Qecma Draft

Ecma/TC39/2013/025

ANGidltl FCMA-262
- | 6" Ediion/DraftMay 14, 2013

(MMIAScript Language
Sigecification

Report Errors and Issues at: https://bugs.ecmascript.org

Product: Draft for 6th Edition
Component: choose an appropriate one
Version: Rev 15, May 14, 2013 Draft

Rue du Rhone 114 CH-1204 Geneva T: +41 22 849 6000 F: +41 22 849 6001

https://bugs.ecmascript.org/

A COPYRIGHT PROTECTED DOCUMENT

© Ecma International 2012

Contents Page

Introduction..

1
2
3

4
4.1
4.2
421
422
4.3

5

5.1
511
5.1.2
5.1.3
5.1.4
515
5.1.6
5.2

5.3 Static Semantic Rules

8.1

8.1.1
8.1.2
8.1.3
8.1.4
8.15

8.1.6 The Symbol Type

Scope..

Conformance

NOTMALIVE FEFEIENCES ...t e et o bt ettt ettt e e r e e n e 1

OV BIVIBW ...ttt ettt ettt e st e st e s bt e te e et ente e eneeaneesneesseesseensesdRnans nne et bae e eseeeseeaneesneeseeen eebeenneenseeneean
Web Scripting
Language Overview .
Objects
The Strict Variant of ECMAScript ..
Terms and definitions

Notational Conventions
Syntactic and Lexical Grammars
Context-Free Grammars

The Lexical and RegExp Grammars.
The Numeric String Grammarr
The Syntactic Grammar
The JSON Grammar
Grammar Notation
Algorithm Conventions

SOUTCE TOXE ettt ettt ettt e s bttt ettt e e e ke e s b e e 21ttt e et £ eabeeesbe e e ease e e ea bt e e he e e san £ane e e st e e e abeeesaneeennneeenbebeeenneas 14

Lexical Conventions
Unicode Format-Control Characters ...
White Space
Line Terminators
Comments.......
TOKENS oottt

Identifier Names and Identifiers..
Reserved Words
Punctuators
Literals
Null Literals.....
Boolean Literals
Numeric Literals4....
Regular Expression Literals....
Template Literal Lexical Components
String Literals
Automatic Semicolon Insertion
Rules of Automatic Semicolon Insertion...
Examples of Automatic Semicolon Insertion..

Types
ECMAScript Language Types
The Undefined Type
The Null Type............
The Boolean Type.
The String Type.
The Number Type..

© Ecma International 2012 |

oecmad

8.1.7 The Object Type
8.2 ECMAScript Specification Types..
8.2.1 Data BIOCKScccoeiviiiiiciciciie,
8.2.2 The List and Record Specification Type...
8.2.3 The Completion Record Specification Type
8.2.4 The Reference Specification Type................
8.2.5 The Property Descriptor Specification Type
8.2.6 The Lexical Environment and Environment Record Specification Types....
8.3 Ordinary Object Internal Methods and Internal Data Properties
8.3.1 [[GetInheritance]] ()

8.3.2 [[SetInheritance]] (V) ..

8.3.3 [[HasIntegrity]] (Level)

8.3.4 [[SetIntegrity]] (Level)

8.3.5 [[HasOwnProperty]] (P)

8.3.6 [[GetOwnProperty]] (P)

8.3.7 [[DefineOwnProperty]] (P, Desc)

8.3.8 [[HasProperty]](P)
8.3.9 [[Get]] (P, Receiver)....
8.3.10 [[Set]] (P, V, Receiver).
8.3.11 [[Delete]] (P) .cooeunne
8.3.12 [[Enumerate]] ()
8.3.13 [[OwnPropertyKeys]] ()
8.3.14 ObjectCreate(proto, internalDatalList) Abstract Operation ..
8.3.15 Ordinary FUNCtion ODJECTSooiiiiieiiiiiiicce e
8.4 Built-in Exotic Object Internal Methods and Data Fields ..
8.4.1 Bound Function Exotic Objects
8.4.2 Array Exotic Objects
8.4.3 String Exotic Objects
8.4.4 Exotic Arguments Objects
8.4.5 Integer Indexed Delegation 'Exotic Objects ..
8.4.6 Built-in Function Objects
8.5 Proxy Object Internal Methods and Internal Data Properties .
8.5.1 [[GetInheritance]] ()
8.5.3 [[HasIntegrity]] (Level)
8.5.4 [[SetIntegrity]] (Level)
8.5.5 [[HasOwnProperty]] (P)
8.5.6 [[GetOwnProperty]] (P)
8.5.7 [[DefineOwnProperty]] (P, Desc)
8.5.8 [[HasProperty]] (P)
8.5.9 [[Get]] (P, Receiver)
8.5.10 [[Set]] (P, V, Receiver)
8.5.11 [[Delete]] (P)ccevvvnns
8.5.12 [[Enumerate]] ()........
8.5.13 [[OwnPropertyKeys]] ()

8.5.14 [[Call]] (thisArgument, argumentsList) ..
8.5.15 [[Construct]] Internal Method

L Y o = 1ol @ o 1= =14 o) o [USRS
9.1 Type Conversion and Testing
9.1.1 ToPrimitivecceovveneninennne
9.1.2 ToBoolean ...
9.1.3 ToNumber....
9.14 Tolnteger
9.1.5 TolInt32: (Signed 32 Bit Integer)
9.1.6 ToUint32: (Unsigned 32 Bit Integer)
9.1.7 ToUint16: (Unsigned 16 Bit Integer) ...
9.1.8 TOSHING .ooveirieiieieece e s
9.1.9 ToObject......
9.1.10 ToPropertyKey
9.2 Testing and Comparison Operations

1l © Ecma International 2012

secma

9.21
9.2.2
9.2.3
9.24
9.25
9.2.6
9.2.7

101

10.1.1
10.1.2
10.2

10.2.1
10.2.2
10.3

104

104.1
10.4.2
10.4.3
10.4.4
105

105.1
10.5.2
10.5.3
10.5.4

10.5.5 Eval Declaration Instantiation...

10.6

11
111
1111
11.1.2
11.1.3
11.1.4
11.1.5
11.1.6
11.1.7
11.1.8
11.1.9

11.1.10 The Grouping Operator......

11.2

11.2.1
11.2.2
11.2.3

CheckObjectCoercible
IsCallable...................
SameValue(x, y).....
SameValueZero(x, y)
IsConstructor-......
IsPropertyKey .
IsExtensible (O)
Operations on Objects
Get (O, P) .coovvreerne
Put (O, P, V, Throw).....
CreateOwnDataProperty (O, P, V).....
DefinePropertyOrThrow (O, P, desc)
DeletePropertyOrThrow (O, P)
HasProperty (O, P)
GetMethod (O, P)
Invoke(O,P, [args])
SetintegrityLevel (O, level)...
TestlIntegrityLevel (O, level)
CreateArrayFromList (elements)
OrdinaryHasInstance (C, O) ...ooeveeireireniinieniesesiinanne e siinee s
GetPrototypeFromConstructor (constructor intrinsicDefaultProto) ...
OrdinaryCreateFromConstructor (constructor, intrinsicDefaultProto, |nternalDataL|st) TR 90

Executable Code and Execution Contexts
Types of Executable Code
Strict Mode Code..........co....
Non-ECMAScript Functions.....
Lexical Environments
Environment Records.....
Lexical Environment Operations
Code Realms...
Execution Contexts..
Identifier Resolution.
GetThisEnvironment
This Resolution
GetGlobalObject.............
Declaration Binding Instantiation..
Global Declaration Instantiation .
Module Declaration Instantiation...
Function Declaration Instantiation
Block Declaration Instantiation

Arguments Object

Expressions
Primary Expressions
The this ~ Keyword ...
Identifier Reference..
Literals...........c.....
Array Initialiser
Object Initialiser
Function Defining Expressions ..
Generator Comprehensions....
Regular Expression Literals.
Template Literals................

Left-Hand-Side Expressions ...
Property Accessors
The new Operator
Function Calls

© Ecma International 2012 1l

oecmad

11.2.4 The super Keyword
11.2.5 Argument Lists
11.2.6 Tagged Templates
11.3 Postfix Expressions
11.3.1 Postfix Increment Operator .
11.3.2 Postfix Decrement Operator
11.4 Unary Operators
11.4.1 The delete Operator.
11.4.2 Thevoid Operator......
11.4.3 The typeof Operator..... .138
11.4.4 Prefix Increment Operator ...
11.4.5 Prefix Decrement Operator..
11.4.6 Unary + Operator
11.4.7 Unary - Operator
11.4.8 Bitwise NOT Operator (~)
11.4.9 Logical NOT Operator (!)
11.5 Multiplicative Operators....
11.5.1 Applying the * Operator
11.5.2 Applying the/ Operator
11.5.3 Applying the %Operator
11.6 Additive Operators
11.6.1 The Addition operator (+)
11.6.2 The Subtraction Operator (-)
11.6.3 Applying the Additive Operators to-Numbers
11.7 Bitwise Shift Operators
11.7.1 The Left Shift Operator (<<)............
11.7.2 The Signed Right Shift Operator (>>)
11.7.3 The Unsigned Right Shift Operator (>>>)
11.8 Relational Operators
11.8.1 Runtime Semantics .«
11.9 Equality Operators...
11.9.1 Runtime Semantics
11.10 Binary Bitwise Operators
11.11 Binary Logical Operators
11.12 Conditional Operator (.2 :)
11.13 Assignment.Operators...
Static Semantics ...
Runtime Semantics

11.13.4 Destructuring Assignment ..
11.14 Comma Operator (,)

12 Statements and DECIAIALIONSccveiiieiieie et ettt e et e e e e e neesreesreesteesbeesteenes e eneeenees 160
Static Semantics
Runtime Semantics .
12.1
12.2
12.2.1 Let and Const Declarations....
12.2.2 Variable Statement
12.2.4 Destructuring Binding Patterns
12.3 Empty Statement
12.4 Expression Statement
125 Theif Statement
12.6 Iteration Statements
12.6.1 The do-while Statement
12.6.2 The while Statement
12.6.3 The for Statement
12.6.4 Thefor -in and for -of Statements
12.7 Thecontinue Statement

v © Ecma International 2012

oeChna

12.8

12,9

12.10
12.11
12.12
12.13
12.14
12.15

13

131
13.2
133
134
135

13.6 Tail Position Calls

14

14.1 Script .

14.1.1

14.2 Modules

15
151
15.1.1
15.1.2
15.1.3
15.1.4
15.1.5
15.2
15.2.1
15.2.2
15.2.3
15.2.4
15.25
153
15.3.1
15.3.2
15.3.3
15.3.4
15.4
1541
15.4.2
15.4.3
15.4.4
15.4.5
155
155.1
15.5.2
1553
15.5.4
15.5.5
15.6
15.6.1
15.6.2
15.6.3
15.6.4
15.6.5
15.7
15.7.1

The break Statement
The return Statement
The with Statement....
The switch Statement
Labelled Statements ...
The throw Statement..
The try Statement......
The debugger statement

FUNCHIONS QN0 GENEIALOIS ...uiiiiiieiiiieiiii ettt ittt ettt st et e et eeesaae e e g e e e sbeeesbeeesnnbeeseeenteeeseeas 192
Function Definitions
Arrow Function Definitions ..
Method Definitions...............
Generator Function Definitions ..
Class Definitionsc.......

Scripts and Modules

Directive Prologues and the Use Strict Directive«.
Standard Built-in ECMAScript Objects
The Global Object
Value Properties of the Global Object
Function Properties of the Global Object
URI Handling Function Properties..............
Constructor Properties of the Global Object
Other Properties of the Global Object
Object ODJeCtSoocvviviiiiiiciicec e
The Object ConstructorCalled as a Function.
The Object Constructor
Properties of the Object Constructor
Properties of the Object Prototype Object
Properties of‘Object Instances
Function Objects
The Function Constructor
Properties of the Function Constructor.....
Properties of the Function Prototype Object
Function Instances...
Array Objects...........
The Array Constructor.............
Properties of the Array Constructor....
Properties of the Array Prototype Object
Properties of Array Instances..............
Array Iterator Object Structure
String OBJECES . .tuveivii e

The String Constructor Called as a Functio
The String CONStruCtor.......cocoevvvvivcienne.
Properties of the String Constructor...
Properties of the String Prototype Object
Properties of String Instances..............
Boolean Objectsccccoevieiiiiiiiinin,
The Boolean Constructor Called as a Function..
The Boolean Constructorccccoeevvvenecnes
Properties of the Boolean Constructor......
Properties of the Boolean Prototype Object ...
Properties of Boolean Instances
Number Objects........cccoccevviiiiiinnce,

The Number Constructor Called as a Function

© Ecma International 2012 \V

oecmad

15.7.2 The Number Constructor
15.7.3 Properties of the Number Constructor...
15.7.4 Properties of the Number Prototype Object
15.7.5 Properties of Number Instances
15.8 The Math Object.....cccccevveiviirnrne
15.8.1 Value Properties of the Math Object...
15.8.2 Function Properties of the Math Object
BN T b - £ O] 1=t £ SO PPRTPUR
15.9.1 Overview of Date Objects and Definitions of Abstract Operations..
15.9.2 The Date Constructor Called as a Function....
15.9.3 The Date Constructor..................
15.9.4 Properties of the Date Constructor
15.9.5 Properties of the Date Prototype Object
15.9.6 Properties of Date Instances
15.10 RegExp (Regular Expression) Objects
15.10.1 Patterns
15.10.2 Pattern Semantics
15.10.3 The RegExp Constructor Called as a Function..
15.10.4 The RegEXp CONStruCtorccoocvvvvereeneerinns
15.10.5 Properties of the RegExp Constructor......
15.10.6 Properties of the RegExp Prototype Object ...
15.10.7 Properties of RegExp Instances
15.11 Error ObJeCtS ..covoveiieieeieee e e
15.11.1 The Error Constructor Called as a Function
15.11.2 The Error CONStruCtor.....ccovveveeeepiions
15.11.3 Properties of the Error Constructor ...
15.11.4 Properties of the Error Prototype Object ..
15.11.5 Properties of Error Instances
15.11.6 Native Error Types Used in This Standard
15.11.7 NativeError Object Structure...............
15.12 The JSON Objectcuuueen.
15.12.1 The JSON Grammar.
15.12.2 JSON.parse (text [, reviver]
15.12.3 JSON.stringify (value [, replacer [, space]])..
15.13 Binary Data Objects
15.13.1 The BinaryData Module
15.13.2 The BinaryData.Type Object...
15.13.3 The BinaryData.ArrayType Object ...
15.13.4 The BinaryData.StructType Object
15.13.5 ArrayBuffer Objects
15.18.6 TypedArray Object Structures
15.13.7 DataView Objects.......cce........
15.14 Map ODBjJECtSccvvverentiinienieeenie e
15.14.1 The Map Constructor Called as a Function .
15.14.2 The M@ap CoNStruCtOr.........cccocvvrveieerieenennnn
15.14.3 Properties of the’Map Constructor
15.14.4 Properties of the Map Prototype Object
15.14.5 Properties of Map Instances.............
15.14.6 Map lterator Object Structure.
15.15 WeakMap ODjJecCtScccvevieriiiiiiiiiiies e
15.15.1 The WeakMap Constructor Called as a Function..
15.15.2 The WeakMap CONSLrUCIOrcccuveeeieeiieiieiinne
15.15.3 Properties of the WeakMap Constructor
15.15.4 Properties of the WeakMap Prototype Object
15.15.5 Properties of WeakMap Instances
15.16 Set ObJecCtSccoovvviiiiiiiiiiee e
15.16.1 The Set Constructor Called as a Function
15.16.2 The Set ConStructor.........ccocevveveennns
15.16.3 Properties of the Set Constructor

VI © Ecma International 2012

secmad

15.16.4 Properties of the Set Prototype Object
15.16.5 Properties of Set Instances..............
15.16.6 Set Iterator Object Structure
15.17 The Reflect Module ..o

15.17.1 Exported Function Properties Reflecting the Essentional Internal Methods
15.18 Proxy Objects
15.19 The "std:iteration" Module
15.19.1 Common lteration Interfaces
15.19.2 "std:iteration" Exports..........
15.19.3 GeneratorFunction Objects..
15.19. 4 Generator Objects

16 Errors ..o

Annex A (informative) Grammar Summary
Al Lexical Grammar
A.2 Number Conversions..
A3 Expressions...........
A4 Statements

A5 Functions and Scripts

A.6 Universal Resource Identifier Character Classes..
A7 Regular Expressions
A.8 JSON
A.8.1 JSON Lexical Grammar ..
A.8.2 JSON Syntactic Grammar

Annex B (normative) Additional ECMAScript Features for Web Browsers
B.1 AdAItIONAl SYNTAX ..oveeviiiieiiei st i anea i
B.1.1 Numeric Literals
B.1.2 String Literals
B.1.3 HTML-like Comments
B.2 Additional Properties
B.2.1 Additional Properties of the Global Object

B.2.2 Additional Properties of the Object.prototype Object.
B.2.3 Additional Properties of the String.prototype Object .
B.2.4 Additional Properties of the Date:prototype Object
B.2.5 Additional Properties of the RegExp.prototype Object ..
B.3 Other Additional Features
B.3.1 _ proto___ Property Names in Object Initialisers
B.3.2 Web Legacy Compatibility for Block-Level Function Declarations

Annex C (informative) The Strict MOde Of ECMASCIIPE ...c.viiiiiieiieiieiieis et e
Annex D (informative) Corrections and Clarifications with Possible Compatibility Impact 428

Annex E (informative) Additions and Changes that Introduce Incompatibilities with Prior

Editions
In the 6" Edition.
In the 5" Edition

Annex F (informative) Static Semantic Rule Cross Reference

SCraP HEAP ..ot e 438
8.4.4 Symbol Exotic Objects .
8.3.10 [[Enumerate]] (includePrototype, onl
9.1.11 ToPositivelnteger
10.5.3 Function Declaration Instantiation
F.1.1 The_ _proto__ pseudo property.

i/.iznumerabl.é)

© Ecma International 2012 Vil

B INTERNATIONAL

Vil © Ecma International 2012

cecma

Introduction

This Ecma Standard is based on several originating technologies, the most well known being JavaScript

(Netscape) and JScript (Microsoft). The language was invented by Brendan Eich at Netscape and first
appeared in that company o0 sappéaradin@lbsubseguer br@vsarsrfroomNetscape |t has
and in all browsers from Microsoft starting with Internet Explorer 3.0.

The development of this Standard started in November 1996. The first edition of this Ecma Standard was
adopted by the Ecma General Assembly of June 1997.

That Ecma Standard was submitted to ISO/IEC JTC 1 for adoption<under the fast-track procedure, and
approved as international standard ISO/IEC 16262, in April 1998. The Ecma General Assembly of June 1998
approved the second edition of ECMA-262 to keep it fully aligned. with ISO/IEC 16262. Changes between the
first and the second edition are editorial in nature.

The third edition of the Standard introduced powerful regular expressions, better string handling, new control
statements, try/catch exception handling, tighter definition of errors, formatting for numeric output and minor
changes in anticipation of forthcoming internationalisation facilities and future language growth. The third
edition of the ECMAScript standard was adopted by the Ecma General Assembly of December 1999 and
published as ISO/IEC 16262:2002 in June 2002.

Since publication of the third edition, ECMAScript has achieved massive adoption in conjunction with the
World Wide Web where it has become the programming language that is supported by essentially all web
browsers. Significant work was done to develop a fourth edition of. ECMAScript. Although that work was not
completed and not published?! as the fourth edition of ECMASeript, it-informs continuing evolution of the
language. The fifth edition of ECMAScript (published as ECMA-262 5" edition) codifies de facto
interpretations of the language specification that have become common among browser implementations and
adds support for new features that have emerged since the publication of the third edition. Such features
include accessor properties, reflective creation and inspection of objects, program control of property
attributes, additional array manipulation functions, support for the JSON object encoding format, and a strict
mode that provides enhanced error checking and program security.

The edition 5.1 of the ECMAScript Standard has been fully aligned with the third edition of the international
standard ISO/IEC 16262:2011.

This present sixth edition of the Standar dééé

ECMAScript is a vibrant language and the evolution of the language is not complete. Significant technical
enhancement will continue with future editions of this specification.

This Ecma Standard has been adopted by the General Assembly of <month> <year>.

INot e: Pl ease note that for ECMAScri pt -2B6d2 tEdoint i4ont h4ed0 BEwcansa rsetsaenrdvaerdd bnwtmbreat fi ECMA
used in the Ecma publicati-2h2 pEdicteisen dheaef ane EmME@&dMAont er nati onal publicatio
exist.

© Ecma International 2012 IX

secnd

"DISCLAIMER

This draft document may be copied and furnished to others, and derivative works that comment on or
otherwise explain it or assist in its implementation may be prepared, copied, published, and distributed,
in whole or in part, without restriction of any kind, provided that the above copyright notice and this
section are included on all such copies and derivative works. However, this document itself may not be
modified in any way, including by removing the copyright notice or references to Ecma International,
except as needed for the purpose of developing any document or deliverable produced by Ecma
International.

This disclaimer is valid only prior to final version of this document. After approval all rights on the
standard are reserved by Ecma International.

The limited permissions are granted through the standardization phase and will not be revoked by
Ecma International or its successors or assigns during this time.

This document and the information contained herein is provided on an "AS IS" basis and ECMA
INTERNATIONAL DISCLAIMS ALL WARRANTIES, EXPRESS OR IMPLIED, INCLUDING BUT NOT
LIMITED TO ANY WARRANTY THAT THE USE OF THE INFORMATION HEREIN WILL NOT INFRINGE
ANY OWNERSHIP RIGHTS OR ANY IMPLIED WARRANTIES OF MERCHANTABILITY OR FITNESS FOR
A PARTICULAR PURPOSE."

X © Ecma International 2012

~2echnd

ECMAScript Language Specification

1 Scope
This Standard defines the ECMAScript scripting language.
2 Conformance

A conforming implementation of ECMAScript must provide and support all the types, values, objects,
properties, functions, and program syntax and semantics described in this specification.

A conforming implementation of this Standard shall interpret characters in conformance with the Unicode
Standard, Version 5.1.0 or later and ISO/IEC 10646. If the adopted ISO/IEC 10646-1 subset is not otherwise
specified, it is presumed to be the Unicode set, collection 10646:

A conforming implementation of ECMAScript is permitted to provide additional types, values, objects,
properties, and functions beyond those described in this specification. In particular, a conforming
implementation of ECMAScript is permitted to provide properties not described in this specification, and
values for those properties, for objects that are described in this specification.

A conforming implementation of ECMAScriptiis permitted to support program and regular expression syntax
not described in this specification. In particular, a conforming implementation of ECMAScript is permitted to
support program syntax that.-.makes wse of the fAfuture reserved wordso |isted

3 Normative references

The following referenced documents are indispensable for the application of this document. For dated
references, only the edition cited applies. For undated references, the latest edition of the referenced
document (including any amendments) applies.

ISO/IEC 9899:1996, Programming Languages i C, including amendment 1 and technical corrigenda 1 and 2
ISO/IEC 10646:2003: Information Technology i Universal Multiple-Octet Coded Character Set (UCS) plus
Amendment 1:2005, Amendment 2:2006, Amendment 3:2008, and Amendment 4:2008, plus additional
amendments and corrigenda; or successor

The Unicode Standard, Version 5.0, as amended by Unicode 5.1.0, or successor

Unicode Standard Annex #15, Unicode Normalization Forms, version Unicode 5.1.0, or successor

Unicode Standard Annex #31, Unicode Identifiers and Pattern Syntax, version Unicode 5.1.0, or successor.
4 Overview

This section contains a non-normative overview of the ECMAScript language.

ECMAScript is an object-oriented programming language for performing computations and manipulating
computational objects within a host environment. ECMAScript as defined here is not intended to be
computationally self-sufficient; indeed, there are no provisions in this specification for input of external data or
output of computed results. Instead, it is expected that the computational environment of an ECMAScript
program will provide not only the objects and other facilities described in this specification but also certain
environment-specific objects, whose description and behaviour are beyond the scope of this specification
except to indicate that they may provide certain properties that can be accessed and certain functions that can
be called from an ECMAScript program.

