Cecma Draft

Ecma/TC39/2012/088

A0 ECMA-262
_ - - 6t Edition / Draft December 21,2012

(
S

AScript Language
pcification

Report Errors and Issues at: https://bugs.ecmascript.org

Product: Draft for 6th Edition
Component: choose an appropriate one
Version: December 21, 2012 Draft

Rue du Rhone 114 CH-1204 Geneva T. +41 22 849 6000 F: +41 22 849 6001

https://bugs.ecmascript.org/

A COPYRIGHT PROTECTED DOCUMENT

© Ecma International 2012

secmd

Contents Page
LA 0T LUT o] 10 o [P Vii
1 Yo o] oSO PP PP P PPPPPPPUTPPP 1
2 (OdaY a1 10] 1K= 1o =T T 1
3 o] 8 g E= AV SR = A=Y A oT 1
4 (@ V2= VAT T 1
4.1 RTAT L= o TS 1] {1 o P PSS 2
4.2 (= T T LU= Vo [T @ V2= VA= S PRRRR 2
o T @ | o= o3 SR 3
4.2.2 The Strict Variant 0f ECMASCIIPTuviiiieeiiiiiiiiee i sforettse s s sieee e e e s e snsieeeeee e s s snsnashee e s e snsnaneeeeeseannnnnns 4
4.3 NIRRT [B0 L= AL 0 o = S 4
5 Lo E=Y A Lo Y b=t IO e Y AV =T 0L {0] 1T T ST 7
5.1 Syntactic and LeXiCal GrammMarsS.........ocuuiiiiiieiis e i ieee e sfinmaeesesiaeeeesbaeeessbseeesbeeeessebeeeesbaeeesnnneeas 7
LT O A O] ¢ (=) G S =TS T =10 010 = 5 7
5.1.2 The Lexical and REGEXDP GIamIMAIsScocuiiiiiiieeeiiieiiaatbeeesasteteeatteeeaaebeeesabneeesaabeeesabseeeassbeeesabeeeeannns 8
5.1.3 The NUMEIIC StriNg GramMMaAccoiiueeeiiureeeaiieeeeaaieeeesasbaeesaiheeeessreeesastneesaasreeesabesesasseesaasneeessnsneessnnns 8
T I B L= IS YA = ol Lol €1 = 10 40 = | T SRR 8
T T I a TSI LS 1O] N] =10] 0 = T 9
T T 1 =0 0= U (0) =10 o T 9
5.2 AlGOrithm CONVENTIONS ...ttt e Tt e e e e e ettt e e e e e e bbbt e e e e e e e annbeeeeeeeeannnees 12
5.3 StALiC SEMANTIC RUIBS ..vvvieiii i s e e e f et ettt e e sesseaeeaaa s e s e sseesseseassbaba s seeeseseesbbabanseeeesssensrens 13
6 Yo 10 L oL ST 1= A PP 14
7 [IS) ToT= L O Y o RYZ=T 011 o) o F= e 15
7.1 Unicode FOrmat-Control CRHArACIEISuuuriiiii it e e e e e et e s e e e s e e e ee st s s e e eeeerenens 16
7.2 R AT LT =TS 0 T o = S SR PEEP 16
7.3 [TSI =T L= 0T 17
7.4 (©00] 1 01 1.8 =1 015 18
7.5 B IO 1 C=T £ FST ST 19
7.6 Identifier NameES @nNd IHENEITIEISiiieeee ettt e et e e et e e e e ra s e e s eaae e e s esbeeeeeranaes 19
0 R = =L T RV =To IRV AT 0] o T T 20
7.7 [U Lo AU = 10T =T 21
7.8 L] = 1 E TR 22
< 0 R (0 | B I =] = 1 £ o S 22
A N = Yo Lo (=t Y IR A= =1 T TR 22
A T T U] o X< (o N (=T = | E TR 22
AR S T S 41 o T 1 (=T = SRR 25
7.85 Regular EXPreSSION LItEralScuiiiiiiiiiiiiiiie ittt ettt ettt e e st e e st e e e sntaee e s sbaeeessnbeeeesnraeeeans 27
7.8.6 Template Literal Lexical COMPONENTSccuiiiiiiii e st e e e e e r e e e e s snnbae e e e e e s ennnnees 28
7.9 AUtOMALiC SEMICOION INSEITION covvuieeiiii ittt e e e et e et s e e e s e e e esa bbb seeesaeseesbbaaaseeeaaaes 30
7.9.1 Rules of Automatic SEMICOION INSEITION ...u.iiiiiiiiiieeeiee e e e e e e e e e e s e e ee e e s e e eeseeenens 30
7.9.2 Examples of Automatic SemMiCOlON INSEITIONccoiuiiiiiiiie e 31
8 L7 L2 PP PPPPTPTRRR 32
8.1 ECMASCIIPE LANQUAGE TYPES weriiiieeiiiiiiiiiiee et aattieeteeeesasetteeeaaeesassssteeeeeesssnssbaeeeaeesaastsseeaeessansnnreneeaessn 33
S0 00t R N U= O e o = T o = To B Y o L= OO U PPPUPPPOPUPPR 33
S O N 1 U= NN (U] B I o 1SS P OO PP T OTPPTPPPN 33
8.1.3 TNE BOOIEAN TY P ittt ettt e ekt e e st et e e s kb e e e e s bbe e e e abbe e e e aabee e e aabreee e 33
o I N U= 0o (o o T 57 1 SRS PRRPT 33
S0 I T B U= A (U1 Y oT=T g Y o L= TP PR 33
S0 I G R B L= @] o] [T o A 1] o L= TR PP PPRPP 34

© Ecma International 2012 |

secmd

ST B =1 £ N =] Lo Tod 1= TP PPPTPO 44
8.2.2 The List and Record SPeCifiCation TY P ..occuiiiii i e s e e e s s s an e e e e e e e e aneees 45
8.2.3 The Completion Record SPeCifiCation TYP @ ..ot e s s s e e e e e e nnneees 45
8.2.4 The Reference SPeCIifiCaAtiON TY PO ..o e e e e e e e e e s e e e e e s s san e e e e e e e enneees 46
8.2.5 The Property Descriptor SPeCifiCation TYPE .uueveeiiiiiiiiiie et e e e e e e e e e 48
8.2.6 The Lexical Environment and Environment Record Specification Types......cccccccvvvvvvveveeeerinnnee, 50
8.3 Ordinary Object Internal Methods and Internal Data Propertiesccccccvcvvveveeeeviccivineene e 50
o o R (1= Aol Y=l gL = Ta LT =] | I () OO 50
8.3.2 [[SetINNErItANCE]] (V) «eeeiieiieitiiie ettt ettt et e ettt e sttt e e sab bt esabb et e e s abb e e e snbr e e e s annneas 50
8.3.3 [[ISEXIENSIDIE]TT ([)eeiuereeeeiutteteiitite ettt ettt ettt ettt e ettt e e skt e a ekt e e eabb e e e e s e e e e nbn e e e e nneas 51
8.3.4 [[PreventEXtENSIONS]] () . i i rrteiiiieeiiiieeiiieeeesieeeessiteeeesteeeesineeeesebsee e ife e s s e e e sttt et e e e abbe e e s nanneas 51
8.3.5 [[HASOWNPIOPEITY]] (P) :eeeeeiteeteiitiiiee ittt stite e sttt ettt ettt s e ettt e st e e e s e e sbn e e s nnnneas 51
8.3.6 [[GEtOWNPIOPEITY]] (P) «oiiouteeeteieeiiiiiite ettt ettt e e e et e e e 2 € a bbb et e e e e e e bt be e e e e e e e e sanbeeeeaaeeennnnees 51
8.3.7 [[DefineOWNPIoperty]] (P, DESC) ettt e e e s st be e et e e e e e e e annbeeee e e e e e nnnnees 51
8.7.8 [[HASPIOPEITY]](P) o eeteeeteeieiitiiee ettt ettt e e e st ee e e e e e fane e e e e e et s an e e e e B bbbt e e e e e e e ansbeeeeeeeeannnees 54
R I | (= 4o I B =oAL o T SRR 54
8.3.10 [[SEtP]] (P, V, RECEIVEI)utiiiieieiiiiiiiieee e e eeetiiieee e e e s s eiitesaiienaathaaee e e e s s sstaaeeaaeessannnabar e e e e e esnntaneeeeeeennneens 54
R 0 5 R | 1T =1 = [T R 55
TR I 2 | = g Y0 L= = =) U S SR 56
8.3.13 [[OWNPIOPEIrtYKEYS]] () cooeureerreeeeiiiieeieeeeeiiiieteeesdenaaasneneeseesssassseeeesinesansssnneeeessanssssnsseeesansnassereeeesannnsens 56
SR 0 | (=T 2= [() TP S PSSP 56
8.3.15 [[SEAI]J] () -rvveerrreeruersrueraiueeaateeesnteesueeseeesteeanseeesseeesssananstinnseeenssdannnnsnseeenseeesnsesansesanseesnseesnseeessseesnsessnseens 57
8.3.16 [[ISFIOZEN]T () eueeeeeiueeeeiiuieeee sttt e ettt ee e sttt ettt e e st e e s bame e e s et e skttt e e ettt e sttt e e s ettt e e s bb et e e nnbb e e e s s 57
R N A SIS T=T 1= | (O TP PSP P S UPUPPOP 57
8.3.18 ObjectCreate ADSIract OPeralioN fi i iiin . et e e sbr e e e s aneeas 57
8.3.19 Ordinary FUNCLION ODJECESoiiiiiiieiih it skse e ettt e e ittt e st e s e e e e sbee e e s nnnneas 57
8.4 Built-in Exotic Object Internal Methods and Data Fields ...t 60
8.4.1 Bound FUNCHION EXOLIC ODJECTS ..o iieie ittt ittt e s e ettt e e e e e s bbbt e e e e e e s nnbeeeeeeeeennnnees 60
8.4.2 Array EXOUIC ODJECLS ...eiiiiiiiiiiiiiiiiee i tie st afe s s ai et as s e s s R B e e e ettt e e e e e s abb e e e e e e e e aannbeeeeeeeeannnnees 61
R IS T a Lo o A (o @ o 1=t € SRR 63
o o) (1o} A 1 0] oY] I @ o =T o TSRS 64
8.4.5 EXOtiC ArgUMENTS OBJECTSuuiiiieieti et e e e e e e e s e e e e e e s et e e e e e e s sastetreeaeessassntaneeeeeeennnrens 66
8.4.6 Indexed Delegation EXOtIC ODJECLScuiiiiiiiiiiieeie i eciiieie st e e e e s st e e e e e e st e e e e e s s snnreeeeeeeeennnees 67
8.4.7 BUIlt-iN FUNCHION OB ECESiiitdeiiies it e e e s sttt e e e s et e e e e e s st e e e eaeessstateeeaeessanntaneeeeeeannnrees 67
8.5 Proxy Object Internal Methods and Internal Data Propertiesccccccccvieeeeeeiiiiieine e ciieeeee e 68
8.5.1 [[GEtINNEITEANCE]] () it e sthueteruueeeiiuteeee i iteatssatstesesteeeestteeessateeeesabbe e e e saba e e e abbeeeeaabeeeesabbeeeeaanbeeesnbbeeesnnnneas 68
ST T 51 =t =T K=Y o1 = [N () PO 69
8.5.4 [[PreVentEXTENSIONS]] () :tierretaateieeiieeie ittt e sttt ettt ettt e sttt e sabe e e sbb e e e sabe e e e sabb e e e s annb e e e aabbeeeennnneas 69
8.5.5 [[HASOWNPIOPEITYI] (P) - ueteitiueteiiuteieeitiit e ittt sti ettt ettt e sttt et e e skt e e asbe et e s abb e e e e annn e e e sbneeesnnnneas 70
8.5.6 [[GEtOWNPTIOPEITYT] (P) ..eeeeiiittetieieee ittt ettt ettt ettt a bt e s st e st et e e sane e e e sbe e e e s annneas 71
8.5.7 [[DefineOWNPIOPErtY]] (P, DESEC) .. .cie ettt e e e e s ennneas 71
oI I [Fo] ad o] 1= 0 | I (T TSP PT R PPPRPP 72
8.5.9 [[GELPR]] (P, RECEBIVET) ceii ittt ettt e s et e e st e st e s e e e s e e s nanneas 73
8.5.10 [[SEtP]] (P, V, RECEINEL)ccitiiie ittt ettt ettt sttt et e st e e st e e e s st eesseeeesastaeeeanseeeessnneeeesnseeeesnnnaeas 73
ST A B L= 1= = |) I S 74
8.5.12 [[ENUMETFALE]] ()44t euureeteeeiiiiiieeieeeeeiiitttee et e e s sstateeeaeesssaateeeeaeessassteaeeaeessansssaneeaeeesansnbeeeeeesaasntnneeeessannnrens 74
8.5.13 [[OWNPIOPEITYKEYS]] () coieurrerteeeeiiiitiiieee e i ittt et e e s s sttt e e e e e s sssstaaeeeaeessstaaneeaeesaassntneeaeessassstaneeeeesennnnens 74
T | L =T=Y4 =Y (PSSR 75
T I EST= =L | I (O I PSP 75
ST I ST S g V4=T 0 | (PSP 75
T A SIS T=T 1T | (O I PP PTPR 75
8.5.18 [[Call]] (thisArgument, arguUMENTSLIST) ...ocueiiiiiiiie it 75
8.5.19 [[Construct]] INternal MEetNOGooi it 76
N oL = To O] o1 =T = 1A o] o S TP PP PUPPPP 76
9.1 Type ConVersion @nd TESTINGeeiiiiiiee ittt e et e e e st e e e s abb e e e s sabeeeesanneee e 76
1S 8 I A oY = T a1 A= TSP 76
1S I8 2 e = Yo o] =T o H PO 77
1S T8 I B o1 \\1¥ {1] o 1= PP OTPPPPTT 78
LS T O o][1 (=0 = SRR PPPPTR 81

Il © Ecma International 2012

secmd

9.1.5 ToInt32: (SignNed 32 Bit INLEUET) cooviiiiiiiiiieei e 81
9.1.6 ToUint32: (UNSIgNed 32 Bit INTEOET) ..eeiiiiiiiiiiiiie ettt et e st e e e et e e e e e s st ae e e e e e s s e anrae e e e e e e annneees 81
9.1.7 ToUintle: (UNSigned 16 Bit INTEOEI) ..euiiiiiiiiiieiie ettt e e sttt e e e s s st r e e e e e s st e e e e e s s e nnbae e e e e e e annnnees 82
LS S T 10 1 1 o o SRR 82
1S I T 10 1@ =T o SRR 83
LS 00 0000 T oY 0T o1 = 1Y/ =Y/ 83
9.2 Testing and CompariSON OPEIAtiONSueiiiiiiee ittt st e et e e seb e e e sbeeeessbreeeeaaee 84
9.2.1 CheCKODJECICOBICIDIE ...ttt et e e rbb e e s st e e e snbneee e 84
S I 11 @ 1| =] = PSR 84
9.2.3 The SameValue AIGOTTRMoo et sk et e e e st e e e e sab e e e sabneee e 84
S I S L] 0 = { 0[] A) S O PRUPPPPRPPPPIR 85
0.2.5 ISPIOPEITYKEY ..ttt 85
9.3 OPErationNs 0N ODJECESuiiiiiiiiiiiiii ettt e e e e e e s e bttt e e e e et e et e e e e s snbbbeeeee e e aanneeeeeeas 85
LSRG 700 R T (@ R . e SRR 85
9.3.2 PUL (O, P, V, TRIOW) .ottt sttt ettt sieee e staee e siteee e s dbaaaanteeeesnssaassabheeeesstaeeesssbeeessnseeeesnsaeeenns 85
9.3.3 CreateOwnDataProperty (O, P, V) ettt et e riitse e e e e e senteeeasaeaaathn e e e e e e s e stnbaeeaeesesnnnnees 85
9.3.4 DefinePropertyOrThrow (O, P, GESC) ..cciiiciiiiiee it e sfesiathuee e e e e setee e e e e e s s anaaesie e e e sntraeeaaeeesnneneeeas 86
9.3.5 DeletePropertyOrTRrOW (O, P) oottt e e e s e e e e e s s e e e e ie e st te e e e e e e e e nnneees 86
1S TR G I o -] o o o 1= VA (@ 0 = T R 86
1S IR A €11 41/ 11 d T Yo I (TR = U SRR 86
9.3.8 INVOKE(O,P [LAIGS]) teeeeertrreeeiiiieeiitiieeeiieieesstieeee s amessabneeeeseseeeeseesdeaanbaesesnteeeesatbeeessbteeeesabeeessnbeeeesnseeeeans 87
9.3.9 MakeObjectSecure (O, IMMULADIE)iciii i it ahrtt et e e e e e e s ee e e e e s s srnre e e e e e s e anneees 87
9.3.10 TestlfSecureObject (O, IMMULADIE)coiiiiiiiie i 88
9.3.11 Create ArrayFromLiSt (ElEMENTS)ciuiiiiiiiii ittt e e b e e aneeee s 88
9.3.12 OrdinaryHasINSTANCE (C, O) ...eiiiureeiii i e iieieeestieee et rassst b e se et e e sttt e e e stbe e e e sabeeeesabneeessnbeeeesabneeeaas 88
9.3.13 OrdinaryCreateFromConstructor (constructor, intrinsicDefaultProto).........cccccoviiieiiiieiinnnnen. 89
10 Executable Code and EXeCULtION CONTEXLSiuiiieee it eeeee e iisees i e e eieieeeaa e s s snbbeeeeaeeesannbneeeeaeaanns 89
10.1 Types of EXecCUtable COOE ... ahie e i ettt e e e ettt e e e e e e bbb e e e e e e e e nneneeeeas 89
020 00t R 1 (o3 8 1Y oo L= @ Lo [T OO EPT PR 90
10.1.2 NON-ECMASCIIPt FUNCIIONS 1.iiiuiiiiiiiii ettt s et e e e e s e st e e e e s s st e e e e e e e e e sannrnneeeas 90
10.2 LexiCal ENVIFONMENTS ... ittt sbe et e et e e e st e e e sate e e e ettt e e ettt e e e anteeeeesbeeeeanbeeeeansaeeeannes 90
O T A = AV oY 0T ¢ T=T 0 A =T e o] o K S SRR 91
10.2.2 Lexical ENViroNmMeENt OPEratiOnNSccccuviiiisieeiatiiiiieeeee e s settateeeeessssaataeeeeeesesntaereeaesssnnsaseeeeeessansnsnens 102
T T 0o Yo [== 11 0 o PP 103
10.4 EXECULION CONEEXES tin..veeiidiuiiiesiiiiieiitneesssse et 520 e e seteeeesnteeeesssteeeesntseeesseeeeesnbbeeesneeeeesnsbeeesanbeeeesnnneeas 104
10.4.1 1dentifier RESOIUTION . ittt e e e e e e e e e s e e e e e e e e s snstaaeeeaeeesnnsnnaeeeeeesannnrnees 105
OB S 1= B =] =1 Y/ 0 2L =T L RS 105
10.4.3 THIS RESOIULION tiueeiie ittt ettt et e e e et e et e e e sttt e e e e e saaeteeeeeeeaassssbeeeeeeeesansnsaeeeeeesnnsnrnees 105
O g 1= (€] o] =1L @ o =T ol TP O PP PTPPPPI 105
10.5.< Declaration Binding INSTantiation............c..oiiiuiiiiiiiii e 106
10.5.1 Global Declaration INSTANtiatioNooiuieiiiiie e a e e e e e e e e e e 106
10.5.2 Module Declaration INSTANTIAtIONoiuuiiiiiiae e a e e e e e eneeees 107
10.5.3 Function Declaration INSTANTIAtIONcicieiiiiiiiie et e e s e s saaee s 107
10.5.4 Block Declaration INSTANTIATIONcueiiiiiiiieiiiiie et essiee et e e e e sare e e st e e e snsbeeesnsaeessnneeas 109
10.5.5 Eval Declaration INSTANTIAtiONociiiiiiiiiiiee et ee e e e e snnaeeesneeeas 109
O ST N o 10 [T=T] €T @ o =T SRR 109
11 D d o =TT o] 1SS 112
O R = T o 0 = 1 VA T o] €= ET=T o 1 SRR 112
5 O O I o = 1 T ST (=) VAT o 1 o SR 113
8 2 o 1= o | A =T g =) (=T =] L] SO R 113
O T) (=T - | =S PP 113
O N g - YA [TN (= 1] = PP TPR 114
R I @ o T = To [11 A=Y= PSSP 117
11.1.6 Function Defining EXPrESSIONS ...cciiuiiiiiiiiie ittt sttt ettt ettt e et e e sabe e e sabb e e e snbeeessnaeeas 120
11.1.7 Generator COMPIrENENSIONS . .o.uiii ittt sttt e s et et b e e e snbae e e sneeeas 120
11.1.8 Regular EXPresSion LItEralSottt s 120
11.1.9 TeMPIALE LITEIAIS ...oeieiiiiee ittt ettt ekt e e st e e aab e e aab b e e e s annne e e snnnee s 121
11.2.20 The GrOUPING OPEIALOTeiii ittt ete ettt e e e e e ettt e e e e e e teeeeeeaaeaaaanbeeeeaaeaaaansbeeaeaeesaannsseeeeaesaaannenees 124

© Ecma International 2012 1

secmd

11.2 Left-Hand-Side EXPreSSIONS ..o ettt ettt e e e s et b et e e e e e s annbereeeeeeeaannnes 125
N R o 0T o 1T A AN o o 13T] = OSSP PP POUPPPPRRPIN: 126
2 N g Lo T A @ T o 1T - o S 127
11.2.3 FUNCHION CAIIS ..ottt oottt e oo e e et e et e e e e e s a bbbt e e e e e e e e asbe et e e e e e eannbbbeeeaeeaannnnes 128
11.2.4 The SUPEI KEYWOI ..cciiiieiieiie ettt e ettt e e e e ettt e e e e e e e et e e e e e e e e snteaeeeae e e s stsaeeeeeessasntaneeeeesannnrens 129
B ST N o 10 1 1= A I = USRS 130
2 ST 1= Vo o [=To B =10 0T o] = =SSR 131
0 T =0 1Y D = d o] =] [0 1 131
11.3.1 POStfiX INCreMENT OPEIALOF ...ccoieiiiieiee et e e e er e e e e s s e e e e e s st e e e e e s s anssteaeeeeeesanntanneeeeeeannnnes 132
11.3.2 POStiX DECTEMENT OPEIALON ..eiiiiiiiieiiiiee ettt ettt et ettt e e ee e sin et e e enbbe e e e nbeeesenbeeeeanreas 132
R U o = 1V T 1T - o1 = 132
I R I g Lo o [=1 1< (I @ T o =T = (o | S SR PU P ORI 133
5 S I o L= TR oo [@ oY= o= o) 134
B S T I o = Y =0 @ 0T - | 134
11.4.4 PrefiX INCremMent OPEIatorcciiiciieieeeeeiciiiieee e e e e sssieeeeeeessssdhnnaaaeessanssseesanasathinsseseeeeessanssnseneeeesannnes 134
11.4.5 Prefix DeCremMent OPEIatorccccuiieieeeeiiiiiieeeeeeesssuieeeseessfineneereeeeesssssseeeseesasssstbneeeesssnssseseeeeeessnnnns 135
11.4.6 UNAIY + OPEIALOL ..eeeiieiiiiiiiieieeeieii et e e e st e e e e s s e e sfenaaamt e eeeeesasanrnseeeeessassann e et bn e s s s beeeeeesennnrees 135
R A O o= 1 YA @ o = = | o | R S 135
11.4.8 BitWiSe NOT OPEIrAtOr (=)urerreeeiiiiiurereeesiiiitureeeeesssdonsaseeesesssstsseeseesssasssseessessssssssssseeesasansstbuseeseessnnnns 135
11.4.9 Logical NOT OPErator (1)i e e iiiiiiee e naaste et e e e e e sieeeesie e sttt e e e e e e ssanbaaeeeeessassbanaeeeeeesannes 136
115 MUItiPlICAtiVE OPEIALOIS .. uuiiiiiiiiiiiiiiiieeeeeiiitireeeeeessasinsbareeeesesesdanaaaaeesaassseeseeessassstseeeasassanssnreneseesannnns 136
TS RN o o] VAT g Lo B0 1T TRal @ 1= = Lo 1 USRS 136
ST N oY o] N4 T g Lo IR0 eI A @] o 1= = Lo] (USRS 137
ST TN oY o N4 T g Lo I a =T 1@] 011 = Lo G USRS 137
3 S I Vo o [YL @ o T=T = o T PP 138
11.6.1 The AdditioN OPEFALOr () .eeeieiiiiiiieiieeeieiieriaasese e s iineeceeeeeasunreestaessaianseteeeaeessaansbeeeaaeessannbnnneeeeessansnes 138
11.6.2 The Subtraction OPEIratOr (=) «ioicueeeiiieeaioieiieeieeea siubeseee s i eeeeeaesaaaaeebeeeeeaeaaanbeeeeeaessaanbnseeeaeesaansnes 139
11.6.3 Applying the Additive Operators to NUMDErs ... e 139
11.7 BitWisSe Shift O POl al Or S it iiiitii e etk i e ettt e e e e et ettt e e e e e s bbbt e e e e e e e ansbe e e e e e e e e anbbbeeeaeeeaannes 139
11.7.1 The Left SNift OPEratOr (<)i i iieee e iretessseeeeestteeesaireesatteeesssteeesasteeeaasteeesasteeesasreeesasseeessnsees 140
11.7.2 The Signed Right Shift OPerator (>3)......iiiiierie it siee e e e st e e e e sereeessnsaeas 140
11.7.3 The Unsigned Right Shift Operator (S>3) ..ot e e 140
11.8 REIAIONAI OPBIALOTS ...eeiii it idhiiiitieeiaieteie e e ettt th e e e ettt e e e e e s s s bebe et aeessaasbeeeeeesssnnsbeeeeaaesaanbeseeeaeeans 141
11.8.1 RUNTIME SEMANTICS Liteuuiiieiiteiiiutiiiaaeeeeeseeess s s iiismeeseeeessstannaseeesssessstannaeseeesessssstannaseeesssessstanaaaseeeesesennes 142
11.9 Lo [T 11T @] o] = Lo = PP PRRP T UUTUPPRR 144
11.9.1 RUNTIME SEBMANTICS L.uiiiieiiieiiiiiiiiiiiieeeee e ettt ie e e e e ee et et eea b aaseeesseesss bt aeseeeseesssstanaasaeesessssstannasaaeeeessnnts 145
11.10 BiNAry BitWiS@ OP EIatOrS ciiu..iiiiueiieiiiieeeiiiieeasiteeesiteeesasteeesstteeesasteeeaasteeeaasteeesansbeeeanstaeeeansseeesansees 147
I I A =1 o =T VA o Yo [o= T @ o =T = 1o = PSPPSR 148
11,12 ConditioNal OPEratOr(2) tiiieeeiiiiiee e irieee s e e st e e e stbe e e sssbee e s sbbeeeaanbeeeessbeeesanbaeeeansbeeesanses 149
11.13 ASSIGNMENT OPEIATOISeeeiiiee ittt ettt e e e e e e e et et et e e e e s e abeeee e e e e e e abbbeeeeeesaaasbeeeeeeeeannnrees 150
S = LTS T=T g =V o= PSPPSR 150
RUNEIME SEMANTICS ...eiiiiiiiie ittt e e sttt e e sttt e e sttt e e e sate e e e aatt e e e s bt et e e sasbeeesaseeeeesnsbeeesnbeeeennnteeesn 151
11.13.1 DeStruCtUring ASSIGNIMENTccoiiiiiiiiiee e ittt et e e e e et r e e e s e st e e e e e e s satetaeeeeeeessssbaareaeessanstnsneeeeesaannnes 151
1114 COMMA OPEFALON A ;) teeeeiiteeieiiitit ettt ettt e ettt et et e s s et e e et be e e s st ee e e anbbeeeasbeeeeanbbeeesanbaeeeansbeeeeanneas 155
12 Statements and DECIAratiONScoiuiiiiiiiii e e et e e sb e nb e sneeee s 156
= LTS T = 4 =T] o PSPPSR 156
RUNEIME SEMANTICS ..eeiiiiiiiiii ittt sttt e e s bttt e e sa b e e e sttt e e e sabb e e e e abbe e e e snbteeesnnbeeesanneeeenn 156
12.1 2] T Yo QR 157
12.2 Declarations and the Variable StatemMeNnt..... ..o 160
12.2.1 Let and CONSt DECIArAtIONS ..occiiiiiiiiiie ettt ee e e st e e e e e e st e e e e e s e sssbeeeeaeessannbnneeeeeeeaannnes 160
12.2.2 Variable SEALEIMENT ...ttt e e e ettt e e e e e s nbe et e e e e e e e nbsbeeeeeessansbeeeeeeeeannneees 163
12.2.4 Destructuring Binding PAtIEINScooii ittt e et e e e e e e e snbeeeeeaeeeaannes 165
12.3 EMPLY STALEMIENT ..o bbbttt ettt s s e e e e e e e e e e ee e 170
12,4 EXPreSSION SEALEMENTuiiiiii ettt e e e e e e bbb e e et e e e e e aaabeee e e e e e e e absbeeeaaesaaaasbeeeeaaeeaannrens 170
12,5 THE T SEALEMENT ...ttt ettt e e e e e sttt e e e e e e et b be e e e e e e e s nbbeeeaeeeeaannrees 170
D2 I 1 (=T = T o] g IES] = L= 0 1= o PP 171
12.6.1 The do-While SEALEMENT......oii et e e e s et e e e e e e e e s nbbreeeeeeeaannes 172

v © Ecma International 2012

secmd

12.6.2 The WhIle STAEEMENT......eiiiiiiei ettt e e e e et b e e e e e e e aabb b e e e e e e e e e nnbnees 172
12.6.3 The fOr STAEBMENT ...ttt ettt e e e s a bttt e e e e e san b b et e e e e e e sabbbeeeeeeesannrnees 173
12.6.4 Thefor -in and for -Of SEAtEMENTSc..euiiiii e e 174
12.7 The CONtINUE STALEMIENT ..ottt e e e et e et e e e e e st e e e e e e e e enbeeaeeeaeesanneeees 178
12.8 The break SEatemMENT... ... et e et e e e s et e e e e e e e e snabeeeeeeeesenaneeees 178
D2 I N oo (= (U TS = = 0 1= | RS RS 179
12,10 The With SEAEMENTo e e e e e s e e e e e s s sas e eeeaeesaanseraeeaeeesannneeees 179
2 I R I g Lo T T o] TS - = 0 = RS 180
2 I I 1 1Y 1T S = L= 0 =T 1 PSSR 184
2 e T I g o o (0T] = 1= 4= o | s SRS 185
2 I oo (YA - L =T 2= | SR 186
12.15 The debugger StateMENt..... ..o et e et e e nnn e e sneeees 188
13 FUNCLIONS AN GENEIALOTS ...uvviiiiiiiee it ciiee ettt et e e afenabbe e asbetie e bee e e e nnbe e e e snbeeeeennbeeeennees 188
13,1 FUNCLION DEfiNMITIONSueiiiiiiiiiiiieii e e o e ab e e s e s a e bt e e st e e s nnnaeeesnneeeas 188
13.2 Arrow FUNCLION DEfiNItIONS ..oooiviiiiiiiiiiiiiie e s s et e e ntae e s snneeees 194
R 20C T |V =1 d o To Yo I = 1oV 10 1 S 197
2 A 1= T o 1= = Lo 1= o T 10 1 SRR 200
R 28 T O - TS 0T 1 114 o o U SRS 201
13.6 Creating Function Objects and CONSIIUCTOIS ..tiiiriiiiuieieiiiieee s idetie ittt 205
13.7 Tail POSITION CaAIIS ..eeiiiiiiiiiiiiiei et i e et e e et am ettt e e e e e santbe e e e e e e s sntateeeeeeesnnnneeees 206
14 Y oa g1 o] £3=Ta Yo [N 1Y/ o Yo [U1 = PR UERT R 207
0t S Yo T | SR TPR 207
14.1.1 Directive Prologues and the Use STHCEDITECLIVEc...iiiiiitiue i siee e sieee e 209
I |V o To LU] S T PP PPRT PP 210
15 Standard Built-in ECMASCIIPt ODJECTS .iu..eieiie it Bt ee e e e 210
70 R I o L= €1 oY o -1 I @ o =T o T RS 211
15.1.1 Value Properties of the Global ODbJECT ..o i e e e 211
15.1.2 Function Properties of the Global ObjJeCt ... e 212
15.1.3 URIHandling FUNCHON ProPEITIES........c.uiiiiieee i ectieee ettt e s e e e e e st ee e e e e s s e e e e e e s nnnnnees 214
15.1.4 Constructor Properties of the Global ODJECT ..i......eiiiiiiiiiii s 219
15.1.5 Other Properties of the Global ODJECt ... 220
T © 1 o][d @] =T RS S 220
15.2.1 The Object Constructor Called @s @ FUNCHION..............ccuuiiiiiiiiiiiiiie s 220
15.2.2 THe ODjJECT CONSIIUCTOI teeiutiiiiiitiiee ittt ettt ettt et e sb et e e s b e e e s ab et e e aab b e e e s annee e e snneeees 221
15.2.3 Properties of the ODJECT CONSTIUCTONuuiiiiiiiii it 221
15.2.4 Properties of the Object Prototype ODJECTooo i s 224
15.2.5 Properties Of ODJECT INSTANCESeiiiiiiiiiiiiiie ittt e s s 226
15.3 © FUNCHION OB JOCTS Lottt ittt ettt e ettt e e e e e e bttt e e e e e s e abbe e et e e e e e aanbbeeeeaeeesanbbbbeeaeeeaannenees 226
15.3.1 The Function Constructor Called as @ FUNCLIONcccviiiiiiie i 226
15.3.2 The FUNCLION CONSIIUCTON ...eiiiiiiiiieiiiiee ettt et et e ettt e st e e sste e e e sbb e e e anteeeesnseeeesannaeeesnneeeas 227
15.3.3 Properties of the FUNCHON CONSIIUCTONiiiiiiiiiiiiii et 228
15.3.4 Properties of the FUuNCtion Prototype ODJECTc.uviiiiieii i e 228
15.3.5 Properties of FUNCTION INSTANCESccoiiuiiiiiie e e e e e e e e e e e s e e e e e e e nnnnnees 230
R N 8- 1A ©] oo £ PSPPI 230
15.4.1 The Array Constructor Called as @ FUNCLIONccuiiiiiiiiiiiie e 231
ST N Lo = YA O o] o] {1 o (o] S PP RTUR 231
15.4.3 Properties Of the Array CONSIIUCTOTcuuiii it 232
15.4.4 Properties of the Array Prototype ODJECTueiiiiiiiiii s 233
15.4.5 Properties Of Array INSTANCEScoiiuiiiiiiiie ettt e nn e e e snneeas 252
15.4.6 Array [terator ODJECT STIUCTUIEciiuiiiiiii ittt e e snn e snneees 252
T I Y 1 [Yo [@ o] =T ox £ PP PRRPPO 254
15.5.1 The String Constructor Called as a FUNCLION...........ooii e 254
15.5.2 The STHNQG CONSIIUCTON ...ueiiiiiiiiiiiit ittt e ettt e e e ettt e e e e e s e s b bbe et e e e e e anbbeeeeae e e aabbbneeeeeesannenees 254
15.5.3 Properties of the String CONSIIUCTONuuiiiiiiiie e 254
15.5.4 Properties of the String Prototype ODJECT ... e 256
15.5.5 Properties Of SIriNG INSTANCESuuiiii i e e e e e s e e e e s e st re e e e e e e s e nanenees 268
T S = Yo Yo 1= Y= U I @ Lo =T o RS 268

