

Reference number
ECMA-123:2009

© Ecma International 2009

ECMA- 262
6 th Edition / Draft May 14, 2013

ECMAScript Language
Specification

Draft

Ecma/TC39/2013/025

Draft
Report Errors and Issues at: https://bugs.ecmascript.org

Product: Draft for 6th Edition
Component: choose an appropriate one
Version: Rev 15, May 14, 2013 Draft

https://bugs.ecmascript.org/

 COPYRIGHT PROTECTED DOCUMENT

 © Ecma International 2012

© Ecma International 2012 I

Contents Page

Introduction ..vii

1 Scope ...1

2 Conformance ..1

3 Normative references...1

4 Overview..1
4.1 Web Scripting ...2
4.2 Language Overview ...2
4.2.1 Objects ..3
4.2.2 The Strict Variant of ECMAScript ...4
4.3 Terms and definitions ..4

5 Notational Conventions ...7
5.1 Syntactic and Lexical Grammars..7
5.1.1 Context-Free Grammars ..7
5.1.2 The Lexical and RegExp Grammars ...8
5.1.3 The Numeric String Grammar ...8
5.1.4 The Syntactic Grammar ...8
5.1.5 The JSON Grammar ...9
5.1.6 Grammar Notation ..9
5.2 Algorithm Conventions..12
5.3 Static Semantic Rules ...13

6 Source Text ...14

7 Lexical Conventions ..15
7.1 Unicode Format-Control Characters ..16
7.2 White Space ..16
7.3 Line Terminators ..17
7.4 Comments ...17
7.5 Tokens ...18
7.6 Identifier Names and Identifiers..19
7.6.1 Reserved Words ...20
7.7 Punctuators...21
7.8 Literals ...21
7.8.1 Null Literals ...21
7.8.2 Boolean Literals ...21
7.8.3 Numeric Literals ...22
7.8.4 Regular Expression Literals ..24
7.8.5 Template Literal Lexical Components ...26
7.8.6 String Literals ...28
7.9 Automatic Semicolon Insertion ..30
7.9.1 Rules of Automatic Semicolon Insertion ...30
7.9.2 Examples of Automatic Semicolon Insertion ..31

8 Types ...32
8.1 ECMAScript Language Types ...32
8.1.1 The Undefined Type ...33
8.1.2 The Null Type ..33
8.1.3 The Boolean Type ..33
8.1.4 The String Type ..33
8.1.5 The Number Type ...33
8.1.6 The Symbol Type ..34

II © Ecma International 2012

8.1.7 The Object Type ... 35
8.2 ECMAScript Specification Types ... 46
8.2.1 Data Blocks .. 46
8.2.2 The List and Record Specification Type ... 47
8.2.3 The Completion Record Specification Type ... 47
8.2.4 The Reference Specification Type ... 48
8.2.5 The Property Descriptor Specification Type .. 50
8.2.6 The Lexical Environment and Environment Record Specification Types 52
8.3 Ordinary Object Internal Methods and Internal Data Properties .. 52
8.3.1 [[GetInheritance]] () .. 52
8.3.2 [[SetInheritance]] (V) ... 52
8.3.3 [[HasIntegrity]] (Level) .. 53
8.3.4 [[SetIntegrity]] (Level) .. 53
8.3.5 [[HasOwnProperty]] (P) ... 53
8.3.6 [[GetOwnProperty]] (P) ... 53
8.3.7 [[DefineOwnProperty]] (P, Desc) .. 54
8.3.8 [[HasProperty]](P) .. 55
8.3.9 [[Get]] (P, Receiver) ... 55
8.3.10 [[Set]] (P, V, Receiver) ... 56
8.3.11 [[Delete]] (P) ... 56
8.3.12 [[Enumerate]] () .. 57
8.3.13 [[OwnPropertyKeys]] () .. 57
8.3.14 ObjectCreate(proto, internalDataList) Abstract Operation .. 57
8.3.15 Ordinary Function Objects ... 58
8.4 Built-in Exotic Object Internal Methods and Data Fields .. 62
8.4.1 Bound Function Exotic Objects ... 62
8.4.2 Array Exotic Objects ... 63
8.4.3 String Exotic Objects .. 65
8.4.4 Exotic Arguments Objects .. 67
8.4.5 Integer Indexed Delegation Exotic Objects .. 67
8.4.6 Built-in Function Objects .. 68
8.5 Proxy Object Internal Methods and Internal Data Properties ... 68
8.5.1 [[GetInheritance]] () .. 69
8.5.3 [[HasIntegrity]] (Level) .. 70
8.5.4 [[SetIntegrity]] (Level) ... 70
8.5.5 [[HasOwnProperty]] (P) ... 70
8.5.6 [[GetOwnProperty]] (P) ... 71
8.5.7 [[DefineOwnProperty]] (P, Desc) .. 72
8.5.8 [[HasProperty]] (P) ... 73
8.5.9 [[Get]] (P, Receiver) ... 73
8.5.10 [[Set]] (P, V, Receiver) .. 74
8.5.11 [[Delete]] (P) ... 74
8.5.12 [[Enumerate]] () .. 75
8.5.13 [[OwnPropertyKeys]] () .. 75
8.5.14 [[Call]] (thisArgument, argumentsList) ... 75
8.5.15 [[Construct]] Internal Method ... 76

9 Abstract Operations .. 76
9.1 Type Conversion and Testing .. 76
9.1.1 ToPrimitive ... 76
9.1.2 ToBoolean .. 78
9.1.3 ToNumber ... 78
9.1.4 ToInteger... 81
9.1.5 ToInt32: (Signed 32 Bit Integer) ... 81
9.1.6 ToUint32: (Unsigned 32 Bit Integer) .. 81
9.1.7 ToUint16: (Unsigned 16 Bit Integer) .. 82
9.1.8 ToString .. 82
9.1.9 ToObject ... 83
9.1.10 ToPropertyKey ... 84
9.2 Testing and Comparison Operations .. 84

© Ecma International 2012 III

9.2.1 CheckObjectCoercible ...84
9.2.2 IsCallable ...84
9.2.3 SameValue(x, y) ..85
9.2.4 SameValueZero(x, y) ..85
9.2.5 IsConstructor ..86
9.2.6 IsPropertyKey ...86
9.2.7 IsExtensible (O) ..86
9.3 Operations on Objects ...86
9.3.1 Get (O, P) ...86
9.3.2 Put (O, P, V, Throw) ..86
9.3.3 CreateOwnDataProperty (O, P, V)...87
9.3.4 DefinePropertyOrThrow (O, P, desc) ...87
9.3.5 DeletePropertyOrThrow (O, P) ..87
9.3.6 HasProperty (O, P) ...87
9.3.7 GetMethod (O, P) ..88
9.3.8 Invoke(O,P, [args]) ...88
9.3.9 SetIntegrityLevel (O, level) ..88
9.3.10 TestIntegrityLevel (O, level) ..89
9.3.11 CreateArrayFromList (elements) ..89
9.3.12 OrdinaryHasInstance (C, O) ..89
9.3.13 GetPrototypeFromConstructor (constructor, intrinsicDefaultProto) ...90
9.3.14 OrdinaryCreateFromConstructor (constructor, intrinsicDefaultProto, internalDataList)90

10 Executable Code and Execution Contexts ..90
10.1 Types of Executable Code ..90
10.1.1 Strict Mode Code ..91
10.1.2 Non-ECMAScript Functions ..91
10.2 Lexical Environments ..91
10.2.1 Environment Records ..92
10.2.2 Lexical Environment Operations ... 103
10.3 Code Realms .. 104
10.4 Execution Contexts ... 105
10.4.1 Identifier Resolution.. 106
10.4.2 GetThisEnvironment ... 106
10.4.3 This Resolution ... 106
10.4.4 GetGlobalObject .. 107
10.5 Declaration Binding Instantiation .. 107
10.5.1 Global Declaration Instantiation .. 107
10.5.2 Module Declaration Instantiation... 108
10.5.3 Function Declaration Instantiation .. 108
10.5.4 Block Declaration Instantiation ... 110
10.5.5 Eval Declaration Instantiation .. 110
10.6 Arguments Object ... 110

11 Expressions ... 113
11.1 Primary Expressions... 113
11.1.1 The this Keyword .. 114
11.1.2 Identifier Reference ... 114
11.1.3 Literals .. 114
11.1.4 Array Initialiser .. 115
11.1.5 Object Initialiser .. 120
11.1.6 Function Defining Expressions ... 123
11.1.7 Generator Comprehensions ... 123
11.1.8 Regular Expression Literals ... 124
11.1.9 Template Literals ... 125
11.1.10 The Grouping Operator... 128
11.2 Left-Hand-Side Expressions .. 129
11.2.1 Property Accessors .. 130
11.2.2 The new Operator .. 131
11.2.3 Function Calls .. 132

IV © Ecma International 2012

11.2.4 The super Keyword .. 133
11.2.5 Argument Lists .. 134
11.2.6 Tagged Templates ... 135
11.3 Postfix Expressions .. 135
11.3.1 Postfix Increment Operator .. 136
11.3.2 Postfix Decrement Operator ... 136
11.4 Unary Operators .. 137
11.4.1 The delete Operator .. 137
11.4.2 The void Operator... 138
11.4.3 The typeof Operator .. 138
11.4.4 Prefix Increment Operator .. 139
11.4.5 Prefix Decrement Operator ... 139
11.4.6 Unary + Operator ... 139
11.4.7 Unary - Operator ... 140
11.4.8 Bitwise NOT Operator (~) .. 140
11.4.9 Logical NOT Operator (!) .. 140
11.5 Multiplicative Operators .. 140
11.5.1 Applying the * Operator.. 141
11.5.2 Applying the / Operator.. 141
11.5.3 Applying the % Operator.. 142
11.6 Additive Operators .. 142
11.6.1 The Addition operator (+) ... 143
11.6.2 The Subtraction Operator (-) ... 143
11.6.3 Applying the Additive Operators to Numbers .. 143
11.7 Bitwise Shift Operators ... 144
11.7.1 The Left Shift Operator (<<) .. 144
11.7.2 The Signed Right Shift Operator (>>) .. 145
11.7.3 The Unsigned Right Shift Operator (>>>) ... 145
11.8 Relational Operators ... 145
11.8.1 Runtime Semantics ... 146
11.9 Equality Operators... 149
11.9.1 Runtime Semantics ... 149
11.10 Binary Bitwise Operators .. 151
11.11 Binary Logical Operators .. 152
11.12 Conditional Operator (? :) ... 153
11.13 Assignment Operators .. 154
Static Semantics ... 154
Runtime Semantics .. 155
11.13.1 Destructuring Assignment ... 155
11.14 Comma Operator (,) ... 159

12 Statements and Declarations ... 160
Static Semantics ... 160
Runtime Semantics .. 160
12.1 Block ... 161
12.2 Declarations and the Variable Statement.. 164
12.2.1 Let and Const Declarations .. 164
12.2.2 Variable Statement .. 167
12.2.4 Destructuring Binding Patterns ... 169
12.3 Empty Statement ... 174
12.4 Expression Statement ... 174
12.5 The if Statement ... 174
12.6 Iteration Statements .. 175
12.6.1 The do-while Statement... 176
12.6.2 The while Statement .. 176
12.6.3 The for Statement .. 177
12.6.4 The for -in and for -of Statements .. 178
12.7 The continue Statement.. 182

© Ecma International 2012 V

12.8 The break Statement .. 182
12.9 The return Statement.. 183
12.10 The with Statement .. 183
12.11 The switch Statement.. 184
12.12 Labelled Statements ... 188
12.13 The throw Statement .. 189
12.14 The try Statement .. 190
12.15 The debugger statement .. 192