© Ecma International 2012 1

secmd

A scripting language is a programming language that is used to manipulate, customise, and automate the
faciliies of an existing system. In such systems, useful functionality is already available through a user
interface, and the scripting language is a mechanism for exposing that functionality to program control. In this
way, the existing system is said to provide a host environment of objects and facilities, which completes the
capabilities of the scripting language. A scripting language is intended for use by both professional and non-
professional programmers. ECMAScript was originally designed to be used as a scripting language, but has
become widely used as a general purpose programming language.

ECMAScript was originally designed to be a Web scripting language, providing a mechanism to enliven Web
pages in browsers and to perform server computation as part of a Web-based client-server architecture.
ECMAScript is now used both as a general propose programming language and to provide core scripting
capabilities for a variety of host environments. Therefore the core language is specified in this document apart
from any particular host environment.

Some of the facilities of ECMAScript are similar to those used in other-programming languages; in particular
Javad , Self, and Scheme as described in:

Gosling, James, Bill Joy and Guy Steele. The Java® Language Specification. Addison Wesley Publishing Co.,
1996.

Ungar, David, and Smith, Randall B. Self: The Power of Simplicity. OOPSLA '87 Conference Proceedings, pp.
227i 241, Orlando, FL, October 1987.

IEEE Standard for the Scheme Programming Language. |IEEE Std 1178-1990.
4.1 Web Scripting

A web browser provides an ECMAScript host environment for client-side computation including, for instance,
objects that represent windows, menus, pop-ups, dialog boxes, text areas, anchors, frames, history, cookies,
and input/output. Further, the host environment provides a means to attach scripting code to events such as
change of focus, page and image loading, unloading, error and abort, selection, form submission, and mouse
actions. Scripting code appears within the HTML and the displayed page is a combination of user interface
elements and fixed and .computed text and images. The scripting code is reactive to user interaction and there
is no need for a main program.

A web server provides a different-host environment for server-side computation including objects representing
requests, clients, and.files; and mechanisms to lock and share data. By using browser-side and server-side
scripting together, it is possible to distribute computation between the client and server while providing a
customised user interface for a Web-based application.

Each Web browser and server that supports ECMAScript supplies its own host environment, completing the
ECMAScript execution environment.

4.2 Language Overview

The following is an informal overview of ECMAScriptd not all parts of the language are described. This
overview is not part of the standard proper.

ECMAScript is object-based: basic language and host facilities are provided by objects, and an ECMAScript
program is a cluster of communicating objects. An ECMAScript object is a collection of properties each with
zero or more attributes that determine how each property can be usedd for example, when the Writable
attribute for a property is set to false, any attempt by executed ECMAScript code to change the value of the
property fails. Properties are containers that hold other objects, primitive values, or functions. A primitive
value is @ member of one of the following built-in types: Undefined, Null, Symbol, Boolean, Number, and
String; an object is a member of the remaining built-in type Object; and a function is a callable object. A
function that is associated with an object via a property is a method.

ECMAScript defines a collection of built-in objects that round out the definition of ECMAScript entities. These
built-in objects include the global object, the Object object, the Function object, the Array object, the String

2 © Ecma International 2012

pecma

object, the Boolean object, the Number object, the Math object, the Date object, the RegExp object, the
JSON object, and the Error objects Error, EvalError, RangeError, ReferenceError, SyntaxError,
TypeError and URIError.

ECMAScript also defines a set of built-in operators. ECMAScript operators include various unary operations,
multiplicative operators, additive operators, bitwise shift operators, relational operators, equality operators,
binary bitwise operators, binary logical operators, assignment operators, and the comma operator.

ECMAScript syntax intentionally resembles Java syntax. ECMAScript syntax is relaxed to enable it to serve as Formatted: French (Switzerland)
an easy-to-use scripting language. For example, a variable is not required to have its type declared nor are

types associated with properties, and defined functions are not required to have their declarations appear

textually before calls to them.

4.2.1 Objects

ECMAScript does not use classes such as those in C++, Smalltalk, or Java. Instead objects may be created in Commented [AWB101]: This description probably need to
various ways including via a literal notation or via constructors which create objects and then execute code be tweaked in light of new features such as class declarations
that initialises all or part of them by assigning initial values to their properties. Each constructor is a function and explicit exposure of the [[Prototypell property

that has a prpotptge ty tntaante di §i <u s prdtotype-based pnhezitarece and shared
properties. Objects are created by using constructors in new _expressions; for example, new
Date(2009,11) creates a new Date object. Invoking a constructor without using new has consequences that
depend on the constructor. For example, Date() produces a string representation of the current date and
time rather than an object.

Every object created by a constructor has animpli ci t r ef er e n c e prétatypd) fo thelvaluehobE o bj ect 6s

its consprotolypet Or psofier ty. Fur t her mor e, -nuhimpgiait ceferenceytpis may have a non
prototype, and so on; this is called the prototype chain. When a reference is made to a property in an object,

that reference is to the property of that name in the first object in the prototype chain that contains a property

of that name. In other words, first the object mentioned directly is examined for such a property; if that object

contains the named property, that is the property to which the reference refers; if that object does not contain

the named property, the prototype for that object is examined next; and so on.

IS implicit prototypelink
prototype CF, i
n” explicit prototype property
Pz CFP1 plicit pratatype prap

LI Cfl frmmnes sz Cf3 Cf_‘ S— Cfs

gl ol ol gl gl
qz o2 oz o2 g2

Figure 1 8 Object/Prototype Relationships
In a class-based object-oriented language, in general, state is carried by instances, methods are carried by

classes, and inheritance is only of structure and behaviour. In ECMAScript, the state and methods are carried
by objects, while structure, behaviour, and state are all inherited.

© Ecma International 2012 3

secmd

All objects that do not directly contain a particular property that their prototype contains share that property
and its value. Figure 1 illustrates this:

CF is a constructor (and also an object). Five objects have been created by using new expressions: cfi, cfy,
cfs, cfs, and cfs. Each of these objects contains properties named g1 and q2. The dashed lines represent the
implicit prototype relationship; so, for example, cf36 s otgtype is CFy. The constructor, CF, has two properties
itself, named P1 and P2, which are not visible to CFp, cfi, cfz, cfs, cf4, or cfs. The property named CFP1in CFp

is shared by cfi, cfz, cfs, cfs, and cfs (but not by CF), as are any properties found in CFpds i mpl i ci

chain that are not named q1, g2, or CFP1 Notice that there is no implicit prototype link between CF and CFp.

Unlike class-based object languages, properties can be added to objects dynamically by assigning values to
them.Thati s, constructors are not requi-red to name or
properties. In the above diagram, one could add a new shared propertyfor cfi, cfz, cfs, cfs, and cfs by
assigning a new value to the property in CFp.

4.2.2 The Strict Variant of ECMAScript

The ECMAScript Language recognises the possibility that some users of the language may wish to restrict
their usage of some features available in the language. They might do so in the interests of security, to avoid
what they consider to be error-prone features, to get enhanced error checking, or for other reasons of their
choosing. In support of this possibility, ECMAScript defines a strict variant of the language. The strict variant
of the language excludes some specific syntactic and semantic features of the regular ECMAScript language
and modifies the detailed semantics of some features. The strict variant also specifies additional error
conditions that must be reported by throwing error exceptions in situations that are not specified as errors by
the non-strict form of the language.

The strict variant of ECMAScript is commonly referred to as the strict mode of the language. Strict mode
selection and use of the strict mode syntax and semantics of ECMAScript is explicity made at the level of
individual ECMAScript code units. Because strict mode is'selected at the level of a syntactic code unit, strict
mode only imposes restrictions that have local effect within such a code unit. Strict mode does not restrict or
modify any aspect of the ECMAScript semantics that must operate consistently across multiple code units. A
complete ECMAScript program may be composed for both strict mode and non-strict mode ECMAScript code
units. In this case, strictmode only applies when actually executing code that is defined within a strict mode
code unit.

In order to conform to this specification, an ECMAScript implementation must implement both the full
unrestricted ECMAScript language and the strict mode variant of the ECMAScript language as defined by this
specification. In addition, .an implementation must support the combination of unrestricted and strict mode
code units into a single composite program.

4.3 Terms and definitions

For the purposes of this document, the following terms and definitions apply.

4.3.1

type

set of data values as defined in Clause 8 of this specification

4.3.2

primitive value

member of one of the types Undefined, Null, Symbol, Boolean, Number, or String as defined in Clause 8
NOTE A primitive value is a datum that is represented directly at the lowest level of the language implementation.
4.3.3

object

member of the type Object

NOTE An object is a collection of properties and has a single prototype object. The prototype may be the null value.

4 © Ecma International 2012

t

prototype

assi

agn

val

ues

t

o

al

secma

4.3.4
constructor
function object that creates and initialises objects

NOTE The value of protatypen sot rpucotpcerr&tsy i s a prototype object that is used to
and shared properties.

4.3.5

prototype

object that provides shared properties for other objects

NOTE When a constructor creates an object, t pratotyp® bg epcrtopemptlyi ci t |y

for the purpose of resol ving pr@mqgogpet YW Ipefo@reen gesc.anT hbee
program expression constr uctor .prototype and properties radded to an obj
inheritance, by all objects sharing the prototype. Alternatively, a new object may be created with an explicitly specified
prototype by using the Object.create built-in function.

4.3.6

ordinary object

object that has the default behaviour for the internal methods that must be supported by all. ECMAScript
objects.

4.3.7

exotic object

object that has some alternative behaviour for-one or more of the internal methods that must be supported by
all ECMAScript objects.

NOTE Any object that is not an ordinary object is an exotic object.

4.3.8
standard object
object whose semantics are defined by this specification.

439

built-in object

object supplied by an ECMAScript implementation, independent of the host environment, that is present at the
start of the execution of an ECMAScript program

NOTE Standard built-in objects are defined in this specification, and an ECMAScript implementation may specify and
define others. A built-in constructor is a built-in object that is also a constructor.

4.3.10
undefined value
primitive value used when a variable has not been assigned a value

43.11
Undefined type
type whose sole value is the undefined value

4.3.12
null value
primitive value that represents the intentional absence of any object value

4.3.13
Null type
type whose sole value is the null value

4.3.14

Boolean value
member of the Boolean type

© Ecma International 2012 5

i mpl ement i

references

croerf setrreunccteadr 6ksy fit he

ectds prototype

ar e

the cor

shared,

secmd

NOTE There are only two Boolean values, true and false.

4.3.15
Boolean type
type consisting of the primitive values true and false

4.3.16
Boolean object
member of the Object type that is an instance of the standard built-in Boolean constructor

NOTE A Boolean object is created by using the Boolean constructor in a new expression, supplying a Boolean
value as an argument. The resulting object has an internal data property whose value is the Boolean value. A Boolean
object can be coerced to a Boolean value.

4.3.17
String value
primitive value that is a finite ordered sequence of zero or more 16-bit unsigned integer

NOTE A String value is a member of the String type. Each integer value in the sequence usually represents a single
16-bit unit of UTF-16 text. However, ECMAScript does not place any restrictions or requirements on the values except that
they must be 16-bit unsigned integers.

4.3.18
String type
set of all possible String values

4.3.19
String object
member of the Object type that is an instance of the standard built-in String constructor

NOTE A String object is created by using the String constructor in a new expression, supplying a String value as
an argument. The resulting object has an internal data property whose value is the String value. A String object can be
coerced to a String value by calling the String constructor as a function (15.5.1).

4.3.20
Number value
primitive value corresponding to a double-precision 64-bit binary format IEEE 754 value

NOTE A Number value is a member of the Number type and is a direct representation of a number.

4.3.21

Number type

set of al | possi bl e Number sadumbder o n ¢ INapdsjtivegninitypand s peci al ANot

negative infinity

4.3.22
Number object
member of the Object type that is an instance of the standard built-in Number constructor

NOTE A Number object is created by using the Number constructor in a new expression, supplying a Number value
as an argument. The resulting object has an internal data property whose value is the Number value. A Number object can
be coerced to a Number value by calling the Number constructor as a function (15.7.1).

4.3.23
Infinity
number value that is the positive infinite Number value

4.3.24

NaN
number value that-aaNsmlerd EEEal7bel ANot

6 © Ecma International 2012

secma

4.3.25
function
member of the Object type that may be invoked as a subroutine

NOTE In addition to its properties, a function contains executable code and state that determine how it behaves
when invoked. A functionbds code may or may not be written in ECMAScript.
4.3.26

built-in function
built-in object that is a function

NOTE Examples of built-in functions include parselnt and Math.exp . An implementation may provide
implementation-dependent built-in functions that are not described in this specification.

4.3.27

property
association between a name and a value that is a part of an object

NOTE Depending upon the form of the property the value may be represented either directly as a data value (a
primitive value, an object, or a function object) or indirectly by a pair of accessor functions.

4.3.28
method
function that is the value of a property

NOTE When a function is called as a method of an object, the object is passed to the function as its this value.

4.3.29
built-in method
method that is a built-in function

NOTE Standard built-in methods are defined in this specification, and an ECMAScript implementation may specify
and provide other additional built-in methods.

4.3.30
attribute
internal value that defines some characteristic of a property

4.3.31
own property
property that is directly contained by its object

4.3.32

inherited property

propert y of . an object that is not an own property but is a property (either
prototype

5 Notational Conventions

5.1 Syntactic and Lexical Grammars

5.1.1 Context-Free Grammars

A context-free grammar consists of a number of productions. Each production has an abstract symbol called a
nonterminal as its left-hand side, and a sequence of zero or more nonterminal and terminal symbols as its

right-hand side. For each grammar, the terminal symbols are drawn from a specified alphabet.

A chain production is a production that has exactly one nonterminal symbol on its right-hand side along with
zero or more terminal symbols.

© Ecma International 2012 7

secmd

Starting from a sentence consisting of a single distinguished nonterminal, called the goal symbol, a given
context-free grammar specifies a language, namely, the (perhaps infinite) set of possible sequences of
terminal symbols that can result from repeatedly replacing any nonterminal in the sequence with a right-hand
side of a production for which the nonterminal is the left-hand side.

5.1.2 The Lexical and RegExp Grammars

A lexical grammar for ECMAScript is given in clause 7. This grammar has as its terminal symbols characters
(Unicode code units) that conform to the rules for SourceCharactedefined in Clause 6. It defines a set of
productions, starting from the goal symbol InputElementDivor InputElementRegExpthat describe how
sequences of such characters are translated into a sequence of input elements.

Input elements other than white space and comments form the terminal symbols for the syntactic grammar for

ECMAScript and are called ECMAScript tokens. These tokens are the reserved words, identifiers, literals, and

punctuators of the ECMAScript language. Moreover, line terminators, although not considered to be tokens,

also become part of the stream of input elements and guide the process of automatic semicolon insertion (7.9).

Simple white space and single-line comments are discarded and do not appear in the stream of input

elements for the syntactic grammar. A MultiLineCommen{ t hat i s, a conffmee*thd rmdgarhedl d g m 0
of whether it spans more than one line) is likewise simply discarded if it contains no line terminator; but if a
MultiLineCommentontains one or more line terminators, then it is replaced by a single line terminator, which

becomes part of the stream of input elements for the syntactic grammar.

A RegExp grammar for ECMAScript is given in 15.10. This grammar also has as its terminal symbols the
characters as defined by SourceCharactert defines a set of productions, starting from the goal symbol Pattern
that describe how sequences of characters are translated into regular expression patterns.

Productions of the | exical rand RegExp gr ammarss smgrpara@itsti ngui shed by having t wc
punctuation. The lexical and RegExp grammars share some productions.

5.1.3 The Numeric String Grammar

Another grammar is used for translating Strings into numeric values. This grammar is similar to the part of the
lexical grammar having<to do with numeric literals and has as its terminal symbols SourceCharacterThis
grammar appears in 9:3.1.

Productions of the numeric string grammarasarpurmddtsuadtnigaun.shed by having three col
5.1.4 The Syntactic Grammar

The syntactic grammar for ECMAScript is given in clauses 11, 12, 13 and 14. This grammar has ECMAScript
tokens defined by the lexical grammar as its terminal symbols (5.1.2). It defines a set of productions, starting
from the goal symbol Script, that describe how sequences of tokens can form syntactically correct independent
components of an ECMAScript programs.

When a stream of characters is to be parsed as an ECMAScript script, it is first converted to a stream of input
elements by repeated application of the lexical grammar; this stream of input elements is then parsed by a
single application of the syntactic grammar. The script is syntactically in error if the tokens in the stream of
input elements cannot be parsed as a single instance of the goal nonterminal Script with no tokens left over.

Productions of the syntactic grammar 0aras d¢iuntcitrug@uiisomed by having just one col on

The syntactic grammar as presented in clauses 11, 12, 13 and 14 is actually not a complete account of which
token sequences are accepted as correct ECMAScript scripts. Certain additional token sequences are also
accepted, namely, those that would be described by the grammar if only semicolons were added to the
sequence in certain places (such as before line terminator characters). Furthermore, certain token sequences
that are described by the grammar are not considered acceptable if a terminator character appears in certain
Afawkwar do pl aces.

8 © Ecma International 2012

pecma

In certain cases in order to avoid ambiguities the syntactic grammar uses generalize productions that permit
token sequences that are not valid ECMAScript scripts. For example, this technique is used in with object
literals and object destructuring patterns. In such cases a more restrictive supplemental grammar is provided
that further restricts the acceptable token sequences. In certain contexts, when explicitly specific, the input
elements corresponding to such a production are parsed again using a goal symbol of a supplemental
grammar. The script is syntactically in error if the tokens in the stream of input elements cannot be parsed as
a single instance of the supplemental goal symbol, with no tokens left over.

5.1.5 The JSON Grammar

The JSON grammar is used to translate a String describing a set of ECMAScript‘objects into actual objects.
The JSON grammar is given in 15.12.1.

The JSON grammar consists of the JSON lexical grammar and the JSON syntactic grammar. The JSON
lexical grammar is used to translate character sequences into tokens and is similar to parts of the ECMAScript
lexical grammar. The JSON syntactic grammar describes how sequences of tokens from the JSON lexical
grammar can form syntactically correct JSON object descriptions.

Productions of the JSON lexical grammar are distinguishe d by having 6 was cekpasatii ng
punctuation. The JSON lexical grammar uses some productions from the ECMAScript lexical grammar. The

JSON syntactic grammar is similar to parts of the ECMAScript syntactic'grammar. Productions of the JSON

syntacic gr ammar are distinguiosled seypauaitnggompencaoluan i n.

5.1.6 Grammar Notation

Terminal symbols of the lexical, RegExp, and numeric string grammars, and some of the terminal symbols of
the other grammars, are shown in fixed width font, both in the productions of the grammars and
throughout this specification whenever the text directly refers to such a terminal symbol. These are to appear
in a script either exactly as written or using equalvant Unicode escape sequences (see clause 6). All terminal
symbol characters specified in this way are to be understood as the appropriate Unicode character from the
ASCII range, as opposed to any similar-looking characters from other Unicode ranges.

Nonterminal symbols are shown in italic type. The definition of a nonterminal (al so cal |l ed isa fiproducti ond)
introduced by the name of the nonterminal being defined followed by one or more colons. (The number of

colons indicates to which grammar the production-belongs.) One or more alternative right-hand sides for the

nonterminal then follow on succeeding lines. For example, the syntactic definition:

WhileStatement
while (Expressior) Statement

states that the nonterminal WhileStatementepresents the token while , followed by a left parenthesis token,
followed by an Expression followed by a right parenthesis token, followed by a StatementThe occurrences of
Expressiorand Statemenare themselves nonterminals. As another example, the syntactic definition:

ArgumentList
AssignmentExpression
ArgumentList, AssignmentExpression

states that an ArgumentListmay represent either a single AssignmentExpressiasr an ArgumentListfollowed by
a comma, followed by an AssignmentExpressiofhis definition of ArgumentLists recursive, that is, it is defined
in terms of itself. The result is that an ArgumentListmay contain any positive number of arguments, separated
by commas, where each argument expression is an AssignmentExpressiorSuch recursive definitions of
nonterminals are common.

The subscripted suf f ju@ , Aiwhi ch may appear after a terminal or nonterminal, indicates

The alternative containing the optional symbol actually specifies two right-hand sides, one that omits the
optional element and one that includes it. This means that:

© Ecma International 2012 9

secmd

VariableDeclaration:
Identifier Initialiserpt

is a convenient abbreviation for:
VariableDeclaration:
Identifier
Identifier Initialiser

and that:

IterationStatement
for (ExpressionNolgy, ; Expressiopy ; Expressiogy) Statement

is a convenient abbreviation for:
IterationStatement
for (; Expressiopy ; Expressiogy) Statement

for (ExpressionNoln; Expressiogy ; Expressionx) Statement

which in turn is an abbreviation for:

IterationStatement
for (;; Expressiog,) Statement
for (; Expression; Expressiogy). Statement
for (ExpressionNoln; ; Expressiogy) - Statement

for (ExpressionNoln; Expression; Expressiog:) Statement

which in turn is an abbreviation for:

IterationStatement
for(;;) Statement
for (;; Expression) /Statement
for (; Expression;) < Statement
for (; Expression; Expression) Statement

for (ExpressionNoln ;) Statement

for (ExpressionNolp; Expression) Statement

for (ExpressionNoln Expression;) Statement

for (ExpressionNoln Expression; Expression) Statement

so the nonterminal IterationStatemendctually has eight alternative right-hand sides.
When theomwofodd ofil ow the col on(s) in a grammar definition, they signify that e
symbols on the following line or lines is an alternative definition. For example, the lexical grammar for

ECMAScript contains the production:

NonZeroDigit:: one of
123456789

which is merely a convenient abbreviation for:

10 © Ecma International 2012

pecma

NonZeroDigit::

O©CO~NOOUTAWNE

I'f the [epyl0 aappéar s -hand sidda a pradgtion, it indicates that the production's right-
hand side contains no terminals or nonterminals.

I'f t he [pkhheai 580 fla p p e ar s -hamd sitlehoa produgtibrt, it indicates that the production
may not be used if the immediately following input token is a member of the given set The setcan be written
as a list of terminals enclosed in curly braces. For convenience, the set can also be written as a nonterminal,
in which case it represents the set of all terminals to which that nonterminal could expand. For example, given
the definitions

DecimalDigit:: one of
0123456789

DecimalDigits::
DecimalDigit
DecimalDigits DecimalDigit

the definition

LookaheadExample
N [lookahead 1 {1, 3, 5, 7, 9}] DecimalDigits
DecimalDigit [lookahead i DecimalDigit]

matches either the letter n followed by one or more decimal digits the first of which is even, or a decimal digit
not followed by another decimal digit.

I f t he nhpLhdTeanBaeherfld0 ap p e ar s -hamd sidelofea produgfibntof the syntactic grammar, it
indicates that the production is a restricted production: it may not be used if a LineTerminatoroccurs in the
input stream at the indicated position. For example, the production:

ThrowStatement
throw [no LineTerminatomere] Expression

indicates that the production may not be used if a LineTerminatoroccurs in the script between the throw token
and the Expression

Unless the presence of a LineTerminatoiis forbidden by a restricted production, any number of occurrences of
LineTerminatormay appear between any two consecutive tokens in the stream of input elements without
affecting the syntactic acceptability of the script.

The lexical grammar has multiple goal symbols and the appropriate goal symbol to use depends upon the
syntactic grammar context. If a phrase of the form fiLexical goal LexicalGoalSymbol]0 appears on the right-hand-
side of a syntactic production then the next token must be lexically recognised using the indicated goal symbol.
In the absence of such a phrase the default lexical goal symbol is used.

When an alternative in a production of the lexical grammar or the numeric string grammar appears to be a
multi-character token, it represents the sequence of characters that would make up such a token.

© Ecma International 2012 11

secmd

The right-hand side of a production may specify that certain expansions are not permitted by using the phrase
fboutnoto and then indicating the expansionm to be excluded. For example, the produ

Identifier::
IdentifierNamebut not ReservedWord

means that the nonterminal Identifier may be replaced by any sequence of characters that could replace
IdentifierNameprovided that the same sequence of characters could not replace ReservedWord

Finally, a few nonterminal symbols are described by a descriptive phrase in sans-serif type in cases where it
would be impractical to list all the alternatives:

SourceCharacter:
any Unicode character

5.2 Algorithm Conventions

The specification often uses a numbered list to specify steps in an algorithm. These algorithms are used to
precisely specify the required semantics of ECMAScript language constructs. The algorithms are not intended
to imply the use of any specific implementation technique.-In practice, there may be more efficient algorithms
available to implement a given feature.

