

Reference number
ECMA-123:2009

© Ecma International 2009

ECMA-402
2nd Edition / Draft 28 February 2013

Draft

ECMAScript
Internationalization

API Specification

Ecma/TC39/2013/012

 COPYRIGHT PROTECTED DOCUMENT

 © Ecma International 2013

III

© Ecma International 2013 I

Contents Page

1 Scope..1

2 Conformance ...1

3 Normative References ..1

4 Overview ..2
4.1 Internationalization, Localization, and Globalization ...2
4.2 API Overview ..2
4.3 Implementation Dependencies ...3

5 Notational Conventions ..3

6 Identification of Locales, Currencies, and Time Zones ..4
6.1 Case Sensitivity and Case Mapping ..4
6.2 Language Tags ...4
6.2.1 Unicode Locale Extension Sequences ...4
6.2.2 IsStructurallyValidLanguageTag (locale) ...4
6.2.3 CanonicalizeLanguageTag (locale) ...5
6.2.4 DefaultLocale () ...5
6.3 Currency Codes ...5
6.3.1 IsWellFormedCurrencyCode (currency) ...5
6.4 Time Zone Names ..5
6.4.1 IsValidTimeZoneName (timeZone) ..6
6.4.2 CanonicalizeTimeZoneName (timeZone) ...6
6.4.3 DefaultTimeZone () ...6

7 Requirements for Standard Built-in ECMAScript Objects ..6

8 The Intl Object ...6
8.1 Properties of the Intl Object ..6

9 Locale and Parameter Negotiation ..7
9.1 Internal Properties of Service Constructors ...7
9.2 Abstract Operations ..7
9.2.1 CanonicalizeLocaleList (locales) ..7
9.2.2 BestAvailableLocale (availableLocales, locale) ..8
9.2.3 LookupMatcher (availableLocales, requestedLocales) ..8
9.2.4 BestFitMatcher (availableLocales, requestedLocales) ...9
9.2.5 ResolveLocale (availableLocales, requestedLocales, options, relevantExtensionKeys,

localeData) ..9
9.2.6 LookupSupportedLocales (availableLocales, requestedLocales) ..11
9.2.7 BestFitSupportedLocales (availableLocales, requestedLocales) ...11
9.2.8 SupportedLocales (availableLocales, requestedLocales, options) ..11
9.2.9 GetOption (options, property, type, values, fallback) ...12
9.2.10 GetNumberOption (options, property, minimum, maximum, fallback) ..12

10 Collator Objects ..12
10.1 The Intl.Collator Constructor ..12
10.1.1 Initializing an Object as a Collator..12
10.1.2 The Intl.Collator Constructor Called as a Function ..14
10.1.3 The Intl.Collator Constructor Used in a new Expression ...14
10.2 Properties of the Intl.Collator Constructor ...14
10.2.1 Intl.Collator.prototype ..14
10.2.2 Intl.Collator.supportedLocalesOf (locales [, options]) ...14
10.2.3 Internal Properties ..15
10.3 Properties of the Intl.Collator Prototype Object ...15

II © Ecma International 2013

10.3.1 Intl.Collator.prototype.constructor .. 15
10.3.2 Intl.Collator.prototype.compare ... 15
10.3.3 Intl.Collator.prototype.resolvedOptions () .. 17
10.4 Properties of Intl.Collator Instances ... 17

11 NumberFormat Objects ... 17
11.1 The Intl.NumberFormat Constructor ... 17
11.1.1 Initializing an Object as a NumberFormat... 17
11.1.2 The Intl.NumberFormat Constructor Called as a Function ... 19
11.1.3 The Intl.NumberFormat Constructor Used in a new Expression .. 19
11.2 Properties of the Intl.NumberFormat Constructor .. 20
11.2.1 Intl.NumberFormat.prototype ... 20
11.2.2 Intl.NumberFormat.supportedLocalesOf (locales [, options]) .. 20
11.2.3 Internal Properties ... 20
11.3 Properties of the Intl.NumberFormat Prototype Object .. 20
11.3.1 Intl.NumberFormat.prototype.constructor.. 21
11.3.2 Intl.NumberFormat.prototype.format .. 21
11.3.3 Intl.NumberFormat.prototype.resolvedOptions () .. 24
11.4 Properties of Intl.NumberFormat Instances ... 24

12 DateTimeFormat Objects ... 25
12.1 The Intl.DateTimeFormat Constructor .. 25
12.1.1 Initializing an Object as a DateTimeFormat .. 25
12.1.2 The Intl.DateTimeFormat Constructor Called as a Function .. 28
12.1.3 The Intl.DateTimeFormat Constructor Used in a new Expression ... 28
12.2 Properties of the Intl.DateTimeFormat Constructor .. 29
12.2.1 Intl.DateTimeFormat.prototype .. 29
12.2.2 Intl.DateTimeFormat.supportedLocalesOf (locales [, options]) ... 29
12.2.3 Internal Properties ... 29
12.3 Properties of the Intl.DateTimeFormat Prototype Object ... 30
12.3.1 Intl.DateTimeFormat.prototype.constructor ... 30
12.3.2 Intl.DateTimeFormat.prototype.format .. 30
12.3.3 Intl.DateTimeFormat.prototype.resolvedOptions () ... 32
12.4 Properties of Intl.DateTimeFormat Instances .. 32

13 Locale Sensitive Functions of the ECMAScript Language Specification .. 32
13.1 Properties of the String Prototype Object .. 33
13.1.1 String.prototype.localeCompare (that [, locales [, options]]) ... 33
13.1.2 String.prototype.toLocaleLowerCase ([locales]) ... 33
13.1.3 String.prototype.toLocaleUpperCase ([locales]) ... 34
13.2 Properties of the Number Prototype Object ... 34
13.2.1 Number.prototype.toLocaleString ([locales [, options]]) .. 34
13.3 Properties of the Date Prototype Object ... 34
13.3.1 Date.prototype.toLocaleString ([locales [, options]]) .. 34
13.3.2 Date.prototype.toLocaleDateString ([locales [, options]]) .. 35
13.3.3 Date.prototype.toLocaleTimeString ([locales [, options]]) .. 35

Annex A (informative) Implementation Dependent Behaviour ... 36

© Ecma International 2013 III

Introduction

The ECMAScript Internationalization API provides key language-sensitive functionality as a complement to the
ECMAScript Language Specification, 5.1 edition or successor. Its functionality has been selected from that of
well-established internationalization APIs such as those of the Internationalization Components for Unicode
(ICU) library, of the .NET framework, or of the Java platform.

The API was developed by an ad-hoc group established by Ecma TC 39 in September 2010 based on a
proposal by Nebojša Ćirić and Jungshik Shin.

Internationalization of software is never complete. We expect significant enhancements in future editions of
this specification.

Editor

Norbert Lindenberg

Contributors

Eric Albright
Nebojša Ćirić
Peter Constable
Mark Davis
Richard Gillam
Steven Loomis
Mihai Nita
Addison Phillips
Roozbeh Pournader
Jungshik Shin
Shawn Steele
Allen Wirfs-Brock

Feedback provided by Erik Arvidsson, John J. Barton, Zbigniew Braniecki, Marcos Cáceres, Brendan Eich,
John Emmons, Gordon P. Hemsley, David Herman, Luke Hoban, Oliver Hunt, Suresh Jayabalan, Yehuda
Katz, Mark S. Miller, Andrew Paprocki, Adam Peller, Axel Rauschmayer, Andreas Rossberg, Alex Russell,
Markus Scherer, Dmitry Soshnikov, Yusuke Suzuki, John Tamplin, Rick Waldron, Anton Yatsenko, Nicholas
Zakas.

This Ecma Standard has been adopted by the General Assembly of <month> <year>.

IV © Ecma International 2013

COPYRIGHT NOTICE

© 2013 Ecma International

This document may be copied, published and distributed to others, and certain derivative works of it
may be prepared, copied, published, and distributed, in whole or in part, provided that the above
copyright notice and this Copyright License and Disclaimer are included on all such copies and
derivative works. The only derivative works that are permissible under this Copyright License and
Disclaimer are:

(i) works which incorporate all or portion of this document for the purpose of providing commentary or
explanation (such as an annotated version of the document),

(ii) works which incorporate all or portion of this document for the purpose of incorporating features
that provide accessibility,

(iii) translations of this document into languages other than English and into different formats and

(iv) works by making use of this specification in standard conformant products by implementing (e.g.
by copy and paste wholly or partly) the functionality therein.

However, the content of this document itself may not be modified in any way, including by removing the
copyright notice or references to Ecma International, except as required to translate it into languages
other than English or into a different format.

The official version of an Ecma International document is the English language version on the Ecma
International website. In the event of discrepancies between a translated version and the official
version, the official version shall govern.

The limited permissions granted above are perpetual and will not be revoked by Ecma International or
its successors or assigns.

This document and the information contained herein is provided on an "AS IS" basis and ECMA
INTERNATIONAL DISCLAIMS ALL WARRANTIES, EXPRESS OR IMPLIED, INCLUDING BUT NOT
LIMITED TO ANY WARRANTY THAT THE USE OF THE INFORMATION HEREIN WILL NOT INFRINGE
ANY OWNERSHIP RIGHTS OR ANY IMPLIED WARRANTIES OF MERCHANTABILITY OR FITNESS FOR
A PARTICULAR PURPOSE.

© Ecma International 2013 1

ECMAScript Internationalization API Specification

1 Scope

This Standard defines the application programming interface for ECMAScript objects that support programs
that need to adapt to the linguistic and cultural conventions used by different human languages and countries.

2 Conformance

A conforming implementation of the ECMAScript Internationalization API must conform to the ECMAScript
Language Specification, 5.1 edition or successor, and must provide and support all the objects, properties,
functions, and program semantics described in this specification.

A conforming implementation of the ECMAScript Internationalization API is permitted to provide additional
objects, properties, and functions beyond those described in this specification. In particular, a conforming
implementation of the ECMAScript Internationalization API is permitted to provide properties not described in
this specification, and values for those properties, for objects that are described in this specification. A
conforming implementation is not permitted to add optional arguments to the functions defined in this
specification.

A conforming implementation is permitted to accept additional values, and then have implementation-defined
behaviour instead of throwing a RangeError, for the following properties of options arguments:

• The options property localeMatcher in all constructors and supportedLocalesOf methods.

• The options properties usage and sensitivity in the Collator constructor.

• The options properties style and currencyDisplay in the NumberFormat constructor.

• The options properties minimumIntegerDigits, minimumFractionDigits, maximumFractionDigits,

minimumSignificantDigits, and maximumSignificantDigits in the NumberFormat constructor, provided that
the additional values are interpreted as integer values higher than the specified limits.

• The options properties listed in table 3 in the DateTimeFormat constructor.

• The options property formatMatcher in the DateTimeFormat constructor.

3 Normative References

The following referenced documents are required for the application of this document. For dated references,
only the edition cited applies. For undated references, the latest edition of the referenced document (including
any amendments) applies.

ECMA-262, ECMAScript Language Specification, 5.1 edition or successor
http://www.ecma-international.org/publications/standards/Ecma-262.htm

NOTE Throughout this document, the phrase “ES5, x”, where x is a sequence of numbers separated by periods, may

be used as shorthand for “ECMAScript Language Specification, 5.1 edition, subclause x”.

ECMA-262, ECMAScript Language Specification, 6 edition, draft December 2012, or successor
http://wiki.ecmascript.org/doku.php?id=harmony:specification_drafts

NOTE Throughout this document, the phrase “ES6, x”, where x is a sequence of numbers separated by periods, may

be used as shorthand for “ECMAScript Language Specification, 6 edition, subclause x”.

ISO/IEC 10646:2003: Information Technology – Universal Multiple-Octet Coded Character Set (UCS) plus
Amendment 1:2005 and Amendment 2:2006, plus additional amendments and corrigenda, or successor
http://www.iso.org/iso/iso_catalogue/catalogue_tc/catalogue_detail.htm?csnumber=39921

http://www.ecma-international.org/publications/standards/Ecma-262.htm
http://wiki.ecmascript.org/doku.php?id=harmony:specification_drafts
http://www.iso.org/iso/iso_catalogue/catalogue_tc/catalogue_detail.htm?csnumber=39921

2 © Ecma International 2013

http://www.iso.org/iso/iso_catalogue/catalogue_tc/catalogue_detail.htm?csnumber=40755
http://www.iso.org/iso/iso_catalogue/catalogue_tc/catalogue_detail.htm?csnumber=41419

ISO 4217:2008, Codes for the representation of currencies and funds, or successor
http://www.iso.org/iso/iso_catalogue/catalogue_tc/catalogue_detail.htm?csnumber=46121

IETF BCP 47:

• RFC 5646, Tags for Identifying Languages, or successor
http://tools.ietf.org/html/rfc5646

• RFC 4647, Matching of Language Tags, or successor
http://tools.ietf.org/html/rfc4647

IETF RFC 6067, BCP 47 Extension U, or successor
http://tools.ietf.org/html/rfc6067

IANA Time Zone Database
http://www.iana.org/time-zones/

The Unicode Standard, Version 5.0, or successor
http://www.unicode.org/versions/latest

Unicode Technical Standard 35, Unicode Locale Data Markup Language, version 21.0.1 or successor
http://unicode.org/reports/tr35/

4 Overview

This section contains a non-normative overview of the ECMAScript Internationalization API.

4.1 Internationalization, Localization, and Globalization

Internationalization of software means designing it such that it supports or can be easily adapted to support
the needs of users speaking different languages and having different cultural expectations, and enables
worldwide communication between them. Localization then is the actual adaptation to a specific language and
culture. Globalization of software is commonly understood to be the combination of internationalization and
localization. Globalization starts at the lowest level by using a text representation that supports all languages
in the world, and using standard identifiers to identify languages, countries, time zones, and other relevant
parameters. It continues with using a user interface language and data presentation that the user understands,
and finally often requires product-specific adaptations to the user’s language, culture, and environment.

The ECMAScript Language Specification lays the foundation by using Unicode for text representation and by
providing a few language-sensitive functions, but gives applications little control over the behaviour of these
functions. The ECMAScript Internationalization API builds on this by providing a set of customizable language-
sensitive functionality. The API is useful even for applications that themselves are not internationalized, as
even applications targeting only one language and one region need to properly support that one language and
region. However, the API also enables applications that support multiple languages and regions, even
concurrently, as may be needed in server environments.