13 Functions and Generators ... 192
13.1 Function Definitions.. 192
13.2 Arrow Function Definitions .. 198
13.3 Method Definitions .. 201
13.4 Generator Function Definitions ... 204
13.5 Class Definitions ... 208
13.6 Tail Position Calls .. 213

14 Scripts and Modules ... 213
14.1 Script ... 213
14.1.1 Directive Prologues and the Use Strict Directive .. 216
14.2 Modules ... 216

15 Standard Built-in ECMAScript Objects ... 216
15.1 The Global Object .. 218
15.1.1 Value Properties of the Global Object .. 218
15.1.2 Function Properties of the Global Object ... 218
15.1.3 URI Handling Function Properties... 221
15.1.4 Constructor Properties of the Global Object ... 225
15.1.5 Other Properties of the Global Object .. 227
15.2 Object Objects ... 227
15.2.1 The Object Constructor Called as a Function .. 227
15.2.2 The Object Constructor .. 227
15.2.3 Properties of the Object Constructor .. 227
15.2.4 Properties of the Object Prototype Object ... 232
15.2.5 Properties of Object Instances .. 234
15.3 Function Objects ... 234
15.3.1 The Function Constructor .. 234
15.3.2 Properties of the Function Constructor .. 235
15.3.3 Properties of the Function Prototype Object ... 236
15.3.4 Function Instances.. 238
15.4 Array Objects ... 239
15.4.1 The Array Constructor .. 239
15.4.2 Properties of the Array Constructor.. 241
15.4.3 Properties of the Array Prototype Object ... 242
15.4.4 Properties of Array Instances .. 263
15.4.5 Array Iterator Object Structure .. 263
15.5 String Objects .. 265
15.5.1 The String Constructor Called as a Function... 265
15.5.2 The String Constructor ... 266
15.5.3 Properties of the String Constructor... 266
15.5.4 Properties of the String Prototype Object .. 268
15.5.5 Properties of String Instances ... 280
15.6 Boolean Objects .. 280
15.6.1 The Boolean Constructor Called as a Function ... 280
15.6.2 The Boolean Constructor ... 281
15.6.3 Properties of the Boolean Constructor ... 281
15.6.4 Properties of the Boolean Prototype Object .. 281
15.6.5 Properties of Boolean Instances ... 282
15.7 Number Objects ... 282
15.7.1 The Number Constructor Called as a Function ... 282

VI © Ecma International 2012

15.7.2 The Number Constructor .. 282
15.7.3 Properties of the Number Constructor .. 283
15.7.4 Properties of the Number Prototype Object ... 285
15.7.5 Properties of Number Instances .. 289
15.8 The Math Object ... 289
15.8.1 Value Properties of the Math Object .. 289
15.8.2 Function Properties of the Math Object .. 290
15.9 Date Objects ... 298
15.9.1 Overview of Date Objects and Definitions of Abstract Operations.. 298
15.9.2 The Date Constructor Called as a Function.. 303
15.9.3 The Date Constructor .. 304
15.9.4 Properties of the Date Constructor ... 304
15.9.5 Properties of the Date Prototype Object ... 306
15.9.6 Properties of Date Instances .. 314
15.10 RegExp (Regular Expression) Objects .. 314
15.10.1 Patterns... 314
15.10.2 Pattern Semantics ... 316
15.10.3 The RegExp Constructor Called as a Function .. 328
15.10.4 The RegExp Constructor .. 330
15.10.5 Properties of the RegExp Constructor .. 330
15.10.6 Properties of the RegExp Prototype Object ... 330
15.10.7 Properties of RegExp Instances .. 337
15.11 Error Objects .. 337
15.11.1 The Error Constructor Called as a Function... 338
15.11.2 The Error Constructor ... 338
15.11.3 Properties of the Error Constructor .. 338
15.11.4 Properties of the Error Prototype Object .. 339
15.11.5 Properties of Error Instances ... 340
15.11.6 Native Error Types Used in This Standard ... 340
15.11.7 NativeError Object Structure .. 340
15.12 The JSON Object ... 343
15.12.1 The JSON Grammar... 343
15.12.2 JSON.parse (text [, reviver]) ... 345
15.12.3 JSON.stringify (value [, replacer [, space]]) .. 346
15.13 Binary Data Objects... 350
15.13.1 The BinaryData Module ... 350
15.13.2 The BinaryData.Type Object... 350
15.13.3 The BinaryData.ArrayType Object ... 350
15.13.4 The BinaryData.StructType Object .. 350
15.13.5 ArrayBuffer Objects .. 350
15.13.6 TypedArray Object Structures ... 354
15.13.7 DataView Objects... 362
15.14 Map Objects .. 367
15.14.1 The Map Constructor Called as a Function .. 367
15.14.2 The Map Constructor... 368
15.14.3 Properties of the Map Constructor .. 368
15.14.4 Properties of the Map Prototype Object .. 368
15.14.5 Properties of Map Instances ... 372
15.14.6 Map Iterator Object Structure ... 372
15.15 WeakMap Objects ... 373
15.15.1 The WeakMap Constructor Called as a Function ... 374
15.15.2 The WeakMap Constructor ... 375
15.15.3 Properties of the WeakMap Constructor ... 375
15.15.4 Properties of the WeakMap Prototype Object .. 375
15.15.5 Properties of WeakMap Instances ... 377
15.16 Set Objects .. 377
15.16.1 The Set Constructor Called as a Function .. 377
15.16.2 The Set Constructor .. 378
15.16.3 Properties of the Set Constructor .. 378

© Ecma International 2012 VII

15.16.4 Properties of the Set Prototype Object ... 379
15.16.5 Properties of Set Instances .. 381
15.16.6 Set Iterator Object Structure .. 382
15.17 The Reflect Module .. 383
15.17.1 Exported Function Properties Reflecting the Essentional Internal Methods 383
15.18 Proxy Objects ... 386
15.19 The "std:iteration" Module .. 386
15.19.1 Common Iteration Interfaces ... 386
15.19.2 "std:iteration" Exports .. 387
15.19.3 GeneratorFunction Objects .. 387
15.19. 4 Generator Objects .. 392

16 Errors .. 395

Annex A (informative) Grammar Summary .. 397
A.1 Lexical Grammar ... 397
A.2 Number Conversions .. 403
A.3 Expressions ... 404
A.4 Statements ... 408
A.5 Functions and Scripts... 410
A.6 Universal Resource Identifier Character Classes .. 411
A.7 Regular Expressions... 411
A.8 JSON ... 413
A.8.1 JSON Lexical Grammar .. 413
A.8.2 JSON Syntactic Grammar .. 414

Annex B (normative) Additional ECMAScript Features for Web Browsers ... 417
B.1 Additional Syntax .. 417
B.1.1 Numeric Literals .. 417
B.1.2 String Literals .. 417
B.1.3 HTML-like Comments.. 418
B.2 Additional Properties .. 418
B.2.1 Additional Properties of the Global Object .. 418
B.2.2 Additional Properties of the Object.prototype Object ... 419
B.2.3 Additional Properties of the String.prototype Object ... 420
B.2.4 Additional Properties of the Date.prototype Object .. 422
B.2.5 Additional Properties of the RegExp.prototype Object .. 423
B.3 Other Additional Features .. 423
B.3.1 __proto___ Property Names in Object Initialisers ... 423
B.3.2 Web Legacy Compatibility for Block-Level Function Declarations ... 424

Annex C (informative) The Strict Mode of ECMAScript .. 426

Annex D (informative) Corrections and Clarifications with Possible Compatibility Impact 428

Annex E (informative) Additions and Changes that Introduce Incompatibilities with Prior
Editions .. 432

In the 6th Edition.. 432
In the 5th Edition.. 432

Annex F (informative) Static Semantic Rule Cross Reference... 436

Scrap Heap .. 438
8.4.4 Symbol Exotic Objects ... 439
8.3.10 [[Enumerate]] (includePrototype, onlyEnumerable) ... 441
9.1.11 ToPositiveInteger .. 441
10.5.3 Function Declaration Instantiation .. 442
F.1.1 The __proto__ pseudo property. ... 443

VIII © Ecma International 2012

© Ecma International 2012 IX

Introduction

This Ecma Standard is based on several originating technologies, the most well known being JavaScript
(Netscape) and JScript (Microsoft). The language was invented by Brendan Eich at Netscape and first
appeared in that companyôs Navigator 2.0 browser. It has appeared in all subsequent browsers from Netscape
and in all browsers from Microsoft starting with Internet Explorer 3.0.

The development of this Standard started in November 1996. The first edition of this Ecma Standard was
adopted by the Ecma General Assembly of June 1997.

That Ecma Standard was submitted to ISO/IEC JTC 1 for adoption under the fast-track procedure, and
approved as international standard ISO/IEC 16262, in April 1998. The Ecma General Assembly of June 1998
approved the second edition of ECMA-262 to keep it fully aligned with ISO/IEC 16262. Changes between the
first and the second edition are editorial in nature.

The third edition of the Standard introduced powerful regular expressions, better string handling, new control
statements, try/catch exception handling, tighter definition of errors, formatting for numeric output and minor
changes in anticipation of forthcoming internationalisation facilities and future language growth. The third
edition of the ECMAScript standard was adopted by the Ecma General Assembly of December 1999 and
published as ISO/IEC 16262:2002 in June 2002.

Since publication of the third edition, ECMAScript has achieved massive adoption in conjunction with the
World Wide Web where it has become the programming language that is supported by essentially all web
browsers. Significant work was done to develop a fourth edition of ECMAScript. Although that work was not

completed and not published1 as the fourth edition of ECMAScript, it informs continuing evolution of the

language. The fifth edition of ECMAScript (published as ECMA-262 5th edition) codifies de facto
interpretations of the language specification that have become common among browser implementations and
adds support for new features that have emerged since the publication of the third edition. Such features
include accessor properties, reflective creation and inspection of objects, program control of property
attributes, additional array manipulation functions, support for the JSON object encoding format, and a strict
mode that provides enhanced error checking and program security.

The edition 5.1 of the ECMAScript Standard has been fully aligned with the third edition of the international
standard ISO/IEC 16262:2011.

This present sixth edition of the Standardééé

ECMAScript is a vibrant language and the evolution of the language is not complete. Significant technical
enhancement will continue with future editions of this specification.

This Ecma Standard has been adopted by the General Assembly of <month> <year>.

1 Note: Please note that for ECMAScript Edition 4 the Ecma standard number ñECMA-262 Edition 4ò was reserved but not
used in the Ecma publication process. Therefore ñECMA-262 Edition 4ò as an Ecma International publication does not

exist.

X © Ecma International 2012

"DISCLAIMER

This draft document may be copied and furnished to others, and derivative works that comment on or
otherwise explain it or assist in its implementation may be prepared, copied, published, and distributed,
in whole or in part, without restriction of any kind, provided that the above copyright notice and this
section are included on all such copies and derivative works. However, this document itself may not be
modified in any way, including by removing the copyright notice or references to Ecma International,
except as needed for the purpose of developing any document or deliverable produced by Ecma
International.

This disclaimer is valid only prior to final version of this document. After approval all rights on the
standard are reserved by Ecma International.

The limited permissions are granted through the standardization phase and will not be revoked by
Ecma International or its successors or assigns during this time.

This document and the information contained herein is provided on an "AS IS" basis and ECMA
INTERNATIONAL DISCLAIMS ALL WARRANTIES, EXPRESS OR IMPLIED, INCLUDING BUT NOT
LIMITED TO ANY WARRANTY THAT THE USE OF THE INFORMATION HEREIN WILL NOT INFRINGE
ANY OWNERSHIP RIGHTS OR ANY IMPLIED WARRANTIES OF MERCHANTABILITY OR FITNESS FOR
A PARTICULAR PURPOSE."