Algorithms may be explicitly parameterised, in which case the names and usage of the parameters must be
provided as part of the algorithm& definition. In order to facilitate their use in multiple parts of this specification,
some algorithms, called abstract operations, are-named and written in parameterised functional form so that
they may be referenced by name from within other algorithms.

Algorithms may be associated with productions of one of the ECMAScript grammars. A production that has
multiple alternative definitions will typically have a distinct algorithm for each alternative. When an algorithm is
associated with a grammar production, it may reference the terminal and non-terminal symbols of the
production alternative as if they were parameters of the algorithm. When used in this manner, non-terminal
symbols refer to the actual alternative definition that is matched when parsing the script souce code.

Unless explicitly specified otherwise, all chain productions have an implicit associated definition for every
algorithm that is might be applied to that productiond.s -Hared fsitle nonterminal. The implicit simply reapplies

the same algorithm name with the same parameters, if any, to the chain productiond s s o l-hand sideg h t
nonterminal and then result. For example, assume there is a production

Block:
{ StatementList

but there is.no evalutionalgorithm that is explicitly specified for that production. If in some algorithm there is a
statement of the form: fReturn the result of evaluatirgloclo it is implicit that the algorithm has an evalution
algorithm of the form:

Runtime Semantics:< Evaluation

Block : { StatementList

1. Returnthe result of emluatingStatementList

For clarity of expression, algorithm steps may be subdivided into sequential substeps. Substeps are indented
and may themselves be further divided into indented substeps. Outline numbering conventions are used to
identify substeps with the first level of substeps labelled with lower case alphabetic characters and the second
level of substeps labelled with lower case roman numerals. If more than three levels are required these rules
repeat with the fourth level using numeric labels. For example:

1. Toplevel step
a. Substep.

12 © Ecma International 2012

pecma

b. Substep
i Subsubstep.
ii. Subsubstep.
1. Subsubsubstep
a Subsubsubsubstep

A step or substep may be written as an #dAifo
are only applied if the predicateist r u e . If a step or substep begins
the negation of the preceding fAifo predicate step

f

A step may specify the iterative application of its substeps.

A step may assert an invariant condition of its algorithm. Such assertions are used to make explicit
algorithmic invariants that would otherwise be implicit. Such assertions add no additional semantic
requirements and hence need not be checked by an implementation.< They. are used simply to clarify
algorithms.

Mathematical operations such as addition, subtraction, negation, multiplication, division, and the mathematical
functions defined later in this clause should always be understood as computing exact mathematical results
on mathematical real numbers, which do not include infinities and do not include a negative zero that is
distinguished from positive zero. Algorithms in this standard that model floating-point arithmetic include explicit
steps, where necessary, to handle infinities and signed zero and to perform rounding. If a mathematical
operation or function is applied to a floating-point number, it should be understood as being applied to the
exact mathematical value represented by that floating-point number; such a floating-point number must be
finite, and if itis +0 or - 0 then the corresponding mathematical value is simply 0.

The mathematical function abs) yields the absolute value of x, which'is - xif x is negative (less than zero) and
otherwise is x itself.

The mathematical function sign(x) yields 1 if x is positive and - 1 if x'is negative. The sign function is not used in
this standard for cases when x is-zero.

The mathematical function'min(xs, Xz, ..., Xn) yields the mathematically smallest of xi through xn.

The n o txaodulaydy rfiust be finite and nonzero) computes a value k of the same sign as y (or zero)
such that absk) < absy) andx- k = g 3.y for some integer g.

The mathematical function floor(x) yields the largest integer (closest to positive infinity) that is not larger than x.

NOTE floor(x) = x- (x modulo 1)
5.3 Static Semantic Rules

Context-free grammars are not sufficiently powerful to express all the rules that define whether a stream of
input elements make up a valid ECMAScript script that may be evaluated. In some situations additional rules
are needed that may be expressed using either ECMAScript algorithm conventions or prose requirements.
Such rules are always associated with a production of a grammar and are called the static semantics of the
production.

Static Semantic Rules have names and typically are defined using an algorithm. Named Static Semantic
Rules are associated with grammar productions and a production that has multiple alternative definitions will
typically have for each alternative a distinct algorithm for each applicable named static semantic rule.

Unless otherwise specified every grammar production alternative in this specification implicitly has a definition
for a static semantic rule named Containswhich takes an argument named symbolwhose value is a terminal or
non-terminal of the grammar that includes the associated production. The default definition of Containsis:

1. For each terminal and neterminal grammar symbpsym in the definition of this productiodo

a. If symis the same grammar symbol ssanbo) returntrue.
b. If symis a nonterminal,then

© Ecma International 2012 13

Wi
at

predicate

t h

t
t
t he

hat condi ti
he

wor d
same

el
evel

ons
seo,

secmd

i Letcontainedbe the result of Contains feymwith argumentsymbol
ii. If containedis true, returntrue.
2. Returnfalse.

The above definition is explicitly over-ridden for specific productions.

A special kind of static semantic rule is an Early Error Rule. Early error rules define early error conditions (see
clause 16) that are associate with specific grammar productions. Evaluation of most early error rules are not
explicitly invoked within the algorithms of this specification. A comforming implementation must, prior to the
first evaluation of a Script, validate all of the early error rules of the productions used to parse that Script If any
of the early error rules are violated the Scriptis invalid and cannot be evaluated.] [Commented [AW2]: Perhaps this should be somewhere

el se. Currently we dondt ha
the steps in loading and evaluating a program.

6 Source Text

Syntax

SourceCharacter:
any Unicode character

The ECMAScript code is expressed using Unicode, version 5.1 or later. ECMAScript source text is a
sequence of Unicode characters. T h e phr asde fihic as ttee thed abstraetf limguistic or
typographical unit represented by a single Unicode scalar value. The actual encodings used to store and
interchange ECMAScript source text is not relevant to this specification. Any well-defined encoding such as
UTF-32 or UTF-16 may be used. Source text might even be externally represented using a non-Unicode
character encoding. Regardless of the external source text encoding, a conforming ECMAScript
implementation processes the source text as if it was -an equivalent sequence of SourceCharactevalues. Each
SourceCharactebeing an abstract Unicode character with a corresponding Unicode scalar value. Conforming
ECMAScript implementations are not required to perform any normalisation of text, or behave as though they
were performing normalisation of text.

The phrase fcodesupdi nat oUnriecfoedres stcoad ar asatl aired diriny coelffer s to entities
represented by single Unicode scalar values: the components of a combining character sequence are still
individual AiuUni code characters, o0 even though a user might think of the whole se

In string literals, regular expression literals;template literals and identifiers, any Unicode characters may also

be expressed as a Unicode escape sequencet hat- expl i citly express Withmrade pointds numeric val ue.
comment, such an escape sequence is effectively ignored as part of the comment. Within other contexts, such

an escape sequence contextually contributes one Unicode character.

NOTE ECMAScript differs from the Java programming language in the behaviour of Unicode escape sequences. In a
Java program, if the Unicode escape sequence \ u0O00A, for example, occurs within a single-line comment, it is interpreted
as a line terminator (Unicode character 000A is line feed) and therefore the next Unicode character is not part of the
comment. Similarly, if the Unicode escape sequence \ uO00A occurs within a string literal in a Java program, it is likewise
interpreted as a line terminator, which is not allowed within a string literald one must write \ n instead of \ uO0OOA to cause
a line feed to be part of the string value of a string literal. In an ECMAScript program, a Unicode escape sequence
occurring within a comment is never interpreted and therefore cannot contribute to termination of the comment. Similarly, a
Unicode escape sequence occurring within a string literal in an ECMAScript program always contributes a Unicode
character to the literal and is never interpreted as a line terminator or as a quote mark that might terminate the string literal.

ECMAScript String values (8.4) are computational sequences of 16-b i t integer values called fAcode wunitso.
ECMAScript language constructs that generate string values from SourceCharactesequences use UTF-16

encoding to generate the code unit values.

Static Semantics: UTF-16 Encoding

The UTF-16 Encodingof a numeric code point value, cp, is determined as follows:

1. As s er ¢pOOXQOFRFF

2. IfcpO 65535, dphen return
3. Letculbefloor((cpi 65536 / 1024 + 55296.NOTE 55296 is 0xD800.

14 © Ecma International 2012

secma

4. Letcu2be (cpi 65536)modulo1024)+ 56320.NOTE 56320is 0xDCOO.
5. Returnthe code unit sequence consistingaefl followed bycu2.

7 Lexical Conventions

The source text of an ECMAScript script is first converted into a sequence of input elements, which are tokens,
line terminators, comments, or white space. The source text is scanned from left to right, repeatedly taking the
longest possible sequence of characters as the next input element.

There are several situations where the identification of lexical input elements is.sensitive to the syntactic
grammar context that is consuming the input elements. This requires multiple.goal symbols for the lexical
grammar. The InputElementDivgoal symbol is the default goal symbol and is used in those syntactic grammar
contexts where a leading division (/) or division-assignment (/=) operator is permitted. The
InputElementRegExgoal symbol is used in all syntactic grammar contexts where a RegularExpressionLiterab
permitted. The InputElemenfemplat&ail goal is used in syntactic grammar contexts. where a Templatéiteral
logically continues after a substitution element.

[NOTE\ There are no syntactic grammar contexts where both a leading division or division-assignment, and a leading

RegularExpressionLiterahre permitted. This is not affected by semicolon insertion (see 7.9); in examples such as the
following:

a=b
/hi/g.exec(c).map(d);

where the first non-whitespace, non-comment character after a LineTerminatoris slash (/) and the syntactic context allows
division or division-assignment, no semicolon is inserted at the LineTerminator That is, the above example is interpreted in
the same way as:

a=b/hi/g. exec (c).map(d);

Syntax

InputElementDiv:
WhiteSpace
LineTerminator
Comment
Token
DivPunctuator
RightBrac&unctuator

InputElementRegExp
WhiteSpace
LineTerminator
Comment
Token
RightBracéunctuator
RegularExpressionLiteral

InputElementemplatdail ::
WhiteSpace
LineTerminator
Comment
Token
DivPunctuator
Templat&ubstitutionTail

© Ecma International 2012 15

Commented [AWB93]:

May need to also say something

about TemplateSubstitution tail. Also need to consider with
there are any ASl issues concerning it.

secma

7.1 Unicode Format-Control Characters

The Unicode formatc ont r ol characters (i.e., t he
Database such as LEFT-TO-RIGHT MARK or RIGHT-TO-LEFT MARK) are control codes used to control the
formatting of a range of text in the absence of higher-level protocols for this (such as mark-up languages).

It is useful to allow format-control characters in source text to facilitate editing and display. All format control
characters may be used within comments, and within string literals, template literals, and regular expression
literals.

<ZWNJ>and <ZWJ>are format-control characters that are used to make necessary distinctions when forming
words or phrases in certain languages. In ECMAScript source text, <ZWNJ>and <ZWJ>may also be used in
an identifier after the first character.

<BOM> is a format-control character used primarily at the start of a text to mark it.as Unicode and to allow
detection of the text's encoding and byte order. <BOM> characters intended for this purpose can sometimes
also appear after the start of a text, for example as a result of concatenating files. <BOM> characters are
treated as white space characters (see 7.2).

The special treatment of certain format-control characters outside of comments, string literals, and regular
expression literals is summarised in Table 1.

Table 18 Format-Control Character Usage

Code Point Name Formal Name Usage
u+200C Zero width non-joiner <ZWNJ> IdentifierPart
U+200D Zero width joiner <ZWJ> IdentifierPart
U+FEFF Byte Order Mark <BOM> Whitespace

7.2 White Space

White space characters are‘used to improve source text readability and to separate tokens (indivisible lexical
units) from each other, but are otherwise insignificant. White space characters may occur between any two
tokens and at the start or end of input. White space characters may occur within a StringLiteral a
RegularExpressionLiterala Template ‘or a Templat&ubstitutionTail where they are considered significant
characters forming part of a literal value. They may also-occur within a Commentbut cannot appear within any
other kind of token.

The ECMAScript white space characters are listed in Table 2.
Table 2 3 Whitespace Characters

Code Point Name Formal Name

U+0009 Tab <TAB>

U+000B Vertical Tab <VT>

U+000C Form Feed <FF>

U+0020 Space <SP>

U+00A0 No-break space <NBSP>

U+FEFF Byte Order Mark <BOM>

Ot her <cat eg Any other Unicode <USP>
fispace sepa

ECMAScript implementations must recognise all of the white space characters defined in Unicode 5.1. Later
editions of the Unicode Standard may define other white space characters. ECMAScript implementations may
recognise white space characters from later editions of the Unicode Standard.

16 © Ecma International 2012

characters

n

category

ACf o

secma

Syntax

WhiteSpace
<TAB>
<VT>
<FF>
<SP>
<NBSP>
<BOM>
<USP>

7.3 Line Terminators|

Like white space characters, line terminator characters are used to improve source text readability and to
separate tokens (indivisible lexical units) from each other. However, unlike white space characters, line
terminators have some influence over the behaviour of the syntactic'grammar. In general, line terminators
may occur between any two tokens, but there are a few places where they are forbidden by the syntactic
grammar. Line terminators also affect the process of automatic:semicolon insertion (7.9). A line terminator
cannot occur within any token except a StringLiteral Template or TemplatSubstitutionTailLine terminators may
only occur within a StringLiteraltoken as part of a LineContinuation

A line terminator can occur within a MultiLineCommen(7.4) but. cannot occur within a SingleLineComment

Line terminators are included in the set of white space characters that are matched by the \' s class in regular
expressions.

The ECMAScript line terminator characters are listed in Table 3.
Table 38 Line Terminator Characters

Code Point Name Formal Name
U+000A Line Feed <LF>
U+000D Carriage Return <CR>
U+2028 Line separator <LS>
U+2029 Paragraph separator <PS>

Only the Unicode characters in Table 3 are treated as line terminators. Other new line or line breaking
Unicode characters.are treated as white space but not as line terminators. The sequence <CR><LF> is
commonly used as a line terminator. It should be considered a single SourceCharacteffor the purpose of
reporting/line numbers.

Syntax

LineTerminator.:
<LF>
<CR>
<LS>
<PS>

LineTerminatorSequence
<LF>
<CR>[lookahead T <LF>]
<LS>
<PS>
<CR><LF>

7.4 Comments

Comments can be either single or multi-line. Multi-line comments cannot nest.

© Ecma International 2012 17

Commented [AWB94]:
in Templates

Need to talk about line terminators

secmd

Because a single-line comment can contain any Unicode character except a LineTerminatorcharacter, and
because of the general rule that a token is always as long as possible, a single-line comment always consists
of all characters from the // marker to the end of the line. However, the LineTerminatorat the end of the line is
not considered to be part of the single-line comment; it is recognised separately by the lexical grammar and
becomes part of the stream of input elements for the syntactic grammar. This point is very important, because
it implies that the presence or absence of single-line comments does not affect the process of automatic
semicolon insertion (see 7.9).

Comments behave like white space and are discarded except that, if a MultiLineCommentcontains a line
terminator character, then the entire comment is considered to be a LineTerminatorfor purposes of parsing by
the syntactic grammar.

Syntax

Comment:
MultiLineComment
SingleLineComent

MultiLineComment:
/* MultiLineCommentChagg: */

MultiLineCommentChars
MultiLineNotAsteriskChar MultiLineCommentChaysis
* PostAsteriskCommentChags

PostAsteriskCommentChars
MultiLineNotForwardSlashOrAsteriskChar MultiLineCommentChars
* PostAsteriskCommentChags

MultiLineNotAsteriskChar:
SourceCharactebut not *

MultiLineNotForwardSlashOrAsteriskChar
SourceCharactebut not one of / or *

SingleLineComment
/I SingleLineCommentChags

SingleLineCommentChars
SingleLineComment@i SingleLineCommentChaps

SingleLineCommentChar
SourceCharactebut not LineTerminator

7.5 Tokens

Syntax

Token::
IdentifierName
Punctuator
NumericLiteral
StringLiteral
Template

NOTE The DivPunctuator RegularExpressionLiteral RightBracePuctuator, and TemplatSubstitutionTail productions
define tokens, but are not included in the Tokenproduction.

18 © Ecma International 2012

secma

7.6 Identifier Names and Identifiers

IdentifierName Identifier, and ReservedWorare tokens that are interpreted according to the Default Identifier
Syntax given in Unicode Standard Annex #31, Identifier and Pattern Syntax, with some small modifications.
ReservedWordis is an enumerated subset of IdentifierNameand Identifier is an IdentifierNamethat is not a
ReservedWordsee 7.6.1). The Unicode identifier grammar is based on character properties specified by the
Unicode Standard. The Unicode characters in the specified categories in version 5.1.0 of the Unicode
standard must be treated as in those categories by all conforming ECMAScript implementations. ECMAScript
implementations may recognise identifier characters defined in later editions of the Unicode Standard.

NOTE 1 This standard specifies specific character additions: The dollar sign (U+0024)-and the underscore (U+005f)« [Formaned: Note

are permitted anywhere in an IdentifierName and the characters zero width non-joiner(U+200C) and zero width joiner
(U+200D) are permitted anywhere after the first character of an IdentifierName

Unicode escape sequences are permitted in an IdentifierName where they contribute a single Unicode
character to the IdentifierName The code point of the contributed character is expressed by the HexDigits of
the UnicodeEscapeSequengsee 7.8.6). The \ preceding the UnicodeEscapeSequenend the u and {}
characters, if they appear, do not contribute characters to the Identifi'lName A UnicodeEscapeSequencannot
be used to put a character into an IdentifierNamethat would otherwise be illegal. In other words, if a
\ UnicodeEscapeSequensequence were replaced by the Unicode character it constributes, the result must
still be a valid IdentifierNamethat has the exact same sequence of characters as the original IdentifierName All
interpretations of IdentifierNamewithin this specification are based upon their actual characters regardless of
whether or not an escape sequence was used to contribute any particular characters.

Two IdentifierNamethat are canonically equivalent according to the Unicode standard are not equal unless
they are represented by the exact same sequence of .code units (in other words, conforming ECMAScript
implementations are only required to do bitwise comparison on.IdentifierName values).

NOTE 2 If maximal portability is a concern, programmers should only employ-the identifier characters that were defined Formatted: Note

in Unicode 3.0, —
Commented [AWB95]: Norbert suggests chaning this to
5.1.0. Woul d be really be b

Syntax

Identifier::

IdentifierNamebut not ReservedWord
IdentifierName::

IdentifierStart

IdentifierName IdentifierPart

IdentifierStart::
UnicoddDStart
$

\ UnicodeEscapeSequence
IdentifierPart::

UnicoddDContinue

\ UnicodeEscapeSequence
<ZWNJ>
<ZWJ>

UnicoddDStart::
any Unicode character with the Unicode property fiD_Starta

UnicoddD Continue::
any Unicode character with the Unicode property iD_Continued

© Ecma International 2012 19

secmd

The definitions of the nonterminal UnicodeEscapeSequenisegiven in 7.8.6
Static Se mantics: String Value

Identifier :: IdentifierNamebut not ReservedWord

1. Returnthe Stringvalue of IdentifierName

IdentifierName::
IdentifierStart
IdentifierName IdentiérPart

1. Return the String value consisting thle sequence afode unitscorresponding tédentifierName In
determining the sequeneay occurences of\ UnicodeEscapeSequenaee firstreplaced with theode
pointrepresented by thenicodeEscapeSequenardthen the ode points of the entiredentifierNameare
converted to code unitsy UTF16 Encodingclause 6each code point.

7.6.1 Reserved Words
A reserved word is an Identifie'lNamethat cannot be used as an Identifier.

Syntax

ReservedWord
Keyword
FutureReservedWord
NullLiteral
BooleanLiteral

The ReservedWordefinitions are specified as literal sequences of Unicode characters. However, any Unicode
character in a ReservedWak can also be expressed by a\ UnicodeEscapeSequentieat expresses that same
Unicode character6 s c.0 d e Use af isuth escape sequences does not change the meaning of the
ReservedWord

7.6.1.1 Keywords

The following tokens are ECMAScript keywords and may not be used as Identifiersin ECMAScript programs.

Syntax

Keyword:: one of
break delete import this
case do in throw
catch else instanceof try
class export let typeof
continue finally new var
const for return void
debugger function super while
default if switch with

7.6.1.2 Future Reserved Words

The following words are used as keywords in proposed extensions and are therefore reserved to allow for the
possibility of future adoption of those extensions.

20 © Ecma International 2012

secma

Syntax

FutureReservedWord one of
enum extends

The following tokens are also considered to be FutureReservedWordshen they occur within strict mode code
(see 10.1.1). The occurrence of any of these tokens within strict mode code in any context where the

occurrence of a FutureReservedWordould produce an error must also produce an equivalent error:

imp lements private public
interface package protected static

7.7 Punctuators

Syntax
Punctuator.: one of

) y < >
>= == | = === I==
+ - * % ++
<< >> >>> & |
| ~ && Il 2
= += _ = *= %=
>>= >>>= &= |: A=

DivPunctuator:: one of

/ I=
RightBracéunctuator.:
}
7.8 Literals

7.8.1° Null Literals

Syntax
NullLiteral ::
null
7.8.2 Boolean Literals

Syntax

BooleanLiteral:
true
false

© Ecma International 2012

yield

21

Commented [AWB86]:

needs to be

Commented [AWB87]:

It i s no textendsactally t t

reserved.

Move to keywords

secmd

7.8.3 Numeric Literals

Syntax

NumericLiteral::
DecimalLiteral
BinaryIntegerLieral
OctallntegerLiteral
HexlIntegerLiteral

DecimallLiteral::
DecimallntegerLiteral DecimalDigitsp: ExponentPag:
. DecimalDigits ExponentPag
DecimallintegerLiteral ExponentPapt

DecimalintegerLiterat:
0
NonZeroDigit DecimalDigits:

DecimalDuits::
DecimalDigit
DecimalDigits DecimalDigit

DecimalDigit:: one of
0123456789

NonZeroDigit:: one of
123456789

ExponentPart:
Exponentindicator Signedinteger

Exponentindicator: one of
e E

Signedinteger:
DecimalDgits
+ DecimalDigits
- DecimalDigits

BinaryintegerLiteral::
Ob BinaryDigit
0B BinaryDigit
BinaryintegerLiteralBinaryDigit

BinaryDigit :: one of
01

OctallntegerLiteral::
0o OctalDigit
00 OctalDigit
OctalintegerLiteral OctalDigit

OctalDigit:: one of
0123 4567

HexIntegerLiteral:

0x HexDigits
0X HexDigits

22

© Ecma International 2012

Commented [AWB78]: From March 29 meeting notes: Hex
floating point literals:

Waldemar: Other languages include these things. They're
rarely used

but when you want one, you really want one. Use cases are
similar to

that of hex literals.

Will explore adding them.

MarkM: 0x3.p1 currently evaluates to undefined. This would
be a

breaking change.

Waldemar: Not clear anyone would notice. How did other
languages

deal with this?

Commented [AWB79]: The various Digit productions could
be refactored to have less redundency

pecma

HexDigits ::
HexDigit
HexDigits HexDigit

HexDigit:: one of
0123456789abcdefABCDEF

The SourceCharacteimmediately following a NumericLiteralmust not be an IdentifierStartor DecimalDigit

NOTE For example:
3in

is an error and not the two input elements 3 and in .

A conforming implementation, when processing strict mode code (see 10:1.1), must not extend the syntax of
NumericLiteralto include OctallntegerLiteralas described in B.1.1.

Static Semantics : MV 0 s

A numeric literal stands for a value of the Number type. This value is determined in two steps: first, a
mathematical value (MV) is derived from the literal; second; this mathematical value is rounded as described
below.