4.2 API Overview

The ECMAScript Internationalization API is designed to complement the ECMAScript Language Specification
by providing key language-sensitive functionality. The API can be added to an implementation of the
ECMAScript Language Specification, 5.1 edition or successor.

The ECMAScript Internationalization API provides several key pieces of language-sensitive functionality that
are required in most applications: String comparison (collation), number formatting, date and time formatting,
and case conversion. While the ECMAScript Language Specification provides functions for this basic
functionality (on String.prototype: localeCompare, toLocaleLowerCase, toLocaleUpperCase; on

http://www.iso.org/iso/iso_catalogue/catalogue_tc/catalogue_detail.htm?csnumber=40755
http://www.iso.org/iso/iso_catalogue/catalogue_tc/catalogue_detail.htm?csnumber=41419
http://www.iso.org/iso/iso_catalogue/catalogue_tc/catalogue_detail.htm?csnumber=46121
http://tools.ietf.org/html/rfc5646
http://tools.ietf.org/html/rfc4647
http://tools.ietf.org/html/rfc6067
http://www.iana.org/time-zones/
http://www.unicode.org/versions/latest
http://unicode.org/reports/tr35/

© Ecma International 2013 3

Number.prototype: toLocaleString; on Date.prototype: toLocaleString, toLocaleDateString, and
toLocaleTimeString), it leaves the actual behaviour of these functions largely up to implementations to define.
The Internationalization API Specification provides additional functionality, control over the language and over
details of the behaviour to be used, and a more complete specification of required functionality.

Applications can use the API in two ways:

1. Directly, by using the constructors Intl.Collator, Intl.NumberFormat, or Intl.DateTimeFormat to
construct an object, specifying a list of preferred languages and options to configure the behaviour of
the resulting object. The object then provides a main function (compare or format), which can be
called repeatedly. It also provides a resolvedOptions function, which the application can use to find
out the exact configuration of the object.

2. Indirectly, by using the functions of the ECMAScript Language Specification mentioned above. The
collation and formatting functions are respecified in this specification to accept the same arguments
as the Collator, NumberFormat, and DateTimeFormat constructors and produce the same results as
their compare or format methods. The case conversion functions are respecified to accept a list of
preferred languages.

The Intl object is used to package all functionality defined in the ECMAScript Internationalization API to avoid
name collisions.

4.3 Implementation Dependencies

Due to the nature of internationalization, the API specification has to leave several details implementation
dependent:

• The set of locales that an implementation supports with adequate localizations: Linguists estimate the
number of human languages to around 6000, and the more widely spoken ones have variations based on
regions or other parameters. Even large locale data collections, such as the Common Locale Data
Repository, cover only a subset of this large set. Implementations targeting resource-constrained devices
may have to further reduce the subset.

• The exact form of localizations such as format patterns: In many cases locale-dependent conventions are
not standardized, so different forms may exist side by side, or they vary over time. Different
internationalization libraries may have implemented different forms, without any of them being actually
wrong. In order to allow this API to be implemented on top of existing libraries, such variations have to be
permitted.

• Subsets of Unicode: Some operations, such as collation, operate on strings that can include characters
from the entire Unicode character set. However, both the Unicode standard and the ECMAScript standard
allow implementations to limit their functionality to subsets of the Unicode character set. In addition, locale
conventions typically don’t specify the desired behaviour for the entire Unicode character set, but only for
those characters that are relevant for the locale. While the Unicode Collation Algorithm combines a default
collation order for the entire Unicode character set with the ability to tailor for local conventions, subsets
and tailorings still result in differences in behaviour.

5 Notational Conventions

This standard uses a subset of the notational conventions of the ECMAScript Language Specification, 5.1
edition:

• Algorithm conventions, including the use of abstract operations, as described in ES5, 5.2.

• Internal properties, as described in ES5, 8.6.2.

• The List specification type, as described in ES5, 8.8.

NOTE As described in the ECMAScript Language Specification, algorithms are used to precisely specify the required
semantics of ECMAScript constructs, but are not intended to imply the use of any specific implementation technique.
Internal properties are used to define the semantics of object values, but are not part of the API. They are defined purely

4 © Ecma International 2013

for expository purposes. An implementation of the API must behave as if it produced and operated upon internal

properties in the manner described here.

In addition, the Record specification type is used to describe data aggregations within the algorithms of this
specification. A Record type value consists of one or more named fields. The value of each field is an
ECMAScript type value. Field names are always enclosed in double brackets, for example [[field1]]. Field
names can also be provided by a variable: The notation “[[<name>]]” denotes a field whose name is given by

the variable name, which must have a String value. For example, if a variable s has the value "a", then [[<s>]]

denotes the field [[a]].

In specification text and algorithms, dot notation may be used to refer to a specific field of a Record value. For
example, if r is a record, then r.[[field1]] is shorthand for “the field of r named [[field1]]”.

For ECMAScript objects, this standard may use variable-named internal properties: The notation “[[<name>]]”
denotes an internal property whose name is given by the variable name, which must have a String value. For

example, if a variable s has the value "a", then [[<s>]] denotes the [[a]] internal property.

6 Identification of Locales, Currencies, and Time Zones

This clause describes the String values used in the ECMAScript Internationalization API to identify locales,
currencies, and time zones.

6.1 Case Sensitivity and Case Mapping

The String values used to identify locales, currencies, and time zones are interpreted in a case-insensitive
manner, treating the Unicode Basic Latin characters "A" to "Z" (U+0041 to U+005A) as equivalent to the
corresponding Basic Latin characters "a" to "z" (U+0061 to U+007A). No other case folding equivalences are
applied. When mapping to upper case, a mapping shall be used that maps characters in the range "a" to "z"
(U+0061 to U+007A) to the corresponding characters in the range "A" to "Z" (U+0041 to U+005A) and maps
no other characters to the latter range.

EXAMPLES "ß" (U+00DF) must not match or be mapped to "SS" (U+0053, U+0053). "ı" (U+0131) must not match or

be mapped to "I" (U+0049).

6.2 Language Tags

The ECMAScript Internationalization API identifies locales using language tags as defined by IETF BCP 47
(RFCs 5646 and 4647 or their successors), which may include extensions such as those registered through
RFC 6067. Their canonical form is specified in RFC 5646 section 4.5 or its successor.

BCP 47 language tags that meet those validity criteria of RFC 5646 section 2.2.9 that can be verified without
reference to the IANA Language Subtag Registry are considered structurally valid. All structurally valid
language tags are valid for use with the APIs defined by this standard. However, the set of locales and thus
language tags that an implementation supports with adequate localizations is implementation dependent. The
constructors Collator, NumberFormat, and DateTimeFormat map the language tags used in requests to
locales supported by their respective implementations.

6.2.1 Unicode Locale Extension Sequences

This standard uses the term “Unicode locale extension sequence” for any substring of a language tag that
starts with a separator "-" and the singleton "u" and includes the maximum sequence of following non-
singleton subtags and their preceding "-" separators.

6.2.2 IsStructurallyValidLanguageTag (locale)

The IsStructurallyValidLanguageTag abstract operation verifies that the locale argument (which must be a

String value)

© Ecma International 2013 5

• represents a well-formed BCP 47 language tag as specified in RFC 5646 section 2.1, or successor,

• does not include duplicate variant subtags, and

• does not include duplicate singleton subtags.

The abstract operation returns true if locale can be generated from the ABNF grammar in section 2.1 of the

RFC, starting with Language-Tag, and does not contain duplicate variant or singleton subtags (other than as a
private use subtag). It returns false otherwise. Terminal value characters in the grammar are interpreted as
the Unicode equivalents of the ASCII octet values given.

6.2.3 CanonicalizeLanguageTag (locale)

The CanonicalizeLanguageTag abstract operation returns the canonical and case-regularized form of the
locale argument (which must be a String value that is a structurally valid BCP 47 language tag as verified by

the IsStructurallyValidLanguageTag abstract operation). It takes the steps specified in RFC 5646 section 4.5,
or successor, to bring the language tag into canonical form, and to regularize the case of the subtags, but
does not take the steps to bring a language tag into “extlang form” and to reorder variant subtags.

The specifications for extensions to BCP 47 language tags, such as RFC 6067, may include canonicalization
rules for the extension subtag sequences they define that go beyond the canonicalization rules of RFC 5646
section 4.5. Implementations are allowed, but not required, to apply these additional rules.

6.2.4 DefaultLocale ()

The DefaultLocale abstract operation returns a String value representing the structurally valid (6.2.2) and

canonicalized (6.2.3) BCP 47 language tag for the host environment’s current locale.

6.3 Currency Codes

The ECMAScript Internationalization API identifies currencies using 3-letter currency codes as defined by ISO
4217. Their canonical form is upper case.

All well-formed 3-letter ISO 4217 currency codes are allowed. However, the set of combinations of currency
code and language tag for which localized currency symbols are available is implementation dependent.
Where a localized currency symbol is not available, the ISO 4217 currency code is used for formatting.

6.3.1 IsWellFormedCurrencyCode (currency)

The IsWellFormedCurrencyCode abstract operation verifies that the currency argument (which must be a

String value) represents a well-formed 3-letter ISO currency code. The following steps are taken:

1. Let normalized be the result of mapping currency to upper case as described in 6.1.

2. If the string length of normalized is not 3, return false.

3. If normalized contains any character that is not in the range "A" to "Z" (U+0041 to U+005A), return false.

4. Return true.

6.4 Time Zone Names

The ECMAScript Internationalization API identifies time zones using the Zone and Link names of the IANA
Time Zone Database. Their canonical form is the corresponding Zone name in the casing used in the IANA
Time Zone Database.

All registered Zone and Link names are allowed. Implementations must recognize all such names, and use
best available current and historical information about their offsets from UTC and their daylight saving time
rules in calculations. However, the set of combinations of time zone name and language tag for which
localized time zone names are available is implementation dependent.

6 © Ecma International 2013

6.4.1 IsValidTimeZoneName (timeZone)

The IsValidTimeZoneName abstract operation verifies that the timeZone argument (which must be a String

value) represents a valid Zone or Link name of the IANA Time Zone Database.

The abstract operation returns true if timeZone, converted to upper case as described in 6.1, is equal to one of

the Zone or Link names of the IANA Time Zone Database, converted to upper case as described in 6.1. It
returns false otherwise.

6.4.2 CanonicalizeTimeZoneName (timeZone)

The CanonicalizeTimeZoneName abstract operation returns the canonical and case-regularized form of the
timeZone argument (which must be a String value that is a valid time zone name as verified by the

IsValidTimeZoneName abstract operation). The following steps are taken:

1. Let ianaTimeZone be the Zone or Link name of the IANA Time Zone Database such that timeZone, converted to

upper case as described in 6.1, is equal to ianaTimeZone, converted to upper case as described in 6.1.

2. If ianaTimeZone is a Link name, then let ianaTimeZone be the corresponding Zone name as specified in the

“backward” file of the IANA Time Zone Database.

3. If ianaTimeZone is "Etc/UTC" or "Etc/GMT", then return "UTC".

4. Return ianaTimeZone.

The Intl.DateTimeFormat constructor allows this time zone name; if the time zone is not specified, the host
environment’s current time zone is used. Implementations shall support UTC and the host environment’s
current time zone (if different from UTC) in formatting.

6.4.3 DefaultTimeZone ()

The DefaultTimeZone abstract operation returns a String value representing the valid (6.4.1) and

canonicalized (6.4.2) time zone name for the host environment’s current time zone.

7 Requirements for Standard Built-in ECMAScript Objects

Unless specified otherwise in this document, the objects, functions, and constructors described in this
standard are subject to the generic requirements and restrictions specified for standard built-in ECMAScript
objects in the ECMAScript Language Specification 5.1 edition, introduction of clause 15, or successor.

8 The Intl Object

The Intl object is a standard built-in object that is the initial value of the Intl property of the global object.

The value of the [[Prototype]] internal property of the Intl object is the built-in Object prototype object specified
by the ECMAScript Language Specification.

The Intl object does not have a [[Construct]] internal property; it is not possible to use the Intl object as a
constructor with the new operator.

The Intl object does not have a [[Call]] internal property; it is not possible to invoke the Intl object as a function.

8.1 Properties of the Intl Object

The value of each of the standard built-in properties of the Intl object is a constructor. The behaviour of these
constructors is specified in the following clauses: Collator (10), NumberFormat (11), and DateTimeFormat (12).

© Ecma International 2013 7

9 Locale and Parameter Negotiation

The constructors for the objects providing locale sensitive services, Collator, NumberFormat, and
DateTimeFormat, use a common pattern to negotiate the requests represented by the locales and options
arguments against the actual capabilities of their implementations. The common behaviour is described here
in terms of internal properties describing the capabilities and of abstract operations using these internal
properties.

9.1 Internal Properties of Service Constructors

The constructors Intl.Collator, Intl.NumberFormat, and Intl.DateTimeFormat have the following internal
properties:

• [[availableLocales]] is a List that contains structurally valid (6.2.2) and canonicalized (6.2.3) BCP 47

language tags identifying the locales for which the implementation provides the functionality of the
constructed objects. Language tags on the list must not have a Unicode locale extension sequence. The
list must include the value returned by the DefaultLocale abstract operation (6.2.4), and must not include

duplicates. Implementations must include in [[availableLocales]] locales that can serve as fallbacks in the
algorithm used to resolve locales (see 9.2.5). For example, implementations that provide a "de-DE" locale

must include a "de" locale that can serve as a fallback for requests such as "de-AT" and "de-CH". For
locales that in current usage would include a script subtag (such as Chinese locales), old-style language
tags without script subtags must be included such that, for example, requests for "zh-TW" and "zh-HK"
lead to output in traditional Chinese rather than the default simplified Chinese. The ordering of the locales
within [[availableLocales]] is irrelevant.

• [[relevantExtensionKeys]] is an array of keys of the language tag extensions defined in Unicode Technical
Standard 35 that are relevant for the functionality of the constructed objects.