© Ecma International 2012 1

ECMAScript Language Specification

1 Scope

This Standard defines the ECMAScript scripting language.

2 Conformance

A conforming implementation of ECMAScript must provide and support all the types, values, objects,
properties, functions, and program syntax and semantics described in this specification.

A conforming implementation of this Standard shall interpret characters in conformance with the Unicode
Standard, Version 5.1.0 or later and ISO/IEC 10646. If the adopted ISO/IEC 10646-1 subset is not otherwise
specified, it is presumed to be the Unicode set, collection 10646.

A conforming implementation of ECMAScript is permitted to provide additional types, values, objects,
properties, and functions beyond those described in this specification. In particular, a conforming
implementation of ECMAScript is permitted to provide properties not described in this specification, and
values for those properties, for objects that are described in this specification.

A conforming implementation of ECMAScript is permitted to support program and regular expression syntax
not described in this specification. In particular, a conforming implementation of ECMAScript is permitted to
support program syntax that makes use of the ñfuture reserved wordsò listed in 7.6.1.2 of this specification.

3 Normative references

The following referenced documents are indispensable for the application of this document. For dated
references, only the edition cited applies. For undated references, the latest edition of the referenced
document (including any amendments) applies.

ISO/IEC 9899:1996, Programming Languages ï C, including amendment 1 and technical corrigenda 1 and 2

ISO/IEC 10646:2003: Information Technology ï Universal Multiple-Octet Coded Character Set (UCS) plus
Amendment 1:2005, Amendment 2:2006, Amendment 3:2008, and Amendment 4:2008, plus additional
amendments and corrigenda, or successor

The Unicode Standard, Version 5.0, as amended by Unicode 5.1.0, or successor

Unicode Standard Annex #15, Unicode Normalization Forms, version Unicode 5.1.0, or successor

Unicode Standard Annex #31, Unicode Identifiers and Pattern Syntax, version Unicode 5.1.0, or successor.

4 Overview

This section contains a non-normative overview of the ECMAScript language.

ECMAScript is an object-oriented programming language for performing computations and manipulating
computational objects within a host environment. ECMAScript as defined here is not intended to be
computationally self-sufficient; indeed, there are no provisions in this specification for input of external data or
output of computed results. Instead, it is expected that the computational environment of an ECMAScript
program will provide not only the objects and other facilities described in this specification but also certain
environment-specific objects, whose description and behaviour are beyond the scope of this specification
except to indicate that they may provide certain properties that can be accessed and certain functions that can
be called from an ECMAScript program.

2 © Ecma International 2012

A scripting language is a programming language that is used to manipulate, customise, and automate the
facilities of an existing system. In such systems, useful functionality is already available through a user
interface, and the scripting language is a mechanism for exposing that functionality to program control. In this
way, the existing system is said to provide a host environment of objects and facilities, which completes the
capabilities of the scripting language. A scripting language is intended for use by both professional and non-
professional programmers. ECMAScript was originally designed to be used as a scripting language, but has
become widely used as a general purpose programming language.

ECMAScript was originally designed to be a Web scripting language, providing a mechanism to enliven Web
pages in browsers and to perform server computation as part of a Web-based client-server architecture.
ECMAScript is now used both as a general propose programming language and to provide core scripting
capabilities for a variety of host environments. Therefore the core language is specified in this document apart
from any particular host environment.

Some of the facilities of ECMAScript are similar to those used in other programming languages; in particular

Javaã, Self, and Scheme as described in:

Gosling, James, Bill Joy and Guy Steele. The JavaÓ Language Specification. Addison Wesley Publishing Co.,

1996.

Ungar, David, and Smith, Randall B. Self: The Power of Simplicity. OOPSLA '87 Conference Proceedings, pp.
227ï241, Orlando, FL, October 1987.

IEEE Standard for the Scheme Programming Language. IEEE Std 1178-1990.

4.1 Web Scripting

A web browser provides an ECMAScript host environment for client-side computation including, for instance,
objects that represent windows, menus, pop-ups, dialog boxes, text areas, anchors, frames, history, cookies,
and input/output. Further, the host environment provides a means to attach scripting code to events such as
change of focus, page and image loading, unloading, error and abort, selection, form submission, and mouse
actions. Scripting code appears within the HTML and the displayed page is a combination of user interface
elements and fixed and computed text and images. The scripting code is reactive to user interaction and there
is no need for a main program.

A web server provides a different host environment for server-side computation including objects representing
requests, clients, and files; and mechanisms to lock and share data. By using browser-side and server-side
scripting together, it is possible to distribute computation between the client and server while providing a
customised user interface for a Web-based application.

Each Web browser and server that supports ECMAScript supplies its own host environment, completing the
ECMAScript execution environment.

4.2 Language Overview

The following is an informal overview of ECMAScriptðnot all parts of the language are described. This
overview is not part of the standard proper.

ECMAScript is object-based: basic language and host facilities are provided by objects, and an ECMAScript
program is a cluster of communicating objects. An ECMAScript object is a collection of properties each with
zero or more attributes that determine how each property can be usedðfor example, when the Writable
attribute for a property is set to false, any attempt by executed ECMAScript code to change the value of the
property fails. Properties are containers that hold other objects, primitive values, or functions. A primitive
value is a member of one of the following built-in types: Undefined, Null, Symbol, Boolean, Number, and
String; an object is a member of the remaining built-in type Object; and a function is a callable object. A
function that is associated with an object via a property is a method.

ECMAScript defines a collection of built-in objects that round out the definition of ECMAScript entities. These
built-in objects include the global object, the Object object, the Function object, the Array object, the String

© Ecma International 2012 3

object, the Boolean object, the Number object, the Math object, the Date object, the RegExp object, the
JSON object, and the Error objects Error, EvalError, RangeError, ReferenceError, SyntaxError,
TypeError and URIError.

ECMAScript also defines a set of built-in operators. ECMAScript operators include various unary operations,
multiplicative operators, additive operators, bitwise shift operators, relational operators, equality operators,
binary bitwise operators, binary logical operators, assignment operators, and the comma operator.

ECMAScript syntax intentionally resembles Java syntax. ECMAScript syntax is relaxed to enable it to serve as
an easy-to-use scripting language. For example, a variable is not required to have its type declared nor are
types associated with properties, and defined functions are not required to have their declarations appear
textually before calls to them.

4.2.1 Objects

ECMAScript does not use classes such as those in C++, Smalltalk, or Java. Instead objects may be created in
various ways including via a literal notation or via constructors which create objects and then execute code
that initialises all or part of them by assigning initial values to their properties. Each constructor is a function
that has a property named ñprototype ò that is used to implement prototype-based inheritance and shared

properties. Objects are created by using constructors in new expressions; for example, new

Date(2009,11) creates a new Date object. Invoking a constructor without using new has consequences that

depend on the constructor. For example, Date() produces a string representation of the current date and

time rather than an object.

Every object created by a constructor has an implicit reference (called the objectôs prototype) to the value of
its constructorôs ñprototype ò property. Furthermore, a prototype may have a non-null implicit reference to its

prototype, and so on; this is called the prototype chain. When a reference is made to a property in an object,
that reference is to the property of that name in the first object in the prototype chain that contains a property
of that name. In other words, first the object mentioned directly is examined for such a property; if that object
contains the named property, that is the property to which the reference refers; if that object does not contain
the named property, the prototype for that object is examined next; and so on.

Figure 1 ð Object/Prototype Relationships

In a class-based object-oriented language, in general, state is carried by instances, methods are carried by
classes, and inheritance is only of structure and behaviour. In ECMAScript, the state and methods are carried
by objects, while structure, behaviour, and state are all inherited.

Formatted: French (Switzerland)

Commented [AWB101]: This description probably need to
be tweaked in light of new features such as class declarations
and explicit exposure of the [[Prototype]] property

4 © Ecma International 2012

All objects that do not directly contain a particular property that their prototype contains share that property
and its value. Figure 1 illustrates this:

CF is a constructor (and also an object). Five objects have been created by using new expressions: cf1, cf2,

cf3, cf4, and cf5. Each of these objects contains properties named q1 and q2 . The dashed lines represent the

implicit prototype relationship; so, for example, cf3ôs prototype is CFp. The constructor, CF, has two properties
itself, named P1 and P2, which are not visible to CFp, cf1, cf2, cf3, cf4, or cf5. The property named CFP1 in CFp

is shared by cf1, cf2, cf3, cf4, and cf5 (but not by CF), as are any properties found in CFpôs implicit prototype
chain that are not named q1 , q2 , or CFP1. Notice that there is no implicit prototype link between CF and CFp.

Unlike class-based object languages, properties can be added to objects dynamically by assigning values to
them. That is, constructors are not required to name or assign values to all or any of the constructed objectôs
properties. In the above diagram, one could add a new shared property for cf1, cf2, cf3, cf4, and cf5 by
assigning a new value to the property in CFp.

4.2.2 The Strict Variant of ECMAScript

The ECMAScript Language recognises the possibility that some users of the language may wish to restrict
their usage of some features available in the language. They might do so in the interests of security, to avoid
what they consider to be error-prone features, to get enhanced error checking, or for other reasons of their
choosing. In support of this possibility, ECMAScript defines a strict variant of the language. The strict variant
of the language excludes some specific syntactic and semantic features of the regular ECMAScript language
and modifies the detailed semantics of some features. The strict variant also specifies additional error
conditions that must be reported by throwing error exceptions in situations that are not specified as errors by
the non-strict form of the language.

The strict variant of ECMAScript is commonly referred to as the strict mode of the language. Strict mode
selection and use of the strict mode syntax and semantics of ECMAScript is explicitly made at the level of
individual ECMAScript code units. Because strict mode is selected at the level of a syntactic code unit, strict
mode only imposes restrictions that have local effect within such a code unit. Strict mode does not restrict or
modify any aspect of the ECMAScript semantics that must operate consistently across multiple code units. A
complete ECMAScript program may be composed for both strict mode and non-strict mode ECMAScript code
units. In this case, strict mode only applies when actually executing code that is defined within a strict mode
code unit.

In order to conform to this specification, an ECMAScript implementation must implement both the full
unrestricted ECMAScript language and the strict mode variant of the ECMAScript language as defined by this
specification. In addition, an implementation must support the combination of unrestricted and strict mode
code units into a single composite program.

4.3 Terms and definitions

For the purposes of this document, the following terms and definitions apply.

4.3.1
type
set of data values as defined in Clause 8 of this specification

4.3.2
primitive value
member of one of the types Undefined, Null, Symbol, Boolean, Number, or String as defined in Clause 8

NOTE A primitive value is a datum that is represented directly at the lowest level of the language implementation.

4.3.3
object
member of the type Object

NOTE An object is a collection of properties and has a single prototype object. The prototype may be the null value.

© Ecma International 2012 5

4.3.4
constructor
function object that creates and initialises objects

NOTE The value of a constructorôs ñprototype ò property is a prototype object that is used to implement inheritance

and shared properties.

4.3.5
prototype
object that provides shared properties for other objects

NOTE When a constructor creates an object, that object implicitly references the constructorôs ñprototype ò property

for the purpose of resolving property references. The constructorôs ñprototype ò property can be referenced by the

program expression constr uctor .prototype , and properties added to an objectôs prototype are shared, through

inheritance, by all objects sharing the prototype. Alternatively, a new object may be created with an explicitly specified
prototype by using the Object.create built-in function.

4.3.6
ordinary object
object that has the default behaviour for the internal methods that must be supported by all ECMAScript
objects.

4.3.7
exotic object
object that has some alternative behaviour for one or more of the internal methods that must be supported by
all ECMAScript objects.

NOTE Any object that is not an ordinary object is an exotic object.

