +0, the result is an implementation-dependent approximation to +n/2.

If y>0 and x is -0, the result is an implementation-dependent approximation to +n/2.

Ify is +0 and x>0, the result is +0.

Ify is +0 and x is +0, the result is +0.

Ify is +0 and x is -0, the result is an implementation-dependent approximation to +.

If y is +0 and x<0, the result is an implementation-dependent approximation to +r.

Ify is —0 and x>0, the result is —0.

Ify is -0 and x is +0, the result is —0.

Ify is —0 and x is -0, the result is an implementation-dependent approximation to —.

If y is —0 and x<0, the result is an implementation-dependent approximation to —.

If y<0 and x is +0, the result is an implementation-dependent approximation to —mn/2.

If y<0 and x is —0, the result is an implementation-dependent approximation to —n/2.

If y>0 and y is finite and x is +o0, the-result is +0.

If y>0 and y is finite and x is —oo, the result if an.implementation-dependent approximation to +.
If y<O and y is finite and x is +o0, the result is —0.

If y<0 and y is finite and x is —oo, the result is an implementation-dependent approximation to —.
Ify is +o0 and x is finite, the result is an implementation-dependent approximation to +n/2.
Ify is —oo and x is finite, the result is an implementation-dependent approximation to —n/2.
Ify is +o0 and x is +oo, the result is an implementation-dependent approximation to +n/4.
Ify is +o0 and xS —o, the result is an implementation-dependent approximation to +3w/4.
If y is —o and X is +o0, the result is an implementation-dependent approximation to —mn/4.
If y is —o and x is —oo, the result is-an-implementation-dependent approximation to —3n/4.

15.8.2.6 ceil (x)

Returns the smallest (closest to —) Number value that is not less than x and is equal to a mathematical
integerIf X is already an integer, the result is x.

If x is NaN, the result is NaN.

If x is +0, the result is +0.

If x is -0, the result/is -0.

If X is +oo, the result is +oo.

If X is —oo, the result is —co.

If x is less than O but greater than -1, the result is —0.

The value of Math.ceil (x) is the same as the value of -Math. floor (-x).

15.8.2.7 cos (x)

Returns an implementation-dependent approximation to the cosine of x. The argument is expressed in radians.

240

If x is NaN, the result is NaN.
If x is +0, the result is 1.

If x is -0, the result is 1.

If X is +oo, the result is NaN.
If X is —oo, the result is NaN.

© Ecma International 2012

»ecma

15.8.2.8 exp (x)

Returns an implementation-dependent approximation to the exponential function of x (e raised to the power of
X, where e is the base of the natural logarithms).

If x is NaN, the result is NaN.
If x is +0, the result is 1.

If x is -0, the result is 1.

If X is +oo, the result is +oo.
If X is —oo, the result is +0.

15.8.2.9 floor (x)

Returns the greatest (closest to +0) Number value that is not greater than x and.is equal to a mathematical
integer. If x is already an integer, the result is x.

If x is NaN, the result is NaN.

If x is +0, the result is +0.

If x is -0, the result is —0.

If x is +oo, the result is +oo.

If X is —oo, the result is —oo.

If x is greater than O but less than 1, the result is +0.

NOTE The value of Math. £loor (x) is the same as the value of -Math.ceil (-x).
15.8.2.10 log (x)

Returns an implementation-dependent approximation to the natural logarithm of x.
If x is NaN, the result is-NaN.

If x is less than 0, the result is NaN.

If x is +0 or -0, the result is —oo.

If x is 1, the result is +0.

If X is +oo, the result is +oo.

15.8.2.11 max ([value1 [, value2[,...111)

Given zero or more arguments, calls ToNumber on each of the arguments and returns the largest of the
resultingvalues.

e If noarguments are given, the result is —oo.
e Ifany value is NaN, the result is NaN.
e The comparison of values to determine the largest value is done using the Abstract Relational Comparision
Alogrithm (11.8.1) except that +0 is considered to be larger than —0.
The length property of the max method is 2.
15.8.2.12 min ([value1 [, value2[,...111)

Given zero or more arguments, calls ToNumber on each of the arguments and returns the smallest of the
resulting values.

e Ifnoarguments are given, the result is +oo.

e Ifany value is NaN, the result is NaN.

e The comparison of values to determine the smallest value is done using the Abstract Relational
Comparision Alogrithm (11.8.1) except that +0 is considered to be larger than —0.

The length property of the min method is 2.

© Ecma International 2012 241

secma

15.8.2.13 pow (X, Y)
Returns an implementation-dependent approximation to the result of raising x to the power y.

If y is NaN, the result is NaN.

Ify is +0, the result is 1, even if x is NaN.

Ify is -0, the result is 1, even if x is NaN.

If x is NaN and y is nonzero, the result is NaN.

If abs(x)>1 and y is +oo, the result is +oo.

If abs(x)>1 and y is —oo, the result is +0.

If abs(x)==1 and y is +oo, the result is NaN.

If abs(x)==1 and y is —oo, the result is NaN.

If abs(x)<1 and y is +oo, the result is +0.

If abs(x)<1 and y is —oo, the result is +oo.

If X is +o0 and y>0, the result is +oo.

If X is +o0 and y<0, the result is +0.

If X is —o and y>0 and y is an odd integer, the result is —oo:

If X is —o and y>0 and y is not an odd integer, the result’is +oo.
If X is —0 and y<0 and y is an odd integer, the resultis —0.

If X is —0 and y<0 and y is not an odd integer, the'result is +0.
If x is +0 and y>0, the result is +0.

If x is +0 and y<O0, the result is +oo.

If x is —0 and y>0 and y is an odd integer, the result is —0.

If x is —0 and y>0 and y is not an odd'integer, the result is +0.
If x is —0 and y<0 and y is an odd integer, the result is —o.

If x is —0 and y<0 and y is not an odd integer, the resultiis +co.
If x<0 and x is finite and y is finite and y is not an integer, the result is NaN.

15.8.2.14 random ()

Returns a Number value with positive sign, greater than or equal to O but less than 1, chosen randomly or
pseudo randomly with approximately uniform distribution over that range, using an implementation-dependent
algorithm or strategy. This function takes no.arguments.

15.8.2.15 round (x)

Returns the Number value. that is closest to x and is equal to a mathematical integer. If two integer Number
values are equally close to x, then the result is the Number value that is closer to +o. If X is already an integer,
the result is x.

If x is NaN, the result is NaN.

If xis +0, the result is +0.

Ifx is =0, the result is —0.

If X is +o0; the result is +oo.

If x is —oo, the result is —oo.

If x is greater than O but less than 0.5, the result is +0.

If x is less than O but greater than or equal to -0.5, the result is —0.

NOTE 1 Math.round(3.5) returns 4, but Math.round (-3.5) returns -3.

NOTE 2 The value of Math. round (x) is the same as the value of Math. floor (x+0.5), except when x is -0 or is
less than 0 but greater than or equal to -0.5; for these cases Math.round(x) returns -0, but Math.floor (x+0.5)
returns +0.

15.8.2.16 sin (x)

Returns an implementation-dependent approximation to the sine of x. The argument is expressed in radians.

242 © Ecma International 2012

»ecma

If x is NaN, the result is NaN.

If x is +0, the result is +0.

If x is -0, the result is -0.

If X is +oo or —oo, the result is NaN.

15.8.2.17 sqrt (x)
Returns an implementation-dependent approximation to the square root of x.

If x is NaN, the result is NaN.

If x is less than 0, the result is NaN.
If x is +0, the result is +0.

If x is -0, the result is 0.

If x is +oo, the result is +oo.

15.8.2.18 tan (x)

Returns an implementation-dependent approximation to the tangent of x. The argument is expressed in
radians.

If x is NaN, the result is NaN.

If x is +0, the result is +0.

If x is -0, the result is —0.

If X is +oo or —oo, the result is NaN.

15.8.2.19 log10 (x)
Returns an implementation-dependent approximation to the base 10 logarithm of x.

If x is NaN, the result is NaN.

If x is less than 0, the result'is NaN.
If x is +0, the result is —oo.

If x is -0, the result is —oo.

If x is 1, the result.is +0.

If X is +o0, the result is +co.

15.8.2.20 log2 (x)
Returns an implementation-dependent approximation to the base 2 logarithm of x.

If x.is NaN, the result is NaN.

If X is less than 0O, the result is NaN.
If x is +0, the result is —o.

If x is -0, the result is —oo.

If x is 1, the result is +0.

If X is +o0, the result is +oo.

15.8.2.21 loglp (x)

Returns an implementation-dependent approximation to the natural logarithm of 1 + x. The result is computed
in a way that is accurate even when the value of x is close to zero.

e [f xis NaN, the result is NaN.

e [fxislessthan -1, the result is NaN.
e [f xis -1, the result is -oo.

© Ecma International 2012 243

secma

e If xis +0, the result is +0.
e If xis -0, the result is -0.
e If Xis +oo, the result is +oo.

15.8.2.22 expm1l (x)

Returns an implementation-dependent approximation to subtracting 1 from the exponential function of x (e
raised to the power of x, where e is the base of the natural logarithms). The result is computed in a way that
is accurate even when the value of x is close 0.

If X is NaN, the result is NaN.
If x is +0, the result is +0.

If x is -0, the result is —0.

If X is +o0, the result is +oo.

If X is —o0, the result is -1.

15.8.2.23 cosh(x)
Returns an implementation-dependent approximation to the hyperbolic cosine of x.

If x is NaN, the result is NaN.
If x is +0, the result is 1.

If xis -0, the result is 1.

If X is +o0, the result is +oo.

If X is —o0, the result is +o.

NOTE The value of cosh(x) is the same as (exp(x) + exp(-x))/2.
15.8.2.24 sinh(x)
Returns an implementation-dependent approximation to the hyperbolic sine of x.

If X is NaN, the result is NaN.
If x is +0, the result is +0.

If x.is—0, the result is 0.

If X is +o0, the result is +oo.

If X is —oo, the result is —oo.

NOTE The value of cosh(x) is the same as (exp(x) - exp(-x))/2.
15.8.2.25 tanh(x)
Returns an implementation-dependent approximation to the hyperbolic tangent of x.

If x is NaN, the result is NaN.
If x is +0, the result is +0.
If x is -0, the result is —0.
If X is +oo, the result is +1.
If X is —oo, the result is -1.

NOTE The value of tanh(x) is the same as (exp(x) - exp(-x))/(exp(x) + exp(-X)).
15.8.2.26 acosh(x)
Returns an implementation-dependent approximation to the inverse hyperbolic cosine of x.

e If xis NaN, the result is NaN.

244 © Ecma International 2012

»ecma

e [f xislessthan 1, the result is NaN.
e If xis 1, the result is +0.
e [f Xis +oo, the result is +o.

15.8.2.27 asinh(x)
Returns an implementation-dependent approximation to the inverse hyperbolic sine of x.

If X is NaN, the result is NaN.
If x is +0, the result is +0.

If x is -0, the result is -0.

If X is +o0, the result is +oo.

If X is —o0, the result is —oo.

15.8.2.28 atanh(x)
Returns an implementation-dependent approximation to the inverse hyperbolic tangent of x.

If x is NaN, the result is NaN.

If x is less than -1, the result is NaN.
If x is greater than 1, the result is NaN.
If x is —1, the result is —oo.

If x is +1, the result is +o.

If x is +0, the result is +0.

If x is -0, the result is -0.

15.8.2.29 hypot(valuel, value2, value3 =0)

Given two or three arguments, hypot returns an implementation-dependent approximation of the square root
of the sum of squares of upto three arguments.

If any argument is +o, the result is +o.

If any argument is —oo, the result is +oo.

If no argument is +o or —oo, and any argument is NaN, the result is NaN.
If alll arguments are either +0 or -0, the result is +0.

15.8.2.30 trunc(x)

Returns the integral part of the number x, removing any fractional digits. If x is already an integer, the result is
X.

If x is NaN, the result is NaN.
If x is -0, the result is -0.

If x is +0, the result is +0.

If X is +o0, the result is +co.

© Ecma International 2012 245

secma

o |If xis —oo, the result is —oo.
15.8.2.31 sign(x)
Returns the sign of the x, indicating whether x is positive, negative or zero.

If x is NaN, the result is NaN.

If x is -0, the result is -0.

If x is +0, the result is +0.

If x is negative and not -0, the result is —1.
If x is positive and not +0, the result is +1.

15.8.2.32 cbrt(x)
Returns an implementation-dependent approximation to the cube root of x.

If X is NaN, the result is NaN.
If x is +0, the result is +0.

If x is -0, the result is —0.

If X is +o0, the result is +oo.

If X is —oo, the result is —oo.

15.9 Date Objects
15.9.1 Overview of Date Objects and Definitions of Abstract Operators

The following functions are abstract operations that operate on time values (defined in 15.9.1.1). Note that, in
every case, if any argument to one of these functions is NaN, the result will be NaN.

15.9.1.1 Time Values and Time Range

A Date object contains a:Number indicating a particular instant in time to within a millisecond. Such a Number
is called a time value< A time value may also be NaN, indicating that the Date object does not represent a
specific instant of time.

Time is measured-in ECMAScript in milliseconds since 01 January, 1970 UTC. In time values leap seconds
are ignored. It is assumed that there are exactly 86,400,000 milliseconds per day. ECMAScript Number values
can represent all integers from —9,007,199,254,740,992 to 9,007,199,254,740,992; this range suffices to
measure times to millisecond. precision for any instant that is within approximately 285,616 years, either
forward or backward, from 01 January, 1970 UTC.

The actual range of times supported by ECMAScript Date objects is slightly smaller: exactly —100,000,000
days to 100,000,000 days measured relative to midnight at the beginning of 01 January, 1970 UTC. This gives
a range of 8,640,000,000,000,000 milliseconds to either side of 01 January, 1970 UTC.

The exact moment of midnight at the beginning of 01 January, 1970 UTC is represented by the value +0.
15.9.1.2 Day Number and Time within Day

A given time value t belongs to day number
Day(t) = floor(t / msPerDay)

where the number of milliseconds per day is
msPerDay = 86400000

The remainder is called the time within the day:

TimeWithinDay(t) = t modulo msPerDay

246 © Ecma International 2012

»ecma

15.9.1.3 Year Number

ECMAScript uses an extrapolated Gregorian system to map a day number to a year number and to determine
the month and date within that year. In this system, leap years are precisely those which are (divisible by 4)
and ((not divisible by 100) or (divisible by 400)). The number of days in year number y is therefore defined by

DaysinYear(y) =365 if (y modulo4) =0
=366 if (y modulo 4) = 0 and (y modulo 100) = 0
=365 if (y modulo 100) = 0 and (y modulo 400) = 0
=366 if (y modulo 400) =0

All non-leap years have 365 days with the usual number of days per month and leap years have an extra day
in February. The day number of the first day of year y is given by:

DayFromYear(y) =365 x (y—1970) + floor((y—1969)/4) — floor((y—1901)/100) + floor((y—1601)/400)
The time value of the start of a year is:

TimeFromYear(y) = msPerDay x DayFromYear(y)
A time value determines a year by:

YearFromTime(t) = the largest integer y (closest to positive infinity) such that TimeFromYear(y) <t
The leap-year function is 1 for a time within a leap year and otherwise is zero:

InLeapYear(t) =0 if DaysInYear(YearFromTime(t)) = 365
=1 if DaysInYear(YearFromTime(t)) = 366

15.9.1.4 Month Number

Months are identified by an integer in the range 0to 11, inclusive. The mapping MonthFromTime(t) from a time
value t to a month number is defined by:

MonthFromTime(t): =0 if. 0 < DayWithinYear(t) < 31

= if 31 < DayWithinYear (t) < 59+InLeapYear(t)

= if 59+InLeapYear(t) < DayWithinYear (t) < 90+InLeapYear(t)

= if ~ 90+InLeapYear(t) < DayWithinYear (t) < 120+InLeapYear(t)
= if 120+InkeapYear(t) < DayWithinYear (t) < 151+InLeapYear(t)
= if 151+InLeapYear(t) < DayWithinYear (t) < 181+InLeapYear(t)
= if 181+InLeapYear(t) < DayWithinYear (t) < 212+InLeapYear(t)
= if 212+InLeapYear(t) < DayWithinYear (t) < 243+InLeapYear(t)
= if 243+InLeapYear(t) < DayWithinYear (t) < 273+InLeapYear(t)
= if . 273+InLeapYear(t) < DayWithinYear (t) < 304+InLeapYear(t)
=10 if" 304+InLeapYear(t) < DayWithinYear (t) < 334+InLeapYear(t)
=11 if 334+InLeapYear(t) < DayWithinYear (t) < 365+InLeapYear(t)

where

DayWithinYear(t) = Day(t)-DayFromY ear(Y earFromTime(t))
A month value of 0 specifies January; 1 specifies February; 2 specifies March; 3 specifies April; 4 specifies
May; 5 specifies June; 6 specifies July; 7 specifies August; 8 specifies September; 9 specifies October; 10
specifies November; and 11 specifies December. Note that MonthFromTime(0) = 0, corresponding to Thursday,
01 January, 1970.

15.9.1.5 Date Number

A date number is identified by an integer in the range 1 through 31, inclusive. The mapping DateFromTime(t)
from a time value t to a month number is defined by:

DateFromTime(t) = DayWithinYear(t)+1 if MonthFromTime(t)=0
= DayWithinYear(t)-30 if MonthFromTime(t)=1
= DayWithinY ear(t)-58—InLeapY ear(t) if MonthFromTime(t)=2

© Ecma International 2012 247

secma

= DayWithinYear(t)-89—InLeapY ear(t) if MonthFromTime(t)=3
= DayWithinYear(t)-119-InLeapY ear(t) if MonthFromTime(t)=4
= DayWithinYear(t)-150—-InLeapY ear(t) if MonthFromTime(t)=5
= DayWithinYear(t)-180—InLeapY ear(t) if MonthFromTime(t)=6
= DayWithinYear(t)-211-InLeapY ear(t) if MonthFromTime(t)=7
= DayWithinYear(t)—242—InLeapY ear(t) if MonthFromTime(t)=8
= DayWithinYear(t)-272—InLeapY ear(t) if MonthFromTime(t)=9
= DayWithinYear(t)-303—InLeapY ear(t) if MonthFromTime(t)=10
= DayWithinYear(t)-333-InLeapYear(t) if MonthFromTime(t)=11

15.9.1.6 Week Day

The weekday for a particular time value t is defined as
WeekDay(t) = (Day(t) + 4) modulo 7

A weekday value of 0 specifies Sunday; 1 specifies Monday; 2 specifies Tuesday; 3 specifies Wednesday;
4 specifies Thursday; 5 specifies Friday; and 6 specifies Saturday. Note that WeekDay(0) = 4, corresponding to
Thursday, 01 January, 1970.

15.9.1.7 Local Time Zone Adjustment

An implementation of ECMAScript is expected to determine the local'time zone adjustment. The local time
zone adjustment is a value LocalTZA measured in milliseconds which when added to UTC represents the
local standard time. Daylight saving time is not reflected by LocalTZA.

NOTE It is recommended that implementations use the time zone information of the IANA Time Zone Database.
15.9.1.8 Daylight Saving Time Adjustment

An implementation of ECMAScript-is.expected to make'its best effort to determine the local daylight saving
time adjustment. An implementation dependent algorithm using best available information on time zones to
determine the local daylight saving time adjustment DaylightSavingTA(t), measured in milliseconds.

15.9.1.9 Local Time

Conversion from UTC to local time-is defined by

LocalTime(t) =t + Local TZA + DaylightSavingTA(t)
Conversion from local time to UTC'is defined by

UTC(t) =t - Local TZA - DaylightSaving TA(t — LocalTZA)

Note that UTC(LocalTime(t)) is not necessarily always equal to t.
15.9.1.10 Hours, Minutes, Second, and Milliseconds

The following functions are useful in decomposing time values:
HourFromTime(t) = floor(t / msPerHour) modulo HoursPerDay
MinFromTime(t) = floor(t/ msPerMinute) modulo MinutesPerHour
SecFromTime(t) = floor(t/ msPerSecond) modulo SecondsPerMinute
msFromTime(t) =t modulo msPerSecond

where
HoursPerDay =24
MinutesPerHour =60
SecondsPerMinute= 60
msPerSecond =1000

248 © Ecma International 2012

»ecma

msPerMinute = 60000 = msPerSecond x SecondsPerMinute
msPerHour = 3600000 = msPerMinute x MinutesPerHour

15.9.1.11 MakeTime (hour, min, sec, ms)

The operator MakeTime calculates a number of milliseconds from its four arguments, which must be
ECMAScript Number values. This operator functions as follows:

If hour is not finite or min is not finite or sec is not finite or ms is not finite, return NaN.

Let h be Tolnteger(hour).

Let m be Tolnteger(min).

Let s be Tolnteger(sec).

Let milli be Tolnteger(ms).

Lett be h * msPerHour + m * msPerMinute + s * msPerSecond + milli,performing the arithmetic according
to IEEE 754 rules (that is, as if using the ECMAScript operators * and +).

7. Returnt.

ocuprwhPE

15.9.1.12 MakeDay (year, month, date)

The operator MakeDay calculates a number of days from its three arguments, which must be ECMAScript
Number values. This operator functions as follows:

If year is not finite or month is not finite or date is not finite, return NaN.

Let y be Tolnteger(year).

Let m be Tolnteger(month).

Let dt be Tolnteger(date).

Let ym be y + floor(m /12).

Let mn be m modulo 12.

Find a value t such that YearFromTime(t) == ym and MonthFromTime(t) == mn and DateFromTime(t) == 1;
but if this is not possible (because some argument is-out of range), return NaN.

8. Return Day(t) + dt — 1.

NoohkwpbE

15.9.1.13 MakeDate (day, time)

The operator MakeDate calculates a number of milliseconds from its two arguments, which must be
ECMAScript Number values. This‘operator functions as follows:

1. If day is not finite or time is not finite, return NaN.
2. Return day x msPerDay + time.

15.9.1.14 TimeClip (time)

The operator TimeClip calculates a number of milliseconds from its argument, which must be an ECMAScript
Number value. This operator functions as follows:

1. If time is not finite, return NaN.

2. If abs(time) > 8.64 x 10*°, return NaN.

3. Return an implementation-dependent choice of either Tolnteger(time) or Tolnteger(time) + (+0). (Adding a
positive zero converts —0 to +0.)

NOTE The point of step 3 is that an implementation is permitted a choice of internal representations of time values,
for example as a 64-bit signed integer or as a 64-bit floating-point value. Depending on the implementation, this internal
representation may or may not distinguish —0 and +0.

15.9.1.15 Date Time String Format

ECMAScript defines a string interchange format for date-times based upon a simplification of the ISO 8601
Extended Format. The format is as follows: YYYY-MM-DDTHH:mm: ss.sssZ

© Ecma International 2012 249

secma

Where the fields are as follows:

YYYY is the decimal digits of the year 0000 to 9999 in the Gregorian calendar.
(hyphen) appears literally twice in the string.

MM is the month of the year from 01 (January) to 12 (December).

DD is the day of the month from 01 to 31.

T “T” appears literally in the string, to indicate the beginning of the time element.
HH is the number of complete hours that have passed since midnight as two decimal digits from
00 to 24.

:” (colon) appears literally twice in the string.

mm is the number of complete minutes since the start of the hour as two decimal digits from 00 to
59.

ss is the number of complete seconds since the start of the minute as two decimal digits from 00
to 59.

.” (dot) appears literally in the string.
sss is the number of complete milliseconds since the start of the second as three decimal digits.

Z is the time zone offset specified as “2” (for UTC) or either “+” or “-” followed by a time
expression HH : mm

This format includes date-only forms:

YYYY
YYYY-MM
YYYY-MM-DD

It also includes “date-time” forms that consist of one of the above date-only forms immediately followed by one
of the following time forms with an.optional time zone offset appended:

THH : mm
THH:mm:ss
THH:mm:ss.sss

All numbers must be base 10. If the MM or DD fields are absent “01” is used as the value. If the HH, mm, or ss
fields are absent “00” is used as the value and the value of an absent sss field is “000”. If the time zone offset
is absent, the date-time is in interpreted as a local time.

lllegal values (out-of-bounds as well as syntax errors) in a format string means that the format string is not a
validiinstance of this format.

NOTE 1 As every day both starts and ends with midnight, the two notations 00:00 and 24:00 are available to
distinguish the two midnights that can be associated with one date. This means that the following two notations refer to
exactly the same point in time: 1995-02-04T24:00 and 1995-02-05T00: 00

NOTE 2 There exists no international standard that specifies abbreviations for civil time zones like CET, EST, etc. and
sometimes the same abbreviation is even used for two very different time zones. For this reason, 1ISO 8601 and this
format specifies numeric representations of date and time.

15.9.1.15.1 Extended years

ECMAScript requires the ability to specify 6 digit years (extended years); approximately 285,426 years, either
forward or backward, from 01 January, 1970 UTC. To represent years before 0 or after 9999, ISO 8601
permits the expansion of the year representation, but only by prior agreement between the sender and the
receiver. In the simplified ECMAScript format such an expanded year representation shall have 2 extra year
digits and is always prefixed with a + or — sign. The year 0 is considered positive and hence prefixed with a +
sign.

NOTE Examples of extended years:

250 © Ecma International 2012

eCina

-283457-03-21T15:00:59.008Z 283458 B.C.
-000001-01-01T00:00:00Z2 2B.C.
+000000-01-01T00:00:00Z2 1B.C.
+000001-01-01T00:00:00Z2 1AD.
+001970-01-01T00:00:00Z 1970 A.D.
+002009-12-15T00:00:00Z2 2009 A.D.
+287396-10-12T08:59:00.992Z 287396 A.D.

15.9.2 The Date Constructor Called as a Function

When Date is called as a function rather than as a constructor, it returns a String representing the current
time (UTC).

NOTE The function call Date (...) is not equivalent to the object creation expression new Date(..) with the same
arguments.

15.9.2.1 Date ([year [, month [, date [, hours [, minutes [, seconds [, ms]]11111])

All of the arguments are optional; any arguments supplied are accepted but are completely ignored. A String
is created and returned as if by the expression (new Date()) .toString() where Date is the standard
built-in constructor ~with that name and toString is <the standard built-in method
Date.prototype. toString.

15.9.3 The Date Constructor
When Date is called as part of a new expression, it is a constructor: it initialises the newly created object.
15.9.3.1 new Date (year, month [, date [, hours [, minutes [, seconds [,ms]]11]11)

When Date is called with two to seven.arguments, it.computes the date from year, month, and (optionally)
date, hours, minutes, seconds and ms.

The [[Prototype]] internal property of the newly constructed object is set to the original Date prototype object,
the one that is the initial value of Date.prototype (15.9.4.1).

The newly constructed object has a [[NativeBrand]] internal property whose value is NativeDate.
The [[Extensible]] internal property of the newly constructed object is set to true.
The [[PrimitiveValue]] internal property of the newly constructed object is set as follows:

Let y be ToNumber(year).

ReturnlfAbrupt(year).

Let m be ToNumber(month).

ReturnlfAbrupt(month):

If date is supplied then let dt be ToNumber(date); else let dt be 1.

ReturnIfAbrupt(dt).

If hours is supplied then let h be ToNumber(hours); else let h be 0.

ReturnlfAbrupt(h).

If minutes is supplied then let min be ToNumber(minutes); else let min be 0.

10. ReturnIfAbrupt(min).

11. If seconds is supplied then let s be ToNumber(seconds); else let s be 0.

12. ReturnlfAbrupt(s).

13. If ms is supplied then let milli be ToNumber(ms); else let milli be 0.

14. ReturnlfAbrupt(milli).

15. Ify is not NaN and 0 < Tolnteger(y) < 99, then let yr be 1900+ Tolnteger(y); otherwise, let yr be y.
16. Let finalDate be MakeDate(MakeDay(yr, m, dt), MakeTime(h, min, s, milli)).

17. Set the [[PrimitiveValue]] internal property of the newly constructed object to TimeClip(UTC(finalDate)).

CoOoNo~WNE

© Ecma International 2012 251

secma

15.9.3.2 new Date (value)

The [[Prototype]] internal property of the newly constructed object is set to the original Date prototype object,
the one that is the initial value of Date .prototype (15.9.4.1).

The newly constructed object has a [[NativeBrand]] internal property whose value is NativeDate.
The [[Extensible]] internal property of the newly constructed object is set to true.
The [[PrimitiveValue]] internal property of the newly constructed object is set as follows:

1. Letv be ToPrimitive(value).
2. If Type(v) is String, then
a. Parsev as a date, in exactly the same manner as for the parse method (15.9.4.2); let V be the time
value for this date. If the parse resulted in an abrupt completion, return the Completion Record.
Else, let V be ToNumber(v).
ReturnlfAbrupt(V).
Set the [[PrimitiveValue]] internal property of the newly constructed object to TimeClip(V).
Return the newly constructed object.

ook w

15.9.3.3 new Date ()

The [[Prototype]] internal property of the newly constructed object is set to the original Date prototype object,
the one that is the initial value of Date.prototype (15.9.4.1).