© Ecma International 2012 V

»ecma

15.6.1 The Boolean Constructor Called as @ FUNCLIONciiiiiiiiiiiiiie e 268
15.6.2 The BOOIEAN CONSIIUCTON ...uviiiiiiiieeiiiiie ettt ettt e sttt e e e st e e s sbe e e e anbbe e e s nbe e e e ensbeeesnneeas 268
15.6.3 Properties of the BOolean CONSIIUCTONuuiiiii i ee e s ster e e e et e e e e e s s s e e e e e e e e nnneees 269
15.6.4 Properties of the Boolean Prototype ObjJEC........ocuiiiiiii i 269
15.6.5 Properties 0f BOOIEAN INSTANCESiiiiiiiiiiiiie et e e s s e e e e e s et r e e e e e s snteaeeeaeeeannnes 270
TR A V1012 01 o X=T @ o =T £ SRS 270
15.7.1 The Number Constructor Called as @ FUNCLIONooiiiiiiiiiiecc e e e e e e 270
15.7.2 The NUMDEI CONSIIUCTON ..uiiiiiiiiiiiiiii e e et ee e e e st ee e e e e e st e e e e e e s ants e eaeeesanssteneeaeessansnneeeeeeeaannne 270
15.7.3 Properties of the NUMBDer CONSTIUCTONccoiiiiiiiiiii e 270
15.7.4 Properties of the Number Prototype ODJECT ... 272
15.7.5 Properties of NUMDEr INSTANCEScuviiiiiiiieiiie e e s e 276
15.8 The Math ODJECT.......ooiiiiie e st e e 276
15.8.1 Value Properties of the Math ODJeCt...........eeiiiiiii e 277
15.8.2 Function Properties of the Math ODJECT ... e i 278
ST I B T (= @] o] <o £ OO PT TP PUPPTO: 285
15.9.1 Overview of Date Objects and Definitions of Abstract Operations.........ccccciiuevereeeeiiciiieeeeeeseiinnns 285
15.9.2 The Date Constructor Called as a FUNCHION.........ooouiier it s 290
15.9.3 The Date CONSIIUCTON ..uuiiiiiiiii ittt seee et ediaba e e e st eeesbteeesnseeeeesnseeeessanneaShn s eeeesneeeeesnnneeas 290
15.9.4 Properties 0f the Date CONSIIUCTOLiciiiiiiiiiiie s adhrieeee e e e s ccree e e e e e setereeeee e e s s snteeeesasasathaereeeeeesannnnes 291
15.9.5 Properties of the Date Prototype ODJECTuuviie il ee e e e e e e e e e e annnas s e e e e e e nnneees 293
15.9.6 Properties Of DAte INSTANCEScc.vviiiiieeiiciiieee et asathr e e e e e s seeeesfanaaassteteeeeeessssssteneeeeessansrneeeeeeesannsnes 301
15.10 RegExp (Regular EXPression) ODJECTESuuiiieiiiiiieietie e eeeifeneiane s esiiieeeaessssieneeeeesssssssneeeeeessansnsens 301
ST 0 I = 11 =T PSP PPPPPPRP 301
15.20.2 PAEIN SEMANTICS .oieieiiiiiiiiiiie e ettt e e e ettt e e e e e e ettt e e et asaaaan e e et e e e e e amnteseeaaeeeaanssaeeeeaeeaaansteeeaeeesannneees 303
15.10.3 The RegExp Constructor Called as@ FUNCLIONcociiiiiiiie e 315
15.10.4 The REGEXDP CONSTIUCTON ...uviiiiiiiii ittt eaissee i et e st e sise e S e et e e esbe e e e enbbe e e e st neeeanbeeeeanneas 315
15.10.5 Properties of the REGEXP CONSIIUCTONiiii i i e et e s Tt e e e et e e e e e s e anbe e e e e e e e e nneees 316
15.10.6 Properties of the RegEXp Prototype OBJECT ittt 316
15.10.7 Properties of REGEXP INSTANCESooiiiiiiiiiiiieie it s ettt e e e ettt e e e e e e snbeb e e e e e e e annnes 318
00 I R Y oY G @] oY= o] £ USRS 319
15.11.1 The Error Constructor Called @s a FUNCHION.............oiiiiiiiiiiiee e 319
15.11.2 The Error CONSIIUCTOTcccitiiiiiiith e e iieiee et tee s ahe e e sttt e e sste e e e sbae e e e sabbeeessbeeeesnbeeeesasaeeeesnseeeesnneeeesannneas 319
15.11.3 Properties 0f the EFror CONSIIUCTONc.uvuiieeesiiiiiiieiee e e et e e e e e e st eee e e e e s st e e e e e s s s nnntaneeeeesennnrens 319
15.11.4 Properties ofthe Error Prototype ODJECTiiiei it e e e e e e e e e 320
15.11.5 Properties Of EFFOF INSTANCESuuuieee i e eiees et e e e e e st e e e e e s st ee e e e e e s ssssteeeeeeessantnneeeeeesannnne 320
15.11.6 Native Error Types Usedin This Standardccoouiiiiiiiieiiiii e 320
15.11.7 NatiVEELFOL ODJECT STFUCTUT @eeiiiiiiiee ettt ettt e e s bt e e e sabb e e e e sneeas 321
LT I N g =T LT @ |\ @ o = PSPPI 322
15.12.1 THe JSON GFAMMIAuueeiieeeiaeeieeeeaeeaaaataeeeeaeeaaateteeeaaesaaasteeeeaaeesaanteseeaaeeaaanssseeeeaessaassreeeeeesssnnnsens 323
15.12.2 JSON.PArse (XL [, FEVIVEIT) iueriiiiiiii ittt s b e e 324
15.12.3 JSON.stringify (value [, replaCer [, SPACE] 1) ittt 326
15.13 BINArY Data O CTS i iiiiiiiiiiie ettt ettt ettt h e e et e e anne s 330
15.13.1 The BinaryData MOGUIE..........cooiiiiiiiiiie ettt s bt e e e e e e e 330
15.13.2 The BinaryData. TYPE ODJECT........uii ittt a e e st e e s st e e e e st e e e aneeas 330
15.13.3 The BinaryData. Array Ty Pe ODJECTuiiiiiiiie ittt et e e ebbe e e e nneeas 330
15.13.4 The BinaryData.StruCtTYPE ODJECT ...cciiiiiiiiiii e e e s s ee e e e e e e st re e e e e e e e nnnnes 330
15.13.5 ArrayBuUffer ODJECTSuviiiiiieiiiiiiic e e e e s e e e e e s st e e e e e e s et a e e e e e e e aannrareeeeeeannnrees 330
15.13.6 TypedArray ODJECT SIFUCTUIESuviiiiii e e s e e e e e st e e e e e e s e st e e e e e e e e s sntnrneeeeeeaannes 334
ST Ty A T = NV A=Y @] oY= o3 £ S 342
T Y =T o I @ o] [T o £ PSPPSR 346
15.14.1 Abstract Operations FOr Map ODJECESuii i 346
15.14.2 The Map Constructor Called as @ FUNCLIONoociiiiiiiii e 347
15.14.3 THE MAP CONSTIUCTONueiiiitiiee ittt ettt b et e b et e s bb et e e sabb e e e sabb et e e aabb e e e sabbe e e s annneas 347
15.14.4 Properties 0f the Map CONSIIUCTONiiiiiiiii i eb e e 347
15.14.5 Properties of the Map Prototype ODjJECT.......coui it 348
15.14.6 Properties Of Map INSTANCESoouuiiiiieii ettt ettt e e ettt e e e e e s asbe e e e e e e e s annbebeeeaaeeaannnes 351
15.14.7 Map Iterator ODJECT SIUCTUIueiiiiiiee ittt e ettt a e e e e st b e e e e e e e s anbbbeeeaaeeaannnes 351
15.15 WEBKMAP OBJECES ...eeeiiiiiiiiiiiiiii ettt ettt e e ettt e e e e e e s b et e e e e e e e s nbbbe e e e e e e e s s nbeeeeaeeesannbnbeeeaeeaaannnns 352
15.15.1 Abstract Operations For WeakMap ODjJECTEScccooiiiiiiiiiiiiert ettt e e e e e e e e e e e e e e aaaaaaaa s 353

VI © Ecma International 2012

secmd

15.15.2 The WeakMap Constructor Called as @ FUNCHIONooiiiiiiiiiiiiiiiice e 353
15.15.3 The WEaKMaP CONSIIUCTON ...ciiiiiiiiiiie e ettt e e e s e sttt e e e e e st e e e e e e st e e e e e e e e santbeeeeaeessntnraeeeeeesansnrnens 354
15.15.4 Properties of the WeakMap CONSIIUCTONuiiiiiiiiiiiieie et ee e seee e e e e s s e e e e e e snnrae e e e e e s e nnnenees 354
15.15.5 Properties of the WeakMap Prototype ODjJECT........uuiiiii i e e 354
15.15.6 Properties 0f WeakMap INSTANCEScccviiiiie et e sttt e s e e e e e st ee e e e e s snnaaae e e e e e s nnnenees 356
BT IR Y= A @ o] = o £ RS 356
15.16.1 Abstract Operations FOr SEt ODJECTSuuiiiiiiiii i 356
15.16.2 The Set Constructor Called as a FUNCLION ...t 357
15.16.3 The St CONSIIUCTON ..o e e e e e e e e e e e e e e eeeeeeaeaeaeaeaaaaaeaaaeaaaaaaaeaeaas 357
15.16.4 Properties Of the Set CONSTIUCTONiiiiiiiiiiiiiie e 357
15.16.5 Properties of the Set Prototype ODJECT ... e 358
15.16.6 Properties Of SEt INSTANCESuiiiiiiiieii et fb ettt es 360
15.16.7 Set Iterator ODJECT STFUCTUIEuuiiiiie ettt e e e e e b bt e e e e e ettt e e e e e sbb b e e e e e e e s e nanenees 360
15.17 The RefleCt MOAUIE ...t sttt e e Bttt e e e e e e e e e e e s eneees 361
15.17.1 Exported Function Properties Reflecting the Essentional Internal Methodsccccccveveeen. 361
ST I o 0 D1V @ o] =T o £ RS 364
16 T 0 O S UTUTPTPPPPPPTPP 364
Annex A (informative) Grammar SUMMATYeeeoiiiiuieesiierainiunnieeeeesiisinreeeeessasssseeseessssnssnsssstaessnsssseeeeeas 367
A.l [o= T € =011 = | PR SRR 367
A.2 N TU]] oX=T g @] 1YY =T Yo o TP SPPP SR 373
A.3 D d 0TI 1T o] 1 PR PRP T R 374
A4] = 1= 0 1=] PPN 378
A.5 FUNCHIONS ANO SCITPEIS .ttt a bR ettt e e e kbt e e e st et e e aabb e e e e abb e e e e anbeeeeenbeeeenees 380
A.6 Universal Resource Identifier CharaCter ClasSSesSuuiiiie i 381
A7 REGUIAT EXPIESSIONS ..ciitiiiiiiitiee et e st e eassse ittt e e ettt e e s ambe e e bbbt e e e ket e e anb e e e eb b e e e e enbeeeeanbeeeenees 381
A.8 0011] SRR 383
A.8.1 JSON LeXIiCaAl GraMIMIArccieiiiiiiiiie s iithetauitaeareessssssssss s SEaae e eeeeesesstaeeeeeeteeataaaaaaaaaaaeaeaaeaeaaaaaeaaaananas 383
A.8.2 JSON SyNtaCtiC GramMMIAIcuieiieeiiiiiieetiee e e ifoeeaaeeesivaneesss et i eeeeeaeesaastbeeeeaesssanbbseeaaesesanreseeaaens 384
Annex B (normative) Additional ECMAScript Features for Web Browserscccoccveeeiiieeeiiieeesiiieeenns 387
B.1 F o o T AT oT g = LIRSV] - b G oo S SRS 387
2 00 I A 10T 1= o I =T = L SO R 387
2 0 S g Lo L (=T = | T SRR 387
B.2 P Yo o [ToT g = U ol o] o 1=] =T S SRR 388
B.2.1 Additional Properties of the Global OBJECt i . .eeiiii e 388
B.2.2 Additional Properties of the String.prototype ODJECtcccevi i 389
B.2.3 Additional Properties of the Date.prototype ODJecCtccvvviiieiiiii e 392
B.3 Other AddItIONAl FEATUIES . ii...ocoei et a e e e e e eeeeeeeeeeeeeeeees 393
(2300 T Rt 1 o (= o] o o TR ¢ 151 =1U o Lo o] o] o<1 i Y2 PR 393
Annex C (informative) The Strict Mode 0f ECMASCHIIPT ...ooiiiiiiiiiiii ettt 395
Annex D (informative) Corrections and Clarifications with Possible Compatibility Impact 397
T o LT oY I SRS UP PP 397
TN o 1 T Yo = PR UPRUURRI 397
IN 5™ EQItION 5 .ttt sttt 398
Annex E (informative) Additions and Changes that Introduce Incompatibilities with Prior

=0 [(0] ¢ 1< T PP PTPP PRI 401
IR TNl =L [T oY s VOO OO SORO OO PR 401
IR gLl =L [1T oY s VOO OO OSSO OO PRPRRO 401
Annex F (informative) Static Semantic Rule Cross ReferenCe.......cccocuveieiiiiii i 405
o =T o N ==V o P 407
8.3.10 [[Enumerate]] (includePrototype, onlyEnuUmMerable). ... 408
10.5.3 Function Declaration INStANTIAtioNcoooiiiiiii e ae e 409

© Ecma International 2012 Vil

VI

© Ecma International 2012

»ecma

Introduction

This Ecma Standard is based on several originating technologies, the most well known being JavaScript
(Netscape) and JScript (Microsoft). The language was invented by Brendan Eich at Netscape and first
appeared inthatcompany 6 s Navigator 2.0 browser. It has appearec
and in all browsers from Microsoft starting with Internet Explorer 3.0.

The development of this Standard started in November 1996. The first edition of this Ecma Standard was
adopted by the Ecma General Assembly of June 1997.

That Ecma Standard was submitted to ISO/IEC JTC 1 for adoption<under the fast-track procedure, and
approved as international standard ISO/IEC 16262, in April 1998. The Ecma General Assembly of June 1998
approved the second edition of ECMA-262 to keep it fully aligned.with ISO/IEC 16262. Changes between the
first and the second edition are editorial in nature.

The third edition of the Standard introduced powerful regular expressions, better string handling, new control
statements, try/catch exception handling, tighter definition of errors, formatting for numeric output and minor
changes in anticipation of forthcoming internationalisation facilities and future language growth. The third
edition of the ECMAScript standard was adopted by the Ecma General Assembly of December 1999 and
published as ISO/IEC 16262:2002 in June 2002.

Since publication of the third edition, ECMAScript has.achieved massive adoption in conjunction with the
World Wide Web where it has become the programming language that is supported by essentially all web
browsers. Significant work was done to develop a fourth edition of. ECMAScript. Although that work was not
completed and not published?! as the fourth edition of ECMASeript, it-informs continuing evolution of the
language. The fifth edition of ' ECMAScript (published as ECMA-262 5" edition) codifies de facto
interpretations of the language specification that have become common among browser implementations and
adds support for new features that have emerged since the publication of the third edition. Such features
include accessor properties, reflective’ creation and inspection of objects, program control of property
attributes, additional array manipulation functions, support for the JSON object encoding format, and a strict
mode that provides enhanced error checking and program security.

The edition 5.1 of the ECMAScript Standard has been fully aligned with the third edition of the international
standard ISO/IEC 16262:2011.

Thispresentsix t h editi on of the Standardeéeéé

ECMAScript is a vibrant language and the evolution of the language is not complete. Significant technical
enhancement will continue with future editions of this specification.

This Ecma Standard has been adopted by the General Assembly of <month> <year>.

INot e: Pl ease note that for ECMAScr i pt -2B6d2i tEdoint i4o nt hdedt Edtansa rs¢
used in the Ecma publicat i-2hM2 pEdicteisen dheaefane EABEMANt er |
exist.

© Ecma International 2012 IX

»ecma

"DISCLAIMER

This draft document may be copied and furnished to others, and derivative works that comment on or
otherwise explain it or assist in its implementation may be prepared, copied, published, and distributed,
in whole or in part, without restriction of any kind, provided that the above copyright notice and this
section are included on all such copies and derivative works. However, this document itself may not be
modified in any way, including by removing the copyright notice or references to Ecma International,
except as needed for the purpose of developing any document or deliverable produced by Ecma
International.

This disclaimer is valid only prior to final version of this document. After approval all rights on the
standard are reserved by Ecma International.

The limited permissions are granted through the standardization phase and will not be revoked by
Ecma International or its successors or assigns during this time.

This document and the information contained herein is provided on an "AS IS" basis and ECMA
INTERNATIONAL DISCLAIMS ALL WARRANTIES, EXPRESS OR IMPLIED, INCLUDING BUT NOT
LIMITED TO ANY WARRANTY THAT THE USE OF THE INFORMATION HEREIN WILL NOT INFRINGE
ANY OWNERSHIP RIGHTS OR ANY IMPLIED WARRANTIES OF MERCHANTABILITY OR FITNESS FOR
A PARTICULAR PURPOSE."

X © Ecma International 2012

secma

ECMAScript Language Specification

1 Scope

This Standard defines the ECMAScript scripting language.

2 Conformance

A conforming implementation of ECMAScript must provide and support<all the types, values, objects,
properties, functions, and program syntax and semantics described in this specification.

A conforming implementation of this Standard shall interpret characters in conformance with the Unicode
Standard, Version 5.1.0 or later and ISO/IEC 10646. If the adopted ISO/IEC 10646-1 subset is not otherwise
specified, it is presumed to be the Unicode set, collection 10646:

A conforming implementation of ECMAScript is permitted to provide additional types, values, objects,
properties, and functions beyond those described in this specification. In particular, a conforming
implementation of ECMAScript is permitted to provide properties not described in this specification, and
values for those properties, for objects that are described in this specification.

A conforming implementation of ECMAScript<is permitted to support program and regular expression syntax
not described in this specification. In particular, a conforming implementation of ECMAScript is permitted to
support program syntax that makes wse of theicafidnut ur e

3 Normative references

The following referenced documents are indispensable for the application of this document. For dated
references, only the edition cited applies. For undated references, the latest edition of the referenced
document (including any amendments) applies.

ISO/IEC 9899:1996, Programming Languages i C, including amendment 1 and technical corrigenda 1 and 2
ISO/IEC 10646:2003: Information Technology i Universal Multiple-Octet Coded Character Set (UCS) plus
Amendment 1:2005, Amendment 2:2006, Amendment 3:2008, and Amendment 4:2008, plus additional
amendments and corrigenda; or successor

The Unicode Standard, Version 5.0, as amended by Unicode 5.1.0, or successor

Unicode Standard Annex #15, Unicode Normalization Forms, version Unicode 5.1.0, or successor

Unicode Standard Annex #31, Unicode Identifiers and Pattern Syntax, version Unicode 5.1.0, or successor.

4 Overview
This section contains a non-normative overview of the ECMAScript language.

ECMAScript is an object-oriented programming language for performing computations and manipulating
computational objects within a host environment. ECMAScript as defined here is not intended to be
computationally self-sufficient; indeed, there are no provisions in this specification for input of external data or
output of computed results. Instead, it is expected that the computational environment of an ECMAScript
program will provide not only the objects and other facilities described in this specification but also certain
environment-specific objects, whose description and behaviour are beyond the scope of this specification
except to indicate that they may provide certain properties that can be accessed and certain functions that can
be called from an ECMAScript program.

© Ecma International 2012 1

secma

A scripting language is a programming language that is used to manipulate, customise, and automate the
facilities of an existing system. In such systems, useful functionality is already available through a user
interface, and the scripting language is a mechanism for exposing that functionality to program control. In this
way, the existing system is said to provide a host environment of objects and facilities, which completes the
capabilities of the scripting language. A scripting language is intended for use by both professional and non-
professional programmers. ECMAScript was originally designed to be used as a scripting language, but has
become widely used as a general purpose programming language.

ECMAScript was originally designed to be a Web scripting language, providing a mechanism to enliven Web
pages in browsers and to perform server computation as part of a Web-based client-server architecture.
ECMAScript is now used both as a general propose programming language and to provide core scripting
capabilities for a variety of host environments. Therefore the core language is specified in this document apart
from any particular host environment.

Some of the facilities of ECMAScript are similar to those used in other.programming languages; in particular
Javad , Self, and Scheme as described in:

Gosling, James, Bill Joy and Guy Steele. The Java® Language Specification. Addison Wesley Publishing Co.,
1996.

Ungar, David, and Smith, Randall B. Self: The Power of Simplicity. OOPSLA '87 Conference Proceedings, pp.
227i 241, Orlando, FL, October 1987.

IEEE Standard for the Scheme Programming Language. |IEEE Std 1178-1990.

4.1 Web Scripting

A web browser provides an ECMAScript host environment for client-side computation including, for instance,
objects that represent windows, menus, pop-ups, dialog boxes, text areas, anchors, frames, history, cookies,
and input/output. Further, the host environment provides a means to attach scripting code to events such as
change of focus, page and image loading, unloading, error and abort, selection, form submission, and mouse
actions. Scripting code appears within the HTML and the displayed page is a combination of user interface
elements and fixed and.computed text and images. The scripting code is reactive to user interaction and there
is no need for a main program.

A web server provides a different-host environment for server-side computation including objects representing
requests, clients, and.files; and mechanisms to lock and share data. By using browser-side and server-side
scripting together, it is possible to distribute computation between the client and server while providing a
customised user interface for.a Web-based application.

Each Web browser and server that supports ECMAScript supplies its own host environment, completing the
ECMAScript execution environment.

4.2 Language Overview

The following is an infoermal overview of ECMAScriptd not all parts of the language are described. This
overview is not part of the standard proper.

ECMAScript is object-based: basic language and host facilities are provided by objects, and an ECMAScript
program is a cluster of communicating objects. An ECMAScript object is a collection of properties each with
zero or more attributes that determine how each property can be usedd for example, when the Writable
attribute for a property is set to false, any attempt by executed ECMAScript code to change the value of the
property fails. Properties are containers that hold other objects, primitive values, or functions. A primitive
value is a member of one of the following built-in types: Undefined, Null, Boolean, Number, and String; an
object is a member of the remaining built-in type Object; and a function is a callable object. A function that is
associated with an object via a property is a method.

ECMAScript defines a collection of built-in objects that round out the definition of ECMAScript entities. These
built-in objects include the global object, the Object object, the Function object, the Array object, the String

2 © Ecma International 2012

»ecma

object, the Boolean object, the Number object, the Math object, the Date object, the RegExp object, the
JSON object, and the Error objects Error, EvalError, RangeError, ReferenceError, SyntaxError,
TypeError and URIError.

ECMAScript also defines a set of built-in operators. ECMAScript operators include various unary operations,
multiplicative operators, additive operators, bitwise shift operators, relational operators, equality operators,
binary bitwise operators, binary logical operators, assignment operators, and the comma operator.

ECMAScript syntax intentionally resembles Java syntax. ECMAScript syntax is relaxed to enable it to serve as
an easy-to-use scripting language. For example, a variable is not required to have its type declared nor are
types associated with properties, and defined functions are not required to have their declarations appear
textually before calls to them.

4.2.1 Objects

ECMAScript does not use classes such as those in C++, Smalltalk, or Java. Instead objects may be created in
various ways including via a literal notation or via constructors which create objects and then execute code
that initialises all or part of them by assigning initial values to their properties. Each constructor is a function
that has a prpotptge ty tnlaate di §i < u s prdtotype-baised pnhezirareca and shared
properties. Objects are created by using constructors in new _expressions; for example, new
Date(2009,11) creates a new Date object. Invoking a constructor without using new has consequences that
depend on the constructor. For example, Date() produces a string representation of the current date and
time rather than an object.

Every objectcreated by a constriuct.or has ‘an i mpl pratatype) to thed valueeoh ¢ e
its conspototypet Or psoferty. Furt her mor e, -nuaimgiait cefererceytits ma
prototype, and so on; this is called the prototype chain. When a reference is made to a property in an object,

that reference is to the property of that name in the first object in the prototype chain that contains a property

of that name. In other words, first the object mentioned directly is examined for such a property; if that object
contains the named property, that is the property to which the reference refers; if that object does not contain

the named property, the prototype for that object is examined next; and so on.

A A ... >
......... CF implicit prototype link
prototype " CFp
P1
P2 CEP1 explicit prototype property

......... Cfl Teee Cf2 Cf3 Cf4 Cf5
gl ql al al i
q2 q2 a2 a2 %@

Figure 1 8 Object/Prototype Relationships
In a class-based object-oriented language, in general, state is carried by instances, methods are carried by

classes, and inheritance is only of structure and behaviour. In ECMAScript, the state and methods are carried
by objects, while structure, behaviour, and state are all inherited.

© Ecma International 2012 3

secma

All objects that do not directly contain a particular property that their prototype contains share that property
and its value. Figure 1 illustrates this:

CF is a constructor (and also an object). Five objects have been created by using new expressions: cfi, cfy,
cfs, cfs, and cfs. Each of these objects contains properties named g1 and g2. The dashed lines represent the
implicit prototype relationship; so, for example, cfz0 s p r o tGg Thp ensirustor, CF, has two properties
itself, named P1 and P2, which are not visible to CFy, cfy, cfs, cfs, cfs, or cfs. The property named CFP1in CF,

is shared by cfy, cf,, cfs, cfs, and cfs (but not by CF), as are any properties found inCF,6 s i mp |l i ci

chain that are not named g1, g2, or CFPL1 Notice that there is no implicit prototype link between CF and CF;.

Unlike class-based object languages, properties can be added to objects dynamically by assigning values to
them. That is, constructors are not requiredtona me or assign<values to all

properties. In the above diagram, one could add a new shared propertyfor cfi, cf,, cfs, cfs, and cfs by
assigning a new value to the property in CFy.

4.2.2 The Strict Variant of ECMAScript

The ECMAScript Language recognises the possibility that some users of the language may wish to restrict
their usage of some features available in the language. They might do so in the interests of security, to avoid
what they consider to be error-prone features, to get enhanced error checking, or for other reasons of their
choosing. In support of this possibility, ECMAScript defines a strict variant of the language. The strict variant
of the language excludes some specific syntactic and semantic features of the regular ECMAScript language
and modifies the detailed semantics of some features. The strict variant also specifies additional error
conditions that must be reported by throwing error exceptions in situations that are not specified as errors by
the non-strict form of the language.

The strict variant of ECMAScript is commonly referred to as.the strict mode of the language. Strict mode
selection and use of the strict mode syntax and semantics of ECMAScript is explicity made at the level of
individual ECMAScript code units. Because strict mode is selected at the level of a syntactic code unit, strict
mode only imposes restrictions_that have local effect within such a code unit. Strict mode does not restrict or
modify any aspect of the ECMAScript semantics that must operate consistently across multiple code units. A
complete ECMAScript program may be composed for both strict mode and non-strict mode ECMAScript code
units. In this case, stricttmode only applies when actually executing code that is defined within a strict mode
code unit.

In order to conform to this specification, an ECMAScript implementation must implement both the full
unrestricted ECMAScript language and the strict mode variant of the ECMAScript language as defined by this
specification. In addition, an implementation must support the combination of unrestricted and strict mode
code units into a single composite program.

4.3 Terms and definitions

For the purposes of this document, the following terms and definitions apply.

43.1

type

set of data values as defined in Clause 8 of this specification

4.3.2

primitive value

member of one of the types Undefined, Null, Boolean, Number, or String as defined in Clause 8
NOTE A primitive value is a datum that is represented directly at the lowest level of the language implementation.
4.3.3

object

member of the type Object

NOTE An object is a collection of properties and has a single prototype object. The prototype may be the null value.