4.3.8
standard object
object whose semantics are defined by this specification.

4.3.9
built-in object
object supplied by an ECMAScript implementation, independent of the host environment, that is present at the
start of the execution of an ECMAScript program

NOTE Standard built-in objects are defined in this specification, and an ECMAScript implementation may specify and

define others. A built-in constructor is a built-in object that is also a constructor.

4.3.10
undefined value
primitive value used when a variable has not been assigned a value

4.3.11
Undefined type
type whose sole value is the undefined value

4.3.12
null value
primitive value that represents the intentional absence of any object value

4.3.13
Null type
type whose sole value is the null value

4.3.14
Boolean value
member of the Boolean type

6 © Ecma International 2012

NOTE There are only two Boolean values, true and false.

4.3.15
Boolean type
type consisting of the primitive values true and false

4.3.16
Boolean object
member of the Object type that is an instance of the standard built-in Boolean constructor

NOTE A Boolean object is created by using the Boolean constructor in a new expression, supplying a Boolean

value as an argument. The resulting object has an internal data property whose value is the Boolean value. A Boolean

object can be coerced to a Boolean value.

4.3.17
String value
primitive value that is a finite ordered sequence of zero or more 16-bit unsigned integer

NOTE A String value is a member of the String type. Each integer value in the sequence usually represents a single
16-bit unit of UTF-16 text. However, ECMAScript does not place any restrictions or requirements on the values except that

they must be 16-bit unsigned integers.

4.3.18
String type
set of all possible String values

4.3.19
String object
member of the Object type that is an instance of the standard built-in String constructor

NOTE A String object is created by using the String constructor in a new expression, supplying a String value as

an argument. The resulting object has an internal data property whose value is the String value. A String object can be
coerced to a String value by calling the String constructor as a function (15.5.1).

4.3.20
Number value
primitive value corresponding to a double-precision 64-bit binary format IEEE 754 value

NOTE A Number value is a member of the Number type and is a direct representation of a number.

4.3.21
Number type
set of all possible Number values including the special ñNot-a-Numberò (NaN) value, positive infinity, and
negative infinity

4.3.22
Number object
member of the Object type that is an instance of the standard built-in Number constructor

NOTE A Number object is created by using the Number constructor in a new expression, supplying a Number value

as an argument. The resulting object has an internal data property whose value is the Number value. A Number object can
be coerced to a Number value by calling the Number constructor as a function (15.7.1).

4.3.23
Infinity
number value that is the positive infinite Number value

4.3.24
NaN
number value that is a IEEE 754 ñNot-a-Numberò value

© Ecma International 2012 7

4.3.25
function
member of the Object type that may be invoked as a subroutine

NOTE In addition to its properties, a function contains executable code and state that determine how it behaves

when invoked. A functionôs code may or may not be written in ECMAScript.

4.3.26
built-in function
built-in object that is a function

NOTE Examples of built-in functions include parseInt and Math.exp . An implementation may provide

implementation-dependent built-in functions that are not described in this specification.

4.3.27
property
association between a name and a value that is a part of an object

NOTE Depending upon the form of the property the value may be represented either directly as a data value (a

primitive value, an object, or a function object) or indirectly by a pair of accessor functions.

4.3.28
method
function that is the value of a property

NOTE When a function is called as a method of an object, the object is passed to the function as its this value.

4.3.29
built-in method
method that is a built-in function

NOTE Standard built-in methods are defined in this specification, and an ECMAScript implementation may specify

and provide other additional built-in methods.

4.3.30
attribute
internal value that defines some characteristic of a property

4.3.31
own property
property that is directly contained by its object

4.3.32
inherited property
property of an object that is not an own property but is a property (either own or inherited) of the objectôs
prototype

5 Notational Conventions

5.1 Syntactic and Lexical Grammars

5.1.1 Context-Free Grammars

A context-free grammar consists of a number of productions. Each production has an abstract symbol called a
nonterminal as its left-hand side, and a sequence of zero or more nonterminal and terminal symbols as its
right-hand side. For each grammar, the terminal symbols are drawn from a specified alphabet.

A chain production is a production that has exactly one nonterminal symbol on its right-hand side along with
zero or more terminal symbols.

8 © Ecma International 2012

Starting from a sentence consisting of a single distinguished nonterminal, called the goal symbol, a given
context-free grammar specifies a language, namely, the (perhaps infinite) set of possible sequences of
terminal symbols that can result from repeatedly replacing any nonterminal in the sequence with a right-hand
side of a production for which the nonterminal is the left-hand side.

5.1.2 The Lexical and RegExp Grammars

A lexical grammar for ECMAScript is given in clause 7. This grammar has as its terminal symbols characters
(Unicode code units) that conform to the rules for SourceCharacter defined in Clause 6. It defines a set of

productions, starting from the goal symbol InputElementDiv or InputElementRegExp, that describe how

sequences of such characters are translated into a sequence of input elements.

Input elements other than white space and comments form the terminal symbols for the syntactic grammar for
ECMAScript and are called ECMAScript tokens. These tokens are the reserved words, identifiers, literals, and
punctuators of the ECMAScript language. Moreover, line terminators, although not considered to be tokens,
also become part of the stream of input elements and guide the process of automatic semicolon insertion (7.9).
Simple white space and single-line comments are discarded and do not appear in the stream of input
elements for the syntactic grammar. A MultiLineComment (that is, a comment of the form ñ/* é*/ ò regardless

of whether it spans more than one line) is likewise simply discarded if it contains no line terminator; but if a
MultiLineComment contains one or more line terminators, then it is replaced by a single line terminator, which
becomes part of the stream of input elements for the syntactic grammar.

A RegExp grammar for ECMAScript is given in 15.10. This grammar also has as its terminal symbols the
characters as defined by SourceCharacter. It defines a set of productions, starting from the goal symbol Pattern,

that describe how sequences of characters are translated into regular expression patterns.

Productions of the lexical and RegExp grammars are distinguished by having two colons ñ::ò as separating
punctuation. The lexical and RegExp grammars share some productions.

5.1.3 The Numeric String Grammar

Another grammar is used for translating Strings into numeric values. This grammar is similar to the part of the
lexical grammar having to do with numeric literals and has as its terminal symbols SourceCharacter. This

grammar appears in 9.3.1.

Productions of the numeric string grammar are distinguished by having three colons ñ:::ò as punctuation.

5.1.4 The Syntactic Grammar

The syntactic grammar for ECMAScript is given in clauses 11, 12, 13 and 14. This grammar has ECMAScript
tokens defined by the lexical grammar as its terminal symbols (5.1.2). It defines a set of productions, starting
from the goal symbol Script, that describe how sequences of tokens can form syntactically correct independent

components of an ECMAScript programs.

When a stream of characters is to be parsed as an ECMAScript script, it is first converted to a stream of input
elements by repeated application of the lexical grammar; this stream of input elements is then parsed by a
single application of the syntactic grammar. The script is syntactically in error if the tokens in the stream of
input elements cannot be parsed as a single instance of the goal nonterminal Script, with no tokens left over.

Productions of the syntactic grammar are distinguished by having just one colon ñ:ò as punctuation.

The syntactic grammar as presented in clauses 11, 12, 13 and 14 is actually not a complete account of which
token sequences are accepted as correct ECMAScript scripts. Certain additional token sequences are also
accepted, namely, those that would be described by the grammar if only semicolons were added to the
sequence in certain places (such as before line terminator characters). Furthermore, certain token sequences
that are described by the grammar are not considered acceptable if a terminator character appears in certain
ñawkwardò places.

© Ecma International 2012 9

In certain cases in order to avoid ambiguities the syntactic grammar uses generalize productions that permit
token sequences that are not valid ECMAScript scripts. For example, this technique is used in with object
literals and object destructuring patterns. In such cases a more restrictive supplemental grammar is provided
that further restricts the acceptable token sequences. In certain contexts, when explicitly specific, the input
elements corresponding to such a production are parsed again using a goal symbol of a supplemental
grammar. The script is syntactically in error if the tokens in the stream of input elements cannot be parsed as
a single instance of the supplemental goal symbol, with no tokens left over.

5.1.5 The JSON Grammar

The JSON grammar is used to translate a String describing a set of ECMAScript objects into actual objects.
The JSON grammar is given in 15.12.1.

The JSON grammar consists of the JSON lexical grammar and the JSON syntactic grammar. The JSON
lexical grammar is used to translate character sequences into tokens and is similar to parts of the ECMAScript
lexical grammar. The JSON syntactic grammar describes how sequences of tokens from the JSON lexical
grammar can form syntactically correct JSON object descriptions.

Productions of the JSON lexical grammar are distinguished by having two colons ñ::ò as separating
punctuation. The JSON lexical grammar uses some productions from the ECMAScript lexical grammar. The
JSON syntactic grammar is similar to parts of the ECMAScript syntactic grammar. Productions of the JSON
syntactic grammar are distinguished by using one colon ñ:ò as separating punctuation.

5.1.6 Grammar Notation

Terminal symbols of the lexical, RegExp, and numeric string grammars, and some of the terminal symbols of
the other grammars, are shown in fixed width font, both in the productions of the grammars and

throughout this specification whenever the text directly refers to such a terminal symbol. These are to appear
in a script either exactly as written or using equalvant Unicode escape sequences (see clause 6). All terminal
symbol characters specified in this way are to be understood as the appropriate Unicode character from the
ASCII range, as opposed to any similar-looking characters from other Unicode ranges.

Nonterminal symbols are shown in italic type. The definition of a nonterminal (also called a ñproductionò) is

introduced by the name of the nonterminal being defined followed by one or more colons. (The number of
colons indicates to which grammar the production belongs.) One or more alternative right-hand sides for the
nonterminal then follow on succeeding lines. For example, the syntactic definition:

WhileStatement :
while (Expression) Statement

states that the nonterminal WhileStatement represents the token while , followed by a left parenthesis token,

followed by an Expression, followed by a right parenthesis token, followed by a Statement. The occurrences of

Expression and Statement are themselves nonterminals. As another example, the syntactic definition:

ArgumentList :

AssignmentExpression

ArgumentList , AssignmentExpression

states that an ArgumentList may represent either a single AssignmentExpression or an ArgumentList, followed by
a comma, followed by an AssignmentExpression. This definition of ArgumentList is recursive, that is, it is defined
in terms of itself. The result is that an ArgumentList may contain any positive number of arguments, separated
by commas, where each argument expression is an AssignmentExpression. Such recursive definitions of

nonterminals are common.

The subscripted suffix ñoptò, which may appear after a terminal or nonterminal, indicates an optional symbol.
The alternative containing the optional symbol actually specifies two right-hand sides, one that omits the
optional element and one that includes it. This means that:

10 © Ecma International 2012

VariableDeclaration :

Identifier Initialiseropt

is a convenient abbreviation for:

VariableDeclaration :
Identifier

Identifier Initialiser

and that:

IterationStatement :

for (ExpressionNoInopt ; Expressionopt ; Expressionopt) Statement

is a convenient abbreviation for:

IterationStatement :
for (; Expressionopt ; Expressionopt) Statement

for (ExpressionNoIn ; Expressionopt ; Expressionopt) Statement

which in turn is an abbreviation for:

IterationStatement :

for (; ; Expressionopt) Statement

for (; Expression ; Expressionopt) Statement

for (ExpressionNoIn ; ; Expressionopt) Statement

for (ExpressionNoIn ; Expression ; Expressionopt) Statement

which in turn is an abbreviation for:

IterationStatement :
for (; ;) Statement

for (; ; Expression) Statement

for (; Expression ;) Statement

for (; Expression ; Expression) Statement

for (ExpressionNoIn ; ;) Statement

for (ExpressionNoIn ; ; Expression) Statement

for (ExpressionNoIn ; Expression ;) Statement

for (ExpressionNoIn ; Expression ; Expression) Statement

so the nonterminal IterationStatement actually has eight alternative right-hand sides.