The newly constructed object has a [[NativeBrand]] internal property whose value is NativeDate.
The [[Extensible]] internal property of the newly constructed object is set to true.

The [[PrimitiveValue]] internal property. of the newly constructed object is set to the time value (UTC)
identifying the current time.

15.9.4 Properties of the Date Constructor
The value of the [[Prototype]] internal property of the Date constructor is the Function prototype object (15.3.4).

Besides the internal properties and the length property (whose value is 7), the Date constructor has the
following properties:

15.9.4.1 Date.prototype

The initial value of Date . prototype is the built-in Date prototype object (15.9.5).

This property has the attributes { [[Writable]]: false, [[Enumerable]]: false, [[Configurable]]: false }.
15.9.4.2 Date.parse (string)

The parse function applies the ToString operator to its argument. If ToString results in an abrupt completion
the Completion Record is immediately returned. Otherwise, parse interprets the resulting String as a date
and time; it returns a Number, the UTC time value corresponding to the date and time. The String may be
interpreted as a local time, a UTC time, or a time in some other time zone, depending on the contents of the
String. The function first attempts to parse the format of the String according to the rules called out in Date
Time String Format (15.9.1.15). If the String does not conform to that format the function may fall back to any
implementation-specific heuristics or implementation-specific date formats. Unrecognisable Strings or dates
containing illegal element values in the format String shall cause Date.parse to return NaN.

252 © Ecma International 2012

»ecma

If x is any Date object whose milliseconds amount is zero within a particular implementation of ECMAScript,
then all of the following expressions should produce the same numeric value in that implementation, if all the
properties referenced have their initial values:

x.valueOf ()

Date.parse(x.toString())

Date.parse(x.toUTCString())

Date.parse(x.toISOString())

However, the expression
Date.parse (X.toLocaleString())

is not required to produce the same Number value as the preceding three expressions and, in general, the
value produced by Date.parse is implementation-dependent when given any String value that does not
conform to the Date Time String Format (15.9.1.15) and that could not be produced in that implementation by
the toString or toUTCString method.

15.9.4.3 Date.UTC (year, month [, date [, hours [, minutes [, seconds [, ms]]11])

When the UTc function is called with fewer than two arguments, the behaviour is implementation-dependent.
When the uTcC function is called with two to seven arguments, it computes the date from year, month and
(optionally) date, hours, minutes, seconds and ms. The following steps are taken:

Lety be ToNumber(year).

ReturnlfAbrupt(y).

Let m be ToNumber(month).

ReturnlfAbrupt(m).

If date is supplied then let dt be ToNumber(date); else let dt be 1.
ReturnlfAbrupt(dt).

If hours is supplied then let h be ToNumber(hours); else let h be 0.
ReturnIfAbrupt(h).

9. If minutes is supplied then let'min be. ToNumber(minutes); else let min be 0.
10. ReturnlfAbrupt(min).

11. If seconds is supplied then let s be ToNumber(seconds); else let s be 0.

12. ReturnlfAbrupt(s).

13. If ms is supplied then let milli be ToNumber(ms); else let milli be 0.

14. ReturnlfAbrupt(milli).

15. Ify is not NaN and 0 < Tolnteger(y) < 99, then let yr be 1900+Tolnteger(y); otherwise, let yr be y.
16. Return TimeClip(MakeDate(MakeDay(yr, m, dt), MakeTime(h, min, s, milli))).

N~ WDE

The length property of the uTc function is 7.

NOTE The uTcC function differs from the Date constructor in two ways: it returns a time value as a Number, rather
than creating a Date object, and it interprets the arguments in UTC rather than as local time.

15.9.4.4 Date.now ()

The now function return‘a Number value that is the time value designating the UTC date and time of the
occurrence of the call to now.

15.9.5 Properties of the Date Prototype Object

The Date prototype object is itself a Date object and has a [[NativeBrand]] internal property whose value is
NativeDate. Its [[PrimitiveValue]] is NaN.

The value of the [[Prototype]] internal property of the Date prototype object is the standard built-in Object
prototype object (15.2.4).

In following descriptions of functions that are properties of the Date prototype object, the phrase “this Date

object” refers to the object that is the this value for the invocation of the function. Unless explicitly noted
otherwise, none of these functions are generic; a TypeError exception is thrown if the this value is not an

© Ecma International 2012 253

secma

object with a [[NativeBrand]] internal property whose value is NativeDate. Also, the phrase “this time value”
refers to the Number value for the time represented by this Date object, that is, the value of the
[[PrimitiveValue]] internal property of this Date object.

15.9.5.1 Date.prototype.constructor

The initial value of Date.prototype.constructor is the built-in Date constructor.

15.9.5.2 Date.prototype.toString ()

This function returns a String value. If this time value is NaN, the String value is "Invalid Date", otherwise
the contents of the String are implementation-dependent, but are intended to represent the Date in the current

time zone in a convenient, human-readable form.

NOTE For any Date value d whose milliseconds amount is zero, the result of Date.parse (d.toString()) is
equal to d.valueOf (). See 15.9.4.2.

15.9.5.3 Date.prototype.toDateString ()

This function returns a String value. The contents of the String are implementation-dependent, but are
intended to represent the “date” portion of the Date in the current time zone in a convenient, human-readable
form.

15.9.5.4 Date.prototype.toTimeString ()

This function returns a String value. The contents of the String are implementation-dependent, but are
intended to represent the “time” portion of the Date in the current time zone in a convenient, human-readable
form.

15.9.5.5 Date.prototype.toLocaleString ()

This function returns a String value. The contents of the String are implementation-dependent, but are
intended to represent.the Date in the current time zone in a convenient, human-readable form that

corresponds to the conventions of the host environment’s current locale.

NOTE The first parameter to this function is likely to be used in a future version of this standard; it is recommended
that implementations do.not use this parameter position for anything else.

15.9.5.6 Date.prototype.toLocaleDateString ()
This function returns a String value. The contents of the String are implementation-dependent, but are
intended to represent the “date” portion of the Date in the current time zone in a convenient, human-readable

form that corresponds to the conventions of the host environment’s current locale.

NOTE The first parameter to this function is likely to be used in a future version of this standard; it is recommended
that implementations do not-use this parameter position for anything else.

15.9.5.7 Date.prototype.toLocaleTimeString ()
This function returns a String value. The contents of the String are implementation-dependent, but are
intended to represent the “time” portion of the Date in the current time zone in a convenient, human-readable

form that corresponds to the conventions of the host environment’s current locale.

NOTE The first parameter to this function is likely to be used in a future version of this standard; it is recommended
that implementations do not use this parameter position for anything else.

15.9.5.8 Date.prototype.valueOf ()

The wvalueOf function returns a Number, which is this time value.

254 © Ecma International 2012

»ecma

15.9.5.9 Date.prototype.getTime ()

1. Return this time value.

15.9.5.10 Date.prototype.getFullYear ()
Let t be this time value.
ReturnlfAbrupt(t).

If tis NaN, return NaN.
Return YearFromTime(Local Time(t)).

PobPE

15.9.5.11 Date.prototype.getUTCFullYear ()

1. Lett be this time value.
2. ReturnlfAbrupt(t).

3. Iftis NaN, return NaN.
4. Return YearFromTime(t).

15.9.5.12 Date.prototype.getMonth ()

1. Lett be this time value.

2. ReturnlfAbrupt(t).

3. Iftis NaN, return NaN.

4. Return MonthFromTime(Local Time(t)).

15.9.5.13 Date.prototype.getUTCMonth ()

Let t be this time value.
ReturnlfAbrupt(t).

If tis NaN, return NaN.
Return MonthFromTime(t).

el NS

15.9.5.14 Date.prototype.getDate ()

Let t be this time value.
ReturnlfAbrupt(t).

If tis NaN, return NaN.

Return DateFromTime(LocalTime(t)).

PobPE

15.9.5.15 Date.prototype.getUTCDate ()

Let t be this time value.
ReturnlfAbrupt(t).

If t is NaN, return NaN.
Return DateFromTime(t).

PobE

15.9.5.16 Date.prototype.getDay ()

Let t be this time value.
ReturnlfAbrupt(t).

If tis NaN, return NaN.

Return WeekDay(Local Time(t)).

PobPE

15.9.5.17 Date.prototype.getUTCDay ()

Let t be this time value.
ReturnlfAbrupt(t).

If tis NaN, return NaN.
Return WeekDay(t).

PobE

© Ecma International 2012 255

secma

15.9.5.18 Date.prototype.getHours ()

Let t be this time value.
ReturnlfAbrupt(t).

If tis NaN, return NaN.

Return HourFromTime(Local Time(t)).

PR

15.9.5.19 Date.prototype.getUTCHours ()

Let t be this time value.
ReturnlfAbrupt(t).

If tis NaN, return NaN.
Return HourFromTime(t).

PopE

15.9.5.20 Date.prototype.getMinutes ()

Let t be this time value.
ReturnlfAbrupt(t).

If t is NaN, return NaN.

Return MinFromTime(LocalTime(t)).

PR

15.9.5.21 Date.prototype.getUTCMinutes ()

1. Lett be this time value.

2. ReturnlfAbrupt(t).

3. Iftis NaN, return NaN.

4. Return MinFromTime(t).

15.9.5.22 Date.prototype.getSeconds ()

1. Lett be this time value.

2. ReturnlfAbrupt(t).

3. Iftis NaN, return NaN.

4. Return SecFromTime(Local Time(t)):

15.9.5.23 Date.prototype.getUTCSeconds ()

1. Lett be this time value.
2. ReturnlfAbrupt(t).

3. If tis NaN, return NaN.
4. Return SecFromTime(t).

15.9.5.24 Date.prototype.getMilliseconds ()

Let t be this time value.
ReturnlfAbrupt(t).

If tis NaN, return NaN.

Return msFromTime(Local Time(t)).

A

15.9.5.25 Date.prototype.getUTCMilliseconds ()

Let t be this time value.
ReturnlfAbrupt(t).

If tis NaN, return NaN.
Return msFromTime(t).

PR

15.9.5.26 Date.prototype.getTimezoneOffset ()

Returns the difference between local time and UTC time in minutes.

256

© Ecma International 2012

el A\

ecind

Let t be this time value.
ReturnlfAbrupt(t).

If tis NaN, return NaN.

Return (t — LocalTime(t)) / msPerMinute.

15.9.5.27 Date.prototype.setTime (time)

1.
2.
3.
4,

Let v be TimeClip(ToNumber(time)).

ReturnlfAbrupt(v).

Set the [[PrimitiveValue]] internal property of this Date object to v.
Return v.

15.9.5.28 Date.prototype.setMilliseconds (ms)

g E

Let t be the result of Local Time(this time value).

Let time be MakeTime(HourFromTime(t), MinFromTime(t), SecFromTime(t), ToNumber(ms)).
Let u be TimeClip(UTC(MakeDate(Day(t), time))).

Set the [[PrimitiveValue]] internal property of this Date objectto u.

Return u.

15.9.5.29 Date.prototype.setUTCMilliseconds (ms)

ourwhE

Let t be this time value.

ReturnlfAbrupt(t).

Let time be MakeTime(HourFromTime(t), MinFromTime(t), SecFromTime(t), ToNumber(ms)).
Let v be TimeClip(MakeDate(Day(t), time)).

Set the [[PrimitiveValue]] internal property of this Date object to v.

Return v.

15.9.5.30 Date.prototype.setSeconds (sec [, ms])

If ms is not specified, this behaves as if ms were specified with the value getMilliseconds ().

NoohkwbE

Let t be the result of LocalTime(thistime value).

Let s be ToNumber(sec).

If ms is not specified, then let milli be msFromTime(t); otherwise, let milli be ToNumber(ms).
Let date be MakeDate(Day(t), MakeTime(HourFromTime(t), MinFromTime(t), s, milli)).

Let u be TimeClip(UTC(date)).

Set the [[PrimitiveValue]] internal property of this Date object to u.

Return u.

The length property of the setSeconds method is 2.

15.9.5.31 Date.prototype.setUTCSeconds (sec [, ms])

If ms is not specified, this behaves as if ms were specified with the value getUTCMilliseconds ().

NN E

Let t be this time value.

ReturnlfAbrupt(t).

Let s be ToNumber(sec).

If ms is not specified, then let milli be msFromTime(t); otherwise, let milli be ToNumber(ms).
Let date be MakeDate(Day(t), MakeTime(HourFromTime(t), MinFromTime(t), s, milli)).

Let v be TimeClip(date).

Set the [[PrimitiveValue]] internal property of this Date object to v.

Return v.

The length property of the setUTCSeconds method is 2.

© Ecma International 2012

257

secma

15.9.5.32 Date.prototype.setMinutes (min[,sec [,ms]])
If sec is not specified, this behaves as if sec were specified with the value getSeconds ().
If ms is not specified, this behaves as if ms were specified with the value getMilliseconds ().

Let t be the result of LocalTime(this time value).

Let m be ToNumber(min).

If sec is not specified, then let s be SecFromTime(t); otherwise, let s be ToNumber(sec).

If ms is not specified, then let milli be msFromTime(t); otherwise, let milli be ToNumber(ms).
Let date be MakeDate(Day(t), MakeTime(HourFromTime(t), m, s, milli)).

Let u be TimeClip(UTC(date)).

Set the [[PrimitiveValue]] internal property of this Date object to u.

Return u.

N E

The length property of the setMinutes method is 3.
15.9.5.33 Date.prototype.setUTCMinutes (min [, sec [, ms]])
If sec is not specified, this behaves as if sec were specified with the value getUTCSeconds ().

If ms is not specified, this function behaves as if ms were< specified with the value return by
getUTCMilliseconds ().

Let t be this time value.

ReturnlfAbrupt(t).

Let m be ToNumber(min).

If sec is not specified, then let s be SecFromTime(t); otherwise, let:s be ToNumber(sec).

If ms is not specified, then let milli be msFromTime(t); otherwise, let milli be ToNumber(ms).
Let date be MakeDate(Day(t), MakeTime(HourFromTime(t), m, s, milli)).

Let v be TimeClip(date).

Set the [[PrimitiveValue]] internal property of this Date object to v.

Return v.

CEoNoOR~WME

The length property of the setUTCMinutes method.is 3.

15.9.5.34 Date.prototype.setHours (hour [, min[,sec[,ms]]])

If min is-not specified, this behaves as if min were specified with the value getMinutes ().

If sec is not specified, this behaves as if sec were specified with the value getSeconds ().

If ms is not specified, this behaves as if ms were specified with the value getMilliseconds ().

Let t be the result of LocalTime(this time value).

Let h be ToNumber(hour).

If min is not specified, then let m be MinFromTime(t); otherwise, let m be ToNumber(min).

If If sec is not specified, then let s be SecFromTime(t); otherwise, let s be ToNumber(sec).

If ms is not specified, then let milli be msFromTime(t); otherwise, let milli be ToNumber(ms).
Let date be MakeDate(Day(t), MakeTime(h, m, s, milli)).

Let u be TimeClip(UTC(date)).

Set the [[PrimitiveValue]] internal property of this Date object to u.

Return u.

CEeNoREwWhE

The length property of the setHours method is 4.

258 © Ecma International 2012

»ecma

15.9.5.35 Date.prototype.setUTCHours (hour [, min[,sec[,ms]]])

If min is not specified, this behaves as if min were specified with the value getUTCMinutes ().

If sec is not specified, this behaves as if sec were specified with the value getUTCSeconds ().

If ms is not specified, this behaves as if ms were specified with the value getUTCMilliseconds ().

1
2
3
4,
5.
6
7
8
9
1

0.

Let t be this time value.

ReturnlfAbrupt(t).

Let h be ToNumber(hour).

If min is not specified, then let m be MinFromTime(t); otherwise, let m be ToNumber(min).

If sec is not specified, then let s be SecFromTime(t); otherwise, let s be ToNumber(sec).

If ms is not specified, then let milli be msFromTime(t); otherwise, let milli be ToNumber(ms).
Let newDate be MakeDate(Day(t), MakeTime(h, m, s, milli)).

Let v be TimeClip(newDate).

Set the [[PrimitiveValue]] internal property of this Date object to v.

Return v.

The length property of the setUTCHours method is 4.

15.9.5.36 Date.prototype.setDate (date)

eoakrwnE

Let t be the result of LocalTime(this time value).

Let dt be ToNumber(date).

Let newDate be MakeDate(MakeDay(YearFromTime(t), MonthFromTime(t), dt), TimeWithinDay(t)).
Let u be TimeClip(UTC(newDate)).

Set the [[PrimitiveValue]] internal property of this Date object to u.

Return u.

15.9.5.37 Date.prototype.setUTCDate (date)

NogkrwbhE

Let t be this time value.

ReturnlfAbrupt(t).

Let dt be ToNumber(date).

Let newDate be MakeDate(MakeDay(YearFromTime(t), MonthFromTime(t), dt), TimeWithinDay(t)).
Let v be TimeClip(newDate).

Set the [[PrimitiveValue]] internal property of this Date object to v.

Return v.

15.9.5.38 Date.prototype.setMonth (month [, date])

If date is not specified, this behaves as if date were specified with the value getDate ().

NookwphE

Let t be the result of LocalTime(this time value).

Let m be ToNumber(month).

If date is not specified, then let dt be DateFromTime(t); otherwise, let dt be ToNumber(date).
Let newDate be MakeDate(MakeDay(YearFromTime(t), m, dt), TimeWithinDay(t)).

Let u be TimeClip(UTC(newDate)).

Set the [[PrimitiveValue]] internal property of this Date object to u.

Return u.

The length property of the setMonth method is 2.

15.9.5.39 Date.prototype.setUTCMonth (month [, date])

If date is not specified, this behaves as if date were specified with the value getUTCDate ().

1.

Let t be this time value.

© Ecma International 2012

259

secma

ReturnlfAbrupt(t).

Let m be ToNumber(month).

If date is not specified, then let dt be DateFromTime(t); otherwise, let dt be ToNumber(date).
Let newDate be MakeDate(MakeDay(YearFromTime(t), m, dt), TimeWithinDay(t)).

Let v be TimeClip(newDate).

Set the [[PrimitiveValue]] internal property of this Date object to v.

Return v.

N R~®LDN

The length property of the setUTCMonth method is 2.

15.9.5.40 Date.prototype.setFullYear (year [, month [, date]])

If month is not specified, this behaves as if month were specified with the value'getMonth () .
If date is not specified, this behaves as if date were specified with the value getDate ().

Let t be the result of LocalTime(this time value); but if this time'value is NaN, let t be +0.

Lety be ToNumber(year).

If month is not specified, then let m be MonthFromTime(t); otherwise, let m be ToNumber(month).
If date is not specified, then let dt be DateFromTime(t);0therwise, let dt.be ToNumber(date).

Let newDate be MakeDate(MakeDay(y, m, dt), TimeWithinDay(t)).

Let u be TimeClip(UTC(newDate)).

Set the [[PrimitiveValue]] internal property of this Date object tou.

Return u.

N E

The length property of the setFullYear method is 3:

15.9.5.41 Date.prototype.setUTCFullYear (year [, month [, date].])

If month is not specified, this behaves as.if month were specified with the value getUTCMonth () .
If date is not specified, this.behaves as if date were specified with the value getUTCDate ().

Let t be this time value; but if this time value is NaN, let't be +0.

ReturnlfAbrupt(t).

Let y be ToNumber(year).

If month is'not specified, then let m be MonthFromTime(t); otherwise, let m be ToNumber(month).
If date<is not specified; then let dt be DateFromTime(t); otherwise, let dt be ToNumber(date).

Let newDate be MakeDate(MakeDay(y, m, dt), TimeWithinDay(t)).

Let v be TimeClip(newDate).

Set the [[PrimitiveValue]] internal property of this Date object to v.

Return v.

CeNooREwWhDE

The length property of the setUTCFullYear method is 3.
15.9.5.42 Date.prototype.toUTCString ()

This function returns a String value. The contents of the String are implementation-dependent, but are
intended to represent the Date in a convenient, human-readable form in UTC.

NOTE The intent is to produce a String representation of a date that is more readable than the format specified in
15.9.1.15. It is not essential that the chosen format be unambiguous or easily machine parsable. If an implementation
does not have a preferred human-readable format it is recommended to use the format defined in 15.9.1.15 but with a

“my

space rather than a “T” used to separate the date and time elements.
15.9.5.43 Date.prototype.tolSOString ()

This function returns a String value represent the instance in time represented by this Date object. The format
of the String is the Date Time string format defined in 15.9.1.15. All fields are present in the String. The time

260 © Ecma International 2012

»ecma

zone is always UTC, denoted by the suffix Z. If the time value of this object is not a finite Number a
RangeError exception is thrown.

15.9.5.44 Date.prototype.toJSON (key)
This function provides a String representation of a Date object for use by JSON. stringify (15.12.3).
When the toJSON method is called with argument key, the following steps are taken:

Let O be the result of calling ToObject, giving it the this value as its argument.

Let tv be ToPrimitive(O, hint Number).

If tv is a Number and is not finite, return null.

Let tolSO be the result of calling the [[Get]] internal method of O with argument "toISOString".
ReturnlfAbrupt(tolSO).

If IsCallable(tolSO) is false, throw a TypeError exception.

Return the result of calling the [[Call]] internal method of tolSO with O as the this value and an empty
argument list.

NookrwbE

NOTE 1 The argument is ignored.
NOTE 2 The toJSON function is intentionally generic; it does not require that.its this value be a Date object. Therefore,

it can be transferred to other kinds of objects for use as a method. However, it does require that any such object have a
toIsOString method. An object is free to use the argument key to filter its‘stringification.

15.9.6 Properties of Date Instances

Date instances inherit properties from the Date prototype object and have a [[NativeBrand]] internal whose
value is NativeDate. Date instances also have a [[PrimitiveValue]] internal property.

The [[PrimitiveValue]] internal property is time value represented by this Date object.
15.10 RegExp (Regular Expression) Objects

A RegEXxp object contains a regular expression and the associated flags.

NOTE The form and functionality of regular expressions is modelled after the regular expression facility in the Perl 5
programming language:

15.10.1 < Patterns

The RegExp constructor applies the following grammar to the input pattern String. An error occurs if the
grammar cannot interpret the String as an expansion of Pattern.

Syntax

Pattern ::
Disjunction

Disjunction ::
Alternative
Alternative | Disjunction

Alternative ::
lempty]
Alternative Term

Term ::
Assertion
Atom
Atom Quantifier

© Ecma International 2012 261

secma

Assertion ::

A

$

\ b

\ B

(? = Disjunction)

(? ! Disjunction)
Quantifier ::

QuantifierPrefix
QuantifierPrefix 2

QuantifierPrefix ::
*

+

?

{ DecimalDigits }

{ DecimalDigits , }

{ DecimalDigits , DecimalDigits }

Atom ::
PatternCharacter

\ AtomEscape
CharacterClass
(Disjunction)
(? : Disjunction)

PatternCharacter ::
SourceCharacter but not one of
A8 N L+ 2 () [T Yy |

AtomEscape ::
DecimalEscape
CharacterEscape
CharacterClassEscape

CharacterEscape ::
ControlEscape
¢ ControlLetter
HexEscapeSequence
UnicodeEscapeSequence
IdentityEscape

ControlEscape :: one of
f n r t v

ControlLetter :: one of
a b c d g h k
A B C D G H K

oo
0 o
H ot
=]
<<
==
E]
K<
N N

e f i j l1 m n
E F I J L M N

0 Q
xR
n o

IdentityEscape ::
SourceCharacter but not IdentifierPart
<ZWJ>
<ZWNJ>

DecimalEscape ::
DecimallintegerLiteral [lookahead ¢ DecimalDigit]

262 © Ecma International 2012

eCina

CharacterClassEscape :: one of
d D s S w W

CharacterClass ::
[[lookahead ¢ {*}] ClassRanges]
[~ ClassRanges 1]

ClassRanges ::
[empty]
NonemptyClassRanges

NonemptyClassRanges ::
ClassAtom
ClassAtom NonemptyClassRangesNoDash
ClassAtom - ClassAtom ClassRanges

NonemptyClassRangesNoDash ::
ClassAtom
ClassAtomNoDash NonemptyClassRangesNoDash
ClassAtomNoDash - ClassAtom ClassRanges

ClassAtom ::

ClassAtomNoDash

ClassAtomNoDash ::
SourceCharacter but not one of \ or] or -
\ ClassEscape

ClassEscape ::
DecimalEscape
b

CharacterEscape
CharacterClassEscape

15.10.2 Pattern Semantics

A regular expression pattern is converted into an internal procedure using the process described below. An
implementation is encouraged to use more efficient algorithms than the ones listed below, as long as the
resultsare the same. The internal procedure is used as the value of a RegExp object’s [[Match]] internal

property.
15.10.2.1 Notation

The descriptions below use the following variables:

e Input is the String being matched by the regular expression pattern. The notation input[n] means
the n character of input, where n can range between 0 (inclusive) and InputLength (exclusive).

e InputLength is the number of characters in the Input String.

e NcapturingParens is the total number of left capturing parentheses (i.e. the total number of times
the Atom :: (Disjunction) production is expanded) in the pattern. A left capturing parenthesis is
any (pattern character that is matched by the (terminal of the Atom :: (Disjunction) production.

e IgnoreCase is the setting of the RegEXp object's ignoreCase property.
e Multiline is the setting of the RegExp object’'s multiline property.

Furthermore, the descriptions below use the following internal data structures:

e A CharSet is a mathematical set of characters.

© Ecma International 2012 263

secma

A State is an ordered pair (endindex, captures) where endindex is an integer and captures is an
internal array of NcapturingParens values. States are used to represent partial match states in the
regular expression matching algorithms. The endindex is one plus the index of the last input
character matched so far by the pattern, while captures holds the results of capturing parentheses.
The n™ element of captures is either a String that represents the value obtained by the n" set of
capturing parentheses or undefined if the n" set of capturing parentheses hasn’t been reached
yet. Due to backtracking, many States may be in use at any time during the matching process.

A MatchResult is either a State or the special token failure that indicates that the match failed.

A Continuation procedure is an internal closure (i.e. an internal procedure with some arguments
already bound to values) that takes one State argument and returns.a MatchResult result. If an
internal closure references variables bound in the function that creates the closure, the closure
uses the values that these variables had at the time the closure ' was created. The Continuation
attempts to match the remaining portion (specified by the closure's already-bound arguments) of
the pattern against the input String, starting at the intermediate state given by its State argument. If
the match succeeds, the Continuation returns the final State that it reached; if the match fails, the
Continuation returns failure.

A Matcher procedure is an internal closure that takes'two arguments -- a State and a Continuation --
and returns a MatchResult result. A Matcher attempts to match a middle subpattern (specified by
the closure's already-bound arguments) of the pattern against the input String, starting at the
intermediate state given by its State argument. The Continuation argument should be a closure that
matches the rest of the pattern. After matching the subpattern of a pattern to obtain a new State,
the Matcher then calls Continuation on that new State to test if the rest of the pattern can match as
well. If it can, the Matcher returns the State returned by Continuation; if not, the Matcher may try
different choices at its choice points; repeatedly calling Continuation until it either succeeds or all
possibilities have been exhausted.

An AssertionTester procedure is an internal closure that takes a State argument and returns a
Boolean result. The assertion tester tests a specific condition (specified by the closure's already-
bound arguments) against the current place.in the input String and returns true if the condition
matched or false if not.

An EscapeValue <is either a character ‘or an integer. An EscapeValue is used to denote the
interpretation «of a DecimalEscape escape sequence: a character ch means that the escape
sequence is interpreted as the character ch, while an integer n means that the escape sequence
is interpreted as a backreferenceto the n" set of capturing parentheses.

15.10.2.2 Pattern

The production Pattern :: Disjunction evaluates as follows:

1.
2.

NOTE

Evaluate Disjunction to obtain a Matcher m.
Return.an internal closure that takes two arguments, a String str and an integer index, and performs the
following:

1. Let Input be the given String str. This variable will be used throughout the algorithms in
15.10.2.

2. Let InputLength be the length of Input. This variable will be used throughout the algorithms
in 15.10.2.

w

Let ¢ be a Continuation that always returns its State argument as a successful MatchResult.

4. Let cap be an internal array of NcapturingParens undefined values, indexed 1 through
NcapturingParens.

5. Let x be the State (index, cap).

6. Call m(x, c) and return its result.

A Pattern evaluates ("compiles") to an internal procedure value. RegExp.prototype.exec can then apply

this procedure to a String and an offset within the String to determine whether the pattern would match starting at exactly
that offset within the String, and, if it does match, what the values of the capturing parentheses would be. The algorithms
in 15.10.2 are designed so that compiling a pattern may throw a SyntaxError exception; on the other hand, once the
pattern is successfully compiled, applying its result internal procedure to find a match in a String cannot throw an
exception (except for any host-defined exceptions that can occur anywhere such as out-of-memory).