• [[sortLocaleData]] and [[searchLocaleData]] (for Intl.Collator) and [[localeData]] (for Intl.NumberFormat
and Intl.DateTimeFormat) are objects that have properties for each locale contained in [[availableLocales]].
The value of each of these properties must be an object that has properties for each key contained in
[[relevantExtensionKeys]]. The value of each of these properties must be a non-empty array of those
values defined in Unicode Technical Standard 35 for the given key that are supported by the
implementation for the given locale, with the first element providing the default value.

EXAMPLE An implementation of DateTimeFormat might include the language tag "th" in its [[availableLocales]]

internal property, and must (according to 12.2.3) include the key "ca" in its [[relevantExtensionKeys]] internal property. For

Thai, the "buddhist" calendar is usually the default, but an implementation might also support the calendars "gregory",
"chinese", and "islamicc" for the locale "th". The [[localeData]] internal property would therefore at least include {"th": {ca:

["buddhist", "gregory", "chinese", "islamicc"]}}.

9.2 Abstract Operations

Where the following abstract operations take an availableLocales argument, it must be an [[availableLocales]]

List as specified in 9.1.

9.2.1 CanonicalizeLocaleList (locales)

The abstract operation CanonicalizeLocaleList takes the following steps:

1. If locales is undefined, then

a. Return a new empty List.

2. Let seen be a new empty List.

3. If locales is a String value, then

a. Let locales be a new array created as if by the expression new Array(locales) where Array is the

standard built-in constructor with that name and locales is the value of locales.

4. Let O be ToObject(locales).

5. Let lenValue be the result of calling the [[Get]] internal method of O with the argument "length".

6. Let len be ToUint32(lenValue).

7. Let k be 0.

8. Repeat, while k < len

8 © Ecma International 2013

a. Let Pk be ToString(k).

b. Let kPresent be the result of calling the [[HasProperty]] internal method of O with argument Pk.

c. If kPresent is true, then

i. Let kValue be the result of calling the [[Get]] internal method of O with argument Pk.

ii. If the type of kValue is not String or Object, then throw a TypeError exception.

iii. Let tag be ToString(kValue).

iv. If the result of calling the abstract operation IsStructurallyValidLanguageTag (defined in 6.2.2),

passing tag as the argument, is false, then throw a RangeError exception.

v. Let tag be the result of calling the abstract operation CanonicalizeLanguageTag (defined in 6.2.3),

passing tag as the argument.

vi. If tag is not an element of seen, then append tag as the last element of seen.

d. Increase k by 1.

9. Return seen.

NOTE Non-normative summary: The abstract operation interprets the locales argument as an array and copies its
elements into a List, validating the elements as structurally valid language tags and canonicalizing them, and omitting

duplicates.

NOTE Requiring kValue to be a String or Object means that the Number value NaN will not be interpreted as the
language tag "nan", which stands for Min Nan Chinese.

9.2.2 BestAvailableLocale (availableLocales, locale)

The BestAvailableLocale abstract operation compares the provided argument locale, which must be a String
value with a structurally valid and canonicalized BCP 47 language tag, against the locales in availableLocales
and returns either the longest non-empty prefix of locale that is an element of availableLocales, or undefined if

there is no such element. It uses the fallback mechanism of RFC 4647, section 3.4. The following steps are
taken:

1. Let candidate be locale.

2. Repeat

a. If availableLocales contains an element equal to candidate, then return candidate.

b. Let pos be the character index of the last occurrence of "-" (U+002D) within candidate. If that character

does not occur, return undefined.

c. If pos ≥ 2 and the character "-" occurs at index pos-2 of candidate, then decrease pos by 2.

d. Let candidate be the substring of candidate from position 0, inclusive, to position pos, exclusive.

9.2.3 LookupMatcher (availableLocales, requestedLocales)

The LookupMatcher abstract operation compares requestedLocales, which must be a List as returned by
CanonicalizeLocaleList, against the locales in availableLocales and determines the best available language to

meet the request. The following steps are taken:

1. Let i be 0.

2. Let len be the number of elements in requestedLocales.

3. Let availableLocale be undefined.

4. Repeat while i < len and availableLocale is undefined:

a. Let locale be the element of requestedLocales at 0-origined list position i.

b. Let noExtensionsLocale be the String value that is locale with all Unicode locale extension sequences

removed.

c. Let availableLocale be the result of calling the BestAvailableLocale abstract operation (defined in 9.2.2)

with arguments availableLocales and noExtensionsLocale.

d. Increase i by 1.

5. Let result be a new Record.

6. If availableLocale is not undefined, then

a. Set result.[[locale]] to availableLocale.

b. If locale and noExtensionsLocale are not the same String value, then

i. Let extension be the String value consisting of the first substring of locale that is a Unicode locale

extension sequence.

© Ecma International 2013 9

ii. Let extensionIndex be the character position of the initial "-" of the first Unicode locale extension

sequence within locale.

iii. Set result.[[extension]] to extension.

iv. Set result.[[extensionIndex]] to extensionIndex.

7. Else

a. Set result.[[locale]] to the value returned by the DefaultLocale abstract operation (defined in 6.2.4).

8. Return result.

NOTE The algorithm is based on the Lookup algorithm described in RFC 4647 section 3.4, but options specified
through Unicode locale extension sequences are ignored in the lookup. Information about such subsequences is returned
separately. The abstract operation returns a record with a [[locale]] field, whose value is the language tag of the selected
locale, which must be an element of availableLocales. If the language tag of the request locale that led to the selected
locale contained a Unicode locale extension sequence, then the returned record also contains an [[extension]] field whose
value is the first Unicode locale extension sequence, and an [[extensionIndex]] field whose value is the index of the first

Unicode locale extension sequence within the request locale language tag.

9.2.4 BestFitMatcher (availableLocales, requestedLocales)

The BestFitMatcher abstract operation compares requestedLocales, which must be a List as returned by
CanonicalizeLocaleList, against the locales in availableLocales and determines the best available language to

meet the request. The algorithm is implementation dependent, but should produce results that a typical user of
the requested locales would perceive as at least as good as those produced by the LookupMatcher abstract
operation. Options specified through Unicode locale extension sequences must be ignored by the algorithm.
Information about such subsequences is returned separately. The abstract operation returns a record with a
[[locale]] field, whose value is the language tag of the selected locale, which must be an element of
availableLocales. If the language tag of the request locale that led to the selected locale contained a Unicode

locale extension sequence, then the returned record also contains an [[extension]] field whose value is the first
Unicode locale extension sequence, and an [[extensionIndex]] field whose value is the index of the first
Unicode locale extension sequence within the request locale language tag.

9.2.5 ResolveLocale (availableLocales, requestedLocales, options, relevantExtensionKeys,
localeData)

The ResolveLocale abstract operation compares a BCP 47 language priority list requestedLocales against the
locales in availableLocales and determines the best available language to meet the request. availableLocales

and requestedLocales must be provided as List values, options as a Record.

The following steps are taken:

1. Let matcher be the value of options.[[localeMatcher]].

2. If matcher is "lookup", then

a. Let r be the result of calling the LookupMatcher abstract operation (defined in 9.2.3) with arguments

availableLocales and requestedLocales.

3. Else

a. Let r be the result of calling the BestFitMatcher abstract operation (defined in 9.2.4) with arguments

availableLocales and requestedLocales.

4. Let foundLocale be the value of r.[[locale]].

5. If r has an [[extension]] field, then

a. Let extension be the value of r.[[extension]].

b. Let extensionIndex be the value of r.[[extensionIndex]].

c. Let split be the standard built-in function object defined in ES5, 15.5.4.14.

d. Let extensionSubtags be the result of calling the [[Call]] internal method of split with extension as the this

value and an argument list containing the single item "-".

e. Let extensionSubtagsLength be the result of calling the [[Get]] internal method of extensionSubtags with

argument "length".

6. Let result be a new Record.

7. Set result.[[dataLocale]] to foundLocale.

8. Let supportedExtension be "-u".

9. Let i be 0.

10. Let len be the result of calling the [[Get]] internal method of relevantExtensionKeys with argument "length".

10 © Ecma International 2013

11. Repeat while i < len:

a. Let key be the result of calling the [[Get]] internal method of relevantExtensionKeys with argument

ToString(i).

b. Let foundLocaleData be the result of calling the [[Get]] internal method of localeData with the argument

foundLocale.

c. Let keyLocaleData be the result of calling the [[Get]] internal method of foundLocaleData with the

argument key.

d. Let value be the result of calling the [[Get]] internal method of keyLocaleData with argument "0".

e. Let supportedExtensionAddition be "".

f. Let indexOf be the standard built-in function object defined in ES5, 15.4.4.14.

g. If extensionSubtags is not undefined, then

i. Let keyPos be the result of calling the [[Call]] internal method of indexOf with extensionSubtags as

the this value and an argument list containing the single item key.

ii. If keyPos ≠ -1, then

1. If keyPos + 1 < extensionSubtagsLength and the length of the result of calling the [[Get]]

internal method of extensionSubtags with argument ToString(keyPos +1) is greater than

2, then

a. Let requestedValue be the result of calling the [[Get]] internal method of

extensionSubtags with argument ToString(keyPos + 1).

b. Let valuePos be the result of calling the [[Call]] internal method of indexOf with

keyLocaleData as the this value and an argument list containing the single item

requestedValue.

c. If valuePos ≠ -1, then

i. Let value be requestedValue.

ii. Let supportedExtensionAddition be the concatenation of "-", key, "-",

and value.

2. Else

a. Let valuePos be the result of calling the [[Call]] internal method of indexOf with

keyLocaleData as the this value and an argument list containing the single item

"true".

b. If valuePos ≠ -1, then

i. Let value be "true".

h. If options has a field [[<key>]], then

i. Let optionsValue be the value of options.[[<key>]].

ii. If the result of calling the [[Call]] internal method of indexOf with keyLocaleData as the this value

and an argument list containing the single item optionsValue is not -1, then

1. If optionsValue is not equal to value, then

a. Let value be optionsValue.

b. Let supportedExtensionAddition be "".

i. Set result.[[<key>]] to value.

j. Append supportedExtensionAddition to supportedExtension.

k. Increase i by 1.

12. If the length of supportedExtension is greater than 2, then

a. Let preExtension be the substring of foundLocale from position 0, inclusive, to position extensionIndex,

exclusive.

b. Let postExtension be the substring of foundLocale from position extensionIndex to the end of the string.

c. Let foundLocale be the concatenation of preExtension, supportedExtension, and postExtension.

13. Set result.[[locale]] to foundLocale.

14. Return result.

NOTE Non-normative summary: Two algorithms are available to match the locales: the Lookup algorithm described
in RFC 4647 section 3.4, and an implementation dependent best-fit algorithm. Independent of the locale matching
algorithm, options specified through Unicode locale extension sequences are negotiated separately, taking the caller’s
relevant extension keys and locale data as well as client-provided options into consideration. The abstract operation
returns a record with a [[locale]] field whose value is the language tag of the selected locale, and fields for each key in
relevantExtensionKeys providing the selected value for that key.

© Ecma International 2013 11

9.2.6 LookupSupportedLocales (availableLocales, requestedLocales)

The LookupSupportedLocales abstract operation returns the subset of the provided BCP 47 language priority
list requestedLocales for which availableLocales has a matching locale when using the BCP 47 Lookup algorithm.

Locales appear in the same order in the returned list as in requestedLocales. The following steps are taken:

1. Let len be the number of elements in requestedLocales.

2. Let subset be a new empty List.

3. Let k be 0.

4. Repeat while k < len

a. Let locale be the element of requestedLocales at 0-origined list position k.

b. Let noExtensionsLocale be the String value that is locale with all Unicode locale extension sequences

removed.

c. Let availableLocale be the result of calling the BestAvailableLocale abstract operation (defined in 9.2.2)

with arguments availableLocales and noExtensionsLocale.

d. If availableLocale is not undefined, then append locale to the end of subset.

e. Increment k by 1.

5. Let subsetArray be a new Array object whose elements are the same values in the same order as the elements of

subset.

6. Return subsetArray.

9.2.7 BestFitSupportedLocales (availableLocales, requestedLocales)

The BestFitSupportedLocales abstract operation returns the subset of the provided BCP 47 language priority
list requestedLocales for which availableLocales has a matching locale when using the Best Fit Matcher
algorithm. Locales appear in the same order in the returned list as in requestedLocales. The steps taken are

implementation dependent.

9.2.8 SupportedLocales (availableLocales, requestedLocales, options)

The SupportedLocales abstract operation returns the subset of the provided BCP 47 language priority list
requestedLocales for which availableLocales has a matching locale. Two algorithms are available to match the

locales: the Lookup algorithm described in RFC 4647 section 3.4, and an implementation dependent best-fit
algorithm. Locales appear in the same order in the returned list as in requestedLocales. The following steps are

taken:

1. If options is not undefined, then

a. Let options be ToObject(options).

b. Let matcher be the result of calling the [[Get]] internal method of options with argument

"localeMatcher".

c. If matcher is not undefined, then

i. Let matcher be ToString(matcher).

ii. If matcher is not "lookup" or "best fit", then throw a RangeError exception.

2. If matcher is undefined or "best fit", then

a. Let subset be the result of calling the BestFitSupportedLocales abstract operation (defined in 9.2.7) with

arguments availableLocales and requestedLocales.

3. Else

a. Let subset be the result of calling the LookupSupportedLocales abstract operation (defined in 9.2.6) with

arguments availableLocales and requestedLocales.

4. For each named own property name P of subset,

a. Let desc be the result of calling the [[GetOwnProperty]] internal method of subset with P.

b. Set desc.[[Writable]] to false.

c. Set desc.[[Configurable]] to false.

d. Call the [[DefineOwnProperty]] internal method of subset with P, desc, and true as arguments.

5. Return subset.

12 © Ecma International 2013

9.2.9 GetOption (options, property, type, values, fallback)

The GetOption abstract operation extracts the value of the property named property from the provided options

object, converts it to the required type, checks whether it is one of a List of allowed values, and fills in a fallback

value if necessary.

1. Let value be the result of calling the [[Get]] internal method of options with argument property.

2. If value is not undefined, then

a. Assert: type is "boolean" or "string".

b. If type is "boolean", then let value be ToBoolean(value).

c. If type is "string", then let value be ToString(value).

d. If values is not undefined, then

i. If values does not contain an element equal to value, then throw a RangeError exception.

e. Return value.