When the words ñone ofò follow the colon(s) in a grammar definition, they signify that each of the terminal
symbols on the following line or lines is an alternative definition. For example, the lexical grammar for
ECMAScript contains the production:

NonZeroDigit :: one of
1 2 3 4 5 6 7 8 9

which is merely a convenient abbreviation for:

© Ecma International 2012 11

NonZeroDigit ::
1

2

3

4

5

6

7

8

9

If the phrase ñ[empty]ò appears as the right-hand side of a production, it indicates that the production's right-
hand side contains no terminals or nonterminals.

If the phrase ñ[lookahead Î set]ò appears in the right-hand side of a production, it indicates that the production
may not be used if the immediately following input token is a member of the given set. The set can be written

as a list of terminals enclosed in curly braces. For convenience, the set can also be written as a nonterminal,
in which case it represents the set of all terminals to which that nonterminal could expand. For example, given
the definitions

DecimalDigit :: one of
0 1 2 3 4 5 6 7 8 9

DecimalDigits ::
DecimalDigit

DecimalDigits DecimalDigit

the definition

LookaheadExample ::
n [lookahead Î {1, 3, 5, 7, 9}] DecimalDigits

DecimalDigit [lookahead Î DecimalDigit]

matches either the letter n followed by one or more decimal digits the first of which is even, or a decimal digit

not followed by another decimal digit.

If the phrase ñ[no LineTerminator here]ò appears in the right-hand side of a production of the syntactic grammar, it
indicates that the production is a restricted production: it may not be used if a LineTerminator occurs in the

input stream at the indicated position. For example, the production:

ThrowStatement :

throw [no LineTerminator here] Expression ;

indicates that the production may not be used if a LineTerminator occurs in the script between the throw token

and the Expression.

Unless the presence of a LineTerminator is forbidden by a restricted production, any number of occurrences of
LineTerminator may appear between any two consecutive tokens in the stream of input elements without

affecting the syntactic acceptability of the script.

The lexical grammar has multiple goal symbols and the appropriate goal symbol to use depends upon the
syntactic grammar context. If a phrase of the form ñ[Lexical goal LexicalGoalSymbol]ò appears on the right-hand-
side of a syntactic production then the next token must be lexically recognised using the indicated goal symbol.
In the absence of such a phrase the default lexical goal symbol is used.

When an alternative in a production of the lexical grammar or the numeric string grammar appears to be a
multi-character token, it represents the sequence of characters that would make up such a token.

12 © Ecma International 2012

The right-hand side of a production may specify that certain expansions are not permitted by using the phrase
ñbut notò and then indicating the expansions to be excluded. For example, the production:

Identifier ::

IdentifierName but not ReservedWord

means that the nonterminal Identifier may be replaced by any sequence of characters that could replace
IdentifierName provided that the same sequence of characters could not replace ReservedWord.

Finally, a few nonterminal symbols are described by a descriptive phrase in sans-serif type in cases where it
would be impractical to list all the alternatives:

SourceCharacter ::

any Unicode character

5.2 Algorithm Conventions

The specification often uses a numbered list to specify steps in an algorithm. These algorithms are used to
precisely specify the required semantics of ECMAScript language constructs. The algorithms are not intended
to imply the use of any specific implementation technique. In practice, there may be more efficient algorithms
available to implement a given feature.

Algorithms may be explicitly parameterised, in which case the names and usage of the parameters must be
provided as part of the algorithmôs definition. In order to facilitate their use in multiple parts of this specification,
some algorithms, called abstract operations, are named and written in parameterised functional form so that
they may be referenced by name from within other algorithms.

Algorithms may be associated with productions of one of the ECMAScript grammars. A production that has
multiple alternative definitions will typically have a distinct algorithm for each alternative. When an algorithm is
associated with a grammar production, it may reference the terminal and non-terminal symbols of the
production alternative as if they were parameters of the algorithm. When used in this manner, non-terminal
symbols refer to the actual alternative definition that is matched when parsing the script souce code.

Unless explicitly specified otherwise, all chain productions have an implicit associated definition for every
algorithm that is might be applied to that productionôs left-hand side nonterminal. The implicit simply reapplies
the same algorithm name with the same parameters, if any, to the chain productionôs sole right-hand side
nonterminal and then result. For example, assume there is a production

Block :
{ StatementList }

but there is no evalution algorithm that is explicitly specified for that production. If in some algorithm there is a
statement of the form: ñReturn the result of evaluating Blockò it is implicit that the algorithm has an evalution

algorithm of the form:

Runtime Semantics: Evaluation

Block : { StatementList }

1. Return the result of evaluating StatementList

For clarity of expression, algorithm steps may be subdivided into sequential substeps. Substeps are indented
and may themselves be further divided into indented substeps. Outline numbering conventions are used to
identify substeps with the first level of substeps labelled with lower case alphabetic characters and the second
level of substeps labelled with lower case roman numerals. If more than three levels are required these rules
repeat with the fourth level using numeric labels. For example:

1. Top-level step

a. Substep.

© Ecma International 2012 13

b. Substep

i. Subsubstep.

ii. Subsubstep.

1. Subsubsubstep

a Subsubsubsubstep

A step or substep may be written as an ñifò predicate that conditions its substeps. In this case, the substeps
are only applied if the predicate is true. If a step or substep begins with the word ñelseò, it is a predicate that is
the negation of the preceding ñifò predicate step at the same level.

A step may specify the iterative application of its substeps.

A step may assert an invariant condition of its algorithm. Such assertions are used to make explicit
algorithmic invariants that would otherwise be implicit. Such assertions add no additional semantic
requirements and hence need not be checked by an implementation. They are used simply to clarify
algorithms.

Mathematical operations such as addition, subtraction, negation, multiplication, division, and the mathematical
functions defined later in this clause should always be understood as computing exact mathematical results
on mathematical real numbers, which do not include infinities and do not include a negative zero that is
distinguished from positive zero. Algorithms in this standard that model floating-point arithmetic include explicit
steps, where necessary, to handle infinities and signed zero and to perform rounding. If a mathematical
operation or function is applied to a floating-point number, it should be understood as being applied to the
exact mathematical value represented by that floating-point number; such a floating-point number must be

finite, and if it is +0 or -0 then the corresponding mathematical value is simply 0.

The mathematical function abs(x) yields the absolute value of x, which is -x if x is negative (less than zero) and

otherwise is x itself.

The mathematical function sign(x) yields 1 if x is positive and -1 if x is negative. The sign function is not used in

this standard for cases when x is zero.

The mathematical function min(x1, x2, ..., xn) yields the mathematically smallest of x1 through xn.

The notation ñx modulo yò (y must be finite and nonzero) computes a value k of the same sign as y (or zero)

such that abs(k) < abs(y) and x-k = q ³ y for some integer q.

The mathematical function floor(x) yields the largest integer (closest to positive infinity) that is not larger than x.

NOTE floor(x) = x-(x modulo 1).

5.3 Static Semantic Rules

Context-free grammars are not sufficiently powerful to express all the rules that define whether a stream of
input elements make up a valid ECMAScript script that may be evaluated. In some situations additional rules
are needed that may be expressed using either ECMAScript algorithm conventions or prose requirements.
Such rules are always associated with a production of a grammar and are called the static semantics of the
production.

Static Semantic Rules have names and typically are defined using an algorithm. Named Static Semantic
Rules are associated with grammar productions and a production that has multiple alternative definitions will
typically have for each alternative a distinct algorithm for each applicable named static semantic rule.

Unless otherwise specified every grammar production alternative in this specification implicitly has a definition
for a static semantic rule named Contains which takes an argument named symbol whose value is a terminal or
non-terminal of the grammar that includes the associated production. The default definition of Contains is:

1. For each terminal and non-terminal grammar symbol, sym, in the definition of this production do

a. If sym is the same grammar symbol as symbol, return true .

b. If sym is a non-terminal, then

14 © Ecma International 2012

i. Let contained be the result of Contains for sym with argument symbol.

ii. If contained is true , return true .

2. Return false.

The above definition is explicitly over-ridden for specific productions.

A special kind of static semantic rule is an Early Error Rule. Early error rules define early error conditions (see
clause 16) that are associate with specific grammar productions. Evaluation of most early error rules are not
explicitly invoked within the algorithms of this specification. A comforming implementation must, prior to the
first evaluation of a Script, validate all of the early error rules of the productions used to parse that Script. If any

of the early error rules are violated the Script is invalid and cannot be evaluated.

6 Source Text

Syntax

SourceCharacter ::
any Unicode character

The ECMAScript code is expressed using Unicode, version 5.1 or later. ECMAScript source text is a
sequence of Unicode characters. The phrase ñUnicode characterò refers to the abstract linguistic or
typographical unit represented by a single Unicode scalar value. The actual encodings used to store and
interchange ECMAScript source text is not relevant to this specification. Any well-defined encoding such as
UTF-32 or UTF-16 may be used. Source text might even be externally represented using a non-Unicode
character encoding. Regardless of the external source text encoding, a conforming ECMAScript
implementation processes the source text as if it was an equivalent sequence of SourceCharacter values. Each
SourceCharacter being an abstract Unicode character with a corresponding Unicode scalar value. Conforming

ECMAScript implementations are not required to perform any normalisation of text, or behave as though they
were performing normalisation of text.

The phrase ñcode pointò refers to such a Unicode scalar value. ñUnicode characterò only refers to entities
represented by single Unicode scalar values: the components of a combining character sequence are still
individual ñUnicode characters,ò even though a user might think of the whole sequence as a single character.

In string literals, regular expression literals,template literals and identifiers, any Unicode characters may also
be expressed as a Unicode escape sequence that explicitly express a code pointôs numeric value. Within a
comment, such an escape sequence is effectively ignored as part of the comment. Within other contexts, such
an escape sequence contextually contributes one Unicode character.

NOTE ECMAScript differs from the Java programming language in the behaviour of Unicode escape sequences. In a
Java program, if the Unicode escape sequence \ u000A , for example, occurs within a single-line comment, it is interpreted

as a line terminator (Unicode character 000A is line feed) and therefore the next Unicode character is not part of the

comment. Similarly, if the Unicode escape sequence \ u000A occurs within a string literal in a Java program, it is likewise

interpreted as a line terminator, which is not allowed within a string literalðone must write \ n instead of \ u000A to cause

a line feed to be part of the string value of a string literal. In an ECMAScript program, a Unicode escape sequence
occurring within a comment is never interpreted and therefore cannot contribute to termination of the comment. Similarly, a
Unicode escape sequence occurring within a string literal in an ECMAScript program always contributes a Unicode

character to the literal and is never interpreted as a line terminator or as a quote mark that might terminate the string literal.

ECMAScript String values (8.4) are computational sequences of 16-bit integer values called ñcode unitsò.
ECMAScript language constructs that generate string values from SourceCharacter sequences use UTF-16

encoding to generate the code unit values.

Static Semantics: UTF-16 Encoding

The UTF-16 Encoding of a numeric code point value, cp, is determined as follows:

1. Assert: 0 Ò cp Ò 0x10FFFF

2. If cp Ò 65535, then return cp.

3. Let cu1 be floor((cp ï 65536) / 1024) + 55296. NOTE 55296 is 0xD800.

Commented [AW2]: Perhaps this should be somewhere
else. Currently we donôt have a section that enumerates all
the steps in loading and evaluating a program.