4 © Ecma International 2012

»ecma

4.3.4
constructor
function object that creates and initialises objects

NOTE The value of protaypen sot rpucotpoerrtsy i s a prototype object tl
and shared properties.

435

prototype

object that provides shared properties for other objects

NOTE When a constructor creates an object,t hat obj ect i mpli.€i t | yprotaybee roe rmcreosp etrh
for the purpose of resol ving prmqgiogypet Y mpe fopree ng/e sc.anT hbee croen
program expression constructor .prototype , and properties added to an obj ect 6 s prototype ar e

inheritance, by all objects sharing the prototype. Alternatively, a new object may be created with an explicitly specified
prototype by using the Object.create built-in function.

4.3.6

ordinary object

object that has the default behaviour for the internal methods that must be supported by all. ECMAScript
objects.

4.3.7

exotic object

object that has some alternative behaviour for-one or more of the internal methods that must be supported by
all ECMAScript objects.

NOTE Any object that is not an ordinary object is an exotic object.

4.3.8
standard object
object whose semantics are defined by this specification.

4.3.9

built-in object

object supplied by an ECMAScript implementation, independent of the host environment, that is present at the
start of the execution of an ECMAScript program

NOTE Standard built-in objects are defined in this specification, and an ECMAScript implementation may specify and
define others. A built-in constructor is a built-in object that is also a constructor.

4.3.10
undefined value
primitive value used when a variable has not been assigned a value

4.3.11
Undefined type
type whose sole value is the undefined value

4.3.12
null value
primitive value that represents the intentional absence of any object value

4.3.13
Null type
type whose sole value is the null value

4.3.14

Boolean value
member of the Boolean type

© Ecma International 2012 5

secma

NOTE There are only two Boolean values, true and false.

4.3.15
Boolean type
type consisting of the primitive values true and false

4.3.16
Boolean object
member of the Object type that is an instance of the standard built-in Boolean constructor

NOTE A Boolean object is created by using the Boolean constructor in a new expression, supplying a Boolean
value as an argument. The resulting object has an internal data property whose value.is the Boolean value. A Boolean
object can be coerced to a Boolean value.

4.3.17
String value
primitive value that is a finite ordered sequence of zero or more 16-bit unsigned integer

NOTE A String value is a member of the String type. Each integer value in the sequence usually represents a single
16-bit unit of UTF-16 text. However, ECMAScript does not place any restrictions or requirements on the values except that
they must be 16-bit unsigned integers.

4.3.18
String type
set of all possible String values

4.3.19
String object
member of the Object type that is an instance of the standard built-in String ~ constructor

NOTE A String object is created by using the String ‘constructor in a new expression, supplying a String value as
an argument. The resulting object has an internal data property whose value is the String value. A String object can be
coerced to a String value by calling the String constructor as a function (15.5.1).

4.3.20
Number value
primitive value corresponding to a double-precision 64-bit binary format IEEE 754 value

NOTE A Number value is a member of the Number type and is a direct representation of a number.

4.3.21

Number type

set of al | possible Number awadluméer 0 n ¢ INapdtivegniinttypasd speci al

negative infinity

4.3.22
Number object
member of the Object type that is an instance of the standard built-in Number constructor

NOTE A Number object is created by using the Number constructor in a new expression, supplying a Number value
as an argument. The resulting object has an internal data property whose value is the Number value. A Number object can
be coerced to a Number value by calling the Number constructor as a function (15.7.1).

4.3.23
Infinity
number value that is the positive infinite Number value

4.3.24

NaN
number value thatis a | EEE -aNaumbeNot val ue

6 © Ecma International 2012

»ecma

4.3.25
function
member of the Object type that may be invoked as a subroutine

NOTE In addition to its properties, a function contains executable code and state that determine how it behaves
when invoked. A functionbés code may or may not be written i
4.3.26

built-in function
built-in object that is a function

NOTE Examples of built-in functions include parseint and Math.exp . An implementation may provide
implementation-dependent built-in functions that are not described in this specification.

4.3.27

property
association between a name and a value that is a part of an object

NOTE Depending upon the form of the property the value may be represented either directly as a data value (a
primitive value, an object, or a function object) or indirectly by a pair of accessor functions.

4.3.28
method
function that is the value of a property

NOTE When a function is called as a method of an object, the object is passed to the function as its this value.

4.3.29
built-in method
method that is a built-in function

NOTE Standard built-in methods are defined in this specification, and an ECMAScript implementation may specify
and provide other additional built-in methods.

4.3.30
attribute
internal value that defines some characteristic of a property

4.3.31

own property

property that is directly contained by its object
4.3.32

inherited property

property of an object that is‘not an own property b u t is a property (either own
prototype

5 Notational Conventions

5.1 Syntactic and Lexical Grammars

5.1.1 Context-Free Grammars

A context-free grammar consists of a number of productions. Each production has an abstract symbol called a
nonterminal as its left-hand side, and a sequence of zero or more nonterminal and terminal symbols as its

right-hand side. For each grammar, the terminal symbols are drawn from a specified alphabet.

A chain production is a production that has exactly one nonterminal symbol on its right-hand side along with
zero or more terminal symbols.

© Ecma International 2012 7

secma

Starting from a sentence consisting of a single distinguished nonterminal, called the goal symbol, a given
context-free grammar specifies a language, namely, the (perhaps infinite) set of possible sequences of
terminal symbols that can result from repeatedly replacing any nonterminal in the sequence with a right-hand
side of a production for which the nonterminal is the left-hand side.

5.1.2 The Lexical and RegExp Grammars

A lexical grammar for ECMAScript is given in clause 7. This grammar has as its terminal symbols characters
(Unicode code units) that conform to the rules for SourceCharactedefined in Clause 6. It defines a set of
productions, starting from the goal symbol InputElementDivor InputElementRegExpthat describe how
sequences of such characters are translated into a sequence of input elements.

Input elements other than white space and comments form the terminal symbols for the syntactic grammar for

ECMAScript and are called ECMAScript tokens. These tokens are the reserved words, identifiers, literals, and

punctuators of the ECMAScript language. Moreover, line terminators, although not considered to be tokens,

also become part of the stream of input elements and guide the process of automatic semicolon insertion (7.9).

Simple white space and single-line comments are discarded and do not appear in the stream of input

elements for the syntactic grammar. A MultiLineCommen({that is, a comment of the form /*ié */ 6 r egar dl es s
of whether it spans more than one line) is likewise simply discarded if it contains no line terminator; but if a
MultiLineCommentontains one or more line terminators, then it is replaced by a single line terminator, which

becomes part of the stream of input elements for the syntactic grammar.

A RegExp grammar for ECMAScript is given in 15.10. This grammar also has as its terminal symbols the
characters as defined by SourceCharacterit defines a set of productions, starting from the goal symbol Pattern
that describe how sequences of characters are translated into regular expression patterns.

Productions of the | exical and RegExp gr ammarss serper @it s tn
punctuation. The lexical and RegExp grammars share some productions.

5.1.3 The Numeric String Grammar

Another grammar is used for translating Strings into numeric values. This grammar is similar to the part of the
lexical grammar having<to do with numeric literals and has as its terminal symbols SourceCharacter This
grammar appears in 9:3.1.

Productions of the numeric string grammarasrpurddtsudtnigan .s
5.1.4 The Syntactic Grammar

The syntactic grammar for ECMAScript is given in clauses 11, 12, 13 and 14. This grammar has ECMAScript
tokens defined by the lexical grammar as its terminal symbols (5.1.2). It defines a set of productions, starting
from the goal symbol Script, that describe how sequences of tokens can form syntactically correct independent
components of an ECMAScript programs.

When a stream of characters is to be parsed as an ECMAScript script, it is first converted to a stream of input
elements by repeated application of the lexical grammar; this stream of input elements is then parsed by a
single application of the syntactic grammar. The script is syntactically in error if the tokens in the stream of
input elements cannot be parsed as a single instance of the goal nonterminal Script with no tokens left over.

Product i ons of the syntactic grammar ar®e ad spgumagtuu asthieadn.by |

The syntactic grammar as presented in clauses 11, 12, 13 and 14 is actually not a complete account of which
token sequences are accepted as correct ECMAScript scripts. Certain additional token sequences are also
accepted, namely, those that would be described by the grammar if only semicolons were added to the
sequence in certain places (such as before line terminator characters). Furthermore, certain token sequences
that are described by the grammar are not considered acceptable if a terminator character appears in certain
Afawkwardo places.

8 © Ecma International 2012

»ecma

In certain cases in order to avoid ambiguities the syntactic grammar uses generalize productions that permit
token sequences that are not valid ECMAScript scriptss. For example, this technique is used in with object
literals and object destructuring patterns. In such cases a more restrictive supplemental grammar is provided
that further restricts the acceptable token sequences. In certain contexts, when explicitly specific, the input
elements corresponding to such a production are parsed again using a goal symbol of a supplemental
grammar. The script is syntactically in error if the tokens in the stream of input elements cannot be parsed as
a single instance of the supplemental goal symbol, with no tokens left over.

5.1.5 The JSON Grammar

The JSON grammar is used to translate a String describing a set of ECMAScriptobjects into actual objects.
The JSON grammar is given in 15.12.1.

The JSON grammar consists of the JSON lexical grammar and the JSON syntactic grammar. The JSON
lexical grammar is used to translate character sequences into tokens and is similar to parts of the ECMAScript
lexical grammar. The JSON syntactic grammar describes how sequences of tokens from the JSON lexical
grammar can form syntactically correct JSON object descriptions.

Productions of the JSON || exical gr ammar :i0araes ddepa rne
punctuation. The JSON lexical grammar uses some productions from the ECMAScript lexical grammar. The
JSON syntactic grammar is similar to parts of the ECMAScript syntactic'grammar. Productions of the JSON
syntactic grammar are distinguished by using one colo n:0fias separating punctuation

5.1.6 Grammar Notation

Terminal symbols of the lexical, RegExp, and numeric string grammars, and some of the terminal symbols of
the other grammars, are shown in fixed width font, both in the productions of the grammars and
throughout this specification whenever the text directly refers to such a terminal symbol. These are to appear
in a script exactly as written. All terminal symbol characters specified in this way are to be understood as the
appropriate Unicode character from the ASCII range, as opposed to any similar-looking characters from other
Unicode ranges.

Nonterminal symbols are shown in italic type. The definition of a nonterminal (al so cal |l ed isa fip
introduced by the name of the nonterminal being defined followed by one or more colons. (The number of

colons indicates to which grammar the production belongs.) One or more alternative right-hand sides for the
nonterminal then follow on succeeding lines. For example, the syntactic definition:

WhileStatement
while (Expression) Statement

states that the nonterminal WhileStatementepresents the token while , followed by a left parenthesis token,
followed by an Expressionfollowed by a right parenthesis token, followed by a StatementThe occurrences of
Expressiorand Statemenare themselves nonterminals. As another example, the syntactic definition:

ArgumentList
AssignmentExpression
ArgumentList, AssignmentExpression

states that an ArgumentListmay represent either a single AssignmentExpressiam an ArgumentListfollowed by
a comma, followed by an AssignmentExpressioithis definition of ArgumentLists recursive, that is, it is defined
in terms of itself. The result is that an ArgumentListmay contain any positive number of arguments, separated
by commas, where each argument expression is an AssignmentExpressiorSuch recursive definitions of
nonterminals are common.

The subscr ioot,edwhsiwfhf imkaydi appear after a terminal or

The alternative containing the optional symbol actually specifies two right-hand sides, one that omits the
optional element and one that includes it. This means that:

© Ecma International 2012 9

secma

VariableDeclaration:
Identifier Initialisergpt

is a convenient abbreviation for:
VariableDeclaration:
Identifier
Identifier Initialiser

and that:

IterationStatement
for (ExpressionNolg: ; Expressiog: ; Expressiog:) Statement

is a convenient abbreviation for:
IterationStatemernnt
for (; Expressiony ; Expressiogy) Statement

for (ExpressionNoln; Expressiog, ; Expressiony) Statement

which in turn is an abbreviation for:

IterationStatement
for (;; Expressiogy) Statement
for (; Expression; Expressiogyt). Statement
for (ExpressionNoln; ; Expressiogy) - Statement

for (ExpressionNai ; Expression; Expression,:) Statement

which in turn is an abbreviation for:

IterationStatement
for(;;) Statement
for (;; Expression) /Statement
for (; Expression;) < Statement
for (; Expression; Expression) Statement

for (ExpressionNoln ;) Statement

for (ExpressionNoln; Expression) Statement

for (ExpressionNoln Expression;) Statement

for (ExpressionNoln Expression; Expression) Statement

so the nonterminal IterationStatemenrdctually has eight alternative right-hand sides.
When t he onsofiddd ofil ow the colon(s) in a grammar definitio
symbols on the following line or lines is an alternative definition. For example, the lexical grammar for

ECMAScript contains the production:

NonZeoDigit :: one of
123456789

which is merely a convenient abbreviation for:

10 © Ecma International 2012

»ecma

NonZeroDigit::

O©CO~NOOOUITEA WN P

I f t he [epphyld aapp@ar s -hand siddvaf a pradgction, it indicates that the production's right-
hand side contains no terminals or nonterminals.

I f t he [dokhhéaddi S0 fa p p e ar s -hamd silehoka produgtibr, it indicates that the production
may not be used if the immediately following input token is a member of the given set The setcan be written
as a list of terminals enclosed in curly braces. For convenience, the set can also be written as a nonterminal,
in which case it represents the set of all terminals to which that nonterminal could expand. For example, given
the definitions

DecimalDigit:: one of
0123456789

DecimalDigits::
DecimalDigit
DecimalDigits DecimalDigit

the definition

LookaheadExample
N [lookahead1 {1, 3,5, 7, 9}] DecimalDigits
DecimalDigit [lookahead I DecimalDigit]

matches either the letter n followed by one or more decimal digits the first of which is even, or a decimal digit
not followed by another decimal digit.

I f t he [npLheTeamdaeherBl0 a p p e ar s -hanmd sidelofea producfitntof the syntactic grammar, it
indicates that the production is a restricted production: it may not be used if a LineTerminatoroccurs in the
input stream at the indicated position. For example, the production:

ThrowStatement
throw [no LineTerminatohere] EXpression

indicates that the production may not be used if a LineTerminatoroccurs in the script between the throw token
and the Expression

Unless the presence of a LineTerminatoris forbidden by a restricted production, any number of occurrences of
LineTerminatormay appear between any two consecutive tokens in the stream of input elements without
affecting the syntactic acceptability of the script.

The lexical grammar has multiple goal symbols and the appropriate goal symbol to use depends upon the
syntactic grammar context. If a phrase of the form fiLexical goal LexicalGoalSymbol]0 appears on the right-hand-
side of a syntactic production then the next token must be lexically recognized using the indicated goal symbol.
In the absence of such a phrase the default lexical goal symbol is used.

When an alternative in a production of the lexical grammar or the numeric string grammar appears to be a
multi-character token, it represents the sequence of characters that would make up such a token.

© Ecma International 2012 11

secma

The right-hand side of a production may specify that certain expansions are not permitted by using the phrase
fboutnotd and then indicating the expansions to be excluded.

Identifier ::
IdentifierNamebut not ReservedWord

means that the nonterminal Identifier may be replaced by any sequence of characters that could replace
IdentifierNameprovided that the same sequence of characters could not replace ReservedWord

Finally, a few nonterminal symbols are described by a descriptive phrase in sans-serif type in cases where it
would be impractical to list all the alternatives:

SourceCharacter.
any Unicode character

5.2 Algorithm Conventions

The specification often uses a numbered list to specify steps in an algorithm. These algorithms are used to
precisely specify the required semantics of ECMAScript language constructs. The algorithms are not intended
to imply the use of any specific implementation technique.<In practice, there may be more efficient algorithms
available to implement a given feature.

Algorithms may be explicitly parameterized, in which case the names and usage of the parameters must be
provided as part of the algorithm& definition. In order to facilitate their use in multiple parts of this specification,
some algorithms, called abstract operations, are named and written in parameterised functional form so that
they may be referenced by name from within other algorithms.

Algorithms may be associated with productions of one of the ECMAScript grammars. A production that has
multiple alternative definitions will typically have a distinct algorithm for each alternative. When an algorithm is
associated with a grammar production, it may reference the terminal and non-terminal symbols of the
production alternative as if they were parameters of the algorithm. When used in this manner, non-terminal
symbols refer to the actual alternative definition that is matched when parsing the script souce code.

Unless explicitly specified otherwise, all chain productions have an implicit associated definition for every
algorithm that is might be applied to that productioné.s -Haredfsitle nonterminal. The implicit simply reapplies

the same algorithm name with the same parameters, if any, to the chain productiond s s o |-hand sideg h t
nonterminal and-then result. For example, assume there is a production

Block:
{ StatementLisf

but there is.no evalutionalgorithm that is explicitly specified for that production. If in some algorithm there is a
statement of the form: fReturn the result of evaluatiglockd it is implicit that the algorithm has an evalution
algorithm of the form:

Runtime Semantics:« Evaluation

Block : { StatementList

1. Returnthe result of evaluatin§tatementList

For clarity of expression, algorithm steps may be subdivided into sequential substeps. Substeps are indented
and may themselves be further divided into indented substeps. Outline numbering conventions are used to
identify substeps with the first level of substeps labelled with lower case alphabetic characters and the second
level of substeps labelled with lower case roman numerals. If more than three levels are required these rules
repeat with the fourth level using numeric labels. For example:

1. Top-level step
a. Substep.

12 © Ecma International 2012

»ecma

b. Substep
i. Subsubstep.
ii. Subsubstep.
1. Subsubsubstep
a Subsubsubsubstep

Astep or substep may be written as an dAifo predicate |
are only applied if the predicate is true. I f a step
the negation of the precedingfii f 6 predi cate step at the same | evel

A step may specify the iterative application of its substeps.

A step may assert an invariant condition of its algorithm. Such assertions are used to make explicit
algorithmic invariants that would otherwise be implicit. Such assertions add no additional semantic
requirements and hence need not be checked by an implementation.< They are used simply to clarify
algorithms.

Mathematical operations such as addition, subtraction, negation, multiplication, division, and the mathematical
functions defined later in this clause should always be understood as computing exact mathematical results
on mathematical real numbers, which do not include infinities and do not include a negative zero that is
distinguished from positive zero. Algorithms in this standard that model floating-point arithmetic include explicit
steps, where necessary, to handle infinities and signed zero and to perform rounding. If a mathematical
operation or function is applied to a floating-point number, it should be understood as being applied to the
exact mathematical value represented by that floating-point number; such a floating-point number must be
finite, and if it is +0 or - O then the corresponding mathematical value is simply 0.

The mathematical function absg) yields the absolute value of x, which'is - x.if X is negative (less than zero) and
otherwise is x itself.

The mathematical function signf) yields 1 if x is positive and - 1 if x'is negative. The sign function is not used in
this standard for cases when x is-zero.

The mathematical function-min(xs, xz, ..., Xn) yields the mathematically smallest of x; through x,.

The no txamodulaydy rfiust be finite and nonzero) computes a value k of the same sign as y (or zero)
such that absk) < absy) andx-k = q 3y for some integer.q.

The mathematical function floor(x) yields the largest integer (closest to positive infinity) that is not larger than x.

NOTE floor(x) = x- (x modulo 1)

I f “an algorithm is defined to ft fithmoisterrmimtedeand ro pesult n 0 ,
returned. The calling algorithms are also terminated, until an algorithm step is reached that explicitly deals
with the exception, using terminology such as Alf an

has been encountered the exception is no longer considered to have occurred.
5.3 Static Semantic Rules

Context-free grammars are not sufficiently powerful to express all the rules that define whether a stream of
input elements make up a valid ECMAScript script that may be evaluated. In some situations additional rules
are needed that may be expressed using either ECMAScript algorithm conventions or prose requirements.
Such rules are always associated with a production of a grammar and are called the static semantics of the
production.

Static Semantic Rules have names and typically are defined using an algorithm. Named Static Semantic

Rules are associated with grammar productions and a production that has multiple alternative definitions will
typically have for each alternative a distinct algorithm for each applicable named static semantic rule.

© Ecma International 2012 13

secma

Unless otherwise specified every grammar production alternative in this specification implicitly has a definition
for a static semantic rule named Containswhich takes an argument named symbolwhose value is a terminal or
non-terminal of the grammar that includes the associated production. The default definition of Containsis:

1. For each terminal and neterminal granmar symbol sym in the definition of this productiodo
a. If symis the same grammar symbol ambo) returntrue.
b. If symis a nonterminal,then
i Letcontainedbe the result of Contains feymwith argumentsymbol
il If containedis true, returntrue.
2. Returnfalse.

The above definition is explicitly over-ridden for specific productions.

A special kind of static semantic rule is an Early Error Rule. Early error rules define early error conditions (see
clause 16) that are associate with specific grammar productions. Evaluation of most early error rules are not
explicitly invoked within the algorithms of this specification. A comforming implementation must, prior to the
first evaluation of a Script validate all of the early error rules of the productions used to parse that Script If any
of the early error rules are violated the Scriptis invalid and can not be evaluated.

6 Source Text

Syntax

SourceCharacter.
any Unicode character

The ECMAScript code is expressed using Unicode, version 5.1 or later. ECMAScript source text is a
sequence of Unicode characters. T h e phrasde fi.dhi@c actte thed abstractf lmguistic or
typographical unit represented by a single Unicode scalar value. The actual encodings used to store and
interchange ECMAScript source text.is not relevant to this specification. Any well-defined encoding such as
UTF-32 or UTF-16 may be used. Source text might even be externally represented using a non-Unicode
character encoding. Regardless of the external source text encoding, a conforming ECMAScript
implementation processes the source text as if it was an equivalent sequence of SourceCharactevalues. Each
SourceCharactebeing an abstract Unicode character with a corresponding Unicode scalar value. Conforming
ECMAScript implementations are not.required-to.perform any normalisation of text, or behave as though they
were performing normalisation of text.

The phrase fAcodesuxdi nat oUnriecfoedres stcoal ar val ue. AUNI
represented by single Unicode scalar values: the components of a combining character sequence are still

individual fAUnicode characters, o even though a wuser

In string literals, regular expression literals,template literals and identifiers, any Unicode characters may also

be expressed as a Unicode escape sequencet hat explicitly express Wihica de

comment, such an escape sequence is effectively ignored as part of the comment. Within other contexts, such
an escape sequence contextually contributes one Unicode character.

NOTE ECMAScript differs from the Java programming language in the behaviour of Unicode escape sequences. In a
Java program, if the Unicode escape sequence \ uO00A, for example, occurs within a single-line comment, it is interpreted
as a line terminator (Unicode character 000A is line feed) and therefore the next Unicode character is not part of the
comment. Similarly, if the Unicode escape sequence \ uOOOA occurs within a string literal in a Java program, it is likewise
interpreted as a line terminator, which is not allowed within a string literald one must write \ n instead of \ uOOOA to cause
a line feed to be part of the string value of a string literal. In an ECMAScript program, a Unicode escape sequence
occurring within a comment is never interpreted and therefore cannot contribute to termination of the comment. Similarly, a
Unicode escape sequence occurring within a string literal in an ECMAScript program always contributes a Unicode

character to the literal and is never interpreted as a line terminator or as a quote mark that might terminate the string literal.

ECMAScript String values (8.4) are computational sequences of 16-bit integer values called fic ode
ECMAScript language constructs that generate string values from SourceCharacteisequences use UTF-16
encoding to generate the code unit values.

14 © Ecma International 2012

u

n

code

c |

mi g h

poi !

t s¢

»ecma

Static Semantics: UTF-16 Encoding
The UTF-16 Encodingof a numeric code point value, cp, is deterimined as follows:

As s er ¢pOOXQOFEFF

lfcpO 65535, dphen return
Letculbefloor((cpi 65536 /1024 + 55296.NOTE 55296 is 0D800.
Letcu2be (Cpi 65536)modulo1024)+ 56320.NOTE 56320is 0xDCOO.
Returnthe code unit sequence consistingafl followed bycu2.

arwdE

7 Lexical Conventions

The source text of an ECMAScript script is first converted into a sequence of input elements, which are tokens,
line terminators, comments, or white space. The source text is scanned from left to right, repeatedly taking the
longest possible sequence of characters as the next input element.

There are several situations where the identification of lexical input elements is sensitive to the syntactic
grammar context that is consuming the input elements. This-requires multiple goal symbols for the lexical
grammar. The InputElementDivgoal symbol is the default goal symbol and is used in those syntactic grammar
contexts where a leading division (/) or division-assignment (/=) operator is permitted. The
InputElemetRegExpgoal symbol is used in all syntactic grammar contexts where a RegularExpressionLiterab
permitted. The InputElementemplatdail goal is used in syntactic grammar contexts where a Templattiteral
logically continues after a substitution element.

NOTE There are no syntactic grammar contexts where both a leading division or division-assignment, and a leading
RegularExpressionLiteraare permitted. This is not affected by.semicolon insertion (see 7.9); in examples such as the
following:

a=b
/hilg.exec(c).map(d);

where the first non-whitespace, -non-comment character after a LineTerminatoris slash (/) and the syntactic context allows
division or division-assignment, no semicolon is inserted at the LineTerminator That is, the above example is interpreted in
the same way as:

a=b/hi/g. exec (c).map(d);
Syntax

InputElementDiv:
WhiteSpace
LineTerminator
Comment
Token
DivPunctuator
RightBracd?unctuator

InputElementRegExp
WhiteSpace
LineTerminator
Comment
Token
RightBracd’unctuator
RegularExpressionLiteral

© Ecma International 2012 15

secmd

InputElementemplat&ail ::
WhiteSpace
LineTerminator
Comment
Token
DivPunctuator
Templat&ubstitutionTail

7.1 Unicode Format-Control Characters

The Unicode format-c ont r ol characters (i .e. Cf 6bha nchareacUrircsodien C

Database such as LEFT-TO-RIGHT MARK or RIGHT-TO-LEFT MARK) are_control codes used to control the
formatting of a range of text in the absence of higher-level protocols for this (such as mark-up languages).

It is useful to allow format-control characters in source text to facilitate editing and display. All format control
characters may be used within comments, and within string literals, template literals, and regular expression
literals.

<ZWNJ>and <ZWJ> are format-control characters that are‘used to make necessary distinctions when forming
words or phrases in certain languages. In ECMAScript source text, <ZWNJ>and <ZWJ>may also be used in
an identifier after the first character.

<BOM> is a format-control character used primarily at the start of a text to mark it as Unicode and to allow
detection of the text's encoding and byte order. <BOM> characters intended for this purpose can sometimes
also appear after the start of a text, for example as a result of concatenating files. <BOM> characters are
treated as white space characters (see 7.2).

The special treatment of certain format-control characters outside of comments, string literals, and regular
expression literals is summarised-in Table 1.

Table 1 0 Format-Control Character Usage

Code Point Name Formal Name Usage
U+200C Zero width-non-joiner <ZWNJ> IdentifierPart
U+200D Zero width joiner <ZWJ> IdentifierPart
U+FEFE Byte Order Mark <BOM> Whitespace

7.2 White Space

White space characters are used to improve source text readability and to separate tokens (indivisible lexical
units) from each other, but are otherwise insignificant. White space characters may occur between any two
tokens and at the start or end of input. White space characters may occur within a StringlLiteral a
RegularExpressionLiterala Template or a TemplatSubstitutionTail where they are considered significant
characters forming part of a literal value. They may also occur within a Commentbut cannot appear within any
other kind of token.

The ECMAScript white space characters are listed in Table 2.
Table 28 Whitespace Characters

Code Point Name Formal Name
U+0009 Tab <TAB>
U+000B Vertical Tab <VT>

U+000C Form Feed <FF>

U+0020 Space <SP>
U+00AO0 No-break space <NBSP>
U+FEFF Byte Order Mark <BOM>

Ot her <cat eg Any other Unicode <USP>

16 © Ecma International 2012

»ecma

| ispace sepa

ECMAScript implementations must recognise all of the white space characters defined in Unicode 5.1. Later
editions of the Unicode Standard may define other white space characters. ECMAScript implementations may
recognise white space characters from later editions of the Unicode Standard.

Syntax

WhiteSpace
<TAB>
<VT>
<FF>
<SP>
<NBSP>
<BOM>
<USP>

7.3 Line Terminators

Like white space characters, line terminator characters are used to improve source text readability and to
separate tokens (indivisible lexical units) from each other. However, unlike white space characters, line
terminators have some influence over the behaviour of the syntactic grammar. In general, line terminators
may occur between any two tokens, but there are a few places where they are forbidden by the syntactic
grammar. Line terminators also affect the process of automatic semicolon insertion (7.9). A line terminator
cannot occur within any token except a StringLiteral. Template or TemplatSubstitutionTail Line terminators may
only occur within a StringLiteraltoken as part of a LineContinuation

A line terminator can occur within a MultiLineCommen{7.4) but cannot occur within a SingleLineComment

Line terminators are included in-the set of white space characters that are matched by the \ s class in regular
expressions.

The ECMAScript line terminator characters are listed in Table 3.
Table 38 Line Terminator Characters

Code Point Name Formal Name
U+000A Line Feed <LF>
U+000D Carriage Return <CR>
U+2028 Line separator <LS>
U+2029 Paragraph separator <PS>

Only the ‘Unicode characters in Table 3 are treated as line terminators. Other new line or line breaking
Unicode characters are treated as white space but not as line terminators. The sequence <CR><LF> is
commonly used as a line terminator. It should be considered a single SourceCharacterffor the purpose of
reporting line numbers.

Syntax

LineTerminator::
<LF>
<CR>
<LS>
<PS>

© Ecma International 2012 17

secma

LineTerminatorSequence
<LF>
<CR>[lookaheadT <LF>]
<LS>
<PS>
<CR> <LF>

7.4 Comments

Comments can be either single or multi-line. Multi-line comments cannot nest.

Because a single-line comment can contain any Unicode character except a-LineTerminato character, and
because of the general rule that a token is always as long as possible, a single-line comment always consists
of all characters from the // marker to the end of the line. However, the LineTerminatorat the end of the line is
not considered to be part of the single-line comment; it is recognised separately by.the lexical grammar and
becomes part of the stream of input elements for the syntactic grammar. This point is very important, because
it implies that the presence or absence of single-line comments does not affect the process of automatic

semicolon insertion (see 7.9).

Comments behave like white space and are discarded except that, if a. MultiLineCommentcontains a line
terminator character, then the entire comment is considered to be a LineTerminatorfor purposes of parsing by

the syntactic grammar.

Syntax

Comment:
MultiLineComment
SingleLineComment

MultiLineComment:
/* MultiLineCommentChagsg: */

MultiLineCommentChars
MultiLineNotAsteriskChar MultiLineCommentChags
* PostAsterikCommentChagg:

PostAsteriskCommentChars
MultiLineNotForwardSlashOrAsteriskChar MultiLineCommentChars
* PostAsteriskCommentChags

MultiLineNotAsteriskChar:
SourceCharactebut not *

MultiLineNotForwardSlashOrAsteriskChar
SourceCharactebut not one of / or *

SingleLineComment
/I SingleLineCommentChags

SingleLineCommentChars
SingleLineCommentChar SingleLineCommentClars

SingleLineCommentChar
SourceCharactebut not LineTerminator

18

© Ecma International 2012

»ecma

7.5 Tokens
Syntax
Token::
IdentifierName
Punctuato
NumericLiteral
StringLiteral
Template
NOTE The DivPunctuator RegularExpressionLiteral RightBracePunctuator,and Templat&ubstitutionTail productions

define tokens, but are not included in the Tokenproduction.
7.6 ldentifier Names and Identifiers

IdentifierName Identifier, and ReservedWordre tokens that are interpreted according to the Default Identifier
Syntax given in Unicode Standard Annex #31, Identifier and Pattern Syntax, with some small modifications.
ReservedWordis is an enumerated subset of IdentifierNameand Identifier is an ldentifierNamethat is not a
ReservedWordsee 7.6.1). The Unicode identifier grammar is based on character properties specified by the
Unicode Standard. The Unicode characters in the specified categories in version 5.1.0 of the Unicode
standard must be treated as in those categories by all conforming ECMAScript implementations. ECMAScript
implementations may recognise identifier characters defined in later editions of the Unicode Standard.