3. Else return fallback.

9.2.10 GetNumberOption (options, property, minimum, maximum, fallback)

The GetNumberOption abstract operation extracts a property value from the provided options object, converts
it to a Number value, checks whether it is in the allowed range, and fills in a fallback value if necessary.

1. Let value be the result of calling the [[Get]] internal method of options with argument property.

2. If value is not undefined, then

a. Let value be ToNumber(value).

b. If value is NaN or less than minimum or greater than maximum, throw a RangeError exception.

c. Return floor(value).

3. Else return fallback.

10 Collator Objects

10.1 The Intl.Collator Constructor

The Intl.Collator constructor is a standard built-in property of the Intl object. Behaviour common to all service
constructor properties of the Intl object is specified in 9.1.

10.1.1 Initializing an Object as a Collator

10.1.1.1 InitializeCollator (collator, locales, options)

The abstract operation InitializeCollator accepts the arguments collator (which must be an object), locales, and

options. It initializes collator as a Collator object.

Several steps in the algorithm use values from the following table, which associates Unicode locale extension
keys, property names, types, and allowable values:

Table 1 – Collator options settable through both extension keys and options properties

Key Property Type Values

kn numeric "boolean"

kf caseFirst "string" "upper", "lower", "false"

The following steps are taken:

1. If collator has an [[initializedIntlObject]] internal property with value true, throw a TypeError exception.

2. Set the [[initializedIntlObject]] internal property of collator to true.

© Ecma International 2013 13

3. Let requestedLocales be the result of calling the CanonicalizeLocaleList abstract operation (defined in 9.2.1) with

argument locales.

4. If options is undefined, then

a. Let options be the result of creating a new object as if by the expression new Object() where Object is

the standard built-in constructor with that name.

5. Else

a. Let options be ToObject(options).

6. Let u be the result of calling the GetOption abstract operation (defined in 9.2.9) with arguments options, "usage",

"string", a List containing the two String values "sort" and "search", and "sort".

7. Set the [[usage]] internal property of collator to u.

8. Let Collator be the standard built-in object that is the initial value of Intl.Collator.

9. If u is "sort", then let localeData be the value of the [[sortLocaleData]] internal property of Collator; else let

localeData be the value of the [[searchLocaleData]] internal property of Collator.

10. Let opt be a new Record.

11. Let matcher be the result of calling the GetOption abstract operation with arguments options, "localeMatcher",

"string", a List containing the two String values "lookup" and "best fit", and "best fit".

12. Set opt.[[localeMatcher]] to matcher.

13. For each row in Table 1, except the header row, do:

a. Let key be the name given in the Key column of the row.

b. Let value be the result of calling the GetOption abstract operation, passing as arguments options, the name

given in the Property column of the row, the string given in the Type column of the row, a List containing

the Strings given in the Values column of the row or undefined if no strings are given, and undefined.

c. If the string given in the Type column of the row is "boolean" and value is not undefined, then

i. Let value be ToString(value).

d. Set opt.[[<key>]] to value.

14. Let relevantExtensionKeys be the value of the [[relevantExtensionKeys]] internal property of Collator.

15. Let r be the result of calling the ResolveLocale abstract operation (defined in 9.2.5) with the [[availableLocales]]

internal property of Collator, requestedLocales, opt, relevantExtensionKeys, and localeData.

16. Set the [[locale]] internal property of collator to the value of r.[[locale]].

17. Let i be 0.

18. Let len be the result of calling the [[Get]] internal method of relevantExtensionKeys with argument "length".

19. Repeat while i < len:

a. Let key be the result of calling the [[Get]] internal method of relevantExtensionKeys with argument

ToString(i).

b. If key is "co", then

i. Let property be "collation".

ii. Let value be the value of r.[[co]].

iii. If value is null, then let value be "default".

c. Else use the row of Table 1 that contains the value of key in the Key column:

i. Let property be the name given in the Property column of the row.

ii. Let value be the value of r.[[<key>]].

iii. If the name given in the Type column of the row is "boolean", then let value be the result of

comparing value with "true".

d. Set the [[<property>]] internal property of collator to value.

e. Increase i by 1.

20. Let s be the result of calling the GetOption abstract operation with arguments options, "sensitivity",

"string", a List containing the four String values "base", "accent", "case", and "variant", and

undefined.

21. If s is undefined, then

a. If u is "sort", then let s be "variant".

b. Else

i. Let dataLocale be the value of r.[[dataLocale]].

ii. Let dataLocaleData be the result of calling the [[Get]] internal operation of localeData with

argument dataLocale.

iii. Let s be the result of calling the [[Get]] internal operation of dataLocaleData with argument

"sensitivity".

22. Set the [[sensitivity]] internal property of collator to s.

23. Let ip be the result of calling the GetOption abstract operation with arguments options, "ignorePunctuation",

"boolean", undefined, and false.

14 © Ecma International 2013

24. Set the [[ignorePunctuation]] internal property of collator to ip.

25. Set the [[boundCompare]] internal property of collator to undefined.

26. Set the [[initializedCollator]] internal property of collator to true.

10.1.2 The Intl.Collator Constructor Called as a Function

10.1.2.1 Intl.Collator.call (this [, locales [, options]])

When Intl.Collator is called as a function rather than as a constructor, it accepts the optional arguments

locales and options and takes the following steps:

1. If locales is not provided, then let locales be undefined.

2. If options is not provided, then let options be undefined.

3. If this is the standard built-in Intl object defined in 8 or undefined, then

a. Return the result of creating a new object as if by the expression new Intl.Collator(locales,

options), where Intl.Collator is the standard built-in constructor defined in 10.1.3.

4. Let obj be the result of calling ToObject passing the this value as the argument.

5. If the [[Extensible]] internal property of obj is false, throw a TypeError exception.

6. Call the InitializeCollator abstract operation (defined in 10.1.1.1) with arguments obj, locales, and options.

7. Return obj.

10.1.3 The Intl.Collator Constructor Used in a new Expression

10.1.3.1 new Intl.Collator ([locales [, options]])

When Intl.Collator is called as part of a new expression, it is a constructor: it initializes the newly created

object.

The [[Prototype]] internal property of the newly constructed object is set to the original Intl.Collator prototype
object, the one that is the initial value of Intl.Collator.prototype (10.2.1).

The [[Extensible]] internal property of the newly constructed object is set to true.

Collator-specific properties of the newly constructed object are set using the following steps:

1. If locales is not provided, then let locales be undefined.

2. If options is not provided, then let options be undefined.

3. Call the InitializeCollator abstract operation (defined in 10.1.1.1), passing as arguments the newly constructed

object, locales, and options.

10.2 Properties of the Intl.Collator Constructor

Besides the internal properties and the length property (whose value is 0), the Intl.Collator constructor has

the following properties:

10.2.1 Intl.Collator.prototype

The value of Intl.Collator.prototype is the built-in Intl.Collator prototype object (10.3).

This property has the attributes { [[Writable]]: false, [[Enumerable]]: false, [[Configurable]]: false }.

10.2.2 Intl.Collator.supportedLocalesOf (locales [, options])

When the supportedLocalesOf method of Intl.Collator is called, the following steps are taken:

1. If options is not provided, then let options be undefined.

2. Let availableLocales be the value of the [[availableLocales]] internal property of the standard built-in object that is

the initial value of Intl.Collator.

© Ecma International 2013 15

3. Let requestedLocales be the result of calling the CanonicalizeLocaleList abstract operation (defined in 9.2.1) with

argument locales.

4. Return the result of calling the SupportedLocales abstract operation (defined in 9.2.8) with arguments

availableLocales, requestedLocales, and options.

The value of the length property of the supportedLocalesOf method is 1.

10.2.3 Internal Properties

The value of the [[availableLocales]] internal property is implementation defined within the constraints
described in 9.1.

The value of the [[relevantExtensionKeys]] internal property is an array that must include the element "co",

may include any or all of the elements "kn" and "kf", and must not include any other elements.

NOTE Unicode Technical Standard 35 describes ten locale extension keys that are relevant to collation: "co" for
collator usage and specializations, "ka" for alternate handling, "kb" for backward second level weight, "kc" for case level,
"kn" for numeric, "kh" for hiragana quaternary, "kk" for normalization, "kf" for case first, "kr" for reordering, "ks" for collation
strength, and "vt" for variable top. Collator, however, requires that the usage is specified through the usage property of the
options object, alternate handling through the ignorePunctuation property of the options object, and case level and the
strength through the sensitivity property of the options object. The "co" key in the language tag is supported only for
collator specializations, and the keys "kb", "kh", "kk", "kr", and "vt" are not allowed in this version of the Internationalization

API. Support for the remaining keys is implementation dependent.

The values of the [[sortLocaleData]] and [[searchLocaleData]] internal properties are implementation defined
within the constraints described in 9.1 and the following additional constraints:

• The first element of [[sortLocaleData]][locale].co and [[searchLocaleData]][locale].co must be null for all
locale values.

• The values "standard" and "search" must not be used as elements in any [[sortLocaleData]][locale].co

and [[searchLocaleData]][locale].co array.

• [[searchLocaleData]][locale] must have a sensitivity property with a String value equal to "base",

"accent", "case", or "variant" for all locale values.

10.3 Properties of the Intl.Collator Prototype Object

The Intl.Collator prototype object is itself an Intl.Collator instance as specified in 10.4, whose internal

properties are set as if it had been constructed by the expression Intl.Collator.call({}) with the

standard built-in values of Intl.Collator and Function.prototype.call.

In the following descriptions of functions that are properties or [[Get]] attributes of properties of the Intl.Collator
prototype object, the phrase “this Collator object” refers to the object that is the this value for the invocation of
the function; a TypeError exception is thrown if the this value is not an object or an object that does not have
an [[initializedCollator]] internal property with value true.

10.3.1 Intl.Collator.prototype.constructor

The initial value of Intl.Collator.prototype.constructor is the built-in Intl.Collator constructor.

10.3.2 Intl.Collator.prototype.compare

This named accessor property returns a function that compares two strings according to the sort order of this
Collator object.

The value of the [[Get]] attribute is a function that takes the following steps:

1. If the [[boundCompare]] internal property of this Collator object is undefined, then:

16 © Ecma International 2013

a. Let F be a Function object, with internal properties set as specified for built-in functions in ES5, 15, or

successor, and the length property set to 2, that takes the arguments x and y and performs the following

steps:

i. If x is not provided, then let x be undefined.

ii. If y is not provided, then let y be undefined.

iii. Let X be ToString(x).

iv. Let Y be ToString(y).

v. Return the result of calling the CompareStrings abstract operation (defined below) with arguments

this, X, and Y.

b. Let bind be the standard built-in function object defined in ES5, 15.3.4.5.

c. Let bc be the result of calling the [[Call]] internal method of bind with F as the this value and an argument

List containing the single item this.

d. Set the [[boundCompare]] internal property of this Collator object to bc.

2. Return the value of the [[boundCompare]] internal property of this Collator object.

NOTE The function returned by [[Get]] is bound to this Collator object so that it can be passed directly to

Array.prototype.sort or other functions.

The value of the [[Set]] attribute is undefined.

When the CompareStrings abstract operation is called with arguments collator (which must be an object

initialized as a Collator), x and y (which must be String values), it returns a Number other than NaN that
represents the result of a locale-sensitive String comparison of x with y. The two Strings are compared in an

implementation-defined fashion. The result is intended to order String values in the sort order specified by the
effective locale and collation options computed during construction of collator, and will be negative, zero, or
positive, depending on whether x comes before y in the sort order, the Strings are equal under the sort order,
or x comes after y in the sort order, respectively. String values must be interpreted as UTF-16 code unit

sequences, and a surrogate pair (a code unit in the range 0xD800 to 0xDBFF followed by a code unit in the
range 0xDC00 to 0xDFFF) within a string must be interpreted as the corresponding code point.

The sensitivity of collator is interpreted as follows:

• base: Only strings that differ in base letters compare as unequal. Examples: a ≠ b, a = á, a = A.

• accent: Only strings that differ in base letters or accents and other diacritic marks compare as unequal.
Examples: a ≠ b, a ≠ á, a = A.

• case: Only strings that differ in base letters or case compare as unequal. Examples: a ≠ b, a = á, a ≠ A.

• variant: Strings that differ in base letters, accents and other diacritic marks, or case compare as unequal.
Other differences may also be taken into consideration. Examples: a ≠ b, a ≠ á, a ≠ A.

NOTE In some languages, certain letters with diacritic marks are considered base letters. For example, in Swedish,

“ö” is a base letter that’s different from “o”.

If the collator is set to ignore punctuation, then strings that differ only in punctuation compare as equal.

For the interpretation of options settable through extension keys, see Unicode Technical Standard 35.

The CompareStrings abstract operation with any given collator argument, if considered as a function of the
remaining two arguments x and y, must be a consistent comparison function (as defined in ES5, 15.4.4.11) on

the set of all Strings.

The actual return values are implementation-defined to permit implementers to encode additional information
in the value. The method is required to return 0 when comparing Strings that are considered canonically
equivalent by the Unicode standard.

NOTE 1 It is recommended that the CompareStrings abstract operation be implemented following Unicode Technical
Standard 10, Unicode Collation Algorithm (available at http://unicode.org/reports/tr10/), using tailorings for the effective
locale and collation options of collator. It is recommended that implementations use the tailorings provided by the Common

Locale Data Repository (available at http://cldr.unicode.org/).

http://unicode.org/reports/tr10/
http://cldr.unicode.org/

© Ecma International 2013 17

NOTE 2 Applications should not assume that the behaviour of the CompareStrings abstract operation for Collator

instances with the same resolved options will remain the same for different versions of the same implementation.

10.3.3 Intl.Collator.prototype.resolvedOptions ()

This function provides access to the locale and collation options computed during initialization of the object.

The function returns a new object whose properties and attributes are set as if constructed by an object literal
assigning to each of the following properties the value of the corresponding internal property of this Collator
object (see 10.4): locale, usage, sensitivity, ignorePunctuation, collation, as well as those properties shown in

Table 1 whose keys are included in the [[relevantExtensionKeys]] internal property of the standard built-in
object that is the initial value of Intl.Collator.

10.4 Properties of Intl.Collator Instances

Intl.Collator instances inherit properties from the Intl.Collator prototype object. Their [[Class]] internal property
value is "Object".