© Ecma International 2012 15

4. Let cu2 be ((cp ï 65536) modulo 1024) + 56320. NOTE 56320 is 0xDC00.

5. Return the code unit sequence consisting of cu1 followed by cu2.

7 Lexical Conventions

The source text of an ECMAScript script is first converted into a sequence of input elements, which are tokens,
line terminators, comments, or white space. The source text is scanned from left to right, repeatedly taking the
longest possible sequence of characters as the next input element.

There are several situations where the identification of lexical input elements is sensitive to the syntactic
grammar context that is consuming the input elements. This requires multiple goal symbols for the lexical
grammar. The InputElementDiv goal symbol is the default goal symbol and is used in those syntactic grammar

contexts where a leading division (/) or division-assignment (/=) operator is permitted. The

InputElementRegExp goal symbol is used in all syntactic grammar contexts where a RegularExpressionLiteral is
permitted. The InputElementTemplateTail goal is used in syntactic grammar contexts where a TemplateLiteral

logically continues after a substitution element.

NOTE There are no syntactic grammar contexts where both a leading division or division-assignment, and a leading
RegularExpressionLiteral are permitted. This is not affected by semicolon insertion (see 7.9); in examples such as the

following:

a = b

/hi/g.exec(c).map(d);

where the first non-whitespace, non-comment character after a LineTerminator is slash (/) and the syntactic context allows

division or division-assignment, no semicolon is inserted at the LineTerminator. That is, the above example is interpreted in

the same way as:

a = b / hi / g. exec (c).map(d);

Syntax

InputElementDiv ::
WhiteSpace

LineTerminator

Comment

Token

DivPunctuator

RightBracePunctuator

InputElementRegExp ::
WhiteSpace

LineTerminator

Comment

Token

RightBracePunctuator

RegularExpressionLiteral

InputElementTemplateTail ::
WhiteSpace

LineTerminator

Comment

Token

DivPunctuator

TemplateSubstitutionTail

Commented [AWB93]: May need to also say something
about TemplateSubstitution tail. Also need to consider with
there are any ASI issues concerning it.

16 © Ecma International 2012

7.1 Unicode Format-Control Characters

The Unicode format-control characters (i.e., the characters in category ñCfò in the Unicode Character
Database such as LEFT-TO-RIGHT MARK or RIGHT-TO-LEFT MARK) are control codes used to control the
formatting of a range of text in the absence of higher-level protocols for this (such as mark-up languages).

It is useful to allow format-control characters in source text to facilitate editing and display. All format control
characters may be used within comments, and within string literals, template literals, and regular expression
literals.

<ZWNJ> and <ZWJ> are format-control characters that are used to make necessary distinctions when forming
words or phrases in certain languages. In ECMAScript source text, <ZWNJ> and <ZWJ> may also be used in

an identifier after the first character.

<BOM> is a format-control character used primarily at the start of a text to mark it as Unicode and to allow
detection of the text's encoding and byte order. <BOM> characters intended for this purpose can sometimes

also appear after the start of a text, for example as a result of concatenating files. <BOM> characters are
treated as white space characters (see 7.2).

The special treatment of certain format-control characters outside of comments, string literals, and regular
expression literals is summarised in Table 1.

Table 1 ð Format-Control Character Usage

Code Point Name Formal Name Usage

U+200C Zero width non-joiner <ZWNJ> IdentifierPart

U+200D Zero width joiner <ZWJ> IdentifierPart

U+FEFF Byte Order Mark <BOM> Whitespace

7.2 White Space

White space characters are used to improve source text readability and to separate tokens (indivisible lexical
units) from each other, but are otherwise insignificant. White space characters may occur between any two
tokens and at the start or end of input. White space characters may occur within a StringLiteral, a
RegularExpressionLiteral, a Template, or a TemplateSubstitutionTail where they are considered significant
characters forming part of a literal value. They may also occur within a Comment, but cannot appear within any

other kind of token.

The ECMAScript white space characters are listed in Table 2.

Table 2 ð Whitespace Characters

Code Point Name Formal Name

U+0009 Tab <TAB>

U+000B Vertical Tab <VT>

U+000C Form Feed <FF>

U+0020 Space <SP>

U+00A0 No-break space <NBSP>

U+FEFF Byte Order Mark <BOM>

Other category ñZsò Any other Unicode
ñspace separatorò

<USP>

ECMAScript implementations must recognise all of the white space characters defined in Unicode 5.1. Later
editions of the Unicode Standard may define other white space characters. ECMAScript implementations may
recognise white space characters from later editions of the Unicode Standard.

© Ecma International 2012 17

Syntax

WhiteSpace ::

<TAB>

<VT>

<FF>

<SP>

<NBSP>

<BOM>

<USP>

7.3 Line Terminators

Like white space characters, line terminator characters are used to improve source text readability and to
separate tokens (indivisible lexical units) from each other. However, unlike white space characters, line
terminators have some influence over the behaviour of the syntactic grammar. In general, line terminators
may occur between any two tokens, but there are a few places where they are forbidden by the syntactic
grammar. Line terminators also affect the process of automatic semicolon insertion (7.9). A line terminator
cannot occur within any token except a StringLiteral, Template, or TemplateSubstitutionTail. Line terminators may

only occur within a StringLiteral token as part of a LineContinuation.

A line terminator can occur within a MultiLineComment (7.4) but cannot occur within a SingleLineComment.

Line terminators are included in the set of white space characters that are matched by the \ s class in regular

expressions.

The ECMAScript line terminator characters are listed in Table 3.

Table 3 ð Line Terminator Characters

Code Point Name Formal Name

U+000A Line Feed <LF>

U+000D Carriage Return <CR>

U+2028 Line separator <LS>

U+2029 Paragraph separator <PS>

Only the Unicode characters in Table 3 are treated as line terminators. Other new line or line breaking
Unicode characters are treated as white space but not as line terminators. The sequence <CR><LF> is
commonly used as a line terminator. It should be considered a single SourceCharacter for the purpose of

reporting line numbers.

Syntax

LineTerminator ::
<LF>

<CR>

<LS>

<PS>

LineTerminatorSequence ::
<LF>

<CR> [lookahead Î <LF>]

<LS>

<PS>

<CR> <LF>

7.4 Comments

Comments can be either single or multi-line. Multi-line comments cannot nest.

Commented [AWB94]: Need to talk about line terminators
in Templates

18 © Ecma International 2012

Because a single-line comment can contain any Unicode character except a LineTerminator character, and

because of the general rule that a token is always as long as possible, a single-line comment always consists
of all characters from the // marker to the end of the line. However, the LineTerminator at the end of the line is

not considered to be part of the single-line comment; it is recognised separately by the lexical grammar and
becomes part of the stream of input elements for the syntactic grammar. This point is very important, because
it implies that the presence or absence of single-line comments does not affect the process of automatic
semicolon insertion (see 7.9).

Comments behave like white space and are discarded except that, if a MultiLineComment contains a line
terminator character, then the entire comment is considered to be a LineTerminator for purposes of parsing by

the syntactic grammar.

Syntax

Comment ::
MultiLineComment

SingleLineComment

MultiLineComment ::

/* MultiLineCommentCharsopt */

MultiLineCommentChars ::
MultiLineNotAsteriskChar MultiLineCommentCharsopt

* PostAsteriskCommentCharsopt

PostAsteriskCommentChars ::
MultiLineNotForwardSlashOrAsteriskChar MultiLineCommentCharsopt

* PostAsteriskCommentCharsopt

MultiLineNotAsteriskChar ::

SourceCharacter but not *

MultiLineNotForwardSlashOrAsteriskChar ::

SourceCharacter but not one of / or *

SingleLineComment ::

// SingleLineCommentCharsopt

SingleLineCommentChars ::
SingleLineCommentChar SingleLineCommentCharsopt

SingleLineCommentChar ::

SourceCharacter but not LineTerminator

7.5 Tokens

Syntax

Token ::
IdentifierName

Punctuator

NumericLiteral

StringLiteral

Template

NOTE The DivPunctuator, RegularExpressionLiteral, RightBracePunctuator, and TemplateSubstitutionTail productions
define tokens, but are not included in the Token production.

© Ecma International 2012 19

7.6 Identifier Names and Identifiers

IdentifierName, Identifier, and ReservedWord are tokens that are interpreted according to the Default Identifier

Syntax given in Unicode Standard Annex #31, Identifier and Pattern Syntax, with some small modifications.
ReservedWord is is an enumerated subset of IdentifierName and Identifier is an IdentifierName that is not a
ReservedWord (see 7.6.1). The Unicode identifier grammar is based on character properties specified by the

Unicode Standard. The Unicode characters in the specified categories in version 5.1.0 of the Unicode
standard must be treated as in those categories by all conforming ECMAScript implementations. ECMAScript
implementations may recognise identifier characters defined in later editions of the Unicode Standard.

NOTE 1 This standard specifies specific character additions: The dollar sign (U+0024) and the underscore (U+005f)

are permitted anywhere in an IdentifierName, and the characters zero width non-joiner (U+200C) and zero width joiner
(U+200D) are permitted anywhere after the first character of an IdentifierName.

Unicode escape sequences are permitted in an IdentifierName, where they contribute a single Unicode

character to the IdentifierName. The code point of the contributed character is expressed by the HexDigits of
the UnicodeEscapeSequence (see 7.8.6). The \ preceding the UnicodeEscapeSequence and the u and { }

characters, if they appear, do not contribute characters to the IdentifierName. A UnicodeEscapeSequence cannot
be used to put a character into an IdentifierName that would otherwise be illegal. In other words, if a

\ UnicodeEscapeSequence sequence were replaced by the Unicode character it constributes, the result must

still be a valid IdentifierName that has the exact same sequence of characters as the original IdentifierName. All
interpretations of IdentifierName within this specification are based upon their actual characters regardless of

whether or not an escape sequence was used to contribute any particular characters.

Two IdentifierName that are canonically equivalent according to the Unicode standard are not equal unless

they are represented by the exact same sequence of code units (in other words, conforming ECMAScript
implementations are only required to do bitwise comparison on IdentifierName values).

NOTE 2 If maximal portability is a concern, programmers should only employ the identifier characters that were defined

in Unicode 3.0.

Syntax

Identifier ::

IdentifierName but not ReservedWord

IdentifierName ::
IdentifierStart

IdentifierName IdentifierPart

IdentifierStart ::
UnicodeIDStart
$

_

\ UnicodeEscapeSequence

IdentifierPart ::
UnicodeIDContinue
$

_

\ UnicodeEscapeSequence

<ZWNJ>

<ZWJ>

UnicodeIDStart ::

any Unicode character with the Unicode property ñID_Startò.

UnicodeIDContinue ::

any Unicode character with the Unicode property ñID_Continueò

Formatted: Note

Formatted: Note

Commented [AWB95]: Norbert suggests chaning this to
5.1.0. Would be really be better for ñportablilityò?

20 © Ecma International 2012

The definitions of the nonterminal UnicodeEscapeSequence is given in 7.8.6

Static Se mantics: String Value

Identifier :: IdentifierName but not ReservedWord

1. Return the StringValue of IdentifierName.

IdentifierName ::
IdentifierStart

IdentifierName IdentifierPart

1. Return the String value consisting of the sequence of code units corresponding to IdentifierName. In

determining the sequence any occurrences of \ UnicodeEscapeSequence are first replaced with the code

point represented by the UnicodeEscapeSequence and then the code points of the entire IdentifierName are

converted to code units by UTF-16 Encoding (clause 6) each code point.

7.6.1 Reserved Words

A reserved word is an IdentifierName that cannot be used as an Identifier.

Syntax

ReservedWord ::

Keyword

FutureReservedWord

NullLiteral

BooleanLiteral

The ReservedWord definitions are specified as literal sequences of Unicode characters. However, any Unicode
character in a ReservedWord can also be expressed by a \ UnicodeEscapeSequence that expresses that same

Unicode characterôs code point. Use of such escape sequences does not change the meaning of the
ReservedWord.