264

© Ecma International 2012

»ecma

15.10.2.3 Disjunction

The production Disjunction :: Alternative evaluates by evaluating Alternative to obtain a Matcher and returning
that Matcher.

The production Disjunction :: Alternative | Disjunction evaluates as follows:

1. Evaluate Alternative to obtain a Matcher m1.
2. Evaluate Disjunction to obtain a Matcher m2.
3. Return an internal Matcher closure that takes two arguments, a State x and a Continuation ¢, and performs
the following:
1.Call m1(x, c) and let r be its result.

2.1f r isn't failure, return r.
3.Call m2(x, c) and return its result.

NOTE The | regular expression operator separates two alternatives. The pattern first tries to. match the left Alternative
(followed by the sequel of the regular expression); if it fails, it tries to match the right Disjunction (followed by the sequel of
the regular expression). If the left Alternative, the right Disjunction, and.the sequel all have choice points, all choices in the
sequel are tried before moving on to the next choice in the left Alternative. If choices in the left Alternative are exhausted,
the right Disjunction is tried instead of the left Alternative. Any capturing parentheses inside a portion of the pattern skipped
by | produce undefined values instead of Strings. Thus, for example,

/al|ab/.exec ("abc")
returns the result "a" and not "ab". Moreover,

/((a) | (ab)) ((c) | (bc)) /.exec("abc")

returns the array
["abc", "a", "a", undefined, "be", undefined, "bc"]

and not
["abe", "ab", undefined, "ab", "e¢", "c¢", undefined]

15.10.2.4 Alternative

The production Alternative: [empty] evaluates by returning a Matcher that takes two arguments, a State x and a
Continuation ¢, and returns the result of calling c(x).

The production Alternative :: Alternative Term evaluates as follows:

1. Evaluate Alternative to obtain a Matcher m1.

2. Evaluate Term to obtain.a Matcher m2.

3. Return an internal Matcher closure that takes two arguments, a State x and a Continuation ¢, and performs
the following:

1.Create a Continuation d that takes a State argument y and returns the result of calling m2(y, c).
2.Call m1(x, d) and return its result.

NOTE Consecutive Terms try to simultaneously match consecutive portions of the input String. If the left Alternative,
the right Term, and the sequel of the regular expression all have choice points, all choices in the sequel are tried before
moving on to the next choice in the right Term, and all choices in the right Term are tried before moving on to the next
choice in the left Alternative.

15.10.2.5 Term

The production Term :: Assertion evaluates by returning an internal Matcher closure that takes two arguments,
a State x and a Continuation ¢, and performs the following:

Evaluate Assertion to obtain an AssertionTester t.
Call t(x) and let r be the resulting Boolean value.
If r is false, return failure.

Call ¢(x) and return its result.

el NS S

The production Term :: Atom evaluates by evaluating Atom to obtain a Matcher and returning that Matcher.

© Ecma International 2012 265

secma

The production Term :: Atom Quantifier evaluates as follows:

Evaluate Atom to obtain a Matcher m.

Evaluate Quantifier to obtain the three results: an integer min, an integer (or «o) max, and Boolean greedy.

If max is finite and less than min, then throw a SyntaxError exception.

Let parenindex be the number of left capturing parentheses in the entire regular expression that occur to the

left of this production expansion's Term. This is the total number of times the Atom :: (Disjunction)

production is expanded prior to this production's Term plus the total number of Atom :: (Disjunction)

productions enclosing this Term.

5. Let parenCount be the number of left capturing parentheses in the expansion of this production's Atom. This
is the total number of Atom :: (Disjunction) productions enclosed by this production's Atom.

6. Return an internal Matcher closure that takes two arguments, a State x and a Continuation ¢, and performs

the following:

1.Call RepeatMatcher(m, min, max, greedy, X, ¢, parenindex, parenCount) and return its result.

o

The abstract operation RepeatMatcher takes eight parameters, a Matcher m, an integer.min, an integer (or o)
max, a Boolean greedy, a State x, a Continuation c, an integerparenindex, and an integer parenCount, and
performs the following:

1. If max is zero, then call c(x) and return its result.
2. Create an internal Continuation closure d that takes one State argument y and performs the following:

1.1f min is zero and y's endIndex is equal to x's endlndex, then return failure.

2.1f min is zero then let min2 be zero; otherwise let min2 be min-1.

3.1f max is o, then let max2 bewo; otherwise let max2 be max-1.

4.Call RepeatMatcher(m, min2, max2, greedy, y, c, parenlndex, parenCount) and return its
result.

Let cap be a fresh copy of x's captures internal array.
For every integer k that satisfies parenIindex <k and k <‘parenindex+parenCount, set cap[k] to undefined.
Let e be x's endIndex.
Let xr be the State (e, cap):
If min is not zero, then call m(xr, d) and return its result.
If greedy is false, then

a. Call c(x) and let z be its result.

b. Ifz is not failure, return z.

c. Call m(xr, d) and return its result.
9. Call m(xr, d)-and.let z be its result.
10. If z is not failure, return z.
11. Call ¢(x) and return-its result.

Nk W

NOTE1 An Atom followed by a Quantifier is repeated the number of times specified by the Quantifier. A Quantifier can
be non-greedy, in which case the Atom pattern is repeated as few times as possible while still matching the sequel, or it
can be greedy, in which case the Atom pattern is repeated as many times as possible while still matching the sequel. The
Atom pattern is repeated rather than the input String that it matches, so different repetitions of the Atom can match different
input substrings.

NOTE 2 If the Atom and the sequel of the regular expression all have choice points, the Atom is first matched as many
(or as few, if non-greedy) times as possible. All choices in the sequel are tried before moving on to the next choice in the
last repetition of Atom. All choices in the last (n') repetition of Atom are tried before moving on to the next choice in the
next-to-last (n—1) repetition of Atom; at which point it may turn out that more or fewer repetitions of Atom are now possible;
these are exhausted (again, starting with either as few or as many as possible) before moving on to the next choice in the
(n-1)t repetition of Atom and so on.

Compare
/al[a-z]{2,4}/.exec("abcdefghi")
which returns "abcde" with
/ala-z]{2,4}?/.exec("abcdefghi")
which returns "abe".

Consider also

266 © Ecma International 2012

»ecma

/ (aa|aabaac|ba|b|c) */.exec ("aabaac")
which, by the choice point ordering above, returns the array
["aaba", "ba"]
and not any of:
["aabaac", "aabaac"]
["aabaac", "c"]
The above ordering of choice points can be used to write a regular expression that calculates the greatest common divisor
of two numbers (represented in unary notation). The following example calculates the gcd of 10 and 15:
"aaaaaaaaaa,aaaaaaaaaaaaaaa".replace (/" (a+) \1* ,\1+$/,"$1")

which returns the gcd in unary notation "aaaaa".

NOTE 3 Step 4 of the RepeatMatcher clears Atom's captures each time Atom is repeated. We can see its behaviour in
the regular expression

/(z) ((a+)? (b+)?(c))*/.exec ("zaacbbbcac")
which returns the array
["zaacbbbcac", "z", "ac", "a", undefined, "c"]

and not
[" zaacbbbcac" , "zll , llacll , "all , "bbbll , "cll

because each iteration of the outermost * clears all captured Strings contained in'the quantified Atom, which in this case
includes capture Strings numbered 2, 3, 4, and 5.

NOTE 4 Step 1 of the RepeatMatcher's d closure states that, once the minimum number of repetitions has been
satisfied, any more expansions of Atom that match the empty String are not considered for further repetitions. This
prevents the regular expression engine from falling into an-infinite loop on patterns such as:

/(a*)*/.exec("b")
or the slightly more complicated:

/ (a*)b\1l+/.exec ("baaaac")
which returns the array

["b", ""]

15.10.2.6 Assertion

The production Assertion :: ~ evaluates by returning an internal AssertionTester closure that takes a State
argument x and performs the following:

Let e bex's endIndex.

If e is‘zero, return true.

If Multiline is false, return false.

If the character Input[e—1] is one of LineTerminator, return true.
Return false.

A A

The production Assertion :: $/ evaluates by returning an internal AssertionTester closure that takes a State
argument x and performs the following:

Let e be x's endIndex.

If e is equal to InputLength, return true.

If Multiline is false, return false.

If the character Input[e] is one of LineTerminator, return true.
Return false.

agbrwbdE

The production Assertion :: \ b evaluates by returning an internal AssertionTester closure that takes a State
argument x and performs the following:

Let e be x's endIndex.

Call IsWordChar(e—1) and let a be the Boolean result.
Call IswWordChar(e) and let b be the Boolean result.
If ais true and b is false, return true.

If a is false and b is true, return true.

A

© Ecma International 2012 267

secma

6. Return false.

The production Assertion :: \ B evaluates by returning an internal AssertionTester closure that takes a State
argument x and performs the following:

Let e be x's endIndex.

Call IsWordChar(e—1) and let a be the Boolean result.
Call IsWordChar(e) and let b be the Boolean result.
Ifais true and b is false, return false.

If a is false and b is true, return false.

Return true.

ourwhE

The production Assertion :: (? = Disjunction) evaluates as follows:

1. Evaluate Disjunction to obtain a Matcher m.
2. Return an internal Matcher closure that takes two arguments, a State x and a Continuation ¢, and performs
the following steps:
1.Let d be a Continuation that always returns its-State argument as a successful. MatchResult.
2.Call m(x, d) and let r be its result.
3.1f r is failure, return failure.
4.Lety be r's State.
5.Let cap be y's captures internal array.
6.Let xe be x's endIndex.
7.Let z be the State (xe, cap).
8.Call c(z) and return its result.

The production Assertion:: (? ! Disjunction ') evaluates asfollows:

1. Evaluate Disjunction to obtain a Matcher m.
2. Return an internal Matcher closure that takes two arguments, a State x and a Continuation ¢, and performs
the following steps:

1.Let d beda Continuation that always returns its State argument as a successful MatchResult.
2.Call m(x, d) and let r be its result.

3.1f r isn't failure, return failure.

4.Call c(x) and return its result.

The abstract operation.IsWordChar takes an integer parameter e and performs the following:

1. Ife==-1or e == InputLength, return false.
2. Let c be the character Input[e].
3. Ifc isone of the sixty-three characters below, return true.

abcdefghi3jkllmnopgrs
A BCDEVFGHTIJKILMNUOPUO QRS
01 2 3 4586 789

4. Return false.

tuvwzxyz
T UVWXY Z

15.10.2.7 Quantifier
The production Quantifier :: QuantifierPrefix evaluates as follows:

1. Evaluate QuantifierPrefix to obtain the two results: an integer min and an integer (or «) max.
2. Return the three results min, max, and true.

The production Quantifier :: QuantifierPrefix ? evaluates as follows:

1. Evaluate QuantifierPrefix to obtain the two results: an integer min and an integer (or «) max.
2. Return the three results min, max, and false.

268 © Ecma International 2012

»ecma

The production QuantifierPrefix :: * evaluates by returning the two results 0 and .
The production QuantifierPrefix :: + evaluates by returning the two results 1 and .
The production QuantifierPrefix :: ? evaluates by returning the two results 0 and 1.
The production QuantifierPrefix :: { DecimalDigits } evaluates as follows:

1. Letibethe MV of DecimalDigits (see 7.8.3).
2. Return the two results i and i.

The production QuantifierPrefix :: { DecimalDigits , } evaluates as follows:

1. Letibethe MV of DecimalDigits.
2. Return the two results i and .

The production QuantifierPrefix :: { DecimalDigits , DecimalDigits® } evaluates as follows:

1. Letibethe MV of the first DecimalDigits.
2. Letj bethe MV of the second DecimalDigits.
3. Return the two results i and j.

15.10.2.8 Atom
The production Atom :: PatternCharacter evaluates as follows:

1. Letch be the character represented by PatternCharacter.
2. Let A be a one-element CharSet containing the character ch.
3. Call CharacterSetMatcher(A, false) and return'its Matcher result.

The production Atom :: . evaluates as follows:

1. Let A be the set of all characters except LineTerminator.
2. Call CharacterSetMatcher(A, false)and return its Matcher result.

The production Atom :: \ AtomEscape evaluates by evaluating AtomEscape to obtain a Matcher and returning
that Matcher.

The production Atom :: CharacterClass evaluates as follows:

1. Evaluate CharacterClass to obtain a CharSet A and a Boolean invert.
2. Call CharacterSetMatcher(A, invert) and return its Matcher result.

The production Atom :: (Disjunction) evaluates as follows:

1. Evaluate Disjunction-to obtain a Matcher m.

2. Let parenindex be the number of left capturing parentheses in the entire regular expression that occur to the
left of this production expansion’'s initial left parenthesis. This is the total number of times the
Atom :: (Disjunction) production is expanded prior to this production's Atom plus the total number of
Atom :: (Disjunction) productions enclosing this Atom.

3. Return an internal Matcher closure that takes two arguments, a State x and a Continuation c, and performs
the following steps:

1.Create an internal Continuation closure d that takes one State argument y and performs the
following steps:
1. Letcap be a fresh copy of y's captures internal array.
2. Let xe be x's endIndex.
3. Letye bey's endIndex.
4. Lets be a fresh String whose characters are the characters of Input at
positions xe (inclusive) through ye (exclusive).

© Ecma International 2012 269

secma

5. Set cap[parenindex+1] tos.

6. Let z be the State (ye, cap).

7. Call c(z) and return its result.
2.Call m(x, d) and return its result.

The production Atom :: (? : Disjunction) evaluates by evaluating Disjunction to obtain a Matcher and
returning that Matcher.

The abstract operation CharacterSetMatcher takes two arguments, a CharSet A and a Boolean flag invert, and
performs the following:

1. Return an internal Matcher closure that takes two arguments, a State x and a Continuation c, and performs
the following steps:

1.Let e be x's endIndex.
2.1f e == InputLength, return failure.
3.Let ch be the character Input[e].
4.Let cc be the result of Canonicalize(ch).
5.1f invert is false, then
a If there does not exist a member a of set A such that Canonicalize(a) == cc, return
failure.
6.Else invert is true,
a If there exists a member a of set A'such that.Canonicalize(a) == cc, return failure.
7.Let cap be x's captures internal array.
8.Lety be the State (e+1, cap).
9.Call c(y) and return its result.

The abstract operation Canonicalize takes a character parameter ch and performs the following steps:

1. If IgnoreCase is false, return ch.

2. Let u be ch converted to upper case as if by calling the standard built-in method
String.prototype. toUpperCase on the one-character String ch.

3. Ifu does not consist of-a single character, return ch.

4. Letcu be u's character.

5. Ifch's code unit value is greater than or equal to decimal 128 and cu's code unit value is less than decimal
128, then return ch.

6. Return cu.

NOTE 1 Parentheses of the form (. Disjunction) serve both to group the components of the Disjunction pattern
together and to save the result of the match. The result can be used either in a backreference (\ followed by a nonzero
decimal-number), referenced in a replace String, or returned as part of an array from the regular expression matching
internal procedure. To inhibit the capturing behaviour of parentheses, use the form (?: Disjunction) instead.

NOTE 2~ The form (2= Disjunction) specifies a zero-width positive lookahead. In order for it to succeed, the pattern
inside Disjunction. must match at the current position, but the current position is not advanced before matching the sequel.
If Disjunction can match at the current position in several ways, only the first one is tried. Unlike other regular expression
operators, there is no backtracking into a (?= form (this unusual behaviour is inherited from Perl). This only matters when
the Disjunction contains capturing parentheses and the sequel of the pattern contains backreferences to those captures.

For example,
/ (?=(a+))/.exec ("baaabac")

matches the empty String immediately after the first b and therefore returns the array:
["", "aaaH]

To illustrate the lack of backtracking into the lookahead, consider:
/ (?=(a+))a*b\1l/.exec("baaabac")

This expression returns
["aba", lla"]

and not:

270 © Ecma International 2012

»ecma

["aaaba", "a"]

NOTE 3 The form (?! Disjunction) specifies a zero-width negative lookahead. In order for it to succeed, the pattern
inside Disjunction must fail to match at the current position. The current position is not advanced before matching the
sequel. Disjunction can contain capturing parentheses, but backreferences to them only make sense from within
Disjunction itself. Backreferences to these capturing parentheses from elsewhere in the pattern always return undefined
because the negative lookahead must fail for the pattern to succeed. For example,

/(.*?2)a(?! (a+)b\2c)\2(.*)/.exec ("baaabaac")
looks for an a not immediately followed by some positive number n of a's, a b, another n a's (specified by the first \2) and
a c. The second \2 is outside the negative lookahead, so it matches against undefined and therefore always succeeds.
The whole expression returns the array:

["baaabaac", "ba", undefined, "abaac"]

In case-insignificant matches all characters are implicitly converted to upper case immediately before they are compared.
However, if converting a character to upper case would expand that character .into more than one character (such as
converting "8" (\u0O0DF) into "SS"), then the character is left as-is instead. The character is also left as-is if it is not an
ASCII character but converting it to upper case would make it into an ASCII character. This prevents Unicode characters
such as \u0131 and \u017F from matching regular expressions such as /[a-z]/i, which are only intended to match
ASCII letters. Furthermore, if these conversions were allowed, then / [4\W] /i would match each of a, b, ..., h, but not i
or s.

15.10.2.9 AtomEscape

The production AtomEscape :: DecimalEscape evaluates as follows:

=

Evaluate DecimalEscape to obtain an EscapeValue E.
If E is a character, then
a. Letch be E's character.
b. Let A be a one-element CharSet containing the character ch.
c. Call CharacterSetMatcher(A, false) and return.its Matcher result.
E must be an integer. Let n be that integer.
If n=0 or n>NCapturingParens then throw a SyntaxError exception.
5. Return an internal Matcher closure that takes two arguments, a State x and a Continuation c, and performs
the following:

1.Let cap be x's captures internal array.

2.Let s be cap[n].

3.1f s is undefined, then call c(x) and return its result.

4.Lete be x's endIndex.

5.Let len be s's length.

6.Let f be etlen.

7.1f f>InputLength, return failure.

8.1f there exists an integer i between 0 (inclusive) and len (exclusive) such that
Canonicalize(s[i]) is not the same character as Canonicalize(Input [e+i]), then return
failure.

9.Lety be the'State (f, cap).

10. Call c(y) and return its result.

N

P w

The production AtomEscape :: CharacterEscape evaluates as follows:
1. Evaluate CharacterEscape to obtain a character ch.

2. Let A be a one-element CharSet containing the character ch.

3. Call CharacterSetMatcher(A, false) and return its Matcher result.

The production AtomEscape :: CharacterClassEscape evaluates as follows:

1. Evaluate CharacterClassEscape to obtain a CharSet A.
2. Call CharacterSetMatcher(A, false) and return its Matcher result.

NOTE An escape sequence of the form \ followed by a nonzero decimal number n matches the result of the nth set
of capturing parentheses (see 15.10.2.11). It is an error if the regular expression has fewer than n capturing parentheses.

© Ecma International 2012 271

secma

If the regular expression has n or more capturing parentheses but the nth one is undefined because it has not captured
anything, then the backreference always succeeds.

15.10.2.10 CharacterEscape

The production CharacterEscape :: ControlEscape evaluates by returning the character according to Table 29.

Table 29 — ControlEscape Character Values

ControlEscape Code Unit Name Symbol
t \u0009 horizontal tab <HT>
n \u000A line feed (new line) < <LF>
v \u000B vertical tab <VT>
£ \u000C form feed <FF>
r \u000D carriage return <CR>

The production CharacterEscape :: ¢ ControlLetter evaluates asfollows:

1. Letch be the character represented by ControlLetter.

2. Letibech's code unit value.

3. Letj be the remainder of dividing i by 32.

4. Return the character whose code unit value is j.

The production CharacterEscape :: HexEscapeSequence evaluates by evaluating the CV of the

HexEscapeSequence (see 7.8.4) and returning its character result.

The production CharacterEscape :: UnicodeEscapeSequence evaluates by evaluating the CV of the
UnicodeEscapeSequence (see 7.8.4) and returning its character result.

The production CharacterEscape :: ldentityEscape evaluates by returning the character represented by
IdentityEscape.

15.10.2.11 DecimalEscape

The production DecimalEscape :: DecimallntegerLiteral [lookahead ¢ DecimalDigit] evaluates as follows:

1. Letibethe MV of DecimallntegerLiteral.

2. If ids zero, return the EscapeValue consisting of a <NUL> character (Unicode value 0000).

3. Return the EscapeValue consisting of the integer i.

The definition of “the MV of DecimalintegerLiteral” is in 7.8.3.

NOTE If \'is followed by a.decimal number n whose first digit is not 0, then the escape sequence is considered to be
a backreference. It is an error if n is greater than the total number of left capturing parentheses in the entire regular
expression. \ 0 represents.the <NUL> character and cannot be followed by a decimal digit.

15.10.2.12 CharacterClassEscape

The production CharacterClassEscape :: d evaluates by returning the ten-element set of characters containing
the characters 0 through 9 inclusive.

The production CharacterClassEscape :: D evaluates by returning the set of all characters not included in the set
returned by CharacterClassEscape :: d.

The production CharacterClassEscape :: s evaluates by returning the set of characters containing the
characters that are on the right-hand side of the WhiteSpace (7.2) or LineTerminator (7.3) productions.

272 © Ecma International 2012

»ecma

The production CharacterClassEscape :: S evaluates by returning the set of all characters not included in the set
returned by CharacterClassEscape :: s.

The production CharacterClassEscape :: w evaluates by returning the set of characters containing the sixty-
three characters:

abcdefghijklmnopgrstuvwzxyz
A BCDEVFGHTIJKLMNOPQRS STUVWIXY?Z
01234586789 _

The production CharacterClassEscape :: W evaluates by returning the set of all characters not included in the set
returned by CharacterClassEscape :: w.

15.10.2.13 CharacterClass

The production CharacterClass :: [[lookahead ¢ {*}] ClassRanges] evaluates by evaluating ClassRanges to
obtain a CharSet and returning that CharSet and the Boolean false.

The production CharacterClass :: [~ ClassRanges] evaluates by evaluating ClassRanges to obtain a CharSet
and returning that CharSet and the Boolean true.

15.10.2.14 ClassRanges
The production ClassRanges :: [empty] evaluates by returning the empty CharSet.

The production ClassRanges :: NonemptyClassRanges evaluates.by evaluating NonemptyClassRanges to obtain a
CharSet and returning that CharSet.

15.10.2.15 NonemptyClassRanges

The production NonemptyClassRanges :: ClassAtom evaluates by evaluating ClassAtom to obtain a CharSet and
returning that CharSet.

The production NonemptyClassRanges':: ClassAtom NonemptyClassRangesNoDash evaluates as follows:

1. Evaluate ClassAtom to obtain a CharSet A.
2. Evaluate NonemptyClassRangesNoDash to obtain a CharSet B.
3. Return the union of CharSets A and B.

The production NonemptyClassRanges :: ClassAtom - ClassAtom ClassRanges evaluates as follows:

Evaluate the first ClassAtom to obtain a CharSet A.

Evaluate the second ClassAtom to obtain a CharSet B.
Evaluate ClassRanges to obtain a CharSet C.

Call CharacterRange(A, B) and let D be the resulting CharSet.
Return the union of CharSets D and C.

agrwbnE

The abstract operation CharacterRange takes two CharSet parameters A and B and performs the following:

1. If A does not contain exactly one character or B does not contain exactly one character then throw a
SyntaxError exception.

Let a be the one character in CharSet A.

Let b be the one character in CharSet B.

Let i be the code unit value of character a.

Let j be the code unit value of character b.

If i > j then throw a SyntaxError exception.

Return the set containing all characters numbered i through j, inclusive.

Nogakkwd

© Ecma International 2012 273

secma

15.10.2.16 NonemptyClassRangesNoDash

The production NonemptyClassRangesNoDash :: ClassAtom evaluates by evaluating ClassAtom to obtain a
CharSet and returning that CharSet.

The production NonemptyClassRangesNoDash :: ClassAtomNoDash NonemptyClassRangesNoDash evaluates as
follows:

1. Evaluate ClassAtomNoDash to obtain a CharSet A.
2. Evaluate NonemptyClassRangesNoDash to obtain a CharSet B.
3. Return the union of CharSets A and B.

The production NonemptyClassRangesNoDash :: ClassAtomNoDash - ClassAtom ClassRanges evaluates as
follows:

Evaluate ClassAtomNoDash to obtain a CharSet A.

Evaluate ClassAtom to obtain a CharSet B.

Evaluate ClassRanges to obtain a CharSet C.

Call CharacterRange(A, B) and let D be the resulting CharSet.
Return the union of CharSets D and C.

ogrwNPE

NOTE 1 ClassRanges can expand into single ClassAtoms and/or ranges of two ClassAtoms separated by dashes. In the
latter case the ClassRanges includes all characters between the first ClassAtom and the second ClassAtom, inclusive; an
error occurs if either ClassAtom does not represent a single character (for example, if one is \w) or if the first ClassAtom's
code unit value is greater than the second ClassAtom's.code unit value.

NOTE 2 Even if the pattern ignores case, the case of the two ends of a range is significant in determining which
characters belong to the range. Thus, for example, the pattern /[E-F]/i matches only the letters E, F, e, and £, while the
pattern / [E-£] /i matches all upper and lower-case ASCI! letters<as well as the symbols [, \, 1, ~, _, and *

NOTE 3 A - character can be treated literally or it can denote a range. It is treated literally if it is the first or last character
of ClassRanges, the beginning orend limit of a range specification, or immediately follows a range specification.

15.10.2.17 ClassAtom
The production ClassAtom :: - evaluates by returning the-CharSet containing the one character -.

The production ClassAtom :: ClassAtomNoDash evaluates by evaluating ClassAtomNoDash to obtain a CharSet
and returning that CharSet.

15.10.2.18 ClassAtomNoDash

The production ClassAtomNoDash :: SourceCharacter but not one of \ or] or - evaluates by returning a one-
element CharSet containing the character represented by SourceCharacter.

The production ClassAtomNoDash :: \ ClassEscape evaluates by evaluating ClassEscape to obtain a CharSet
and returning that CharSet.

15.10.2.19 ClassEscape

The production ClassEscape :: DecimalEscape evaluates as follows:
Evaluate DecimalEscape to obtain an EscapeValue E.

If E is not a character then throw a SyntaxError exception.

Let ch be E's character.
Return the one-element CharSet containing the character ch.

b

The production ClassEscape :: b evaluates by returning the CharSet containing the one character <BS>
(Unicode value 0008).

274 © Ecma International 2012

»ecma

The production ClassEscape :: CharacterEscape evaluates by evaluating CharacterEscape to obtain a character
and returning a one-element CharSet containing that character.

The production ClassEscape :: CharacterClassEscape evaluates by evaluating CharacterClassEscape to obtain a
CharSet and returning that CharSet.

NOTE A ClassAtom can use any of the escape sequences that are allowed in the rest of the regular expression
except for \b, \B, and backreferences. Inside a CharacterClass, \b means the backspace character, while \B and
backreferences raise errors. Using a backreference inside a ClassAtom causes an error.

15.10.3 The RegExp Constructor Called as a Function
15.10.3.1 RegExp(pattern, flags)
The following steps are taken:

1. If Type(pattern) is object and pattern has a [[NativeBrand]] internal property whose value is NativeRegExp
and flags is undefined, then return pattern.
2. Return the result of the abstract operation RegExpCreate with arguments pattern and flags.

15.10.4 The RegExp Constructor

When RegExp is called as part of a new expression, it is a constructor: it initialises the newly created object.
15.10.4.1 new RegExp(pattern, flags)

The following steps are taken:

1. Return the result of the abstract operation RegExpCreate with arguments pattern and flags.

The abstract operation RegExpCreate with arguments pattern and flags does the following:

If pattern is an object R that has a [[NativeBrand]] internal property whose value is NativeRegExp and flags is
undefined, then let P be the pattern used to construct R and let F be the flags used to construct R. If pattern is
an object R that has a [[NativeBrand]] internal property whose value is NativeRegExp and flags is not
undefined, then throw a TypeError exception. Otherwise, let P be the empty String if pattern is undefined
and ToString(pattern). otherwise, and let F be the empty String if flags is undefined and ToString(flags)
otherwise.

If the characters of P do not have the syntactic form Pattern, then throw a SyntaxError exception. Otherwise
let the newly constructed object have a [[Match]] internal property obtained by evaluating ("compiling") the
characters of P as a Pattern as described in 15.10.2.

If F contains any.character other than "g", "i", or "m", or if it contains the same character more than once,
then throw a SyntaxError exception.

If a SyntaxError exception is not thrown, then:

Let S be a String in the form of a Pattern equivalent to P, in which certain characters are escaped as described
below. S may or may not be identical to P or pattern; however, the internal procedure that would result from
evaluating S as a Pattern must behave identically to the internal procedure given by the constructed object's
[[Match]] internal property.