The MV of NumericLiteral:: DecimalLiteralis the MV of DecimalLiteral

The MV of NumericLiteral:: BinaryintegerLiteralis the MV of BinaryintegerLiteral

The MV of NumericLiteral:: OctalintegeLiteral.is the MV of OctallntegerLiteral

The MV of NumericLiteral:: HexIntegerLiterals the MV of HexIntegerLiteral

The MV of DecimalLiteral:: DecimallntegerLiteral is the MV of DecimallntegerLiteral

The MV of DecimallLiteral:: DecimalintegerLiteal . DecimalDigitsis the MV of DecimallntegerLiteralplus

(the MV of DecimalDigitstimes.10 "), where n'is the number of characters in DecimalDigits.

1 The MV of DecimallLiteral:: DecimallntegerLiteral. ExponentParis the MV of DecimalintegerLiteratimes
10°, where eis the MV of ExponentPart

1 The MV of Decimalliteral :: DecimalintegerLiteral . DecimalDigits ExponentPartis (the MV of
DecimalintegerLiteralplus (the MV of DecimalDigitstimes 10") times 1, where n is the number of
characters in DecimaDigitsand e is the MV of ExponentPart

1 The MV of DecimalLiteral::. DecimalDigitsis the MV of DecimalDigitstimes 10", where n is the number of
characters:in DecimalDigits.

1 The MV of DecimalLiteral::. DecimalDigits ExponentPait the MV of DecimalDigistimes 10°", where n is
the'number of characters in DecimalDigis and eis the MV of ExponentPart

1 .The MV of DecimalLiteral:: DecimallntegerLiterais the MV of DecimalintegerLiteral

1 The MV of DecimalLiteral:: DecimallntegerLiteral ExponentPaig the MV of DecimallntegerLiteratimes 107,
where eis the MV of ExponentPart

T The MV of DecimalintegerLiterat: 0 is 0.

1 The MV of DecimalintegerLiterat: NonZeroDigitis the MV of NonZeroDigit.

1 The MV of DecimallntegerLiteral:: NonZeroDigitDecimalDigitsis (the MV of NonZeroDigittimes 10") plus
the MV of DecimalDigits where n is the number of characters in DecimalDigits

1 The MV of DecimalDigits:: DecimalDigitis the MV of DecimalDigit

The MV of DecimalDigits:: DecimalDigitsDecimalDigitis (the MV of DecimalDigitstimes 10) plus the MV of

DecimalDigit

The MV of ExponentPart: Exponentindicator Signedintegisrthe MV of Signedinteger

The MV of Signedinteger: DecimalDigitsis the MV of DecimalDigits

The MV of Signedinteger: + DecimalDigitsis the MV of DecimalDigits

The MV of Signedinteger: - DecimalDigitsis the negative of the MV of DecimalDigits

The MV of DecimalDigit:: 0 or of HexDigit:: 0 or of OctaDigit :: 0 or of BinaryDigit :: 0 is O.

The MV of DecimalDigit:: 1 or of NonZeroDigit:: 1 or of HexDigit:: 1 or of OctaDigit :: 1 or

of BinaryDigit :: 1 is 1.

= =4 =& -4 -4 -4

=

= =4 —a -8 -8 -4

© Ecma International 2012 23

secmd

The MV of DecimalDigit:: 2 or of NonZeroDigit::
The MV of DecimalDigit:: 3 or of NonZeroDigit::
The MV of DecimalDigit:: 4 or of NonZeroDigit::
The MV of DecimalDigit:: 5 or of NonZeroDigit::
The MV of DecimalDigit:: 6 or of NonZeroDigit::
The MV of DecimalDigit:: 7 or of NonZeroDigit::
The MV of DecimalDigit:: 8 or of NonZeroDigit::
The MV of DecimalDigit:: 9 or of NonZeroDigit::

2 or of HexDigit:
3 or of HexDigit::
4 or of HexDigit::
5 or of HexDigit::
6 or of HexDigit::
7 or of HexDigit::
8 or of HexDigit::
9 or of HexDigit::

: 2 or of OctaDigit
3 or of OctalDigit ::
4 or of OctaDigit ::
5 or of OctalDigit ::
6 or of OctalDigit ::
7 or of OctalDigit ::

8is 8.
9isO.

n2is2

3is 3.
4is 4.

6is 6.
7is 7.

5 is 5.

The MV of HexDigit:: a or of HexDigit:: Ais 10.

The MV of HexDigit:: b or of HexDigit:: Bis 11

The MV of HexDigit:: ¢ or of HexDigit:: Cis 12

The MV of HexDigit:: d or of HexDigit:: Dis 13.

The MV of HexDigit:: e or of HexDigit:: Eis 14.

The MV of HexDigit:: f or of HexDigit:: Fis 15.

The MV of BinaryintegerLiteral:: Ob BinaryDigit is the MV of BinaryDigit.
The MV of BinaryintegerLiteral:: OB BinaryDigit is the MV of BinaryDigit.
The MV of BinaryintegerLiteral:: BinaryintegerLiteralBinaryDigit is (the' MV of BinaryintegerLiteraltimes 2)
plus the MV of BinaryDigit.

The MV of OctallntegerLiteral:: 0o OctalDigitis the MV of OctalDigit.
The MV of OctallntegerLiteral:: 00 OctalDigitis the MV of OctalDigit.

The MV of OctalintegerLiteral:: OctallntegerLiteralOctalDigit is (the MV of OctalintegerLiteraltimes 8) plus
the MV of OctalDigit.

The MV of HexIntegerLiterat: 0x HexDigitsis the MV of HexDigits.

The MV of HexIntegerLiterat: 0X HexDigitsis the MV of HexDigits.

The MV of HexDigits :: HexDigitis the MV of HexDigit

The MV of HexDigits :: HexDigits HexDigitis (the MV of HexDigitstimes 16) plus the MV of HexDigit

=4 =4 =& =& —a -4 —a —a —a -4 _a _a _a _a _a -2 _°a

= =a -4

=A = - A

Once the exact MV for a numeric literal has been determined, it is then rounded to a value of the Number type.

If the MV is 0, then the rounded value is +0; otherwise, the rounded value must be the Number value for the
MV (as specified in 8.5), unless the literal is a DecimalLiteraland the literal has more than 20 significant digits,
in which case the Number value may be either the Number value for the MV of a literal produced by replacing
each significant digit after the 20th with a 0 digit or the Number value for the MV of a literal produced by
replacing each significant digit after the 20th with a 0 digit and then incrementing the literal at the 20th
significant digit position. A digit is significant if it is not part of an ExponentParand

1 itis not O; or
1 thereis a nonzero digit to its left and there is a nonzero digit, not in the ExponentPartto its right.

7.8.4 Regular Expression Literals

NOTE A regular expression literal is an input element that is converted to a RegExp object (see 15.10) each time the
literal is evaluated. Two regular expression literals in a program evaluate to regular expression objects that never compare
as === to each other even if the two literals' contents are identical. A RegExp object may also be created at runtime by

new RegExp (see 15.10.4) or calling the RegExp constructor as a function (15.10.3).

The productions below describe the syntax for a regular expression literal and are used by the input element
scanner to find the end of the regular expression literal. The source code comprising the
RegularExpressionBodgnd the RegularExpressionFlaggre subsequently parsed using the more stringent
ECMAScript Regular Expression grammar (15.10.1).

An implementation may extend the ECMAScript Regular Expression grammar defined in 15.10.1, but it must

not extend the RegularExpressionBodynd RegularExpressionFlagsroductions defined below or the productions
used by these productions.

24 © Ecma International 2012

Formatted: Note

pecma

Syntax

RegularExpressionLiterat
| RegularExpressionBodyRegularExpressionFlags

RegularExpressionBody
RegularExpressionFirstChar RegularExpressionChars

RegularExpressionChars
[empty]
RegularExpressionChars RegularExpressionChar
RegularExpressionFirstChar
RegularExpressionNonTerminatout not one of * or\ or/ or [
RegularExpressionBackslashSequence
RegularExpressionClass
RegularExpressionChar
RegularExpressionNonTerminatbut not one of \ or/ or [
RegularExpressionBackslashSequence
RegularExpressionClass

RegularExpressionBackslashSequence
\ RegularExpressionNonTerminator

RegularExpressionNonTerminator
SourceCharactebut not LineTerminator

RegularExpressionClass
[RegularExpressionClassChais

RegularExpressionClassChars
[empty]
RegularExpressionClassChamRegularExpressionClassChar
RegularExpressionClassChar
RegularExpressionNonTerminatbut not one of] or\
RegularExpressionBackslashSequence

RegularExpessionFlags:
[empty]
RegularExpressionFlags IdentifierPart

NOTE Regular expression literals may not be empty; instead of representing an empty regular expression literal, the
characters //'_start a single-line comment. To specify an empty regular expression, use: /(?:)/

Static Semantics: Early Errors
RegularExpressionFlagsRegularExpressionFlags IdentifierPart

1 Itis a Syntax Error if IdentifierPartcontains a Unicode escape sequence.
Static Semantics: BodyText
RegularExpressionLiterat / RegularEpressionBody RegularExpressionFlags
1. Return thesource code that was recogmil asRegularExpressionBody
Static Semantics: FlagText

RegularExpressionLiterat / RegularExpressionBody RegularExpressionFlags

© Ecma International 2012 25

secmd

1.

Return thesource code that was recoged asRegularExpressiolflags.

7.8.5 Template Literal Lexical Components

Syntax

Template:

NoSubstitution Tieplate
Templatéiead

NoSubstitutionTemplate

* Templat€haractersp; *

Templatélead::

* Templat€haractergy ${

TemplatSubstitutionTait:

Templatdliddle
Templat&ail

TemplatMiddle ::

} Templat€haractersy ${

Templat&ail ::

} Templat€haractergy;

Templat€haracters:

TenplateCharacterTemplat€haractersgp

Templat€haracter::

SourceCharactebut not one of or \ or f§)

$ [lookaheadT {]
\ EscapeSequence
LineContinuation

Static Semantics: TV6 snd TRVO's

A template literal component is interpreted as a sequence of Unicode characters. The Template Value (TV) of
a literal component is described in terms of code unit values (CV, 7.8.4) contributed by the various parts of the
template literal component. As part of this process, some Unicode characters within the template component
are interpreted as having a mathematical value (MV, 7.8.3). In determining a TV, escape sequences are
replaced by the code unit of the Unicode characters represented by the escape sequence. The Template
Raw Value (TRV) is similar to a Template Value with the difference that in TRVs escape sequences are
interpreted literally.

=A =4 -4 A A -8 -8 -8 A 4

26

The TV and TRV of NoSubstitutionTemplate ™ is the empty code unit sequence.

The TV and TRV of Templatélead:: “$ { is the empty code unit sequence.

The TV and TRV of TemplateMiddle:: }$ { is the empty code unit sequence.

The TV and TRV of Templatdail :: } * is the empty code unit sequence.

The TV of NoSubstitution@mplate:: © Templat€haracters is the TV of Templat€haracters

The TV of Templatélead:: © Templat€haracters ${ is the TV of Templat€haracters

The TV of Templatdiddle:: } Templat€haracters ${ is the TV of Templat€haracters

The TV of Templatdail :: } Templat€haracters " is the TV of Templat€haracters

The TV of Templat€haracters.: Templat€haracter is the TV of Templat€haracter

The TV of TemplaéCharacters:: Templat€haracter Templat€haractersis a sequence consisting of the

code units in the TV of Templat€haracterfollowed by all the code units in the TV of Templat€haractersin
order.

© Ecma International 2012

Commented [AWB910]: Note that the original proposal
allowed $ldentifierName to be used as a substitution without
{}around the name.

Line terminations charcters are simply handled as literal
SouceCharact er s . find this t
some sort of normalizations of line terminators. Otherwise,
the actual characters in a multi-line template are at the mercy
of the authors editor/OS.

r

pecma

The TV of Templat€haracte :: SourceCharactebut not one of * or\ or $ is the UTF-16 Encoding(clause

6) of the code point value of SourceCharacter

The TV of Templat€haracter:: $ [lookahead T {] is the code unit value 0x0024

The TV of Templat€haracter:: \ EscapeSequende the CV of EscapeSequence

The TV of Templat€haracter:: LineContinuations the TV of LineContinuation

The TV of LineContinuation: \ LineTerminatorSequende the empty code unit sequence.

The TRV of NoSubstitubtnTemplate: ©° Templat€haracters is the TRV of Templat€haracters

The TRV of Templatélead:: © Templat€haracters ${ is the TRV of Templat€haracters

The TRV of Templatdliddle:: } Templat€haracters ${ is the TRV of Templat€haracters

The TRV of Templatdail :: } Templat€haracters " is the TRV of Templat€haracters

The TRV of Templat€haracters.: Templat€haracter is the TRV of Templat€haracter

The TRV of Templat€haracters:: Templat€haracter Templat€haractersis a sequence consisting of the

code units in the TRV of Templat€haracter followed by all the code units in the TRV of

Templat€haractersin order.

1 The TRV of Templat€haracter:: SourceCharactebut not one of * or \ or $ is the UTF-16 Encoding
(clause 6) of the code point value of SourceCharacter

1 The TRV of Templat€haracter:: $ [lookahead {] is the.code unit value 0x0024

The TRV of Templat€haracter:: \ EscapeSequende the sequence consisting of the code unit value

0x006C followed by the code units of TRV of EscapeSequence

The TRV of Templat€haracter:: LineContinuationis the TRV of LineContinuation

The TRV of EscapeSequenceCharacterEscapeSequenisethe TRV of the CharacterEscapeSequence

The TRV of EscapeSequence0 [lookahead i DecimalDigif iS the code unit value 0x0030.

The TRV of EscapeSequenceHexEscapeSequenisethe TRV of the HexEscapeSequence

The TRV of EscapeSequenceUnicodeEscapeSequenisghe TRV of the UnicodeEscapeSequence

The TRV of CharacterEscapeSequenceSingléEscapeCharacteis the TRV of the SingléEscapeCharacter

The TRV of CharacterEscpeSequence NonEscapeCharactés the CV of the NonEscapeCharacter

The TRV of SingleEscapeCharacter. one of ' " \' bfnrtyv is the CV of the

SourceCharactethat is_that single character.

1 The TRV of HexEscapeSequence X HexDigit HeMigit is the sequence consisting of code unit value
0x0078 followed by TRV of the first HexDigit followed by the TRV of the second HexDigit

1 The TRV of UnicodeEscapeSequenceau HexDigit HexDigit HexDigit HexDigit is the sequence consisting of
code unit value 0x0075 followed by TRV of the first HexDigit followed by the TRV of the second HexDigit
followed by TRV of the third HexDigit followed by the TRV of the fourth HexDigit

1 The TRV of UnicodeEscape$eence:: u{ HexDigits } is the sequence consisting of code unit value
0x0075 followed by code unit value 0x007B followed by TRV of HexDigits followed by code unit value
0x007D.

1 The TRV of HexDigits :: HexDigitis the TRV of HexDigit

1 The TRV of HexDigits :: HexDigits HexDigit is the sequence consisting of TRV of HexDigits followed by
TRV of HexDigit

1 The TRV of a HexDigit is the CV of the SourceCharactethat is that HexDigit

The TRV of LineContinuaton :: \ LineTerminatorSequendg the sequence consisting of the code unit value

0x005C followed by the code units of TRV of LineTerminatorSequence

The TRV of LineTerminatorSequence <LF> is the code unit value 0XO00A

The TRV of LineTerminadrSequence: <CR>[lookaheadi <LF>] is the code unit value 0x000D.

The TRV of LineTerminatorSequence <LS> is the code unit value 0x2028

The TRV of LineTerminatorSequence <PS> is the code unit value 0x2029

The TRV of LineTerminatoSequence: <CR><LF> is the sequence consisting of the code unit value

0x000Dfollowed by the code unit value 0X000A

=

== =4 =4 -8 -8 —a -8 8- 48 9

=a =4 =4 & —a —a —a A

=

= =4 =8 -8 -8

NOTE TV excludes the code units of LineContinuationwhile TRV includes them.

© Ecma International 2012 27

secmd

7.8.6 String Literals

NOTE A string literal is zero or more Unicode code points enclosed in single or double quotes. Unicode code points
may also be represented by an escape sequence. All characters may appear literally in a string literal except for the
closing quote character, backslash, carriage return, line separator, paragraph separator, and line feed. Any character may
appear in the form of an escape sequence. String literals evaluate to ECAMScript String values. When generating these
string values Unicode code points are UTF-16 encoded as defined in clause 6. Code points belonging to Basic Multilingual
Plane are encoded as a single code unit element of the string. All other code points are encoded as two code unit
elements of the string.

Syntax

StringLiteral::
" DoubleStringCharactegg: "
' SingkStringCharacters: '

DoubleStringCharacters
DoubleStringCharacter DoubleStringCharactgks

SingleStringCharacters
SingleStringCharacter SingleStringCharactgrs

DoubleStringCharacter:
SourceCharactebut not one of " or\ or LineTerminator
\ EscapeSequence
LineContinuation

SingleStringCharacter.
SourceCharactebut not one of ' or\ or LineTerminator
\ EscapeSequence
LineContinuation

LineContinuation:
\ LineTerminatorSequence

EscapeSequence
CharacterEscapeSequence
0 [lookahead I. DecimaDigit]
HexEscapeSequence
UnicodeEscapeSequence

A conforming implementation, when processing strict mode code (see 10.1.1), must not extend the syntax of
EscapeSequende include OctalEscapeSequenes described in B.1.2.

CharacterEscapeSequence
SingleEscapeCharacter
NonEscapeCharacter

SingleEscapeCharacter one of
o \' bfnrtv

NonEscapeCharder ::
SourceCharactebut not one of EscapeCharacteor LineTerminator

EscapeCharacter.
SingleEscapeCharacter
DecimalDigit
X
u

28 © Ecma International 2012

pecma

HexEscapeSequence
x HexDigit HexDigit

UnicodeEscapeSequence
u HexDigit HexDigit HexDigit HexDigit
u{ HexDigits }

The definition of the nonterminal HexDigitis given in 7.8.3. SourceCharacteis defined in clause 6.

NOTE A line terminator character cannot appear in a string literal, except as part of a LineContinuationto produce the
empty character sequence. The correct way to cause a line terminator character to be part'of the String value of a string
literal is to use an escape sequence such as \ n or \ uO0OA.

Static S emantics
Static Semantics: Early Errors
UnicodeEscapeSequenceu{ HexDigits}

1 Itis a Syntax Error if the MV of HexDigits> 1114111
Static Semantics: SV6s and CVods

A string literal stands for a value of the String type. The String value (SV) of the literal is described in terms of
code unit values (CV) contributed by the various. parts of the string literal. As part of this process, some
Unicode characters within the string literal are interpreted as having a mathematical value (MV), as described
below orin 7.8.3.

The SV of StringLiteral:: ™ is the empty code unit sequence.

The SV of StringLiteral:: " ~is the empty code unit sequence.

The SV of StringLiteral:: " DoubleStringCharacters is the SV of DoubleStringCharacters

The SV of StringLiteral::* SingleStringCharacters is the SV of SingleStringCharacters

The SV of DoubleStringCharacters: DoubleStringCharacteis a sequence of one or two code units that is
the CV of DoubleStringCharacter

1 The SV of DoubleStringCharacters DoubleStringChaacter DoubleStringCharacters a sequence of one or
two code-units. that is the CV of DoubleStringCharacterfollowed by all the code units in the SV of
DoubleStringCharacters order.

1 The SV of SingleStringCharacters SingleStringCharactes a sequence of one or two code units that is the
CV of SingleStringCharacter

1 The SV of SingleStringCharacters: SingleStringCharacteBingleStringCharacterss a sequence of one or
two code units that is the CV of SingleStringCharacterfollowed by all the code units in the SV of
SingleStringCharacters order.

1 The SV of LineContinuation: \ LineTerminatorSequendg the empty code unit sequence.

1 The CV of DoubleStringCharacter: SourceCharactebut not one of " or\ or LineTerminatotis the UTF-16
Encoding(clause 6) of the code point value of SourceCharacter

1 The CV of DoubleStringCharacter: \ EscapeSequendgthe CV of the EscapeSequence

The CV of DoubleStringCharacter: LineContinuatioris the empty character sequence.

The CV of SingleStringCharacter. SaurceCharactebut not one of ' or \ or LineTerminatoris the UTF-16

Encoding(clause 6) of the code point value of SourceCharacter

The CV of SingleStringCharacter. \ EscapeSequencethe CV of the EscapeSequence

The CV of SingleStringCharacter. LineContinuatioris the empty character sequence.

The CV of EscapeSequenceCharacterEscapeSequenisghe CV of the CharacterEscapeSequence

The CV of EscapeSequence0 [lookahead i DecimalDigif IS the code unit value O.

The CV of EscapeSequenceHexEscapeSequeneethe CV of the HexEscapeSequence

The CV of EscapeSequenceUnicodeEscapeSequenisghe CV of the UnicodeEscapeSequence

= =4 =4 -4 -

= =

= =4 =4 -4 —a —A

© Ecma International 2012 29

secma

1 The CV of CharacterEscapeSequenceSingleEscapeCharactés the character whose code unit value is
determined by the SingleEscapeCharacteiccording to ;

Table 49 String Single Character Escape Sequences

Escape Sequence Code Unit Value Name Symbol

\b 0x000 8 backspace <BS>
\ t 0x000 9 horizontal tab <HT>
\n 0x000 A line feed (new line) <LF>
\v 0x000B vertical tab <VT>
\ f 0x000 C form feed <FF>
\r 0x000 D carriage return <CR>
\" 0x00 22 double quote !

\ 0x00 27 single quote '

\\ 0x00 5C backslash \

1 The CV of CharacterEscapeSequenceNonEscapeChaiaeris the CV of the NonEscapeCharacter

1 The CV of NonEscapeCharacter SourceCharactebut not one of EscapeCharacteor LineTerminatoris the
UTF-16 Encodingclause 6) of the code point value of SourceChatracter

1 The CV of HexEscapeSequencex HexDuyit HexDigitis the code unit value that is (16 times the MV of the
first HexDigit) plus the MV of the second HexDigit

1 The CV of UnicodeEscapeSequenceu HexDigit HexDigit HexDigit HexDigit is the code unit value that is
(4096times the MV of the first HexDigit) plus (256times.the MV of the second HexDigit) plus (16 times the
MV of the third HexDigif) plus the MV of the fourth HexDigit

1 The CV of UnicodeEscapeSequenceu{ HexDigits} the is the UTF-16 Encoding(clause 6) of the MV of
HexDigits.

7.9 Automatic Semicolon Insertion

Certain ECMAScript statements (empty statement, variable statement, expression statement, do-while
statement, continue statement, break statement, return statement, and throw statement) must be
terminated with semicolons. Such semicolons may always appear explicitly in the source text. For
convenience, however, such semicolons may be omitted from the source text in certain situations. These
situations are described by saying that semicolons are automatically inserted into the source code token
stream in those situations.

7.9.1 Rules of Automatic Semicolon Insertion
There are three basic rules of semicolon insertion:

1. When, as the script is parsed from left to right, a token (called the offending token) is encountered that is
not allowed by any production of the grammar, then a semicolon is automatically inserted before the
offending token'if one or more of the following conditions is true:

1 The offending token is separated from the previous token by at least one LineTerminabr.
1 The offending tokenis } .

2. When, as the script is parsed from left to right, the end of the input stream of tokens is encountered and
the parser is unable to parse the input token stream as a single complete ECMAScript script, then a
semicolon is automatically inserted at the end of the input stream.

3. When, as the script is parsed from left to right, a token is encountered that is allowed by some production
of the grammar, but the production is a restricted production and the token would be the first token for a
terminal or nonterminal immediately following the annotation fino LineTerminatorhere]d within the restricted
production (and therefore such a token is called a restricted token), and the restricted token is separated

30 © Ecma International 2012

(Field Code Changed

secma

from the previous token by at least one LineTerminator then a semicolon is automatically inserted before
the restricted token.

However, there is an additional overriding condition on the preceding rules: a semicolon is never inserted
automatically if the semicolon would then be parsed as an empty statement or if that semicolon would become
one of the two semicolons in the header of a for statement (see 12.6.3).