Intl.Collator instances and other objects that have been successfully initialized as a Collator have
[[initializedIntlObject]] and [[initializedCollator]] internal properties whose values are true.

Objects that have been successfully initialized as a Collator also have several internal properties that are
computed by the constructor:

• [[locale]] is a String value with the language tag of the locale whose localization is used for collation.

• [[usage]] is one of the String values "sort" or "search", identifying the collator usage.

• [[sensitivity]] is one of the String values "base", "accent", "case", or "variant", identifying the

collator’s sensitivity.

• [[ignorePunctuation]] is a Boolean value, specifying whether punctuation should be ignored in
comparisons.

• [[collation]] is a String value with the “type” given in Unicode Technical Standard 35 for the collation,
except that the values "standard" and "search" are not allowed, while the value "default" is allowed.

Objects that have been successfully initialized as a Collator also have the following internal properties if the
key corresponding to the name of the internal property in Table 1 is included in the [[relevantExtensionKeys]]
internal property of Intl.Collator:

• [[numeric]] is a Boolean value, specifying whether numeric sorting is used.

• [[caseFirst]] is a String value; allowed values are specified in Table 1.

Finally, objects that have been successfully initialized as a Collator have a [[boundCompare]] internal property
that caches the function returned by the compare accessor (10.3.2).

11 NumberFormat Objects

11.1 The Intl.NumberFormat Constructor

The NumberFormat constructor is a standard built-in property of the Intl object. Behaviour common to all
service constructor properties of the Intl object is specified in 9.1.

11.1.1 Initializing an Object as a NumberFormat

11.1.1.1 InitializeNumberFormat (numberFormat, locales, options)

The abstract operation InitializeNumberFormat accepts the arguments numberFormat (which must be an

object), locales, and options. It initializes numberFormat as a NumberFormat object.

18 © Ecma International 2013

The following steps are taken:

1. If numberFormat has an [[initializedIntlObject]] internal property with value true, throw a TypeError exception.

2. Set the [[initializedIntlObject]] internal property of numberFormat to true.

3. Let requestedLocales be the result of calling the CanonicalizeLocaleList abstract operation (defined in 9.2.1) with

argument locales.

4. If options is undefined, then

a. Let options be the result of creating a new object as if by the expression new Object() where Object is

the standard built-in constructor with that name.

5. Else

a. Let options be ToObject(options).

6. Let opt be a new Record.

7. Let matcher be the result of calling the GetOption abstract operation (defined in 9.2.9) with the arguments options,

"localeMatcher", "string", a List containing the two String values "lookup" and "best fit", and

"best fit".

8. Set opt.[[localeMatcher]] to matcher.

9. Let NumberFormat be the standard built-in object that is the initial value of Intl.NumberFormat.

10. Let localeData be the value of the [[localeData]] internal property of NumberFormat.

11. Let r be the result of calling the ResolveLocale abstract operation (defined in 9.2.5) with the [[availableLocales]]

internal property of NumberFormat, requestedLocales, opt, the [[relevantExtensionKeys]] internal property of

NumberFormat, and localeData.

12. Set the [[locale]] internal property of numberFormat to the value of r.[[locale]].

13. Set the [[numberingSystem]] internal property of numberFormat to the value of r.[[nu]].

14. Let dataLocale be the value of r.[[dataLocale]].

15. Let s be the result of calling the GetOption abstract operation with the arguments options, "style", "string", a

List containing the three String values "decimal", "percent", and "currency", and "decimal".

16. Set the [[style]] internal property of numberFormat to s.

17. Let c be the result of calling the GetOption abstract operation with the arguments options, "currency",

"string", undefined, and undefined.

18. If c is not undefined, then

a. If the result of calling the IsWellFormedCurrencyCode abstract operation (defined in 6.3.1) with argument c

is false, then throw a RangeError exception.

19. If s is "currency" and c is undefined, throw a TypeError exception.

20. If s is "currency", then

a. Let c be the result of converting c to upper case as specified in 6.1.

b. Set the [[currency]] internal property of numberFormat to c.

c. Let cDigits be the result of calling the CurrencyDigits abstract operation (defined below) with argument c.

21. Let cd be the result of calling the GetOption abstract operation with the arguments options, "currencyDisplay",

"string", a List containing the three String values "code", "symbol", and "name", and "symbol".

22. If s is "currency", then set the [[currencyDisplay]] internal property of numberFormat to cd.

23. Let mnid be the result of calling the GetNumberOption abstract operation (defined in 9.2.10) with arguments

options, "minimumIntegerDigits", 1, 21, and 1.

24. Set the [[minimumIntegerDigits]] internal property of numberFormat to mnid.

25. If s is "currency", then let mnfdDefault be cDigits; else let mnfdDefault be 0.

26. Let mnfd be the result of calling the GetNumberOption abstract operation with arguments options,

"minimumFractionDigits", 0, 20, and mnfdDefault.

27. Set the [[minimumFractionDigits]] internal property of numberFormat to mnfd.

28. If s is "currency", then let mxfdDefault be max(mnfd, cDigits); else if s is "percent", then let mxfdDefault be

max(mnfd, 0); else let mxfdDefault be max(mnfd, 3).

29. Let mxfd be the result of calling the GetNumberOption abstract operation with arguments options,

"maximumFractionDigits", mnfd, 20, and mxfdDefault.

30. Set the [[maximumFractionDigits]] internal property of numberFormat to mxfd.

31. Let mnsd be the result of calling the [[Get]] internal method of options with argument

"minimumSignificantDigits".

32. Let mxsd be the result of calling the [[Get]] internal method of options with argument

"maximumSignificantDigits".

33. If mnsd is not undefined or mxsd is not undefined, then:

a. Let mnsd be the result of calling the GetNumberOption abstract operation with arguments options,

"minimumSignificantDigits", 1, 21, and 1.

© Ecma International 2013 19

b. Let mxsd be the result of calling the GetNumberOption abstract operation with arguments options,

"maximumSignificantDigits", mnsd, 21, and 21.

c. Set the [[minimumSignificantDigits]] internal property of numberFormat to mnsd, and the

[[maximumSignificantDigits]] internal property of numberFormat to mxsd.

34. Let g be the result of calling the GetOption abstract operation with the arguments options, "useGrouping",

"boolean", undefined, and true.

35. Set the [[useGrouping]] internal property of numberFormat to g.

36. Let dataLocaleData be the result of calling the [[Get]] internal method of localeData with argument dataLocale.

37. Let patterns be the result of calling the [[Get]] internal method of dataLocaleData with argument "patterns".

38. Assert: patterns is an object (see 11.2.3).

39. Let stylePatterns be the result of calling the [[Get]] internal method of patterns with argument s.

40. Set the [[positivePattern]] internal property of numberFormat to the result of calling the [[Get]] internal method of

stylePatterns with the argument "positivePattern".

41. Set the [[negativePattern]] internal property of numberFormat to the result of calling the [[Get]] internal method of

stylePatterns with the argument "negativePattern".

42. Set the [[boundFormat]] internal property of numberFormat to undefined.

43. Set the [[initializedNumberFormat]] internal property of numberFormat to true.

When the CurrencyDigits abstract operation is called with an argument currency (which must be an upper case

String value), the following steps are taken:

1. If the ISO 4217 currency and funds code list contains currency as an alphabetic code, then return the minor unit

value corresponding to the currency from the list; else return 2.

11.1.2 The Intl.NumberFormat Constructor Called as a Function

11.1.2.1 Intl.NumberFormat.call (this [, locales [, options]])

When Intl.NumberFormat is called as a function rather than as a constructor, it accepts the optional

arguments locales and options and takes the following steps:

1. If locales is not provided, then let locales be undefined.

2. If options is not provided, then let options be undefined.

3. If this is the standard built-in Intl object defined in 8 or undefined, then

a. Return the result of creating a new object as if by the expression new Intl.NumberFormat(locales,

options), where Intl.NumberFormat is the standard built-in constructor defined in 11.1.3.

4. Let obj be the result of calling ToObject passing the this value as the argument.

5. If the [[Extensible]] internal property of obj is false, throw a TypeError exception.

6. Call the InitializeNumberFormat abstract operation (defined in 11.1.1.1) with arguments obj, locales, and options.

7. Return obj.

11.1.3 The Intl.NumberFormat Constructor Used in a new Expression

11.1.3.1 new Intl.NumberFormat ([locales [, options]])

When Intl.NumberFormat is called as part of a new expression, it is a constructor: it initializes the newly

created object.

The [[Prototype]] internal property of the newly constructed object is set to the original Intl.NumberFormat
prototype object, the one that is the initial value of Intl.NumberFormat.prototype (11.2.1).

The [[Extensible]] internal property of the newly constructed object is set to true.

NumberFormat-specific properties of the newly constructed object are set using the following steps:

1. If locales is not provided, then let locales be undefined.

2. If options is not provided, then let options be undefined.

3. Call the InitializeNumberFormat abstract operation (defined in 11.1.1.1), passing as arguments the newly constructed

object, locales, and options.

20 © Ecma International 2013

11.2 Properties of the Intl.NumberFormat Constructor

Besides the internal properties and the length property (whose value is 0), the Intl.NumberFormat

constructor has the following properties:

11.2.1 Intl.NumberFormat.prototype

The value of Intl.NumberFormat.prototype is the built-in Intl.NumberFormat prototype object (11.3).

This property has the attributes { [[Writable]]: false, [[Enumerable]]: false, [[Configurable]]: false }.

11.2.2 Intl.NumberFormat.supportedLocalesOf (locales [, options])

When the supportedLocalesOf method of Intl.NumberFormat is called, the following steps are taken:

1. If options is not provided, then let options be undefined.

2. Let availableLocales be the value of the [[availableLocales]] internal property of the standard built-in object that is

the initial value of Intl.NumberFormat.

3. Let requestedLocales be the result of calling the CanonicalizeLocaleList abstract operation (defined in 9.2.1) with

argument locales.

4. Return the result of calling the SupportedLocales abstract operation (defined in 9.2.8) with arguments

availableLocales, requestedLocales, and options.

The value of the length property of the supportedLocalesOf method is 1.

11.2.3 Internal Properties

The value of the [[availableLocales]] internal property is implementation defined within the constraints
described in 9.1.

The value of the [[relevantExtensionKeys]] internal property is ["nu"].

NOTE Unicode Technical Standard 35 describes two locale extension keys that are relevant to number formatting,
"nu" for numbering system and "cu" for currency. Intl.NumberFormat, however, requires that the currency of a currency

format is specified through the currency property in the options objects.

The value of the [[localeData]] internal property is implementation defined within the constraints described in
9.1 and the following additional constraints:

• The array that is the value of the "nu" property of any locale property of [[localeData]] must not include the
values "native", "traditio", or "finance".

• [[localeData]][locale] must have a patterns property for all locale values. The value of this property must
be an object, which must have properties with the names of the three number format styles: "decimal",

"percent", and "currency". Each of these properties in turn must be an object with the properties

positivePattern and negativePattern. The value of these properties must be string values that contain a
substring "{number}"; the values within the currency property must also contain a substring

"{currency}". The pattern strings must not contain any characters in the General Category “Number,

decimal digit” as specified by the Unicode Standard.

NOTE It is recommended that implementations use the locale data provided by the Common Locale Data Repository

(available at http://cldr.unicode.org/).

11.3 Properties of the Intl.NumberFormat Prototype Object

The Intl.NumberFormat prototype object is itself an Intl.NumberFormat instance as specified in 11.4, whose

internal properties are set as if it had been constructed by the expression Intl.NumberFormat.call({})

with the standard built-in values of Intl.NumberFormat and Function.prototype.call.

http://cldr.unicode.org/

© Ecma International 2013 21

In the following descriptions of functions that are properties or [[Get]] attributes of properties of the
Intl.NumberFormat prototype object, the phrase “this NumberFormat object” refers to the object that is the this
value for the invocation of the function; a TypeError exception is thrown if the this value is not an object or an
object that does not have an [[initializedNumberFormat]] internal property with value true.

11.3.1 Intl.NumberFormat.prototype.constructor

The initial value of Intl.NumberFormat.prototype.constructor is the built-in Intl.NumberFormat

constructor.

11.3.2 Intl.NumberFormat.prototype.format

This named accessor property returns a function that formats a number according to the effective locale and
the formatting options of this NumberFormat object.

The value of the [[Get]] attribute is a function that takes the following steps:

1. If the [[boundFormat]] internal property of this NumberFormat object is undefined, then:

a. Let F be a Function object, with internal properties set as specified for built-in functions in ES5, 15, or

successor, and the length property set to 1, that takes the argument value and performs the following steps:

i. If value is not provided, then let value be undefined.

ii. Let x be ToNumber(value).

iii. Return the result of calling the FormatNumber abstract operation (defined below) with arguments

this and x.

b. Let bind be the standard built-in function object defined in ES5, 15.3.4.5.

c. Let bf be the result of calling the [[Call]] internal method of bind with F as the this value and an argument

list containing the single item this.

d. Set the [[boundFormat]] internal property of this NumberFormat object to bf.

2. Return the value of the [[boundFormat]] internal property of this NumberFormat object.

NOTE The function returned by [[Get]] is bound to this NumberFormat object so that it can be passed directly to

Array.prototype.map or other functions.

The value of the [[Set]] attribute is undefined.

When the FormatNumber abstract operation is called with arguments numberFormat (which must be an object
initialized as a NumberFormat) and x (which must be a Number value), it returns a String value representing x

according to the effective locale and the formatting options of numberFormat.

The computations rely on String values and locations within numeric strings that are dependent upon the
implementation and the effective locale of numberFormat (“ILD”) or upon the implementation, the effective
locale, and the numbering system of numberFormat (“ILND”). The ILD and ILND Strings mentioned, other than

those for currency names, must not contain any characters in the General Category “Number, decimal digit”
as specified by the Unicode Standard.

NOTE It is recommended that implementations use the locale data provided by the Common Locale Data Repository

(available at http://cldr.unicode.org/).

The following steps are taken:

1. Let negative be false.

2. If the result of isFinite(x) is false, then

a. If x is NaN, then let n be an ILD String value indicating the NaN value.

b. Else

i. Let n be an ILD String value indicating infinity.

ii. If x < 0, then let negative be true.