7.6.1.1 Keywords

The following tokens are ECMAScript keywords and may not be used as Identifiers in ECMAScript programs.

Syntax

Keyword :: one of
break delete import this

case do in throw

catch else instanceof try

class export let typeof

continue finally new var

const for return void

debugger function super while

default if switch with

7.6.1.2 Future Reserved Words

The following words are used as keywords in proposed extensions and are therefore reserved to allow for the
possibility of future adoption of those extensions.

© Ecma International 2012 21

Syntax

FutureReservedWord :: one of
 enum extends

The following tokens are also considered to be FutureReservedWords when they occur within strict mode code
(see 10.1.1). The occurrence of any of these tokens within strict mode code in any context where the
occurrence of a FutureReservedWord would produce an error must also produce an equivalent error:

imp lements private public yield

interface package protected static

7.7 Punctuators

Syntax

Punctuator :: one of
{ () [] .

. .. ; , < > <=

>= == ! = === !==

+ - * % ++ --

<< >> >>> & | ^

! ~ && || ? :

= += - = *= %= <<=

>>= >>>= &= |= ^= =>

DivPunctuator :: one of
/ /=

RightBracePunctuator ::
}

7.8 Literals

7.8.1 Null Literals

Syntax

NullLiteral ::
null

7.8.2 Boolean Literals

Syntax

BooleanLiteral ::
true

false

Commented [AWB86]: It isnôt clear that extends actually
needs to be reserved. Itôs only usage is highly contextual.

Commented [AWB87]: Move to keywords

22 © Ecma International 2012

7.8.3 Numeric Literals

Syntax

NumericLiteral ::

DecimalLiteral

BinaryIntegerLiteral

OctalIntegerLiteral

HexIntegerLiteral

DecimalLiteral ::
DecimalIntegerLiteral . DecimalDigitsopt ExponentPartopt

. DecimalDigits ExponentPartopt

DecimalIntegerLiteral ExponentPartopt

DecimalIntegerLiteral ::
0

NonZeroDigit DecimalDigitsopt

DecimalDigits ::
DecimalDigit

DecimalDigits DecimalDigit

DecimalDigit :: one of
0 1 2 3 4 5 6 7 8 9

NonZeroDigit :: one of
1 2 3 4 5 6 7 8 9

ExponentPart ::
ExponentIndicator SignedInteger

ExponentIndicator :: one of
e E

SignedInteger ::

DecimalDigits

+ DecimalDigits

- DecimalDigits

BinaryIntegerLiteral ::
0b BinaryDigit

0B BinaryDigit

BinaryIntegerLiteral BinaryDigit

BinaryDigit :: one of
0 1

OctalIntegerLiteral ::
0o OctalDigit

0O OctalDigit

OctalIntegerLiteral OctalDigit

OctalDigit :: one of
0 1 2 3 4 5 6 7

HexIntegerLiteral ::
0x HexDigits

0X HexDigits

Commented [AWB78]: From March 29 meeting notes: Hex
floating point literals:
Waldemar: Other languages include these things. They're
rarely used
but when you want one, you really want one. Use cases are
similar to
that of hex literals.
Will explore adding them.
MarkM: 0x3.p1 currently evaluates to undefined. This would
be a
breaking change.
Waldemar: Not clear anyone would notice. How did other
languages
deal with this?

Commented [AWB79]: The various Digit productions could
be refactored to have less redundency

© Ecma International 2012 23

HexDigits ::

HexDigit

HexDigits HexDigit

HexDigit :: one of
0 1 2 3 4 5 6 7 8 9 a b c d e f A B C D E F

The SourceCharacter immediately following a NumericLiteral must not be an IdentifierStart or DecimalDigit.

NOTE For example:

3in

is an error and not the two input elements 3 and in .

A conforming implementation, when processing strict mode code (see 10.1.1), must not extend the syntax of
NumericLiteral to include OctalIntegerLiteral as described in B.1.1.

Static Semantics : MVôs

A numeric literal stands for a value of the Number type. This value is determined in two steps: first, a
mathematical value (MV) is derived from the literal; second, this mathematical value is rounded as described
below.

¶ The MV of NumericLiteral :: DecimalLiteral is the MV of DecimalLiteral.

¶ The MV of NumericLiteral :: BinaryIntegerLiteral is the MV of BinaryIntegerLiteral.

¶ The MV of NumericLiteral :: OctalIntegerLiteral is the MV of OctalIntegerLiteral.

¶ The MV of NumericLiteral :: HexIntegerLiteral is the MV of HexIntegerLiteral.

¶ The MV of DecimalLiteral :: DecimalIntegerLiteral . is the MV of DecimalIntegerLiteral.

¶ The MV of DecimalLiteral :: DecimalIntegerLiteral . DecimalDigits is the MV of DecimalIntegerLiteral plus

(the MV of DecimalDigits times 10ïn), where n is the number of characters in DecimalDigits.

¶ The MV of DecimalLiteral :: DecimalIntegerLiteral . ExponentPart is the MV of DecimalIntegerLiteral times

10e, where e is the MV of ExponentPart.

¶ The MV of DecimalLiteral :: DecimalIntegerLiteral . DecimalDigits ExponentPart is (the MV of

DecimalIntegerLiteral plus (the MV of DecimalDigits times 10ïn)) times 10e, where n is the number of
characters in DecimalDigits and e is the MV of ExponentPart.

¶ The MV of DecimalLiteral ::. DecimalDigits is the MV of DecimalDigits times 10ïn, where n is the number of

characters in DecimalDigits.

¶ The MV of DecimalLiteral ::. DecimalDigits ExponentPart is the MV of DecimalDigits times 10eïn, where n is

the number of characters in DecimalDigits and e is the MV of ExponentPart.

¶ The MV of DecimalLiteral :: DecimalIntegerLiteral is the MV of DecimalIntegerLiteral.

¶ The MV of DecimalLiteral :: DecimalIntegerLiteral ExponentPart is the MV of DecimalIntegerLiteral times 10e,
where e is the MV of ExponentPart.

¶ The MV of DecimalIntegerLiteral :: 0 is 0.

¶ The MV of DecimalIntegerLiteral :: NonZeroDigit is the MV of NonZeroDigit.

¶ The MV of DecimalIntegerLiteral :: NonZeroDigit DecimalDigits is (the MV of NonZeroDigit times 10n) plus
the MV of DecimalDigits, where n is the number of characters in DecimalDigits.

¶ The MV of DecimalDigits :: DecimalDigit is the MV of DecimalDigit.

¶ The MV of DecimalDigits :: DecimalDigits DecimalDigit is (the MV of DecimalDigits times 10) plus the MV of
DecimalDigit.

¶ The MV of ExponentPart :: ExponentIndicator SignedInteger is the MV of SignedInteger.

¶ The MV of SignedInteger :: DecimalDigits is the MV of DecimalDigits.

¶ The MV of SignedInteger :: + DecimalDigits is the MV of DecimalDigits.

¶ The MV of SignedInteger :: - DecimalDigits is the negative of the MV of DecimalDigits.

¶ The MV of DecimalDigit :: 0 or of HexDigit :: 0 or of OctalDigit :: 0 or of BinaryDigit :: 0 is 0.

¶ The MV of DecimalDigit :: 1 or of NonZeroDigit :: 1 or of HexDigit :: 1 or of OctalDigit :: 1 or

of BinaryDigit :: 1 is 1.

24 © Ecma International 2012

¶ The MV of DecimalDigit :: 2 or of NonZeroDigit :: 2 or of HexDigit :: 2 or of OctalDigit :: 2 is 2.

¶ The MV of DecimalDigit :: 3 or of NonZeroDigit :: 3 or of HexDigit :: 3 or of OctalDigit :: 3 is 3.

¶ The MV of DecimalDigit :: 4 or of NonZeroDigit :: 4 or of HexDigit :: 4 or of OctalDigit :: 4 is 4.

¶ The MV of DecimalDigit :: 5 or of NonZeroDigit :: 5 or of HexDigit :: 5 or of OctalDigit :: 5 is 5.

¶ The MV of DecimalDigit :: 6 or of NonZeroDigit :: 6 or of HexDigit :: 6 or of OctalDigit :: 6 is 6.

¶ The MV of DecimalDigit :: 7 or of NonZeroDigit :: 7 or of HexDigit :: 7 or of OctalDigit :: 7 is 7.

¶ The MV of DecimalDigit :: 8 or of NonZeroDigit :: 8 or of HexDigit :: 8 is 8.

¶ The MV of DecimalDigit :: 9 or of NonZeroDigit :: 9 or of HexDigit :: 9 is 9.

¶ The MV of HexDigit :: a or of HexDigit :: A is 10.

¶ The MV of HexDigit :: b or of HexDigit :: B is 11.

¶ The MV of HexDigit :: c or of HexDigit :: C is 12.

¶ The MV of HexDigit :: d or of HexDigit :: D is 13.

¶ The MV of HexDigit :: e or of HexDigit :: E is 14.

¶ The MV of HexDigit :: f or of HexDigit :: F is 15.

¶ The MV of BinaryIntegerLiteral :: 0b BinaryDigit is the MV of BinaryDigit.

¶ The MV of BinaryIntegerLiteral :: 0B BinaryDigit is the MV of BinaryDigit.

¶ The MV of BinaryIntegerLiteral :: BinaryIntegerLiteral BinaryDigit is (the MV of BinaryIntegerLiteral times 2)
plus the MV of BinaryDigit.

¶ The MV of OctalIntegerLiteral :: 0o OctalDigit is the MV of OctalDigit.

¶ The MV of OctalIntegerLiteral :: 0O OctalDigit is the MV of OctalDigit.

¶ The MV of OctalIntegerLiteral :: OctalIntegerLiteral OctalDigit is (the MV of OctalIntegerLiteral times 8) plus
the MV of OctalDigit.

¶ The MV of HexIntegerLiteral :: 0x HexDigits is the MV of HexDigits.

¶ The MV of HexIntegerLiteral :: 0X HexDigits is the MV of HexDigits.

¶ The MV of HexDigits :: HexDigit is the MV of HexDigit.

¶ The MV of HexDigits :: HexDigits HexDigit is (the MV of HexDigits times 16) plus the MV of HexDigit.

Once the exact MV for a numeric literal has been determined, it is then rounded to a value of the Number type.
If the MV is 0, then the rounded value is +0; otherwise, the rounded value must be the Number value for the
MV (as specified in 8.5), unless the literal is a DecimalLiteral and the literal has more than 20 significant digits,
in which case the Number value may be either the Number value for the MV of a literal produced by replacing
each significant digit after the 20th with a 0 digit or the Number value for the MV of a literal produced by

replacing each significant digit after the 20th with a 0 digit and then incrementing the literal at the 20th

significant digit position. A digit is significant if it is not part of an ExponentPart and

¶ it is not 0; or

¶ there is a nonzero digit to its left and there is a nonzero digit, not in the ExponentPart, to its right.

7.8.4 Regular Expression Literals

NOTE A regular expression literal is an input element that is converted to a RegExp object (see 15.10) each time the
literal is evaluated. Two regular expression literals in a program evaluate to regular expression objects that never compare
as === to each other even if the two literals' contents are identical. A RegExp object may also be created at runtime by

new RegExp (see 15.10.4) or calling the RegExp constructor as a function (15.10.3).

The productions below describe the syntax for a regular expression literal and are used by the input element
scanner to find the end of the regular expression literal. The source code comprising the
RegularExpressionBody and the RegularExpressionFlags are subsequently parsed using the more stringent

ECMAScript Regular Expression grammar (15.10.1).

An implementation may extend the ECMAScript Regular Expression grammar defined in 15.10.1, but it must
not extend the RegularExpressionBody and RegularExpressionFlags productions defined below or the productions

used by these productions.

