New ES6 terminology

Allen Wirfs-Brock
May 2012

New Terminology: Objects

* object - An runtime entity that has unique
identity and exposes properties (via
implementations of the required “internal
methods” specified in chapter 8)

* Ordinary object - An object t
default behaviors for the reo
methods (as specified in cha

nat that uses only
uired internal

oter 8).

e exotic object - An object that provides non-
default behavior for at least one of the required

internal methods.

Exotic objects encompasses Proxies and most of what are currently called
“host objects”. It also includes some chapter 15 objects such as array
instances that have non-default internal method behaviors.

New Terminology: Object Providers

* standard object - An object whose application
level semantics are defined by aECMAScript
specification.

* built-in object - an object that is provided by
the ECMAScript implementation.

* platform object - An object that is provided by
the environment that hosts the ECMAScript
implementation.

Each of the above three categorizations can include both
mundane and exotic objects. The distinction between built-in
object and platform object is probably of minor importance.

New Terminology: Functions

* function - An object that exposes the [[Call]] internal
method.

 ECMAScript function - A function whose invocation
result and side-effects is proved by evaluating
ECMAScript code.

* alien function - A function whose invocation result
and side-effects is provided in some manner other
than by evaluating ECMAScript code.

e standard function - a function whose invocation
result and side-effects are defined by the
ECMAScript specification (mostly chapter 15)

An ECMAScript function might be either a mundane or an exotic object. An alien function is
always an exotic object because the default [[Call]] internal method produces the
invocation result and side-effects by evaluating ECMAScript code. A standard function can
potentially be implemented either as an ECMAScript function or an alien function.

New Terminology: Island, Home

* A “top level” ECMAScript environment with its
own global environment, intrinsic objects,
global ambient state, etc.

May 4 Draft: Feature additions

Added syntax and semantics for Binary and Octal integers

Added syntax/semantics for super in MemberExpressions and
CallExpressions

Added arrow functions (13.2) and concise methods (13.3)
added Object.isObject
added Array.of and Array.from

added String.prototype repeat, startsWith, endsWith, contains,
toArray

added Number.EPSILON,MAX_INTEGER,parselnt,
parseFloat,isNaN,isFinite, isInteger, tolnt

added Number.prototype.clz

added Math.log10, log2, loglp, expm1, cosh, sinh, tanh, acosh,
asinh, atanh, hypot, trunc, sign, cbrt

May 4 Draft: Editorial/Technical 1

Clarified that IdentifierNames can include escape sequences
Extended Reference to support super references

Added abstract operations for Object and Array creations
Added arrow functions (13.2) and concise methods (13.3)

Preliminary introduction of code “Realms” (contexts with their
own globals, intrinsics, etc.) (incomplete)

Added Method Environment Records as part of super support

Extensions to execution contexts needed to support generators,
super, and code realms

Eliminated “enter execution context” algorithms by merging them
with [[Call]], eval, Program etc.

May 4 Draft: Editorial/Technical 2

General migration of most material related to functions and
their execution into Chapter 13

Added additional explicit checks of completion values.
made yield illegal outside of generators

additional work/cleanup on for-in/for-of (prep for array
comprehensions)

Started tracking Annex D and E additions

refactored “Creating Function Objects” into separate function
and constructor creation abstract operations.

Cleaned-up Array constructor specification

clarification of Number.MIN_Value for Arm processors (that
don’t support denormalized numbers)

Arrow Functions

Syntax

ArrowFunction :
ArrowParameters => ConciseBody

ArrowParameters
Bindingldentifer
(ArrowFormalParameterList)

ArrowFormalParameterList :
[empty]
FunctionRestParameter
CoverFormalsList

CoverFormalsList , FunctionRestParameter

ConciseBody :
[lookahead & { { }] AssignmentExpression
{ FunctionBody }

CoverFormalsList .
Expression

Supplemental Syntax

When processing the production CoverFormalsList : Expression the FormalsList production is used to further
restrict the source code that matches Expression.

ArrowFormalParameterList :
FormalParameterList

Concise Methods

11.1.5 Synax
ObjectLiteral :
{1}
{ PropertyDefinitionList }
{ PropertyDefinitionList , }

PropertyDefinitionList -
PropertyDefinition
PropertyDefinitionList , PropertyDefinition

PropertyDefinition

IdentifierName
PropertyName : AssignmentExpression
MethodDefinition <

NOTE MethodDefinition is defined in 13.3.

Syntax
13.3 y
MethodDefinition :
PropertyName (FormalParameterList) ConciseBody

* PropertyName (FormalParameterList') ConciseBody
get PropertyName () ConciseBody < |

set PropertyName (PropertySetParameterList) ConciseBody <

PropertySetParameterList :
Bindingldentifier

BindingPattern

BTW...

dArraylnitialiser

Arraylnitialiser e
} Arraylnitialiser