3. Else

a. If x < 0, then

i. Let negative be true.

ii. Let x be -x.

http://cldr.unicode.org/

22 © Ecma International 2013

b. If the value of the [[style]] internal property of numberFormat is "percent", let x be 100 × x.

c. If the [[minimumSignificantDigits]] and [[maximumSignificantDigits]] internal properties of

numberFormat are present, then

i. Let n be the result of calling the ToRawPrecision abstract operation (defined below), passing as

arguments x and the values of the [[minimumSignificantDigits]] and

[[maximumSignificantDigits]] internal properties of numberFormat.

d. Else

i. Let n be the result of calling the ToRawFixed abstract operation (defined below), passing as

arguments x and the values of the [[minimumIntegerDigits]], [[minimumFractionDigits]], and

[[maximumFractionDigits]] internal properties of numberFormat.

e. If the value of the [[numberingSystem]] internal property of numberFormat matches one of the values in

the “Numbering System” column of Table 2 below, then

i. Let digits be an array whose 10 String valued elements are the UTF-16 string representations of

the 10 digits specified in the “Digits” column of Table 2 in the row containing the value of the

[[numberingSystem]] internal property.

ii. Replace each digit in n with the value of digits[digit].

f. Else use an implementation dependent algorithm to map n to the appropriate representation of n in the given

numbering system.

g. If n contains the character ".", then replace it with an ILND String representing the decimal separator.

h. If the value of the [[useGrouping]] internal property of numberFormat is true, then insert an ILND String

representing a grouping separator into an ILND set of locations within the integer part of n.

4. If negative is true, then let result be the value of the [[negativePattern]] internal property of numberFormat; else let

result be the value of the [[positivePattern]] internal property of numberFormat.

5. Replace the substring "{number}" within result with n.

6. If the value of the [[style]] internal property of numberFormat is "currency", then:

a. Let currency be the value of the [[currency]] internal property of numberFormat.

b. If the value of the [[currencyDisplay]] internal property of numberFormat is "code", then let cd be

currency.

c. Else if the value of the [[currencyDisplay]] internal property of numberFormat is "symbol", then let cd be

an ILD string representing currency in short form. If the implementation does not have such a

representation of currency, then use currency itself.

d. Else if the value of the [[currencyDisplay]] internal property of numberFormat is "name", then let cd be an

ILD string representing currency in long form. If the implementation does not have such a representation of

currency, then use currency itself.

e. Replace the substring "{currency}" within result with cd.

7. Return result.

When the ToRawPrecision abstract operation is called with arguments x (which must be a finite non-negative

number), minPrecision, and maxPrecision (both must be integers between 1 and 21) the following steps are

taken:

1. Let p be maxPrecision.

2. If x = 0, then

a. Let m be the String consisting of p occurrences of the character "0".

b. Let e be 0.

3. Else

a. Let e and n be integers such that 10p–1 ≤ n < 10p and for which the exact mathematical value of n × 10e–p+1 –

x is as close to zero as possible. If there are two such sets of e and n, pick the e and n for which n × 10e–p+1 is

larger.

b. Let m be the String consisting of the digits of the decimal representation of n (in order, with no leading

zeroes).

4. If e ≥ p, then

a. Return the concatenation of m and e-p+1 occurrences of the character "0".

5. If e = p-1, then

a. Return m.

6. If e ≥ 0, then

a. Let m be the concatenation of the first e+1 characters of m, the character ".", and the remaining p–(e+1)

characters of m.

7. If e < 0, then

© Ecma International 2013 23

a. Let m be the concatenation of the String "0.", –(e+1) occurrences of the character "0", and the string m.

8. If m contains the character ".", and maxPrecision > minPrecision, then

a. Let cut be maxPrecision – minPrecision.

b. Repeat while cut > 0 and the last character of m is "0":

i. Remove the last character from m.

ii. Decrease cut by 1.

c. If the last character of m is ".", then

i. Remove the last character from m.

9. Return m.

When the ToRawFixed abstract operation is called with arguments x (which must be a finite non-negative

number), minInteger (which must be an integer between 1 and 21), minFraction, and maxFraction (which must

be integers between 0 and 20) the following steps are taken:

1. Let f be maxFraction.

2. Let n be an integer for which the exact mathematical value of n ÷ 10f – x is as close to zero as possible. If there are

two such n, pick the larger n.

3. If n = 0, let m be the String "0". Otherwise, let m be the String consisting of the digits of the decimal representation

of n (in order, with no leading zeroes).

4. If f ≠ 0, then

a. Let k be the number of characters in m.

b. If k ≤ f, then

i. Let z be the String consisting of f+1–k occurrences of the character "0".

ii. Let m be the concatenation of Strings z and m.

iii. Let k=f+1.

c. Let a be the first k–f characters of m, and let b be the remaining f characters of m.

d. Let m be the concatenation of the three Strings a, ".", and b.

e. Let int be the number of characters in a.

5. Else let int be the number of characters in m.

6. Let cut be maxFraction – minFraction.

7. Repeat while cut > 0 and the last character of m is "0":

a. Remove the last character from m.

b. Decrease cut by 1.

8. If the last character of m is ".", then

a. Remove the last character from m.

9. If int < minInteger, then

a. Let z be the String consisting of minInteger–int occurrences of the character "0".

b. Let m be the concatenation of Strings z and m.

10. Return m.

Table 2 – Numbering systems with simple digit mappings

Numbering
System

Digits

arab U+0660 to U+0669

arabext U+06F0 to U+06F9

bali U+1B50 to U+1B59

beng U+09E6 to U+09EF

deva U+0966 to U+096F

fullwide U+FF10 to U+FF19

gujr U+0AE6 to U+0AEF

guru U+0A66 to U+0A6F

hanidec U+3007, U+4E00, U+4E8C, U+4E09, U+56DB, U+4E94, U+516D, U+4E03, U+516B,
U+4E5D

khmr U+17E0 to U+17E9

24 © Ecma International 2013

knda U+0CE6 to U+0CEF

laoo U+0ED0 to U+0ED9

latn U+0030 to U+0039

limb U+1946 to U+194F

mlym U+0D66 to U+0D6F

mong U+1810 to U+1819

mymr U+1040 to U+1049

orya U+0B66 to U+0B6F

tamldec U+0BE6 to U+0BEF

telu U+0C66 to U+0C6F

thai U+0E50 to U+0E59

tibt U+0F20 to U+0F29

11.3.3 Intl.NumberFormat.prototype.resolvedOptions ()

This function provides access to the locale and formatting options computed during initialization of the object.

The function returns a new object whose properties and attributes are set as if constructed by an object literal
assigning to each of the following properties the value of the corresponding internal property of this
NumberFormat object (see 11.4): locale, numberingSystem, style, currency, currencyDisplay,

minimumIntegerDigits, minimumFractionDigits, maximumFractionDigits, minimumSignificantDigits,
maximumSignificantDigits, and useGrouping. Properties whose corresponding internal properties are not
present are not assigned.

11.4 Properties of Intl.NumberFormat Instances

Intl.NumberFormat instances inherit properties from the Intl.NumberFormat prototype object. Their [[Class]]
internal property value is "Object".

Intl.NumberFormat instances and other objects that have been successfully initialized as a NumberFormat
have [[initializedIntlObject]] and [[initializedNumberFormat]] internal properties whose values are true.

Objects that have been successfully initialized as a NumberFormat also have several internal properties that
are computed by the constructor:

• [[locale]] is a String value with the language tag of the locale whose localization is used for formatting.

• [[numberingSystem]] is a String value with the “type” given in Unicode Technical Standard 35 for the
numbering system used for formatting.

• [[style]] is one of the String values "decimal", "currency", or "percent", identifying the number

format style used.

• [[currency]] is a String value with the currency code identifying the currency to be used if formatting with
the "currency" style. It is only present when [[style]] has the value "currency".

• [[currencyDisplay]] is one of the String values "code", "symbol", or "name", specifying whether to

display the currency as an ISO 4217 alphabetic currency code, a localized currency symbol, or a localized
currency name if formatting with the "currency" style. It is only present when [[style]] has the value

"currency".

• [[minimumIntegerDigits]] is a non-negative integer Number value indicating the minimum integer digits to
be used. Numbers will be padded with leading zeroes if necessary.

• [[minimumFractionDigits]] and [[maximumFractionDigits]] are non-negative integer Number values
indicating the minimum and maximum fraction digits to be used. Numbers will be rounded or padded with
trailing zeroes if necessary.

• [[minimumSignificantDigits]] and [[maximumSignificantDigits]] are positive integer Number values
indicating the minimum and maximum fraction digits to be shown. Either none or both of these properties

© Ecma International 2013 25

are present; if they are, they override minimum and maximum integer and fraction digits – the formatter
uses however many integer and fraction digits are required to display the specified number of significant
digits.

• [[useGrouping]] is a Boolean value indicating whether a grouping separator should be used.

• [[positivePattern]] and [[negativePattern]] are String values as described in 11.2.3.

Finally, objects that have been successfully initialized as a NumberFormat have a [[boundFormat]] internal
property that caches the function returned by the format accessor (11.3.2).

12 DateTimeFormat Objects

12.1 The Intl.DateTimeFormat Constructor

The Intl.DateTimeFormat constructor is a standard built-in property of the Intl object. Behaviour common to all
service constructor properties of the Intl object is specified in 9.1.

12.1.1 Initializing an Object as a DateTimeFormat

12.1.1.1 InitializeDateTimeFormat (dateTimeFormat, locales, options)

The abstract operation InitializeDateTimeFormat accepts the arguments dateTimeFormat (which must be an

object), locales, and options. It initializes dateTimeFormat as a DateTimeFormat object.

Several DateTimeFormat algorithms use values from the following table, which provides property names and
allowable values for the components of date and time formats:

Table 3 – Components of date and time formats

Property Values

weekday "narrow", "short", "long"

era "narrow", "short", "long"

year "2-digit", "numeric"

month "2-digit", "numeric", "narrow", "short", "long"

day "2-digit", "numeric"

hour "2-digit", "numeric"

minute "2-digit", "numeric"

second "2-digit", "numeric"

timeZoneName "short", "long"

The following steps are taken:

1. If dateTimeFormat has an [[initializedIntlObject]] internal property with value true, throw a TypeError exception.

2. Set the [[initializedIntlObject]] internal property of dateTimeFormat to true.

3. Let requestedLocales be the result of calling the CanonicalizeLocaleList abstract operation (defined in 9.2.1) with

argument locales.

4. Let options be the result of calling the ToDateTimeOptions abstract operation (defined below) with arguments

options, "any", and "date".

5. Let opt be a new Record.

6. Let matcher be the result of calling the GetOption abstract operation (defined in 9.2.9) with arguments options,

"localeMatcher", "string", a List containing the two String values "lookup" and "best fit", and

"best fit".

7. Set opt.[[localeMatcher]] to matcher.

8. Let DateTimeFormat be the standard built-in object that is the initial value of Intl.DateTimeFormat.

26 © Ecma International 2013

9. Let localeData be the value of the [[localeData]] internal property of DateTimeFormat.

10. Let r be the result of calling the ResolveLocale abstract operation (defined in 9.2.5) with the [[availableLocales]]

internal property of DateTimeFormat, requestedLocales, opt, the [[relevantExtensionKeys]] internal property of

DateTimeFormat, and localeData.

11. Set the [[locale]] internal property of dateTimeFormat to the value of r.[[locale]].

12. Set the [[calendar]] internal property of dateTimeFormat to the value of r.[[ca]].

13. Set the [[numberingSystem]] internal property of dateTimeFormat to the value of r.[[nu]].

14. Let dataLocale be the value of r.[[dataLocale]].

15. Let tz be the result of calling the [[Get]] internal method of options with argument "timeZone".

16. If tz is not undefined, then

a. Let tz be ToString(tz).

b. If the result of calling the IsValidTimeZoneName abstract operation (defined in 6.4.1) with argument tz is

not true, then throw a RangeError exception.

c. Let tz be the result of calling the CanonicalizeTimeZoneName abstract operation (defined in 6.4.2) with

argument tz.

17. Else let tz be the result of calling the DefaultTimeZone abstract operation (defined in 6.4.3).

18. Set the [[timeZone]] internal property of dateTimeFormat to tz.

19. Let opt be a new Record.

20. For each row of Table 3, except the header row, do:

a. Let prop be the name given in the Property column of the row.

b. Let value be the result of calling the GetOption abstract operation, passing as argument options, the name

given in the Property column of the row, "string", a List containing the strings given in the Values

column of the row, and undefined.

c. Set opt.[[<prop>]] to value.

21. Let dataLocaleData be the result of calling the [[Get]] internal method of localeData with argument dataLocale.

22. Let formats be the result of calling the [[Get]] internal method of dataLocaleData with argument "formats".

23. Let matcher be the result of calling the GetOption abstract operation with arguments options, "formatMatcher",

"string", a List containing the two String values "basic" and "best fit", and "best fit".

24. If matcher is "basic", then

a. Let bestFormat be the result of calling the BasicFormatMatcher abstract operation (defined below) with opt

and formats.

25. Else

a. Let bestFormat be the result of calling the BestFitFormatMatcher abstract operation (defined below) with

opt and formats.

26. For each row in Table 3, except the header row, do

a. Let prop be the name given in the Property column of the row.

b. Let pDesc be the result of calling the [[GetOwnProperty]] internal method of bestFormat with argument

prop.

c. If pDesc is not undefined, then

i. Let p be the result of calling the [[Get]] internal method of bestFormat with argument prop.

ii. Set the [[<prop>]] internal property of dateTimeFormat to p.

27. Let hr12 be the result of calling the GetOption abstract operation with arguments options, "hour12", "boolean",

undefined, and undefined.

28. If dateTimeFormat has an internal property [[hour]], then

a. If hr12 is undefined, then let hr12 be the result of calling the [[Get]] internal method of dataLocaleData

with argument "hour12".

b. Set the [[hour12]] internal property of dateTimeFormat to hr12.

c. If hr12 is true, then

i. Let hourNo0 be the result of calling the [[Get]] internal method of dataLocaleData with argument

"hourNo0".

ii. Set the [[hourNo0]] internal property of dateTimeFormat to hourNo0.

iii. Let pattern be the result of calling the [[Get]] internal method of bestFormat with argument

"pattern12".

d. Else

i. Let pattern be the result of calling the [[Get]] internal method of bestFormat with argument

"pattern".