NOTE 1 This standard specifies specific character additions: The dollar sign. (U+0024) and the underscore (U+005f)
are permitted anywhere in an IdentifierName and the characters zero width non-joiner (U+200C) and zero width joiner
(U+200D) are permitted anywhere after the first character of an IdentifierName

Unicode escape sequences are permitted in an IdertifierName where they contribute a single Unicode
character to the IdentifierName The code point of the contributed character is expressed by the HexDigits of
the UnicodeEscapeSequengsee 7.8.4). The \ preceding the UnicodeEscapeSequencand the u and {}
characters, if they appear,do not contribute characters to the IdentifierName A UnicodeEscapeSequencannot
be used to put a character into an IdentifierNamethat would otherwise be illegal. In other words, if a
\ UnicodeEscapeSequensequence were replaced by the Unicode character it constributes, the result must
still be a valid IdentifierNamethat has the exact same sequence of characters as the original IdentifierName All
interpretations of IdentifierNamewithin this specification are based upon their actual characters regardless of
whether or not:an escape sequence was used to contribute any particular characters.

Two IdentifierNamethat are canonically equivalent according to the Unicode standard are not equal unless
they are represented by the exact same sequence of code units (in other words, conforming ECMAScript
implementations are only required to do bitwise comparison on IdentifierName values).

NOTE 2 If maximal portability is @ concern, programmers should only employ the identifier characters that were defined
in Unicode 3.0.
Syntax
Identifier ::
IdentifierNamebut not ReservedWord

IdentifierName: :
IdentifierStart
IdentifierName ldentifierPart

IdentifierStart::
UnicoddDStart
$

\ UnicodeEscapeSequence

© Ecma International 2012 19

secma

IdentifierPart::
UnicoddDContinue
$

\ UnicodeEscapeSequence
<ZWNJ>
<ZWJ>

UnicoddDStart ::
any Unicode character with the Unicode property fiD_Starta

UnicoddD Continue::
any Unicode character with the Unicode property fiD_Continued

The definitions of the nonterminal UnicodeEscapeSequenisagiven in 7.8.4
Static Semantics: String Value
Identifier:: IdentifierNamebut not ReservedWord
1. ReurntheStringvalueof IdentifierName
IdentifierName:
IdentifierStart

IdentifierName IdentifierPart

1. Return the String value consisting thfe sequence afode unitscorresponding tddentifierNameIn
determining the sequenemy occurences of\ UnicodeEscapeSequenaee first replaced with theode
pointrepresented by thenicodeEscapeSequenaadand then the @de points of the entirtdentifierName
are converted teode unitsby UTF-16 Encoding(clause 6)ach code point.

7.6.1 Reserved Words
A reserved word is an IdentifierNamethat cannot be used as an Identifier.

Syntax

ReservedWord
Keyword
FutureReservedWord
NullLiteral
BooleanLiteral

The ReservedWordefinitions are specified as literal sequences of Unicode characters. However, any Unicode
character in a ReservedWordan also be expressed by a \ UnicodeEscapeSequent®t expresses that same
Unicode character6.s c¢ o d e Use af isuth escape sequences does not change the meaning of the
ReservedWord

7.6.1.1 Keywords

The following tokens are ECMAScript keywords and may not be used as Identifiersin ECMAScript programs.

20 © Ecma International 2012

secma

Syntax

Keyword:: one of
break

case
catch
class
continue
const
debugger

default

delete
do
else
export
finally

for

function

if

7.6.1.2 Future Reserved Words

import

in
instanceof
let

new
return
super

switch

this
throw
try
typeof
var
void
while
with

The following words are used as keywords in proposed extensions and are therefore reserved to allow for the
possibility of future adoption of those extensions.

Syntax

FutureReservedWord one of

enum

extends

The following tokens are also considered to be FutureReservedWordshen they occur within strict mode code
(see 10.1.1). The occurrence of any of these tokens within strict mode code in any context where the

occurrence of a FutureReservedWondould produce an error must also produce an equivalent error:

imp lements

interface package

7.7 Punctuators

Syntax
Punctuator:: one of
{ (
>= ==
+ -
<< >>
| ~
= +=
>>= >>>=

DivPunctuator:: one of
/ /=

RightBracé’unctuator ::
}

© Ecma International 2012

private

protected

public

static

yield

21

secma

7.8 Literals
7.8.1 Null Literals

Syntax

NullLiteral ::
null

7.8.2 Boolean Literals

Syntax

BooleanLiteral::
true
false

7.8.3 Numeric Literals

Syntax

NumericLiteral::
DecimalLiteral
BinarylntegerLiteral
OctallntegerLiteral
HexIntegerLiteral

DecimalLiteral::
DecimalintegerLiteral DecimalDigitsy: ExponentPath:
. DecimalDigits ExponentPay:
DecimalintegerLiteral ExponentPapt

DecimalintegerLiterat:
0

NonZeroDigit DecimalDigits;

DecimalDigits::
DecimalDigit
DecimalDigits DecimalDigit

DecimalDigit:: one of
0123456789

NonZeroDigit:: one of
123456789

ExponentPart:
Exponentindicator-Signedinteger

Exponentindicator: one of
e E

Signedinteger:
DecimalDigits
+ DecimalDigits
- DecimalDigits

BinaryintegerLiteral::
Ob BinaryDigit
0B BinaryDigit
BinaryintegerLiteralBinaryDigit

22 © Ecma International 2012

»ecma

BinaryDigit :: one of
0

1

OctallntegerLiteral::

0o OctalDigit
00 OctalDigit
OctallntegerLiteral OctalDigit

OctalDigit:: one of

0123 4567

HexIntegerLiteral:

0x HexDigits
0X HexDigits

HexDigits ::

HexDigit
HexDigits HexDigit

HexDigit:: one of

0 123456789abcdefABCDEF

The SourceCharacteimmediately following a NumericLiteralmust not-be an IdentifierStartor DecimalDigit

NOTE For example:

3in

is an error and not the two input elements 3 and in .

A conforming implementation, when processing strict mode code (see 10.1.1), must not extend the syntax of
NumericLiteralto include OctallntegerLiteralas described in B.1.1.

Static Semantics : MV.6 s

A numeric literal stands for a value of the Number type. This value is determined in two steps: first, a
mathematical value (MV) is derived from theliteral; second, this mathematical value is rounded as described
below.

=A =4 =4 =4 4 =4

The MV of NumericLiteral:: DecimalLiteralis the MV of DecimalLiteral

The MV of NumercLiteral :: BinaryintegerLiteralis the MV of BinaryintegerLiteral

The MV of NumericLiteral:: OctallntegerLiteralis the MV of OctallntegerLiteral

The MV of NumericLiteral:: HexIntegerLiterals the MV of HexIntegerLiteral

The MV of DecimalLiteral:: DecimalintegerLiteral is the MV of DecimalintegerLiteral

The MV of DecimalLiteral:: DecimalintegerLiteral. DecimalDigitsis the MV of DecimalintegerLiteralplus
(the MV of DecimalDigitstimes 10", where n is the number of characters in DecimalDigits.

The MV of DecimalLiteral:: DecimallntegerLiteral. ExponentParis the MV of DecimallntegerLiteraltimes
10°, where e is the MV of ExponentPart

The MV of DecimalLiteral :: DecimalintegerLiteral . DecimalDigits ExponentPartis (the MV of
Decimallntegeriteral plus (the MV of DecimalDigits times 10™") times 10°, where n is the number of
characters in DecimalDigis and e is the MV of ExponentPart

The MV of DecimalLiteral::. DecimalDigitsis the MV of DecimalDigitstimes 10", where n is the number of
characters in DecimalDigits.

The MV of DecimallLiteral::. DecimalDigits ExponentPait the MV of DecimalDigitstimes 10°", where n is
the number of characters in DecimalDigis and e is the MV of ExponentPart

The MV of DecimalLiteral:: DecimalintegerLiteal is the MV of DecimalintegerLiteral

The MV of DecimalLiteral:: DecimallntegerLiteral ExponentPai$ the MV of DecimallntegerLiteratimes 10,
where eis the MV of ExponentPart

The MV of DecimallntegerLiterat: 0 is 0.

© Ecma International 2012 23

secma

1 The MV of DecimalintegerLitera:: NonZeroDigitis the MV of NonZeroDigit.

1 The MV of DecimallntegerLiteral: NonZeroDigitDecimalDigitsis (the MV of NonZeroDigittimes 10") plus
the MV of DecimalDigits where n is the number of characters in DecimalDigits

1 The MV of DecimalDigits:: DecimalDigitis the MV of DecimalDigit

The MV of DecimalDigits:: DecimalDigitsDecimalDigitis (the MV of DecimalDigitstimes 10) plus the MV of
DecimalDigit

The MV of ExponentPart: Exponentindicator Signedintegsrthe MV of Signedinteger

The MV of Signedinteger: DecimalDigitsis the MV of DecimalDigits

The MV of Signedinteger: + DecimalDigitsis the MV of DecimalDigits

The MV of Signedinteger: - DecimalDigitsis the negative of the MV of DecimalDigits

==

The MV of DecimalDigit::
The MV of DecimalDigit::
of BinaryDigit :: 1 is 1.

The MV of DecimalDigit::
The MV of DecimalDigit::
The MV of DecimalDigit::
The MV of DecimalDigit::
The MV of DecimalDigit::
The MV of DecimalDigit::
The MV of DecimalDigit::
The MV of DecimalDigit::

= =4 =4 -4 -8 -4

0 or of HexDigit :: 0 or of OctalDigit :: 0 or of BinaryDigit :: 0 is 0.
1 or of NonZeroDigit:: 1 or of HexDigit:: 1 or.of OctalDigit :: 1 or

2 or of NonZeroDigit::
3 or of NonZeroDigit::
4 or of NonZeroDigit::
5 or of NonZeroDigit::
6 or of NonZeroDigit::
7 or of NonZeroDigit::
8 or of NonZeroDigit::
9 or of NonZeroDigit::

Ais 10.

The MV of HexDigit::
The MV of HexDigit ::
The MV of HexDigit::
The MV of HexDigit ::
The MV of HexDigit ::

a or of HexDigit::
b or of HexDigit::
¢ or of HexDigit::
d or of HexDigit::
e or.of HexDigit ::

Bis 11
Cis 12
Dis 13.
Eis 14

2 or of HexDigit ::
3 or of HexDigit::
4 or of HexDigit ::
5 or of HexDigit ::
6 or'of HexDigit::
7 or of HexDigit ::
8 or of HexDigit ::
9 or of HexDigit::

2 or of OctalDigit :
3 or of OctalDigit ::
4 or of OctalDigit ::
5 or of OctalDigit ::
6 or of OctalDigit ::
7 or of OctalDigit ::

8is 8.
9is9.

12 is2.

3is 3.
4is 4.
5 is 5.
6 is 6.
7is7.

The MV of HexDigit:: f -or of HexDigit:: F is 15.
The MV of BinaryintegerLiteral:: Ob BinaryDigit is the MV of BinaryDigit.
The MV of BinarylntegerLiteral:: OB BinaryDigit is the MV of BinaryDigit.

The MV of BinaryintegerLiteral:: BinarylntegerkiteralBinaryDigit is (the MV of BinarylntegerLiteraltimes 2)
plus the MV of BinaryDigit.

The MV of OctalintegerLiteral:: 0o OctalDigit is the MV of OctalDigit.
The MV of OctallntegerLiteral:: 00 OctalDigit is the MV of OctalDigit.

The MV of OctallntegerLiteral:: OctallntegerLiteralOctalDigit is (the MV of OctallntegerLiteraltimes 8) plus
the MV of OctalDigit.

The MV of HexIntegerLiteral: Ox HexDigits is the MV of HexDigits.

The MV of HexIntegerLiterat: 0X HexDigitsis the MV of HexDigits.

The MV of HexDigits :: HexDigitis the MV of HexDigit

The MV of HexDigits ::'HexDigits HexDigitis (the MV of HexDigits times 16) plus the MV of HexDigit

=4 =4 =4 =4 -4 -4 8 A -8 - A s s oa s e

= =4 =

= =4 =4 A

Once the exact MV for a numeric literal has been determined, it is then rounded to a value of the Number type.
If the MV is 0, then the rounded value is +0; otherwise, the rounded value must be the Number value for the
MV (as specified in 8.5), unless the literal is a DecimalLiteraland the literal has more than 20 significant digits,
in which case the Number value may be either the Number value for the MV of a literal produced by replacing
each significant digit after the 20th with a 0 digit or the Number value for the MV of a literal produced by
replacing each significant digit after the 20th with a 0 digit and then incrementing the literal at the 20th
significant digit position. A digit is significant if it is not part of an ExponentParand

1 itisnotO;or
1 there is a nonzero digit to its left and there is a nonzero digit, not in the ExponentPartto its right.

24

© Ecma International 2012

»ecma

7.8.4 String Literals

NOTE A string literal is zero or more Unicode code points enclosed in single or double quotes. Unicode code points
may also be be represented by an escape sequence. All characters may appear literally in a string literal except for the
closing quote character, backslash, carriage return, line separator, paragraph separator, and line feed. Any character may
appear in the form of an escape sequence. String literals evaluate to ECAMScript String values. When generating these
string values Unicode code points are UTF-16 encoded as defined in clause 6. Code points belonging to Basic Multilingual
Plane are encoded as a single code unit element of the string. All other code points are encoded as two code unit
elements of the string.

Syntax

StringLiteral::
" DoubleStringCharactegs: "
' SingleStringCharacteps '

DoubleStringCharacters
DoubleStringCharacter DoubleStringCharactgts

SingleStringCharacters
SingleStringCharacter SingleStringCharactgrs

DoubleStringCharacter:
SourceCharactebut not one of " or \ or LineTerminator
\ EscapeSequence
LineContinuation

SingleStringCharacter.
SourceCharactebut not one of ' or\ or LineTerminator
\ EscapeSequence
LineContinuation

LineContinuation:
\ LineTerminatorSequence

EscapeSequence
CharaderEscapeSequence
0 [lookahead 1. DecimalDigif
HexEscapeSequence
UnicodeEscapeSequence

A conforming implementation, when processing strict mode code (see 10.1.1), must not extend the syntax of
EscapeSequende include OctalEscapeSequenes described in B.1.2.

CharacterEscapeSequence
SingleEscapeCharacter
NonEscapeCharacter

SingleEscapeCharacter one of
" \' bfnrtyv

NonEscapeCharder ::
SourceCharactebut not one of EscapeCharacteor LineTerminator

EscapeCharacter.
SingleEscapeChacter
DecimalDigit
X
u

© Ecma International 2012 25

secma

HexEscapeSequence

X HexDigit HexDigit

UnicodeEscapeSequence

u HexDigit HexDigit HexDigit HexDigit
u{ HexDigits }

The definition of the nonterminal HexDigit is given in 7.8.3. SourceCharacteis defined in clause 6.

NOTE A line terminator character cannot appear in a string literal, except as part of a LineCatinuationto produce the
empty character sequence. The correct way to cause a line terminator character to be part of the String value of a string
literal is to use an escape sequence such as \ n or \ uOOOA.

Static Semantics

Static Semantics: Early Errors

UnicodeEscapeSequencau{ HexDigits }

1 Itis a Syntax Error if the MV of HexDigits> 1114111

Static Semantics: SV6s and CV6s

A string literal stands for a value of the String type. The String value (SV) of the literal is described in terms of
code unit values (CV) contributed by the various. parts of the string literal. As part of this process, some
Unicode characters within the string literal are interpreted as having a mathematical value (MV), as described
below or in 7.8.3.

= =4 =4 4 A

= =4

= =4 =4 =8 4 -4

26

The SV of Stringliteral :: "™ is the empty code unit sequence.

The SV of StringLiteral:: " <is the empty code unit sequence.

The SV of StringLiteral:: * DoubleStringCharacters is the SV of DoubleStringCharacters

The SV of StringLiteral:: ' Single&ingCharacters isthe SV of SingleStringCharacters

The SV of DoubleStringCharacters. DoubleStringCharacteis a sequence of one or two code units that is
the CV of DoubleStringCharacter

The SV of DoubleStringCharacters DoubleStringCharater DoubleStringCharacters a sequence of one or
two code-units.that is the CV of DoubleStringCharacterfollowed by all the code units in the SV of
DoubleStringCharacters order.

The SV of SingleStringCharacters SingleStringCharacteis a sequence of one or two code units that is the
CV of SingleStringCharacter

The SV of SingleStringCharacters: SingleStringCharacteBingleStringCharactergs a sequence of one or
two code units that is the CV of SingleStringCharactefollowed by all the code units in the SV of
SingleStringCharacteri order.

The SV of LineContinuation: \ LineTerminatorSequendgthe empty code unit sequence.

The CV of DoubleStringCharacter: SourceCharactebut not one of " or \ or LineTerminatoris the UTF-16
Encoding(clause 6) of the code point value of SourceCharacter

The CV of DoubleStringCharacter: \ EscapeSequenégthe CV of the EscapeSequence

The CV of DoubleStringCharacter: LineContinudion is the empty character sequence.

The CV of SingleStringCharacter. SourceCharactebut not one of ' or \ or LineTerminatoris the UTF-16
Encoding(clause 6) of the code point value of SourceCharacter

The CV of SingleStringCharacter. \ EscapeSequendgthe CV of the EscapeSequence

The CV of SingleStringCharacter. LineContinuatioris the empty character sequence.

The CV of EscapeSequenceCharacterEscapeSequenisahe CV of the CharacterEscapeSequence

The CV of EscapeSequence0 [lookahead T DecimalDigif is the code unit value O.

The CV of EscapeSequenceHexEscapeSequenissthe CV of the HexEscapeSequence

The CV of EscapeSequenceUnicodeEscapeSequenisghe CV of the UnicodeEcapeSequence

© Ecma International 2012

»ecma

1 The CV of CharacterEscapeSequenceSingleEscapeCharactas the character whose code unit value is
determined by the SingleEscapeCharactarccording to Table 4:

Table 48 String Single Character Escape Sequences

Escape Sequence Code Unit Value Name Symbol

\b 0x0008 backspace <BS>
\t 0x0009 horizontal tab <HT>
\'n 0x000A line feed (new line) <LF>
\v 0x000B vertical tab <VT>
\ f 0x000C form feed <FF>
\r 0x000D carriage return <CR>
\ " 0x0022 double quote "

\! 0x0027 single quote '

\\ 0x005C backslash \

1 The CV of CharacterEscapeSequenceNonEscapeCharactés the CV of the NonEscapeCharacter

1 The CV of NorEscapeCharacter. SourceCharactebut not one of EscapeCharacteor LineTerminatoris the
UTF-16 Encodingclause 6) of the code point value of SourceCharacter

1 The CV of HexEscapeSequencex HexDigit HexDigitis the code unit value that is (16 times the MV of the
first HexDigit) plus the MV of the second HexDigit

1 The CV of UnicodeEscapeSequenceu HexDigitHexDigit HexDigit HexDigit is the code unit value that is
(4096times the MV of the first HexDigit) plus (256 times.the MV of the second HexDigit) plus (16 times the
MV of the third HexDigit) plus the MV of the fourth HexDigit

1 The CV of UnicodeEscapeSequenceu{ HexDigits} the is the UTF-16 Encoding(clause 6) of the MV of
HexDigits.

7.8.5 Regular Expression Literals

NOTE A regular expression literal is an input element that is converted to a RegExp object (see 15.10) each time the
literal is evaluated. Two regular expression literals in-a.program evaluate to regular expression objects that never compare
as === to each other even if the two literals" contents are identical. A RegExp object may also be created at runtime by

new RegExp (see 15.10.4) or calling the RegExp constructor as a function (15.10.3).

The productions below describe the syntax for a regular expression literal and are used by the input element
scanner to find the ‘end. of the regular expression literal. The source code comprising the
RegularExpressionBodwpnd the. RegularExpressionFlagsire subsequently parsed using the more stringent
ECMAScript Regular Expression grammar (15.10.1).

An implementation may extend the ECMAScript Regular Expression grammar defined in 15.10.1, but it must
not extend the RegularExpressionBodynd RegularExpressionFlagsroductions defined below or the productions
used by these productions:

Syntax
RegularExpressionLiterat
/ RegularExpressionBody RegularExpressionFigs

RegularExpressionBody
RegularExpressionFirstChar RegularExpressionChars

RegularExpressionChars

[empty] . .
RegularExpressionChars RegularExpressionChar

© Ecma International 2012 27

secma

RegularExpressionFirstChar
RegularExpressionNonTerminatbut not one of * or\ or/ or |
RegulaExpressionBackslashSequence
RegularExpressionClass

RegularExpressionChar
RegularExpressionNonTerminatout not one of\ or/ or |
RegularExpressionBackslashSequence
RegularExpressionClass

RegularExpressionBackslashSequence
\ RegularExpressionNonTminator

RegularExpressionNonTerminator
SourceCharactebut not LineTerminator

RegularExpressionClass
[RegularExpressionClassChars

RegularExpressionClassChars
[empty]
RegularExpressionClassChamRRegularExpressionClassChar
RegularExpressionClas$@r ::
RegularExpressionNonTerminatbut not.one of] or\
RegularExpressionBackslashSequence
RegularExpressionFlags
[empty]
RegularExpressionFlags IdentifierPart

NOTE Regular expression literals may not be empty; instead of representing an empty regular expression literal, the
characters // start a single-line comment. To specify an empty regular expression, use: /(?:)/

Static Semantics: BodyText

RegularExpressionLiterat / RegularExpressionBody RegularExpressionFlags
1. Return thesource code thatas recognized aRegularExpressionBody
Static'Semantics: FlagText

RegularExpressionLiterat / RegularExpressionBody RegularExpressionFlags
1. Return thesource code that was recognizedReggularExpressioRlags.
7.8.6 Template Literal'Lexical Components

Syntax

Template:
NoSubstitutionTaplate
Templatélead

NoSubstitutionTemplate
© Templat€haractergy;

Templatélead::
* Templat€haractersgy: ${

28 © Ecma International 2012

»ecma

Templat&ubstitutionTait :

Templatdliddle
Templatdail

Templat®dliddle ::

} Templat€haractergp: ${

Templatdail ::

} Templat€haractergp: -

Templat€haracters::

Templat€haracterTemplat€haractergp:

Templat€haracter::

SourceCharactebut not one of ~ or\ or $
$ [lookaheadT {]

\ EscapeSequence

LineContinuation

Static Semantics: TV06 sind TRVO s

A template literal component is interpreted as a sequence of Unicode characters. The Template Value (TV) of
a literal component is described in terms of code unit values (CV, 7.8.4) contributed by the various parts of the
template literal component. As part of this process, some Unicode characters within the template component
are interpreted as having a mathematical value (MV, 7.8.3). In determining a TV, escape sequences are
replaced by the code unit of the Unicode characters represented by the escape sequence. The Template
Raw Value (TRV) is similar to a Template Value with the difference that.in TRVs escape sequences are
interpreted literally.

= =A =4 =4 =4 4 8 -4 -4 -4 -4

=A =4 =4 =4 -4 -4 -4 -4 -4 -4

The TV and TRV of NoSubstitutionTemplate " is.the empty code unit sequence.

The TV and TRV of Templatélead:: "$ { is the empty code unit sequence.

The TV and TRV of TemplatéMiddle::: }$ { is the empty code unit sequence.

The TV and TRV of Templat&ail :: } is the empty code unit sequence.

The TV of NoSubstitutionTemplate© Templat€haracters is the TV of Templat€haracters
The TV of Templatélead:: = Templat€haracters ${ is the TV of Templat€haracters

The TV of Templatdiddle:: } Templat€haracters ${ is the TV of Templat€haracters

The TV of Templatdail :: } Templat€haracters ™ is the TV of Templat€haracters

The TV of Templat€haracters: Templat€haracter is the TV of Templat€haracter

The TV of Templat€haracters:: Templat€haracter Templat€haractersis a sequence consisting of the
code units in the TV of Templat€haracterfollowed by all the code units in the TV of Templat€haractersin
order.

The TV of Templat€haracte :: SourceCharactebut not one of * or\ or $ is the UTF-16 Encoding(clause
6) of the code point value of SourceCharacter

The TV of Templat€haracter:: $ [lookaheadi {] is the code unit value 0x0024

The TV of Templat€haracter:: \ EscapeSequendigthe CV of EscapeSequence

The TV of Templat€haracter:: LineContinuations the TV of LineContinuation

The TV of LineContinuation: \ LineTerminatorSequendgthe empty code unit sequence.

The TRV of NoSubstitutionTemplate = Templat€haracters is the TRV of TemplaeCharacters
The TRV of Templatélead:: = Templat€haracters ${ is the TRV of Templat€haracters

The TRV of Templatdliddle :: } Templat€haracters ${ is the TRV of Templat€haracters

The TRV of Templatdail :: } Templat€haracters ~ is the TRV of Templat€haracters

The TRV of Templat€haracters: Templat€haracter is the TRV of Templat€haractet

The TRV of Templat€haracters: Templat€haracter TempldeCharactersis a sequence consisting of the
code units in the TRV of Templat€haracter followed by all the code units in the TRV of
Templat€haractersin order.

© Ecma International 2012 29

secma

1 The TRV of Templat€haracter:: SourceCharactebut not one of © or \ or $ is the UTF-16 Encoding

(clause 6) of the code point value of SourceCharacter

The TRV of Templat€haracter:: $ [lookahead {] is the code unit value 0x0024

The TRV of Templat€haracter:: \ EscapeSequende the sequence consisting of the code unit value

0x006C followed by the code units of TRV of EscapeSequence

The TRV of Templat€haracter: LineContinuationis the TRV of LineContinuation

The TRV of EscapeSequenceCharacterEscapeSequenisghe TRV of the CharacterEscapeSequence

The TRV of EscapeSequence0 [lookahead T DecimalDigif iS the code unit value 0x0030.

The TRV of EscapeSequenceHexEscapeSequenissethe TRV of the HexEscapeSequence

The TRV of EscapeSequenceUnicodeEscape$g@ences the TRV of the UnicodeEscapeSequence

The TRV of CharacterEscapeSequenceSinglé€EscapeCharacteis the TRV of the SingleEscapeCharacter

The TRV of CharacterEscapeSequenceNonEscapeCharactés the CV of the NonEscapeCharacter

The TRV of SingléescapeCharacter. one of ' " \' bfnrty is the CV of the

SourceCharactethat is that single character.

1 The TRV of HexEscapeSequence x HexDigit HexDigit is the sequence consisting of code unit value
0x0078 followed by TRV of the first HexDigit followed by the TRV of the second HexDigit

1 The TRV of UnicodeEscapeSequenceu HexDigit HexDigit HexDigit HexDigit is the sequence consisting of
code unit value 0x0075 followed by TRV of the first HexDigit followed by the TRV of the second HexDigit
followed by TRV of the third HexDigit followed by the TRV of the fourth HexDigit

1 The TRV of UnicodeEscapeSequenceu{ HexDigits} is the sequence consisting of code unit value 0x0075
followed by code unit value 0x007B followed by TRV of HexDigits followed by code unit value 0x007D.

1 The TRV of HexDigits :: HexDigitis the TRV of HexDigit

1 The TRV of HexDigits :: HexDigits HexDigit is the sequence consisting of TRV of HexDigits followed by
TRV of HexDigit

1 The TRV of a HexDigit is the CV of the SourceCharactethat.is that HexDigit.

The TRV of LineContinuation: \ LineTerminatorSequende the sequence consisting of the code unit value

0x005C followed by the code-units of TRV of LineTerminatorSequence

The TRV of LineTerminatorSequence <LF> isthe code unit value 0x000A

The TRV of LineTerminatorSequence <CR>[lookaheadi <LF>] is the code unit value 0x000D

The TRV of LineTerminatorSequence <LS> is the code unit value 0x2028

The TRV of LineTerminatorSequence <PS> is the code unit value 0x2029

The TRV of LineTerminatorSequence <CR><LF>. is the sequence consisting of the code unit value
0x000Dfollowed by the “‘code unit value OX000A

= =

=A =4 =4 -4 -4 -8 A -4

=

= =a =4 =4 4

NOTE TV excludes the code units of LineContinuatiorwhile TRV includes them.
7.9 ~Automatic Semicolon Insertion

Certain ECMAScript statements (empty statement, variable statement, expression statement, do-while
statement, continue statement, break statement, return statement, and throw statement) must be
terminated with semicolons. Such semicolons may always appear explicitly in the source text. For
convenience, however, such semicolons may be omitted from the source text in certain situations. These
situations are described by saying that semicolons are automatically inserted into the source code token
stream in those situations.

7.9.1 Rules of Automatic Semicolon Insertion
There are three basic rules of semicolon insertion:
1. When, as the script is parsed from left to right, a token (called the offending token) is encountered that is

not allowed by any production of the grammar, then a semicolon is automatically inserted before the
offending token if one or more of the following conditions is true:

1 The offending token is separated from the previous token by at least one LineTerminator
1 The offending token is } .

30 © Ecma International 2012

»ecma

2. When, as the script is parsed from left to right, the end of the input stream of tokens is encountered and
the parser is unable to parse the input token stream as a single complete ECMAScript script, then a
semicolon is automatically inserted at the end of the input stream.

3. When, as the script is parsed from left to right, a token is encountered that is allowed by some production
of the grammar, but the production is a restricted production and the token would be the first token for a
terminal or nonterminal immediately following the annotation fino LineTerminatorhere]0 within the restricted
production (and therefore such a token is called a restricted token), and the restricted token is separated
from the previous token by at least one LineTerminator then a semicolon is automatically inserted before
the restricted token.

However, there is an additional overriding condition on the preceding rules: a semicolon is never inserted
automatically if the semicolon would then be parsed as an empty statement or if that semicolon would become
one of the two semicolons in the header of a for statement (see 12.6.3).

NOTE The following are the only restricted productions in the grammar:

PostfixExpression
LeftHandSideExpressiomo LineTerminatotere] ++
LeftHandSideExpressiofmo LineTerminatothere] --

ContinueStatement
continue [no LineTerminatorhere] ldentifier;

BreakStatement
break [no LineTerminatomere] ldentifier;

ReturnStatement
return [no LineTerminatothere] EXxpression

ThrowStatement
throw [no LineTerminatothere] Expression

The practical effect of these restricted productions is as follows:
When a ++ or -- token.is encountered where the parser would treat it as a postfix operator, and at least one
LineTerminatoroccurred between the preceding token-and the ++ or -- token, then a semicolon is automatically

inserted before the ++ or -- token.

When.a continue , break , return , or throw token is encountered and a LineTerminatoris encountered before
the next token, a semicolon .is automatically inserted after the continue , break , return , or throw token.

The resulting practical advice to ECMAScript programmers is:

A postfix ++ or -- operator should appear on the same line as its operand.

An Expressiorina return’ or throw statement should start on the same line as the return or throw token.

An Identifierin a break or continue statement should be on the same line as the break or continue token.
7.9.2 Examples of Automatic Semicolon Insertion

The source

{1213
is not a valid sentence in the ECMAScript grammar, even with the automatic semicolon insertion rules. In
contrast, the source

{1

213

© Ecma International 2012 31

secma

is also not a valid ECMAScript sentence, but is transformed by automatic semicolon insertion into the
following:

{1

123} 3;
which is a valid ECMAScript sentence.