The characters / occurring in the pattern shall be escaped in S as necessary to ensure that the String value
formed by concatenating the Strings "/, S, "/", and F can be parsed (in an appropriate lexical context) as a
RegularExpressionLiteral that behaves identically to the constructed regular expression. For example, if P is
"/", then S could be "\ /" or "\u002F", among other possibilities, but not " /", because /// followed by F
would be parsed as a SingleLineComment rather than a RegularExpressionLiteral. If P is the empty String, this
specification can be met by letting S be " (?:) ".

© Ecma International 2012 275

secma

The following properties of the newly constructed object are data properties with the attributes that are
specified in 15.10.7. The [[Value]] of each property is set as follows:

The source property of the newly constructed object is set to S.

The global property of the newly constructed object is set to a Boolean value that is true if F contains the
character "g" and false otherwise.

The ignoreCase property of the newly constructed object is set to a Boolean value that is true if F contains
the character "i" and false otherwise.

The multiline property of the newly constructed object is set to a Boolean«value that is true if F contains
the character "m" and false otherwise.

The lastIndex property of the newly constructed object is set to 0.

The [[Prototype]] internal property of the newly constructed object is set to the standard built-in RegExp
prototype object as specified in 15.10.6.

The newly constructed object has a [[NativeBrand]] internal property whose value is NativeRegEXp

NOTE If pattern is a StringLiteral, the usual escape sequence substitutions are performed before the String is
processed by RegExp. If pattern must contain an escape sequence to be recognised by RegExp, any backslash
\ characters must be escaped within the StringLiteral.to prevent them being removed when the contents of the StringLiteral
are formed.

15.10.5 Properties of the RegExp Constructor

The value of the [[Prototype]] internal property of the RegExp constructor is the standard built-in Function
prototype object (15.3.4).

Besides the internal properties and the 1ength property (whose value is 2), the RegExp constructor has the
following properties:

15.10.5.1 RegExp.prototype

The initial value of RegExp . prototype is the RegExp prototype object (15.10.6).

This property shall have the attributes { [[Writable]]: false, [[Enumerable]]: false, [[Configurable]]: false }.
15.10.6 Properties of the RegExp Prototype Object

The value of the [[Prototype]]/internal property of the RegExp prototype object is the standard built-in Object
prototype object (15.2.4). The RegExp prototype object is itself a regular expression object; it has a
[[NativeBrand]] internal property whose value is NativeRegExp . The initial values of the RegExp prototype
object’s data properties (15.10.7) are set as if the object was created by the expression new RegExp ()

where RegExp is that standard built-in constructor with that name.

The RegExp prototype object does not have a valueOf property of its own; however, it inherits the valueOf
property from the Object prototype object.

In the following descriptions of functions that are properties of the RegExp prototype object, the phrase “this
RegExp object” refers to the object that is the this value for the invocation of the function; a TypeError
exception is thrown if the this value is not an object that has a [[NativeBrand]] internal property whose value is
NativeRegEXxp.

276 © Ecma International 2012

»ecma

15.10.6.1 RegExp.prototype.constructor
The initial value of RegExp . prototype . constructor is the standard built-in RegExp constructor.
15.10.6.2 RegExp.prototype.exec(string)

Performs a regular expression match of string against the regular expression and returns an Array object
containing the results of the match, or null if string did not match.

The String ToString(string) is searched for an occurrence of the regular expression pattern as follows:

Let R be this RegExp object.

ReturnlfAbrupt(R).

Let S be the value of ToString(string)

ReturnIfAbrupt(S).

Return the result of the RegExpExec abstract operation with arguments R and S.

agrwnE

The abstract operation RegExpExec with arguments R (an object) and S (a string) performs the following
steps:

Let length be the length of S.
Let lastindex be the result of calling the [[Get]] internal method of R with argument "lastIndex".
Let i be the value of Tolnteger(lastindex).
ReturnlfAbrupt(i).
Let global be the result of calling the [[Get]] internal method of R with argument "global".
ReturnlfAbrupt(global).
If global is false, then let i = 0.
Let matchSucceeded be false.
Repeat, while matchSucceeded is false
a. Ifi<O0ori>length,then
i Let putStatus be the result of calling the [[Put]] internal method of R with arguments
"lastIndex", 0, and true.
ii. ReturnlfAbrupt(putStatus).
iii. Return.null.
b. Let r be the result of calling the [[Match]].internal method of R with arguments S and i.
c. |Ifrisfailure, then
i. Leti=i+1,
d. <else
i. Assert: r.is a State.
ii. Set matchSucceeded to. true.
10. Let e be r's endIndex value.
11. If global is true,
a. Let putStatus be the result of calling the [[Put]] internal method of R with arguments
“"lastIndex", e, and true.
b. ReturnlfAbrupt(putStatus).
12. Let n be the length of r's captures array. (This is the same value as 15.10.2.1's NCapturingParens.)
13. Let A be the result of the abstract operation ArrayCreate with argument 0.
14. Let matchindex be i.
15. Assert: The following [DefineOwnProperty]] calls will not result in an abrupt completion.
16. Call the [[DefineOwnProperty]] internal method of A with arguments "index", Property Descriptor
{[[Value]]: matchIndex, [[Writable]]: true, [[Enumerable]]: true, [[Configurable]]: true}, and true.
17. Call the [[DefineOwnProperty]] internal method of A with arguments "input", Property Descriptor
{[[Value]]: S, [[Writable]]: true, [[Enumerable]]: true, [[Configurable]]: true}, and true.
18. Call the [[DefineOwnProperty]] internal method of A with arguments "length™", Property Descriptor
{[[Value]]: n + 1}, and true.
19. Let matchedSubstr be the matched substring (i.e. the portion of S between offset i inclusive and offset e
exclusive).
20. Call the [[DefineOwnProperty]] internal method of A with arguments "0, Property Descriptor {[[Value]]:
matchedSubstr, [[Writable]]: true, [[Enumerable]]: true, [[Configurable]]: true}, and true.

OCOoNo O AWNE

© Ecma International 2012 277

secma

21. For each integer i such thati >0and i <n

a. Let capturel be i element of r's captures array.

b. Call the [[DefineOwnProperty]] internal method of A with arguments ToString(i), Property
Descriptor {[[Value]]: capturel, [[Writable]]: true, [[Enumerable]]: true, [[Configurable]]: true},
and true.

22. Return A.

15.10.6.3 RegExp.prototype.test(string)
The following steps are taken:

Let R be this RegExp object.

ReturnlfAbrupt(R).

Let S be the value of ToString(string)

ReturnlfAbrupt(S).

Let match be the result of the RegExpExec abstract operation with arguments R and S.
ReturnlfAbrupt(match).

If match is not null, then return true; else return false.

NookrwbdbpE

15.10.6.4 RegExp.prototype.toString()

Return the String value formed by concatenating the Strings "/ ", the String value of the source property of
this RegExp object, and "/"; plus "g" if the global property is true, "i" if the ignoreCase property is true,
and "m" if the multiline property istrue.

NOTE The returned String has the form of a RegularExpressionLiteral that evaluates to another RegExp object with
the same behaviour as this object.

15.10.7 Properties of RegExp Instances
RegExp instances inherit properties from the RegExp prototype object and have a [[NativeBrand]] internal
property whose value is NativeRegExp. RegExp instances also have a [[Match]] internal property and a

length property.

The value of the [[Match]] internal property is an implementation dependent representation of the Pattern of the
RegEXxp object.

RegExp instances also have the following properties.

15.10:7.1 source

The value of the source property is a String in the form of a Pattern representing the current regular
expression. This property shall have the attributes { [[Writable]]: false, [[Enumerable]]: false, [[Configurable]]:
false }.

15.10.7.2 global

The value of the global property is a Boolean value indicating whether the flags contained the character “g”.
This property shall have the attributes { [[Writable]]: false, [[Enumerable]]: false, [[Configurable]]: false }.

15.10.7.3 ignoreCase

The value of the ignoreCase property is a Boolean value indicating whether the flags contained the
character “i”. This property shall have the attributes {[[Writable]]: false, [[Enumerable]]: false,
[[Configurable]]: false }.

278 © Ecma International 2012

»ecma

15.10.7.4 multiline

The value of the multiline property is a Boolean value indicating whether the flags contained the character
“m”. This property shall have the attributes { [[Writable]]: false, [[Enumerable]]: false, [[Configurable]]: false }.

15.10.7.5 lastindex

The value of the lastIndex property specifies the String position at which to start the next match. It is
coerced to an integer when used (see 15.10.6.2). This property shall have the attributes { [[Writable]]: true,
[[Enumerable]]: false, [[Configurable]]: false }.

NOTE Unlike the other standard built-in properties of RegExp instances, lastIndex is writable.

15.11 Error Objects

Instances of Error objects are thrown as exceptions when runtime_.errors occur. The Error objects may also
serve as base objects for user-defined exception classes.

15.11.1 The Error Constructor Called as a Function

When Error is called as a function rather than as a constructor, it creates and initialises a new Error object.
Thus the function call Exrror (..) is equivalent to the object creation expression new Error(..) with the
same arguments.

15.11.1.1 Error (message)

The [[Prototype]] internal property of the newly constructed object is set to the original Error prototype object,
the one that is the initial value of Error.prototype (15.11.3.1).

The newly constructed object has a [[NativeBrand]] internal property whose value is NativeError.
The [[Extensible]] internal‘property of the newly constructed object is set to true.

If the argument message is not undefined, the message own property of the newly constructed object is set to
ToString(message).

15.11.2 The Error Constructor
When Error is called as part of a new expression, it is a constructor: it initialises the newly created object.
15.11.2.1 new Error (message)

The [[Prototypel]].internal property of the newly constructed object is set to the original Error prototype object,
the one that is the initial value of Error.prototype (15.11.3.1).

The newly constructed object has a [[NativeBrand]] internal property whose value is NativeError .
The [[Extensible]] internal property of the newly constructed object is set to true.

If the argument message is not undefined, the message own property of the newly constructed object is set to
ToString(message).

15.11.3 Properties of the Error Constructor
The value of the [[Prototype]] internal property of the Error constructor is the Function prototype object (15.3.4).

Besides the internal properties and the length property (whose value is 1), the Error constructor has the
following property:

© Ecma International 2012 279

eCina

15.11.3.1 Error.prototype

The initial value of Error.prototype is the Error prototype object (15.11.4).

This property has the attributes { [[Writable]]: false, [[Enumerable]]: false, [[Configurable]]: false }.
15.11.4 Properties of the Error Prototype Object

The Error prototype object is itself an Error object and has a [[NativeBrand]] internal property whose value is
NativeError .

The value of the [[Prototype]] internal property of the Error prototype object.is the standard built-in Object
prototype object (15.2.4).

15.11.4.1 Error.prototype.constructor

The initial value of Exrror .prototype.constructor is the built<in Error constructor.
15.11.4.2 Error.prototype.name

The initial value of Exrror .prototype.name is "Error".

15.11.4.3 Error.prototype.message

The initial value of Error .prototype .message isthe empty String.

15.11.4.4 Error.prototype.toString ()

The following steps are taken:

Let O be the this value.

If Type(O) is not Object, throw a TypeError exception.

Let name be the result of calling the [[Get]] internal method of O with argument "name".
ReturnlfAbrupt(name).

If name is undefined, then let name be "Errox"; else let name be ToString(name).

Let msg be the result of calling the [[Get]] internal method of O with argument "message".
ReturnlfAbrupt(msg).

If msg'is undefined, then let msg be the empty String; else let msg be ToString(msg).

If name is the empty String, return msg.

10 If msg is the empty String, return name .

11. Return the result of concatenating name, " : ", a single space character, and msg.

N~ whE

15.11.5 Properties of Error/Instances

Error instances inherit properties from the Error prototype object and have a [[NativeBrand]] internal property
whose value is NativeError . Error instances have no special properties.

15.11.6 Native Error Types Used in This Standard

One of the NativeError objects below is thrown when a runtime error is detected. All of these objects share the
same structure, as described in 15.11.7.

15.11.6.1 EvalError

This exception is not currently used within this specification. This object remains for compatibility with previous
editions of this specification.

280 © Ecma International 2012

»ecma

15.11.6.2 RangeError

Indicates a numeric value has exceeded the allowable range. See 15.4.2.2, 15.4.5.1, 15.7.4.2, 15.7.4.5,
15.7.4.6, 15.7.4.7, and 15.9.5.43.

15.11.6.3 ReferenceError

Indicate that an invalid reference value has been detected. See 8.9.1, 8.9.2, 10.2.1, 10.2.1.1.4, 10.2.1.2.4,
and 11.13.1.

15.11.6.4 SyntaxError

Indicates that a parsing error has occurred. See 11.1.5, 11.3.1, 11.3.2, 11.4.1, 11.4.4, 11.4.5, 11.13.1, 11.13.2,
12.2.1, 12.10.1, 12.14.1, 13.1, 15.1.2.1, 15.3.2.1, 15.10.2.2, 15.10.2.5,15.10.2.9, 15.10.2.15, 15.10.2.19,
15.10.4.1, and 15.12.2.

15.11.6.5 TypeError

Indicates the actual type of an operand is different than the expected type. See 8.6.2, 8.9.2,.8.10.5, 8.12.5,
8.12.7, 8.12.8, 8.12.9, 9.9, 9.10, 10.2.1, 10.2.1.1.3, 10.6,41.2.2, 11.2.3, 11.4.1, 11.8.6, 11.8.7, 11.3.1, 13.2,
13.2.3, 15, 15.2.3.2, 15.2.3.3, 15.2.3.4, 15.2.3.5, 15.2.3.6, 15.2.3.7, 15.2.3.8, 15.2.3.9, 15.2.3.10, 15.2.3.11,
15.2.3.12, 15.2.3.13, 15.2.3.14, 15.2.4.3, 15.3.4.2, 15.3.4.3, 15.3.4.4,15.3.4.5, 15.3.4.5.2, 15.3.4.5.3, 15.3.5,
15.3.5.3, 15.3.5.4, 15.4.4.3, 15.4.4.11, 15.4.4.16, 15.4.4.17, 15.4.4.18, 15.4.4.19, 15.4.4.20, 15.4.4.21,
15.4.4.22, 15.45.1, 15.5.4.2, 155.4.3, 15.6.4.2, 15.6.4.3, 15.7.4, 15.7.4.2, 15.7.4.4, 15.9.5, 15.9.5.44,
15.10.4.1, 15.10.6, 15.11.4.4 and 15.12.3.

15.11.6.6 URIError

Indicates that one of the global URI handling functions'was used inva way that is incompatible with its
definition. See 15.1.3.

15.11.7 NativeError Object Structure

When an ECMAScriptimplementation.detects a runtime error, it throws an instance of one of the NativeError
objects defined in 15.11.6. Each of these objects has.the structure described below, differing only in the name
used as the constructor name instead of NativeError, in the name property of the prototype object, and in the
implementation-defined message property of the prototype object.

For each error object, references to NativeError in the definition should be replaced with the appropriate error
object name from 15.11.6.

15.11.7.1 NativeError Constructors Called as Functions

When a NativeError constructor is called as a function rather than as a constructor, it creates and initialises a
new object. A call of the‘object as a function is equivalent to calling it as a constructor with the same
arguments.

15.11.7.2 NativeError (message)

The [[Prototype]] internal property of the newly constructed object is set to the prototype object for this error
constructor. The newly constructed object has a [[NativeBrand]] internal property whose value is NativeError .

The [[Extensible]] internal property of the newly constructed object is set to true.

If the argument message is not undefined, the message own property of the newly constructed object is set to
ToString(message).

© Ecma International 2012 281

secma

15.11.7.3 The NativeError Constructors

When a NativeError constructor is called as part of a new expression, it is a constructor: it initialises the newly
created object.

15.11.7.4 new NativeError (message)
The [[Prototype]] internal property of the newly constructed object is set to the prototype object for this
NativeError constructor. The newly constructed object has a [[NativeBrand]] internal property whose value is

NativeError . The [[Extensible]] internal property of the newly constructed object is set to true.

If the argument message is not undefined, the message own property of the newly constructed object is set to
ToString(message).

15.11.7.5 Properties of the NativeError Constructors

The value of the [[Prototype]] internal property of a NativeError constructor is the Function prototype object
(15.3.4).

Besides the internal properties and the 1ength property (whose value is 1), each NativeError constructor has
the following property:

15.11.7.6 NativeError.prototype

The initial value of NativeError.prototype is a NativeError prototype object (15.11.7.7). Each NativeError
constructor has a separate prototype object.

This property has the attributes { [[Writable]]: false, [[Enumerable]]: false, [[Configurable]]: false }.
15.11.7.7 Properties of the NativeError Prototype Objects

Each NativeError prototype object is an Error object and has a [[NativeBrand]] internal property whose value is
NativeError .

The value of the [[Prototype]] internal property of each- NativeError prototype object is the standard built-in
Error prototype object (15.11.4).

15.11.7.8 NativeError.prototype.constructor

The .nitial value of the constructor property of the prototype for a given NativeError constructor is the
NativeError constructor function itself (15.11.7).

15.11.7.9 NativeError.prototype.name

The initial value of the name property of the prototype for a given NativeError constructor is the name of the
constructor (the name used instead of NativeError).

15.11.7.10 NativeError.prototype.message

The initial value of the message property of the prototype for a given NativeError constructor is the empty
String.

NOTE The prototypes for the NativeError constructors do not themselves provide a toString function, but
instances of errors will inherit it from the Error prototype object.

282 © Ecma International 2012

»ecma

15.11.7.11 Properties of NativeError Instances

NativeError instances inherit properties from their NativeError prototype object and have a [[NativeBrand]]
internal property whose value is NativeError . NativeError instances have no special properties.

15.12 The JSON Object

The JSON object is a single object that contains two functions, parse and stringify, that are used to parse
and construct JSON texts. The JSON Data Interchange Format is described in RFC 4627
<http://www.ietf.org/rfc/rfc4627.txt>. The JSON interchange format used in this specification is exactly that
described by RFC 4627 with two exceptions:

e The top level JSONText production of the ECMAScript JSON grammar may consist of any JSONValue
rather than being restricted to being a JSONObject or a JSSONArray-as specified by RFC 4627.

e Conforming implementations of JSON.parse and JSON.stringify must support.the exact interchange
format described in this specification without any deletions or extensions to the format. This differs
from RFC 4627 which permits a JSON parser to accept'non-JSON forms and extensions.

The value of the [[Prototype]] internal property of the JSON object is the standard built-in Object prototype
object (15.2.4). The JSON object has a [[NativeBrand]] internal property whose value is NativeJSON . The
value of the [[Extensible]] internal property of the JSON object is set to true.

The JSON object does not have a [[Construct]].internal property; it is not possible to use the JSON object as a
constructor with the new operator.

The JSON object does not have a [[Call]] internal property; it is.not possible to invoke the JSON object as a
function.

15.12.1 The JSON Grammar.

JSON.stringify produces a‘String that conforms to the following JSON grammar. JSON.parse accepts a String
that conforms to the JISON grammar.

15.12.1.1 The JSON Lexical Grammar

JSON is similar to ECMAScript source text in that it consists of a sequence of Unicode characters conforming
to the rules of SourceCharacter. The JSON Lexical Grammar defines the tokens that make up a JSON text
similar to the manner that the ECMAScript lexical grammar defines the tokens of an ECMAScript source text.
The JSON Lexical grammar only recognises the white space character specified by the production
JSONWhiteSpace. The JSON lexical grammar shares some productions with the ECMAScript lexical grammar.
All nonterminal symbols of the grammar that do not begin with the characters “JSON” are defined by
productions of the ECMAScript lexical grammar.

Syntax

JSONWhiteSpace ::
<TAB>
<CR>
<LF>
<SP>

JSONString ::
" JSONStringCharactersgp: "

JSONStringCharacters ::
JSONStringCharacter JSONStringCharactersopt

JSONStringCharacter ::

© Ecma International 2012 283

secma

SourceCharacter but not one of " or \ or U+0000 through U+001F
\ JSONEscapeSequence

JSONEscapeSequence ::
JSONEscapeCharacter
u HexDigit HexDigit HexDigit HexDigit

JSONEscapeCharacter :: one of
"/ \bfnrt

JSONNumber ::
-opt DecimalintegerLiteral JSONFractiongp: ExponentPartop:

JSONFraction ::
. DecimalDigits

JSONNulILiteral ::
NullLiteral

JSONBooleanLiteral ::
BooleanLiteral

15.12.1.2 The JSON Syntactic Grammar

The JSON Syntactic Grammar defines a valid JSON text in terms of tokens defined by the JSON lexical
grammar. The goal symbol of the grammar is' JSONText.

Syntax

JSONText :
JSONValue

JSONValue :
JSONNuliLiteral
JSONBooleanLiteral
JSONObject
JSONArray
JSONString
JSONNumber

JSONObject :

{1}
{ JSONMemberList }

JSONMember :;
JSONString : JSONValue

JSONMemberList :
JSONMember
JSONMemberList , JSONMember

JSONArray :
[1]
[JSONElementList]

JSONElementList :
JSONValue
JSONEIlementList , JSONValue

284 © Ecma International 2012

»ecma

15.12.2 parse (text [, reviver])

The parse function parses a JSON text (a JSON-formatted String) and produces an ECMAScript value. The
JSON format is a restricted form of ECMAScript literal. JSON objects are realized as ECMAScript objects.
JSON arrays are realized as ECMAScript arrays. JSON strings, numbers, booleans, and null are realized as
ECMAScript Strings, Numbers, Booleans, and null. JSON uses a more limited set of white space characters
than WhiteSpace and allows Unicode code points U+2028 and U+2029 to directly appear in JSONString literals
without using an escape sequence. The process of parsing is similar to 11.1.4 and 11.1.5 as constrained by
the JSON grammar.

The optional reviver parameter is a function that takes two parameters, (key and value). It can filter and
transform the results. It is called with each of the key/value pairs produced by the parse, and its return value is
used instead of the original value. If it returns what it received, the structure is not modified. If it returns
undefined then the property is deleted from the result.

1. Let JText be ToString(text).

2. ReturnlfAbrupt(text).

3. Parse JText interpreted as UTF-16 encoded Unicode characters using the grammars in 15.122.1. Throw a
SyntaxError exception if JText did not conform to the JSON grammar for the goal symbol JSONText.

4. Let unfiltered be the result of parsing and evaluating JText as if it was the source text of an ECMAScript
Program but using JSONString in place of StringLiteral. Note that since JText conforms to the JSON
grammar this result will be either a primitive value or an object that.is defined by either an ArrayLiteral or
an ObjectLiteral.

5. If IsCallable(reviver) is true, then

a. Letroot be the result of the abstract operation ObjectCreate (15.2).

b. Call the [[DefineOwnProperty]] internal method of root with the empty String, the
PropertyDescriptor {[[Value]]: unfiltered, [[Writable]]: true, [[Enumerable]]: true,
[[Configurable]]: true}, and false as‘arguments.

c. Return the result of calling the abstract operation Walk, passing root and the empty String. The
abstract operation Walk is:described below.

6. Else

a. Return unfiltered.

The abstract operation'Walk is a recursive abstract operation that takes two parameters: a holder object and
the String name of a property in that-object. Walk.uses the value of reviver that was originally passed to the
above parse function.

1. Letval be the result of calling the [[Get]] internal method of holder with argument name.
2. ReturnlfAbrupt(val).
3. Ifyal is an object, then
a. Ifval has a [[NativeBrand]] internal property with value NativeArray, then
i Set1toO.
ii. Let len be the result of calling the [[Get]] internal method of val with argument "length".
iii. Assert: len is not an abrupt completion and its value is a positive integer.
iV, Repeat while | < len,
1. Let newElement be the result of calling the abstract operation Walk, passing val and
ToString(l).
2. If newElement is undefined, then
a Let status be the result of calling the [[Delete]] internal method of val with
ToString(l) and false as arguments.
3. Else
a Let status be the result of calling the [[DefineOwnProperty]] internal
method of val with arguments ToString(1), the Property Descriptor
{[[Value]]: newElement, [[Writable]]: true, [[Enumerable]]: true,
[[Configurable]]: true}, and false.
ReturnlfAbrupt(status).
Add 1tol.

o e

b. Else

© Ecma International 2012 285

eCina

i Let keys be an internal List of String values consisting of the names of all the own
properties of val whose [[Enumerable]] attribute is true. The ordering of the Strings is the
same as that used by the Object.keys standard built-in function.

il For each String P in keys do,

1. Let newElement be the result of calling the abstract operation Walk, passing val and
P.
2. If newElement is undefined, then
a Let status be the result of calling the [[Delete]] internal method of val with
P and false as arguments.
3. Else
a Let status be the result of calling the [[DefineOwnProperty]] internal
method of val with arguments P, the Property Descriptor {[[Value]]:
newElement, [[Writable]]: true, [[Enumerable]]: true, [[Configurable]]:
true}, and false.
4. ReturnIfAbrupt(status).
4. Return the result of calling the [[Call]] internal method of reviver passing holder as the this value and with
an argument list consisting of name and val.

It is not permitted for a conforming implementation of JSON.parse to extend the JSON grammars. If an
implementation wishes to support a modified or extended JSON interchange format it must do so by defining a
different parse function.

NOTE In the case where there are duplicate name Strings within an object, lexically preceding values for the same
key shall be overwritten.

15.12.3 stringify (value [, replacer [, space]])

The stringify function returns a String in UTF-16 encoded JSON format representing an ECMAScript
value. It can take three parameters. The value parameter is an ECMAScript value, which is usually an object
or array, although it can also be a String, Boolean, Number or null. The optional replacer parameter is either a
function that alters the way objects and arrays are stringified, or an array of Strings and Numbers that acts as
a white list for selecting the_ object properties that will be stringified. The optional space parameter is a String or
Number that allows the result to have white space injected into it to improve human readability.

These are the steps in stringifying an-object:

Let stack be an empty List.
Let indent be the empty String.
Let PropertyList and ReplacerFunction be undefined.
If Type(replacer) is Object, then
a. If IsCallable(replacer) is true, then
i Let ReplacerFunction be replacer.
b. Else if replacer has a [[NativeBrand]] internal property with value NativeArray , then
i Let PropertyList be an empty internal List
ii. For each'value v of a property of replacer that has an array index property name. The
properties are enumerated in the ascending array index order of their names.
1. Letitem be undefined.
2. If Type(v) is String then let item be v.
3. Elseif Type(v) is Number then let item be ToString(v).
4. Else if Type(v) is Object then,
a Ifv has a [[NativeBrand]] internal property whose value is either
StringWrapper or NumberWrapper then let item be ToString(v).
5. If item is not undefined and item is not currently an element of PropertyList then,
a Append item to the end of PropertyList.
5. If Type(space) is Object then,
a. If space has a [[NativeBrand]] internal property whose value is NumberWrapper then,
i Let space be ToNumber(space).
b. Else if space has a [[NativeBrand]] internal property with value StringWrapper then,
i Let space be ToString(space).
6. If Type(space) is Number

PR

286 © Ecma International 2012

/

11.

ecna

a. Letspace be min(10, Tolnteger(space)).
b. Set gap to a String containing space occurrences of code unit 0x0020 (the Unicode space character).
This will be the empty String if space is less than 1.
Else if Type(space) is String
a. If the number of elements in space is 10 or less, set gap to space otherwise set gap to a String
consisting of the first 10 elements of space.
Else
a. Setgap to the empty String.
Let wrapper be the result of the abstract operation ObjectCreate (15.2).

. Call the [[DefineOwnProperty]] internal method of wrapper with arguments the empty String, the Property

Descriptor {[[Value]]: value, [[Writable]]: true, [[Enumerable]]: true, [[Configurable]]: true}, and false.
Return the result of calling the abstract operation Str with the empty String and wrapper.

The abstract operation Str(key, holder) has access to ReplacerFunction from the invocation of the stringify
method. Its algorithm is as follows:

1.
2.
3.

P

11.

12,

Let value be the result of calling the [[Get]] internal method of holder with argument key.
ReturnIfAbrupt(value).
If Type(value) is Object, then
a. LettoJSON be the result of calling the [[Get]] internal method of value with argument "toJSON".
b. If IsCallable(toJSON) is true
i Let value be the result of calling the [[Call]].internal method of toJSON passing value as the
this value and with an argument list consisting of key.
ii. ReturnlfAbrupt(value).
If ReplacerFunction is not undefined, then
a. Letvalue be the result of calling the [[Call]].internal method of ReplacerFunction passing holder as
the this value and with an argument list consisting.of key and value.
b. ReturnlfAbrupt(value).
If Type(value) is Object then,
a. Ifvalue has an [[NativeBrand]] internal property with value NumberWrapper then,
i Let value be ToNumber(value).
b. Else if value has'an [[NativeBrand]] internal property with value StringWrapper then,
i Let value be ToString(value).
c. Else if value has an [[NativeBrand]] internal property with value BooleanWrapper then,
i Let value be the value of the [[PrimitiveValue]] internal property of value.
If value is null then return "null".
If value is true then return " true".
If value.is false then return "£alse".
If Type(value) is String, then return the result of calling the abstract operation Quote with argument value.
If Type(value) is Number
a. Ifvalue is finite then return ToString(value).
b. Else, return "null".
If Type(value) is Object, and IsCallable(value) is false
a. Ifvalue has an [[NativeBrand]] internal property with value NativeArray then
i Return the result of calling the abstract operation JA with argument value.
b. Else, return the result of calling the abstract operation JO with argument value.
Return undefined.