29. Else

a. Let pattern be the result of calling the [[Get]] internal method of bestFormat with argument "pattern".

30. Set the [[pattern]] internal property of dateTimeFormat to pattern.

© Ecma International 2013 27

31. Set the [[boundFormat]] internal property of dateTimeFormat to undefined.

32. Set the [[initializedDateTimeFormat]] internal property of dateTimeFormat to true.

When the ToDateTimeOptions abstract operation is called with arguments options, required, and defaults, the

following steps are taken:

1. If options is undefined, then let options be null, else let options be ToObject(options).

2. Let create be the standard built-in function object defined in ES5, 15.2.3.5.

3. Let options be the result of calling the [[Call]] internal method of create with undefined as the this value and an

argument list containing the single item options.

4. Let needDefaults be true.

5. If required is "date" or "any", then

a. For each of the property names "weekday", "year", "month", "day":

i. If the result of calling the [[Get]] internal method of options with the property name is not

undefined, then let needDefaults be false.

6. If required is "time" or "any", then

a. For each of the property names "hour", "minute", "second":

i. If the result of calling the [[Get]] internal method of options with the property name is not

undefined, then let needDefaults be false.

7. If needDefaults is true and defaults is either "date" or "all", then

a. For each of the property names "year", "month", "day":

i. Call the [[DefineOwnProperty]] internal method of options with the property name, Property

Descriptor {[[Value]]: "numeric", [[Writable]]: true, [[Enumerable]]: true, [[Configurable]]:

true}, and false.

8. If needDefaults is true and defaults is either "time" or "all", then

a. For each of the property names "hour", "minute", "second":

i. Call the [[DefineOwnProperty]] internal method of options with the property name, Property

Descriptor {[[Value]]: "numeric", [[Writable]]: true, [[Enumerable]]: true, [[Configurable]]:

true}, and false.

9. Return options.

When the BasicFormatMatcher abstract operation is called with two arguments options and formats, the

following steps are taken:

1. Let removalPenalty be 120.

2. Let additionPenalty be 20.

3. Let longLessPenalty be 8.

4. Let longMorePenalty be 6.

5. Let shortLessPenalty be 6.

6. Let shortMorePenalty be 3.

7. Let bestScore be -Infinity.

8. Let bestFormat be undefined.

9. Let i be 0.

10. Let len be the result of calling the [[Get]] internal method of formats with argument "length".

11. Repeat while i < len:

a. Let format be the result of calling the [[Get]] internal method of formats with argument ToString(i).

b. Let score be 0.

c. For each property shown in Table 3:

i. Let optionsProp be options.[[<property>]].

ii. Let formatPropDesc be the result of calling the [[GetOwnProperty]] internal method of format

with argument property.

iii. If formatPropDesc is not undefined, then

1. Let formatProp be the result of calling the [[Get]] internal method of format with argument

property.

iv. Else let formatProp be undefined.

v. If optionsProp is undefined and formatProp is not undefined, then decrease score by

additionPenalty.

vi. Else if optionsProp is not undefined and formatProp is undefined, then decrease score by

removalPenalty.

28 © Ecma International 2013

vii. Else if optionsProp ≠ formatProp, then

1. Let values be the array ["2-digit", "numeric", "narrow", "short",

"long"].

2. Let optionsPropIndex be the index of optionsProp within values.

3. Let formatPropIndex be the index of formatProp within values.

4. Let delta be max(min(formatPropIndex - optionsPropIndex, 2), -2).

5. If delta = 2, decrease score by longMorePenalty.

6. Else if delta = 1, decrease score by shortMorePenalty.

7. Else if delta = -1, decrease score by shortLessPenalty.

8. Else if delta = -2, decrease score by longLessPenalty.

d. If score > bestScore, then

i. Let bestScore be score.

ii. Let bestFormat be format.

e. Increase i by 1.

12. Return bestFormat.

When the BestFitFormatMatcher abstract operation is called with two arguments options and formats, it

performs implementation dependent steps, which should return a set of component representations that a
typical user of the selected locale would perceive as at least as good as the one returned by
BasicFormatMatcher.

12.1.2 The Intl.DateTimeFormat Constructor Called as a Function

12.1.2.1 Intl.DateTimeFormat.call (this [, locales [, options]])

When Intl.DateTimeFormat is called as a function rather than as a constructor, it accepts the optional

arguments locales and options and takes the following steps:

1. If locales is not provided, then let locales be undefined.

2. If options is not provided, then let options be undefined.

3. If this is the standard built-in Intl object defined in 8 or undefined, then

a. Return the result of creating a new object as if by the expression new

Intl.DateTimeFormat(locales, options), where Intl.DateTimeFormat is the standard

built-in constructor defined in 12.1.3.

4. Let obj be the result of calling ToObject passing the this value as the argument.

5. If the [[Extensible]] internal property of obj is false, throw a TypeError exception.

6. Call the InitializeDateTimeFormat abstract operation (defined in 12.1.1.1) with arguments obj, locales, and options.

7. Return obj.

12.1.3 The Intl.DateTimeFormat Constructor Used in a new Expression

12.1.3.1 new Intl.DateTimeFormat ([locales [, options]])

When Intl.DateTimeFormat is called as part of a new expression, it is a constructor: it initializes the newly

created object.

The [[Prototype]] internal property of the newly constructed object is set to the original Intl.DateTimeFormat
prototype object, the one that is the initial value of Intl.DateTimeFormat.prototype (12.2.1).

The [[Extensible]] internal property of the newly constructed object is set to true.

DateTimeFormat-specific properties of the newly constructed object are set using the following steps:

1. If locales is not provided, then let locales be undefined.

2. If options is not provided, then let options be undefined.

3. Call the InitializeDateTimeFormat abstract operation (defined in 12.1.1.1), passing as arguments the newly

constructed object, locales, and options.

© Ecma International 2013 29

12.2 Properties of the Intl.DateTimeFormat Constructor

Besides the internal properties and the length property (whose value is 0), the Intl.DateTimeFormat

constructor has the following properties:

12.2.1 Intl.DateTimeFormat.prototype

The value of Intl.DateTimeFormat.prototype is the built-in Intl.DateTimeFormat prototype object (12.3).

This property has the attributes { [[Writable]]: false, [[Enumerable]]: false, [[Configurable]]: false }.

12.2.2 Intl.DateTimeFormat.supportedLocalesOf (locales [, options])

When the supportedLocalesOf method of Intl.DateTimeFormat is called, the following steps are taken:

1. If options is not provided, then let options be undefined.

2. Let availableLocales be the value of the [[availableLocales]] internal property of the standard built-in object that is

the initial value of Intl.DateTimeFormat.

3. Let requestedLocales be the result of calling the CanonicalizeLocaleList abstract operation (defined in 9.2.1) with

argument locales.

4. Return the result of calling the SupportedLocales abstract operation (defined in 9.2.8) with arguments

availableLocales, requestedLocales, and options.

The value of the length property of the supportedLocalesOf method is 1.

12.2.3 Internal Properties

The value of the [[availableLocales]] internal property is implementation defined within the constraints
described in 9.1.

The value of the [[relevantExtensionKeys]] internal property is ["ca", "nu"].

NOTE Unicode Technical Standard 35 describes three locale extension keys that are relevant to date and time
formatting, "ca" for calendar, "tz" for time zone, and implicitly "nu" for the numbering system of the number format used for
numbers within the date format. DateTimeFormat, however, requires that the time zone is specified through the timeZone

property in the options objects.

The value of the [[localeData]] internal property is implementation defined within the constraints described in
9.1 and the following additional constraints:

• The array that is the value of the "nu" property of any locale property of [[localeData]] must not include the
values "native", "traditio", or "finance".

• [[localeData]][locale] must have hour12 and hourNo0 properties with Boolean values for all locale values.

• [[localeData]][locale] must have a formats property for all locale values. The value of this property must be
an array of objects, each of which has a subset of the properties shown in Table 3, where each property
must have one of the values specified for the property in Table 3. Multiple objects in an array may use the
same subset of the properties as long as they have different values for the properties. The following
subsets must be available for each locale:

• weekday, year, month, day, hour, minute, second

• weekday, year, month, day

• year, month, day

• year, month

• month, day

• hour, minute, second

• hour, minute
Each of the objects must also have a pattern property, whose value is a String value that contains for
each of the date and time format component properties of the object a substring starting with "{", followed
by the name of the property, followed by "}". If the object has an hour property, it must also have a

30 © Ecma International 2013

pattern12 property, whose value is a String value that, in addition to the substrings of the pattern property,
contains a substring "{ampm}".

EXAMPLE An implementation might include the following object as part of its English locale data: {hour: "numeric",

minute: "2-digit", second: "2-digit", pattern: "{hour}:{minute}:{second}", pattern12: "{hour}:{minute}:{second} {ampm}"}.

NOTE It is recommended that implementations use the locale data provided by the Common Locale Data Repository

(available at http://cldr.unicode.org/).

12.3 Properties of the Intl.DateTimeFormat Prototype Object

The Intl.DateTimeFormat prototype object is itself an Intl.DateTimeFormat instance as specified in 12.4,

whose internal properties are set as if it had been constructed by the expression
Intl.DateTimeFormat.call({}) with the standard built-in values of Intl.DateTimeFormat and

Function.prototype.call.

In the following descriptions of functions that are properties or [[Get]] attributes of properties of the
Intl.DateTimeFormat prototype object, the phrase “this DateTimeFormat object” refers to the object that is the
this value for the invocation of the function; a TypeError exception is thrown if the this value is not an object
or an object that does not have an [[initializedDateTimeFormat]] internal property with value true.

12.3.1 Intl.DateTimeFormat.prototype.constructor

The initial value of Intl.DateTimeFormat.prototype.constructor is the built-in Intl.DateTimeFormat

constructor.

12.3.2 Intl.DateTimeFormat.prototype.format

This named accessor property returns a function that formats a date according to the effective locale and the
formatting options of this DateTimeFormat object.

The value of the [[Get]] attribute is a function that takes the following steps:

1. If the [[boundFormat]] internal property of this DateTimeFormat object is undefined, then:

a. Let F be a Function object, with internal properties set as specified for built-in functions in ES5, 15, or

successor, and the length property set to 0, that takes the argument date and performs the following steps:

i. If date is not provided or is undefined, then let x be the result as if by the expression

Date.now() where Date.now is the standard built-in function defined in ES5, 15.9.4.4.

ii. Else let x be ToNumber(date).

iii. Return the result of calling the FormatDateTime abstract operation (defined below) with

arguments this and x.

b. Let bind be the standard built-in function object defined in ES5, 15.3.4.5.

c. Let bf be the result of calling the [[Call]] internal method of bind with F as the this value and an argument

list containing the single item this.

d. Set the [[boundFormat]] internal property of this DateTimeFormat object to bf.

2. Return the value of the [[boundFormat]] internal property of this DateTimeFormat object.

NOTE The function returned by [[Get]] is bound to this DateTimeFormat object so that it can be passed directly to

Array.prototype.map or other functions.

The value of the [[Set]] attribute is undefined.

When the FormatDateTime abstract operation is called with arguments dateTimeFormat (which must be an
object initialized as a DateTimeFormat) and x (which must be a Number value), it returns a String value
representing x (interpreted as a time value as specified in ES5, 15.9.1.1) according to the effective locale and

the formatting options of dateTimeFormat.

1. If x is not a finite Number, then throw a RangeError exception.

2. Let locale be the value of the [[locale]] internal property of dateTimeFormat.

http://cldr.unicode.org/

© Ecma International 2013 31

3. Let nf be the result of creating a new NumberFormat object as if by the expression new

Intl.NumberFormat([locale], {useGrouping: false}) where Intl.NumberFormat is the standard

built-in constructor defined in 11.1.3.

4. Let nf2 be the result of creating a new NumberFormat object as if by the expression new

Intl.NumberFormat([locale], {minimumIntegerDigits: 2, useGrouping: false}) where

Intl.NumberFormat is the standard built-in constructor defined in 11.1.3.

5. Let tm be the result of calling the ToLocalTime abstract operation (defined below) with x, the value of the

[[calendar]] internal property of dateTimeFormat, and the value of the [[timeZone]] internal property of

dateTimeFormat.

6. Let result be the value of the [[pattern]] internal property of dateTimeFormat.

7. For each row of Table 3, except the header row, do:

a. If dateTimeFormat has an internal property with the name given in the Property column of the row, then:

i. Let p be the name given in the Property column of the row.

ii. Let f be the value of the [[<p>]] internal property of dateTimeFormat.

iii. Let v be the value of tm.[[<p>]].

iv. If p is "year" and v ≤ 0, then let v be 1 - v.

v. If p is "month", then increase v by 1.

vi. If p is "hour" and the value of the [[hour12]] internal property of dateTimeFormat is true, then

1. Let v be v modulo 12.

2. If v is equal to the value of tm.[[<p>]], then let pm be false; else let pm be true.

3. If v is 0 and the value of the [[hourNo0]] internal property of dateTimeFormat is true, then

let v be 12.

vii. If f is "numeric", then

1. Let fv be the result of calling the FormatNumber abstract operation (defined in 11.3.2) with

arguments nf and v.

viii. Else if f is "2-digit", then

1. Let fv be the result of calling the FormatNumber abstract operation with arguments nf2 and

v.

2. If the length of fv is greater than 2, let fv be the substring of fv containing the last two

characters.

ix. Else if f is "narrow", "short", or "long", then let fv be a String value representing f in the

desired form; the String value depends upon the implementation and the effective locale and

calendar of dateTimeFormat. If p is "month", then the String value may also depend on whether

dateTimeFormat has a [[day]] internal property. If p is "timeZoneName", then the String value

may also depend on the value of the [[inDST]] field of tm, and if the implementation does not have

a localized representation of f, then use f itself.

x. Replace the substring of result that consists of "{", p, and "}", with fv.

8. If dateTimeFormat has an internal property [[hour12]] whose value is true, then

a. If pm is true, then let fv be an implementation and locale dependent String value representing “post

meridiem”; else let fv be an implementation and locale dependent String value representing “ante

meridiem”.

b. Replace the substring of result that consists of "{ampm}", with fv.