The source
for(a; b
)

is not a valid ECMAScript sentence and is not altered by automatic semicolon insertion because the
semicolon is needed for the header of a for statement. Automatic semicolon.insertion never inserts one of
the two semicolons in the header of a for statement.

The source
return
a+hb
is transformed by automatic semicolon insertion into the following:
return;
a+b;
NOTE The expression a + b is not treated as a value to be returned by the return statement, because a

LineTerminatorseparates it from the token return

The source
a=b
++C

is transformed by automatic semicolon insertion into the following:
a=b;
++C;

NOTE The token ++ is not treated as a postfix operator applying to the variable b, because a LineTerminatoroccurs
between b and ++.

The source
if (@>b)
elsec=d
is not a‘valid ECMAScript sentence and is not altered by automatic semicolon insertion before the else token,

even though no production of the grammar applies at that point, because an automatically inserted semicolon
would then be parsed as an empty statement.

The source

a=b+c

(d + e).print()
is not transformed by automatic semicolon insertion, because the parenthesised expression that begins the
second line can be interpreted as an argument list for a function call:

a=b+c(d + e).print()

In the circumstance that an assignment statement must begin with a left parenthesis, it is a good idea for the
programmer to provide an explicit semicolon at the end of the preceding statement rather than to rely on
automatic semicolon insertion.

8 Types

Algorithms within this specification manipulate values each of which has an associated type. The possible
value types are exactly those defined in this clause. Types are further subclassified into ECMAScript language
types and specification types.

32 © Ecma International 2012

»ecma

Within this speciType§ati enyusehde an thstipbakd h & h gpek orfie flier s

ECMAScript language and specification types defined in this clause.
8.1 ECMAScript Language Types

An ECMAScript language type corresponds to values that are directly manipulated by an ECMAScript
programmer using the ECMAScript language. The ECMAScript language types are Undefined, Null, Boolean,
String, Number, and Object. An ECMAScript language value is a value that is characterized by an
ECMAScript language type.

8.1.1 The Undefined Type

The Undefined type has exactly one value, called undefined. Any variable that has not been assigned a value
has the value undefined.

8.1.2 The Null Type

The Null type has exactly one value, called null.

8.1.3 The Boolean Type

The Boolean type represents a logical entity having two values, calledtrue and false.
8.1.4 The String Type

The String type is the set of all finite ordered sequences of zero or more 16-bit unsigned integer values
(fielementso). The String type is generally used t
which case each element in the String is treated as a UTF-16 code unit value. Each element is regarded as
occupying a position within the sequence. These positions are indexed with nonnegative integers. The first
element (if any) is at index 0, the next.element (if any) at index 1, and so on. The length of a String is the
number of elements (i.e., 16-bit values) within it. The empty String has length zero and therefore contains no
elements.

Where ECMASCcript operations interpret String values, each element is interpreted as a single UTF-16 code
unit. However, ECMAScript does not place any restrictions or requirements on the sequence of code units in a
String value, so they may be ill-formed when interpreted as UTF-16 code unit sequences. Operations that do
not interpret String contents treat them as sequences of undifferentiated 16-bit unsigned integers. No
operations-ensure that Strings are in a normalized form. Only operations that are explicitly specified to be
language or locale sensitive produce language-sensitive results

NOTE The rationale behind this design was to keep the implementation of Strings as simple and high-performing as
possible. If ECMAScript source code is in Normalised Form C, string literals are guaranteed to also be normalised, as long
as they do not contain any Unicode escape sequences.

Some operations interpret<String contents as UTF-16 encoded Unicode code points. In that case the
interpretation is:

1 A code unit'in the range 0to OxD7FFor in the range OXE000to OxFFFFis interpreted as a code point
with the same value.

1 A sequence of two code units, where the first code unit clis in the range 0xD800to OXDBFF and the
second code unit c2is in the range 0xDCO00to OxDFFF, is a surrogate pair and is interpreted as a code
point with the value (c1- 0xD800 x 0x400+ (c2i 0xDCO0Q) + 0x10000

1 A code unit that is in the range 0xD800to OxDFFF, but is not part of a surrogate pair, is interpreted as
a code point with the same value.

8.1.5 The Number Type
The Number type has exactly 1843773687445481062(hat is, 254 25%+3) values, representing the double-

precision 64-bit format IEEE 754 values as specified in the IEEE Standard for Binary Floating-Point Arithmetic,
except that the 900719925474099(that is, 2°%-2) di st rarNaitmb @ N 0t of thd IEEESStandard are

© Ecma International 2012 33

t

secma

represented in ECMAScript as a single special NaN value. (Note that the NaN value is produced by the
program expression NaN) In some implementations, external code might be able to detect a difference
between various Not-a-Number values, but such behaviour is implementation-dependent; to ECMAScript code,
all NaN values are indistinguishable from each other.

There are two other special values, called positive Infinity and negative Infinity. For brevity, these values
are also referred to for expository purposes by the symbols +a and - &, respectively. (Note that these two
infinite Number values are produced by the program expressions +Infinity (or simply Infinity) and -
Infinity J)

The other 1843773687445481062¢@hat is, 264 259 values are called the finite_numbers. Half of these are
positive numbers and half are negative numbers; for every finite positive Number value there is a
corresponding negative value having the same magnitude.

Note that there is both a positive zero and a negative zero. For brevity, these values are also referred to for
expository purposes by the symbols +0 and -0, respectively. (Note that these two different zero Number
values are produced by the program expressions +0 (or simply 0)and - 0.)

The 184377368744548106Zfhat is, 254 253- 2) finite nonzerovalues are of two kinds:
1842872967520006963fhat is, 264 254) of them are normalised, having the form

s3 m3 2°

where sis +1 or - 1, mis a positive integer less than.253 but not less than 2°2, and e is an integer ranging from
- 1074to 971, inclusive.

The remaining 900719925474099Qhat is, 2% 2) values are denormalised, having the form

s3 m3 2°¢

where sis +1 or - 1, mis a positive integer less than 2%, and eis - 1074

Note that all the positive and negative integers whose magnitude is no greater than 253 are representable in
the Number type (indeed, the integer 0 has two representations, +0 and - 0).

A finite number-has an odd significand if it is nonzero and the integer m used to express it (in one of the two
forms shown above) is odd. Otherwise, it has an even significand.

I n t his speci f i ctleet Number valde faxdo p W h B sepresefits an exact nonzero real
mathematical quantity (which might even be an irrational number such as p) means a Number value chosen in
the following manner. Consider the set of all finite values of the Number type, with - 0 removed and with two
additional values added to it that are not representable in the Number type, namely 2%%2* (which is +13 2533
2%Y) and - 21924 (which is - 1.3 253 297 Choose the member of this set that is closest in value to x. If two
values of the set are equally close, then the one with an even significand is chosen; for this purpose, the two
extra values 21924 and - 21%%* are considered to have even significands. Finally, if 21°% was chosen, replace it
with +a; if - 219%24was chosen, replace it with - a; if +0 was chosen, replace it with - 0 if and only if x is less than
zero; any other chosen value is used unchanged. The result is the Number value for x. (This procedure
correspondsexactly to the behaviour of the | EEE 754 Around to

Some ECMAScript operators deal only with integers in the range - 2% through 23L- 1, inclusive, or in the range
0 through 232 1, inclusive. These operators accept any value of the Number type but first convert each such
value to one of 232 integer values. See the descriptions of the ToInt32 and ToUint32 operators in 9.5 and 9.6,
respectively.

8.1.6 The Object Type

An Object is logically a collection of properties. Each property is either a data property, or an accessor
property:

34 © Ecma International 2012

»ecma

1 A data property associates a key value with an ECMAScript language value and a set of Boolean
attributes.

1 A accessor property associates a key value with one or two accessor functions, and a set of Boolean
attributes. The accessor functions are used to store or retrieve an ECMAScript language value that is
associated with the property.

Properties are identified using key values. A key value is either an ECMAScript String value or an Exotic
Symbol object (8.4.3).

Property keys are used to access properties and their values. There are two kinds of access for properties:
get and set, corresponding to value retrieval and assignment, respectively. The properties accessible via get
and set access includes both own properties that are a direct part of an object and inherited properties which
are provided by another associated object via a property inheritance relationship. Inherited properties may be
either own or inherited properties of the associated object.

All objects are logically collections of properties, but there are multiple forms of objects that differ in their
semantics for accessing and manipulating their properties. Ordinary objects are the most. common form of
objects and have the default object semantics. An exotic' object is any form of object whose property
semantics differ in any way from the default semantics.

8.1.6.1 Property Attributes

Attributes are used in this specification to define and explain the state of Object properties. A data property
associates a key value with the attributes listed in Table 5.

Table 50 Attributes of a Data Property

Attribute Name Value Domain Description

[[Value]] Any ECMASCcript The value retrieved by a get access of the property.
language type

[[Writable]] Boolean If false, attempts by ECMAScript code to change the

propertyods [[Val3etPllgr attrib
[[DefineOwnProperty]] will not succeed.

[[Enumerable]] Boolean If true, the property will be enumerated by a for-in
enumeration (see 12.6.4). Otherwise, the property is said

to be non-enumerable.

[[Configurable]] Boolean If false, attempts to delete the property, change the
property to be an accessor property, or change its

attributes (other than [[Value]], for changing [[Writable]] to
false) will fail.

An accessor property associates a key value with the attributes listed in Table 6.

© Ecma International 2012 35

secma

Table 6 0 Attributes of an Accessor Property

Attribute Name Value Domain Description
[[Get]] Object or If the value is an Object it must be a function Object. The
Undefined functionbés [[Call]] i dwithanna
empty arguments list to retrieve the property value each
time a get access of the property is performed.
[[Set]] Object or If the value is an Object it must be a function Object. The

Undefined functionbs [[Cal I] iscalledwithann a
arguments list containing the assigned value as its sole
argument each time a set access of the property is
performed. The effect of a property's [[SetP]] internal
method may, but is not required to, have an effect on the
value returned by subsequent calls to the property's

[[GetP]] internal method.

If true, the property is to be enumerated by a for-in
enumeration (see 12.6.4). Otherwise, the property is said to
be non-enumerable.

[[Enumerable]] Boolean

[[Configurable]] Boolean If false, attempts to delete the property, change the
property to'be a data property, or change its attributes will

fail.

If the initial values of a p r o p e atttibytés @re not explicitly specified by this specification, the default value
defined in Table 7 is used.

Table 7 8 Default Attribute Values

Attribute Name Default Value
[Value]] undefined
[[Get]] undefined
[[Set]] undefined
[[Writable]] false
[[Enumerable]] false
[[Configurable]] false

8.1.6.2 Object Internal Methods and Internal Data Properties

The actual semantics of ECMAScript objects are specified via algorithms called internal methods. Each object
in an ECMAScript engine is associated with a set of internal methods that defines its runtime behaviour.
These internal methods are not part of the ECMAScript language. They are defined by this specification purely
for expository purposes. However, each object within an implementation of ECMAScript must behave as
specified by the internal methods associated with it. The exact manner in which this is accomplished is
determined by the implementation.

Internal methods are identified within this specification using names enclosed in double square brackets [[]].
Internal method names are polymorphic. This means that different ECMAScript object values may perform
different algorithms when a common internal method name is invoke upon them. If, at runtime, the
implementation of an algorithm attempts to use an internal method of an object that the object does not
support, a TypeError exception is thrown.

Internal data properties correspond to internal state that is associated with objects and used by various
ECMAScript specification algorithms. Depending upon the specific internal data property such state may
consist of values of any ECMAScript language type or of specific ECMA specification type values. Unless
explicitly specified otherwise, internal data properties may be dynamically added to ECMAScript objects.

36 © Ecma International 2012

»ecma

Table 8 summarises the essential internal methods used by this specification that are applicable to all
ECMAScript objects. Every object must have algorithms for all of the essential internal methods. However, all
objects do not necessarily use the same algorithms for those methods.

T h eSigriatured ¢ o lofurabte 8 and other similar tables describes the invocation pattern for each internal
method. The invocation pattern always includes a parenthesised list of descriptive parameter names. If a
parameter name is the same as an ECMAScript type name then the name describes the required type of the
parameter value. If an internal method explicitly returns a value, its parameter list is followed by the symbol

fiYO and nameof theyrgiuened value. The type names used in signatures refer to the types defined in
Clause 8 augmented by t he dngl |noewa nnsg uet ahdgdbe iadyldEGMAISCriph a me
| anguag eprintityepe meéns Undefined, Nul | , AB aterhat raethod ingplicitlyi n g ,
returns a Completion Record as described in 8.8. In addition to its parameters, an internal method always has

access to the object upon which it is invoked as a method.

© Ecma International 2012 37

secma

38

Table 8 8 Essential Internal Methods

Internal Method

Signature

Description

[[GetInheritance]]

(Y Object or Null

Determine the object that provides inherited
properties for this object. A null value indicates
that there are no inherited properties. an object.

[[SetInheritance]]

(Object or Null)Y Boolean

Associate with an object another object that
provides inherited properties. Passing null
indicates that there are no inherited properties.
Returns true indicating that the operation was
completed successfully. or false indicating that
the operation was not successful.

[[IsExtensible]]

(Y Boolean

Determine whether it is permitted to add
additional properties to an object.

[[PreventExtensions]]

0

Control whether new properties may be added to
an object.

[[HasOwnProperty]] (propertyKey) Y Boolean Returns.a Boolean value indicating whether the
object already has an own property whose key is
propertyKey.

[[GetOwnProperty]] (propertyKey) Y Returns a Property Descriptor for the own

Undefined or Property property of this ebject whose key is propertyKey,
Descriptor or.undefined if no such property exists.
[[GetP]] (propertyKey, Receiver) Y | Retrive the value of an o b j propdrty ssing
any the propertyKey parameter. If any ECMAScript
code must be executed to retrieve the property
value, Receiver is used as the this value when
evaluating the code.

[[SetP]] (propertyKey,value, Try to_set the value of an objectd s pr

Receiver) Y Boolean indentified . by propertyKey to value. If any
ECMAScript code must be executed to set the
property value, Receiver is used as the this
value when evaluating the code. Returns true
indicating that the property value was set or
false indicating that it could not be set.

[[Delete]] (propertyKey) Y Boolean Removes the own property indentified by the
propertyKey parameter from the object. Return
false is the property was not deleted because its
[[Configurable]] attribute is false. Otherwise
return true.

[[DefineOwnProperty]] | (propertyKey, Creates or alters the named own property to

PropertyDescriptor) Y have the state described by a Property

Boolean Descriptor. Returns true indicating that the
property was successfully created/updated or
false indicating that the property could not be
created or updated.

[[Enumerate]] (Y Object Returns an iterator object that over the string
values of the keys of the enumerable properties
of the object.

[[Keys]] (Y List of String Returns an Array containing all of the
enumerable own property keys for the object that
are Strings.

[[OwnPropertyKeys]] ()Y List of (String or Returns an Array containing all of the own

Symbol) property keys for the object except those that are
private Symbols.

[[Freeze]] (Y Boolean

[[Seal]] (Y Boolean

[[IsFrozen]] (Y Boolean

[[IsSealed]] (Y Boolean

© Ecma International 2012

secmd

Table 9 summarises additional essential internal methods that must be supported by all objects that may be
called as functions..

Table 9 & Additional Essential Internal Methods of Function Objects

Internal Method Sighature Description

[[Call]] (any, a List of any) Executes code associated with the object. Invoked via a
Y any or Reference | function call expression. The arguments to the internal
method are a this value and a list containing the arguments
passed to the function by a call expression. Objects that
implement this internal method are callable. Only callable
objects that are host objects may return Reference values.
[[Construct]] (a List of any) Y Creates an object. Invoked via the new operator. The
Object arguments to the internal-are the arguments passed to the
new operator. Objects.that implement this internal method
are called constructors.

8.1.6.3 Invariants of the Essential Internal Methods

Current this section is just a bunch of material merged together from the ES5
spec. and from the wiki Proxy pages. It need to be completely reworked.

The intent is that it lists all invariants of the Essential Internal Methods. This
includes both invariants that are enforced for Proxy objects and other
invariants that may not be enfored.

Definitions:

The target of an internal method is the object the internal method is called upon.

A sealed property is a non-configurable own property of a target.

A frozen property is a non-configurable non-writable own property of a target.

A new property.is a property that does not exist on a non-extensible target.

Two property descriptors descland desc2for a property key value are incompatible if:

1. Desd is produced byalling [[GetOwnPropertyDescriptdj of targetwith key, and

2. Calling [DefineOwnProperty]] ofargetwith argumentkeyanddesc2would throw aTypeErrorexception.

=A =4 =444

Exotic objects may define additional constraints upon their [[SetP]] internal method behavior. If possible,
exotic objects should not allow [[SetP]] operations in situations where this definition of [[CanPut]] returns false.

[[GetlInheritance]]

Every [[Prototype]] chain must have finite length (that is, starting from any object, recursively accessing the
[[Prototype]] internal data property must eventually lead to a null value).

getOwnPropertyDescriptor

Non-configurability invariant: cannot return incompatible descriptors for sealed propertiesO
Non-extensibility invariant: must return undefined for new properties
Invariant checks:

if trap returns undefined, check if the property is configurable

O if property exists on target, check if the returned descriptor is compatible

© Ecma International 2012 39

secma

if returned descriptor is non-configurable, check if the property exists on the target and is also non-
configurable

defineProperty

Non-configurability invariant: cannot succeed (return true) for incompatible changes to sealed propertiesO
Non-extensibility invariant: must reject (return false) for new properties
Invariant checks:
on success, if property exists on target, check if existing descriptor is compatible with argument
descriptor
on success, if argument descriptor is non-configurable, check if the property exists on the target and is
also non-configurable

getOwnPropertyNames
Non-configurability invariant: must report all sealed properties
Non-extensibility invariant: must not list new property namesO
Invariant checks:
check whether all sealed target properties are present in the trap result
If the target is non-extensible, check that no new properties are listed in the trap result
deleteProperty
Non-configurability invariant: cannot succeed (return true) for.sealed properties
Invariant checks:
on success, check if the target property is configurable

getPrototypeOf

l nvariant check: check whether the targetdngtotheegdlot ype a
operator)

freeze | seal | preventExtensions
Invariant checks:
on success, check if isFrozen(target), isSealed(target) or lisExtensible(target)
isFrozen | isSealed | isExtensible

Invariant check: check whether the boolean trap result is equal to isFrozen(target), isSealed(target) or
isExtensible(target)

hasOwn

Non-configurability invariant: cannot return false for sealed properties
Non-extensibility invariant: must return false for new propertiesO
Invariant checks:
if false is returned, check if the target property is configurable
if false is returned, the property does not exist on target, and the target is non-extensible, throw a
TypeError

has

40 © Ecma International 2012

»ecma

Non-configurability invariant: cannot return false for sealed properties
Invariant checks:
if false is returned, check if the target property is configurable

get

Non-configurability invariant: cannot return inconsistent values for frozen data properties, and must return
undefined for sealed accessors with an undefined getterO

Invariant checks:

i f property exists on target as<a data property, |
result are identical (according to the egal operator)

if property existsont ar get as an accessor, a n dundefiined, check vehstlseo r 6 s
the trap result is also undefined.

set

Non-configurability invariant: cannot succeed (return true) for frozen‘data properties or sealed accessors
with an undefined setterO
Invariant checks:

on success, if property exists on target as a dat a
the update value are identical (according to the egal.operator)

on success, if property exists ontargetasan accessor, ~check whether the a
undefined

keys

Non-configurability invariant: must report all enumerable sealed properties
Non-extensibility invariant: must not list new property names
Invariant checks:

Check whether all enumerable sealed target properties are listed in the trap result

If the target is non-extensible, check that no new properties are listed in the trap result

enumerate
Non-configurability invariant: must report all enumerable sealed properties

Invariant checks:
Check whether all enumerable sealed target properties are listed in the trap result

Unless otherwise specified, the standard ECMAScript objects are ordinary objects and behave as described in
8.3. Some standard objects are exotic objects and have behaviour defined in 8.4..

Exotic objects may implement internal methods in any manner unless specified otherwise; for example, one
possibility is that [[GetP]] and [[SetP]] for a particular exotic object indeed fetch and store property values but
[[HasOwnProperty]] always generates false. However, if any specified manipulation of an exotic object's
internal properties is not supported by an implementation, that manipulation must throw a TypeError
exception when attempted.

© Ecma International 2012 41

ecima

The [[GetOwnProperty]] internal method of all objects must conform to the following invariants for each
property of the object:

il

If a property is described as a data property and it may return different values over time, then either or
both of the [[Writable]] and [[Configurable]] attributes must be true even if no mechanism to change the
value is exposed via the other internal methods.

If a property is described as a data property and its [[Writable]] and [[Configurable]] are both false, then
the SameValue (according to 9.12) must be returned for the [[Value]] attribute of the property on all calls
to [[GetOwnProperty]].

If the attributes other than [[Writable]] may change over time or if the property might disappear, then the
[[Configurable]] attribute must be true.

If the [[Writable]] attribute may change from false to true, then the [[Configurable]] attribute must be true.

If the result of calling an o b j e dsEx@essiblg]] internal method has been observed by ECMAScript code
to be false, then if a call to [[GetOwnProperty]] describes aproperty as non-existent all subsequent calls
must also describe that property as non-existent.

The [[DefineOwnProperty]] internal method of all objects‘must not permit.the addition of a new property to an
object if the [[Extensible]] internal method of that object has been observed by ECMAScript code to be false.

If the result of calling the [[IsExtensible]] internal method of an object has been observed by ECMAScript code
to be false then it must not subsequently become true.

8.1.6.3 Well-Known Symbols and Intrinsics

Well-known symbols are built-in exotic symbol objects (8.4:4) that are explicitly referenced by algorithms of
this specification. They are typically.used as the keys of properties whose values serve as extension points of
a specification algorithm. Unless otherwise specified, well-known symbols values are shared by all Code
Realms (10.3) and the value of their [[Private]] internal data property (forward ref) is false.

Within this specification a well-known symbol is referred to by using a notation of the form @ @name, where
inamed is one of TableH. val ues | isted in

42

Table 10--Well-known Symbols

Specification Name Value and Purpose

@ @create A method used to allocate an object. Called from the
[[Construct]] internal method.
@ @haslInstance A method that determines if a constructor object

recognizes an object as one of the constructord
instances. Called by the semantics of the instanceof
operator.

@ @iterator A method that returns the default iterator for an object.
Called by the semantics of the for-of statement.

@@ToPrimitive A method that converts an object to a corresponding
primitive value. Called by the ToPrimitive abstract
operation.

@ @toStringTag A string value that is used in the creation of the default
string description of an object. Called by the built-in
method Object.prototype.toString.

© Ecma International 2012

»ecma

Well-known intransics are built-in objects that are explicitly referenced by the algorithms of this specification
and which usually have Code Realm specific identifies. Unless otherwise specific each intrinsic object actually
corresponds to a set of similar objects, one per Code Realm.

Within this specification a reference such as %name% means the intrinsic object, associated with the current
Code Realm, corresponding to the name. Determine of the current Code Realmand its intransics is described
in 10.3. The well-known intrincs are listed in Table 11.

Table 11 8 Well-known Intrinsic Objects

Intrinsic Name ECMAScript Language Association

%0bject% The initial value of the global object
property named "Object"

%0ObjectPrototype% The initial value of the " prototype " data
property of the intrinsic %0bject%.

%ObjProto_toString% The initial value of the "toString " data
property of the intrinsic %ObjectPrototype%.

%Function% The initial ~value of the _global object
property named " Function® "

%FunctionPrototype% The initial value of the " prototype " data
property of the intrinsic %Function%.

%Array% The initial value " of the global object
property named " Array ".

%ArrayPrototype% The initial value of the " prototype " data
property of the intrinsic %Array%.
%ArraylteratorPrototype% The prototype object used for

interator objects created by the
CreateArraylterator abstract operation.

%Map% The initial value of the global object
property named " Map' .

%MapPrototype% The initial 'value of the " prototype " data
property of the intrinsic %Map%.
%MaplteratorPrototype% | The prototype object used for

interator objects created by the
CreateMaplterator abstract operation

%WeakMap% The initial value of the global object
property named " WeakMap .

%WeakMapPrototype% | The initial value of the " prototype " data
property of the intrinsic %WeakMap%.

%Set% The initial value of the global object
property named " Set " .

%SetPrototype% The initial value of the " prototype " data
property of the intrinsic %Set%.
%SetlteratorPrototype% | The prototype object used for

interator objects created by the
CreateSetterator abstract operation

%Stoplteration%
?7?7?

© Ecma International 2012 43

secmd

8.2 ECMAScript Specification Types

A specification type corresponds to meta-values that are used within algorithms to describe the semantics of
ECMAScript language constructs and ECMAScript language types. The specification types are Reference,
List, Completion, Property Descriptor, Lexical Environment, Environment Record, and Data Block.
Specification type values are specification artefacts that do not necessarily correspond to any specific entity
within an ECMAScript implementation. Specification type values may be used to describe intermediate results
of ECMAScript expression evaluation but such values cannot be stored as properties of objects or values of
ECMAScript language variables.

8.2.1 Data Blocks

This sectionis a placeholderfor describng the Data Block internal type. Tht
following material is verbatium from the the Binary Data ES wiki proposal. T

D

he

material has not yet been reviewed or integrated with the rest of this spec.

This spec introduces a new, spec-internal block datatype, intuitively representing a contiguously allocated
block of binary data. Blocks are not ECMAScript language values and appear only in the program store (aka
heap).

A block is one of:
1 anumber-block
1 an array-block]t, n]

1 astruct-block]t1, ..., tn]

A number-block is one of:

1 an unsigned-integer; i.e., one of uint8, uint16, uint32, or uint64
1 asigned-integer;d.e., one of int8, intl16, int32, or int64
1 afloating-point; i.e., one of float32 or float64

A uintk is an integer in the range [0, 2k). An intk is an integer in the range [-2k-1, 2k-1). A floatk is a floating-
point number representable as a k-bit IEE754 value.

An array-block[t, n] is an ordered sequence of n blocks of homogeneous block type t. Each element of the
array is stored at in independently addressable location in the program store, and multiple Data objects may
contain references to the element.

A struct-block]t1, ..., tn] is an ordered sequence of n blocks of heterogeneous types t1 to tn, respectively. Each
field of the struct is stored at/in independently addressable location in the program store, and multiple Data
objects may contain references to the field.

The spec also introduces a datatype of Data objects, which are ECMAScript objects that encapsulate
references to block data in the program store. Every Data object has the following properties:

[[Cl ass]] = ADatabo

[[Value]] : reference[block] i a reference to a block in the program store

[[DataType]] : reference[Type] i areferencetoa Typeobjectdescr i bing this objectébs

44 © Ecma International 2012

secmd

8.2.2 The List and Record Specification Type

The List type is used to explain the evaluation of argument lists (see 11.2.4) in new expressions, in function
calls, and in other algorithms where a simple list of values is needed. Values of the List type are simply
ordered sequences of values. These sequences may be of any length.

The Record type is used to describe data aggregations within the algorithms of this specification. A Record
type value consists of one or more named fields. The value of each field is either an ECMAScript value or an
abstract value represented by a name associated with the Record type. Field names are always enclosed in
double brackets, for example [[value]]

For notational convenience within this specification, an object literal-like syntax can be used to express a
Record value. For example, {[[field1]]: 42, [[field2]]: false, [[field3]]: empty}.defines a Record value that has
three fields each of which is initialized to a specific value. Field name order is not significant. Any fields that
are not explicitly listed are considered to be absent.

In specification text and algorithms, dot notation may be used to refer to a specific field of a Record value. For
example, if R is the record shown in the previous paragraph then R.[[field2]] i s shorthanR fo
named [[field2]] o .

Schema for commonly used Record field combinations may be named, and that name may be used as a
prefix to a literal Record value to identify the specific kind of aggregations that is being described. For
example: Property Descriptor {[[Value]]: 42, [[Writable]]: false, [[Configurable]]: true}.

8.2.3 The Completion Record Specification Type

The Completion type is a Record used to explain the runtime propagation of values and control flow such as
the behaviour of statements (break , continue , return ~ and throw) that perform nonlocal transfers of
control.

Values of the Completion type are Record values whole fields are defined as by Table 12.

Table 12 8 Completion Record Fields

Field Name | Value Meaning
[ltypel] One of normal; break, continue, return, | The type of completion that occurred.
or throw
[[valug]] any ECMAScript language value or empty | The value that was produced.
[[target]] any ECMAScript identifier or empty The target label for directed control transfers.

The term fiabrupt compl et i on fitypellevdlue otierthannoammaly compl et i on
8.2.3.1 NormalCompletion

The abstract operation NormalCompletionwith a single argument such as:

1. ReturnNormalCompletiondrgumeny.

Is a short hand that is defined as follows:

1. ReturnCompletion {[[type]]: normal, [[value]]: argument [[target]]:.empty}.

8.2.3.2 Implicit Completion Values

The algorithms of this specification often implicitly return Completion Records whose [[type]] is normal.

Unless it is otherwise obvious from the context, an algorithm statement that returns a value that is not a
Completion Record, such as:

© Ecma International 2012 45

secma

1. Return”Infinity"

Generally means the same thing as:

1. ReturnNormalCompletio("Infinity").

A refurrdstatement without a value in an algoritm step means the same thing as:

1. ReturnNormalCompletiongndefined).

Similarly, any reference to a Completion Record value that is in a context that does not explicitly require a
complete Completion Record value is equivalent to an explicit reference to the [[value]] field of the Completion
Record value unless the Completion Record is an abrupt completion.

8.2.3.3 Throw an Exception

Algorithms steps that say to throw an exception, such as

1. Throw aTypeError exception

Mean the same things as:

1. ReturnCompletion {[[type]]:throw, [[value]]: a newly createdypeError object, [[target]]empty}.
8.2.3.4 ReturnlIfAbrupt

Algorithms steps that say

1. ReturnifAbruptérgumeny.

mean the same things as:

1. If argumentis an abrupt completiorthenreturnargument
2. Elseif argumentistaCompletionRecord, then leargumentbe argument|[value]].

8.2.4 The Reference Specification Type

NOTE The Reference type is used to explain the behaviour of such operators as delete , typeof , the assignment
operators, the super keyword and other lanauge features. For example, the left-hand operand of an assignment is
expected to produce a reference.

A Reference is a resolved name binding. A Reference consists of three components, the basevalue, the
referenced namand the Boolean valued strict referencelag. The basevalue is either undefined, an Object, a
Boolean, a String, a Number, or an environment record (10.2.1). A basevalue of undefined indicates that the
Reference could not be resolved to a binding. The referenced namis a String.

A Super Reference is a Reference that is used to represents a hame binding that was expressed using the
super keyword. A Super Reference has an additional thisValuecomponent and its basevalue will never be an
environment record.

The following abstract operations are used in this specification to access the components of references:

GetBase(V). Returns the base value component of the reference V.

GetReferencedName(V). Returns the referenced nhame component of the reference V.
IsStrictReference(V). Returns the strict reference component of the reference V.

HasPrimitiveBase(V). Returns true if the base value is a Boolean, String, or Number.
IsPropertyReference(V). Returns true if either the base value is an object or HasPrimitiveBase(V) is true;
otherwise returns false.