The abstract operation Quote(value) wraps a String value in double quotes and escapes characters within it.

1.
2.

Let product be code unit 0x0022 (the Unicode double quote character).
For each code unit C in value
a. If Cis 0x0022 or 0x005C (the Unicode reverse solidus character)
i. Let product be the concatenation of product and code unit 0x005C (the Unicode backslash
character).
ii. Let product be the concatenation of product and code unit 0x005C.
b. Elseif C is backspace, formfeed, newline, carriage return, or tab
i. Let product be the concatenation of product and code unit 0x005C (the Unicode backslash
character).

© Ecma International 2012 287

eCina

il Let abbrev be the string value corresponding to the value of C as follows:

backspace "b"
formfeed e
newline "n"
carriage return "r"
tab e

iii. Let product be the concatenation of product and abbrev.
c. Elseif C has a code unit value less than 0x0020 (the Unicode space character)
i Let product be the concatenation of product and code unit 0x005C (the Unicode backslash
character).

ii. Let product be the concatenation of product and "u".

iii. Let hex be the string result of converting the numeric code unit value of C to a String of
four hexadecimal digits. Alphabetic hexadecimal digits are presented as lowercase
characters.

iv. Let product be the concatenation of product and hex:

d. Else
i Let product be the concatenation of product and C.
3. Let product be the concatenation of product and code unit 0x0022 (the Unicode double quote character).
4. Return product.

The abstract operation JO(value) serializes an object. It has access to the stack, indent, gap, and PropertyList of
the invocation of the stringify method.

If stack contains value then throw a TypeError exception because the structure is cyclical.
Append value to stack.
Let stepback be indent.
Let indent be the concatenation of indent and gap.
If PropertyList is not undefined, then
a. Let K be PropertyList.
Else
a. Let K be an internal List of Strings consisting of the names of all the own properties of value whose
[[Enumerable]] attribute is true. The ordering of the Strings is the same as that used by the
Object.keys standard built-in function.
7. Let partial be an empty List.
8. For each element P of K.
a. LetstrP be the result of calling the abstract operation Str with arguments P and value.
b. ReturnlfAbrupt(strP).
c. _IfstrP is not undefined
i Let member be the result of calling the abstract operation Quote with argument P.
ii. Let member be the concatenation of member and the string " : ™.
iii. If gap is not the empty String
1. Let member be the concatenation of member and code unit 0x0020 (the Unicode
space character).
iv. Let member be the concatenation of member and strP.
V. Append member to partial.
9. |If partial is empty, then
a. Letfinal be™{}".
10. Else
a. Ifgap is the empty String
i Let properties be a String formed by concatenating all the element Strings of partial with
each adjacent pair of Strings separated with code unit 0x002C (the Unicode comma
character). A comma is not inserted either before the first String or after the last String.
il Let final be the result of concatenating " {", properties, and "}".
b. Else gap is not the empty String
i Let separator be the result of concatenating code unit 0x002C (the comma character), code
unit 0X000A (the line feed character), and indent.
ii. Let properties be a String formed by concatenating all the element Strings of partial with
each adjacent pair of Strings separated with separator. The separator String is not inserted
either before the first String or after the last String.

ogrwNPE

S

288 © Ecma International 2012

»ecma

iii. Let final be the result of concatenating " {", code unit 0XO00A (the line feed character),
indent, properties, code unit 0X000A, stepback, and " }".
11. Remove the last element of stack.
12. Let indent be stepback.
13. Return final.

The abstract operation JA(value) serializes an array. It has access to the stack, indent, and gap of the invocation
of the stringify method. The representation of arrays includes only the elements between zero and
array.length — 1 inclusive. Named properties are excluded from the stringification. An array is stringified as
an open left bracket, elements separated by comma, and a closing right bracket.

If stack contains value then throw a TypeError exception because the structure is cyclical.
Append value to stack.
Let stepback be indent.
Let indent be the concatenation of indent and gap.
Let partial be an empty List.
Assert: value is a native array and hence its "length" property is a non-negative integer.
Let len be the result of calling the [[Get]] internal method of value with argument "1ength".
Let index be 0.
Repeat while index < len

a. LetstrP be the result of calling the abstract operation Str with-arguments ToString(index) and value.

b. ReturnlfAbrupt(strP).

c. IfstrP is undefined

i. Append "null" to partial.
d. Else
i. Append strP to partial.

e. Increment index by 1.

10. If partial is empty ,then
a. Letfinalbe"[]".
11. Else
a. |Ifgap is the empty String
i Let properties be a String formed by concatenating all the element Strings of partial with
each'adjacent pair of Strings separated with code unit 0x002C (the comma character). A
comma.is not inserted either before the first String or after the last String.
ii. Let final be the result of concatenating " [, properties, and "1 ".

COoNoORr~WONE

i Let separator be the result of concatenating code unit 0x002C (the comma character), code
unit 0X000A (the line feed character), and indent.

ii. Let properties be a String formed by concatenating all the element Strings of partial with
each adjacent pair of Strings separated with separator. The separator String is not inserted
either before the first String or after the last String.

iii. Let final be the result of concatenating " [, code unit 0XO00A (the line feed character),
indent, properties, code unit 0X000A, stepback, and "]1".

12. Remove the last element of stack.
13. Let indent be stepback.
14. Return final.

NOTE 1 JSON structures are allowed to be nested to any depth, but they must be acyclic. If value is or contains a cyclic
structure, then the stringify function must throw a TypeError exception. This is an example of a value that cannot be
stringified:

a=[];

a[0] = a;

my_text = JSON.stringify(a); // This must throw an TypeError.

NOTE 2 Symbolic primitive values are rendered as follows:

. The null value is rendered in JSON text as the String null.

o The undefined value is not rendered.

. The true value is rendered in JSON text as the String true.

. The false value is rendered in JSON text as the String false.

© Ecma International 2012 289

secma

NOTE 3 String values are wrapped in double quotes. The characters " and \ are escaped with \ prefixes. Control
characters are replaced with escape sequences \uHHHH, or with the shorter forms, \b (backspace), \ £ (formfeed), \n
(newline), \ r (carriage return), \ t (tab).

NOTE 4 Finite numbers are stringified as if by calling ToString(number). NaN and Infinity regardless of sign are
represented as the String null.

NOTES5 Values that do not have a JSON representation (such as undefined and functions) do not produce a String.
Instead they produce the undefined value. In arrays these values are represented as the String null. In objects an

unrepresentable value causes the property to be excluded from stringification.

NOTE 6 An object is rendered as an opening left brace followed by zero or more properties, separated with commas,
closed with a right brace. A property is a quoted String representing the key or property hame, a colon, and then the
stringified property value. An array is rendered as an opening left bracket followed by zero or more values, separated with
commas, closed with a right bracket.

15.13 Binary Data Objects

15.13.1 The BinaryData Module

15.13.2 The BinaryData.Type Object

15,13,2.5 BinaryData.ScalarType Type Instance Objects

15.13.3 The BinaryData.ArrayType Object

15.13.4 The BinaryData.StructType Object

15.13.5 ArrayBufferObjects

15.13.5.1 The ArrayBuffer Object Called as a Function

When ArrayBuffer is called as a function rather than as a constructor, it creates and initialises a new
ArrayBuffer object. Thus the function call ArrayBuffer(...) is equivalent to the object creation expression new
ArrayBuffer (...) with the same arguments.

15.13.5.2 The ArrayBuffer Constructor

When ArrayBuffer is called as part of a new expression, it is a constructor: it initialises the newly created
object.

15.13.5.2.1 new ArrayBuffer(len)

The [[Prototype]] internal property of the newly constructed object is set to the original ArrayBuffer prototype
object, the one that is the initial value of ArrayBuffer.prototype (16.1.3.1). The [[Class]] internal property of the
newly constructed object.is set to “ArrayBuffer”. The [[Extensible]] internal property of the newly constructed
object is set to true.

The length property of the newly constructed object is set to ToUInt32(len).

A fresh native buffer nativeBuffer of length bytes is allocated. The contents of this native buffer are zero
initialized. If the requested number of bytes could not be allocated, a RangeError is raised. The
[[NativeBuffer]] internal property of the newly constructed object is set to nativeBuffer.

15.13.5.3 Properties of the ArrayBuffer Constructor

The value of the [[Prototype]] internal property of the ArrayBuffer constructor is the Function prototype object
(15.3.4).

290 © Ecma International 2012

»ecma

Besides the internal properties and the length property (whose value is 1), the ArrayBuffer constructor has the
following properties:

15.13.5.3 ArrayBufer.prototype

The initial value of ArrayBuffer.prototype is the ArrayBuffer prototype object (16.1.4).

This property has the attributes { [[Writable]]: false, [[Enumerable]]: false, [[Configurable]]: false }.

15.13.5.4 Properties of the ArrayBuffer Prototype Object

The value of the [[Prototype]] internal property of the Array prototype object.is the standard built-in Object
prototype object (15.2.4). The [[Class]] internal property of the newly constructed object is set to “Object”. The
[[Extensible]] internal property of the newly constructed object is set to true:

15.13.5.4.1 ArrayBuffer.prototype.constructor

The initial value of ArrayBuffer.prototype.constructor is the standard built-in ArrayBuffer constructor.

15.13.5.5 Properties of the ArrayBuffer Instances

ArrayBuffer instances inherit properties from the ArrayBuffer prototype object and their [[Class]] internal
property value is “ArrayBuffer”. ArrayBuffer instances also have the following properties.

15.13.5.5.1 byteLength

The byteLength property of this ArrayBuffer ‘object is a data property whose value is the length of the
ArrayBuffer in bytes, as fixed at construction time.

The length property has the attributes { [[Writable]]: false, [[Enumerable]]: false, [[Configurable]]: false }.
15.13.6 TypeArray Object Structures
For each constructor in the followingtable is a separate TypeArray constructor object, with corresponding

prototype and instances. Each of these TypeArray constructor objects has the structure described below,
differing only in the name used as the constructor name instead of TypeArray, in XXXXXXX.

Constructor Name Element Type Size Element Description Equivalent C Type
Int8Array Int8 1 8-bit 2's complement | signed char
signed integer
Uint8Array. Uint8 1 8-bit unsigned integer | unsigned char
Int16Array Int16 2 16-bit 2’'s complement | Short
signed integer
Uintl6Array Uintl6 2 16-bit unsigned integer | unsigned short
INnt32Array Int32 4 32-bit 2's complement | Int
signed integer
Uint32Array Uint32 4 32-bit unsigned integer | unsigned int
Float32Array Float32 4 32-bit IEEE floating | Float
point
Float64Array Float64 8 64-bit IEEE floating | Double
point

In the definitions below, references to TypeArray should be replaced with the appropriate constructor name
from the above table. The phrase “the element size in bytes” refers to the value in the Element Size column of
the table in the row corresponding to the constructor. The phrase “element Type” refers to the value in the
Element Type column for that row.

© Ecma International 2012 291

secma

15.13.6.1 TypeArray Constructors Called as a Function

When a TypeArray constructor is called as a function rather than as a constructor, it creates and initialises a
new object. A call of the constructor as a function is equivalent to calling it as a constructor with the same
arguments.

15.13.6.2 The TypeArray Constructors

When a TypeArray constructor is called as part of a new expression, it is a constructor: it initialises the newly
created object.

15.13.6.2.1 new TypeArray(argO [, argl, [, arg2])

The [[Prototype]] internal property of the newly constructed object is set.to the original TypeArray prototype
object, the one that is the initial value of TypeArray.prototype (16.2.3.1). The [[Class]] internal property of the
newly constructed object is set to “TypeArray”. The [[Extensible]] internal property of the newly constructed
object is set to true.

The remaining properties of the newly constructed object are set as follows:

1. If Type(arg0) is Number, then

a. Letlength be ToUInt32(arg0).

b. ReturnlfAbrupt(length).

c. The length property of the newly constructed object is set to length.

d. The byteLength property of the newly constructed object'is set to length multiplied by the element
size in bytes.

e. LetarrayBuffer be an object constructed as if by acall to the built-in ArrayBuffer constructor, as
“new ArrayBuffer(byteLength)”.

f. The buffer property of the newly constructed object is set to arrayBuffer.

g. The byteOffset property of the newly constructed object is set to 0.

2. Else,
a. Let O be the result of calling ToObject(arg0).
b. ReturnlfAbrupt(O).
c. Letclass be the value of the [[Class]] internal property of O.
d. Ifclass is “ArrayBuffer”’,then
i Let byteOffset-be the result of calling ToUInt32 on argl, if provided, or else 0.
ii. If byteOffset is not an integer multiple of the element size in bytes, throw a RangeError
exception.
iii. Let bufferLength be the result of calling [[Get]] on O with property name “byteLength”.
iv. Let byteLength be the result of calling ToUInt32 on arg2, if provided, or else bufferLength
— byteOffset.
V. If byteOffset + byteLength is greater than bufferLength, throw a RangeError exception.
Vi. Let length be the result of dividing byteLength by the element size in bytes.
Vii. If ToUInt32(length) !== length, throw a RangeError exception.
viii. The length property of the newly constructed object is set to length.
iX. The bytel ength property of the newly constructed object is set to byteLength.
X. The buffer property of the newly constructed object is set to O.
Xi. The byteOffset property of the newly constructed object is set to byteOffset.
e. Else,
i. Let n to be the result of calling [[Get]] on V with property name “length”.
ii. Let length be the result of calling ToUlInt32(n).
iii. The length property of the newly constructed object is set to length.
iv. The byteLength property of the newly constructed object is set to length multiplied by the
element size in bytes.
V. Let arrayBuffer be an object constructed as if by a call to the built-in ArrayBuffer
constructor, as “new ArrayBuffer(byteLength)”.
vi. Leti to be 0.
Vii. While i < length:

292

1. Let x be the result of calling [[Get]] on arrayBuffer with property name ToString(i).

© Ecma International 2012

»ecma

2. LetindexDesc be Property Descriptor {[[\Value]]: x,[[Writable]]: true,
[[Enumerable]]: true, [[Configurable]]: false}.
3. Call [[DefineOwnProperty]] on the newly constructed object with arguments
ToString(i), indexDesc, and false.
4, Setitoi+ 1.
viii. The buffer property of the newly constructed object is set to arrayBuffer.
iX. The byteOffset property of the newly constructed object is set to 0.

15.13.6.3 Properties of the TypeArray Constructors

The value of the [[Prototype]] internal property of each TypeArray constructor is the Function prototype object
(15.3.4).

Besides the internal properties and the length property (whose value is 3), each TypeArray constructor has
the following properties:

15.13.6.3.1 TypeArray.prototype

The initial value of TypeArray.prototype is the TypeArray prototype object (15.13.2.4).

This property has the attributes { [[Writable]]: false, [[Enumerable]]: false;[[Configurable]]: false }.
15.13.6.3.2 TypeArray.BYTES_PER_ELEMENT

The initial value of TypeArray.BYTES _PER_ELEMENT is the element size in bytes.

This property has the attributes { [[Writable]]: false, [[Enumerable]]: false, [[Configurable]]: false }.
15.13.6.4 Properties of the TypeArray Prototype Object

The value of the [[Prototype]] internal property of each TypeArray prototype object is the standard built-in
Object prototype object (15:2.4). It’s [[Class]] is “TypeArray”.

15.13.6.4.1 TypeArray.prototype.constructor
The initial value of TypeArray.prototype.constructor is the standard built-in TypeArray constructor.
15.13.6.4.2 TypeArray.prototype.set(array [, offset])

Set multiple values in the TypedArray, reading from the array input., reading input values from the array. The
optional offset value indicates the index in the current array where values are written. If omitted, it is assumed
to be 0.

If this does not have class “TypeArray”, throw a TypeError.
Let offsetindex be ToUInt32(offset)
Let O be the result of calling ToObject(array).
Let srcLength be the result of calling [[Get]] on O with property name “length”.
Let targetLength be the result of calling [[Get]] on this with property name “length”
If srcLength + offset > targetLength, throw a RangeError.
Let temp be a new TypeArray created as if by a call to “new TypeArray(srcLength)
Letk be 0
While k < srcLength
a. Let v be the result of calling [[Get]] on src with property name toString(k)
b. Call [[Put]] on temp with arguments ToString(k), v, and false

2

OCOoNoo~WNE

10. Let k be offset

11. While k < targetLength
c. Letv be the result of calling [[Get]] on temp with property name ToString(k -offset)
d. Call [[Put]] on temp with arguments ToString(k), v, and false

© Ecma International 2012 293

secma

15.13.6.4.3 TypeArray.prototype.subarray(begin [, end])

Returns a new TypedArray view of the ArrayBuffer store for this TypedArray, referencing the elements at
begin, inclusive, up to end, exclusive. If either begin or end is negative, it refers to an index from the end of the
array, as opposed to from the beginning.

If this does not have class “TypeArray”, throw a TypeError.

Let srcLength be the result of calling [[Get]] on this with property name “length”

Let beginint be ToInt32(begin)

If beginint < O, let beginint be srcLength + beginint

Let beginindex be min(srcLength, max(0, beginint))

Let endInt be Tolnt32(end) if end was provided, else srcLength.

If endint <0,let endInt be srcLength + endint

Let endIndex be max(0,min(srcLength, endint))

If endindex < beginindex, let endIndex be beginindex

0. Return a new TypeArray with the following values for it’s proeprties:

. The length property of the newly constructed object is set to endIndex - beginindex

. The byteLength property of the newly constructed object is set to length multiplied by the size in
bytes of Type.

. The buffer property of the newly constructed object is set to this.buffer.

) The byteOffset property of the newly constructed object is set to this.offset + beginindex.

HooNokwnPE

15.13.6.5 Properties of TypeArray instances

TypeArray instances inherit properties from the TypeArray prototype object and their [[Class]] internal property
value is “TypeArray”. TypeArray instances also have the following properties.

15.13.6.5.1 [[DefineOwnProperty]] (p, desc, throw)

TypeArray objects use a variation of. the [[DefineOwnProperty]] internal method used for other native
ECMAScript objects (8.12.9).

When the [[DefineOwnProperty]] internal method of A is called with property P, Property Descriptor Desc and
Boolean flag Throw, the following steps are taken:

1. Let succeeded be the result.of calling the default [[DefineOwnProperty]] internal method (8.12.9) on A
passing P,-Desc, and Throw as arguments.

If succeeded is false, return false.

If-Desc contains a Value field, let newValue be Desc.Value

Let convertedValue to ToType(newValue)

Let.index be ToUInt32(P)

Call the SetValuelnBuffer internal operation with arguments A.buffer.[[NativeBuffer]], A.byteOffset,
index, convertedVValue, and Type.
7. Return true.

SoUkwn

The internal operation SetValuelnBuffer takes five parameters, a native buffer nativeBuffer, an integer
byteOffset, an integer index, a value of type Type newValue, and a Type valueType. It operates as follows:

1. Let size be the size in bytes of the type valueType.

2. Let bytes be the array of bytes from nativeBuffer between offset byteOffset+(index*size) and offset
byteOffset+((index+1)*size)-1 inclusive.

3. Let newValueBytes be the result of converting newValue to an array of bytes, using the platform
endianness.

4, Set each byte of bytes from the corresponding byte of newValueBytes.

294 © Ecma International 2012

»ecma

15.13.6.5.2 [[GetOwnProperty]] (P)

TypeArray objects use a variation of the [[GetOwnProperty]] internal method used for other native ECMAScript
objects (8.12.1). This special internal method provides access to named properties corresponding to the
individual index values of the TypeArray objects.

When the [[GetOwnProperty]] internal method of A is called with property name P, the following steps are
taken:

1. Let desc be the result of calling the default [[GetOwnProperty]] internal method (8.12.1) on A with
argument P.

If desc is not undefined return desc.

If ToString(abs(Tolnteger(P))) is not the same value as P, return undefined.

Let length be the result of a calling [[Get]] on A with parameter “length”

Let index be Tolnteger(P).

If length < index, return undefined.

Let isLittleEndian be true if the platform endianness is little endian, else false.

Let value be the result of calling the GetValueFromBuffer internal operation with arguments
A.buffer.[[NativeBuffer]], A.byteOffset, index, Type, and littleEndian.
9. Return a Property Descriptor { [[Value]]: value, [[Enumerable]]: true, [[Writable]]: true, [[Configurable]]:

false }

PN~ LN

The internal operation GetValueFromBuffer takes three parameters, a native buffer nativeBuffer, an integer
byteOffset, an integer index, a Type valueType, and a boolean isLittleEndian. It operates as follows:

1. Let size be the size in bytes of the type valueType:

2. Let bytes be the array of bytes from nativeBuffer between offset byteOffset+(index*size) and offset
byteOffset+((index+1)*size)-1 inclusive.
3. Let rawValue be the result of convert the array bytes to a value of type valueType, using little endian if

isLittleEndian is true, otherwise big.endian.

4, If valueType is Float32 and rawValue is a Float32 representation of IEEE754 NaN, return the NaN
Number value.

5. Else, if valueType.is Float64 and rawValue is a Float64 representation of IEEE754 NaN, return the NaN
Number value.

6. Else, return the Number value that that represents the same numeric value as rawValue

15.13.6.5.3 length

The value of the length property is the length of the TypeArray object, which was fixed at creation. This
property has attributes { [[Writable]]: false, [[Enumerable]]: false, [[Configurable]]:false }.

15.13.6.5.4 byteLength

The value of the byteLength property is the length of the TypeArray object, which was fixed at creation. This
property has attributes { [[Writable]]: false, [[Enumerable]]: false, [[Configurable]]:false }.

15.13.6.5.5 buffer

The value of the buffer property is the length of the TypeArray object, which was fixed at creation. This
property has attributes { [[Writable]]: false, [[Enumerable]]: false, [[Configurable]]:false }.

15.13.6.5.6 byteOffset

The value of the byteOffset property is the length of the TypeArray object, which was fixed at creation. This
property has attributes { [[Writable]]: false, [[Enumerable]]: false, [[Configurable]]:false }.

© Ecma International 2012 295

secma

15.13.7 DataView Objects
15.13.7.1 The DataView Constructor Called as a Function

When DataView is called as a function rather than as a constructor, it creates and initialises a new DataView
object. Thus the function call DataView(...) is equivalent to the object creation expression new DataView(...)
with the same arguments.

15.13.7.2 The DataView Constructor
When DataView is called as part of a new expression, it is a constructor: it initialises the newly created object.
15.13.7.2.1 new DataView(buffer [, byteOffset [, byteLength]])

The [[Prototype]] internal property of the newly constructed object is set to the original DataView prototype
object, the one that is the initial value of DataView.prototype (15.13.3.3.1). The [[Class]] internal property of
the newly constructed object is set to “DataView”. The [[Extensible]] internal property of the newly constructed
object is set to true.

The remaining proeprties are set as follows:

Let O be ToObject(buffer)

If the [[Class]] internal property of O is not “ArrayBuffer”, raise a TypeError.

Let byteOffset be the result of calling ToUInt32 on byteOffset, if provided, or else 0.

Let bufferLength be the result of calling [[Get]] on O with property name “byteLength”.

Let byteLength be the result of calling ToUInt32 on byteLength, if provided, or else bufferLength —
byteOffset.

If byteOffset + byteLength is greater than bufferLength, raise a.RangeError exception.

The byteLength property of the newly constructed object is set to byteLength.

The buffer property of the newly constructed object is set to O.

The byteOffset property of the newly constructed object is set to byteOffset.

grwbdE

©eN

15.13.7.3 Proeprties of the DataView Constructor

The value of the [[Prototype]] internal property of the DataView constructor is the Function prototype object
(15.3.4).

Besides the internal properties and the length property (whose value is 3), the DataView constructor has the
following properties:

15.13.7.3.1 DataView.prototype

The initial value of DataView.prototype is the DataView prototype object (15.13.3.4).

This property has the attributes { [[Writable]]: false, [[Enumerable]]: false, [[Configurable]]: false }.

15.13.7.4 Properties of the DataView Prototype Object

The value of the [[Prototype]] internal property of the DataView prototype object is the standard built-in Object
prototype object (15.2.4). The [[Class]] internal property of the newly constructed object is set to “Object”. The

[[Extensible]] internal property of the newly constructed object is set to true.

The internal operation GetValue(byteOffset, isLittleEndian, type) used by functions on DataView instances is
defined as follows:

Let byteOffsetint be ToUInt32(byteOffset)

Let totalOffset be byteOffsetInt plus the result of calling [[Get]] on this with parameter “byteOffset”
Let byteLength be the result of calling [[Get]] on this with parameter “byteLength”

If totalOffset >= bytelLength, raise a RangeError

PR

296 © Ecma International 2012

»ecma

5. Let value be the result of calling the GetValueFromBuffer internal operation (2.5.2) with arguments
this.buffer.[[NativeBuffer]], totalOffset, 0 and type.
6. Return value

The internal operation SetValue(byteOffset, isLittleEndian, type, value) used by functions on DataView
instances is defined as follows:

Let byteOffsetint be ToUInt32(byteOffset)
Let totalOffset be byteOffsetInt plus the result of calling [[Get]] on this with parameter “byteOffset”
Let byteLength be the result of calling [[Get]] on this with parameter “byteLength”
If total Offset >= byteLength, raise a RangeError
Let value be the result of calling the SetValuelnBuffer internal operation (2:5.2) with arguments
this.buffer.[[NativeBuffer]], totalOffset, 0, value and type.
6. Return value

A A

15.13.7.4.1 DataView.prototype.constructor

The initial value of DataView.prototype.constructor is the standard built-in DataView constructor.
15.13.7.4.2 DataView.prototype.getint8(byteOffset)

Gets the Int8 value at offset byteOffset in the DataView.

1. Let O be ToObject(this)

2. If the [[Class]] internal property of O is-not “DataView”, raise a TypeError.

3. Return GetValue(byteOffset, true, Int8)

15.13.7.4.3 DataView.prototype.getUint8(byteOffset)

Gets the UInt8 value at offset byteOffset in the DataView.

1. Let O be ToObject(this)

2. If the [[Class]] internal property of O is not “DataView”, raise a TypeError.

3. Return GetValue(byteOffset, true; UInt8)

15.13.7.4.4 DataView.prototype.getint16(byteOffset, littleEndian)

Gets the Int16 value at offset byteOffset in the DataView, using the provided endianness.
Let O be ToObiject(this)

Let isLittleEndian be ToBoolean(littleEndian) if provided, else false

If the [[Class]] internal property of O is not “DataView”, raise a TypeError.
Return GetValue(byteOffset, isLittleEndian, Int16)

bR

15.13.7.4.5 DataView.prototype.getUint16(byteOffset, littleEndian)
Gets the Uint16 value at offset byteOffset in the DataView, using the provided endianness.

Let O be ToObject(this)

Let isLittleEndian be ToBoolean(littleEndian) if provided, else false

If the [[Class]] internal property of O is not “DataView”, raise a TypeError.
Return GetValue(byteOffset, isLittleEndian, Uint16)

PR

15.13.7.4.6 DataView.prototype.getint32(byteOffset, littleEndian)
Gets the Int32 value at offset byteOffset in the DataView, using the provided endianness.

1. Let O be ToObject(this)
2. Let isLittleEndian be ToBoolean(littleEndian) if provided, else false

© Ecma International 2012 297

secma

3. If the [[Class]] internal property of O is not “DataView”, raise a TypeError.
4, Return GetValue(byteOffset, isLittleEndian, Int32)

15.13.7.4.7 DataView.prototype.getUint32(byteOffset, littleEndian)

Gets the Uint32 value at offset byteOffset in the DataView, using the provided endianness.
Let O be ToObiject(this)

Let isLittleEndian be ToBoolean(littleEndian) if provided, else false

If the [[Class]] internal property of O is not “DataView”, raise a TypeError.
Return GetValue(byteOffset, isLittleEndian, Uint32)

PR

15.13.7.4.8 DataView.prototype.getFloat32(byteOffset, littleEndian)

Gets the Float32 value at offset byteOffset in the DataView, using the provided endianness.
1. Let O be ToObiject(this)

2. Let isLittleEndian be ToBoolean(littleEndian) if provided, else false

3. If the [[Class]] internal property of O is not “DataView”’; raise a TypeError.
4 Return GetValue(byteOffset, isLittleEndian, Float32)

15.13.7.4.9 DataView.prototype.getFloat64(byteOffset, littleEndian)

Gets the Float64 value at offset byteOffset in the DataView, using the provided endianness.
1. Let O be ToObject(this)

2. Let isLittleEndian be ToBoolean(littleEndian) if provided, else false

3. If the [[Class]] internal property of O is not “DataView”, raise a. TypeError.
4 Return GetValue(byteOffset, isLittleEndian, Float64)

15.13.7.4.10 DataView.prototype.setint8(byteOffset, value)

Sets the Int8 value at offset byteOffset in the DataView.