NOTE The following are the only restricted productions in the grammar:

PostfixExpression
LeftHandSidExpression [no LineTerminatorhere] ++
LeftHandSide Expressiofo LineTerminatorhere] --

ContinueStatement
continue [no LineTerminatorhere] Identifier;

BreakStatement
break [no LineTerminatorhere] Identifier;

ReturnStatement
return [no LineTermhator here] Expression

ThrowStatement
throw [no LineTerminatorhere] Expression

The practical effect of these restricted productions is-as follows:
When a ++ or -- token is encountered where the parser. would treat it as a postfix operator, and at least one
LineTerminatoroccurred between the preceding token and the ++ or -- token, then a semicolon is automatically

inserted before the ++ or -- token.

When a continue , break , return , or throw tokenis encountered and a LineTerminatoris encountered before
the next token, a semicolon is automatically inserted after the continue , break , return , or throw token.

The resulting practical advice to ECMAScript programmers is:
A postfix ++ or -- operator should-appear on the same line as its operand.
An Expressiorin areturn or throw statement should start on the same line as the return or throw token.
An ldentifierin a break orcontinue statement should be on the same line as the break or continue token.
7.9.2° Examples of Automatic Semicolon Insertion

The source

{12}3
is not a valid sentence in the ECMAScript grammar, even with the automatic semicolon insertion rules. In
contrast, the source

{1

2}3

is also not a valid ECMAScript sentence, but is transformed by automatic semicolon insertion into the
following:

{1

2313
which is a valid ECMAScript sentence.

The source

© Ecma International 2012 31

secmd

for (a; b

)
is not a valid ECMAScript sentence and is not altered by automatic semicolon insertion because the
semicolon is needed for the header of a for statement. Automatic semicolon insertion never inserts one of
the two semicolons in the header of a for statement.

The source
return
a+b
is transformed by automatic semicolon insertion into the following:
return;
a+b;
NOTE The expression a + b is not treated as a value to be returned by the return statement, because a

LineTerminatorseparates it from the token return

The source
a=b
++C

is transformed by automatic semicolon insertion into the following:
a=b;
++C;

NOTE The token ++ is not treated as a postfix operator applying to the variable b, because a LineTerminatoroccurs
between b and ++.

The source

if (@>b)

elsec=d
is not a valid ECMAScript sentence and is not altered by automatic semicolon insertion before the else token,
even though no production of the grammar applies at that point, because an automatically inserted semicolon
would then be parsed as an empty statement.

The source

a=b+tc

(d +e).print()
is not transformed by automatic semicolon insertion, because the parenthesised expression that begins the
second line can be interpreted as an argument list for a function call:

a=b+c(d +e).print()

In the circumstance that an assignment statement must begin with a left parenthesis, it is a good idea for the

programmer to provide an explicit semicolon at the end of the preceding statement rather than to rely on
automatic semicolon insertion.

8 Types

Algorithms within this specification manipulate values each of which has an associated type. The possible
value types are exactly those defined in this clause. Types are further subclassified into ECMAScript language
types and specification types.

Within this specification, then ot atTypeid fi s used as thstypeokd heh gpek oriie filer s t o t he
ECMAScript language and specification types defined in this clause.

8.1 ECMAScript Language Types

An ECMAScript language type corresponds to values that are directly manipulated by an ECMAScript
programmer using the ECMAScript language. The ECMAScript language types are Undefined, Null, Boolean,

32 © Ecma International 2012

pecma

String, Number, Symbol, and Object. An ECMAScript language value is a value that is characterized by an
ECMAScript language type.

8.1.1 The Undefined Type

The Undefined type has exactly one value, called undefined. Any variable that has not been assigned a value
has the value undefined.

8.1.2 The Null Type

The Null type has exactly one value, called null.

8.1.3 The Boolean Type

The Boolean type represents a logical entity having two values, called true and false.
8.1.4 The String Type

The String type is the set of all finite ordered sequences_of zero or more 16-bit unsigned integer values
(el ementso). The Stedtonegresenytextial dag in@ eunning ECMASeripuprogram, in
which case each element in the String is treated as a UTF-16 code unit value. Each element is regarded as
occupying a position within the sequence. These positions are indexed with nonnegative integers. The first
element (if any) is at index O, the next element (if any) at index 1; and so on. The length of a String is the
number of elements (i.e., 16-bit values) within it. The empty String has length zero and therefore contains no
elements.

Where ECMAScript operations interpret String values, each element is interpreted as a single UTF-16 code
unit. However, ECMAScript does not place any restrictions or requirements on the sequence of code units in a
String value, so they may be ill-formed when interpreted as UTF-16 code unit sequences. Operations that do
not interpret String contents treat them as sequences of undifferentiated 16-bit unsigned integers. No
operations ensure that Strings are in a normalized form. Only operations that are explicitly specified to be
language or locale sensitive produce language-sensitive results

NOTE The rationale behind this design was to keep the implementation of Strings as simple and high-performing as
possible. If ECMAScript source code is in Normalised Form C, string literals are guaranteed to also be normalised, as long
as they do not contain any Unicode escape sequences.

Some operations interpret String contents as UTF-16 encoded Unicode code points. In that case the
interpretation is:

1 < A code unit in the range 0to OxD7FFor in the range OXEOOOto OxFFFFis interpreted as a code point
with the same value.

1 A sequence of two code units, where the first code unit clis in the range 0xD800to OXDBFF and the
second code unit c2is in the range 0xXDCO0to OXDFFF, is a surrogate pair and is interpreted as a code
point with the value (c1- 0xD80Q x 0x400+ (c2i 0xDCO0Q + 0x10000

1 A code unit that is in the range 0xD800to OXDFFF, but is not part of a surrogate pair, is interpreted as
a code point with.the same value.

8.1.5 The Number Type

The Number type has exactly 1843773687445481062hat is, 2°* 2°%+3) values, representing the double-
precision 64-bit format IEEE 754 values as specified in the IEEE Standard for Binary Floating-Point Arithmetic,
except that the 900719925474099(@that is, 2°% 2) di st raNawtmb @ N ot of thd IEEE sStandard are
represented in ECMAScript as a single special NaN value. (Note that the NaN value is produced by the
program expression NaN) In some implementations, external code might be able to detect a difference
between various Not-a-Number values, but such behaviour is implementation-dependent; to ECMAScript code,
all NaN values are indistinguishable from each other.

There are two other special values, called positive Infinity and negative Infinity. For brevity, these values
are also referred to for expository purposes by the symbols +a and - &, respectively. (Note that these two

© Ecma International 2012 33

secmd

infinite Number values are produced by the program expressions +Infinity (or simply Infinity) and -
Infinity)

The other 1843773687445481062¢hat is, 254 2%) values are called the finite numbers. Half of these are
positive numbers and half are negative numbers; for every finite positive Number value there is a
corresponding negative value having the same magnitude.

Note that there is both a positive zero and a negative zero. For brevity, these values are also referred to for
expository purposes by the symbols +0 and -0, respectively. (Note that these two different zero Number
values are produced by the program expressions +0 (or simply 0) and - 0.)

The 1843773687445481064¢hat is, 2°“ 2% 2) finite nonzero values are of two kinds:
1842872967520006963that is, 254 25%) of them are normalised, having the form

s3 m3 2°

where sis +1 or -1, mis a positive integer less than 2% but notless than 2°?, and e is an integer ranging from
-1074to 971, inclusive.

The remaining 900719925474099(hat is, 2°* 2) values are denormalised, having the form

s3 m3 2°

where sis +1 or - 1, mis a positive integer less'than 2°2 and eis - 1074

Note that all the positive and negative integers whose magnitude is no greater than 25 are representable in
the Number type (indeed, the integer 0 has two representations, +0.and - 0).

A finite number has an odd significand.if it is nonzero and the integer m used to express it (in one of the two
forms shown above) is odd. Otherwise, it has an even significand.

I'n this s peci fi ctetNumber, value hfeexd0 p W h ® sepresefits an exact nonzero real
mathematical quantity (which might even be an irrational number such as p) means a Number value chosen in
the following manner. Consider the set of all finite values of the Number type, with - 0 removed and with two
additional values added to it that-are not representable in the Number type, namely 21%%* (which is +13 2533
29 and - 294 (which.is - 13 2°°3 297%). Choose the member of this set that is closest in value to x. If two
values of the set are equally close, then the one with an even significand is chosen; for this purpose, the two
extra values 2'°%*and - 2'%“are considered to have even significands. Finally, if 2!°%was chosen, replace it
with +8; if - 219%was chosen, replace it with - & ; if +0 was chosen, replace it with - 0 if and only if x is less than
zero; any other chosen value is used unchanged. The result is the Number value for x. (This procedure
corresponds exactly to the behaviour of the | EEE 754 fAround to nearesto mode.)

Some ECMAScript operators deal only with integers in the range - 2°* through 2°% 1, inclusive, or in the range
0 through 2°2% 1, inclusive. These operators accept any value of the Number type but first convert each such
value to one of 2%?integer values. See the descriptions of the Tolnt32 and ToUint32 operators in 9.5 and 9.6,
respectively.

8.1.6 The Symbol Type

The Symbol type is the set of all non-String values that may be used as the key of an Object property (8.1.7).

Each possible Symbol values is unique and immutable.

Symbol values have a single observable attribute called [[Private]] whose immutable value is either true or
false. A private symbol is a Symbol value whose [[Private]] attribute has the value true.

34 © Ecma International 2012

oechd

8.1.7 The Object Type

An Object is logically a collection of properties. Each property is either a data property, or an accessor
property:

1 A data property associates a key value with an ECMAScript language value and a set of Boolean
attributes.

1 A accessor property associates a key value with one or two accessor functions, and a set of Boolean
attributes. The accessor functions are used to store or retrieve an ECMAScript language value that is
associated with the property.

Properties are identified using key values. A key value is either an ECMAScript String value or a Symbol
valuel

Property keys are used to access properties and their values. There are two kinds of access for properties:
get and set, corresponding to value retrieval and assignment, respectively. The properties accessible via get
and set access includes both own properties that are a direct part of an object and inherited properties which
are provided by another associated object via a property inheritance relationship. Inherited properties may be
either own or inherited properties of the associated object.

All objects are logically collections of properties, but there are multiple forms of objects that differ in their
semantics for accessing and manipulating their properties. Ordinary objects are the most common form of
objects and have the default object semantics. An exotic object is any form of object whose property
semantics differ in any way from the default semantics.

8.1.7.1 Property Attributes

Attributes are used in this specification to define'and explain the state of Object properties. A data property
associates a key value with the attributes listed in Table'5.

Table 50 Attributes of a Data Property

Attribute Name Value Domain Description
[[Value]] Any ECMAScript The value retrieved by a get access of the property.
language type
[[Writable]] Boolean If false, attempts by ECMAScript code to change the
propertyo6s [[Val $ed]il noesticteed. b
[[Enumerable]] Boolean If true, the property will be enumerated by a for-in

enumeration (see 12.6.4). Otherwise, the property is said
to be non-enumerable.

[[Configurable]] Boolean If false, attempts to delete the property, change the
property to be an accessor property, or change its
attributes (other than [[Value]], or changing [[Writable]] to
false) will fail.

An accessor property associates a key value with the attributes listed in Table 6.

© Ecma International 2012 35

secmd

Table 6 8 Attributes of an Accessor Property

Attribute Name

Value Domain

Description

([Get]]

Object or
Undefined

If the value is an Object it must be a function Object. The
functionds [[Cal 6.3)iscalledwithann a
empty arguments list to retrieve the property value each
time a get access of the property is performed.

([Set]]

Object or
Undefined

If the value is an Object it must be a function Object. The
functionds [ptid(8.6.3)is called wit ann a

arguments list containing the assigned value as its sole
argument each time a set access of the property is
performed. The effect of a property's [[Set]] internal method
may, but is not required to, have an effect on the value
returned by subsequent calls to the property's [[Get]]
internal method.

If true, the property is to be enumerated by a for-in
enumeration (see 12.6.4). Otherwise, the property is said to
be non-enumerable.

[[Enumerable]] Boolean

[[Configurable]] | Boolean If false, attempts to delete the property, change the
property to'be a data property, or change its attributes will

fail.

If the initial values of a p r o p e atttibytés sare not explicitly specified by this specification, the default value
defined in Table 7 is used.

Table 7 8 Default Attribute Values

Attribute Name Default Value
[[Value]] undefined
[[Get]] undefined
[[Set]] undefined
[[Writable]] false
[[Enumerable]] false
[[Configurable]] false

8.1.7.2 Object Internal Methods and Internal Data Properties

The actual semantics of ECMAScript objects are specified via algorithms called internal methods. Each object
in an ECMAScript engine is associated with a set of internal methods that defines its runtime behaviour.
These internal methods are not part of the ECMAScript language. They are defined by this specification purely
for expository. purposes. However, each object within an implementation of ECMAScript must behave as
specified by the internal methods associated with it. The exact manner in which this is accomplished is
determined by the implementation.

Internal methods are identified within this specification using names enclosed in double square brackets [[]].
Internal method names are polymorphic. This means that different ECMAScript object values may perform
different algorithms when a common internal method name is invoked upon them. If, at runtime, the
implementation of an algorithm attempts to use an internal method of an object that the object does not
support, a TypeError exception is thrown.

Internal data properties correspond to internal state that is associated with objects and used by various
ECMAScript specification algorithms. Depending upon the specific internal data property such state may
consist of values of any ECMAScript language type or of specific ECMA specification type values. Unless
explicitly specified otherwise, internal data properties are allocated as part of the process of creating an
ECMAScript object and may not be dynamically added to ECMAScript objects. Unless specified otherwise, the
initial value of an internal data property is the value undefined.

36 © Ecma International 2012

secma

Table 8 summarises the essential internal methods used by this specification that are applicable to all [Field Code Changed

ECMAScript objects. Every object must have algorithms for all of the essential internal methods. However, all
objects do not necessarily use the same algorithms for those methods.

T h €Sigriatured ¢ o lofurable 8 and other similar tables describes the invocation pattern for each internal

method. The invocation pattern always includes a parenthesised list of descriptive parameter names. If a

parameter name is the same as an ECMAScript type name then the name describes the required type of the

parameter value. If an internal method explicitly returns a value, its parameter list is followed by the symbol

Yo and nameoftheyrgiuened value. The type names used in signatures refer to the types defined in

Cl ause 8 augmented by the dngl Inbensinmsg tahdedi talomel mayames . afiy ECMAScri pt
language type. An internal method implicitly returns a Completion Record as described in 8.8. In addition to its

parameters, an internal method always has access to the object upon which it isinvoked as a method.

© Ecma International 2012 37

sechma

Table 83 Essential Internal Methods

Internal Method

Signature

Description

[[GetInheritance]]

()Y Object or Null

Determine the object that provides inherited
properties for this object. A null value indicates
that there are no inherited properties. an object.

[[SetInheritance]]

(Object or Null)Y Boolean

Associate with an object another object that
provides inherited properties. Passing null
indicates that there are no inherited properties.
Returns true indicating that the operation was
completed successfully. or false indicating that
the operation was not successful.

[[HasIntegrity]]

(String)Y Boolean

Determine whether the property structure of an
object is fixed to at least the specified level. The

argument is one of the values
"nonextensible ", "sealed ", or "frozen ".
[[SetIntegrity]] (String)Y Boolean Restrict the mutability of an objecté s pr o p

that which is allowed for the specified integrity
level. The argument is one of the values
"nonextensible ", "sealed ", or "frozen ".
Returns true indicating that the operation was
completed successfully or false indicating that
the operation was not successful. The integrity
level of an object may be raised but may not be
lowered.

[[HasOwnProperty]]

(propertyKey) Y Boolean

Returns a Boolean value indicating whether the
object already has an own property whose key is
propertyKey.

[[GetOwnProperty]]

(propertyKey) Y
Undefined or Property
Descriptor

Returns a. Property Descriptor for the own
property of this object whose key is propertyKey,
or undefined if no such property exists.

[[HasProperty]]

(propertyKey) Y Boolean

Returns a Boolean value indicating whether the
object already has either an own or inherited
property whose key is propertyKey.

[[Get]

(propertyKey, Receiver) Y
any.

Retrive the value of a n o b jpepertydusing
the propertyKey parameter. If any ECMAScript
code must be executed to retrieve the property
value, Receiver is used as the this value when
evaluating the code.

[[Set]]

(propertyKey,value,
Receiver) Y Boolean

Try to set the value of an objectd s pr
indentified by propertyKey to value. If any
ECMAScript code must be executed to set the
property value, Receiver is used as the this
value when evaluating the code. Returns true
indicating that the property value was set or
false indicating that it could not be set.

[[Delete]]

(propertyKey) Y Boolean

Removes the own property indentified by the
propertyKey parameter from the object. Return
false if the property was not deleted and is still
present. Return true if the property was deleted
or was not present.

[[DefineOwnProperty]]

(propertyKey, .
PropertyDescriptor) Y
Boolean

Creates or alters the named own property to
have the state described by a Property
Descriptor. Returns true indicating that the
property was successfully created/updated or
false indicating that the property could not be
created or updated.

[[Enumerate]]

()Y Object

Returns an iterator object over the string values
of the keys of the enumerable properties of the

38

© Ecma International 2012

pecma

object.

[[OwnPropertyKeys]] ()Y Object Returns an Iterator object that produces all of the
own property keys for the object except those
that are private Symbols.

Table 9 summarises additional essential internal methods that are supported by objects that may be called as
functions.

Table 98 Additional Essential Internal Methods of Function Objects

Internal Method Signature Description
[[Call]] (any, aListof any) | Executes code associated with the object. Invoked via a
Y any function call expression. The arguments to the internal

method are a this value and a list containing the arguments
passed to the function by a call expression. Objects that
implement this internal method are callable.

[[Construct]] (a List of any) Y Creates an object. Invoked via the new operator. The
Object arguments to'the internal method are the arguments passed
to the new operator. Objects that implement this internal
method<are called constructors. A Function object is not
necessarily a constructor and such non-construtor Function
object do not have a [[Construct]] internal method.

8.1.7.3 Invariants of the Essential Internal Methods

Current this section is just a bunch of material merged together from the ES5
spec. and from the wiki Proxy pages. It need to be completely reworked.

The intent is that it lists all invariants of the Essential Internal Methods. This
includes both invariants that are enforced for Proxy objects and other
invariants that may not be enfored.

Definitions:

The target of an internal method is the object the internal method is called upon.

A sealed property is a non-configurable own property of a target.

A frozen property is a non-configurable non-writable own property of a target.

A new property is a property that does not exist on a non-extensible target.

Two property descriptors descland desc2for a property key value are incompatible if:
1. Desd is produced byalling [[GetOwnPropertyDescriptdirof targetwith key, and

=a = =4 -8 o

2. Calling [DefineOwnProperty]] ofargetwith argument&eyanddesc2would throw aTypeErrorexception.

Exotic objects may define additional constraints upon their [[Set]] internal method behaviour. If possible, exotic
objects should not allow [[Set]] operations in situations where this definition of [[CanPut]] returns false.]

[[GetInheritance]]

Every [[Prototype]] chain must have finite length (that is, starting from any object, recursively accessing the
[[Prototype]] internal data property must eventually lead to a null value).

getOwnPropertyDescriptor

© Ecma International 2012 39

Commented [AWB1212]:
this when CanPut goes away

Need to decide what replaces

secmd

Non-configurability invariant: cannot return incompatible descriptors for sealed propertiesO
Non-extensibility invariant: must return undefined for new properties
Invariant checks:
if trap returns undefined, check if the property is configurable
O if property exists on target, check if the returned descriptor is compatible
if returned descriptor is non-configurable, check if the property exists on the target and is also non-
configurable

defineProperty

Non-configurability invariant: cannot succeed (return true) for incompatible changes to sealed propertiesO
Non-extensibility invariant: must reject (return false) for new properties
Invariant checks:
on success, if property exists on target, check if existing descriptor is compatible with argument
descriptor
on success, if argument descriptor is non-configurable, check if the property exists on the target and is
also non-configurable

getOwnPropertyNames
Non-configurability invariant: must report all sealed properties
Non-extensibility invariant: must not list new property namesO
Invariant checks:
check whether all sealed target properties are present in the trap result
If the target is non-extensible, check that no new properties are listed in the trap result
deleteProperty
Non-configurability invariant: cannot succeed (return true) for sealed properties
Invariant checks:
on success, check if the target property is configurable

getPrototypeOf

I nvariant check: check whether the targetdngtotheegalot ype and the trap result are
operator)

freeze | seal | preventExtensions
Invariant checks:
on success, check if isFrozen(target), isSealed(target) or lisExtensible(target)
isFrozen | isSealed | isExtensible

Invariant check: check whether the boolean trap result is equal to isFrozen(target), isSealed(target) or
isExtensible(target)

hasOwn
Non-configurability invariant: cannot return false for sealed properties
Non-extensibility invariant: must return false for new propertiesO

Invariant checks:
if false is returned, check if the target property is configurable

40 © Ecma International 2012

secma

if false is returned, the property does not exist on target, and the target is non-extensible, throw a
TypeError
has
Non-configurability invariant: cannot return false for sealed properties
Invariant checks:
if false is returned, check if the target property is configurable
get

Non-configurability invariant: cannot return inconsistent values for frozen data properties, and must return
undefined for sealed accessors with an undefined getterO

Invariant checks:

if property exists on target as a data property, check whether the targe
result are identical (according to the egal operator)

if property existsont ar get as an accessor, andundefined, checkwhstiseor 6s get attri bute is
the trap result is also undefined.

set
Non-configurability invariant: cannot succeed (return true) for frozen data properties or sealed accessors

with an undefined setterO
Invariant checks:

on success, if property exists on target as a data property, check whethe
the update value are identical (according to the egal operator)

on success, if property exists ontargetasan accessor, check whether the accessords set attri but e
undefined
keys

Non-configurability invariant: must report all enumerable sealed properties
Non-extensibility invariant: must not list new property names
Invariant checks:

Check whether all enumerable sealed target properties are listed in the trap result

If the target is non-extensible, check that no new properties are listed in the trap result

enumerate
Non-configurability invariant: must report all enumerable sealed properties

Invariant checks:
Check whether all enumerable sealed target properties are listed in the trap result|

upon the proxy trap invariants. We need to provide new
versions for all the essential internal methods.

Commented [AWB1213]: These are placeholders based ‘

Commented [AWB1214]: No longer true because of
Proxies.

\ ‘[Formaned: Strikethrough
[Formatted: Strikethrough

Unless otherwise specified, the standard ECMAScript objects are ordinary objects and behave as described in
8.3. Some standard objects are exotic objects and have behaviour defined in 8.4.

Formatted: Strikethrough

o U

Formatted: Strikethrough

© Ecma International 2012 41

eCma

)

Exotic objects may implement internal methods in any manner unless specified otherwise; for example, one
possibility is that [[Get]] and [[Set]] for a particular exotic object indeed fetch and store property values but
[[HasOwnProperty]] always generates false. However, if any specified manipulation of an exotic object's
internal properties is not supported by an implementation, that manipulation must throw a TypeError
exception when attempted.

The [[GetOwnProperty]] internal method of all objects must conform to the following invariants for each
property of the object:

|l

If a property is described as a data property and it may return different values over time, then either or
both of the [[Writable]] and [[Configurable]] attributes must be true even if no.mechanism to change the
value is exposed via the other internal methods.

If a property is described as a data property and its [[Writable]] and [[Configurable]] are both false, then
the SameValue (according to 9.12) must be returned for the [[Value]] attribute of the property on all calls
to [[GetOwnProperty]].

If the attributes other than [[Writable]] may change over time or if the property might disappear, then the
[[Configurable]] attribute must be true.

If the [[Writable]] attribute may change from false to true, then the [[Configurable]] attribute must be true.
If the result of callingan o b j e dsExessiblg]] internal method has been observed by ECMAScript code

to be false, then if a call to [[GetOwnProperty]] describes a property as non-existent all subsequent calls
must also describe that property as non-existent.

The [[DefineOwnProperty]] internal method of all objects must not permit the addition of a new property to an
object if the [[Extensible]] internal method of that object has been observed by ECMAScript code to be false.

If the result of calling the [[IsExtensible]] internal method of an object has been observed by ECMAScript code
to be false then it must not subsequently become true.

8.1.7.4 Well-Known Symbols and Intrinsics

Well-known symbols are built-in Symbol values (8:4.4) that are explicitly referenced by algorithms of this
specification. They are typically used as the keys of properties whose values serve as extension points of a
specification algorithm. Unless otherwise specified, well-known symbols values are shared by all Code
Realms (10.3) and the value of their [[Private]] attribute is false.