1 IsUnresolvableReference(V). Returns true if the base value is undefined and false otherwise.

E

46 © Ecma International 2012

»ecma

1 IsSuperReference(V). Returns true if this reference has a thisValuecomponent.
The following abstract operations are used in this specification to operate on references:
8.24.1 GetValue (V)

ReturnIfAbrupt{).
If Type(V) is not Reference, retuvi.
Let basebe the result of calling GetBasg(
If IsUnresolvableReferenc¥], throw aReferenceError exception.
If IsPropertyReferenc#f), then
a. If HasPrimitiveBaseY) is true, then
i Asset: In this casepasewill never benull or undefined.
ii. Setbase to ToObjectpase.
b. Return the result of callinthe [[GetP]]internal methodf basepassing GetReferencedNamvg@nd
GefThisValuel) asthe argumers
6. Elsebasemust be an environment record
a. Return the result of calling the GetBindingValue (see 10.2.1) concrete metlbededassing
GetReferencedNam¥] and IsStrictReferenc¥] as arguments.

arwdE

NOTE The object that may be created in step 5.a.ii is not accessible outside of the above method. An implementation
might choose to avoid the actual creation of the object.

8.2.4.2 PutValue (V, W)

ReturnifAbrupt{).
ReturnIfAbrupti).
If Type(V) is not Reference, throwReferenceError exception.
Let basebe the result of calling GetBas&(
If IsUnresolvableReferenc¥], then
a. If IsStrictReference() is true, then
i. Throw ReferenceError exception
b. LetglobalObjbe the result of the abstraction operation GetGlobalObject.
c. Return theresult of callin@ut(globalObjGetReferencedNam¥], W, false).
6. Else if IsPropertyReferenc¥], then
a. If HasPrimitiveBaseY) is true, then
i. Asset: In this casebasewill never benull or undefined.
ii. Setbase to ToObjectpase.
b. <Letsucceededbe theresult of calling the [[SetP]Jinternal methodf basepassing
GetReferencedNam¥], W, andGetThisValueY) as arguments
c. ReturnifAbruptSucceeded
d. If succeededs falseandlIsStrictReferencgy) is true, then throw arypeError exception
e. Return.
7. Elsebasemust be a reference whose basam environment record. So,
a. Return the result of callinthe SetMutableBinding (10.2.1) concrete methoda$e passing
GetReferencedNam¥], W, and IsStrictReferenc¥f as arguments.
8. Return.

arwdE

NOTE The object that may be created in step 6.a.ii is not accessible outside of the above algorithm. An
implementation might choose to avoid the actual creation of that transient object.

8.2.4.3 GetThisValue (V)

1. ReturnifAbrupt{).
2. If Type(V) is not Reference, tern V.
3. IfIsUnresolvableReferenc¥], throw aReferenceError exception.
4. If IsSupeReferencey), then
a. Return the value of thithisValuecomponent of the referenéé
5. Return GetBas&().

© Ecma International 2012 47

secma

8.2.5 The Property Descriptor Specification Type

The Property Descriptor type is used to explain the manipulation and reification of Object property attributes.

Values of the Property Descriptor type are Recordsc omposed of named fields where ee
attribute name and its value is a corresponding attribute value as specified in 8.1.6.1. In addition, any field

may be present or absent.

Property Descriptor values may be further classified as data property descriptors and accessor property
descriptors based upon the existence or use of certain fields. A data property descriptor is one that includes
any fields named either [[Value]] or [[Writable]]. An accessor property descriptor is one that includes any fields
named either [[Get]] or [[Set]]. Any property descriptor may have fields named [[Enumerable]] and
[[Configurable]]. A Property Descriptor value may not be both a data property descriptor and an accessor
property descriptor; however, it may be neither. A generic property descriptor is a Property Descriptor value
that is neither a data property descriptor nor an accessor property descriptor. A fully populated property
descriptor is one that is either an accessor property descriptor or a data-property descriptor and that has all of
the fields that correspond to the property attributes defined in either 8.1.6.1 Table 5 or Table 6.

A Property Descriptor may be derived from an ECMAScript object that has properties that directly correspond
to the fields of a Property Descriptor. Such a derived Property Descriptor has an additional field named
[[Origin]] whose value is the object from which the Property . Descriptor was derived.

The following abstract operations are used in this specification to operate upon Property Descriptor values:
8.2.5.1 IsAccessorDescriptor (Desc)

When the abstract operation IsAccessorDescriptor is called with property descriptor Desg the following steps
are taken:

2. If Descis undefined, then returrfalse.
3. If both Desc[[Get]] andDesc][Set]]are absent, then retufalse.
4. Returntrue.

8.2.5.2 IsDataDescriptor (Desc)

When the abstract operation IsDataDescriptor-is called with property descriptor Desg the following steps are
taken:

1. If Descisundefined, then returrfalse
2. If bothDesc[[Value]] andDesc[[Writable]] are absent, then retufalse
3. Returntrue.

8.2.53 IsGenericDescriptor (Desc)

When the abstract operation IsGenericDescriptor is called with property descriptor Desg the following steps
are taken:

1. If Descis undefined, then returnfalse
2. If IsAccessorDescriptoffesg and IsDataDescriptddesqg are botHalse, then returrtrue.
3. Returnfalse

8.2.5.4 FromPropertyDescriptor (Desc)

When the abstract operation FromPropertyDescriptor is called with property descriptor Desg the following
steps are taken:

The following algorithm assumes that Descis a fully populated Property Descriptor, such as that returned from
[[GetOwnProperty]] (see 8.12.1).

1. If Descis undefined, then returrundefined.
2. If Deschasan [[Origin]] field, thenreturnDesc[[Origin]] .
3. Letobjbe the result ahe abstractperation ObjectCreate

48 © Ecma International 2012

»ecma

4. Assert:objis an extensible ordingobject with no own properties.
5. If Deschas a [[Value]] field then
a. CallOrdinanDefineOwnPropertyvith argument®bj, "value ", andProperty Descriptor {[[Value]]:
Desc[[Value]], [[Writable]]: true, [[Enumerable]]true, [[Configurable]]:true}
6. |If Deschas a [[Writable]] field then
a. CallOrdinanDefineOwnPropertyvith argument®bj, "writable ", andProperty Descriftr {[[Value]]:
Desc[[Writable]], [[Writable]]: true, [[Enumerable]]true, [[Configurable]]:true}.
7. If Deschas a [[Get]] field then
a. Call OrdinanDefineOwnPropertyvith argument®bj, "get ", andProperty Descriptor {[[Value]]:
Desc[[Sef]], [[Writable]]: true, [[Enumerable]]true, [[Configurable]]:true}.
8. If Deschas a [[Get]] field then
a. Call OrdinanDefineOwnPropertyvith argunentsobj, "set ", andProperty Descriptor {[[Value]]:
Desc[[Set]], [[Writable]]: true, [[Enumerable]]true, [[Configurable]]:true}.
9. If Deschas a [[Enumerable]] fieldhen
a. Call OrdinanDefineOwnRopertywith argument®bj, "enumerable ", andProperty Descriptor
{[[Value]]: Desc[[Enumerable]], [[Writable]]true, [[Enumerable]]true, [[Configurable]]:true}.
10. If Deschas a [[Configurable]] fieldthen
a. Call OrdinanDefineOwnPropertyvith argument®bj, “configurable ", andProperty Descriptor
{[[Value]]: Desc|[[Configurable]], [[Writable]]:true, [[Enumerable]]true, [[Configurable]]:true}.
11. Returnobj.

8.2.5.5 ToPropertyDescriptor (Obj)

When the abstract operation ToPropertyDescriptor is called with object Obj, the following steps are taken:

1. ReturnifAbruptQ©bj).
2. If Type(Obj) is not Object throw d&ypeError. exception.
3. Letdeschbe the resulbf creating a new Property Descriptor that initially has no fields.
4. |If the result ofHasPropertyQbj, "enumerable ") is true; then
a. Letenumbe the result o6Get(Obj, "enumerable).
b. ReturnifAbrupténunj.
c. Setthe [[Enumerable]] field afescto ToBooleang¢nun).
5. If the result ofHasPropertyQbj, "configurable ") is true, then
a. Letconf be the reslt of Gef{Obj, "configurable).
b. ReturnIfAbruptcon).
c. Setthe [[Configurable]] field oflescto ToBooleang¢onf).
6. If the result ofHasPropertyQbj, "value ") is true, then
a. letvaluebe the result oGetObj, "value ").
bs ReturnifAbrupt{alue).
c. Setthe [[Value]] field ofdescto value
7. If the result ofHasPropertyQbj, "writable ") is true, then
a. Letwritable be the result oGetObj, "writable ").
b. ReturnifAbruptfvritable).
c. Setthe [[Writable]] field ofdescto ToBooleanyritable).
8. If the result ofHasPropertyQbj, "get ") is true, then
a. Letgetterbe the result oGet(Obj, "get ").
b. ReturnifAbruptgetter.
c. If IsCallablegette) is false andgetteris notundefined, then throw arypeError exception.
d. Setthe [[Get]] field ofdescto getter.
9. If the result ofHasPropertyQbj, "set ") is true, then
a. Letsetterbe the reslt of GetObj, "set ").
b. ReturnifAbruptgettel).
c. If IsCallablegette)) is false andsetteris notundefined, then throw alr'ypeError exception.
d. Setthe [[Set]] field oflescto setter
10. If either desc[[Get]] or desc[[Set]] are present, then
a. If eitherdesc[[Value]] or desc[[Writable]] are present, then throwTaypeError exception.
11. Set the [[Origin]] field ofdescto Obj.
12. Returndesc

© Ecma International 2012

secmd

8.2.5.6 CompletePropertyDescriptor (Desc, LikeDesc)

When the abstract operation CompletePropertyDescriptor is called with Property Descriptor Desg the following
steps are taken:

1. Assert LikeDescis either a Property Descriptor undefined.
2. ReturnlfAbruptDesqg.
3. Assert:Descis a Property Descriptor
4. |If LikeDescis undefined, then seLikeDescto Record{[[Value]]:undefined, [[Writable]]: false, [[Get]]:
undefined, [[Set]]: undefined, [[Enumerable]]:false, [[Configurable]]: false}.
5. |If either IsGenericDescriptddesq or IsDataDescriptdiDesq is true, then
a. If Descdoes not have HValue]] field, thensetDesc[[Value]] to LikeDesc[[Value]].
b. If Descdoes not have a [[Writable]] field, then deésc[[Writable]] to LikeDesc[[Writable]].
6. Else,
a. If Descdoes not have a@ef]] field, then setDesc[[Gef]] to LikeDesc[[Get]].
b. If Descdoes not have a [[Set]] field, then de¢sc[[Sel] to LikeDesc[[Set]].
7. |If Descdoes not have afnumerabl field, then setDesc[[Enumerablf to LikeDesc[[Enumerable]]
8. If Descdoes not have a(Jonfigurabl§] field, then setDesc[[Configurablg] to LikeDesc[[Configurable]]
9. ReturnDesc
8.

2.6 The Lexical Environment and Environment Record Specification Types

The Lexical Environment and Environment Record types are used to explain the behaviour of name resolution
in nested functions and blocks. These types and the operations upon them are defined in Clause 10.

8.3 Ordinary Object Internal Methods and Internal Data Properties

Sections 8.3-8.5 will eventually be subsectons of a new toplevel section that
follow the current section 10

All ordinary objects have an internal data property called [[Prototype]]. The value of this property is either null
or an object and is used for implementing inheritance. Data properties of the [[Prototype]] object are inherited
(are visible as properties of the child object) for the purposes of get access, but not for set access. Accessor
properties are inherited for both get access and set access.

Every ordinary ECMAScript object has a Boolean-valued [[Extensible]] internal data property that controls

whether or not-properties may be added to the object. If the value of the [[Extensible]] internal data property is

false then additional properties may not be added to the object. In addition, if [[Extensible]] is false the value

of [[Prototype]] internal data properties. of the object may not be modified. Once the value of anobj ect 6s
[[Extensible]] internal data property has been set to false it may not be subsequently changed to true.

In the following algorithm descriptions, assume O is an ordinary ECMAScript object, P is a property key value,
V is any ECMAScript language value, Descis a Property Description record, and B is a Boolean flag.

8.3.1 [[GetInheritance]] ()

When the [[GetInheritance]] internal method of O is called the following steps are taken:

1. Returnthe value of the [[Prototype]] interndataproperty ofO.

8.3.2 [[Setlnheritance]] (V)

When the [[SetInheritance]] internal method of O is called with argument V the following steps are taken:
Assert:Either Type(V) is Object or TypeY) is Null.

Let extensiblebe thevalueof the [[Extensible]] internatlata propest of O.

If extensibles false, then returrfalse.

Setthe value of the[Prototype]] internaldataproperty ofO to V.
Returntrue.

oronRE

50 © Ecma International 2012

»ecma

8.3.3 [[IsExtensible]] ()

When the [[IsExtensible]] internal method of O is called the following steps are taken:

1. Returnthe value of the Extensibld] internal dataproperty ofO.

8.3.4 [[PreventExtensions]] ()

When the [[PreventExtensions]] internal method of O is called the following steps are taken:

1. Setthe value of the [xtensiblg] internal dataproperty ofO to false.
2. ReturnNormalCompletionémpty).

8.3.5 [[HasOwnProperty]] (P)

When the [[HasOwnProperty]] internal method of O is called with property key P, the following steps are taken:
1. Assert:IsPropertyKeyP) is true.

2. If O doesnat have an own pragrty withkey P, returnfalse

3. Returntrue.

8.3.6 [[GetOwnProperty]] (P)

When the [[GetOwnProperty]] internal method of O is called with property key P, the following steps are taken:

1. Returnthe result of OrdinaryGetOwnProperty with-argume@tandP.
8.3.6.1 OrdinaryGetOwnProperty (O, P)

When the abstract operation OrdinaryGetOwnProperty.is called with Object O and with property key P, the
following steps are taken:

1. Assert:IsPropertyKeyP) is true.
2. If O doesnot haveian own property witkey P, returnundefined.
3. LetD be a newly created Property Descriptor with no fields.
4, LetXbeOdbs own \whosepey it vy
5. If Xis a data property, then
a. SetD.[[Valug]]tothevalueofXd s [[Val ue]] attribute.
b SetD.[[Writable]]tothevalueoX6s [[Wri table]] attribute
6. ElseXis an accessor property, so
a. SetD.[[Get]]tothevalueoXé's [[Get]] attribute
b. SetD.[[Set]]tothevalueoXds [[Set]] attribute.
SetD.[[Enumerable]]tothevalue o6 s [[Enumer abl e]] attribute.

7

8. SetD.[[Configurable]] to thevalueokés [[Confi gurabl e]] attribute.
9. ReturnD.

8.3.7 [[DefineOwnProperty]] (P, Desc)

When the [[DefineOwnProperty]] internal method of O is called with property key P and property descriptor
Desc the following steps are taken:

1. Returnthe result of OrdinaryDefineOwnProperty with argume@t<d, andDesc
8.3.7.1 OrdinaryDefineOwnProperty (O, P, Desc)

When the abstract operation OrdinaryDefineOwnPropertis called with Object O, property key P, and property
descriptors Descthe following steps are taken:

1. Letcurrentbe the result of calling OrdinaryGetOwnPerty with argument® andP.
2. Letextensiblébe thevalueof the [[Extensible]] internatlata propertyof O.

© Ecma International 2012 51

secma

3. Returnthe result oiValidateAndApplyPropertyDescriptarith argument, P, extensible Desg and
current

8.3.7.2 IsCompatiblePropertyDescriptor (Extensible, Desc, Current)

When the abstract operation IsCompatiblePropertyDesriptois called with Boolean value Extensible and
property descriptors Desg and Current the following steps are taken:

1. Returnthe result ofvalidateAndApplyPropertyDescriptarith argumentaindefined, undefined,
Extensible Desg andCurrent

8.3.7.3 ValidateAndApplyPropertyDescriptor (O, P, extensible, Desc, current)

When the abstract operation ValidateAndApplyPropertyDescriptois called with Object O, property key P,
Boolean value extensibleand property descriptors Desg and currentthe following steps are taken:

This algorithm contains steps that test various fields of the Property Descriptor Descfor specific values. The
fields that are tested in this manner need not actually exist in Desc If a field is absent then its value is
considered to be false.

NOTE If undefined is passed as the O argument only validation is performed and not object updates are preformed.

1. Assert:If OisnotundefinedthenP is a valid property &y.
2. If currentis undefined, then
a. If extensibles false, thenreturnfalse.
b. Assert:extensibles true.
c. If IsGenericDescriptoijesq or IsDataDescriptoEfesq is true, then
i If O is notundefined, then ceatean own data property namédof objectO whose
[[Value]], [[Writable]], [[Enumerable]] and [[Configurable]] attribute values are described
by Desc If the value of an attribute field descis absent, the attribute of the newly
created property-is set to its default value.
d. ElseDescmust be an accessProperty Descriptor,
i If O is.notundefined, then ceatean own accessor property namaf objectO whose
[[Getl], [[Set]], [[Enumerable]] and [[Configurable]] attribute values are describebésc
If the value of an attribute field ddescis absentthe attribute of the newly created
property.is set to its default-value.
e. Returntrue.
3. Returntrue,.if every field inDescis absent.
4. Returntrue, if every field inDescalso occurs ircurrentand the value of every field iDescis the same
value as theorresponding field icurrentwhen compared using the SameValue algorithm (9.12).
5. If the [[Configurable]] field ofcurrentis falsethen
a. Returnfalse, if the [[Configurable]] field ofDescis true.
b. Returnfalse, if the [[Enumerable]] field oDescis preent and the [[Enumerable]] fields ofirrent
andDescare the Boolean negation of each other.
6. If IsGenericDescriptofesq is true, then no further validation is required.
7. Else if IsDataDescriptocurrent) and IsDataDescriptabesq have different resultghen
a. Returnfalse, if the [[Configurable]] field ofcurrentis false.
b. If IsDataDescriptorgurrent) is true, then
i If O'is notundefined, then onvertthe property name® of objectO from a data property
to an accessor property. Preserve the existingevalu of t he converted pro
[[Configurable]] and [[Enumerable]] attribut
their default values.

p e
es

c. Else,
i If Ois notundefined, then onvertthe property name#® of objectO from an accessor
propertytoadt a property. Preserve the existing val
[[Configurable]] and [[Enumerable]] attributes
their default values.
8. Else if IsDataDescriptocurrent) and IsDataDescriptobesq are bah true, then
a. Ifthe [[Configurable]] field ofcurrentis false, then
i. Returnfalse, if the [[Writable]] field of currentis falseand the [[Writable]] field oDescis
true.

52 © Ecma International 2012

»ecma

ii. If the [[Writable]] field of currentis false, then
1. Returnfalse, if the [[Value]]field of Descis present and
SameValueDesc[[Value]], current[[Value]]) is false.
b. else the [[Configurable]] field ofurrentis true, so any change is acceptable.
9. Else IsAccessorDescriptanfrrent) and IsAccessorDescript@ésq are bothtrue,
a. If the [[Configurable]] field ofcurrentis false, then
i Returnfalse, if the [[Set]] field ofDescis present and SameVallgsc[[Set]],
current[[Set]]) is false.
ii. Returnfalse, if the [[Get]] field of Descis present and SameVallddsc[[Get]],
current[[Get]]) is false.
10. If O is notundefined, then
a. For each attribute field ddescthat is present, set the correspondingly named attribute of the
property namedP of objectO to the value of the field.
11. Returntrue.

However, if O has an [[BuiltinBrand]] internal data property whose value is BuiltinArray O also has a more
elaborate [[DefineOwnProperty]] internal method defined in 15.4.5.1.

NOTE Step 10.b allows any field of Desc to be different from the corresponding field of currentif cur r ent 6
[[Configurable]] field is true. This even permits changing the [[Value]] of a property whose [[Writable]] attribute is false This

is allowed because a true [[Configurable]] attribute would permitan equivalent sequence of calls where [[Writable]] is first

set to true, a new [[Value]] is set, and then [[Writable]] is set to false

© Ecma International 2012 53

8.7.8 [[HasProperty]](P)

When the [[GetProperty]] internal method of O is called with property key P, the following steps are taken:

Assert: IsPropertyKeW) is true.
Let descbe the result of callinff HasOwnProperty] internal method ofd with argumentP.
ReturnlfAbrupt@esg.
If descis undefined, then

a. Letparentbe theresultof calling the [[GetInheritancH internal methodof O.

b. ReturnifAbruptpareny.

c. If parentis notnull, then

i. Return he result of calling the HasProperty]] internal method oparentwith argumentP.

5. Returnfalse

8.3.9 [[GetP]] (P, Receiver)

PwbPE

When the [[GetP]] internal method of O is called with property key P and ECMAScipt language value Receiver
the following steps are taken:

1. Assert:lsPropertyKeyP) is true.
2. Letdeschbe the result of callinghe [[GetOwnProperty] internal method ofO with argumentP.
3. ReturnlfAbrupt@esqg.
4. If descis undefined, then
a. Letparentbe theresultof calling the [[Getinheritanch internal methodof O.
b. ReturnifAbruptparen).
c. If parentis null, then returrundefined.
d. Return theresult of calling the [[GetP]] internal methafdoarentwith argumentsP andReceiver
5. If IsDataDescriptordesq is true, returndesc[[Valuel]].
6. Otherwise, IsAccessorDescriptdgsg must betrue so, letgetterbedesc[[Get]].
7. If getteris undefined, returnundefined.
8. Return the resulof calling the [[Call]] internalmethod ofgetterwith ReceiverasthethisArgumentandan

empty Listasargumentgist.
8.3.10[[SetP]] (P, V, Receiver)

When the [[SetP]] internal method of O is called with property key P, value V, and ECMAScipt language value
Reeiver, the following steps are taken:

Assert:IsPropertyKeyP) is true.
Let ownDesche the result of callinghe [[GetOwnProperty] internal method o0 with argumentP.
ReturnifAbruptownDes3.
If ownDesds undefined, then

a. Letparentbe theresultof calling the [[GetInheritancH internal methodof O.

b. ReturnifAbruptparen).

c. If parentis notnull, then

i. Return the result of calling the§gtH] internal methodof parentwith arguments, V, and
Receiver

PwbdPE

d. Else,
i If TypeReceiveyis not Object returnfalse.
il Return the result gberformingCreateOwnDataPropertigceiver P, V).
5. |If IsDataDescriptodwnDes¢ is true, then
a. If ownDesd[Writable]] is false, returnfalse.
b. If TypeReceiveyis not Object returnfalse.

54 © Ecma International 2012

»ecma

c. LetexistingDesriptor bebe the result of callinghe [[GetOwnPropert}} internal method of
Receivewith argumentP.
d. ReturnlfAbruptéxistingDescriptoy.
e. |If existingDescriptoiis not undefined, then
i Let valueDesde the Property Descriptor {[[8ue]]: V}.
ii. Return the result of callinthe [[DefineOwnPropert)l} internal method oReceivemwith
arguments? andvalueDesc
f. ElseReceiverdoes not curretty have a property,
i Return the result of performing CreateOwnDataProp&egeiver P, V).
6. If IsAccessorDescriptoownDesg is true, then
a. LetsetterbeownDesd[Set]].
b. If setteris undefined, returnfalse.
c. LetsetterResulbethe result of callinghe [[Call]] internal method o$etterproviding Receiveras
thisArgumentanda newList containingV asargumentsList
d. RetunlIfAbrupt(setterResu)t
e. Returntrue.

8.3.11 [[Delete]] (P)

When the [[Delete]] internal method of O is called with property key P the following steps are taken:

1. Assert:IsPropertyKeyP) is true.

© Ecma International 2012 55

secma

2. Letdeschbe the result of callinghe [[GetOwnProperty]] internal method 6fwith argumentP.
3. If descis undefined, then returrtrue.
4. |If desc[[Configurable]] istrue, then
a. Remove the own property with narRefrom O.
b. Returntrue.
5. Returnfalse.

8.3.12 [[Enumerate]] ()
When the [[Enumerate]] internal method of O is called the following steps are taken:

1. Return an lterator objectdference xxxxwhose next method iterates over all the keys of enumerable
property keys oD. The mechanics andrder of enumerating the properties is not specifiettmust
conform to the rules specified below

Enumerated properties do not include properties whose property key is a Symbol. Properties of the object
being enumerated may be deleted during enumeration. If a property that has not yet been visited during
enumeration is deleted, then it will not be visited. If new properties are added to the object being enumerated
during enumeration, the newly added properties are not guaranteed to be visited in the active enumeration. A
property name must not be visited more than once in any enumeration.

Enumerating the properties of an object includes enumerating properties of its prototype, and the prototype of

the prototype, and so on, recursively; but a property o f a prototype is not enumer at e
because some previous object in the prototype chain has a property with the same name. The values of

[[Enumerable]] attributes are not considered when.determining if a property of a prototype object is shadowed

by a previous object on the prototype chain.

The following is an informative algorithm that conforms to these rules

Let objbeO.
Let proto be theresult of callingthe [[Getinheritance]] internahethodof O with no arguments
ReturnIfAbruptproto).
If protois the valuenull, then
a. LetpropListbe a new empty List.
Else
a. LetpropListbe the result of calling the [[Enumerate]] internal methografto.
ReturnlfAbruptfropList).
For eachnamethat is. the property key of an own property®f
a. If Type(nameé is String, then
i Let descbe the result of callin@rdinaryGetOwnPropertyith argument andname
il If nameis an element opropList, thenremovenameas an element qfropList
iii. If desc[[Enumerably is true, then adchameas an element gfropList
8. Order the elements gfropListin an implementation defined order.
9. ReturnpropList

8.3.13 [[OwnPropertyKeys]] ()

PwbPE

o

~No

When the [[OwnPropertyKeys]] internal method of O is called the following steps are taken:

1. Letkeysbea new empty List
2. For each own propertgey P of O
a. If Pis not aprivate Symbol, then
i. AddP as the last element &kys
3. ReturnMakelListlteratoflist).

8.3.14 [[Freeze]] ()
When the [[Freeze]] internal method of O is called the following steps are taken:

1. Returnthe result of MakeObjectSecuf®(true).

56 © Ecma International 2012

»ecma

8.3.15 [[Seal]] ()

When the [[Seal]] internal method of O is called the following steps are taken:

1. Returnthe result of MakeObjectSecuf®(false).

8.3.16 [[IsFrozen]] ()

When the [[IsFrozen]] internal method of O is called the following steps are taken:
1. Returnthe result of TestlfSecureObjedd(true).

8.3.17 [[IsSealed]] ()

When the [[IsSealed]] internal method of O is called the following steps-are taken:
1. Returnthe result of TestlfSecureObjecd(false).

8.3.18 ObjectCreate Abstract Operation

The abstract operation ObjectCreate with optional argument proto (an-object or null) is used to specify the
runtime creation of new ordinary objects. It performs the following steps:

If protowas not provided, lgbroto be the intrinsic %ObjectPrototype%.

Let obj be a newly created ECMAScript object

Setobjbs essenti al i nt ernail met hods to the default or
Set the [[Prototype]] internal data propertyaiij to proto.

Set the [[Extensible]] internal data propertyalij to true.

Returnob.

oakwnpE

8.3.19 Ordinary Function Objects

Ordinary function objects encapsulate parameterized ECMAScript code closed over a lexical environment and
support the dynamic evaluation of that code. An ordinary function object is an ordinary object and has the
same internal data properties and (except as noted.below) the same internal methods as other ordinary
objects.

Ordinary function objects have the additional internal data properties listed in Table 13. They also have a
[[BuiltinBrand]] internal data property whose value is BuiltinFunction.

Ordinary function objects provide alternative definitions for the [[GetP]] and [[GetOwnProperty]] internal
methods. These alternatives prevent the value of strict mode function from being revealed as the value of a
function object property named “caller ". These alternative definitions exist sole to preclude a non-standard
legacy feature of some ECMAScript implementations from revealing information about strict mode callers. If
an implementation does not provide such a feature, it need not implement these alternative internal methods
for ordinary function objects.

© Ecma International 2012 57

2eCma

Table 13 -- Internal Data Properties of Ordinary Function Objects

Internal Data Property Type Description
[[Scopel]] Lexical The Lexical Environment that the function was closed over.
Environment Is used as the outer environment when evaluating the code
of the function.
[[FormalParameters]] Parse Node The root parse node of the source code that defines the
functionbs f or mal parameter | i st
[[Code]] Parse Node The root parse node of the source code that defines the
f uncthody.n 6 s
[[Realm]] Realm Record | The Code Realm in which the function was created and
which provides any intrinsic <objects that are accessed
when evaluating the function.
[[ThisMode]] (lexical, strict, Defines how this references are interpreted within the
global) formal parameters and code body of the function. lexical
means that this refers to the this value of a lexically
enclosing function. strict means that the this value is used
exactly as provided by an invocation of .the function.
global means that a this value of undefined is.interpreted
as a reference to the global object.
[[Strict]] Boolean true if this'is a strict mode function, false this is not a strict
mode function.
[[Home]] Object If the function uses super , this is the object whose
[[Inheritance]] provides the object where super property
lookups begin. No't present for f
reference super .
[[MethodName]] String or If the function uses super ', this is the property keys that is
Symbol used for unqualified references to super . Not present for
functions thatuperondét refere

Ordinary function objects all have the [[Call]], [[GetP]] and [[GetOwnProperty]] internal methods defined here.
Oridinary functions that are also constructors in addition have the [[Construct]] internal method.

8.3.19.1

[[Call]] Internal Method

The [[Call]] internal-method for an ordinary Function object F is called with parameters thisArgumentand
argumentsLista List of ECMAScript language values. The following steps are taken:

a. LetlocalEnvbe the result of calling NewDeclarativeEnvironmepaissing the value of the [[Scope]]

Let callerContextbe the runningexecution context.

If, callerContextis not already suspended, then SuspemiterContext
LetcalleeContexbe a new ECMAScript Code execution context.
Let calleeRealmbe the value oF 6[fRealm]] internal data property.
e e CRealmalletRéatm
Let thisModebe the value oF6 s ThisNlodd] internal dataproperty.

internaldataproperty ofF as the argument.

1.

2.

3.

4,

5. Setcal |

6.

7. If thisModeis lexical; then
8. Else,

a. If thisModeis strict, setthisValueto thisArgument

b. Else

i. if thisArgumentis null or undefined, then
1. SetthisValueto calleeRealm[[globalThis]].
ii. Else if TypethisArgumen} is not Object, set théhisValueto ToObjectthisArgumenyj.
iii. Else set thehisValueto thisArgument
c. LetlocalEnvbe the result of calling NelunctiorEnvironment passingF andthisValueas the

argumens.

9. Set the LexicalEnvironmendf calleeContexto localEnv.
10. Set the VariableEnvironmemmtf calleeContexto localEnv.

58

© Ecma International 2012

»ecma

11. Push calleeContext on to the execution context stealteeContextis now the runningexecution context.
12. Let statusbe the resulof performingFunction Declaration Instantiation using the funct®rargumentsList
, andlocalEnvas described id0.53.
13. If statusis an abrupt completion, then
a. Remove calleeContext from the execution context stack and restblerContextas the unning
execution context.
b. Returnstatus
14. Letresultbe the result of evaluating thunctionBodythat is the value of's [[Code]] internaldata
property.
15. Remove calleeContext from the execution context stack and restleeContextas the runningxecuion
context.
16. Returnresult

NOTE Most ordinary functions use a Function Environment Record as their LexicalEnvironment. Ordinary functions
that are arrow functions use a Declarative Environment Record as their LexicalEnvironment:

8.3.19.2 [[Construct]] Internal Method

The [[Construct]] internal method for an ordinary Function-object F is called with a single parameter
argumentsListvhich is a possibly empty List of ECMAScript language values. The following steps are taken:

1. Returnthe result ofOrdinaryConstructwith arguments= andargumentsList
8.3.19.2.1 OrdinaryConstruct (F, argumentsList, fallBackProto)

When the abstract operation OrdinaryConstructis called with Object F and List argumentsListhe following
steps are taken:

1. Letcreatorbe the result of G @ @create).
2. ReturnifAbrupt€reator).
3. If creatoris notundefined, then
a. Letobjbe the result of calling the [[Call]] internal methodcoéatorwith argumentd= and an empty ist.