1. Let O be ToObiject(this)

2. If the [[Class]] internal property of O is not “DataView”, raise a TypeError.
3. Return GetValue(byteOffset, true, Int8, Tolnt8(value))

15.13.7.4.11 DataView.prototype.setUint8(byteOffset, value)

Sets the Uint8 value at offset byteOffset in the DataView.

4, Let Q be ToObiject(this)

5. If the [[Class]] internal property of O is not “DataView”, raise a TypeError.
6. Return GetValue(byteOffset, true, Uint8, ToUint8(value))

15.13.7.4.12 DataView.prototype.setint16(byteOffset, value, littleEndian)
Sets the Int16 value at offset byteOffset in the DataView.

1. Let O be ToObject(this)

2. Let isLittleEndian be ToBoolean(littleEndian) if provided, else false

3. If the [[Class]] internal property of O is not “DataView”, raise a TypeError.
4 Return GetValue(byteOffset, isLittleEndian, Int16, Tolntl6(value))
15.13.7.4.13 DataView.prototype.setUint16(byteOffset, value, littleEndian)

Sets the Uint16 value at offset byteOffset in the DataView.

298 © Ecma International 2012

»ecma

Let O be ToObject(this)

Let isLittleEndian be ToBoolean(littleEndian) if provided, else false

If the [[Class]] internal property of O is not “DataView”, raise a TypeError.
Return GetValue(byteOffset, isLittleEndian, Uint16, ToUint16(value))

PR

15.13.7.4.14 DataView.prototype.setint32(byteOffset, value, littleEndian)
Sets the Int32 value at offset byteOffset in the DataView.

1. Let O be ToObject(this)

2. Let isLittleEndian be ToBoolean(littleEndian) if provided, else false

3. If the [[Class]] internal property of O is not “DataView”, raise a TypeError:
4, Return GetValue(byteOffset, isLittleEndian, Int32, Tolnt32(value))

15.13.7.4.15 DataView.prototype.setUint32(byteOffset, value, littleEndian)
Sets the Uint32 value at offset byteOffset in the DataView.

Let O be ToObject(this)

Let isLittleEndian be ToBoolean(littleEndian) if provided, else false

If the [[Class]] internal property of O is not “DataView”, raise a TypeError.
Return GetValue(byteOffset, isLittleEndian, Uint32, ToUint32(value))

PobE

15.13.7.4.16 DataView.prototype.setFloat32(byteOffset, value, littleEndian)
Sets the Float32 value at offset byteOffset in the DataView.

Let O be ToObject(this)

Let isLittleEndian be ToBoolean(littleEndian) if provided, else false

If the [[Class]] internal property of O is not “DataView”, raise a TypeError.
Return GetValue(byteOffset, isLittleEndian, Float32, ToFloat32(value))

el N .

15.13.7.4.17 DataView.prototype.setUint16(byteOffset, value, littleEndian)
Sets the Float64 value at offset byteOffset in the DataView.

Let O be - ToObject(this)

Let isLittleEndian be ToBoolean(littleEndian) if provided, else false

If the [[Class]] internal property of O is not “DataView”, raise a TypeError.
Return GetValue(byteOffset, isLittleEndian, Float64, ToFloat64(value))

el o\

15.13.7.5 Propeties of DataView Instances

DataView instances inherit properties from the DataView prototype object and their [[Class]] internal property
value is “DataView”. DataView instances also have the following properties.

15.13.7.5.1 byteLength

The value of the byteLength property is the length of the DataView object, which was fixed at creation. This
property has attributes { [[Writable]]: false, [[Enumerable]]: false, [[Configurable]]:false }.

15.13.7.5.2 buffer

The value of the buffer property is the length of the DataView object, which was fixed at creation. This
property has attributes { [[Writable]]: false, [[Enumerable]]: false, [[Configurable]]:false }.

© Ecma International 2012 299

secma

15.13.7.5.3 byteOffset

The value of the byteOffset property is the length of the DataView object, which was fixed at creation. This
property has attributes { [[Writable]]: false, [[Enumerable]]: false, [[Configurable]]:false }.

15.14 Map Objects

Map objects are collections of key/value pairs where both the keys and values may be arbietrary ECMAScript
values. A Map object can also iterate its elements in insertion order. Map object must be implemented using
hash tables or other mechanisms that, on average, provide access times that are sublinear on the number of
elements in the collection. The data structures used in this Map objects specification is only intended to
describe the required observable semantics of Map objects. It is not intended to be a viable implementation
model.

15.14.1 Abstract Operations For Map Objects
15.14.1.1 MaplInitialization

The abstract operation Maplnitialization with arguments object and iterable is used to initialize.an object as a
map. It performs the following steps:

1. If Type(obj) is not Object, throw a TypeError exception.
2. If obj already has a [[MapData]] internal property, throw a TypeError exception.
3. If the [[Extensible]] internal property of obj is false, throw a TypeError exception.
4. If iterable is not undefined, then
a. Letiterable be ToObject(iterable).
b. ReturnlfAbrupt(iterable)
c. Let iterator be the @@iterator.
d. Letitr be the result of calling the Invoke abstraction operation with iterator, obj, and an empty List
as arguments.
e. ReturnlfAbrupt(itr).
f. Let adder be the result of calling the [[Get]] internal method of obj with argument "'set"".
g. ReturnlfAbrupt(addr).
h. If IsCallable(addr) is false, throw a TypeError Exception.
5. Add a [[MapData]] internal property to obj.
6. Setobj’s [[MapData]] internal- method to a new empty List.
7. If iterable_ issundefined, return obj.
8. Repeat
a. Let next be the result of performing Invoke with arguments "next", itr, and an empty arguments
List.
b. If IteratorComplete(next) is true, then return NormalCompletion(obyj).
C. Letnext be ToObject(next).
d." ReturnlfAbrupt(next).
e. Letkbe the result/of calling the [[Get]] internal method of next with argument **0"".
f. ReturnIfAbrupt(k).
g. Letv be the result of calling the [[Get]] internal method of next with argument 1.
h. ReturnlfAbrupt(v).
i

Let status be the result of calling the [[Call]] internal method of addr with arguments obj and a List
whose elements are k and v.
j. ReturnlfAbrupt(status).

15.14.2 The Map Constructor Called as a Function

When Map is called as a function rather than as a constructor, it initializes its this value with the internal state
necessary to support the Map.prototype internal methods. This premits super invocation of the Map
constructor by Map subclasses.

300 © Ecma International 2012

»ecma

15.14.2.1 Map (iterable=[1])

1. Let m be the this value.
2. If mis undefined or the intrinsic %MapPrototype%
a. Let map be the result of the abstract operation ObjectCreate (15.2) with the intrinsic
%MapPrototype% as the argument.

w

Else
a. Let map be the result of ToObject(m).
ReturnlfAbrupt(map).
If iterable is not present, let iterable be undefined.
Let status be the result of MaplInitialization with map and iterable as agruments,
ReturnlfAbrupt(status).
Return map.

15.14.3 The Map Constructor

NG~

When Map is called as part of a new expression it is a constructor: itinitialises the newly created object.
15.14.3.1 new Map (iterable =[])

1. Let map be the result of the abstract operation ObjectCreate (15.2) with.the intrinsic %MapPrototype% as
the argument.

If iterable is not present, let iterable be undefined.

Let status be the result of Maplnitialization with map and iterable as agruments.

ReturnIfAbrupt(status).

Return map.

apbown

15.14.4 Properties of the Map Constructor
The value of the [[Prototype]] internal property of the Map_constructor is the Function prototype object (15.3.4).

Besides the internal properties and the length property (whose value is 0), the Map constructor has the
following property:

15.14.4.1 Map.prototype

The initial value of Map . prototype is the Map prototype object (15.14.4).

This property has the attributes { [[Writable]]: false, [[Enumerable]]: false, [[Configurable]]: false }.
15.14:5 Properties of the Map Prototype Object

The value of the [[Prototype]] internal property of the Map prototype object is the standard built-in Object
prototype object (15.2.4).

15.14.5.1 Map.prototype.constructor

The initial value of Map.prototype.constructor is the built-in Map constructor.
15.14.5.2 Map.prototype.delete (key)

The following steps are taken:

Let M be the result of calling ToObject with the this value as its argument.
ReturnlfAbrupt(M).
If M does not have a [[MapData]] internal property throw a TypeError exception.
Let entries be the List that is the value of M’s [[MapData]] internal property.
Repeat for each Record {[[key]], [[value]]} p that is an element of entries,
a. If SameValue(p.[[key]], key), then
i. Set p.[[key]] to empty.

agrwhE

© Ecma International 2012 301

secma

il Set p.[[value]] to empty.
iii. Return true.
6. Return false.

15.14.5.3 Map.prototype.forEach (callbackfn , thisArg = undefined)

callbackfn should be a function that accepts three arguments. forEach calls callbackfn once for each
key/value pair present in the map object, in key insertion order. callbackfn is called only for keys of the map
which actually exist; it is not called for keys that have been deleted from the map.

If a thisArg parameter is provided, it will be used as the this value for each invocation of callbackfn. If it is not
provided, undefined is used instead.

callbackfn is called with three arguments: the value of the item, the key of the item, and the Map object being
traversed.

forEach does not directly mutate the object on which it is called but the object may be mutated by the calls to
callbackfn.

NOTE Each key is visited only once with the value that is current at the time of.the visit. If the value associated with a
key is modified after it has been visited, it is not re-visited. Keys that are deleted after the call to forEach begins and
before being visited are not visited. New keys added, after the callto forEach begins are visited.

When the forEach method is called with one or two arguments, the following steps are taken:

Let M be the result of calling ToObject with the thisvalue as its argument.
ReturnlfAbrupt(M).
If M does not have a [[MapData]] internal property throw a TypeError exception.
If IsCallable(callbackfn) is false, throw a TypeError exception.
If thisArg was supplied, let T-be thisArg; else let T be'undefined.
Let entries be the List thatis the value of M’s [[MapData]] internal property.
Repeat for each Record {[[key]], [[value]]} e that is an element of entries,in original key insertion order
a. Ife.[[key]] is' not empty, then
i Let funcResult be the result of calling the [[Call]] internal method of callbackfn with T as
the this value and argument list-containing e.[[value]], e.[[key]], and M.
ii. ReturnlfAbrupt(funcResult).
8. Return undefined.

NogkwbpE

The length property of the forEach method is 1.
15.14.5.4 Map.prototype.get (key)

The following steps are taken:

Let M be the result of calling ToObject with the this value the as its argument.
ReturnlfAbrupt(M).
If M does not have a [[MapData]] internal property throw a TypeError exception.
Let entries be the List that is the value of M’s [[MapData]] internal property.
Repeat for each Record {[[key]], [[value]]} p that is an element of entries,

a. If SameValue(p.[[key]], key), then return p.[[value]]
6. Return undefined.

gRrwNPE

15.14.5.5 Map.prototype.has (key)
The following steps are taken:

Let M be the result of calling ToObject with the this value as its argument.
ReturnlfAbrupt(M).

If M does not have a [[MapData]] internal property throw a TypeError exception.
Let entries be the List that is the value of M’s [[MapData]] internal property.

PR

302 © Ecma International 2012

»ecma

5. Repeat for each Record {[[key]], [[value]]} p that is an element of entries,
a. If SameValue(p.[[key]], key), then return true.
6. Return false.

15.14.5.6 Map.prototype.items ()
The following steps are taken:

1. Return the result of calling the CreateMaplterator abstract operation with arguments O and "key+value''.

15.14.5.7 Map.prototype.keys ()
The following steps are taken:

1. Return the result of calling the CreateMaplterator abstract operation with arguments O and "key"".

15.14.5.8 Map.prototype.set (key , value)
The following steps are taken:

Let M be the result of calling ToObject with the this value as its argument.
ReturnIfAbrupt(M).
If M does not have a [[MapData]] internal property throw a TypeError exception.
Let entries be the List that is the value of M’s [[MapData]] internal property.
Repeat for each Record {[[key]], [[value]]} p thatis an element of entries,
a. If SameValue(p.[[key]], key), then
i Set p.[[value]] to value.
ii. Return undefined.
6. Letp bethe Record {[[key]]: key, [[value]]: value}
7. Append p as the last element of entries.
8. Return undefined.

g E

15.14.5.9 Map.prototype.size (key)
The following steps are taken:

Let M be.the result-of calling ToObject with the this value as its argument.
ReturnifAbrupt(M).
If M'does not have a [[MapData]] internal property throw a TypeError exception.
Let entries be the List that is the value of M’s [[MapData]] internal property.
Let count be 0.
For each -Record {[[key]], [[value]]} p that is an element of entries

a. p.[[key]] I snot empty then

i Set count to count+1.

7. Return count.

ook wnE

15.14.5.10 Map.prototype.values ()
The following steps are taken:

1. Return the result of calling the CreateMaplterator abstract operation with arguments O and "value™.

15.14.5.11 Map.prototype.@@iterator ()

The initial value of the @@iterator property is the same function object as the initial value of the items
property.

© Ecma International 2012 303

secma

15.14.5.12 Map.prototype.@@toStringTag ()
The initial value of the @ @toStringTag property is the string value "Map".
15.14.6 Properties of Map Instances

Map instances inherit properties from the Map prototype. After initialization by the Map constructor, Map
instances also have a [[MapData]] internal property.

15.14.7 Map lterator Objects

A Map lterator is an object that represent a specific iteration over some specific’ Map instance object. There is
not a named constructor for Map Iterator objects. Instead, map iterator objects are created by calling certain
methods of Map instance objects.

15.14.7.1 CreateMaplterator Abstract Operation

Several methods of Map objects return interator objects. The abstract operation CreateMaplterator with
arguments map and kind is used to create and such iterator objects. It performs the following steps:

1. Let M be the result of calling ToObject(map).

2. ReturnlfAbrupt(M).

3. If M does not have a [[MapData]] internal property throw a TypeError exception.

4. Letentries be the List that is the value of M’s [[MapData]] internal property.

5. Letitr be the result of the abstract operation ObjectCreate with the intrinsic object %MaplteratorPrototype%
as its argument.

6. Add a[[Map]] internal property to itr with value M.

7. Add a [[MapNextindex]] internal property to itr with value 0.

8. Add a [[MaplterationKind]] internal property of itr with value kind.

9. Return itr.

15.14.7.2 The Map lterator Prototype

All Map lterator Objects inherit properties from a common Map Iterator Prototype objects. The [[Prototype]]
internal property of the Map Iterator Prototype is the %ObjectPrototype% intrinsic object. In addition, the Map
Iterator Prototype as the followingproperties:

15.14.7.2.1 Maplterator.prototype.constructor

15.14.7.2.2 Maplterator.prototype.next

1. Let O be the this value.

2. If Type(O).is not Object, throw a TypeError exception.

3. If O does nothave all of the internal properties of a Map Iterator Instance (15.14.7.1.2), throw a TypeError
exception.

4. Let m be the value of the [[Map]] internal property of O.

5. Letindex be the value of the [[MapNextIndex]] internal property of O.

6. LetitemKind be the value of the [[MaplterationKind]] internal property of O.

7. Assert: m has a [[MapData]] internal property.

8. Letentries be the List that is the value of the [[MapData]] internal property of m.

9. Repeat while index is less than the total number of element of entries. The number of elements must be

redetermine each time this method is evaluated.
a. Lete be the Record {[[key]], [[value]]}at 0-origined insertion position index of entries.
b. Setthe [[MapNextindex]] internal property of O to index.
c. Ife.[[key]]is not empty, then
i If itemKind is "key" then, let result be e.[[key]].
ii. Else if itemKind is ""value' then, let result be e.[[value]].
iii. Else,
1. Assert: itemKind is "key+value"

304 © Ecma International 2012

2. Let result be the result of the abstract operation ObjectArray with argument 2.

3. Assert: result is a new, well-formed Array object so the following operations will
never fail.

4. Call the [[DefineOwnProperty]] internal method of result with arguments 0",
Property Descriptor {[[Value]]: e.[[key]], [[Writable]]: true, [[Enumerable]]: true,
[[Configurable]]: true}, and false.

5. Call the [[DefineOwnProperty]] internal method of result with arguments "1,
Property Descriptor {[[Value]]: e.[[value]], [[WTritable]]: true, [[Enumerable]]:
true, [[Configurable]]: true}, and false.

iv. Return result.
10. Return Completion {[[type]]: throw, [[value]]: %Stoplteration%, [[target]]: empty}.

15.14.5.11 Maplterator.prototype.@@iterator ()

The following steps are taken:

1. Return the this value.

15.14.7.2.3 Maplterator.prototype.@@toStringTag

The initial value of the @ @toStringTag property is the string value "Map Iterator".

15.14.7.3 Properties of Map lterator Instances

Map Iterator instances inherit properties-.. from the Map Iterator prototype (the
intrinsic, %MaplteratorPrototype%.) Map Iterator instances are initially created with the following internal

properties.

Table 30.Internal Properties.-of Map lterator Instances

Internal Property Name Description

[[Map]] The Map object that is being iterated.

[[MapNextindex]] The integer index.of the next Map data element to be examined by
this iteration.

[[MaplterationKind]] A string value that identifies what is to be returned for each
element of the iteration. The possible values are: "key", "value",
"key+value".

15.15 WeakMap Objects
15.16 Set Objects
15.17 The Reflect Module

This is a place holder for the material in http://wiki.ecmascript.org/doku.php?id=harmony:reflect api

15.18 Proxy Objects

16 Errors

An implementation must report most errors at the time the relevant ECMAScript language construct is
evaluated. An early error is an error that can be detected and reported prior to the evaluation of any construct
in the Program containing the error. An implementation must report early errors in a Program prior to the first

© Ecma International 2012 305

http://wiki.ecmascript.org/doku.php?id=harmony:reflect_api

secma

evaluation of that Program. Early errors in eval code are reported at the time eval is called but prior to
evaluation of any construct within the eval code. All errors that are not early errors are runtime errors.

An implementation must treat any instance of the following kinds of errors as an early error:

Any syntax error.

Attempts to define an ObjectLiteral that has multiple get property assignments with the same name or
multiple set property assignments with the same name.

Attempts to define an ObjectLiteral that has both a data property assignment and a get or set property
assignment with the same name.

Errors in regular expression literals that are not implementation-defined syntax extensions.

Attempts in strict mode code to define an ObjectLiteral that has multiple data property assignments
with the same name.

The occurrence of a WithStatement in strict mode code.

The occurrence of an Identifier value appearing more than once within a FormalParameterList of an
individual strict mode FunctionDeclaration or FunctionExpression.

Improper uses of return, break, and continue.

Attempts to call PutValue on any value for which an early determination can be made that the value is
not a Reference (for example, executing the assignment statement 3=4).

An implementation shall not treat other kinds of errors as early errors‘even if the compiler can prove that a
construct cannot execute without error under any circumstances.<An implementation may issue an early
warning in such a case, but it should not report the error until the relevant construct is actually executed.

An implementation shall report all errors as specified, except for the following:

306

e An implementation may extend program syntax-and regular expression pattern or flag
syntax. To permit this, all operations (such as calling.eval, using a regular expression
literal, or using the Function or RegExp constructor) that are allowed to throw
SyntaxError are ‘permitted to exhibit implementation-defined behaviour instead of throwing
SyntaxError when they encounter an implementation-defined extension to the program
syntax or regular expression pattern or flag syntax.

e An implementation may provide additional types, values, objects, properties, and functions
beyond those described in this specification. This may cause constructs (such as looking up
a variable in the global scope) to have implementation-defined behaviour instead of
throwing.an error (such as ReferenceError).

e ~An implementation may. define behaviour other than throwing RangeError for toFixed,
toExponential, and toPrecision when the fractionDigits or precision argument is
outside the specified range.

© Ecma International 2012

© Ecma International 2012 307

secma

A.1 Lexical Grammar

SourceCharacter ::
any Unicode code unit

InputElementDiv ::
WhiteSpace
LineTerminator
Comment
Token
DivPunctuator

InputElementRegExp ::
WhiteSpace
LineTerminator
Comment
Token
RegularExpressionLiteral

WhiteSpace ::
<TAB>
<VT>
<FF>
<SpP>
<NBSP>
<BOM>
<USP>

LineTerminator ::
<LF>
<CR>
<S>
<pPS>

LineTerminatorSequence ::
<LF>
<CR> [lookahead ¢ <LF>]
<LS>
<pS>
<CR> <LF>

Comment ::
MultiLineComment
SingleLineComment

308

Annex A
(informative)

Grammar Summary

See clause 6

See clause 7

See clause 7

See 7.2

See 7.3

See 7.3

See 7.4

© Ecma International 2012

secma

MultiLineComment ::
/* MultiLineCommentCharsSep: */

MultiLineCommentChars ::
MultiLineNotAsteriskChar MultiLineCommentCharsep:
* PostAsteriskCommentCharsept

PostAsteriskCommentChars ::
MultiLineNotForwardSlashOrAsteriskChar MultiLineCommentCharsgp:
* PostAsteriskCommentCharsept

MultiLineNotAsteriskChar ::
SourceCharacter but not *

MultiLineNotForwardSlashOrAsteriskChar ::
SourceCharacter but not one of / or *

SingleLineComment ::
// SingleLineCommentCharsgpt

SingleLineCommentChars ::
SingleLineCommentChar SingleLineCommentCharsopt

SingleLineCommentChar ::
SourceCharacter but not _LineTerminator

Token ::
IdentifierName
Punctuator
NumericLiteral
StringLiteral

Identifier ::
IdentifierName but not ReservedWord

IdentifierName ::
IdentifierStart
IdentifierName IdentifierPart

IdentifierStart ::

UnicodeLetter
$

Y UnicodeEscapeSequence

© Ecma International 2012

See 7.4

See 7.4

See 7.4

See 7.4

See 7.4

See 7.4

See 7.4

See 7.4

See 7.5

See 7.6

See 7.6

See 7.6

309

secma

IdentifierPart :: See 7.6
IdentifierStart
UnicodeCombiningMark
UnicodeDigit
UnicodeConnectorPunctuation
<ZWNJ>
<ZWJ>

UnicodeLetter :: See 7.6
any character in the Unicode categories “Uppercase letter (Lu)”, “Lowercase letter
(L), “Titlecase letter (Lt)”, “Modifier letter (Lm)”, “Other letter (Lo)”, or “Letter
number (NI)”.

UnicodeCombiningMark :: See 7.6
any character in the Unicode categories “Non-spacing mark (Mn)” or “Combining
spacing mark (Mc)”

UnicodeDigit :: See 7.6
any character in the Unicode category “Decimal number(Nd)”

UnicodeConnectorPunctuation :: See 7.6
any character in the Unicode category “Connector punctuation (Pc)”

ReservedWord :: See 7.6.1
Keyword
FutureReservedWord
NullLiteral
BooleanLiteral

Keyword :: one of See 7.6.1.1
break do instanceof typeof
case else new var
catch finally return void
continue for switch while
debugger function this with
default if throw
delete in try
FutureReservedWord :: one of See 7.6.1.2
class enum extends super
const export import

The following tokens are also considered to be FutureReservedWords when parsing strict mode
code (see 10.1.1).

implements let private public
interface package protected static
yield

310 © Ecma International 2012

secma

Punctuator :: one of See 7.7
{ } () [1
7 ’ < > <=
>= == 1= === ==
+ - * % ++ -
<< >> >>> & | A
1 ~ && | ?
= += —_ *= %= <<L=
>>= >>>= &= = A=
DivPunctuator :: one of See 7.7
/ /=
Literal :: See 7.8
NullLiteral

BooleanLiteral
NumericLiteral
StringLiteral
RegularExpressionLiteral

NullLiteral :: See 7.8.1
null

BooleanLiteral :: See 7.8.2
true
false

NumericLiteral :: See 7.8.3

DecimallLiteral
HexIntegerLiteral

DecimalLiteral :: See 7.8.3
DecimalintegerLiteral . DecimalDigitsop: ExponentPartop
. DecimalDigits ExponentPartopt
DecimallntegerLiteral ExponentPartop

DecimallntegerLiteral :: See 7.8.3
0

NonZeroDigit DecimalDigitSopt

DecimalDigits :: See 7.8.3
DecimalDigit
DecimalDigits DecimalDigit

DecimalDigit :: one of See 7.8.3
0 1 2 3 4 5 6 7 8 9

© Ecma International 2012 311

secma

NonZeroDigit :: one of
1 2 3 4 5 6 7

ExponentPart ::

Exponentindicator Signedinteger

Exponentindicator :: one of
e E

Signedinteger ::
DecimalDigits
+ DecimalDigits
- DecimalDigits

HexlIntegerLiteral ::
0x HexDigit
0x HexDigit
HexIntegerLiteral HexDigit

HexDigit :: one of

0123456789 abcdefABCDESTF

StringLiteral ::

" DoubleStringCharactersgp: "
' SingleStringCharactersqp: !