Within this specification a well-known symbol is referred to by using a notation of the form @@name, where
finamed i s vauaesdisted in Tablh ¥0.

42

© Ecma International 2012

pecma

Table 10--Well-known Symbols

Specification Name

Value and Purpose

@@create

A method used to allocate an object. Called from the
[[Construct]] internal method.

@ @haslnstance

A method that determines if a constructor object
recognizes an object as one of the constructord
instances. Called by the semantics of the instanceof
operator.

@@isRegExp A Boolean value that if true indicates thatan object may
be used as a regular expression.

@ @iterator A method that returns the default iterator for an object.
Called by the semantics of the for-of statement.

@@ToPrimitive A method that converts an object to a corresponding
primitive value. Called by the ToPrimitive abstract
operation.

@ @toStringTag A string value that is‘used in the creation of the default

string description-of an object. Called by the built-in
method Object.prototype.toString.

Well-known intrinsics are built-in objects that are explicitly referenced by the algorithms of this specification
and which usually have Realm specific identities. Unless otherwise specified each intrinsic object actually

corresponds to a set of similar objects, one per Realm.

Within this specification a reference such as %name% means the intrinsic object, associated with the current
Realm, corresponding to the name. Determination of the current Realm and its intrinsics is described in 10.4.
The well-known intrincs are listed in Table 11.

© Ecma International 2012

43

44

»ecnd

Table 11 8 Well-known Intrinsic Objects

Intrinsic Name

ECMAScript Language Association

%ODbject% The initial value of the global object
property named "Object”
%O0ObjectPrototype% The initial value of the " prototype

data property of the intrinsic %Object%.

%ODbjProto_toString%

The initial value of the "toString " data
property of the
intrinsic %ObjectPrototype%.

%Function%

The initial value of the global object
property named " Function® "

%FunctionPrototype%

The initial value of the " prototype
data property of the intrinsic %Function%.

Y%Array% The initial value of the global object
property named " Array " .
%ArrayPrototype% The initial” value of the ' prototype

data property of the intrinsic %Array%.

%ArraylteratorPrototype%

The prototype objectused for
lterator objects created by the
CreateArraylterator abstract operation.

%Map% The initial value of the global object
property hamed " Map".
%MapPrototype% The initial value of the " prototype "

data property of the intrinsic %Map%.

%MaplteratorPrototype%

The prototype object used for
Iterator objects created by the
CreateMaplterator abstract operation

%WeakMap%

The initial value of the global object
property named " WeakMap .

%WeakMapPrototype %

The initial value of the " prototype
data property of the
intrinsic %WeakMap%.

%Set% The initial value of the global object
property named " Set " .
%SetPrototype% The initial value of the " prototype "

data property of the intrinsic %Set%.

%SetlteratorPrototype%

The prototype object used for
Iterator objects created by the
CreateSetlterator abstract operation

%GeneratorFunction%

The initial value of the name
"GeneratorFunction" exported from the
built-in module "std:iteration".

%Generatdvo The initial value of the name "Generator"
exported from the builtin module
"std:iteration"

%ErrorPrototype%

%EvalErrorPrototype%

%Rang&rrorPrototype%

© Ecma International 2012

[Formatted Table

[Formatted Table

oecmd

%ReferenceErrorPrototype

%SyntxErrorPrototype%

%TypeErrorPrototype%

%URIErrorPrototype%

%ArrayBuffer%

%DéaeViewPrototype%

77

© Ecma International 2012

45

(commented [awB1215]:

TODO more to comeTODO

[Formatted Table

secma

8.2 ECMASCcript Specification Types

A specification type corresponds to meta-values that are used within algorithms to describe the semantics of
ECMAScript language constructs and ECMAScript language types. The specification types are Reference,
List, Completion, Property Descriptor, Lexical Environment, Environment Record, and Data Block.
Specification type values are specification artefacts that do not necessarily correspond to any specific entity
within an ECMAScript implementation. Specification type values may be used to describe intermediate results
of ECMAScript expression evaluation but such values cannot be stored as properties of objects or values of
ECMAScript language variables.

8.2.1 Data Blocks

This sectionis a placeholderfor descriing the Data Block internal type. Th
following material is verbatium from the the Binary Data ES wiki proposal. The
material has not yet been reviewed or integrated with the rest of this spec.

D

This spec introduces a new, spec-internal block datatype, intuitively representing a contiguously allocated
block of binary data. Blocks are not ECMAScript language values and appear only in the program store (aka
heap).
A block is one of:

f anumber-block

1 an array-block]t, n]

1 astruct-block]tl, ..., tn]
A number-block is one of:

1 anunsigned-integer; i.e., one of uint8, uint16, uint32, or uinté4

1 asigned-integer; i.e., one of int8, int16, int32, or int64

1 afloating-point; i.e., one of float32 or float64

A uintk is an integer in the range [0, 2k). An intk is an integer in the range [-2k-1, 2k-1). A floatk is a floating-
point number representable as a k-bit IEE754 value.

An array-block[t, n] is an ordered sequence of n blocks of homogeneous block type t. Each element of the
array is stored at in independently addressable location in the program store, and multiple Data objects may
contain references to the element.

A struct-block[tl; ..., tn] is an ordered sequence of n blocks of heterogeneous types t1 to tn, respectively. Each
field of the struct is stored at in independently addressable location in the program store, and multiple Data
objects may contain references to the field.

The spec also introduces a datatype of Data objects, which are ECMAScript objects that encapsulate
references to block data in the program store. Every Data object has the following properties:

[[Cl ass]] = fADatao
[[Value]] : reference[block] i a reference to a block in the program store

[[DataType]] : reference[Type] i areferencetoa Type objectdes cr i bi ng this objectdés data bl ock

46 © Ecma International 2012

oechd

8.2.2 The List and Record Specification Type

The List type is used to explain the evaluation of argument lists (see 11.2.4) in new expressions, in function
calls, and in other algorithms where a simple list of values is needed. Values of the List type are simply
ordered sequences of values. These sequences may be of any length.

The Record type is used to describe data aggregations within the algorithms of this specification. A Record
type value consists of one or more named fields. The value of each field is either an ECMAScript value or an
abstract value represented by a name associated with the Record type. Field names are always enclosed in
double brackets, for example [[value]]

For notational convenience within this specification, an object literal-like syntax can be used to express a
Record value. For example, {[[field1]]: 42, [[field2]]: false, [[field3]]: empty} defines a Record value that has
three fields each of which is initialized to a specific value. Field name order is not significant. Any fields that
are not explicitly listed are considered to be absent.

In specification text and algorithms, dot notation may be used to refer to a specific field of a Record value. For
example, if R is the record shown in the previous paragraph then R.[[field2]] is shorthanR
named [[field2]] o .

Schema for commonly used Record field combinations ' may be named, and that name may be used as a
prefix to a literal Record value to identify the specific kind of aggregations that is being described. For
example: Property Descriptor {[[Value]]: 42, [[Writable]]: false, [[Configurable]]: true}.

8.2.3 The Completion Record Specification Type

The Completion type is a Record used to explain the runtime propagation of values and control flow such as
the behaviour of statements (break , continue , return _ and throw) that perform nonlocal transfers of
control.

Values of the Completion type are Record values whole fields are defined as by Table 12.

Table 12 8 Completion Record Fields

Field Name | Value Meaning
[ltypel] One of normal; break, continue, return, | The type of completion that occurred.
or throw
[[value]] any ECMAScript language value or empty | The value that was produced.
[[target]] any ECMAScript identifier or empty The target label for directed control transfers.

The term fAabrupt compl et i on fitype]lesdlue ptiser thannoanmrely c ompl et i on

8.2.3.1 NormalCompletion

The abstract operation NormalCompletiorwith a single argumentsuch as:

1. ReturnNormalCompletiondrgumeny.

Is a short hand that is defined as follows:

1. ReturnCompletion {[[type]]: normal, [[value]]: argument [[target]]:empty}.

8.2.3.2 Implicit Completion Values

The algorithms of this specification often implicitly return Completion Records whose [[type]] is normal.

Unless it is otherwise obvious from the context, an algorithm statement that returns a value that is not a
Completion Record, such as:

© Ecma International 2012 47

he

wi th

f

el

d

of

secmd

1. Return"Infinity"

Generally means the same thing as:

1. ReturnNormalCompletiorf"Infinity").

A refiurrostatement without a value in an algorithm step means the same thing as:

1. ReturnNormalCompletiongndefined).

Similarly, any reference to a Completion Record value that is in a context that does not explicitly require a
complete Completion Record value is equivalent to an explicit reference to the [[value]] field of the Completion
Record value unless the Completion Record is an abrupt completion.

8.2.3.3 Throw an Exception

Algorithms steps that say to throw an exception, such as

1. Throw aTypeError exception

Mean the same things as:

1. ReturnCompletion {[[type]]: throw, [[value]]: a newly createdypeError object, [[target]lempty}.
8.2.3.4 ReturnlfAbrupt

Algorithms steps that say

1. ReturnifAbrupt@rgumeny.

mean the same things as:

1. If arguments an abrupt completiorthenreturnargument
2. Elseif argumentislaCompletionRecord, then leargumentbe argument[[value]].

8.2.4 The Reference Specification Type

NOTE The Reference type is used to explain the behaviour of such operators as delete , typeof , the assignment
operators, the super keyword and other language features. For example, the left-hand operand of an assignment is
expected to produce a reference.

A Reference is a resolved name or property binding. A Reference consists of three components, the base
value, the referenced namand the Boolean valued strict referencdlag. The basevalue is either undefined, an
Object, a Boolean, a String, a Number, or an environment record (10.2.1). A basevalue of undefined indicates
that the Reference could not be resolved to a binding. The referenced namis a String or Symbol.

A Super Reference is a Reference that is used to represents a name binding that was expressed using the
super keyword. A Super Reference has an additional thisValuecomponent and its basevalue will never be an
environment record.

The following abstract operations are used in this specification to access the components of references:

GetBase(V). Returns the basevalue component of the reference V.

GetReferencedName(V). Returns the referenced nameomponent of the reference V.

IsStrictReference(V). Returns the strict referencelag component of the reference V.

HasPrimitiveBase(V). Returns true if the basevalue is a Boolean, String, or Number.
IsPropertyReference(V). Returns true if either the basevalue is an object or HasPrimitiveBase(V) is true;
otherwise returns false.

1 IsUnresolvableReference(V). Returns true if the basevalue is undefined and false otherwise.

= =a =4 = —a

48 © Ecma International 2012

pecma

1 IsSuperReference(V). Returns true if this reference has a thisValuecomponent.
The following abstract operations are used in this specification to operate on references:
8.2.4.1 GetValue (V)

ReturnIfAbrupt{).
If Type(V) is not Reference, retuii.
Let basebe the result of calling GetBas#(
If IsUnresolvableReferen€¥), throw aReferenceError exception.
If IsPropertyReferenc&f), then
a. If HasPrimitiveBaseY) is true, then
i Asseat: In this casebasewill never bea Symbol, null or undefined.
ii. Let base be ToObjectbase.
b. Return the result of callinthe [[Gel] internal methodf basepassing GetReferencedNarg@nd
GefThisValue{) asthe argumers
6. Elsebasemust be an environment record
a. Return the result of calling the GetBindingValue (see€21l) concrete method d&sepassing
GetReferencedNam¥) and IsStrictReferenc¥] as arguments.

agrwNE

NOTE The object that may be created in step 5.a.ii is not accessible outside of the above abstract operation and the
ordinary object [[Get]] internal method. An implementation might choose to avoid the actual creation of the object.

8.2.4.2 PutValue (V, W)

ReturnIfAbrupt{).
ReturnIfAbrupt@W).
If Type(V) is not Reference, throwReferenceError exception.
Let basebe the result of calling GetBas#(
If IsUnresolvableReferenc¥y, then
a. |If IsStrictReferencey) istrue, then
i Throw ReferenceError exception.
b. LetglobalObjbe the result of the abstragperation GetGlobalObject.
c. Return the result of callinBufglobalObjGetReferencedNam¥j, W, false).
6. Else if IsPropertyReferenc¥), then
a. If HasPrimitiveBaseY) is true, then
i Assat: In this casebasewill never bea Symbol, null or undefined.
ii. Setbase to ToObjectpase.
b. ~Let succeededbe theresult of calling the [[Sel] internal methodf basepassing
GetReferencedNam¥}, W, andGetThisValuel{/) as arguments
c. ReturnifAbruptSucceeded
d. If succeededs falseandlsStrictReferencgV) is true, then throw arypeError exception
e. Return.
7. Elsebasemust be a reference whose base is an environment record. So,
a. Return theresult of callingthe SetMutableBinding (10.2.1) concrete methodase passing
GetReferencedNam¥j, W, and IsStrictReferenc®] as arguments.
8. Return.

arwNE

NOTE The object that may be created in step 6.a.ii is not accessible outside of the above algorithm and the ordinary
object [[Set]] internal method. An implementation might choose to avoid the actual creation of that object.

8.2.4.3 GetThisValue (V)

ReturnIfAbrupt{).
If Type(V) is not Refeence, returtV.
If IsUnresolvableReferenc¥], throw aReferenceError exception.
If IsSupeReferencey), then
a. Return the value of ththisValuecomponent of the referengé
Return GetBas&().

pPONPE

o

© Ecma International 2012 49

secmd

8.2.5 The Property Descriptor Specification Type

The Property Descriptor type is used to explain the manipulation and reification of Object property attributes.

Values of the Property Descriptor type are Recordsc omposed of named fields where each fieldoés name is an
attribute name and its value is a corresponding attribute value as specified in 8.1.6.1. In addition, any field

may be present or absent.

Property Descriptor values may be further classified as data property descriptors and accessor property
descriptors based upon the existence or use of certain fields. A data property descriptor is one that includes
any fields named either [[Value]] or [[Writable]]. An accessor property descriptor is one that includes any fields
named either [[Get]] or [[Set]]. Any property descriptor may have fields named [[Enumerable]] and
[[Configurable]]. A Property Descriptor value may not be both a data property descriptor and an accessor
property descriptor; however, it may be neither. A generic property descriptor is a Property Descriptor value
that is neither a data property descriptor nor an accessor property descriptor. A fully populated property
descriptor is one that is either an accessor property descriptor or a data property descriptor and that has all of
the fields that correspond to the property attributes defined in either 8.1.6.1 Table 5 or Table 6.

A Property Descriptor may be derived from an ECMAScript object that has properties that directly correspond
to the fields of a Property Descriptor. Such a derived Property Descriptor has an additional field named
[[Origin]] whose value is the object from which the Property Descriptor was derived.

The following abstract operations are used in this specification to operate upon Property Descriptor values:

8.2.5.1 IsAccessorDescriptor (Desc)

When the abstract operation IsAccessorDescriptor is called with property descriptor Desg the following steps

are taken:

1. If Descis undefined, then returrfalse. « Formatted: Outline numbered + Level: 1 + Numbering Style:
2. If both Desc[[Get]] andDesc|[[Set]] are absent, then retufi@se. 1,2,3,é + Startat: 1 + Alignment: Left + Aligned at: 0" +
3. Returntrue. Tab after: 0.25" + Indent at: 0.25"

8.2.5.2 IsDataDescriptor (Desc)

When the abstract operation IsDataDescriptor-is called with property descriptor Desg the following steps are
taken:

1. If Descisundefined, then returrfalse.
2. If bothDesc[[Value]] andDesc[[Writable]] are absent, then retufalse.
3. Returntrue.

8.2.5.3 IsGenericDescriptor (Desc)

When the abstract operation IsGenericDescriptor is called with property descriptor Desc the following steps
are taken:

1. If Descis undefined, then returrfalse.
2. If IsAccessorDescriptoifesq and IsDataDescriptdbesq are bottfalse, then returrirue.
3. Returnfalse

8.2.5.4 FromPropertyDescriptor (Desc)

When the abstract operation FromPropertyDescriptor is called with property descriptor Desg the following
steps are taken:

The following algorithm assumes that Descis a fully populated Property Descriptor, such as that returned from
[[GetOwnProperty]] (see 8.12.1).

1. If Descis undefined, then returrundefined.
2. If Deschasan [[Origin]] field, then returrDesc[[Origin]] .

50 © Ecma International 2012

»eChna

Let obj be the result ofhe abstract operation ObjectCreate with the intrinsic object %ObjectPrototype % as its
argument.
Assert:objis an extensible ordinary object with no own properties.
If Deschas a [[Value]] field, then
a. Call OrdinarDefineOwnPropertwith argument®bj, "value ", andProperty Descriptor {[[Value]]:
Desc[[Value]], [[Writable]]: true, [[Enumerable]]true, [[Configurable]]:true}
If Deschas a [[Writable]] field, then
a. Call OrdinanDefineOwnPropertyith argument®bj, "writable ", andProperty Descriptor {[[Value]]:
Desc[[Writable]], [[Writable]]: true, [[Enumerable]]true, [[Configurable]]:true}.
If Deschas a [[Get]] field, then
a. Call OrdinaryDefineOwnPropertyith argument®bj, "get ", andProperty Descriptor {[[Value]]:
Desc[[Sef]], [Writable]]: true, [[Enumerable]]true, [[Configurable]]:true}.
If Deschas a [[Set]] field, then
a. Call OrdinarDefineOwnPropertwith argument®bj, "set ", andProperty Descriptor {[[Value]]:
Desc[[Set]], [[Writable]]: true, [[Enumerable]]true, [[Configurable]]:true}.
If Deschas a [[Enumerable]] field, then
a. Call OrdinaryDefineOwnPropertyith argument®bj, "enumerable ", andProperty Descriptor
{[[Value]]: Desc[[Enumerable]], [[Writable]]true, [[Enumerable]]true, [[Configurable]]: true}.

10. If Deschas a [[Configurable]] field, then

a. Call OrdinanDefineOwnPropertwith argument®bj, "configurable. ", andProperty Descriptor
{[[Value]]: Desc[[Configurable]], [[Writabld]: true, [[Enumerable]]true, [[Configurable]]:true}.

11. Returnobj.
8.2.5.,5 ToPropertyDescriptor (Obj)

When the abstract operation ToPropertyDescriptor is called with object Obj, the following steps are taken:

1
2.
3.
4

ReturnIfAbrupt©bj).
If Type(Obj) is not Object throw &ypeError exception.
Let descbe the result of creating a new Property Descriptor that initially has no fields.
If the result ofHasPropertyQbj, "enumerable ") istrue, then
a. Letenumbe the result oGef{Obj, "enumerable ").
b. ReturnlfAbruptenun).
c. Setthe [[Enumerable]] field adescto ToBooleanénun).
If the result ofHasPropertyQbj, "configurable ") istrue, then
a. Letconf be the result oGefObj, "configurable ").
b. ReturnIfAbruptconf).
c. _Set the [[Configurable]] field oflescto ToBoolean§onf).
If the result ofHaPropertyQObj, "value ") istrue, then
a. Letvaluebe the result oGefObj, "value ").
b. ReturnlfAbruptfalue).
c. . Set the [[Value]] field ofdescto value
If the result ofHasProperty@bj, "writable ") is true, then
a. Letwritable be the result oGet(Obj, "writable).
b. ReturnlfAbruptfritable).
c. Set the [[Writable]] field ofdescto ToBooleanyritable).
If the result ofHasPropertyQbj, "get ") is true, then
a. Letgetterbe the result oGef{Obj, "get).
b. ReturnifAbruptgetter.
c. If IsCallable@ettel) is false andgetteris notundefined, then throw arypeError exception.
d. Setthe [[Get]] field ofdescto getter.
If the result ofHasPropertyQbj, "set ") is true, then
a. Letsetterbe the result oGefObj, "set).
b. ReturnIfAbruptgette).
c. If IsCallable(sette) is false andsetteris notundefined, then throw arypeError exception.
d. Setthe [[Set]] field oflescto setter

10. If eitherdesc[[Get]] or desc[[Set]] are present, then

a. |If eitherdesc[[Value]] or desc[[Writable]] are present, then throwTypeError exception.

11. Set the [[Origin]] field ofdescto Obj.

© Ecma International 2012

51

secmd

12. Returndesc
8.2.5.6 CompletePropertyDescriptor (Desc, LikeDesc)

When the abstract operation CompletePropertyDescriptor is called with Property Descriptor Desgc the following
steps are taken:

1. Assert LikeDescis either a Property Descriptor undefined.
2. ReturnlfAbrupt(Desq.
3. Assert:Descis a Property Descriptor
4. If LikeDescis undefined, then setLikeDescto Record{[[Value]]: undefined, [[Writable]]: false, [[Get]]:
undefined, [[Set]]: undefined, [[Enumerable]]:false, [[Configurable]]: false}.
5. |If either IsGenericDescriptoblesq or IsDataDescriptqiDesq is true, then
a. If Descdoes not have fValue]] field, thensetDesc[[Value]] to LikeDesc[[Value]].
b. If Descdoes not have a [[Writable]] field, then deesc[[Writable]] to LikeDesc[[Writable]].
6. Else,
a. If Descdoes not have a@ef] field, then setDesc[[Gef] to LikeDesc[[Get]].
b. If Descdoes not have a [[Set]] field, then d&¢sc[[Sed] to LikeDesc[[Set]].
7. If Descdoes not have alnumerabld field, then setDesc[[Enumerablf to LikeDesc[[Enumerable]]
8. If Descdoes not have afonfigurabld] field, then setDesc[[Configurabld] to LikeDesc[[Configurable]}
9. ReturnDesc
8.

2.6 The Lexical Environment and Environment Record Specification Types

The Lexical Environment and Environment Record types are used to explain the behaviour of name resolution
in nested functions and blocks. These types and the operations upon them are defined in Clause 10.

8.3 Ordinary Object Internal Methods and Internal Data Properties

Sections 8.3-8.5 will eventually be subsectons of a new toplevel section that (commented [AWB1217):

TODO

follow the current section 10

All ordinary objects have an internal data property called [[Prototype]]. The value of this property is either null
or an object and is used for implementing inheritance. Data properties of the [[Prototype]] object are inherited
(are visible as properties of the child-object) for the purposes of get access, but not for set access. Accessor
properties are inherited for both get'access and set access.

Every ordinary ECMAScript object has a Boolean-valued [[Extensible]] internal data property that controls
whether or not properties may be added to the object. If the value of the [[Extensible]] internal data property is
false then additional properties may not be added to the object. In addition, if [[Extensible]] is false the value

of [[Prototype]] internal data properties of the object may not be modified. Once the value of an objec t 6 s
[[Extensible]] internal data property has been set to false it may not be subsequently changed to true.

In the following algorithm descriptions, assume O is an ordinary ECMAScript object, P is a property key value,
V is any ECMAScript language value, Descis a Property Description record, and B is a Boolean flag.

8.3.1 [[GetInheritance]] ()

When the [[GetInheritance]] internal method of O is called the following steps are taken:

1. Returnthe value of the [[Prototype]] interndltaproperty ofO.

8.3.2 [[SetInheritance]] (V)

When the [[SetInheritance]] internal method of O is called with argument V the following steps are taken:
1. Assert:EitherType(V) is Object or TypeY) is Null.

2. Letextensiblebe thevalueof the [[Extensible]] inernaldata propest of O.
3. Letcurrentbe the value of thfPrototype]] internal data property @.

52 © Ecma International 2012

pecma

If SameValueV, curren), then returrtrue.
If extensiblds false, then returrfalse.
If Vis notnull, then
a. LetpbeV.
b. Repeat, whilg is notnull
i If SameValugg, O) is true, thenreturnfalse.
ii. Let nextpbe the result of calling theetlnheritance]] internal method pfwith no
arguments.
iii. ReturnIfAbruptfiextp.
iv. Let p benextp
7. Setthe value of the [[Prototype]] internalataproperty ofO to V.
8. Retuntrue.

ook

8.3.3 [[HasIntegrity]] (Level)

When the [[HaslIntegrity]] internal method of O is called the following steps are taken:

1. Assert:Levelis one of'nonextensible " "sealed ", or"frozen
2. If Levelis "nonextensible " then

a. Return Boolean negation dhe value of the fExtensibld] internal data property o®
3. Returnthe result ofTestintegrityLevelQ, Leve).