4. Elsecreatoris undefinedso fall back to object creation defaults

a. Letobjbetheresult of callingrdinaryCreateFromConstruc(ét " %ObjectPrototype%).
ReturnlfAbruptbj):
Let resultbe the result of calling the [[Call]] internalethodof F, providingobj andargumentsLisasthe arguments
ReturnlfAbrupt¢esuld).
If Type(resuld).is Object then returresult
Returnobj.

©Co~NoO

8.3.19.3 [[GetP]] (P, Receiver)

When the [[GetP]] internal method of ordinary function object F is called with property key P and ECMAScipt
language value Receivetthe following steps are taken:

1. Letvbe the result of calling the defawdtdinary objecf[GetP]] internal method (8.7) on F passingP and
Receiveras argumerst

2. ReturnIfAbruptg).

3. If Pis"caller" andv is astrict mode Function objecteturnnull.

4. Returnv.

8.3.19.4 [[GetOwnProperty]] (P)

When the [[GetOwnProperty]] internal method of ordinary function object F is called with property key P, the
following steps are taken:

1. Letvbe the result of ding the defaultordinary object[GetOwnPropert)j internal method (8.6) onF
passingP astheargument.

2. ReturnlfAbruptg).

3. If IsDataDescripton) is true, then

© Ecma International 2012 59

secma

a. If Pis"caller" andv.[[Value]] is a strict mode Function objedhen

i Setv.[[Value]] to null.
4. Returnv.

8.4 Built-in Exotic Object Internal Methods and Data Fields

This specification define several kinds of built-in exotic objects. These objects generally behave similar to
ordinary objects except for a few specific situtations. The following exotic objects use the ordinary object
internal methods except where it is explicitly specified wise below:

8.4.1 Bound Function Exotic Objects

A bound function is an exotic object that wrappers another function object. A’bound function is callable (it has
[[Call]] and [[Construct]] internal methods). Calling a bound function generally results in a call of its wrappered
function.

Bound function objects do not have the internal data properties of ordinary function abjects defined in Table
13. Instead they have the internal data properties defined in° Table 14. They also have a [[BuiltinBrand]]
internal data property whose value is BuiltinFunction.

Table 14 -- Internal Data Properties of Exotic Bound Function Objects

Internal Data Property Type Description

[[BoundTargetFunction]] | Callable Object | The wrappered function object.

[[BoundThis]] Any The value that is always passed as the this value when
calling the wrappered function.

[[BoundArguments]] List of Any A list of values that whose elements are used as the first
arguments to any call.to the wrappered function.

Unlike ordinary function objects, bound function objects do not use alternative definitions of the [[GetP]] and
[[GetOwnPropety]] internal methods. Bound function objects provide all of the essential internal methods as
specified in 8.3. However, they use the following definitions for the essential internal methods of function
objects.

8.4.1.1 [[Call]]

When the [[Call]] internal method of an exotic bound function object, F, which was created using the bind
function is‘called with parameters thisArgumentand argumentsLista List of ECMAScript language values, the
following steps are taken:

Let boundArgsbe the value oF 6[EBoundArgument} internal dataproperty.

Let boundThisbe the value oF 6[BoundThis]] internaldataproperty.

Lettargetbe the value of 6[FBoundTargetFunction]] internadlataproperty.

Letargsbe a nw list containing the same values as the istindArgsin the same order followed by the
same values as the listgumentsListn the same order.

Return the result of calling the [[Call]] internal methodtafget providing boundThisasthisArgumentand
providing args asargumentsList

8.4.1.2 [[Construct]]

PwbnE

o

When the [[Construct]] internal method of an exotic bound function object, F that was created using the bind
function is called with a list of arguments ExtraArgs the following steps are taken:

Lettargetbe the value oF 6[FBoundTargetFunction]] internadlataproperty.

If targethas no [[Construct]] internal method,TgpeError exception is thrown.

Let boundArgsbe the value oF 6[EBoundArgumentl internaldataproperty.

Letargsbe a new list cotaining the same values as the bsuundArgsin the same order followed by the
same values as the liBktraArgsin the same order.

Return the result of calling the [[Construct]] internal methodam§etprovidingargsas the arguments.

PonE

o

60 © Ecma International 2012

ecing

8.4.1.3 BoundFunctionCreate Abstract Operation

The abstract operation BoundFunctionCreate with arguments targetFunction boundThisand boundArgsis
used to specify the creation of new Object objects. It performs the following steps:

Letproto be theintrinsic %FunctimPrototype%.

Let obj be a newly created ECMAScript object

Setobjd sssentialnternal methods to the defawdtdinary objectefinitions specified in 8.
Set the [[Call]] internaimethodof obj as described i8.4.11.

Set the [[Construct]] internahethod of obj as described i8.4.12.

Set the [[Prototype]] internal data propertyaifj to proto.

Set the [[Extensible]] internal data propertyadij to true.

Set the [BoundTargetFunction]] internadlataproperty ofobj to targetFunction
Set the [[BoudThis]] internaldataproperty ofobj to the value oboundThis

10 Set the [BoundArgument} internal dataproperty ofobjto boundArgs

11. Add the [BuiltinBrand]] internal dataproperty with valueBuiltinFunction to obj.
12. Returnob;.

CoNooOrwNE

8.4.2 Array Exotic Objects

An Array object is an exotic object that gives special‘treatment to a.certain class of property names. A
property name P (in the form of a String value) is an array index if and-only if ToString(ToUint32P)) is equal to
P and ToUint32() is not equal to 2°> 1. A property whose property name is an array index is also called an
element. Every Array object has a length property whose value is always a nonnegative integer less than 2%2,
The value of the length property is numerically greater than the name of every property whose name is an
array index; whenever a property of an Array object is created or changed, other properties are adjusted as
necessary to maintain this invariant. Specifically, whenever a property is added whose name is an array index,
the length property is changed, if necessary, to be one more than the numeric value of that array index; and
whenever the length property is changed, every property whose name:is an array index whose value is not
smaller than the new length is automatically deleted. This constraint applies only to own properties of an Array
object and is unaffected by length or array index properties that may be inherited from its prototypes.

Exotic Array objects always have a non-configurable property named "lengt h".

Exotic Array objects have the same internal data properties as ordinary objects. They also have a
[[BuiltinBrand]] internal data property whose value is BuiltinArray.

Exotic Array objects provide alternative definitions for the [[SetP]] and [[DefineOwnProperty]] internal methods.
Except for these two internal methods, exotic Array objects provide all of the other essential internal methods
as specified in 8.3.

8.4.2.1 [[DefineOwnProperty]] (P, Desc)

When the [[DefineOwnProperty]] internal method of an exotic Array object A is called with property P, and
Property Descriptor Descthe following steps are taken:

1. Assert:IsPropertyKeyP) is truet.
2. If Pis"length ", then

a. Return the result of calling aySetLength wittargumentsA, andDesc
3. ElseifPis an array index, then

a. LetoldLenDesde the result of calling the [[GetOwnProperty]] internal method passing
"length " as the argument. The result will neveruredefined or an accessor descriptbecause
Array objects are created with a length data property that cannot be deleted or reconfigured.
Let oldLenbeoldLenDesd[Value]].
Letindexbe ToUint32p).
ReturnIfAbrupt{ndex).
If indexOoldLenandoldLenDesd[Writable]] is false, thenreturnfalse.
Let succeededbe the result of callin@rdinarypefineOwnProperty passingy, P, andDescas
arguments.

~oooCoT

© Ecma International 2012 61

4.

eCmna

g. ReturnlfAbruptgucceeded
h. If succeededs false, thenreturnfalse.
i. If indexOoldLen
i SetoldLenDesd[Value]] to index+ 1.
il Let succeededbe the result of callin@rdinaryDefineOwnProperty passingy, "length ",
andoldLenDesas arguments.
iii. ReturnIfAbruptéucceeded
j- Returntrue.
Return the result of callin@rdinaryDefineOwnProperty passing, P, andDescas arguments.

8.4.2.3 ArrayCreate Abstract Operation

The abstract operation ArrayCreate with argument length (a positive integer) is used to specify the creation of
new exotic Array objects. It performs the following steps:

NN E

9.

Let Abe a newly created ECMAScript object

SetA6 s e s s ermat niethdds to the default ordinary object definitions specified in 8.3.

Set the [BetR] internal methodof A asspecifiedin 8.42.1.

Set the [PefineOwnPropertlf internal methodof A asspecifiedin 8.42.2.

Set the [[Prototype]] internal data propedf A to the intrinsic object %ArrayPrototype%.

Set the[[BuiltinBrand]] internal datapropertyof A to thevalueBuiltinArray.

Set the [[Extensible]] internal data propertyAto true.

Call OrdinaryDefineOwnPropertyith argumentsA, "length" . andProperty Descriptor {[[Value]]:length
[[Writable]]: true, [[Enumerable]]false, [[Configurable]]:false}.

ReturnA.

8.4.2.4 ArraySetLength Abstract Operation

When the abstract operation ArraySetLength is called with-an exotic Array object A, and Property Descriptor
Descthe following steps are taken:

1.

NGO A

12.

13.
14.
15.

62

Let oldLenDesde the result of calling the [[GetOwnProperty]] internal method pfassing' length " as
the argument. The result will never bedefined or an accessor descriptor because Array objects are
creaed with a length data property that cannot be deleted or reconfigured.
Let oldLenbeoldLenDesd[Value]].
If the [[Value]] field of Descis.absent, then
a. Return the result of callin@rdinaryDefineOwnProperty passingy, "length ", andDescas
arguments.
LetnewlLenDesbe a copy oDesc
LetnewlLenbe ToUint32Desc[[Value]]).
If newLenis not equal to ToNumbeesc[[Value]]), throw aRangeError exception.
SetnewlLenDesg[Value]] to newLen
If newLenColdLen then
a. Return the result/of callin@rdinarypefineOwnProperty passing, "length
arguments.
If oldLenDesd[Writable]] is false, then returrfalse.

, and newLenDesas

. If newLenDesg[Writable]] is absent or has the valamie, letnewWritablebe true.
11.

Else,
a. Need to defer setting the [[Writable]] attributefedsein case any elements cannot be deleted.
b. LetnewWritablebefalse.
c. SetnewlLenDesg¢[Writable]] to true.
Let succeededbe the result of callin@rdinaryDefineOwnProperty passing, "length ", andnewlLenDesc
as arguments.
ReturnlfAbruptéucceeded
If succeededs false, returnfalse.
While newLen< oldLenrepeat,
a. SetoldLentooldLeni 1.
b. LetdeleteSucceeddk the result of calling the [[Delete]] internal methodAgpassing
ToString@ldLen).
c. ReturnlfAbruptgucceeded

© Ecma International 2012

ecing

d. If deleteSucceeded false, then
i SetnewlLenDesg[Value]] to oldLen+1
ii. If newWritableis false, sethewLenDesg[Writable]] to false.
iii. Let succeededbe the result of callin@rdinaryDefineOwnProperty passing, "length ",
andnewLenDesa@s arguments.
iv. ReturnlfAbruptéucceeded
V. Returnfalse.
16. If newWritableis false, then
a. Call OrdinarybefineOwnProperty passing, " length
false} as arguments. This call will always retunrue.
17. Returntrue.

, andProperty Descriptor{[[Writable]]:

8.4.3 String Exotic Objects

A String object is an exotic object that encapsulates a String value and exposes. virtual array index data
properties corresponding to the individual code unit elements of the string value. Exotic String objects always
have a data property named "length " whose value is the number of code unit elements.in the encapsulated
String value. Both the code unit data properties and the "length " property are non-writable and non-
configurable.

Exotic String objects have the same internal data properties as ordinary objects. They also have a
[[StringData]] internal data property and a [[BuiltinBrand]] internal data property whose value is
BuiltinStringWrapper.

Exotic String objects provide alternative definitions.for the following internal methods. All of the other exotic
String object essential internal methods that are not defined below are as specified in 8.3.

8.4.3.1 [[HasOwnProperty]] (P)

When the [[HasOwnProperty]] .internal-method of exatic String object O is called with property key P, the
following steps are taken:

Assert:IsPropertyKeyP) is true.

Let hasbe the result of calling the ordinary object [[HasOwnProperty]] internal method (8.3 G)vath
argumentP.

3. ReurnlfAbrupt(has.

4. If hasis true, thenreturntrue.

5. Letindexbe Tolntegerp).

6. ReturnlfAbrupt{ndex.
7

8

9

N

Let absintindexbe ToString(absifhdex)).
ReturnIfAbrupt@bsintindex).
. If SameValuegbsintindex P) is falsereturnfalse.
10. Let strbe the String value dhe [[StringDatd] internal property ofO.
11. Letlenbe the number oélementsn str.
12. If len Oindex, returnfalse.
13. Returntrue.

8.4.3.2 [[GetOwnProperty]] (P)

When the [[GetOwnProperty]] internal method of an an exotic String object Sis called with property key P the
following steps are taken:

Assert:IsPropertyKeyP) is true.

Let descbe the result 0OrdinaryGetOwnProper{g, P).
ReturnIfAbrupt@esg.

If descis notundefined returndesc

Letindexbe Tolntegerp).

ReturnIfAbrupt{ndex.

Let absintindexbe ToString(absiphdex)).

NoohwbhE

© Ecma International 2012 63

secma

8. ReturnlfAbrupt@bsintindex.

9. If SameValueg@bsintindex P) is falsereturnundefined.

10. Let str be the String value of the$fringDatd] internal dataproperty ofS.

11. Letlenbe the number oélementsn str.

12. If len Oindex, returnundefined.

13. LetresultStrbe a Sting valueof length 1, containing oneode unitfrom str, specifically thecode unitat
positionindex where the first (leftmost¢lementin stris considered to be at position 0, the next one at
position 1, and so on.

14. Return a Property Descriptor { [[\l@e]]: resultStr, [[Enumerable]]:itrue, [[Writable]]: false,
[[Configurable]]:false}.

8.4.3.3 [[DefineOwnProperty]] (P, Desc)

When the [[DefineOwnProperty]] internal method of an exotic String object O is called with property P, and
Property Descriptor Descthe following steps are taken:

1. Letcurrentbe the result of callinghe [[GetOwnProperty]] intenal method o©O with argumentP.
2. Letextensiblébe the result of calling thelgExtensible]] internal method @.

3. Returnthe result ofvalidateAndApplyPropertyDescriptaxith argument, P, extensible Desc and
current

NOTE This algorithm differs from the ordinary object OrdinaryDefineOwnProperty abstract operation algorithm only in
invocation of [[GetOwnProperty]] in step 1 and [[IsExtensible]] in step 2.

8.4.3.4 [[Enumerate]] ()
When the [[Enumerate]] internal method of an exotic String object O is called the following steps are taken:
8.4.3.5 [[OwnPropertyKeys]] ()

When the [[OwnPropertyKeys]]-internal method of ‘an exotic String object O is called the following steps are
taken:

8.4.4 Exotic Symbol Objects

An Symbol object is an exotic object that may be used-as a property key. Symbol exotic objects are unique in
that they are always immutable and never observably reference any other object.

Exotic String objects have the a single internal data properties named [[Private]] that is set when the object is
created-and never modified.

Exotic Symbol objects provide alternative definitions for all of the essential internal methods.
8.4.4.1 [[Getlnheritance]] ()

When the [[Getlnheritance]] internal method of an exotic Symbol object O is called the following steps are
taken:

1. Returnnull.
8.4.4.2 [[SetInheritance]] (V)

When the [[Setinheritance]] internal method of an exotic Symbol object O is called with argument V the
following steps are taken:

1. Assert: Either Type() is Object or Type{) is Null.
2. Returnfalse.

64 © Ecma International 2012

»ecma

8.4.4.3 [[IsExtensible]] ()

When the [[ISExtensible]] internal method of an exotic Symbol object O is called the following steps are taken:
1. Returnfalse.

8.4.4.4 [[PreventExtensions]] ()

When the [[PreventExtensions]] internal method of an exotic Symbol object an exotic Symbol object O is
called the following steps are taken:

1. ReturnNormalCompletionémpty).
8.4.45 [[HasOwnProperty]] (P)

When the [[HasOwnProperty]] internal method of an exotic Symbol object O is called with property key P, the
following steps are taken:

1. Returnfalse
8.4.4.6 [[GetOwnProperty]] (P)

When the [[GetOwnProperty]] internal method of an exotic Symbolobject O is called with property key P, the
following steps are taken:

1. Returnundefined.

8.4.4.7 [[DefineOwnProperty]] (P, Desc)

When the [[DefineOwnProperty]] internal method of an-exotic Symbol object O is called with property key P
and property descriptor Desg the following steps are taken:

1. Returnfalse.

8.4.4.8 [[HasProperty]] (P)

When the [[HasProperty]] internal method of an exotic Symbol object O is called with property key P, the
following steps-are taken:

1. Returnfalse.

8.4.4.9 [[GetP]] (P, Receiver)

When the [[GetP]] internal method of an exotic Symbol object O is called with property key P and ECMAScipt
language value Receivetthe following steps are taken:

1. Assert:IsPropertyKeyP) is true.

2. If Pis"toString ", then
a. Letctxbe the running execution context.
b. LetctxRealmbectxd s Real m component.
c. ReturnctxRealm[[intrinsics]].% ObjProto_toStrings.

3. Returnundefined.

8.4.4.10 [[SetP]] (P, V, Receiver)

When the [[SetP]] internal method of an exotic Symbol object O is called with property key P, value V, and
ECMAScipt language value Receiveythe following steps are taken:

1. Returnfalse

© Ecma International 2012 65

secma

8.4.4.11 [[Delete]] (P)

When the [[Delete]] internal method of an exotic Symbol object O is called with property key P the following
steps are taken:

1. Assert:IsPropertyKeyP) is true.
2. Returntrue.

8.4.4.12 [[Enumerate]] ()
When the [[Enumerate]] internal method of an exotic Symbol object O is called the following steps are taken:

1. Return an Iterator objectdference xxxxwhose next methosnhmediately throws %Stoplteration% and
forms no other action.

8.4.4.13 [[OwnPropertyKeys]] ()

When the [[OwnPropertyKeys]] internal method of an exotic Symbol object O is called the following steps are
taken:

1. Return an lterator objectdference xxxxwhose next'method imediately throws %Stoplteration% and
forms no other action.

8.4.4.14 [[Freeze]] ()

When the [[Freeze]] internal method of an exatic Symbol object O is called the following steps are taken:
1. Returntrue

8.4.4.15 [[Seal]] ()

When the [[Seal]] internal method of an exotic Symbol object O is called the following steps are taken:

2. Returntrue

8.4.4.16 [[IsFrozen]] ()

When the [[IskFrozen]}internal method of an exotic Symbol object O is called the following steps are taken:
1. Returntrue.

8.4.4.17 [[IsSealed]] ()

When the [[IsSealed]] internal method of an exotic Symbol object O is called the following steps are taken:
1. Returntrue.

8.4.5 Exotic Arguments Objects

An arguments object is an exotic object whose array index properties map to the formal parameters of a non-
strict function invocation.

Exotic arguments objects have the same internal data properties as ordinary objects. They also have a
[[ParsmeterMap]] internal data property and a [[BuiltinBrand]] internal data property whose value is
BuiltinArguments.

Exotic arguments objects provide alternative definitions for the following internal methods. All of the other
exotic arguments object essential internal methods that are not defined below are as specified in 8.3.

66 © Ecma International 2012

»ecma

8.4.6 Indexed Delegation Exotic Objects

A Indexed Delegation object is an exotic object that that delegates [[GetP]] and [[SetP]] handling of array
index property keys to methods of the object.

Indexed Delegation objects initially have the same internal data properties as ordinary objects.

Exotic Indexed Delegation objects provide alternative definitions for the following internal methods. All of the
other exotic Indexed Delegation object essential internal methods that are not defined below are as specified
in 8.3.

8.4.6.1 [[GetP]] (P, Receiver)

When the [[GetP]] internal method of an exotic indexed delegation object-O is called with property key P and
ECMAScipt language value Receivelthe following steps are taken:

1. If SameValueQ, Receive) istrueandP is an array indexthen
a. Letargsbe a new List containintndex
b. Return the result of Invok&, @ @elementGetargs)).
2. Returnthe result of calling the defautirdinary objecf[GetP]] internal method (&8.7) on O passingP and
Receiveras argumets.

8.4.6.2 [[SetP]] (P, V, Receiver)

When the [[SetP]] internal method of an an exotic.indexed delegation object O is called with property key P,
value V, and ECMAScipt language value Receiverthe following steps are taken:

1. If SameValueQ, Receive) istrue andP is an array indexthen
a. Letargsbe a new List containingndexandV.
b. Return the result of Invok& @ @elementSetargs).
2. Return the result of calling the defawltdinary objec{[SetP]] internal method (&8.7) on O passingP, V,
andRecever as argumerst

8.4.6.3 IndexedDelegatorCreate Abstract Operation

The abstract operation IndexedDelegatorCreate with argument prototype (is used to specify the creation of
new exotic Indexed Delegation objects. It performs the following steps:

Let A'be anewly created ECMAScript object

SetAbs essenti al internal met hods to the default
Set the [[GetH] internal methodof A asspecifiedin 8.4.61.

Set the [BetH] internal methodof A asspecifiedin 8.46.2.

Set the [[Prototype]] internal data property/fo prototype

Set the [[Extensible]] internal data property/to true.

ReturnA.

NogA~wWNE

8.4.7 Built-in Function Objects

The function objects specified in Clause 15 may be implemented as either ordinary function objects whose
behaviour is provided using ECMAScript code or as implementation provided exotic function objects whose
behaviour is provide in some other manner. In either case, the effect of calling such functions must be that
specified for each one in Clause 15.

If an implementation provided exotic object is used, the object must have the ordinary object behaviour
specified in 8.3 except for [[GetP]] and [[GetOwnProperty]] which must be as specified in 8.3.19. All such
exotic function objects also have [[Prototype]] and [[Extensible]] internal data properties and a [[BuiltinBrand]]
internal data property whose value is BuiltinFunction.

[[Calll]] and [[Construct]]

© Ecma International 2012 67

secma

8.5 Proxy Object Internal Methods and Internal Data Properties

A proxy object is an exotic object whose essential internal methods are partially implemented using
ECMAScript code. Every proxy objects has an internal data property called [[ProxyHandler]]. The value of
[[ProxyHandler]] is always an object, called the p r o xhanller object. Methods of a handler object may be

used to augment the implementation for one or more of the proxy objectdé s i nt er n.aBverynpeokyh o d s

object also has an internal data property called [[ProxyTarget]] whose value is usually an object. This object is
call ed t tagetgbjeat.xy 6 s

When a handler method is called to provide the implementation of a proxy object internal method, the handler
method is passed the p r o xtgrgetsobject as a parameter. Apr oxy 6s <~handl er newdsqrily
have a method corresponding to every essential internal method. Invoking an<internal method on the proxy
results in the invocation of the corresponding internal method on the proxy6 s t a r g is the hardllgr elgett
does not have a method corresponding to the internal trap.

The [[ProxyHandler]] and [[ProxyTarget]] internal data properties of a proxy object are always initialized when
the object is created and typically may not be modified. Some proxy objects are created in a manner that
permits them to be subsequent revoked. When a proxy is revoked, its [[ProxyHander]] internal data property is
set to a special revoked proxy handler object and its [[ProxyTarget]] internal data property is set to null.

Because proxy permit arbitrary ECMAScript code to be used to in the implementation of internal methods, it is
possible to define a proxy object that violates the invariants defined in8.1.6.2. An ECMAScript implementation
must be robust in the presence of such violations. Some of the internal method invariants defined in 8.1.6.2
are essential integrity invariants. These invariants are explicitly enforced by the proxy internal methods
specified in this section.

In the following algorithm descriptions, assume O'is an ECMAScript proxy object, P is a property key value, V
is any ECMAScript language value, Descis a Property Description record, and B is a Boolean flag.

8.5.1 [[GetInheritance]] ()

When the [[GetInheritance]] internal method of an exotic Proxy object O is called the following steps are taken:

1. Lethandlerbethe‘value of the ProxyHandlel] internal data property ofO.
2. Lettargetbethe value of the ProxyTargel] internal dataproperty ofO.
3. Lettrap bethe result of Geflethod handler, "getPrototypeOf).
4. ReturnlfAbruptfrap).
5. If trap.is undefined, then
a. Return the result of calling the [[GetInheritance]] internal methothojet
6. LethandlerProtobe the result of callinghe [[Call]] internal method ofrap with handleras thethis value

and a new Listontainingtarget
7. ReturnlfAbruptpandlerProtg.
8. LettargetProtobe the result of calling the [[Getinh&ance]] internal method darget
9. ReturnlfAbruptargetProtg.
10. If SameValuelfandlerProtq targetProto is false, then throw alypeError exception.
11. ReturnhandlerProta

NOTE [[GetInheritance] for proxy objects enforces the following invariant:
1 [[Getinheritance] applied to the proxy object must return the same value as [[GetInheritance] applied to the proxy
objectds handler object

8.5.2 [[Setlnheritance]] (V)

When the [[Setinheritance]] internal method of an exotic Proxy object O is called with argument V the following
steps are taken:

1. Assert: Either Typé() is Object or Type&() is Null.

2. Lethandlerbethe value of the ProxyHandlel] internal data property ofO.
3. Lettargetbethe value of the ProxyTargel] internal dataproperty ofO.

68 © Ecma International 2012

ct

does

»ecma

4. Lettrap be the result of GetMethodéndler, "setPrototypeOf).

ReturnIfAbruptfrap).

If trap is undefined, then
a. Return the result of calling theSgtinheritance]] internal method ¢drgetwith argumentv.

7. LettrapResultbe the result of callinghe [[Call]] internal method ofrap with handleras thethis value and
a new ListcontainingtargetandV.

8. ReturnlfAbruptfrapResul}.

9. LettrapResultbe ToBoolean{rapResul}.

10. Let getProtoTrapbe the result of GetMethodi@ndler, "getPrototypeOf ").

11. ReturnifAbruptgetProtoTrap.

12. If getProtoTrapis undefined, then

a. ReturntrapResult

13. Let getProtdResultbe the result of callingetProtoTrapwith handleras thethis value and a new List
containingtarget

14. ReturnifAbrupt@etProtoResult

15. Let targetProtobe the result of calling the [[GetInheritance]] internal methotaodet

16. ReturnifAbruptfargetProtg.

17. If SameValuegetProtoResulttargetProtg is false, then throw al'ypeError exception.

18. ReturntrapResut.

oo

NOTE [[Setinheritance] for proxy objects enforces the following invariant:
1 After a [[Setinheritance]] call, [[GetInheritance] applied to the proxy object must return the same value as
[[Getl nheritance] applied to tthe proxy objectds handl er

8.5.3 [[IsExtensible]] ()
When the [[IsExtensible]] internal method of an exotic Proxy object O is called the following steps are taken:

Let handlerbethe value of the ProxyHandlel] internal data property ofO.
Let targetbethe value of the [PraxyTargetl] internaldataproperty ofO.
Let trap be the result of GetMethodéndler, "isExtensible).
ReturnIfAbruptfrap).
If trap is undefined, then
a. Return the result of calling thelfExtensiblg] internal method otfarget
Let trapResultbe the resulof calling the [[Call]].internal method ofrap with handleras thethis value and
a new List contaiimg target
7. ReturnlfAbruptrapResul}.
8. LetproxylsExtensibldbe ToBooleantapResul}.
9. LettargetlsExtensiblée the result of calling thelgExtensibg]] internal method otarget
10. ReturnlfAbruptfargetlsExtensible
11. If SameValuegroxylsExtensibletargetisExtensibleis false, then throw arypeError exception.
12. ReturnproxylsExtensible

Ok wNE

o

NOTE [[IsExtensible] for proxy objects enforces the following invariant:
1 [[IsExtensible] applied to the proxy object must return the same value as [[IsExtensible] applied to the proxy
objectds handl er object.

8.5.4 [[PreventExtensions]] ()
When the [[PreventExtensions]] internal method of an exotic Proxy object O is the following steps are taken:

Let handlerbethe value of the ProxyHandlel] internal data property ofO.
Lettargetbethe value of the ProxyTarget] internal dataproperty ofO.
Let trap be the result of GetMethodéndler, "preventExtensions ").
ReturnIfAbruptfrap).
If trap is undefined, then
a. Return the result of calling theHfeventExtensiorjkinternal method ofarget
Let trapResultbe the result of callinghe [[Call]] internal method ofrap with handleras thethis value and
a new Listcontainingtarget
7. ReturnlfAbruptrapResul}.

ok wNE

o

© Ecma International 2012 69

secma

8. LetisTrapbe the result of GetMethold&ndler, "isExtensible .
9. ReturnlfAbrupt{sTrap).
10. If isTrapis undefined, then
a. ReturnNormalCompletionémpty).
11. LetisTrapResulbe the result of callingsTrapwith handle as thethis value and a new List containing
target
12. ReturnIfAbrupt{sTrapResulx
13. Let proxylsExtensibléoe ToBooleariéTrapResult
14. LettargetlsExtensiblde the result of calling thelgExtensiblg] internal method otarget
15. ReturnifAbruptfargetisExensiblg.
16. If SameValuegroxylsExtensibletargetisExtensiblgis false, then throw arypeError exception.
17. ReturnNormalCompletioné mpty).

NOTE [[PreventExtensions] for proxy objects enforces the following invariant:
1 After a [[PreventExtensions]] call, [[IsExtensible] applied to the proxy object must return the same value as
[[I sExtensible] applied to the ‘proxy objectdés handler obj e

8.5.5 [[HasOwnProperty]] (P)

When the [[HasOwnProperty]] internal method of an exotic' Proxy object O is called with property key P, the
following steps are taken:

1. Assert:lsPropertyKeyP) is true.
2. Lethandlerbethe value of the ProxyHandlel] internal data property ofO.
3. Lettargetbethe value of the PraxyTargef] internal dataproperty ofO.
4. Lettrap be the result of GetMethodéndler, "hasOwn").
5. ReturnlfAbruptrap).
6. If trapis undefined, then
a. Return the result of calling theHasOwnProperty internal method otargetwith argumentP.
7. LettrapResultbe the result of-callinghe [[Call]] internal method ofrap with handleras thethis value and

a new List containingargetandP.
8. ReturnlfAbrupt(rapResul}.
9. Letsuccesde ToBoolearttapResul}.
10. If successs false, .then
a. LettargetDescbe the result o€alling the [[GetOwnProperty]] internal method tafrgetwith
argumentP.
b. ReturnlfAbruptfargetDesg.
c. f targetDesds notundefined, then
i If targetDesd[Configurable]] isfalse, thenthrow aTypeError exception.
il Let extensibleTargelbe the result of céihg the [[IsExtensible]] internal method tdrget
iii. ReturnlfAbruptéxtensible Target
iv. If ToBooleanéxtensibleTarggtis false, then throw al'ypeError exception.
11. Elsesuccesss true,
a. LetextensibleTargebe the result ofalling the [[IsExtensible]] internal method tdrget
b. ReturnlfAbruptéxtensibleTargét
c. If ToBooleangxtensibleTargétis true, thenreturnsuccess
d. LettargetDescbe the result of calling the [[GetOwnProperty]] internalthoel oftargetwith
argumentP.
e. ReturnlfAbruptfargetDesg.
f. If targetDesds undefined, thenthrow aTypeError exception.
12. Returnsuccess

NOTE [[HasOwnProerty] for proxy objects enforces the following invariants:
1 A property cannot be reported as non-existent, if it exists as a non-configurable own property of the target object.
1 A property cannot be reported as non-existent, if it exists as a own property of the target object and the target
object is not extensible.
1 A property cannot be reported as existent, if it does not exists as a own property of the target object and the
target object is not extensible.