DoubleStringCharacters ::

DoubleStringCharacter DoubleStringCharactersgpt

SingleStringCharacters ::

SingleStringCharacter SingleStringCharactersopt

DoubleStringCharacter ::

SourceCharacter but not one of " or \ or LineTerminator

\ EscapeSequence
LineContinuation

SingleStringCharacter ::

SourceCharacter but not one of * or \ or LineTerminator

\ EscapeSequence
LineContinuation

LineContinuation ::
\ LineTerminatorSequence

EscapeSequence ::
CharacterEscapeSequence
0 [lookahead ¢ DecimalDigit]
HexEscapeSequence
UnicodeEscapeSequence

CharacterEscapeSequence ::
SingleEscapeCharacter
NonEscapeCharacter

SingleEscapeCharacter :: one of
' " \ b £ n r

312

8

t

See 7.8.3

See 7.8.3

See 7.8.3

See 7.8.3

See 7.8.3

See 7.8.3

See 7.8.4

See 7.8.4

See 7.8.4

See 7.8.4

See 7.8.4

See 7.8.4

See 7.8.4

See 7.8.4

See 7.8.4

© Ecma International 2012

»ecma

NonEscapeCharacter ::
SourceCharacter but not one of EscapeCharacter or LineTerminator

EscapeCharacter ::
SingleEscapeCharacter
DecimalDigit
X
u

HexEscapeSequence ::
x HexDigit HexDigit

UnicodeEscapeSequence ::
u HexDigit HexDigit HexDigit HexDigit

RegularExpressionLiteral ::
/ RegularExpressionBody / RegularExpressionFlags

RegularExpressionBody ::
RegularExpressionFirstChar RegularExpressionChars

RegularExpressionChars ::
[empty] _ _
RegularExpressionChars RegularExpressionChar

RegularExpressionFirstChar ::
RegularExpressionNonTerminator but not one of *'or \ or / or [
RegularExpressionBackslashSequence
RegularExpressionClass

RegularExpressionChar ::
RegularExpressionNonTerminator but not \'or / or [
RegularExpressionBackslashSequence
RegularExpressionClass

RegularExpressionBackslashSequence ::
\ RegularExpressionNonTerminator

RegularExpressionNonTerminator ::
SourceCharacter but‘not LineTerminator

RegularExpressionClass ::
[RegularExpressionClassChars 1]

RegularExpressionClassChars ::
[empty]
RegularExpressionClassChars RegularExpressionClassChar

RegularExpressionClassChar ::
RegularExpressionNonTerminator but not] or \
RegularExpressionBackslashSequence

© Ecma International 2012

See 7.8.4

See 7.8.4

See 7.8.4

See 7.8.4

See 7.8.5

See 7.8.5

See 7.8.5

See 7.8.5

See 7.8.5

See 7.8.5

See 7.8.5

See 7.8.5

See 7.8.5

See 7.8.5

313

secma

RegularExpressionFlags :: See 7.85
[empty]
RegularExpressionFlags IdentifierPart

A.2 Number Conversions

StringNumericLiteral ::: See 9.1.3.1
StrWhiteSpaceopt
StrWhiteSpaceop: StrNumericLiteral StrWhiteSpaceopt

StrWhiteSpace ::: See 9.1.3.1
StrWhiteSpaceChar StrWhiteSpaceopt

StrWhiteSpaceChar ::: See 9.1.3.1
WhiteSpace
LineTerminator

StrNumericLiteral ::: See 9.1.3.1
StrDecimalLiteral
HexIntegerLiteral

StrDecimalLiteral ::: See 9.1.3.1
StrUnsignedDecimalLiteral
+ StrUnsignedDecimalLiteral
- StrUnsignedDecimalLiteral

StrUnsignedDecimalLiteral ::: See 9.1.3.1
Infinity
DecimalDigits . DecimalDigitsop: ExponentPartop
. DecimalDigits ExponentPartopt
DecimalDigits ExponentPartop:

DecimalDigits::: See 9.1.3.1
DecimalDigit
DecimalDigits DecimalDigit

DecimalDigit::: one of See 9.1.3.1
0 1 2 3 4 5 6 7 8 9

ExponentPart ::: See 9.1.3.1
Exponentindicator Signedinteger

ExponentIndicator ::: one of See9.1.3.1
e E

Signedinteger ::: See 9.1.3.1
DecimalDigits
+ DecimalDigits
- DecimalDigits

314 © Ecma International 2012

»ecma

HexIntegerLiteral ::: See 9.1.3.1
0x HexDigit
0X HexDigit
HexlIntegerLiteral HexDigit

HexDigit ::: one of See9.1.3.1
0123456789abcdefABCDETF

A.3 Expressions

PrimaryExpression : See 11.1
this
Identifier
Literal
ArrayLiteral
ObijectLiteral
(Expression)

ArrayLiteral : See 11.1.4
[Elisiong 1
[ElementList]
[ElementList , Elisiongp:]

ElementList : See11.1.4
Elisiongp: AssignmentExpression
ElementList , Elisiono,: AssignmentExpression

Elision : See 11.1.4
Elision ,

ObjectLiteral : See 11.1.5
{1}

{ PropertyDefinitionList }
{< PropertyDefinitionList , }

PropertyDefinitionList : See11.1.5
PropertyDefinition
PropertyDefinitionList ,* PropertyDefinition

PropertyDefinition : See 11.1.5
PropertyName : AssignmentExpression
get PropertyName () { FunctionBody }
set PropertyName (PropertySetParameterList) { FunctionBody }

PropertyName : See11.1.5
IdentifierName
StringLiteral
NumericLiteral

PropertySetParameterList : See11.1.5
Identifier

© Ecma International 2012 315

secma

MemberExpression :

PrimaryExpression
FunctionExpression
MemberExpression [Expression]
MemberExpression . IdentifierName
new MemberExpression Arguments

NewExpression :

MemberExpression
new NewExpression

CallExpression :

MemberExpression Arguments
CallExpression Arguments
CallExpression [Expression]
CallExpression . IdentifierName

Arguments :

()
(ArgumentList)

ArgumentList :

AssignmentExpression
ArgumentList , AssignmentExpression

LeftHandSideExpression :

NewExpression
CallExpression

PostfixExpression :

LeftHandSideExpression

LeftHandSideExpression [no LineTerminator here] ++
LeftHandSideExpression [no LineTerminator here] —-

UnaryExpression :

PostfixExpression

delete UnaryExpression
void UnaryExpression
typeof UnaryExpression
++ UnaryExpression

-- UnaryExpression

+ UnaryExpression

- UnaryExpression

~ UnaryExpression

' UnaryExpression

MultiplicativeExpression :

316

UnaryExpression

MultiplicativeExpression * UnaryExpression
MultiplicativeExpression / UnaryExpression
MultiplicativeExpression % UnaryExpression

See 11.2

See 11.2

See 11.2

See 11.2

See 11.2

See 11.2

See 11.3

See 11.4

See 11.5

© Ecma International 2012

»ecma

AdditiveExpression : See 11.6
MultiplicativeExpression
AdditiveExpression + MultiplicativeExpression
AdditiveExpression = MultiplicativeExpression

ShiftExpression : See 11.7
AdditiveExpression
ShiftExpression << AdditiveExpression
ShiftExpression >> AdditiveExpression
ShiftExpression >>> AdditiveExpression

RelationalExpression : See 11.8
ShiftExpression
RelationalExpression < ShiftExpression
RelationalExpression > ShiftExpression
RelationalExpression <= ShiftExpression
RelationalExpression >= ShiftExpression
RelationalExpression instanceof ShiftExpression
RelationalExpression in ShiftExpression

RelationalExpressionNoln : See 11.8
ShiftExpression
RelationalExpressionNoln < ShiftExpression
RelationalExpressionNoln > ShiftExpression
RelationalExpressionNoln <= ShiftExpression
RelationalExpressionNoln >=ShiftExpression
RelationalExpressionNoln‘instanceof ShiftExpression

EqualityExpression : See 11.9
RelationalExpression
EqualityExpression == RelationalExpression
EqualityExpression !'= RelationalExpression
EqualityExpression === RelationalExpression
EqualityExpression !'== RelationalExpression

EqualityExpressionNoln : See 11.9
RelationalExpressionNoln
EqualityExpressionNoln == RelationalExpressionNoln
EqualityExpressionNoln!= RelationalExpressionNoln

EqualityExpressionNoln === RelationalExpressionNoln
EqualityExpressionNoln !== RelationalExpressionNoln
BitwiseANDEXxpression : See 11.10

EqualityExpression
BitwiseANDEXxpression & EqualityExpression

BitwiseANDExpressionNoln : See 11.10
EqualityExpressionNoln
BitwiseANDEXxpressionNoln & EqualityExpressionNoln

© Ecma International 2012 317

secma

BitwiseXORExpression : See 11.10
BitwiseANDEXxpression
BitwiseXORExpression »~ BitwissANDEXpression

BitwiseXORExpressionNoln : See 11.10
BitwiseANDEXxpressionNoln
BitwiseXORExpressionNoln ~ BitwiseANDExpressionNoln

BitwiseOREXxpression : See 11.10
BitwiseXORExpression
BitwiseORExpression | BitwiseXORExpression

BitwiseORExpressionNoln : See 11.10
BitwiseXORExpressionNoln
BitwiseORExpressionNoln | BitwiseXORExpressionNoln

LogicalANDExpression : See11.11
BitwiseOREXxpression
Logical ANDExpression && BitwiseOREXxpression

Logical ANDEXxpressionNoln : See 11.11
BitwiseOREXxpressionNoln
Logical ANDExpressionNoln && BitwiseOREXxpressionNoln

Logical ORExpression : See 11.11
Logical ANDEXxpression
LogicalORExpression || LogicalANDExpression

Logical ORExpressionNoln : See 11.11
Logical ANDExpressionNoln
LogicalORExpressionNoln || LogicalANDExpressionNoln

ConditionalExpression : See 11.12
LogicalORExpression
LogicalORExpression ? AssignmentExpression : AssignmentExpression

ConditionalExpressionNoln : See 11.12
Logical ORExpressionNoln
LogicalORExpressionNoln ? AssignmentExpression : AssignmentExpressionNoln

AssignmentExpression : See 11.13
ConditionalExpression
LeftHandSideExpression = AssignmentExpression
LeftHandSideExpression AssignmentOperator AssignmentExpression

AssignmentExpressionNoln : See 11.13
ConditionalExpressionNoln
LeftHandSideExpression = AssignmentExpressionNoln
LeftHandSideExpression AssignmentOperator AssignmentExpressionNoln

318 © Ecma International 2012

»ecma

AssignmentOperator : one of See 11.13
*= /= %= += -—= <<= >>= SO>= &= A= =
Expression : See 11.14

AssignmentExpression
Expression , AssignmentExpression

ExpressionNoln : See 11.14
AssignmentExpressionNoln
ExpressionNoln , AssignmentExpressionNoln

A.4 Statements

Statement : See clause 12
Block
VariableStatement
EmptyStatement
ExpressionStatement
IfStatement
IterationStatement
ContinueStatement
BreakStatement
ReturnStatement
WithStatement
LabelledStatement
SwitchStatement
ThrowStatement
TryStatement
DebuggerStatement

Block : See 12.1
{ StatementListopt }

StatementList : See 12.1
Statement
StatementList Statement

VariableStatement : See 12.2
wvar VariableDeclarationList ;

VariableDeclarationList : See 12.2
VariableDeclaration
VariableDeclarationList , VariableDeclaration

VariableDeclarationListNoln : See 12.2
VariableDeclarationNoln
VariableDeclarationListNoln , VariableDeclarationNoln

VariableDeclaration : See 12.2
Identifier Initialiserop:

VariableDeclarationNoln : See 12.2
Identifier InitialiserNolnept

© Ecma International 2012 319

secma

Initialiser :
= AssignmentExpression

InitialiserNoln :
= AssignmentExpressionNoln

EmptyStatement :

’

ExpressionStatement :
[lookahead ¢ {{, function}] EXpression ;

IfStatement :
if (Expression) Statement else Statement
if (Expression) Statement

IterationStatement :
do Statement while (Expression) ;
while (Expression) Statement
for (ExpressionNolngy; Expressiongp: ; EXpressiongp:) Statement
for (var VariableDeclarationListNoln ; Expressionep: ; Expressiongp). Statement
for (LeftHandSideExpression in Expression) Statement
for (var VariableDeclarationNoln in Expression) Statement

ContinueStatement :
continue ;

continue [no LineTerminator here] Identifier ;

BreakStatement :
break ;

break [no LineTerminator here] ldentifier ;

ReturnStatement :
return ;

return [no LineTerminator here] Expression ;

WithStatement :
with (Expression) Statement

SwitchStatement :
switch (Expression) CaseBlock

CaseBlock :
{ CaseClausesept }
{ CaseClausesop: DefaultClause CaseClausesqpt }

CaseClauses :
CaseClause
CaseClauses CaseClause

320

See 12.2

See 12.2

See 12.3

See 12.4

See 12.5

See 12.6

See 12.7

See 12.8

See 12.9

See 12.10

See 12.11

See 12.11

See 12.11

© Ecma International 2012

»ecma

CaseClause : See 12.11
case Expression : StatementListopt

DefaultClause : See 12.11
default : StatementListopt

LabelledStatement : See 12.12
Identifier : Statement

ThrowStatement : See 12.13
throw [no LineTerminator here] Expression ;

TryStatement : See 12.14
try Block Catch
try Block Finally
try Block Catch Finally

Catch : See 12.14
catch (Identifier) Block

Finally : See 12.14
finally Block

DebuggerStatement : See 12.15
debugger ;

A.5 Functions andPrograms

FunctionDeclaration : See clause 13
function ldentifier (FormalParameterListop:) { FunctionBody }

FunctionExpression : See clause 13
function Identifierqp ((FormalParameterListop:) { FunctionBody }

FormalParameterList : See clause 13
Identifier
FormalParameterList , ddentifier

FunctionBody : See clause 13
SourceElementsopt

Program : See clause 14
SourceElementsopt

SourceElements : See clause 14
SourceElement
SourceElements SourceElement

© Ecma International 2012 321

secma

SourceElement : See clause 14
Statement
FunctionDeclaration

A.6 Universal Resource Identifier Character Classes

uri See 15.1.3
uriCharactersgpt

uriCharacters ::: See 15.1.3
uriCharacter uriCharactersopt

uriCharacter ::: See 15.1.3
uriReserved
uriUnescaped
uriEscaped

uriReserved ::: one of See 15.1.3
;0 / 0?2 @ & = + $

uriUnescaped ::: See 15.1.3
uriAlpha
DecimalDigit
uriMark

uriEscaped ::: See 15.1.3
% HexDigit HexDigit

uriAlpha::: one of See 15.1.3
a b c d e £ g h i1 j k 1l m n o p g r s t uv w x y z
A B CDEF G H I JKUILMNUOUZPA QI R STUVWZX Y 2
uriMark :::-one of See 15.1.3
- .~ ()
A.7 Regular Expressions
Pattern :: See 15.10.1
Disjunction
Disjunction :: See 15.10.1
Alternative
Alternative | Disjunction
Alternative :: See 15.10.1
[empty]
Alternative Term
Term:: See 15.10.1
Assertion
Atom

Atom Quantifier

322 © Ecma International 2012

»ecma

Assertion ::
$
\ b
\ B
(? = Disjunction)
(? ! Disjunction)
Quantifier ::

QuantifierPrefix
QuantifierPrefix ?

QuantifierPrefix ::
*

+

?

{ DecimalDigits }

{ DecimalDigits , }

{ DecimalDigits , DecimalDigits }

Atom ::
PatternCharacter

\ AtomEscape
CharacterClass
(Disjunction)
(? : Disjunction)

PatternCharacter ::
SourceCharacter but not one of-
A8 N L
AtomEscape ::
DecimalEscape
CharacterEscape

CharacterClassEscape

CharacterEscape ::
ControlEscape
c ControlLetter
HexEscapeSequence
UnicodeEscapeSequence
IdentityEscape

ControlEscape :: one of
f n r t v

ControlLetter :: one of
a b ¢ d
D

e f
A B C E F

© Ecma International 2012

+

g h
G H

i
I

qu.

R~

[

=

Zb

oo

v e]

10 Q

xR

non

H

ae

See 15.10.1

See 15.10.1

See 15.10.1

See 15.10.1

See 15.10.1

See 15.10.1

See 15.10.1

See 15.10.1

K

N N

323

secma

IdentityEscape ::
SourceCharacter but not IdentifierPart
<ZWJ>
<ZWNJ>

DecimalEscape ::
DecimalintegerLiteral [lookahead ¢ DecimalDigit]

CharacterClassEscape :: one of
d D s S w W

CharacterClass ::
[[lookahead ¢ {*}] ClassRanges 1
[~ ClassRanges 1]

ClassRanges ::
[empty]
NonemptyClassRanges

NonemptyClassRanges ::
ClassAtom
ClassAtom NonemptyClassRangesNoDash
ClassAtom - ClassAtom ClassRanges

NonemptyClassRangesNoDash ::
ClassAtom
ClassAtomNoDash NonemptyClassRangesNoDash
ClassAtomNoDash® = ClassAtom ClassRanges

ClassAtom ::

ClassAtomNoDash

ClassAtomNoDash ::
SourceCharacter but not one of \ or] or -
\ ClassEscape

ClassEscape ::
DecimalEscape
b

CharacterEscape
CharacterClassEscape

A.8 JSON
A.8.1 JSON Lexical Grammar

JSONWhiteSpace ::
<TAB>
<CR>

324

See 15.10.1

See 15.10.1

See 15.10.1

See 15.10.1

See 15.10.1

See 15.10.1

See 15.10.1

See 15.10.1

See 15.10.1

See 15.10.1

See 15.12.1.1

© Ecma International 2012

»ecma

<LF>
<SP>

JSONString :: See 15.12.1.1
" JSONStringCharactersep: "

JSONStringCharacters :: See 15.12.1.1
JSONStringCharacter JSONStringCharactersept

JSONStringCharacter :: See 15.12.1.1
SourceCharacter but not one of " or \ or U+0000 through U+001F
\ JSONEscapeSequence

JSONEscapeSequence :: See 15.12.1.1
JSONEscapeCharacter
UnicodeEscapeSequence

JSONEscapeCharacter :: one of See 15.12.1.1
"/ \bfnrt

JSONNumber :: See 15.12.1.1
-opt DecimalintegerLiteral JSONFractionogp: ExponentPartop:

JSONFraction :: See 15.12.1.1
. DecimalDigits

JSONNullLiteral :: See 15.12.1.1
NullLiteral

JSONBooleanLiteral :: See 15.12.1.1

BooleanLiteral

A.8.2 JSON Syntactic.Grammar

JSONText : See 15.12.1.2
JSONValue
JSONValue : See 15.12.1.2

JSONNullLiteral
JSONBooleanLiteral
JSONODbject
JSONArray
JSONString
JSONNumber

JSONObject : See 15.12.1.2
{1}
{ JSONMemberList }

JSONMember : See 15.12.1.2
JSONString : JSONValue

JSONMemberList : See 15.12.1.2
JSONMember
JSONMemberList , JSONMember

JSONArray : See 15.12.1.2

[1]
[JSONElementList]

© Ecma International 2012

325

B INTERNATIONAL

JSONEIlementList : See 15.12.1.2
JSONValue
JSONEIlementList , JSONValue

326 © Ecma International 2012

© Ecma International 2012 327

secma

Annex B
(normative)

Additional ECMAScript Features for Web Browsers

The ECMAScript language syntax and semantics defined in this annex are required when the ECMAScript
host is a web browser. The content of this annex is normative but optional if the ECMAScript host is not a web
browser.

B.1 Additional Syntax
B.1.1 Numeric Literals

The syntax and semantics of 7.8.3 is extended as follows except that this extension is not allowed for strict
mode code:

Syntax

NumericLiteral ::
DecimalLiteral
BinaryIntegerLiteral
OctallntegerLiteral
HexIntegerLiteral
LegacyOctalintegerLiteral

LegacyOctallntegerLiteral ::
0 OctalDigit
LegacyOctalintegerLiteral OctalDigit

Static Semantics

e The MV of LegacyOctallntegerLiteral :: 0 OctalDigit is the MV of OctalDigit.

e The MV of LegacyOctalintegerLiteral :: LegacyOctallntegerLiteral OctalDigit is (the MV of
LegacyOctallntegerLiteral times 8) plus the MV of OctalDigit.

B.1.2 _String Literals

The syntax and semantics of 7.8.4 is extended as follows except that this extension is not allowed for strict
mode code:

Syntax

EscapeSequence ::
CharacterEscapeSequence
OctalEscapeSequence
HexEscapeSequence
UnicodeEscapeSequence

OctalEscapeSequence ::
OctalDigit [lookahead ¢ DecimalDigit]
ZeroToThree OctalDigit [lookahead ¢ DecimalDigit]
FourToSeven OctalDigit
ZeroToThree OctalDigit OctalDigit

ZeroToThree :: one of
0o 1 2 3

328 © Ecma International 2012

»ecma

FourToSeven :: one of
4 5 6 7

Static Semantics

. The CV of EscapeSequence :: OctalEscapeSequence is the CV of the OctalEscapeSequence.

. The CV of OctalEscapeSequence :: OctalDigit [lookahead ¢ DecimalDigit] iS the character whose code unit
value is the MV of the OctalDigit.

. The CV of OctalEscapeSequence :: ZeroToThree OctalDigit [lookahead ¢ DecimalDigit] iS the character whose
code unit value is (8 times the MV of the ZeroToThree) plus the MV of the OctalDigit.

o The CV of OctalEscapeSequence :: FourToSeven OctalDigit is the character whoese code unit value is (8
times the MV of the FourToSeven) plus the MV of the OctalDigit.

o The CV of OctalEscapeSequence :: ZeroToThree OctalDigit OctalDigit is the character whose code unit

value is (64 (that is, 82) times the MV of the ZeroToThree) plus (8 times the MV of the first OctalDigit)
plus the MV of the second OctalDigit.

. The MV of ZeroToThree :: 0 is O.
. The MV of ZeroToThree :: 1is 1.
. The MV of ZeroToThree :: 2 is 2.
. The MV of ZeroToThree :: 3 is 3.
. The MV of FourToSeven :: 4 is 4.
. The MV of FourToSeven :: 5 is 5.
. The MV of FourToSeven :: 6 is 6.
. The MV of FourToSeven :: 7 is 7.

B.2 Additional Properties

When the ECMAScript host is a web browser the following additional- properties of the standard built-in
objects are defined.

B.2.1 Additional Properties of the Global Object
B.2.1.1 escape (string)

The escape function is a property of the global object. It computes a new version of a String value in which
certain characters have been replaced by a hexadecimal escape sequence.

For those characters being replaced whose code unit value is OxXFF or less, a two-digit escape sequence of
the form %$xx is used. For those characters being replaced whose code unit value is greater than 0xFF, a four-
digit escape sequence of the form $uxxxx is used.

When the escape function is called with one argument string, the following steps are taken:

Call ToString(string).

Compute the number of characters in Result(1).

Let R be the empty string.

Let k be 0.

If k equals Result(2), return R.

Get the character (represented as a 16-bit unsigned integer) at position k within Result(1).

If Result(6) is one of the 69 nonblank characters

“ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopgrstuvwxyz0123456789@* +-./”

then go to step 13.

If Result(6), is less than 256, go to step 11.

9. Let S be a String containing six characters “%uwxyz” where wxyz are four hexadecimal digits encoding the
value of Result(6).

10. Go to step 14.

11. Let S be a String containing three characters “%xy” where xy are two hexadecimal digits encoding the value

of Result(6).

NogokrwbhE

®

© Ecma International 2012 329

secma

12. Go to step 14.

13. Let S be a String containing the single character Result(6).

14. Let R be a new String value computed by concatenating the previous value of R and S.
15. Increase k by 1.

16. Go to step 5.

NOTE The encoding is partly based on the encoding described in RFC 1738, but the entire encoding specified in this
standard is described above without regard to the contents of RFC 1738. This encoding does not reflect changes to RFC
1738 made by RFC 3986.

B.2.1.2 unescape (string)

The unescape function is a property of the global object. It computes a new version of a String value in which
each escape sequence of the sort that might be introduced by the escape function is replaced with the
character that it represents.

When the unescape function is called with one argument string, the following steps are taken:

Call ToString(string).

Compute the number of characters in Result(1).

Let R be the empty String.

Letk be 0.

If k equals Result(2), return R.

Let c be the character at position k within Result(1).

If c is not %, go to step 18.

If k is greater than Result(2)-6, go to step 14.

If the character at position k+1 within Result(1) is not u, go.to step 14.

0. If the four characters at positions k+2, k+3, k+4, and k+5 within Result(1) are not all hexadecimal digits, go

to step 14.

11. Let c be the character whose code unit value is the integer represented by the four hexadecimal digits at
positions k+2, k+3, k+4, and k+5 within Result(1).

12. Increase k by 5.

13. Go to step 18.

14. If k is greater than Result(2)—3, go to step 18.

15. If the two characters at positions kK+1 and k+2 within Result(1) are not both hexadecimal digits, go to step
18.

16. Let c be the.character whose code unit value is the integer represented by two zeroes plus the two
hexadecimal digits at positions k+1 and k+2 within Result(1).

17. Increase k by 2.

18. Let R be a new String value computed by concatenating the previous value of R and c.

19. Increase k by 1.

20. Goto step 5.

HOoNokwbE

B.2.2 Additional Properties of the String.prototype Object
B.2.2.1 String.prototype.substr (start, length)

The substr method takes two arguments, start and length, and returns a substring of the result of converting
the this object to a String, starting from character position start and running for length characters (or through
the end of the String if length is undefined). If start is negative, it is treated as (sourceLength+start) where
sourceLength is the length of the String. The result is a String value, not a String object. The following steps are
taken:

ReturnlfAbrupt(CheckObjectCoercible(this value)).

Let S be the result of performing ToString, giving it the this value as its argument.
Let intStart be Tolnteger(start).

ReturnlfAbrupt(intStart).

If length is undefined, let end be +o0; otherwise let end be Tolnteger(length).
ReturnIfAbrupt(end).

oukwnPE

330 © Ecma International 2012

»ecma

Let size be the number of characters in S.

If intStart is negative, then let intStart be max(size + intStart,0).

Let resultLength be min(max(end,0), size — intStart).

If resultLength < O, return the empty String " ".

Return a String containing resultLength consecutive characters from S beginning with the character at
position intStart.

_ = © o~
=R

=

The length property of the substr method is 2.

NOTE The substr function is intentionally generic; it does not require that its this value be a String object.
Therefore it can be transferred to other kinds of objects for use as a method.

B.2.2.2 String.prototype.anchor (name)
When the anchor method is called with argument name, the following steps are taken:

1. Let S be the this value.
2. Return the result of performing the abstract operation CreateHTML with arguments S, "a", "name" and
name.

The abstract operation CreateHTML is called with arguments string, tag, attribute, and value. The arguments tag
and attribute must be string values. The following steps are taken:

ReturnlfAbrupt(CheckObjectCoercible(string)).
Let S be the result of performing ToString(string).
ReturnIfAbrupt(S).
Let p1 be the string value that is the concatenation of "<" and tag.
If attribute is not the empty String, then
a. LetV be the result of performing ToString(value).
b. ReturnlfAbrupt(V).
c. LetescapedV be the string value that is the same as V except that each occurrence of the character "
(code unit value 0x0022) inV has been replaced with the six character sequence " "".
d. Letpl be the string value that is the concatenation of the following string values:
e pl
¢ asingle space code unit 0x0020
e attribute

o "="

SAREE S o

[rwr

e escapedV

° rwr

6. Letp2be the string value that is the concatenation of pl and ">".
7. Let p3 bethe string value that is the concatenation of p2, "</", tag, and ">".
8. Return p3.

B.2.2.3 String.prototype.big ()
When the big method is called with no arguments, the following steps are taken:

1. Let S be the this value.
2. Return the result of performing the abstract operation CreateHTML with arguments S, "big™, "" and "".

B.2.2.4 String.prototype.blink ()
When the blink method is called with no arguments, the following steps are taken:

1. Let S be the this value.
2. Return the result of performing the abstract operation CreateHTML with arguments S, "blink", "" and

nwn

© Ecma International 2012 331

secma

B.2.2.5 String.prototype.bold ()
When the bold method is called with no arguments, the following steps are taken:

1. Let S be the this value.
2. Return the result of performing the abstract operation CreateHTML with arguments S, "b", "™ and "".

B.2.2.6 String.prototype.fixed ()
When the fixed method is called with no arguments, the following steps are taken:

1. Let S be the this value.
2. Return the result of performing the abstract operation CreateHTML with arguments S, "tt", "" and "".

B.2.2.7 String.prototype.fontcolor (color)

When the fontcolor method is called with argument color, the following steps are taken:

1. Let S be the this value.

2. Return the result of performing the abstract operation CreateHTML with arguments S, "font", "color"
and color.

B.2.2.8 String.prototype.fontsize (size)

When the fontsize method is called with argumentsize, the following steps are taken:

1. Let S be the this value.

2. Return the result of performing the abstract operation CreateHTML with arguments S, "font", "size"
and size.

B.2.2.9 String.prototype.italics ()

When the italics method is called with no arguments, the following steps are taken:

1. Let S be the this value.
2. Return the result of performing the abstract operation CreateHTML with arguments S, "i", "™ and "".

B.2.2.10 String.prototype.link (url)

When'the link method is called with argument url, the following steps are taken:

1. Let'S bethe this value.

2. Returnthe result of performing the abstract operation CreateHTML with arguments S, "a", "href" and
url.

B.2.2.11 String.prototype.small ()

When the small method is called with no arguments, the following steps are taken:

1. Let S be the this value.
2. Return the result of performing the abstract operation CreateHTML with arguments S, "small", "" and

wn

B.2.2.12 String.prototype.strike ()
When the strike method is called with no arguments, the following steps are taken:

1. Let S be the this value.

332 © Ecma International 2012

»ecma

2. Return the result of performing the abstract operation CreateHTML with arguments S, "strike", "" and

nwn

B.2.2.13 String.prototype.sub ()
When the sub method is called with no arguments, the following steps are taken:

1. Let S be the this value.
2. Return the result of performing the abstract operation CreateHTML with arguments S, "sub™", "" and " ".

B.2.2.14 String.prototype.sup ()
When the sup method is called with no arguments, the following steps are taken:

1. Let S be the this value.
2. Return the result of performing the abstract operation CreateHTML with arguments S, "sup™", "" and " ".

B.2.3 Additional Properties of the Date.prototype Object

B.2.3.1 Date.prototype.getYear ()

NOTE The getFullYear method is preferred for nearly all purposes, because it avoids the “year 2000 problem.”
When the getYear method is called with no arguments, the following steps are taken:

Let t be this time value.

ReturnlfAbrupt(t).

If t is NaN, return NaN.
Return YearFromTime(LocalTime(t)) — 1900.

PonE

B.2.3.2 Date.prototype.setYear (year)

NOTE The setFullYear method is preferred for nearly all purposes, because it avoids the “year 2000 problem.”
When the setYear method is called with one argument year, the following steps are taken:

Let t be theresult-of Local Time(this time value); but if this time value is NaN, let t be +0.

Let y be ToNumber(year).

If y.is NaN, set the [[PrimitiveValue]] internal property of the this value to NaN and return NaN.

Ify is not NaN and 0 < Tolnteger(y) < 99 then let yyyy be Tolnteger(y) + 1900. Otherwise, let yyyy bey.
Let d be MakeDay(yyyy, MonthFromTime(t), DateFromTime(t)).

Let date be UTC(MakeDate(d, TimeWithinDay(t))).

Set the [[PrimitiveValue]] internal property of the this value to TimeClip(date).

Return the value of the [[PrimitiveValue]] internal property of the this value.

N~ WNME

B.2.3.3 Date.prototype.toGMTString ()

NOTE The property toUTCString is preferred. The toGMTString property is provided principally for compatibility
with old code. It is recommended that the toUTCString property be used in new ECMAScript code.

The Function object that is the initial value of Date . prototype. toGMTString is the same Function object
that is the initial value of Date . prototype. toUTCString.

© Ecma International 2012 333

secma

B.3 Other Additional Features
B.3.1 The _ proto__ pseudo property.
B.3.1.1 Object.prototype._ proto__

The initial value of the _ proto__ property of the Object prototype object is a data property whose initial
value is null. This property initially has the attributes { [[Writable]]: true, [[Enumerable]]: false,
[[Configurable]]: true }.

Manipulations of this property as tracked by the Boolean valued primordial internal variable
UnderscoreProtoEnabled. The default initial value of UnderscoreProtoEnabled is true only if this property is initially
present on the primordial Object prototype object.