8.3.4 [[Setintegrity]] (Level)

When the [[SetIntegrity]] internal method of Qs called the following steps are taken:

1. Assert:Levelis one of'nonextensible " "sealed ", or"frozen .
2. Setthe value of the [Extensibld] internal dataproperty ofO to false
3. If Levelis not"nonextensible " then

a. Returnthe result ofSetntegrityLevel©O, Leve).
4. Returntrue.

8.3.5 [[HasOwnProperty]] (P)
When the [[HasOwnProperty]] internal method of O is called with property key P, the following steps are taken:

1. Assert:IsPropertyKeyP) istrue.
2. If O doesnat have an.own property witkey P, returnfalse
3. Returntrue.

8.3.6 [[GetOwnProperty]] (P)
When the [[GetOwnProperty]] internal method of O is called with property key P, the following steps are taken:

1. Returnthe result of OrdinaryGetOwnProperty with argume@tandP.
8.3.6.1 OrdinaryGetOwnProperty (O, P)

When the abstract operation OrdinaryGetOwnProperty is called with Object O and with property key P, the
following steps are taken:

Assert:IsPropertyKeyP) is true.

If O doesnot have an own property witkey P, returnundefined.

Let D be a mwly created Property Descriptor with no fields.

LetXbeObs own \whose eyt y

If Xis a data property, then
a. SetD.[[Value]ltothevalueoXés [[Val uel]] attribute.
b. SetD.[[Writable]] to the valueoXds [[Wri t abl e]] attri

6. ElseXis an accessor property, so

agrwONE

but e

© Ecma International 2012 53

secmd

a. SetD.[[Get]]tothevalueoXds [[Get]] attribute.
b. SetD.[[Set]]tothe valueoKds [[Set]] attribute.
7. SetD.[[Enumerable]]tothevalueofds [[Enumer abl e]] attribute

8. SetD.[[Configurable]] to the value 0k6 s [[C o n]fatiriputer a b | e]
9. ReturnD.

8.3.7 [[DefineOwnProperty]] (P, Desc)

When the [[DefineOwnProperty]] internal method of O is called with property key P and property descriptor
Desg the following steps are taken:

1. Returnthe result of OrdinaryDefineOwnProperty with argume@t$, andDesc
8.3.7.1 OrdinaryDefineOwnProperty (O, P, Desc)

When the abstract operation OrdinaryDefineOwnPropertis called with Object O, property key P, and property
descriptors Descthe following steps are taken:

1. Letcurrentbe the result of calling OrdinaryGetOwnProperty with arguméntsdP.

2. Letextensiblebe thevalueof the [[Extensible]] internatiata propertyf O.

3. Returnthe result oivValidateAndApplyPropertyDescriptarith argument®, P, extensibleDesg and
current

8.3.7.2 IsCompatiblePropertyDescriptor (Extensible, Desc, Current)

When the abstract operation IsCompatiblePropertyDesiptor is called with Boolean value Extensible and
property descriptors Des¢ and Current the following steps are taken:

1. Returnthe result oValidate AndApplyPropertyDescriptarith. argumentsindefined, undefined,
Extensible Desg andCurrent

8.3.7.3 ValidateAndApplyPropertyDescriptor (O, P, extensible, Desc, current)

When the abstract operation ValidateAndApplyPropertyDescriptois called with Object O, property key P,
Boolean value extensibleand property descriptors Desg and currentthe following steps are taken:

This algorithm contains steps that test various fields.of the Property Descriptor Descfor specific values. The
fields that are tested in this manner need not actually exist in Desc If a field is absent then its value is
considered to be false.

NOTE If undefinedis passed as the O argument only validation is performed and no object updates are preformed.

1. Assert:If Ois notundefinedthenP is a valid property key.
2. If currentis undefined, then
a. If extensibles false, thenreturnfalse.
b. Assert:extensibldstrue.
c. If IsGeneicDescriptorDesqg or IsDataDescriptoBesq is true, then
i. If O.is notundefined, then ceatean own data property namé&dof objectO whose
[[Value]], [[Writable]], [[Enumerable]] and [[Configurable]] attribute values are described
by Desc If the valueof an attribute field oDescis absent, the attribute of the newly
created property is set to its default value.
d. ElseDescmust be an accessor Property Descriptor,
i If O is notundefined, then ceatean own accessor property nameaf objectO whose
[[Get]], [[Set]], [[Enumerable]] and [[Configurable]] attribute values are describe®&sc
If the value of an attribute field ddescis absent, the attribute of the newly created
property is set to its default value.
e. Returntrue.
3. Returntrue, if every fieldin Descis absent.
4. Returntrue, if every field inDescalso occurs ircurrentand the value of every field ibescis the same
value as the corresponding fieldéorrentwhen compared using the SameValue algorithm (9.12).
5. |If the [[Configurable]] field ofcurrentis falsethen

54 © Ecma International 2012

pecma

a. Returnfalse, if the [[Configurable]] field ofDescis true.
b. Returnfalse, if the [[Enumerable]] field oDescis present and the [[Enumerable]] fieldsafrrent
andDescare the Boolean negation of each other.
6. |If IsGenericDescriptdDesq is true, then no further validation is required.
7. Else if IsDataDescriptocurrenf) and IsDataDescriptoBesqg have different results, then
a. Returnfalse, if the [[Configurable]] field ofcurrentis false.
b. If IsDataDescriptor§urrent) is true, then
i If O is notundefined, then onvertthe property namef of objectO from a data property
to an accessor property. Preserve the existin
[[Configurable]] and [[Enumerabl e] Jtibaegstor i but e
their default values.

g values of the conyv
s and set the rest o

c. Else,
i If O is notundefined, then onvertthe property namef of objectO from an accessor
property to a data property. Preserve the existing values of the
[[Configurable]] and [[Enumerable]] attribeats and set the rest of the propertyds attribut
their default values.
8. Else if IsDataDescriptocurrenf) and IsDataDescriptdiesq are bothtrue, then
a. |If the [[Configurable]] field ofcurrentis false, then
i Returnfalse, if the [[Writable]] field of currentis false and the [[Writable]] field oDescis
true.
ii. If the [[Writable]] field of currentis false, then
1. Returnfalse, if the [[Value]] field of Descis present and
SameValueDesc[[Value]], current[[Value]]) is false.
b. else the [[Configurable]] filel of currentis true, so any change is acceptable.
9. Else IsAccessorDescriptanfrrenf) and IsAccessorDescript@€sg are bothtrue,
a. If the [[Configurable]] field ofcurrentis false, then
i Returnfalse, if the [[Set]] field ofDescis present and SameValizesc[[Set]],
current[[Set]]) is false.
ii. Returnfalse, if the [[Get]] field of Descis present.and SameValixsc[[Get]],
current[[Get]]).is false.
10. If Ois notundefined, then
a. For each attribute field dbescthat is present, set the correspondingly edmttribute of the
property namedP of objectO to the value of the field.
11. Returntrue.

NOTE Step 8.b allows any field of Desc to be different from the corresponding field of currentif cur rent 6s
[[Configurable]] field is true. This even permits changing the [[Value]] of a property whose [[Writable]] attribute is false. This

is allowed because a.true [[Configurable]] attribute would permit an equivalent sequence of calls where [[Writable]] is first

set to true, anew [[Value]] is set, and then [[Writable]] is set to false.

[8.3.8 [[HasProperty]](P)
When the [[HasProperty]] internal method of O is called with property key P, the following steps are taken:

Assert: IsPropertyKeg) is true.
Let hasOwnbe the result of callinghe [[HasOwnProperty] internal method ofO with argumentP.
ReturnIfAbrupthiasOwr).
If hasOwnis false, then

a. Letparentbe theresultof calling the [[GetInheritancy internal methodof O.

b. ReturnlfAbruptpareny.

c. If parentis notnull, then

i Return he result of calling the HasProperty]] internal method oparentwith argument.

5. ReturnhasOwn

8.3.9 [[Get]] (P, Receiver)

pONPE

When the [[Get]] internal method of O is called with property key P and ECMAScript language value Receiver
the following steps are taken:

1. Assert:IsPropertyKeyP) istrue.
2. Letdescbe the result bcalling the [[GetOwnProperty] internal method o with argumentP.

© Ecma International 2012 55

O N o

eCma

)

ReturnIfAbrupt@esg.
If descis undefined, then
a. Letparentbe theresultof calling the [[Getinheritancd] internal methodof O.
b. ReturnlfAbruptpareny.
c. If parentis null, then returrundefined.
d. Return the result of calling the [[Gginternal methodof parentwith argumentd® andReceiver
If IsDataDescriptorfesq is true, returndesc[[Value]].
Otherwise, IsAccessorDescriptdgsg must betrue so, letgetterbe desc[[Get]].
If getteris undefined, returnundefined.
Return the resulof calling the [[Call]] internal method ofetterwith ReceiverasthethisArgumentandan
empty List asargumentsist.

8.3.10 [[Set]] (P, V, Receiver)

When the [[Set]] internal method of O is called with property key P, value'V, and ECMAScript language value
Receiverthe following steps are taken:

Eal ol N

6.

Assert:IsProprtyKey(P) is true.
Let ownDescbe the result of callinthe [[GetOwnProperty}internal method o© with argument.
ReturnifAbruptownDesg.
If ownDesds undefined, then
a. Letparentbe theresultof calling the [[GetInheritancy internal methodof O.
b. ReturnlfAbruptpareny.
c. If parentis notnull, then
i Return the result of calling thegg{] internal methodof parentwith arguments, V, and
Receiver
d. Else,
i. If Type(Receive) is not Object returnfalse.
ii. Return the result gberformingCreateOwnDataPropertReceiverP, V).
If IsDataDescriptorgwnDesg is true, then
a. If ownDesc[[Writable]] is false, returnfalse.
b. If TypeReceiveyis not Object returnfalse.
c. LetexistingDescriptobethe result of callinghe [[GetOwnPropert}} internal methodof Receiver
with argumentP.
d. ReturnIfAbruptexistingDescriptoy.
e. If existingDescriptoiis notundefined, then
i. Let valueDesdoe the Property Descriptor {[[Value]\}.
il Return the result of callinthe [[DefineOwnProprty]] internal method oReceivemwith
arguments andvalueDesc
f. ElseReceiverdoes not currently have a propeRy
i Retun the result of performing CreateOwnDataPropeRegeiver P, V).
IfIsAccessorDescriptodwnDesg is true, then
a. LetsetterbeownDesc[[Set]].
b." If setteris undefined, returnfalse.
c. LetsetterResulbethe result of callinghe [[Call]] internal method o$etterprovidingReceiveras
thisArgumentanda newList containingV asargumentsList
d. ReturnlfAbrupt6etterResu)t
e. Returntrue.

j8.3.11 [[Delete]] (P)

When the [[Delete]] internal method of O is called with property key P the following steps are taken:

pPwnE

56

Assert:IsPropertyKeyP) is true.
Let descbe the result of callinghe [[GetOwnProperty]] internal method 6fwith argumentP.
If descis undefined, then returrtrue.
If desc[[Configurable]] istrue, then
a. Remove theown property with nam® from O.
b. Returntrue.
Returnfalse.

© Ecma International 2012

secma

8.3.12 [[Enumerate]] ()
When the [[Enumerate]] internal method of O is called the following steps are taken:

1. Return an Iterator objectdference xxxx whose next method iterates over all Steing valuedkeys of Commented [AWB623]: TODO
enumerable property keys 6f The mechanics and order of enumerating the properties is not spemuified
mug conform to the rules specified below

Enumerated properties do not include properties whose property key is a Symbol. Properties of the object
being enumerated may be deleted during enumeration. If a property that has not yet been visited during
enumeration is deleted, then it will not be visited. If new properties are added to.the object being enumerated
during enumeration, the newly added properties are not guaranteed to be visited in the active enumeration. A
property name must not be visited more than once in any enumeration.

Enumerating the properties of an object includes enumerating properties of its prototype, and the prototype of

the prototype, and so on, recursivel y; but a property of a prototype is n
because some previous object in the prototype chain has a property with the same name. The values of

[[Enumerable]] attributes are not considered when determining if a property of a prototype object is shadowed

by a previous object on the prototype chain.

The following is an informative algorithm that conforms to these rules Commented [AWB624]: TODO: Finish this up, and turn it
into iterator definition include a next method.

LetobjbeO. . i . . The algorithm is also confused about [[Enumerate]] called on
Let proto be theresult of callingthe [[GetInheritance]] internahethodof O with no arguments proto returning a list or lterator. See

ReturnIfAbruptfroto). https://bugs.ecmascript.org/show_bug.cgi?id=944
If protois the valuenull, then
a. LetpropListbe a new emty List.
Else
a. LetpropListbe the result of calling the [[Enumerate]] internal methografto.
ReturnIfAbruptpropLisy).
For eachhamethat is the property key of an own property®f
a. If Type(namg is String, then
i Letdescbe the result of callin@rdinayGetOwnPropertwith argument® andname
ii. If nameis an element.opropList thenremovenameas an element qfropList
iii. If desc[[Enumerabld is true, then. adchameas an element gfropList
8. Order the elements @fropListin an implementation definedaer.
9. ReturnpropList

8.3.13 [[OwnPropertyKeys]] ()

pPODPE

o

No

When the [[OwnPropertyKeys]] internal method of O is called the following steps are taken:

1. Letkeysbea new empty List
2. For each own propertigey P of O
a. If Pis not a private Symbol, then
i. ~ Add Pas the last element &kys

3. Retum[l\/lakeListIteratd(keys). Commented [AWB1325]: TODO: need to define, returns
an iterator object over the elements of an internal list.

8.3.14 ObjectCreate(proto, internalDataList) Abstract Operation

The abstract operation ObjectCreate with argument proto (an object or null) is used to specify the runtime
creation of new ordinary objects. The optional argument internalDataListis a List of the names of internal data
property names that should be defined as part of the object. If the list is not provided, an empty List is used. It
performs the following steps:

1. If protowas not provided, lgtroto be the intrinsic %ObjectPrototype%.
2. Letobjbe a newly created ECMAScript objewtth an internal data property for each name in
internalDataList
3. Setobjps essential internal methods to the default ordinary object definiti
4. Set the [[Prototype]] internal data propertyadij to proto.

© Ecma International 2012 57

https://bugs.ecmascript.org/show_bug.cgi?id=944

sechma

5. Set the [[Extensible]] internal data propertyatij to true.
6. Returnobj.

8.3.15 Ordinary Function Objects

Ordinary function objects encapsulate parameterised ECMAScript code closed over a lexical environment and
support the dynamic evaluation of that code. An ordinary function object is an ordinary object and has the
same internal data properties and (except as noted below) the same internal methods as other ordinary
objects.

Ordinary function objects have the additional internal data properties listed in Table 13.

Ordinary function objects provide alternative definitions for the [[Get]] and [[GetOwnProperty]] internal
methods. These alternatives prevent the value of strict mode function from being revealed as the value of a
function object property named "caller ". These alternative definitions exist sole to preclude a non-standard
legacy feature of some ECMAScript implementations from revealing information about strict mode callers. |If
an implementation does not provide such a feature, it need not implement these alternative internal methods
for ordinary function objects.

Table 13 -- Internal Data Properties of Ordinary Function Objects

Internal Data Property Type Description
[[Scopel]] Lexical The Lexical Environment that the function was closed over.
Environment Is used as the outer environment when evaluating the code

of the function.

[[FormalParameters]] Parse Node The root.parse node of the source code that defines the
function6s f or metdrlispar am

[[FunctionKind]] String Either "normal " or “generator

[[Code]] Parse Node The root parse node of the source code that defines the
f unc thody.n 6 s

[[Realm]] Realm Record | The Code Realm in which the function was created and

which provides any intrinsic objects that are accessed
when evaluating the function.

[[ThisMode]] (lexical, strict; Defines how this references are interpreted within the
global) formal parameters and code body of the function. lexical
means that this refers to the this value of a lexically
enclosing function. strict means that the this value is used
exactly as provided by an invocation of the function.
global means that a this value of undefined is interpreted
as a reference to the global object.

[[Strict]] Boolean true if this is a strict mode function, false this is not a strict
mode function.
[[Home]] Object If the function uses super , this is the object whose

[[Getinheritance]] provides the object where super property
lookups begin. Not present for functions tha t d
reference super .

[[MethodName]] String or If the function uses super , this is the property keys that is
Symbol used for unqualified references to super . Not present for
functions thatupetono6t refere

Ordinary function objects all have the [[Call]], [[Get]] and [[GetOwnProperty]] internal methods defined here.
Ordinary functions that are also constructors in addition have the [[Construct]] internal method.

8.3.15.1 [[Call]] (thisArgument, argumentsList)

The [[Call]] internal method for an ordinary Function object F is called with parameters thisArgumentand
argumentsLista List of ECMAScript language values. The following steps are taken:

58 © Ecma International 2012

secma

Let callerContextbe the runningxecution context.

If, callerContextis not alreagl suspended, then SuspecallerContext
Let calleeContexbe a new ECMAScript Code execution context.
Let calleeRealmbe the value oF 6[fRealm]] internal data property.
Setc al | e e CRealite calleéRealm

Let thisModebe the value oF6 s ThisNlode]] internal dataproperty.
If thisModeis lexical, then

Nogok,rwnpE

a. LetlocalEnvbe the result of calling NewDeclarativeEnvironmepassing the value of the [[Scope]]

internaldataproperty ofF as the argument.
8. Else,
a. If thisModeis strict, setthisValueto thisArgument
b. Else

if thisArgumentis null or undefined, then
1. SetthisValueto calleeRealm[[globalThis]].
ii. Else if TypethisArgumen} is not Object, set ththisValueto ToObjectthisArgumenj.
iii. Else set thehisValueto thisArgument
c. LetlocalEnvbe the result otalling NewFunctiorEnvironment passing- andthisValueas the
argumens.
9. Set the LexicalEnvironmertf calleeContexto localEnv.
10. Set the VariableEnvironmemif calleeContexto localEnv.
11. PushcalleeContexbnto the execution context stackalleeContex is now the runningxecution context.
12. Let statusbe the result of performingunction Declaration Instantiation using the functlrargumentsList
, andlocalEnvas described if10.53.
13. If statusis an abrupt completion, then
a. RemovecalleeContextfrom the execution context stack and resteadlerContextas the running
execution context.
b. Returnstatus
14. Let resultbe the result oEvaluateBodyof the productionthat is the value of's [[Code]] internaldata
propertypassingF as he argument
15. RemovecalleeContexfrom the execution context stack and restoalerContextas the running@xecution
context.
16. Returnresult

NOTE1 Most ordinary functions use a Function Environment Record as their LexicalEnvironment. Ordinary functions
that are arrow functions use a Declarative Environment Record as their LexicalEnvironment.

NOTE 2 When calleeContexts removed from the execution context stack it must not be destroyed because it may have
been suspended and.retained by a generator object for later resumption.

8.3.15.2 < [[Construct]] (argumentsList)

The“[[Construct]] internal method for an ordinary Function object F is called with a single parameter
argumentsListvhich is a possibly empty List of ECMAScript language values. The following steps are taken:

1. Returnthe result ofOrdinaryConstruc¢F, argumentsLigt
8.3.15.2.1 OrdinaryConstruct (F, argumentsList)

When the abstract operation OrdinaryConstructis called with Object F and List argumentsListhe following
steps are taken:

1. Letcreatorbe the result of Geff; @ @create).
2. ReturnlfAbruptgreator).
3. If creatoris notundefined, then
a. If IsCallablegreator) isfalse then throw aTypeError exception.
b. Letobjbe the result of calling the [[Call]] internal methodcoéatorwith argument$= and an empty List.
4. Elsecreatoris undefined so fall back to object creation defaults
a. |Letobj bethe result of callingrdinaryCreateFemConstructdiF, " %ObjectPrototype%)]
ReturnlfAbruptebj).
If Type(obj) is not Object, then throwBypeError exception.
Letresultbe the result of calling the [[Call]] internalethodof F, providingobj andargumentsLisasthe arguments

Noo»

© Ecma International 2012 59

Commented [AWB 326]: May need to update section
number

(Commented [AWB1427]: At Jan 29, 2012 TC39 serveral

peopled suggest that this fall back was unnecessary
complexity and that it should this throw. However, that means
that a ordinary function whose __proto___is set to undefined
will throw if newed. I1édm no

L breaking change for the reality web.

secmd

8. ReturnlfAbrupt¢esuly.
9. If Type(resul) is Object then returresult
10. Returnobj.

8.3.15.3 [[Get]] (P, Receiver)

When the [[Get]] internal method of ordinary function object F is called with property key P and ECMAScript
language value Receivetthe following steps are taken:

1. Letv be the result of calling the defawtdinary objecf[Get]] internal method (&.7) onF passingP and
Receiveras argumerst

2. ReturnIfAbruptg).

3. If Pis"caller" andv is a strict mode Function objegtturnnull.

4. Returnv.

If an implementation does not provide such a built-in caller ~ method for Function.prototype then it must

not use this definition. Instead the ordinary object [[Get]] internal method is used.
8.3.15.4 [[GetOwnProperty]] (P)

When the [[GetOwnProperty]] internal method of ordinary function object F is called with property key P, the
following steps are taken:

1. Letv be the result of calling the defawtdinary objecq[GetOwnPropert}} internal method (8.6) onF
passingP asthe argument.
2. ReturnlfAbrut(v).
3. |If IsDataDescripton) is true, then
a. If Pis"caller" andv.[[Value]] is a strict mode Function objedhen
i Setv.[[Value]] to null.
4. Returnv.

If an implementation does not provide such a built-in caller ~ method for Function.p rototype then it must
not use this definition. Instead the ordinary object [[GetOwnProperty]] internal method is used.

8.3.15.5 FunctionAllocate Abstract Operation

The abstract operation FunctionAllocate requires the one arguments, functionPrototypeand accepts one
optional argument, functionKind FunctionAllocate performs the following steps:

1. Assert: TypefunctionPrototypgis Object.

2. Assert: IffunctionKindis present, its value is eithérormal " or "generator .

3. If functionKindis not present, thentléunctionKindbe"normal *.

4. LetF be anewly created ordinary function objewith the internal data properties listedTiable 13.

5. SetF6s essentii al edxceptfe [Gegland [iSetOwWn® mEerty]] to the default ordiyaobject
definitions specified in 8.3.

6. SetFo6 sssential internal methodsr [[Call]], [[Get]] and [[GetOwnProperty]] to the default ordinary

object definitions specified in 8.3.15.
7. Set the [[FunctionKind]] internal data propertyfofo functionKind
8. Set the [[Prototype]] internalataproperty ofF to functionPrototype
9. Set the [[Extensible]] internalataproperty ofF to true.
10. Setthe [[Realm]] internal data propertyfofo the runningg x e cut i on context és Real m.
11. ReturnF.

8.3.15.6 Functionlnitialize Abstract Operation
The abstract operation Functioninitialize requires the arguments: a function object F, kind which is one of
(Normal, Method, Arrow), an parameter list production specified by ParameterLista body production specified

by Body, a Lexical Environment specified by Scope a Boolean flag Strict, and optionally, an object homeObject
and a property key methodNarm Functioninitialize performs the following steps:

60 © Ecma International 2012

pecma

Set the [[Prototypel]] internalataproperty off to functionPrototype
Set the [Bcope]] internabataproperty off to the value oScope
Set the [[FormalParameters]] internal propertyFdé ParameterList
Set the [[Code]] internalataproperty ofF to Body:
If the homeObjectirgument was provided, set the [[HomeObject]] intedagproperty ofF to homeObject
If the methodNaraargument was provided, set the [[MethodName]] intedaghproperty ofF to methodNare
Set the [[Strict]] internatlataproperty off to Strict
If kind is Arrow, then set the [[ThisMode]] interndbta property off to lexical.
Else if Strictis true, then set the [[ThisMode]] interndhtaproperty off to strict.
10. Else set the [[ThisMode]] interndiataproperty offF to global.
11. Letlenbe the ExpectedArgumentCountRdrameterList
12. Call the [[DefineOwProperty]] internal method of with arguments" length
{[[Value]]: len, [[Writable]]: false, [[Enumerable]]false, [[Configurable]]:false}
13. If Strictis true, then
a. Perform theAddRestrictedFunctionProperties abstract ogeraivith argument.
14. ReturnF.