70 © Ecma International 2012

/

ecna

8.5.6 [[GetOwnProperty]] (P)

When the [[GetOwnProperty]] internal method of an exotic Proxy object O is called with property key P, the
following steps are taken:

oA~wNE

~

10.
11.
12.

13.
14.
15.
16.
17.
18.
19.
20.
21.

22.

Assert:IsPropertyKeyP) is true.
Let handlerbethe value of the ProxyHandlel] internal data property ofO.
Lettargetbethe value of the ProxyTargel] internal dataproperty ofO.
Lettrap be the result of GetMethol@ndler, "getOwnPropertyDescriptor M.
ReturnIfAbruptfrap).
If trap is undefined, then

a. Return the result of calling theGetOwnProperty]] internal method @argetwith argumentP.
Let trapResultObbe the result of callinghe [[Call]] internal method ofrap with handleras thethis value
and a new List containintargetandP.
ReturnIfAbrupt(rapResultObj.
If Type(trapResultObj is neitherObjector Undefined then throw alypeError exception.
Let targetDeschbe the result of calling the §etOwnPropert)} internal method otargetwith argumentP.
ReturnIfAbruptfargetDesg.
If trapResulObjis undefined, then
If targetDesds undefined, then returrundefined.
If targetDesd[[Configurable]] isfalse thenthrow aTypeError exception.
Let extensibleTargele the result of calling the [[IsExtensible]] internal methodasfet
ReturnIfAbruptéxtensibleTargét
If ToBooleangxtensibleTarggtis false, then throw alypeError exception.

f. Returnundefined.
Let extensibleTargelbe the result of calling the [[IsExtensible]] internal methodasfet
ReturnifAbruptéxtensibleTarget
SetextensibleTargeto ToBoolean¢xtensibleTarget
Let resultDesdbe ToPropertyDescriptot{apResultOby;
ReturnIfAbruptfesultDesy.
Call CompletePropertyDescriptagsultDesctargetDesg.
Let valid be the result oflsCompaiblePropertyDesriptofextensibleTargetresultDesctargetDesg.
If valid is false, thenthrow aTypeError exception.
If resultDesc[Configurable] is false, then

a. |If targetDesas notundefined andtargetDesc[[Configurable]] istrue, then

i. Throw aTypeError exception.

ReturnresultDesc

PoooTp

NOTE [[GetOwnProerty] for proxy objects enforces the following invariants:

1 _The result of [[GetOwnProperty]] must be either an Object or undefined.

1< A property cannot be reported as non-existent, if it exists as a non-configurable own property of the target object.

1 A property cannot be reported as non-existent, if it exists as a own property of the target object and the target
object is not extensible.

1 A property cannot be reported as existent, if it does not exists as a own property of the target object and the
target object is not extensible.

1 A property cannot be reported as non-configurable, if it does not exists as a own property of the target object or if
it exists as a configurable own property of the target object.

1 The result of [[GetOwnProperty]] can be applied to the target object using [[DefineOwnPropery]] and will not
throw an exception.

8.5.7 [[DefineOwnProperty]] (P, Desc)

When the [[DefineOwnProperty]] internal method of an exotic Proxy object O is called with property key P and
property descriptor Desg the following steps are taken:

oaA~LONE

Assert:IsPropertyKeyP) is true.

Let handlerbethe value of the ProxyHandlel] internal data property ofO.
Lettargetbethe value of the ProxyTargel] internaldataproperty ofO.
Let trap be the result of GetMethodéndler, "defineProperty).
ReturnIfAbruptrap).

If trap is undefined, then

© Ecma International 2012 71

secma

a. Return the result ofalling the [[DefineOwnProperty]] internal method t@irgetwith arguments
andDesc
Let descObjpe FromPropertyDescriptddesg.
NOTE If Descwas originally generated from an object using ToPropertyDescriptoithen descObjwill be that original
object.
9. LettrapResultbe the result of callinghe [[Call]] internal method ofrap with handleras thethis value and
a new List containingarget, P, anddescODbj
10. ReturnlfAbruptfrapResul}.
11. If ToBoolean{rapResuly is false, thenreturnfalse.
12. LettargetDesdbe the result of calling the [[GetOwnProperty]] internal methothogetwith argumentP.
13. ReturnlfAbruptfargetDesg.
14. Let extensibleTargebe the result of calling the [[IsExtensible]] internal methodaofet
15. ReturnIfAbruptéxtensibleTarget
16. SetextersibleTargetto ToBooleanéxtensibleTarget
17. If targetDesds undefined, then
a. If extensibleTargeis false, thenthrow aTypeError exception.
b. If Desc[[Configurable]] isfalse, thenthrow aTypeError . exception.
18. ElsetargetDesds notundefined,
a. If IsCompatblePropertyDescriptoeixtensibleTargetDesc, targetDesg is false, thenthrow a
TypeError exception.
b. If Desc[[Configurable]] isfalse andtargetDesc[[Configurable]] istrue, thenthrow aTypeError
exception.
19. Returntrue.

© ~

NOTE [[GetOwnProerty] for proxy objects enforces the following invariants:

1 A property cannot be added, if the target object.is not extensible.

1 A property cannot be added as or modified to be non-configurable, if it does not exists as a non-configurable own
property of the target object.
A property may not be non-configurable, if is corresponding configurable property of the target object exists.
If a property has a corresponding target object property.then apply the property descriptor of the property to the
target object using [[DefineOwnPropery]] will not throw an exception.

1
f

8.5.8 [[HasProperty]] (P)

When the [[HasProperty]] internal method of an exotic Proxy object O is called with property key P, the
following steps are taken:

13. Assert:IsPropertyKeyP) is true.
14. Let handlerbethe valueof the [[ProxyHandlel] internal data property ofO.
15. Lettargetbethe value of the ProxyTargel] internal dataproperty ofO.
16. Lettrap be the result of GetMetholdéndler, "has).
17. ReturnifAbruptrap).
18. If trapis undefined, then
a. Return the result ofalling the [[HasProperty]] internal method t@rgetwith argumentP.
19. Let trapResultbe the result of callinghe [[Call]] internal method ofrap with handleras thethis value and
a new List containingargetandP.
20. ReturnlfAbrupt(rapResul}.
21. Let successbe ToBoolearttapResul.
22. If successs false, then
a. LettargetDesdbe the result of calling the [[GetOwnProperty]] internal methotaogetwith
argumentP.
b. ReturnIfAbruptfargetDes§.
c. |If targetDesds notundefined, then
i. If targetDesc[[Configurable]]is false, then throw arypeError exception.
ii. Let extensibleTargele the result of calling the [[IsExtensible]] internal methodasfet
iii. ReturnIfAbruptéxtensibleTargét
iv. If ToBooleanéxtensibleTarggtis false, then throw al'ypeError exception.
23. Returnsuccess

NOTE [[HasProperty] for proxy objects enforces the following invariants:
1 A property cannot be reported as non-existent, if it exists as a non-configurable own property of the target object.

72 © Ecma International 2012

ecing

1 A property cannot be reported as non-existent, if it exists as a own property of the target object and the target
object is not extensible.

8.5.9 [[GetP]] (P, Receiver)

When the [[GetP]] internal method of an exotic Proxy object O is called with property key P and ECMAScipt
language value Receivetthe following steps are taken:

Assert:IsPropertyKeyP) is true..
Let handlerbethe value of the ProxyHandlel] internal data property ofO.
Let targetbethe value of the ProxyTargel] internaldataproperty ofO.
Let trap be the result of GetMethodéndler, "get ").
ReturnIfAbruptrap).
If trap is undefined, then
a. Return the result of calling the [[GetP]] internal methodarfyetwith argumens P and Receiver
7. LettrapResultbe the resulof callingthe [[Call]] internal method ofrap with handleras thethis value and
a new List containingarget, P, andReceiver
8. ReturnlfAbruptrapResuly.
9. LettargetDescbe the result of calling the [[GetOwnProperty]] internal methothogetwith. agumentpP.
10. ReturnlfAbruptfargetDesg.
11. If targetDesds not undefined, then
a. If IsDataDescriptot@rgetDesg andtargetDesd[Configurable]] isfalseand
targetDesd[[Writable]] is false, then
i If SameValuefrapResulttargetDesd[Valuel]]) is false, then thow aTypeError
exception.
b. If IsAccessobDescriptorfargetDesg¢ andtargetDesd[Configurable]] isfalse andtargetDesd[Gef]]
is undefined, then
i If trapResultis not undefined, then throw aTypeError exception.

12. ReturntrapResult

onk~wnNE

NOTE [[GetP] for proxy objects enforces the following invariants:
1 The value reported for a property must be the same as the value of the corresponding target object property if the
target object property is a non-writable, non-configurable data property.
1 The value reported for a property must be undefined if the corresponding corresponding target object property is
non-configurable accessor property that has undefined as its [[Get]] attribute.

8.5.10 [[SetP]] (P, V, Receiver)

When the [[SetP]] internal method of an exotic Proxy object O is called with property key P, value V, and
ECMAScipt language value Receiverthe following steps are taken:

Assert:IsPropertyKeyP) is true.
Let handlerbethe value otthe [[ProxyHandlel] internal data property ofO.
Let targetbethe value of the ProxyTarget] internal dataproperty ofO.
Lettrap be the result of GetMethol@ndler, "set ").
ReturnIfAbruptrap).
If trap is undefined, then
a. Return the result of caflg the [[SetP]] internal method e&rgetwith arguments, V, and Receiver
7. LettrapResultbe the result of callinghe [[Call]] internal method ofrap with handleras thethis value and
a new List containingarget, P, V, andReceiver
8. ReturnlfAbruptrapResul}.
9. If ToBooleanfrapResul} is false, thenreturnfalse.
10. Let targetDesdbe the result of calling the [[GetOwnProperty]] internal methothofetwith argumentP.
11. ReturnifAbruptfargetDesg.
12. If targetDesds not undefined, then
a. If IsDataDescriptqtargetDes¢ andtargetDesd[Configurable]] isfalseand
targetDesc[[Writable]] is false, then
i If SameValueV, targetDesd[Value]]) is false, then throw aTypeError exception.
b. If IsAccessobDescriptorfargetDes¢ andtargetDesd[Configurable]] isfalse, then
i If targetDesd[Sef] is undefined, then throw aTypeError exception.

o ArLONE

© Ecma International 2012 73

secma

13. Returntrue.

NOTE [[SetP]] for proxy objects enforces the following invariants:
1 Cannnot change the value of a property to be different from the value of the corresoponding target object
property if the corresponding target object property is a non-writable, non-configurable data property.
1 Cannot set the value of a property if the corresponding corresponding target object property is a non-configurable
accessor property that has undefined as its [[Set]] attribute.

8.5.11 [[Delete]] (P)

When the [[Delete]] internal method of an exotic Proxy object O is called with property name P the following
steps are taken:

Assert:IsPropertyKeyP) is true.
Let handlerbethe value of the fProxyHandlel] internal data property ofO.
Let targetbethe value of the ProxyTargetl] internal dataproperty ofO.
Lettrap be the result of GetMethodéndler, "deleteProperty ").
ReturnlfAbruptfrap).
If trap is undefined, then
a. Return the result of calling thejletd] internal method ofargetwith argumentP.
Let trapResultbe the result of callinghe [[Call]] internal method ofrap with handleras thethis value and
a new LBt containingargetandP.
8. ReturnlfAbrupt(rapResul}.
9. If ToBooleanfrapResul} is false, thenreturnfalse.
10. Let targetDesdve the result of calling the [[GetOwnProperty]] internal methothofetwith argumentP.
11. ReturnlfAbruptfargetDes¢.
12. If targetDeg is undefined, then returrrue.
13. If targetDesc[[Configurable]] isfalse, thenthrow aTypeError. exception.
14. Returntrue.

ogah~wNE

~

NOTE [[Delete]] for proxy objects enforces the following invariant:
1 A property cannot be deleted, if it exists as a non-configurable own property of the target object.

8.5.12 [[Enumerate]] ()
When the [[Enumerate]] internal method of an exotic.Proxy object O is called the following steps are taken:

Let handlerbethe value of the [ProxyHandlel] internal data property ofO.

Let targetbethe value of the ProxyTargei] internal dataproperty ofO.

Let trap be the result of GetMetholdé&ndler, "enumerate).

ReturnIfAbruptrap).

If trap is undefined, then
a. Return the result of callinthe [[Enumeraty internal method otarget

Let trapResultbe the result of callinghe [[Call]] internal method ofrap with handleras thethis value and

a new List containingarget

7. ReturnlfAbrupt(rapResul}.

8. If Type(trapResul} is'not Object, thenhrow aTypeError exception.

9. TODO: we may need to add a lot of additional invariant checking here according to the wiki spec. But
maybetir eal 'y i sndt necessary

10. ReturntrapResult

akrwnE

o

NOTE [[Enumerate] for proxy objects enforces the following invariants:
1 The result of [[Enumerate]] must be an Object.

8.5.13 [[OwnPropertyKeys]] ()

When the [[OwnPropertyKeys]] internal method of an exotic Proxy object O is called the following steps are
taken:

1. Lethandlerbethe value of the ProxyHandlel] internal data property ofO.
2. Lettargetbethe value of the ProxyTargel] internal dataproperty ofO.

74 © Ecma International 2012

»ecma

3. Lettrap be the resulof GetMethodandler, "ownProperty Keys").

ReturnIfAbruptfrap).

If trap is undefined, then
a. Return the result of calling theQwnPropertyKey} internal method otarget

6. LettrapResultbe the result of callinghe [[Call]] internal method ofrap with handleras thethis value and
a new List containingarget

7. ReturnlfAbruptfrapResul}.

8. If Type(trapResul} is not Objectthenthrow aTypeError exception.

9. TODO: we may need to add a lot of additional invariant checking here according to thepeiki But
maybetreallyisdt necessary

10. ReturntrapResult

ok

NOTE [[OwnPropertyKeys] for proxy objects enforces the following invariants:
1 The result of [[OwnPropertyKeys]] must be an Object.

8.5.14 [[Freeze]] ()

When the [[Freeze]] internal method of an exotic Proxy object O is‘called the following steps are taken:
1. Return the result of MakeObjectSecudefalse).

8.5.15 [[Seal]] ()

When the [[Seal]] internal method of an exotic Proxy object O is called the following steps are taken:

1. Returnthe result of MakeObjectSecuf®(false).

8.5.16 [[IsFrozen]] ()

When the [[IsFrozen]] internal method of an exotic Proxy.object O is called the following steps are taken:
1. Return the result of TestlfSecureObje€t, true).

8.5.17 [[IsSealed]] ()

When the [[IsSealed]] internal method of an exotic Proxy-object O is called the following steps are taken:
1. Return the result of TestIfSecureObje€t, false).

8.5.18 {[Call]] (thisArgument, argumentsList)

The [[Call]] internal method of an exotic Proxy object O is called with parameters thisArgument and
argumentsLista List of ECMAScript language values. The following steps are taken:

Let handlerthe value ofthe ProxyHandlef] internaldata property ofO.
Let targetthe value of the PProxyTargel] internal dataproperty ofO.
Lettrap be the result of GetMethodéndler, "apply ").
ReturnIfAbruptfrap).
If trap is undefined, then
a. Return the result of calling the(Qgll]] internal method otargetwith argumentghisArgumentand
argumentsList
Let argArray be the result of CreateArrayFromLiatGumentsLisit
Returnthe result ofcalling the [[Call]] internal method ofrap with handleras thethis value and a new List
containingtarget, thisArgumentandargArray.

Okl wNE

No

NOTE An Proxy exotic object only has a [[Call]] internal method if the initial value of its [[ProxyTarget]] internal data
property is an object that has a [[Call]] internal method.

© Ecma International 2012 75

secma

8.5.19 [[Construct]] Internal Method

The [[Construct]] internal method of an exotic Proxy object O is called with a single parameter argumentsList
which is a possibly empty List of ECMAScript language values. The following steps are taken:

Let handlerbethe value of the [proxyHandlel] internal data property ofO.
Let targetbethe value of the ProxyTargetl] internal dataproperty ofO.
Lettrap be the result of GetMethodéndler, "construct ").
ReturnlfAbruptfrap).
If trap is undefined, then
a. Return the result of calling theQpnstruc]] internal method ofargetwith argumentargumentsList
Let argArray be the reult of CreateArrayFromLisargumentsLisit
Return the result of callingtrap with handleras thethis value and a new List containingrgetand
argArray.

aokrwnNPE

~No

NOTE An Proxy exotic object only has a [[Construct]] internal method if the initial value of its [[ProxyTarget]] internal
data property is an object that has a [[Construct]] internal method.

9 Abstract Operations

These operations are not a part of the ECMAScript language; they are defined here to solely to aid the
specification of the semantics of the ECMAScript Language. Other, more specialized abstract operations are
defined throughout this specification.

9.1 Type Conversion and Testing

The ECMAScript language implicitly performs automatic type conversion as needed. To clarify the semantics
of certain constructs it is useful to define a set of conversion abstract operations.. The conversion abstract
operations are polymorphic; that is, they can accept a value of any ECMAScript language type, but not of
specification types.

9.1.1 ToPrimitive

The abstract operation ToPrimitive takes.an._input argument and an optional argument PreferredType The
abstract operation ToPrimitive converts its input argument to a non-Object type. If an object is capable of
converting to more than one primitive type, it may use the optional hint PreferredTypeto favour that type.
Conversion occurs according to Table 15:

Table 1506 ToPrimitive Conversions

Input Type Result

Completion Record | If argument is an abrupt completion, return argument. Otherwise return
ToPrimitive(argument.[[value]]) also passing the optional hint
PreferredType.

Undefined Return argument (no conversion).

Null Return argument (no conversion).

Boolean Return argument (no conversion).

Number Return argument (no conversion).

String Return argument (no conversion).

Object Perform the steps following this table.

When the InputType is Object, the following steps are taken:

1. If Preferredlypewas not passed, létint be "default
2. Else if PreferredTypés hint Sring, lethint be"string
3. ElsePreferredTypds hint Number, lehint be "number ".

76 © Ecma International 2012

»ecma

4. LetexoticToPrim be the result of Géargument @ @ ToPrimitive.
5. ReturnlfAbruptéxoticToPrin).
6. If exoticToPrimis notundefined, then
a. If IsCallablegxoticToPrin) is false, thenthrow aTypeError exception
b. Letresultbe the result of calling the [[Call]] internal method eoticToPrim with argumentas
thisArgumentand aList containinghint asargumentsList
c. ReturnlfAbrupt¢esull).
d. If resultis an ECMAScript language value and Typeul) is not Objectthen returmresult
e. Else, hrow aTypeError exception.
If hintis "default " then, lethint be"number".
Return the result of OrdinafpPrimitive@rgumenthint).

© N

When the OrdinaryToPrimitive is called with arguments O and hint, the following steps are taken:

Assert: TypeQ) is Object
Assert: Typekint) is String and its values either"string " or "number ".
3. If hintis "string ", then
a. LettryFirst be"toString
b. LettrySecondbe"valueOf
4. Else,
a. LettryFirst be"valueOf
b. LettrySeconde"toString
Let first be the result of G€D, tryFirst).
ReturnIfAbrupt§irst).
If IsCallablefirst) is true then,
a. Letresultbe the result of ding the [[Call]] internal method ofirst, with O asthisArgumentand an
emptyList asargumentsList
b. ReturnifAbrupttesuli).
c. If resultis an ECMAScript language value and Typ=uk) is not Object, then retunresult
d. Else, throw arypeError exception.
8. Letsecondbe the result.of G€D, trySecond).
9. ReturnlfAbruptgecond.
10. If IsCallable6econdis true then,
a. Letresultbe the result of calling the [[Call]] internal method s&cond with O asthisArgumentand
an empty argument list:
b. ReturnifAbrupttesult).
c. If resultis.an ECMAScript language value and Typeul) is not Object, then retunresult
11. ThrowaTypeError exception.

N

Noo

NOTE When ToPrimitive is called with no hint, then it generally behaves as if the hint were Number. However,
objects may over-ride this behaviour by defining-a @ @ ToPrimitve method. Of the objects defined in this specification only
Date objects (see 15.9.6) over-ride the default ToPrimitive behaviour. Date objects treat no hint as if the hint were String.

9.1.2 ToBoolean

The abstract operation ToBoolean converts its argument to a value of type Boolean according to Table 16:

© Ecma International 2012 77

ecind

Table 16 8 ToBoolean Conversions

Argument Type Result

Completion Record | If argument is an abrupt completion, return the argument. Otherwise return
ToBoolean(argument.[[value]])

Undefined Return false

Null Return false

Boolean Return the input argument (no conversion).

Number Return false if the argument is +0, - 0, or NaN; otherwise return true.

String Return false if the argument is the empty String (its length is zero);
otherwise return true.

Object Return true

9.1.3 ToNumber

The abstract operation TONumber converts its argument to a value of type Number according to Table 17:

Table 178 ToNumber Conversions

Argument Type Result

Completion Record | If argument is an abrupt completion, return argument. Otherwise return
ToNumber(argument.[[value]])

Undefined Return NaN

Null Return +0

Boolean Return 1. if argument is true: Return +0 if argument is false.

Number Return argument (no conversion).

String See grammar and note below.

Object Apply the following steps:
1. LetprimValuebe ToPrimitiveargument hint Number).
2. Return ToNumbegrimValue.

9.1.3.1 < ToNumber Applied to the String Type

ToNumber applied to Strings applies the following grammar to the input String. If the grammar cannot interpret

the String as an expansion of StringNumericLiteralthen the result of ToNumber is NaN.

Syntax

StringNumericLiterat::
StrwWhiteSpacg:

StrwhiteSpacg: StrNumericLiteral StrWhiteSpage

StrWhiteSpace:

SrWhiteSpaceChar StrWhiteSpage

StrWhiteSpaceChar:
WhiteSpace
LineTerminator

StrNumericLiteral::

StrDecimalLiteral
HexlIntegerLiteral

78

© Ecma International 2012

ecima

StrDecimallLiteral:::

StrUnsignedDecimalLiteral
+ StrUnsignedDecimalLiteral
- StrUnsignedDecimalLiteral

StrUnsigned@cimalLiteral:::

Infinity

DecimalDigits. DecimalDigitsy: ExponentPai:
. DecimalDigits ExponentPay

DecimalDigits ExponentPay:

DecimalDigits:::

DecimalDigit
DecimalDigits DecimalDigit

DecimalDigit::: one of

0123456789

ExponatPart:::

Exponentindicator Signedinteger

Exponentindicator:: one of

e E

Signedinteger::

DecimalDigits
+ DecimalDigits
- DecimalDigits

HexlIntegerLiterat::

0x HexDigit
0X HexDigit
HexIntegerLiteral HexDigit

HexDigit::: one of

01234567 89abcdefABCDETF

NOTE Some differences should be noted between the syntax of a StringNumericLiteraland a NumericLiteral (see
7.8.3):

A StringNumericLiteramay be preceded and/or followed by white space and/or line terminators.

A StringNumericLiterathat is decimal may have any number of leading 0 digits.

A StringNumericLiterathat is decimal may be preceded by + or - to indicate its sign.

A StringNumericLiterathat is empty or contains only white space is converted to +0.

Infi nity and T Infinity are recognized as a StringNumericLiteralbut not as a NumericLiteral

= —4 —a —a _a

Runtime Semantics

The conversion of a String to a Number value is similar overall to the determination of the Number value for a
numeric literal (see 7.8.3), but some of the details are different, so the process for converting a String numeric
literal to a value of Number type is given here in full. This value is determined in two steps: first, a
mathematical value (MV) is derived from the String numeric literal; second, this mathematical value is rounded
as described below.

f
il
il

il
f

The MV of StringNumericLiterat:: [empty] is 0.

The MV of StringNumericLiterat:: StrwhiteSpaces 0.

The MV of StringNumericLiteral ::: StrWhiteSpacg: StrNumericLiteral StrWwhiteSpacg: is the MV of
StrNumericLiteral no matter whether white space is present or not.

The MV of StrNumericLiteral:: StrDecimalLiteralis the MV of StrDecimalLiteral

The MV of StrNumericLiteral:: HexIntegerLiteralis the MV of HexIntegerLiteral

© Ecma International 2012 79

ecind

=a =4

= =4

=

=

=4 =4 =4 =4 -4 -4 -4 -4 8 8 -8 - -a-aa sy

The MV of StrDecmalLiteral ::: StrUnsignedDecimalLiterak the MV of StrUnsignedDecimalLiteral

The MV of StrDecimallLiteral::: + StrUnsignedDecimalLiteras the MV of StrUnsignedDecimalLiteral

The MV of StrDecimalLiteral ::: - StrUnsignedDecimalLiteralis the negative of the MV of

StrUnsignedDecimalLiteral(Note that if the MV of StrUnsignedDecimalLiterak 0, the negative of this MV is

also 0. The rounding rule described below handles the conversion of this signless mathematical zero to a

floating-point +0 or - 0 as appropriate.)

The MV of StrUnsignedDecimalLiteral: Infinity is 100000 (3 value so large that it will round to +a).

The MV of StrUnsignedDecimalLiteral: DecimalDigits is the MV of DecimalDigits

The MV of StrUnsignedDecimalLiteral: DecimalDigits. DecimalDigitsis the MV of the first DecimalDigits
plus (the MV of the second DecimalDigitstimes 10"), where n is the number of characters in the second

DecimalDigits

The MV of StrUnsignedDecimalLiterat DecimalDigits ExponentPartis the MV of DecimaDigits times 106,

whereeis the MV of ExponentPart

The MV of StrUnsignedDecimalLiteral DecimalDigits DecimalDigits ExponentParis (the MV of the first

DecimalDigitsplus (the MV of the seconidecimalDigitstimes 10") times 16, wheren is.the numier of characters
in the secondecimalDigits andeis the MV of ExponentPart

The MV of StrUnsignedDecimalLiterat. DecimalDigitsis the MV of DecimalDigitstimes 10", wheren is the
number of characters DecimalDigits.

The MV of StrUnsignedDecimalléral:::. DecimalDigits ExponentPaiisthe MV of DecimalDigitstimes 16",
wheren is the number of charactersbirecimalDigis andeis the MV of ExponentPart

The MV of StrUnsignedDecimalLiterat DecimalDigitsis the MV. of DecimalDigits

The MV of StitUnsignedDecimalLiteral: DecimalDigits ExponentPartis the MV of DecimalDigitstimes 10,
whereeis the MV of ExponentPart

The MV of DecimalDigits::: DecimalDigitis the MV of DecimalDigit

The MV of DecimalDigits::: DecimalDigitsDecimalDigitis (theMV of DecimalDigitstimes 10) plus the MV of
DecimalDigit

The MV of ExponentPart:: Exponentindicator Signedintegierthe MV of Signedinteger
The MV of Signedinteger:: DecimalDigitsis the MV of DecimalDigits

The MV of Signedinteger:: + DecimalDpits is the MV of DecimalDigits

The MV of Signedinteger:: - DecimalDigitsis the negative of the MV decimalDigits
The MV of DecimalDigit::: 0 or of HexDigit::: 0 is 0.

The MV of DecimalDigit:::. 1 or of HexDigit::: 1is-1.

The MV of DecimalDigit::: 2 or of HexDigit::: 2'is 2.

The MV _of DecimalDigit::: 3 or of HexDigit::: 3 is 3.

The MV of DecimalDigit::: 4 orof HexDigit::: 4 is 4.

The MV of DecimalDigit::: 5 or of HexDigit::: 5 is 5.

The MV of DecimalDigit::: 6 or of HexDigit::: 6 is 6.

The MV of DecimalDigit::: 7 or of HexDigit::: 7 is 7.

The MV of DecimalDigit:::/8 or of HexDigit::: 8 is 8.

The MV of DecimalDigit::: 9 or of HexDigit::: 9 is 9.

The MV of HexDigit ::i a or of HexDigit::: Ais 10.

The MV of HexDigit::: b or of HexDigit ::: Bis 11.

The MV of HexDigit::: ¢ or of HexDigit::: Cis 12.

The MV of HexDigit::: d or of HexDigit::: Dis 13.

The MV of HexDigit::: e or of HexDigit::: Eis 14.

The MV of HexDigit::: f or of HexDigit::: Fis 15.

The MV of HexIntegerLiteal ::: Ox HexDigitis the MV of HexDigit

The MV of HexlIntegerLiterat:: 0X HexDigitis the MV of HexDigit

The MV of HexIntegerLiteral::: HexIntegerLiteralHexDigit is (the MV of HexIntegerLiteraltimes 16) plus the
MV of HexDigit.

Once the exact MV for a String numeric literal has been determined, it is then rounded to a value of the
Number type. If the MV is 0, then the rounded value is +0 unless the first non white space character in the

80

© Ecma International 2012

»ecma

String nume+06i,c ilni twehriaclh icsa sé s -0.MOtherwise,uhe doended vabué must be the
Number value for the MV (in the sense defined in 8.5), unless the literal includes a StrUnsignedDecimalLiteral
and the literal has more than 20 significant digits, in which case the Number value may be either the Number
value for the MV of a literal produced by replacing each significant digit after the 20th with a 0 digit or the
Number value for the MV of a literal produced by replacing each significant digit after the 20th with a O digit
and then incrementing the literal at the 20th digit position. A digit is significant if it is not part of an ExponentPart
and

1 itisnotO; or

1 there is a nonzero digit to its left and there is a nonzero digit, not in the ExponentPartto its right.

9.1.4 Tolnteger

The abstract operation Tolnteger converts its argument to an integral numeric value. This abstract operation
functions as follows:

1. Letnumberbe the result of calling ToNumber on the input argument.
2. ReturnlfAbruptfumbej.

3. If numberis NaN, return+0.

4. If numberis +0, - 0, +a, or - @, returnnumber

5. Return the result of computing signimbe) 3 floor(absfiumbey).

9.

1.5 Tolnt32: (Signed 32 Bit Integer)

The abstract operation Tolnt32 converts its argument to one of 232 integer values in the range - 23! through
2% 1, inclusive. This abstract operation functions as follows:

Let numberbe the result of calling ToNumber on the input argument.

ReturnIfAbruptfiumbe).

If numberis NaN, +0, - 0, +8, or- &, return+0.

Letint be signumbej) 2 floor(abs@umbe).

Let int32bit be int modulo 22; that is, a finite integer valuk of Number type with positive sign and less
than 22 in magnitude’ such that the mathematical differenceindfand k is mathematically an integer
multiple of 22,

6. If int32bitis greater thn or equal to &, returnint32bit- 232, otherwise returint32bit

ok wNE

NOTE Given the above definition of Tolnt32:

1 The Tolnt32 abstract operation is idempotent: if applied to a result that it produced, the second application leaves that
value unchanged.

1 Tolnt32(ToUint32¢)) is equal to ToInt32() for all values of x. (It is to preserve this latter property that +& and -a are
mapped to +0.)

M Tolnt32 maps - 0 to +0.

9.1.6 ToUint32: (Unsigned 32 Bit Integer)

The abstract operation ToUint32 converts its argument to one of 232 integer values in the range 0 through 232 1,
inclusive. This abstract operation functions as follows:

Let numberbe the result of calling ToNumber on the input argument.

ReturnIfAbrupthumbe).

If numberis NaN, +0,- 0, +a, or- @, return+0.

Letint be signfumbe) 3 floor(absfumbe)).

Let int32bit be int modulo 2?; that is, a finite integer valuk of Number type with positive sign and less
than 22 in magnitude such that the mathematical differenceindfand k is mahematically an integer
multiple of 22,

6. Returnint32bit.

ok wNE

NOTE Given the above definition of ToUInt32:
1 Step 5is the only difference between ToUint32 and TolInt32.

© Ecma International 2012 81