NOTE Any modification of this property or its attributes causes UnderscoreProtoEnabled to be set to false.
B.3.1.2 Changes To Internal Methods___
The definition of the [[Get]] internal method given in 8.12.3 is‘replaced with the following:

1. IfPisthestring value "__proto__ " and UnderscoreProtoEnabled.is true, then
a. Let desc be the result of calling the [[GetProperty]] internal method of O with property name P.
b. If desc is not undefined and was created by step 1.a to describe the property defined in B.3.1.1 then,
i Return the value of the [[Prototype]] internal property of O.
2. Continue by executing the steps of 8.12.3 starting with step 1.

The definition of the [[Put]] internal method given in 8.12.5.s replaced with the following:

1. If Pis the string value "_proto__ " and UnderscoreProtoEnabled is true and O is not the standard built-
in Object prototype object, then
a. Let desc be the result of calling the [[GetProperty]] internal method of O with property name P.
b. If desc is not undefined and was created by step 1.a to describe the property defined in B.3.1.1 then,
i If the type of V is neither Object-or Null, return
ii. Set the value of the [[Prototype]] internal property of O to V.
i Return.
2. Continue by executing.the steps of 8.12.5 starting with step 1.

The definition of the [[Delete]] internal method given in 8.12.7 is replaced with the following:

1. IfUnderscoreProtoEnabled is true and P is the string value "__proto__ " and O is the standard built-in
Object prototype object, then
a. Set UnderscoreProtoEnabled to false.
2. Continue by executing the steps of 8.12.7 starting with step 1.

The definition of the [[DefineOwnProperty]] internal method given in 8.12.9 is replaced with the following:

1. If UnderscoreProtoEnabled is true and P is the string value "__proto__ " and O is the standard built-in
Object prototype object, then
a. Ifany attribute contained in Desc is not present or has a different value from the corresponding
attribute in { [[Writable]]: true, [[Enumerable]]: true, [[Configurable]]: true }then,
i Set UnderscoreProtoEnabled to false.
2. Continue by executing the steps of 8.12.9 starting with step 1.

334 © Ecma International 2012

ecind

B.3.1.3 _ proto___ Object Initialisers _

Definitions of two algorithms in 11.1.5 are replaced with the following:

The production PropertyDefinitionList : PropertyDefinition is evaluated as follows:

1.

2.
3.

4,

5.

Let obj be the result of creating a new object as if by the expression new Object () where Object is the
standard built-in constructor with that name.
Let propld be the result of evaluating PropertyDefinition.
If propld.name is the string value "___proto__ " and UnderscoreProtoEnabled is true and
IsDataDescriptor(propld.descriptor) is true, then
a. Letvbe propld.descriptor.value.
b. If desc be propld.descriptor
c. Ifthe type of v is either Object or Null,
i. Set the value of the [[Prototype]] internal property of obj to v.
ii. Return obj.
Call the [[DefineOwnProperty]] internal method of obj with arguments propld.name, propld.descriptor, and
false.
Return obj.

The production

PropertyDefinitionList : PropertyDefinitionList , PropertyDefinition

is evaluated as follows:

1.
2.
3.

Let obj be the result of evaluating PropertyDefinitionList.

Let propld be the result of evaluating PropertyDefinition.

Let previous be the result of calling the [[GetOwnProperty]].internal method of obj with argument
propld.name.

If previous is not undefined then throw a SyntaxError-exception if any of the following conditions are true

a. This production is contained.in strict code and IsDataDescriptor(previous) is true and
IsDataDescriptor(propld.descriptor) is true.

b. IsDataDescriptor(previous) is true and IsAccessorDescriptor(propld.descriptor) is true.

c. IsAccessorDescriptor(previous) is true and IsDataDescriptor(propld.descriptor) is true.

d. IsAccessorDescriptor(previous) is true and IsAccessorDescriptor(propld.descriptor) is true and
either both previous and propld.descriptor have [[Get]] fields or both previous and propld.descriptor
have [[Set]] fields

If propld.name-is the string value "__proto__ " and UnderscoreProtoEnabled is true and
IsDataDescriptor(propld.descriptor) is true, then

a. Letv be propld.descriptor.value.

b. If desc be propld.descriptor

c. If the type of v is either Object or Null,

i. Set the value of the [[Prototype]] internal property of obj to v.

ii. Return obj.
Call the [[DefineOwnProperty]] internal method of obj with arguments propld.name, propld.descriptor, and
false.
Return obj.

© Ecma International 2012 335

secma

Annex C
(informative)

The Strict Mode of ECMAScript

The strict mode restriction and exceptions

336

The identifiers "implements", "interface", "let", "package","private", "protected”,
"public"”, "static”, and "yield" are classified as FutureReservedWord tokens within strict
mode code. (7.6.12).

A conforming implementation, when processing strict mode code, may. not extend the syntax
of NumericLiteral (7.8.3) to include OctallntegerLiteral as described in B.1.1.

A conforming implementation, when processing strict mode code (see 10.1.1), may not
extend the syntax of EscapeSequence to include OctalEscapeSequence as described in B.1.2.

Assignment to an undeclared identifier or otherwise unresolvable reference does not create a
property in the global object. When a simple assignment occurs within strict mode code, its
LeftHandSide must not evaluate to an unresolvable Reference. If it does a ReferenceError
exception is thrown (8.9.2). The LeftHandSide also may not be a reference to a data property
with the attribute value {[[Writable]]:false}, to an accessor property with the attribute value
{[[Set]]:undefined}, nor to a non-existent property of an ebject whose [[Extensible]] internal
property has the value false. In these cases a TypeError exception is thrown (11.13.1).

The identifier eval or arguments may not appear as the LeftHandSideExpression of an
Assignment operator (11.13) or of a PostfixExpression (11.3) or as the UnaryExpression
operated upon by a Prefix Increment (11.4:4) or a Prefix Decrement (11.4.5) operator.

Arguments objects for strict mode functions define non-configurable accessor properties
named "caller" and "callee" which throw a TypeError exception on access (10.6).

Arguments objects for strict mode functions do not dynamically share their array indexed
property values with thecorresponding formal parameter bindings of their functions. (10.6).

For strict. mode functions, if an arguments object is created the binding of the local identifier
arguments to the arguments object is immutable and hence may not be the target of an
assignment expression. (10.5).

It is a SyntaxError if strict mode code contains an ObjectLiteral with more than one definition
of any data property (11.1.5).

It is.a SyntaxError if the Identifier "eval™ or the Identifier "arguments" occurs as the
Identifier in a PropertySetParameterList of a PropertyDefinition that is contained in strict code or
if its FunctionBody is strict code (11.1.5).

Strict mode eval code cannot instantiate variables or functions in the variable environment of
the caller to eval. Instead, a new variable environment is created and that environment is
used for declaration binding instantiation for the eval code (10.4.2).

If this is evaluated within strict mode code, then the this value is not coerced to an object. A
this value of null or undefined is not converted to the global object and primitive values are
not converted to wrapper objects. The this value passed via a function call (including calls
made using Function.prototype.apply and Function.prototype.call) do not
coerce the passed this value to an object (10.4.3, 11.1.1, 15.3.4.3, 15.3.4.4).

When a delete operator occurs within strict mode code, a SyntaxError is thrown if its
UnaryExpression is a direct reference to a variable, function argument, or function
name(11.4.1).

© Ecma International 2012

»ecma

e When a delete operator occurs within strict mode code, a TypeError is thrown if the
property to be deleted has the attribute { [[Configurable]]:false } (11.4.1).

e Itis a SyntaxError if a VariableDeclaration or VariableDeclarationNoln occurs within strict code
and its Identifier is eval or arguments (12.2.1).

e Strict mode code may not include a WithStatement. The occurrence of a WithStatement in such
a context is an SyntaxError (12.10).

e It is a SyntaxError if a TryStatement with a Catch occurs within strict code and the Identifier of the
Catch production is eval or arguments (12.14.1)

e ltis a SyntaxError if the identifier eval or arguments appears within a FormalParameterList of a
strict mode FunctionDeclaration or FunctionExpression (13.1)

e A strict mode function may not have two or more formal parameters that have the same
name. An attempt to create such a function using a FunctionDeclaration, FunctionExpression, or
Function constructor is a SyntaxError (13.1, 15.3.2).

e An implementation may not extend, beyond that defined in this specification, the meanings
within strict mode functions of properties named caller or arguments of function
instances. ECMAScript code may not create or modify properties with these names on
function objects that correspond to strict mode functions (10.6, 13.6, 15.3.4.5.3).

e Itis a SyntaxError to use within strict mode code the identifiers eval or arguments as the
Identifier of a FunctionDeclaration or FunctionExpression or as a formal parameter name (13.1).
Attempting to dynamically define such a strict mode function using the Function constructor
(15.3.2) will throw a SyntaxError exception.

© Ecma International 2012 337

secma

Annex D
(informative)
Corrections and Clarifications with Possible Compatibility Impact

In Edition 6

15.9.1.15: If a time zone offset is not present, the local time zone is used. Edition'5.1 incorrectly stated that a

missing time zone should be interpreted as “z”.

15.9.5.2: Previous editions did not specify the value returned by Date.prototype.toString when this time value
is NaN. The 6™ Edition species the result to be the String value is "Invalid Date"

In 5.1 Edition 5.1

7.8.4: CV definitions added for DoubleStringCharacter <: LineContinuation and SingleStringCharacter
LineContinuation.

10.2.1.1.3: The argument S is not ignored. It controls whether an exception is thrown when attempting to set
an immutable binding.

10.2.1.2.2: In algorithm step 5, true is passed as the last argument to [[DefineOwnProperty]].

10.5: Former algorithm step 5.e is now 5.f and a new step 5.e-was added to restore compatibility with 3
Edition when redefining global functions.

11.5.3: In the final bullet item, use of IEEE 754 round-to-nearest mode is specified.
12.6.3: Missing ToBoolean restored in step 3.a.ii of both algorithms.

12.6.4: Additional final sentences in‘each of the last two paragraphs clarify certain property enumeration
requirements.

12.7,12.8, 12.9: BNF modified to clarify that a continue or break statement without an Identifier or a
return statement without an Expression may have a LineTerminator before the semi-colon.

12.14; Step 3 of algorithm 1 and step 2.a of algorithm 3 are corrected such that the value field of B is passed
as a parameter rather than B itself.

15.1.2.2: In step 2 of algorithm, clarify that S may be the empty string.

15.1.2.3: In step 2 of algorithm clarify that trimmedString may be the empty string.

15.1.3: Added notes clarifying that ECMAScript's URI syntax is based upon RFC 2396 and not the newer
RFC 3986. In the algorithm for Decode, a step was removed that immediately preceded the current step
4.d.vii.10.a because it tested for a condition that cannot occur.

15.2.3.7: Corrected use of variable P in steps 5 and 6 of algorithm.

15.2.4.2: Edition 5 handling of undefined and null as this value caused existing code to fail. Specification
modified to maintain compatibility with such code. New steps 1 and 2 added to the algorithm.

15.3.4.3: Steps 5 and 7 of Edition 5 algorithm have been deleted because they imposed requirements upon
the argArray argument that are inconsistent with other uses of generic array-like objects.

338 © Ecma International 2012

»ecma

15.4.4.12: In step 9.a, incorrect reference to relativeStart was replaced with a reference to actualStart.
15.4.4.15: Clarified that the default value for fromindex is the length minus 1 of the array.
15.4.4.18: In step 9 of the algorithm, undefined is now the specified return value.

15.4.4.22: In step 9.c.ii the first argument to the [[Call]] internal method has been changed to undefined for
consistency with the definition of Array.prototype.reduce.

15.4.5.1: In Algorithm steps 3.Lii and 3.l.iii the variable name was inverted resulting in an incorrectly inverted
test.

15.5.4.9: Normative requirement concerning canonically equivalent strings deleted from paragraph following
algorithm because it is listed as a recommendation in NOTE 2.

15.5.4.14: In split algorithm step 11.a and 13.a, the positional order of the arguments.to SplitMatch was
corrected to match the actual parameter signature of SplitMatch. In step 13.a.iii.7.d, lengthA replaces A.length.

15.5.5.2: In first paragraph, removed the implication that the individual character property access had “array
index” semantics. Modified algorithm steps 3 and 5 such that they do not enforce “array index” requirement.

15.9.1.15: Specified legal value ranges for fields that lacked them. Eliminated “time-only” formats. Specified
default values for all optional fields.

15.10.2.2: The step numbers of the algorithm for the internal closure produced by step 2 were incorrectly
numbered in a manner that implied that they were steps of the outer algorithm.

15.10.2.6: In the abstract operation IsWordChar the first character in the list in step 3 is “a” rather than “a”.
15.10.2.8: In the algorithm for the closure returned hy the abstract operation CharacterSetMatcher, the variable
defined by step 3 and passed as an argument in step 4 was renamed to ch in order to avoid a name conflict
with a formal parameter of the closure.

15.10.6.2: Step 9.e was deleted because It-performed an extra increment of i.

15.11.1.1: Removed requirementthat the message own property is set to the empty String when the message
argument is_undefined.

15.11.1:2: Removed requirement that the message own property is set to the empty String when the message
argument is undefined.

15.11.4.4: Steps 6-10 modified/added to correctly deal with missing or empty message property value.

15.11.1.2: Removed requirement that the message own property is set to the empty String when the message
argument is undefined.

15.12.3: In step 10.b.iii of the JA internal operation, the last element of the concatenation is “1”.

B.2.1: Added to NOTE that the encoding is based upon RFC 1738 rather than the newer RFC 3986.

Annex C: An item was added corresponding to 7.6.12 regarding FutureReservedWords in strict mode.

In 5" Edition 5

Throughout: In the Edition 3 specification the meaning of phrases such as “as if by the expression new

Array ()" are subject to misinterpretation. In the Edition 5 specification text for all internal references and
invocations of standard built-in objects and methods has been clarified by making it explicit that the intent is

© Ecma International 2012 339

secma

that the actual built-in object is to be used rather than the current dynamic value of the correspondingly named
property.

11.8.1: ECMAScript generally uses a left to right evaluation order, however the Edition 3 specification
language for the > and <= operators resulted in a partial right to left order. The specification has been
corrected for these operators such that it now specifies a full left to right evaluation order. However, this
change of order is potentially observable if side-effects occur during the evaluation process.

11.1.4: Edition 5 clarifies the fact that a trailing comma at the end of an Arraylnitialiser does not add to the
length of the array. This is not a semantic change from Edition 3 but some implementations may have
previously misinterpreted this.

11.2.3: Edition 5 reverses the order of steps 2 and 3 of the algorithm. The original order as specified in
Editions 1 through 3 was incorrectly specified such that side-effects of evaluating Arguments could affect the
result of evaluating MemberExpression.

12.4: In Edition 3, an object is created, as if by new Object ()to serve as the scope for resolving the name of
the exception parameter passed to a catch clause of a try. Statement. If the actual exception object is a
function and it is called from within the catch clause, the scope object will be passed as the this value of the
call. The body of the function can then define new properties on its this value and those property names
become visible identifiers bindings within the scope of the catch clause after the function returns. In Edition 5,
when an exception parameter is called as a function, undefined. is passed as the this value.

13: In Edition 3, the algorithm for the production FunctionExpression with an Identifier adds an object created as
if by new Object () to the scope chain to.serve as a scope for looking up the name of the function. The
identifier resolution rules (10.1.4 in Edition 3) when applied to such an object will, if necessary, follow the
object’s prototype chain when attempting to resolve an identifier. ~This means all the properties of
Object.prototype are visible as identifiers within that scope. In practice most implementations of Edition 3
have not implemented this semantics. Edition 5 changes the specified semantics by using a Declarative
Environment Record to bind the.name of the function.

14: In Edition 3, the algorithm for the production SourceElements : SourceElements SourceElement did not correctly
propagate statement result values in the same manner as Block. This could result in the eval function
producing an incorrect result when evaluating a Program text. In practice most implementations of Edition 3
have implemented the correct propagation rather than.what was specified in Edition 5.

15.10.6: RegExp.prototype is now a RegExp object rather than an instance of Object. The value of its [[Class]]
internal property which is observable using Object.prototype.toString is now “RegExp” rather than “Object”.

340 © Ecma International 2012

© Ecma International 2012 341

secma

Annex E
(informative)

Additions and Changes that
Introduce Incompatibilities with Prior Editions

In the 6" Edition
12.6: In Edition 6, a terminating semi-colon is no longer required at the end of @ do-while statement.

12.14: In Edition 6, it is an early error for a Catch clause to contained awvar declaration for the same Identifier
that appears as the Catch clause parameter. In previous editions, such a variable declaration would be
instantiated in the enclosing variable environment but the declaration’s Initializer value would be assigned to
the Catch parameter.

13.3 In Edition 6, the function objects that are created as the values of the [[Get]] or [[Se]]t attribute of
accessor properties in an ObjectLIteral are not constructor functions. In Edition 5, they were constructors.

In the 51" Edition

7.1: Unicode format control characters are na longer stripped from ECMAScript source text before processing.
In Edition 5, if such a character appears in'a StringLiteral or RegularExpressionLiteral the character will be
incorporated into the literal where in Edition 3 the character would not be incorporated into the literal.

7.2: Unicode character <BOM> is now treated as whitespace and its presence in the middle of what appears
to be an identifier could result in-a syntax error which would not have occurred in Edition 3

7.3: Line terminator characters that are preceded by an escape sequence are now allowed within a string
literal token. In Edition 3 a syntax error would have been produced.

7.8.5: Regular expression literals now return a unique object each time the literal is evaluated. This change is
detectable by any programs that test the object identity of such literal values or that are sensitive to the shared
side effects.

7.8.5: Edition 5 requires early reporting. of any possible RegExp constructor errors that would be produced
when<converting a RegularExpressionLiteral to a RegExp object. Prior to Edition 5 implementations were
permitted to defer the reporting of such errors until the actual execution time creation of the object.

7.8.5: In Edition 5 unescaped “/” characters may appear as a CharacterClass in a regular expression literal. In
Edition 3 such a character would have been interpreted as the final character of the literal.

10.4.2: In Edition 5, indirect calls to the eval function use the global environment as both the variable
environment and lexical environment for the eval code. In Edition 3, the variable and lexical environments of
the caller of an indirect eval was used as the environments for the eval code.

15.4.4: In Edition 5 all methods of Array.prototype are intentionally generic. In Edition 3 toString and
toLocaleString were not generic and would throw a TypeError exception if applied to objects that were
not instances of Array.

10.6: In Edition 5 the array indexed properties of argument objects that correspond to actual formal
parameters are enumerable. In Edition 3, such properties were not enumerable.

10.6: In Edition 5 the value of the [[Class]] internal property of an arguments object is "Arguments". In
Edition 3, it was "Object". This is observable if toString is called as a method of an arguments object.

342 © Ecma International 2012

secmd

12.6.4: for-in statements no longer throw a TypeError if the in expression evaluates to null or undefined.
Instead, the statement behaves as if the value of the expression was an object with no enumerable properties.

15: In Edition 5, the following new properties are defined on built-in objects that exist in Edition 3:
Object.getPrototypeOf, Object.getOwnPropertyDescriptor, Object.getOwnPropertyNames,
Object.create, Object.defineProperty, Object.defineProperties, Object.seal

Object. freeze, Object.preventExtensions, Object.isSealed, Object.isFrozen,
Object.isExtensible, Object.keys, Function.prototype.bind, Array.prototype.indexOf,
Array.prototype.lastIndexOf, Array.prototype.every, Array.prototype. some,
Array.prototype. forEach, Array.prototype.map, Array.prototype.filter,
Array.prototype.reduce, Array.prototype.reduceRight, String.prototype. trim, Date.now,
Date.prototype. toISOString, Date.prototype.toJSON.

15: Implementations are now required to ignore extra arguments to standard built-in methods unless
otherwise explicitly specified. In Edition 3 the handling of extra arguments. was unspecified and
implementations were explicitly allowed to throw a TypeError exception.

15.1.1: The value properties NaN, Infinity, and undefined of the Global Object have been changed to be
read-only properties.

15.1.2.1. Implementations are no longer permitted to restrict the use of‘eval in ways that are not a direct call.
In addition, any invocation of eval that is not a direct call uses the global environment as its variable
environment rather than the caller’s variable environment.

15.1.2.2: The specification of the function parseInt no longer allows implementations to treat Strings
beginning with a 0 character as octal values.

15.3.4.3: In Editon 3, a TypeError ‘is. thrown if the. second argument passed to
Function.prototype.apply is-neither an array object nor an arguments object. In Edition 5, the second
argument may be any kind of generic array-like object that has a valid 1length property.

15.3.4.3,15.3.4.4: In _Edition 3 passing undefined or null as the first argument to either
Function.prototype.apply Or Function.prototype.call causes the global object to be passed to
the indirectly invoked target function‘as the this value. If the first argument is a primitive value the result of
calling ToObject on the primitive value is passed as the this value. In Edition 5, these transformations are not
performed and.the-actual first argument value is passed as the this value. This difference will normally be
unobservable to existing. ECMAScript Edition 3 code because a corresponding transformation takes place
upon activation of the target function. However, depending upon the implementation, this difference may be
observable by host object functions called using apply or call. In addition, invoking a standard built-in
function in this manner with null or undefined passed as the this value will in many cases cause behaviour in
Edition'5 implementations that differ from Edition 3 behaviour. In particular, in Edition 5 built-in functions that
are specified to actually use the passed this value as an object typically throw a TypeError exception if
passed null or undefined as the this value.

15.3.5.2: In Edition 5, the prototype property of Function instances is not enumerable. In Edition 3, this
property was enumerable.

15.5.5.2: In Edition 5, the individual characters of a String object’s [[PrimitiveValue] may be accessed as array
indexed properties of the String object. These properties are non-writable and non-configurable and shadow
any inherited properties with the same names. In Edition 3, these properties did not exist and ECMAScript
code could dynamically add and remove writable properties with such names and could access inherited
properties with such names.

15.9.4.2: Date.parse is now required to first attempt to parse its argument as an ISO format string.
Programs that use this format but depended upon implementation specific behaviour (including failure) may
behave differently.

15.10.2.12: In Edition 5, \s now additionally matches <BOM>.

© Ecma International 2012 343

secma

15.10.4.1: In Edition 3, the exact form of the String value of the source property of an object created by the
RegExp constructor is implementation defined. In Edition 5, the String must conform to certain specified
requirements and hence may be different from that produced by an Edition 3 implementation.

15.10.6.4: In Edition 3, the result of RegExp.prototype. toString need not be derived from the value of
the RegExp object’'s source property. In Edition 5 the result must be derived from the source property in a
specified manner and hence may be different from the result produced by an Edition 3 implementation.

15.11.2.1, 15.11.4.3: In Edition 5, if an initial value for the message property of an Error object is not
specified via the Error constructor the initial value of the property is the empty String. In Edition 3, such an
initial value is implementation defined.

15.11.4.4: In Edition 3, the result of Error.prototype. toString is implementation defined. In Edition 5,
the result is fully specified and hence may differ from some Edition 3 implementations.

15.12: In Edition 5, the name JSON is defined in the global environment. In Edition 3, testing for the presence
of that name will show it to be undefined unless it is defined by the program or implementation.

344 © Ecma International 2012

© Ecma International 2012 345

ecCmna

Annex F
(informative)

Static Semantic Rule Cross Reference

Routine Name Purpose Definitions

BoundNames Produces a list of the Identifiers bound by a |12.2.1,
production. Does not include Identifiers that are | 12.2.2,
bound within inner environments associated with | 12.2.4,
the production. 12.6.4, 13.1,

13.2,13.5

ConstructorMethod From a ClassBody return the first ClassElement 135
whose PropName is "constructor”. Returns
empty if the ClassBody does not.contain one.

Contains Determine if a grammar production. either<directly | 5.3, 13.1,
or indirectly includes a grammar symbol: 13.2,13.5

CoveredFormalsList Reparse a covered Expression using FormalsList as | 13.2
the goal symbol.

cv Determines the “character value” of a component | 7.8.4
of a StringLiteral.

Elision Width Determine the number of commas in an Elision. 11141

ExpectedArgumentCount Determine the “length” of an argument list for the | 13.1, 13.2,
purpose of initializing the “length” property of a | 13.3
functionobject.

Haslnitialiser Determines whether the production contains an | 12.2.4, 13.1
Initialiser production.

IsConstantDeclaration Determines whether the production introduces a | 12.2, 13.1,
immutable environment record binding 135

IsinvalidAssignmentPattern | Determines if a LeftHandSideExpression is a valid | 11.2
assignment target. Primarily for dealing with
destructuring assignment targets.

LexicalDeclarations Return a List containing the components of a | 12.1, 12.11,
production that are processed as lexical | 12.5
declarations

LexicallyDeclaredNames Returns a list of the lexically scoped identifiers | 12.1, 13.1,
declared by a production. 13.2,13.5

MethodDefinitions Return a list of the MethodDefinition productions | 13.5
that are part of a ClassElementList.

MV Determines the “mathematical value” of a numeric | 7.8.3

346

© Ecma International 2012

oecnd

lirteral or component of a numeric literal.

PropName Determines the string value of the property name | 11.1.5.1,
referenced by a production. 13.3,13.5
PropNameL.ist Returns a List of the string values of the property | 11.5.1, 13.5
names referenced by a production. The list reflects
the order of the references in the source text. The
list may contain duplicate elements.
ReferencesSuper Determine if a MethodDefinition contains any | 13.3
references to the ReservedWord super.
SpecialMethod Determine if a MethodDefinition defines a | 13.3
generator method or an accessor property.
SV Determines the “string value” of a StringLiteral or | 7.8.4
component of a StringLiteral.
VarDeclaredNames Returns a list of the local top-level scoped | 12.1, 12.5,
identifiers declared by a production. These are | 12.6.1,
identifier that are scoped as if by a var statement. | 12.6.2,
12.6.3,
12.6.4,
12.12, 13.1,
13.5

© Ecma International 2012

347

secma

Scrap Heap

A place to temporarily hand on to stuff that’s been deleted

MemberExpression :
MemberExpression <| TriangleLiteral

TriangleLiteral :
SealedArrayLiteral
SealedObjectLiteral
FunctionExpression
ArrowFunction
ValueLiteral

CallExpression :
CallExpression <| TriangleLiteral

15.2.3.15 Object.isObject (O)
When the isObject function is called with argument O, the following steps are taken:

1. If Type(O) is Object return true.
2. Return false.

15.5.4.25 String.prototype:toArray()
The following steps are taken:

ReturnlfAbrupt(CheckObjectCoercible(this value)).

Let S be the result of calling ToString, giving it the this value as its argument.
ReturnlfAbrupt(S).

Let len be the number of characters:in S.

Let-array be the result of the abstract operation ArrayCreate (15.4) with argument len.
LetnbeO

Repeat; while n < len:

a. Let c be the character at position nin S.

b. “Call.the [[DefineOwnProperty]] internal method of array with arguments ToString(n), the
PropertyDescriptor {[[Value]]: c, [[Writable]]: true, [[Enumerable]]: true, [[Configurable]]: true},
and false:

c. Increment n'by 1.

8. Return array.

NogkwbpE

The length property of the toArray method is 0.
NOTE 1 Returns an Array object with elements corresponding to the characters of this object (converted to a String).

NOTE 2 The toArray function is intentionally generic; it does not require that its this value be a String object.
Therefore, it can be transferred to other kinds of objects for use as a method.

348 © Ecma International 2012

© Ecma International 2012 349

secma

(1]

(2]

(3]
(4]

(5]
(6]

(7]

(8]

350

Bibliography

IEEE Std 754-2008: |IEEE Standard for Floating-Point Arithmetic. Institute of Electrical and Electronic
Engineers, New York (2008)

The Unicode Consortium. The Unicode Standard, Version 3.0, defined by: The Unicode Standard,
Version 3.0 (Reading, MA, Addison-Wesley, 2000. ISBN 0-201-61633-5)

Unicode Inc. (2010), Unicode Technical Report #15: Unicode Normalization Forms

ISO 8601:2004(E) Data elements and interchange formats® — Information interchange --
Representation of dates and times

RFC 1738 "Uniform Resource Locators (URL)", available at <http://tools.ietf.org/html/rfc1738>

RFC 2396 "Uniform Resource Identifiers (URI): Generic Syntax", available at
<http://tools.ietf.org/html/rfc2396>

RFC 3629 "UTF-8, a transformation format of ISO 10646", available at
<http://tools.ietf.org/html/rfc3629>

RFC 4627 "The application/json Media Type for JavaScript Object Notation (JSON)" , available at
<http://tools.ietf.ora/html/rfc4627 >

© Ecma International 2012

http://tools.ietf.org/html/rfc1738
http://tools.ietf.org/html/rfc2396
http://tools.ietf.org/html/rfc3629
http://tools.ietf.org/html/rfc4627

© Ecma International 2012