©CONOTRWNE

and Property Descriptor

8.3.15.7 FunctionCreate Abstract Operation

The abstract operation FunctionCreate requires the arguments: kind which is one of (Normal, Method, Arrow),
an parameter list production specified by ParameterList a body production specified by Body, a Lexical
Environment specified by Scope a Boolean flag Strict, and optionally, an object functionPrototype an object
homeObjectnd a string methodNare FunctionCreate performs the following steps:

1. If the functionPrototypeargument was rigpasseghen
a. LetfunctionPrototypébethe intrinsic objec#oFunctionPrototype%.
2. LetF bethe result ofperformingFundionAllocate with argumerfunctionPrototype
3. Return the result of performing Functionlnitialize wiphssingF,. kind, ParameterListBody, Scope and
Strict. Also passhomeObjecandmethodNaméf they are present.

8.3.15.7 GeneratorFunctionCreate Abstract Operation

The abstract operation GeneratorFunctionCreate requires the arguments: kind which is one of (Normal,
Method, Arrow), an parameter list production specified by ParameterLista body production specified by Body;
a Lexical Environment specified by Scope a Boolean flag Strict, and optionally, an object functionPrototypean
object homeObjecaind a string methodNam GeneratorFunctionCreate performs the following steps:

1. If the functionPrototypeargument was not passed,then
a. LetfunctionPrototypebethe intrinsic objecBoGeneratord.
2. LetF bethe result of performing FunctionAllocate with argunsefiunctionPrototypeand“generator
3. Return the result of performing Functionlnitialize with passmgkind, ParameterListBody, Scope and
Strict. Also passhomeObjectindmethodNaméf they are present.

8.3.15.8 AddRestrictedFunctionProperties Abstract Operation
The abstract operation is-called with a function object F as its argument. It performs the following steps:

1. Letthrowerbe the%ThrowTypeErro# intrinsicfunction Object

2. Call the [[DefineOwnProperty]] internal method Bfwith argumentscaller” and PropertyDescriptor {[[GH]:
thrower, [[Set]]: thrower, [[Enumerable]]false, [[Configurable]]:false}.

3. Call the [[DefineOwnProperty]] internal method &f with arguments"arguments" and PropertyDescriptor
{[[Get]): thrower, [[Set]]: thrower, [Enumerable]]false, [[Configurabk]]: false}.

The %ThrowTypeError% object is a unique function object that is defined once for each Realm as follows:
1. Letthescopebe theGlobal Environment.

2. LetformalParameterdethe syntactic productionfFormalParametes : [empty].
3. Letbodybethesyrtactic productionFunctionBody ThrowTypeError

© Ecma International 2012 61

secmd

4. LetF be the result ofthe abstract operation FunctionCreate witjumentdNormal, formalParametersbody, scope
andtrue.

5. Callthe [[SetIntegrity] internal methodof F with argumentnonextensible

6. Let%ThrowTypeErro% beF.

8.3.15.9 MakeConstructor Abstract Operation

The abstract operation MakeConstructor requires a Function argument F and optionally, a Boolean
writablePrototypeand an object prototype If prototypeis provided it is assume to already contain, if needed, a
"constructor " property whose value is F. This operation converts F into a constructor by performs the
following steps:

1. LetinstallNeededefalse
2. If the prototypeargument was not provided,then
a. LetinstallNeededetrue.
b. Let prototyoe be the result of the abstract operation ObjectCreatéh the intrinsic
object %ObjectPrototype% as its argument
3. If the writablePrototypeargument was not provided,then
a. LetwritablePrototypebetrue.

4, SetF6s essenti al i nt }§totheadéfinitine dpdtifed in B.352.onst r uct
5. If installNeededthen
a. Call the [[DefineOwnProperty]] internal method pfototype with arguments"constructor” and
Property Descriptor {[[Value]lF, [[Writable]]: writablePrototype [[Enumerable]]false [[Configurable]]:
writablePrototypet

7. Call the [[DefineOwnProperty]] internal method Bf with arguments' prototype " and Property Descriptor
{[[Value]]: prototype, [[Writable]]: writablePrototype, [[Enumerable]]false, [[Configurable]]:false}.

8. Return.

8.4 Built-in Exotic Object Internal Methods and.Data Fields

This specification defines several kinds of built-in exotic objects. These objects generally behave similar to
ordinary objects except for a few specific situations. The following exotic objects use the ordinary object
internal methods exceptwhere it is explicitly specified otherwise below:

8.4.1 Bound Function Exotic Objects

A bound function is an exotic object that wrappers another function object. A bound function is callable (it has
[[Call]] and [[Construct]] internal methods). Calling a bound function generally results in a call of its wrappered

function:

Bound function objects do not have the internal data properties of ordinary function objects defined in Table
13. Instead they have the internal data properties defined in Table 14.

Table 14 --Internal Data Properties of Exotic Bound Function Objects

Internal Data Property Type Description

[[BoundTargetFunction]] | Callable Object | The wrappered function object.

[[BoundThis]] Any The value that is always passed as the this value when
calling the wrappered function.

[[BoundArguments]] List of Any A list of values that whose elements are used as the first
arguments to any call to the wrappered function.

Unlike ordinary function objects, bound function objects do not use alternative definitions of the [[Get]] and
[[GetOwnPropety]] internal methods. Bound function objects provide all of the essential internal methods as
specified in 8.3. However, they use the following definitions for the essential internal methods of function
objects.

62 © Ecma International 2012

pecma

84.1.1 [[Call]]

When the [[Call]] internal method of an exotic bound function object, F, which was created using the bind
function is called with parameters thisArgumentand argumentsLista List of ECMAScript language values, the
following steps are taken:

Let boundArgsbe the vale of F 6 [EBBoundArgumentl internal dataproperty.

Let boundThisbe the value oF 6 [BoundThis]] internaldataproperty.

Let targetbe the value oF 6 [EBoundrargetFunction]] internadlataproperty.

Letargsbe a new list containing the same valueshaslistboundArgsin the same order followed by the
same values as the listgumentsListn the same order.

Return the result of calling the [[Call]] internal methodtafgetprovidingboundThisasthisArgumentand
providingargsasargumentsList

8.4.1.2 [[Construct]]

rPODNPE

o1

When the [[Construct]] internal method of an exotic bound function-object, F that was created using the bind
function is called with a list of arguments ExtraArgs the following steps are taken:

Lettargetbe the value oF 6 [EBoundrargegFunction]] internaldataproperty.

If targethas no [[Construct]] internal method,TgpeError exception is thrown.

Let boundArgsbe the value oF 6[gBoundArgumentl internaldataproperty.

Letargsbe a new list containing the same values as thdédtisndArgsn the same order followed by the
same values as the liBktraArgsin the same order.

5. Return the result of calling the [[Construct]] internal methodaw§et providingargsas the arguments.

pPONPE

8.4.1.3 BoundFunctionCreate Abstract Operation

The abstract operation BoundFunctionCreate with arguments target-unction boundThisand boundArgsis
used to specify the creation of new Bound Function exotic.objects. It performs the following steps:

Letproto be thethe intrinsic %FunctionPrototype%.

Let obj be a newly created ECMAScript object

Setobjé sssentiainternal methods to the defawdtdinary objectefinitions specified in &.
Set the [[Call]] internamethodof obj as described iB8.4.11.

Set the [[Construct]] internahethodof obj as d&scribed in8.4.12.

Set the [[Prototype]] internal data propertyaddj to proto.

Set the [[Extensible]] internal data propertyaiij to true.

Set the [BoundTargetFunction]].internatlataproperty ofobj to target~unction
. Set the [[BoundThis]] internadataproperty ofobj to the value oboundThis
10. Set the [BoundArgument} internal dataproperty ofobjto boundArgs

11. Returnobj.

CONOUTMWNE

8.4.2 Array Exotic Objects

An Array object is.an exotic object that gives special treatment to a certain class of property names. A
property name P (in the form of a String value) is an array index if and only if ToString(ToUint32P)) is equal to
P and ToUint32(P) is not equal to 2%- 1. A property whose property name is an array index is also called an
element. Every Array object has a length property whose value is always a nonnegative integer less than 2%2,
The value of the length property is numerically greater than the name of every property whose name is an
array index; whenever a property of an Array object is created or changed, other properties are adjusted as
necessary to maintain this invariant. Specifically, whenever a property is added whose name is an array index,
the len gth property is changed, if necessary, to be one more than the numeric value of that array index; and
whenever the length property is changed, every property whose name is an array index whose value is not
smaller than the new length is automatically deleted. This constraint applies only to own properties of an Array
object and is unaffected by length or array index properties that may be inherited from its prototypes.

Exotic Array objects have the same internal data properties as ordinary objects. They also have an
[[ArraylnitialisationState]] internal data property.

© Ecma International 2012 63

secmd

Exotic Array objects always have a non-configurable property named "length ".

Exotic Array objects provide alternative definitions for the [[Set]] and [[DefineOwnProperty]] internal methods.
Except for these two internal methods, exotic Array objects provide all of the other essential internal methods
as specified in 8.3.

8.4.2.1 [[DefineOwnProperty]] (P, Desc)

When the [[DefineOwnProperty]] internal method of an exotic Array object A is called with property P, and
Property Descriptor Descthe following steps are taken:

1. Assert:IsPropertyKey@) is true.
2. If Pis"length ", then

a. Return the result of calling ArraySetLength wahgumentsA, andDesc
3. Else ifPis an array index, then

a. LetoldLenDesde the result of calling thEGetOwnProperty]] internal method &f passing
"length " as the argument. The result will neveruelefined or an accessor descriptor because
Array objects are created with a length data property that cannot be deleted or reconfigured.
Let oldLenbeoldLenDesc[[Value]].
Letindexbe ToUint32p).
ReturnIfAbrupt{ndex.
If indexOoldLenandoldLenDesd[Writable]] is false, then returrfalse.
Let succeedede the result of callin@rdinaryDefineOwnProperty passing, P, andDescas
arguments.
ReturnlfAbrupt(succeedeq
If succeededk false, thenreturnfalse.

i. If indexOoldLen

i SetoldLenDesd[Value]] toindex+ 1.
ii. Let succeededbe the result of callin@rdinaryDefineOwnProperty passing, "length ",
andoldLenDes@s arguments,
iii. ReturnIfAbruptéucceeded

j. Returntrue.

4. Return the result of callin@rdinaryDefineOwnProperty passing, P, andDescas arguments.

~oaoo

JeQ

8.4.2.2 ArrayCreate Abstract Operation

The abstract operation ArrayCreate with argument length (a positive integer or undefined) and optional
argument protois used to specify the creation of new exotic Array objects. It performs the following steps:

If the proto argument was not passed, thengdetto bethe intrinsic object %ArrayPrototype%.
Let A be a newly createfrray exoticobject
SetAbs essential internal methods to the default ordinary object definitions
Set the [PefineOwnPropert}} internal methodof A asspecifiedin 8.42.1.
Set the [[Pototype]] internal data property @fto proto.
Set the [[Extensible]] internal data property/fto true.
If length is notundefined, then
a. Set the [Arraylnitiali sationStatg] internal data property oA to true.
Else
a. Set the [Arraylnitiali sationStatd] internal data property of to false.
b. Letlengthbe 0.
9. Call OrdinaryDefineOwnPropertyith argumentd, "length" andProperty Descripto{[[Value]]: length
[[Writable]]: true, [[Enumerable]]:false, [[Configurable]]:false}.
10. ReturnA.

NogpwnE

©

8.4.2.3 ArraySetLength Abstract Operation

When the abstract operation ArraySetLength is called with an exotic Array object A, and Property Descriptor
Deg the following steps are taken:

1. If the [[Value]] field of Descis absent, then

64 © Ecma International 2012

secma

a. Return the result of callin@rdinaryDefineOwnProperty passing, "length ", andDescas
arguments.
2. LetnewLenDesde a copy oDesc
3. |LetnewLenbe ToUint32pPesc[[Value]]).
4. If newLenis not equal to ToNumbeesc[[Value]]), throw aRangeError exceptiod.
5. SetnewLenDesg[Value]] to newLen
6 [Let}oIdLenDesd;)e the result of calling the [[GetOwnProperty]] internal hwt of A passingd' length " as
the argument. The result will never bedefined or an accessor descriptor because Array objects are
created with a length data property that cannot be deleted or reconfigured.
. LetoldLenbeoldLenDesd[Value]].
8. If newLenColdLen, then
a. Return the result of callin@rdinaryDefineOwnProperty passing, "length ", and newLenDesas
arguments.
9. |If oldLenDesd[Writable]] is false, then returrfalse.
10. If newLenDesg[Writable]] is absent or has the valteie, letnewWritablebetrue.
11. Else,
a. Need to defer setting the [[Writable]] attributefedse in case any elements cannot be deleted.
b. LetnewWritablebefalse
c. SetnewlLenDesdg[Writable]] to true.

12. Let succeededbe the result of callin@rdinaryDefineOwnProperty passing, "length ", andnewLenDesc

as arguments.
13. ReturnIfAbruptGucceeded
14. If succeededk false, returnfalse.
15. While newLen< oldLenrepeat,
a. SetoldLentooldLeni 1.
b. LetdeleteSucceeddk the result of calling.the [[Delete]] internal methodAopassing
ToString@ldLen).
ReturnIfAbruptéucceedeq
If deleteSucceeddd false, then
i SetnewLenDesg[Value]] to oldLen+1
ii. If newWritableis false, setnewLenDesg[Writable]] to false.
iii. Let succeededbe the result of callin@rdinaryDefineOwnProperty passing, "length ",
andnewlLenDescas arguments.
iv. ReturnlfAbruptéucceeded
V. Returnfalse.
16. If newWritableis false, then
a. Call.OrdinaryDefineOwnProperty passing, "length
false} as arguments. This call will always retutrue.
17. Returntrue.

ao

", andProperty Descriptor{[[Writable]]:

8.4.3 String Exotic Objects

A String object is an exotic object that encapsulates a String value and exposes virtual array index data
properties corresponding to the individual code unit elements of the string value. Exotic String objects always
have a data property named "length " whose value is the number of code unit elements in the encapsulated
String value. Both the code unit data properties and the "length " property are non-writable and non-
configurable.

Exotic String objects have the same internal data properties as ordinary objects. They also have a
[[StringData]] internal data property.

Exotic String objects provide alternative definitions for the following internal methods. All of the other exotic
String object essential internal methods that are not defined below are as specified in 8.3.

8.4.3.1 [[HasOwnProperty]] (P)

When the [[HasOwnProperty]] internal method of exotic String object O is called with property key P, the
following steps are taken:

© Ecma International 2012 65

Commented [AWB1428]: Note that if [[Value]] is an object
this sequence will call its valueoOf method twice. That seems
undesirable, but it is the legacy behaviour going back to at

| least ES3

Commented [AWB1429]: See bug
https://bugs.ecmascript.org/show_bug.cqi?id=1200 for why
| these two lines moved.

https://bugs.ecmascript.org/show_bug.cgi?id=1200

secmd

Assert:IsPropertyKeyP) is true.

Let hasbe the result of calling the ordinary object [[HasOwnProperty]] internal method (8.3 G)vath

argumentP.

ReturnlfAbrupt(has.

If hasis true, thenreturntrue.

Letindexbe Tolnteger®).

ReturnIfAbrupt{ndex).

Let absintindexbe ToString(absifidex)).

ReturnifAbrupt@bsintindey.

If SameValuedbsintindex P) is falsereturnfalse.

0. Let str be the String value dhe [[StringDatd] internal property ofO, if the value of][StringDatallis
undefinedthe empty string is used as its value.

11. Letlen be the number oélementdn str.

12. If len Oindex returnfalse.

13. Returntrue.

N

POONOOTA®

8.4.3.2 [[GetOwnProperty]] (P)

When the [[GetOwnProperty]] internal method of an an exotic'String object Sis called with property key P the
following steps are taken:

Assert:IsPropertyKeyP) is true.

Let descbe the result oOrdinaryGetOwnPropert{sS, P).

ReturnIfAbrupt@esg.

If descis notundefined returndesc

Letindexbe TolntegerP).

ReturnIfAbrupt{ndex).

Let absintindexbe ToString(absifidey).

ReturnlfAbrupt(absintindey.

If SameValuedbsintindex P).is false returnundefined.

0. Let str be the String value of theSkringDatd] internal dataproperty ofS, if the value of [[StringData]] is

undefined the empty string is used as its value

11. Letlen be the number oélementdn str.

12. If len Oindex returnundefined.

13. Let resultStrbe a Stringvalue of length 1, containing oneode unitfrom str, specifically thecode unitat
positionindex where the first(leftmostlementin stris considered to be at position 0, the next one at
position1, and so on.

14. Return a Property Descriptor { [[ValueltesultStr [[Enumerable]]true, [[Writable]]: false,

[[Configurable]]: false}.

HBooNoa,MwNE

8.4.3.3 [[DefineOwnProperty]] (P, Desc)

When the [[DefineOwnProperty]] internal method of an exotic String object O is called with property P, and
Property Descriptor Descthe following steps are taken:

1. Letcurrentbethe result of callinghe [[GetOwnProperty]] internal method &fwith argumentP.

2. Letextensiblebe thevalueof the [[Extensible]] internatiata propertyf O.

3. Returnthe result ofValidateAndApplyPropertyDescriptarith argument$, P, extensible Desg and
current

NOTE This algorithm differs from the ordinary object OrdinaryDefineOwnProperty abstract operation algorithm only in
invocation of [[GetOwnProperty]] in step 1.

8.4.3.4 [[Enumerate]] () [COmmented[Awslzso]: TODO

When the [[Enumerate]] internal method of an exotic String object O is called the following steps are taken:

66 © Ecma International 2012

secma

8.4.3.5 [[OwnPropertyKeys]] ()

When the [[OwnPropertyKeys]] internal method of an exotic String object O is called the following steps are
taken]

8.4.3.6 StringCreate Abstract Operation

The abstract operation StringCreate with argument prototypeis used to specify the creation of new exotic
String objects. It performs the following steps:

1. LetA be a newly create8tring exoticobject

2. SetAbs essenti al internal me t h o d @s speeifiedim8.3.def aul t
3. Set the [HasOwnPropertlf internal methodof A asspecifiedin 8.4.3.1.

4. Set the [GetOwnPropert}j internal methodof A asspecifiedin 8.4.3.2.

5. Set the [PefineOwnPropert]} internal methodof A asspecifiedin 8.4.33.

6. Set the [Enumeratd] internal methodof A asspecifiedin 8.4.34.

7. Set the [PwnPropertyKeyg internal methodof A asspecifiedin 8.4.35.

8. Set the [[Prototype]] internal data property/fo prototype

9. Set the [[Extensible]] internal data property/fo true.

10. ReturnA.

18.4.4 Exotic Arguments Objects

An arguments object is an exotic object whose array index properties map to the formal parameters bindings
of an invocation of a non-strict function.

Exotic arguments objects have the same internal data properties as ordinary objects. They also have a
[[ParameterMap]] internal data.

Exotic arguments objects provide alternative definitions for the following internal methods. All of the other
exotic arguments object essential internal methods that are not defined below are as specified in 8.3|]

8.4.5 Integer Indexed Delegation Exotic Objects

An Integer Indexed object is an exotiC object that that delegates [[Get]] and [[Set]] handling of integer property
keys to methods of the object.

Integer Indexed exotic objects initially. have the same internal data properties as ordinary objects.

Integer Indexed Exotic objects provide alternative definitions for the following internal methods. All of the
other Integer Indexed exotic object essential internal methods that are not defined below are as specified in
8.3.

8.45.1 [[Get]] (P, Receiver)

When the [[Get]] internal method of an Integer Indexed exotic object O is called with property key P and
ECMAScript language value Receivetthe following steps are taken:

1. If SameValueQ, Recever) istrue, then
a. Letintindexbe Tolnteger®).
b. If Sam&/aue(ToString(ntindex P) is true, then
i Let argsbe a new List containingntindex
ii. Return the result of Invok&), (@ @elementGgtargs).
2. Returnthe result of calling the dault ordinary objec{[Get]] internal method (&.7) on O passingP and
Receiveras argumerst

© Ecma International 2012 67

[Commented [AWB1231]: TODO

(commented [AWB13321: TODO

ordinary object definiti

Commented [AWB1239]: TODO move arguments internal
methods here.

Commented [AWB1340]: Issue: does the TypedArray
spec./WEDbIDL specs require that such indexed properties
show up using [[GetOwnProperty]], keys, etc? If so, some
more internal method over-rides will be needed.

Commented [AWB1341]: If we make this a private symbol
that is not exposed, then it is just a specification device. If we
make it an exposed symbol (whether private or not) it
becomes a ES programmer extension point.

(

secmd

8.4.5.2 [[Set]] (P,V, Receiver)
When the [[Set]] internal method of an an Integer Indexed exotic object O is called with property key P, value V,
and ECMAScript language value Receiverthe following steps are taken:

1. If SameValueQ, Receiveyistrue, then
a. Letintindexbe Tolnteger).
a. If SameVaue(ToStringGtindex P) is true, then
i. Letargsbe a new List containingntindexandV.
ii. Return the result of oBoolean(nvoke (O, (@ @elementSetargs)).
2. Return the result of calling the defawitdinary objec{[Sef]] internal method (&.7) onO passingP, V, and
Receiveras argumerst
8.45.3 IntegertindexedObjectCreate Abstract Operation
The abstract operation IntegerindexedObjectCreate with argument prototypeis used to specify the creation of
new Integer Indexed exotic objects. It performs the following steps:

11. Let A be a newly crated ECMAScript object

12.SetAbs essenti al internal met hods to t
13. Set the [Gef]] internal methodof A asspecifiedin 8.4.61.

14. Set the [Bef] internal methodof A asspecifiedin 8.46.2.

he default

15. Set the [Prototype]] internal data property #fto prototype
16. Set the [[Extensible]] internal data property/to true.
17. ReturnA.

8.4.6 Built-in Function Objects

The function objects specified in Clause 15 may be implemented as either ordinary function objects whose
behaviour is provided using ECMAScript code or as implementation provided exotic function objects whose
behaviour is provided in some other manner. In either case, the effect of calling such functions must be that
specified for each one in Clause 15.

If an implementation provided exotic .object is used, the object must have the ordinary object behaviour
specified in 8.3 except for [[Get]] and [[GetOwnProperty]] which must be as specified in 8.3.15. All such exotic
function objects also have [[Prototype]] and [[Extensible]] internal data.

[[calll]] and [[Construct]]]

ordi

8.5 _Proxy Object Internal Methods and Internal Data Properties

A proxy object is an exotic object whose essential internal methods are partially implemented using
ECMAScript code. Every proxy objects has an internal data property called [[ProxyHandler]]. The value of
[[ProxyHandler]] is always an‘object, called the p r o xhgniller object. Methods of a handler object may be
used to augment the implementation for one or more of the proxy objectd s
object also has an internal data property called [[ProxyTarget]] whose value is either an object or the null
value.Thi s obj ect i s tagetbbje@.d t he proxyods

When a handler method is called to provide the implementation of a proxy object internal method, the handler
method is passed the p r o xtgrgesobject as a parameter. Apr oxyods
have a method corresponding to every essential internal method. Invoking an internal method on the proxy
results in the invocation of the corresponding internal method on the proxyd s t a r g iéthe hantlgr ebfedt
does not have a method corresponding to the internal trap.

The [[ProxyHandler]] and [[ProxyTarget]] internal data properties of a proxy object are always initialized when
the object is created and typically may not be modified. Some proxy objects are created in a manner that
permits them to be subsequently revoked. When a proxy is revoked, its [[ProxyHander]] internal data property
is set to a special revoked proxy handler object and its [[ProxyTarget]] internal data property is set to null.

68 © Ecma International 2012

handl eotnecedsarily c t

i nt er naBverynpeokyh od s

Commented [AWB1342]: If we make this a private symbol
that is not exposed, then it is just a specification device. If we
make it an exposed symbol (whether private or not) it
becomes a ES programmer extension point.

nary object definitions

Commented [AWB1243]: TODO: need to talk about [[Call]]
and [[Construct]] behaviour of chapter 15 native functions.

does n