9. Return result.

NOTE It is recommended that implementations use the locale and calendar dependent strings provided by the
Common Locale Data Repository (available at http://cldr.unicode.org/), and use CLDR “abbreviated” strings for

DateTimeFormat “short” strings, and CLDR “wide” strings for DateTimeFormat “long” strings.

When the ToLocalTime abstract operation is called with arguments date, calendar, and timeZone, the following

steps are taken:

1. Apply calendrical calculations on date for the given calendar and time zone to produce weekday, era, year, month,

day, hour, minute, second, and inDST values. The calculations should use best available information about the

specified calendar and time zone, including current and historical information about time zone offsets from UTC and

daylight saving time rules. If the calendar is "gregory", then the calculations must match the algorithms specified

in ES5, 15.9.1, except that calculations are not bound by the restrictions on the use of best available information on

time zones for local time zone adjustment and daylight saving time adjustment imposed by ES5, 15.9.1.7 and

15.9.1.8.

http://cldr.unicode.org/

32 © Ecma International 2013

2. Return a Record with fields [[weekday]], [[era]], [[year]], [[month]], [[day]], [[hour]], [[minute]], [[second]], and

[[inDST]], each with the corresponding calculated value.

NOTE It is recommended that implementations use the time zone information of the IANA Time Zone Database.

12.3.3 Intl.DateTimeFormat.prototype.resolvedOptions ()

This function provides access to the locale and formatting options computed during initialization of the object.

The function returns a new object whose properties and attributes are set as if constructed by an object literal
assigning to each of the following properties the value of the corresponding internal property of this
DateTimeFormat object (see 12.4): locale, calendar, numberingSystem, timeZone, hour12, weekday, era,

year, month, day, hour, minute, second, and timeZoneName. Properties whose corresponding internal
properties are not present are not assigned.

NOTE In this version of the ECMAScript Internationalization API, the timeZone property will be the name of the
default time zone if no timeZone property was provided in the options object provided to the Intl.DateTimeFormat

constructor. The previous version left the timeZone property undefined in this case.

12.4 Properties of Intl.DateTimeFormat Instances

Intl.DateTimeFormat instances inherit properties from the Intl.DateTimeFormat prototype object. Their
[[Class]] internal property value is "Object".

Intl.DateTimeFormat instances and other objects that have been successfully initialized as a DateTimeFormat
have [[initializedIntlObject]] and [[initializedDateTimeFormat]] internal properties whose values are true.

Objects that have been successfully initialized as a DateTimeFormat also have several internal properties that
are computed by the constructor:

• [[locale]] is a String value with the language tag of the locale whose localization is used for formatting.

• [[calendar]] is a String value with the “type” given in Unicode Technical Standard 35 for the calendar used
for formatting.

• [[numberingSystem]] is a String value with the “type” given in Unicode Technical Standard 35 for the
numbering system used for formatting.

• [[timeZone]] is a String value with the IANA time zone name of the time zone used for formatting.

• [[weekday]], [[era]], [[year]], [[month]], [[day]], [[hour]], [[minute]], [[second]], [[timeZoneName]] are each
either absent, indicating that the component is not used for formatting, or one of the String values given in
Table 3, indicating how the component should be presented in the formatted output.

• [[hour12]] is a Boolean value indicating whether 12-hour format (true) or 24-hour format (false) should be
used. It is only present when [[hour]] is also present.

• [[hourNo0]] is a Boolean value indicating whether hours from 1 to 12 (true) or from 0 to 11 (false) should
be used. It is only present when [[hour12]] is also present and has the value true.

• [[pattern]] is a String value as described in 12.2.3.

Finally, objects that have been successfully initialized as a DateTimeFormat have a [[boundFormat]] internal
property that caches the function returned by the format accessor (12.3.2).

13 Locale Sensitive Functions of the ECMAScript Language Specification

The ECMAScript Language Specification, edition 5.1 or successor, describes several locale sensitive
functions. An ECMAScript implementation that implements this Internationalization API shall implement these
functions as described here.

NOTE The Collator, NumberFormat, or DateTimeFormat objects created in the algorithms in this clause are only
used within these algorithms. They are never directly accessed by ECMAScript code and need not actually exist within an

implementation.

© Ecma International 2013 33

13.1 Properties of the String Prototype Object

13.1.1 String.prototype.localeCompare (that [, locales [, options]])

This definition supersedes the definition provided in ES5, 15.5.4.9.

When the localeCompare method is called with argument that and optional arguments locales, and options,

the following steps are taken:

1. Call CheckObjectCoercible passing the this value as its argument.

2. Let S be the result of calling ToString passing the this value as its argument.

3. Let That be ToString(that).

4. If locales is not provided, then let locales be undefined.

5. If options is not provided, then let options be undefined.

6. Let collator be the result of creating an object as if by the expression new Intl.Collator(locales,

options) where Intl.Collator is the standard built-in constructor defined in 10.1.3.

7. Return the result of calling the CompareStrings abstract operation (defined in 10.3.2) with arguments collator, S, and

That.

The value of the length property of the localeCompare method is 1.

NOTE 1 The localeCompare method itself is not directly suitable as an argument to Array.prototype.sort

because the latter requires a function of two arguments.

NOTE 2 The localeCompare function is intentionally generic; it does not require that its this value be a String object.

Therefore, it can be transferred to other kinds of objects for use as a method.

13.1.2 String.prototype.toLocaleLowerCase ([locales])

This definition supersedes the definition provided in ES5, 15.5.4.17.

This function interprets a string value as a sequence of code points, as described in ES6, 8.1.4. The following
steps are taken:

1. Call CheckObjectCoercible passing the this value as its argument.

2. Let S be the result of calling ToString, giving it the this value as its argument.

3. If locales is not provided, then let locales be undefined.

4. Let requestedLocales be the result of calling the CanonicalizeLocaleList abstract operation (defined in 9.2.1) with

argument locales.

5. Let len be the number of elements in requestedLocales.

6. If len > 0, then let requestedLocale be the first element of requestedLocales.

7. Else let requestedLocale be the value returned by the DefaultLocale abstract operation (defined in 6.2.4).

8. Let noExtensionsLocale be the String value that is requestedLocale with all Unicode locale extension sequences

(6.2.1) removed.

9. Let availableLocales be a List with the language tags of the languages for which the Unicode character database

contains language sensitive case mappings.

10. Let locale be the result of calling the BestAvailableLocale abstract operation (defined in 9.2.2) with arguments

availableLocales and noExtensionsLocale.

11. If locale is undefined, then let locale be "und".

12. Let cpList be a List containing in order the code points of S as defined in ES6, 8.1.4, starting at the first element of S.

13. For each code point c in cpList, if the Unicode Character Database provides a lower case equivalent of c that is either

language insensitive or for the language locale, then replace c in cpList with that/those equivalent code point(s).

14. Let cuList be a new List.

15. For each code point c in cpList, in order, append to cuList the elements of the UTF-16 Encoding (defined in ES6, 6)

of c.

16. Let L be a String whose elements are, in order, the elements of cuList.

17. Return L.

34 © Ecma International 2013

The result must be derived according to the case mappings in the Unicode character database (this explicitly
includes not only the UnicodeData.txt file, but also the SpecialCasings.txt file that accompanies it).

The value of the length property of the toLocaleLowerCase method is 0.

NOTE 1 As of Unicode 5.1, the availableLocales list contains the elements "az", "lt", and "tr".

NOTE 2 The case mapping of some code points may produce multiple code points. In this case the result String may
not be the same length as the source String. Because both toLocaleUpperCase and toLocaleLowerCase have

context-sensitive behaviour, the functions are not symmetrical. In other words,
s.toLocaleUpperCase().toLocaleLowerCase() is not necessarily equal to s.toLocaleLowerCase().

NOTE 3 The toLocaleLowerCase function is intentionally generic; it does not require that its this value be a String

object. Therefore, it can be transferred to other kinds of objects for use as a method.

13.1.3 String.prototype.toLocaleUpperCase ([locales])

This definition supersedes the definition provided in ES5, 15.5.4.19.

This function interprets a string value as a sequence of code points, as described in ES6, 8.1.4. This function
behaves in exactly the same way as String.prototype.toLocaleLowerCase, except that characters are

mapped to their uppercase equivalents as specified in the Unicode character database.

The value of the length property of the toLocaleUpperCase method is 0.

NOTE The toLocaleUpperCase function is intentionally generic; it does not require that its this value be a String

object. Therefore, it can be transferred to other kinds of objects for use as a method.

13.2 Properties of the Number Prototype Object

13.2.1 Number.prototype.toLocaleString ([locales [, options]])

This definition supersedes the definition provided in ES5, 15.7.4.3.

When the toLocaleString method is called with optional arguments locales and options, the following steps

are taken:

1. Let x be this Number value (as defined in ES5, 15.7.4).

2. If locales is not provided, then let locales be undefined.

3. If options is not provided, then let options be undefined.

4. Let numberFormat be the result of creating a new object as if by the expression new

Intl.NumberFormat(locales, options) where Intl.NumberFormat is the standard built-in constructor

defined in 11.1.3.

5. Return the result of calling the FormatNumber abstract operation (defined in 11.3.2) with arguments numberFormat

and x.

The value of the length property of the toLocaleString method is 0.

13.3 Properties of the Date Prototype Object

13.3.1 Date.prototype.toLocaleString ([locales [, options]])

This definition supersedes the definition provided in ES5, 15.9.5.5.

When the toLocaleString method is called with optional arguments locales and options, the following steps

are taken:

1. Let x be this time value (as defined in ES5, 15.9.5).

2. If x is NaN, then return "Invalid Date".

© Ecma International 2013 35

3. If locales is not provided, then let locales be undefined.

4. If options is not provided, then let options be undefined.

5. Let options be the result of calling the ToDateTimeOptions abstract operation (defined in 12.1.1) with arguments

options, "any", and "all".

6. Let dateTimeFormat be the result of creating a new object as if by the expression new

Intl.DateTimeFormat(locales, options) where Intl.DateTimeFormat is the standard built-in

constructor defined in 12.1.3.

7. Return the result of calling the FormatDateTime abstract operation (defined in 12.3.2) with arguments

dateTimeFormat and x.

The value of the length property of the toLocaleString method is 0.

13.3.2 Date.prototype.toLocaleDateString ([locales [, options]])

This definition supersedes the definition provided in ES5, 15.9.5.6.

When the toLocaleDateString method is called with optional arguments locales and options, the following

steps are taken:

1. Let x be this time value (as defined in ES5, 15.9.5).

2. If x is NaN, then return "Invalid Date".

3. If locales is not provided, then let locales be undefined.

4. If options is not provided, then let options be undefined.

5. Let options be the result of calling the ToDateTimeOptions abstract operation (defined in 12.1.1) with arguments

options, "date", and "date".

6. Let dateFormat be the result of creating a new object as if by the expression new

Intl.DateTimeFormat(locales, options) where Intl.DateTimeFormat is the standard built-in

constructor defined in 12.1.3.

7. Return the result of calling the FormatDateTime abstract operation (defined in 12.3.2) with arguments

dateTimeFormat and x.

The value of the length property of the toLocaleDateString method is 0.

13.3.3 Date.prototype.toLocaleTimeString ([locales [, options]])

This definition supersedes the definition provided in ES5, 15.9.5.7.

When the toLocaleTimeString method is called with optional arguments locales and options, the following

steps are taken:

1. Let x be this time value (as defined in ES5, 15.9.5).

2. If x is NaN, then return "Invalid Date".

3. If locales is not provided, then let locales be undefined.

4. If options is not provided, then let options be undefined.

5. Let options be the result of calling the ToDateTimeOptions abstract operation (defined in 12.1.1) with arguments

options, "time", and "time".

6. Let timeFormat be the result of creating a new object as if by the expression new

Intl.DateTimeFormat(locales, options) where Intl.DateTimeFormat is the standard built-in

constructor defined in 12.1.3.

7. Return the result of calling the FormatDateTime abstract operation (defined in 12.3.2) with arguments

dateTimeFormat and x.

The value of the length property of the toLocaleTimeString method is 0.

36 © Ecma International 2013

Annex A
(informative)

Implementation Dependent Behaviour

The following aspects of the ECMAScript Internationalization API are implementation dependent:

• In all functionality:

• Additional values for some properties of options arguments (2)

• Canonicalization of extension subtag sequences beyond the rules of RFC 5646 (6.2.3)

• The default locale (6.2.4)

• The default time zone (6.4.3)

• The set of available locales for each constructor (9.1)

• The BestFitMatcher algorithm (9.2.4)

• The BestFitSupportedLocales algorithm (9.2.7)

• In Collator:

• Support for the Unicode extensions keys kn, kf and the parallel options properties numeric, caseFirst
(10.2.3)

• The set of supported "co" key values (collations) per locale beyond a default collation (10.2.3)

• The set of supported "kn" key values (numeric collation) per locale (10.2.3)

• The set of supported "kf" key values (case order) per locale (10.2.3)

• The default search sensitivity per locale (10.2.3)

• The sort order for each supported locale and options combination (10.3.2)

• In NumberFormat:

• The set of supported "nu" key values (numbering systems) per locale (11.2.3)

• The patterns used for formatting positive and negative values as decimal, percent, or currency values
per locale (11.2.3)

• Localized representations of NaN and Infinity (11.3.2)

• The implementation of numbering systems not listed in Table 2 (11.3.2)

• Localized decimal and grouping separators (11.3.2)

• Localized digit grouping schemata (11.3.2)

• Localized currency symbols and names (11.3.2)

• In DateTimeFormat:

• The BestFitFormatMatcher algorithm (12.1.1)

• The set of supported "ca" key values (calendars) per locale (12.2.3)

• The set of supported "nu" key values (numbering systems) per locale (12.2.3)

• The default hour12 and hourNo0 settings per locale (11.2.3)

• The set of supported date-time formats per locale beyond a core set, including the representations
used for each component and the associated patterns (12.2.3)

• Localized weekday names, era names, month names, am/pm indicators, and time zone names
(12.3.2)

• The calendrical calculations used for calendars other than "gregory", and adjustments for local time

zones and daylight saving time (12.3.2)

© Ecma International 2012