Formatted: Note

© Ecma International 2012 25

Syntax

RegularExpressionLiteral ::

/ RegularExpressionBody / RegularExpressionFlags

RegularExpressionBody ::
RegularExpressionFirstChar RegularExpressionChars

RegularExpressionChars ::
[empty]
RegularExpressionChars RegularExpressionChar

RegularExpressionFirstChar ::
RegularExpressionNonTerminator but not one of * or \ or / or [

RegularExpressionBackslashSequence

RegularExpressionClass

RegularExpressionChar ::
RegularExpressionNonTerminator but not one of \ or / or [

RegularExpressionBackslashSequence

RegularExpressionClass

RegularExpressionBackslashSequence ::
\ RegularExpressionNonTerminator

RegularExpressionNonTerminator ::

SourceCharacter but not LineTerminator

RegularExpressionClass ::
[RegularExpressionClassChars]

RegularExpressionClassChars ::
[empty]
RegularExpressionClassChars RegularExpressionClassChar

RegularExpressionClassChar ::
RegularExpressionNonTerminator but not one of] or \

RegularExpressionBackslashSequence

RegularExpressionFlags ::
[empty]
RegularExpressionFlags IdentifierPart

NOTE Regular expression literals may not be empty; instead of representing an empty regular expression literal, the
characters // start a single-line comment. To specify an empty regular expression, use: /(?:)/ .

Static Semantics: Early Errors

RegularExpressionFlags:: RegularExpressionFlags IdentifierPart

¶ It is a Syntax Error if IdentifierPart contains a Unicode escape sequence.

Static Semantics: BodyText

RegularExpressionLiteral :: / RegularExpressionBody / RegularExpressionFlags

1. Return the source code that was recognised as RegularExpressionBody.

Static Semantics: FlagText

RegularExpressionLiteral :: / RegularExpressionBody / RegularExpressionFlags

26 © Ecma International 2012

1. Return the source code that was recognised as RegularExpressionFlags.

7.8.5 Template Literal Lexical Components

Syntax

Template ::
NoSubstitutionTemplate

TemplateHead

NoSubstitutionTemplate ::

` TemplateCharactersopt `

TemplateHead ::
` TemplateCharactersopt ${

TemplateSubstitutionTail ::
TemplateMiddle

TemplateTail

TemplateMiddle ::
} TemplateCharactersopt ${

TemplateTail ::

} TemplateCharactersopt `

TemplateCharacters ::

TemplateCharacter TemplateCharactersopt

TemplateCharacter ::

SourceCharacter but not one of ` or \ or $
$ [lookahead Î {]

\ EscapeSequence

LineContinuation

Static Semantics: TVôs and TRVôs

A template literal component is interpreted as a sequence of Unicode characters. The Template Value (TV) of
a literal component is described in terms of code unit values (CV, 7.8.4) contributed by the various parts of the
template literal component. As part of this process, some Unicode characters within the template component
are interpreted as having a mathematical value (MV, 7.8.3). In determining a TV, escape sequences are
replaced by the code unit of the Unicode characters represented by the escape sequence. The Template
Raw Value (TRV) is similar to a Template Value with the difference that in TRVs escape sequences are
interpreted literally.

¶ The TV and TRV of NoSubstitutionTemplate :: `` is the empty code unit sequence.

¶ The TV and TRV of TemplateHead :: `$ { is the empty code unit sequence.

¶ The TV and TRV of TemplateMiddle :: }$ { is the empty code unit sequence.

¶ The TV and TRV of TemplateTail :: } ` is the empty code unit sequence.

¶ The TV of NoSubstitutionTemplate :: ` TemplateCharacters ` is the TV of TemplateCharacters.

¶ The TV of TemplateHead :: ` TemplateCharacters ${ is the TV of TemplateCharacters.

¶ The TV of TemplateMiddle :: } TemplateCharacters ${ is the TV of TemplateCharacters.

¶ The TV of TemplateTail :: } TemplateCharacters ` is the TV of TemplateCharacters.

¶ The TV of TemplateCharacters :: TemplateCharacter is the TV of TemplateCharacter.

¶ The TV of TemplateCharacters :: TemplateCharacter TemplateCharacters is a sequence consisting of the
code units in the TV of TemplateCharacter followed by all the code units in the TV of TemplateCharacters in

order.

Commented [AWB910]: Note that the original proposal
allowed $IdentifierName to be used as a substitution without
{ } around the name.

Line terminations charcters are simply handled as literal
SouceCharacters. I find this troublesome. Shouldnôt we have
some sort of normalizations of line terminators. Otherwise,
the actual characters in a multi-line template are at the mercy
of the authors editor/OS.

© Ecma International 2012 27

¶ The TV of TemplateCharacter :: SourceCharacter but not one of ` or \ or $ is the UTF-16 Encoding (clause

6) of the code point value of SourceCharacter.

¶ The TV of TemplateCharacter :: $ [lookahead Î {] is the code unit value 0x0024.

¶ The TV of TemplateCharacter :: \ EscapeSequence is the CV of EscapeSequence.

¶ The TV of TemplateCharacter :: LineContinuation is the TV of LineContinuation.

¶ The TV of LineContinuation :: \ LineTerminatorSequence is the empty code unit sequence.

¶ The TRV of NoSubstitutionTemplate :: ` TemplateCharacters ` is the TRV of TemplateCharacters.

¶ The TRV of TemplateHead :: ` TemplateCharacters ${ is the TRV of TemplateCharacters.

¶ The TRV of TemplateMiddle :: } TemplateCharacters ${ is the TRV of TemplateCharacters.

¶ The TRV of TemplateTail :: } TemplateCharacters ` is the TRV of TemplateCharacters.

¶ The TRV of TemplateCharacters :: TemplateCharacter is the TRV of TemplateCharacter.

¶ The TRV of TemplateCharacters :: TemplateCharacter TemplateCharacters is a sequence consisting of the
code units in the TRV of TemplateCharacter followed by all the code units in the TRV of
TemplateCharacters, in order.

¶ The TRV of TemplateCharacter :: SourceCharacter but not one of ` or \ or $ is the UTF-16 Encoding

(clause 6) of the code point value of SourceCharacter.

¶ The TRV of TemplateCharacter :: $ [lookahead Î {] is the code unit value 0x0024.

¶ The TRV of TemplateCharacter :: \ EscapeSequence is the sequence consisting of the code unit value

0x005C followed by the code units of TRV of EscapeSequence.

¶ The TRV of TemplateCharacter :: LineContinuation is the TRV of LineContinuation.

¶ The TRV of EscapeSequence :: CharacterEscapeSequence is the TRV of the CharacterEscapeSequence.

¶ The TRV of EscapeSequence :: 0 [lookahead Î DecimalDigit] is the code unit value 0x0030.

¶ The TRV of EscapeSequence :: HexEscapeSequence is the TRV of the HexEscapeSequence.

¶ The TRV of EscapeSequence :: UnicodeEscapeSequence is the TRV of the UnicodeEscapeSequence.

¶ The TRV of CharacterEscapeSequence :: SingleEscapeCharacter is the TRV of the SingleEscapeCharacter.

¶ The TRV of CharacterEscapeSequence :: NonEscapeCharacter is the CV of the NonEscapeCharacter.

¶ The TRV of SingleEscapeCharacter :: one of ' " \ b f n r t v is the CV of the

SourceCharacter that is that single character.

¶ The TRV of HexEscapeSequence :: x HexDigit HexDigit is the sequence consisting of code unit value

0x0078 followed by TRV of the first HexDigit followed by the TRV of the second HexDigit.

¶ The TRV of UnicodeEscapeSequence :: u HexDigit HexDigit HexDigit HexDigit is the sequence consisting of

code unit value 0x0075 followed by TRV of the first HexDigit followed by the TRV of the second HexDigit
followed by TRV of the third HexDigit followed by the TRV of the fourth HexDigit.

¶ The TRV of UnicodeEscapeSequence :: u{ HexDigits } is the sequence consisting of code unit value

0x0075 followed by code unit value 0x007B followed by TRV of HexDigits followed by code unit value
0x007D.

¶ The TRV of HexDigits :: HexDigit is the TRV of HexDigit.

¶ The TRV of HexDigits :: HexDigits HexDigit is the sequence consisting of TRV of HexDigits followed by
TRV of HexDigit.

¶ The TRV of a HexDigit is the CV of the SourceCharacter that is that HexDigit.

¶ The TRV of LineContinuation :: \ LineTerminatorSequence is the sequence consisting of the code unit value

0x005C followed by the code units of TRV of LineTerminatorSequence.

¶ The TRV of LineTerminatorSequence :: <LF> is the code unit value 0x000A.

¶ The TRV of LineTerminatorSequence :: <CR> [lookahead Î <LF>] is the code unit value 0x000D.

¶ The TRV of LineTerminatorSequence :: <LS> is the code unit value 0x2028.

¶ The TRV of LineTerminatorSequence :: <PS> is the code unit value 0x2029.

¶ The TRV of LineTerminatorSequence :: <CR><LF> is the sequence consisting of the code unit value

0x000D followed by the code unit value 0x000A.

NOTE TV excludes the code units of LineContinuation while TRV includes them.

28 © Ecma International 2012

7.8.6 String Literals

NOTE A string literal is zero or more Unicode code points enclosed in single or double quotes. Unicode code points
may also be represented by an escape sequence. All characters may appear literally in a string literal except for the
closing quote character, backslash, carriage return, line separator, paragraph separator, and line feed. Any character may
appear in the form of an escape sequence. String literals evaluate to ECAMScript String values. When generating these
string values Unicode code points are UTF-16 encoded as defined in clause 6. Code points belonging to Basic Multilingual
Plane are encoded as a single code unit element of the string. All other code points are encoded as two code unit

elements of the string.

Syntax

StringLiteral ::

" DoubleStringCharactersopt "

' SingleStringCharactersopt '

DoubleStringCharacters ::

DoubleStringCharacter DoubleStringCharactersopt

SingleStringCharacters ::

SingleStringCharacter SingleStringCharactersopt

DoubleStringCharacter ::

SourceCharacter but not one of " or \ or LineTerminator

\ EscapeSequence

LineContinuation

SingleStringCharacter ::

SourceCharacter but not one of ' or \ or LineTerminator

\ EscapeSequence

LineContinuation

LineContinuation ::

\ LineTerminatorSequence

EscapeSequence ::
CharacterEscapeSequence
0 [lookahead Î DecimalDigit]

HexEscapeSequence

UnicodeEscapeSequence

A conforming implementation, when processing strict mode code (see 10.1.1), must not extend the syntax of
EscapeSequence to include OctalEscapeSequence as described in B.1.2.

CharacterEscapeSequence ::
SingleEscapeCharacter

NonEscapeCharacter

SingleEscapeCharacter :: one of
' " \ b f n r t v

NonEscapeCharacter ::

SourceCharacter but not one of EscapeCharacter or LineTerminator

EscapeCharacter ::
SingleEscapeCharacter

DecimalDigit
x

u

© Ecma International 2012 29

HexEscapeSequence ::

x HexDigit HexDigit

UnicodeEscapeSequence ::
u HexDigit HexDigit HexDigit HexDigit

u{ HexDigits }

The definition of the nonterminal HexDigit is given in 7.8.3. SourceCharacter is defined in clause 6.

NOTE A line terminator character cannot appear in a string literal, except as part of a LineContinuation to produce the
empty character sequence. The correct way to cause a line terminator character to be part of the String value of a string
literal is to use an escape sequence such as \ n or \ u000A .

Static S emantics

Static Semantics: Early Errors

UnicodeEscapeSequence :: u{ HexDigits }

¶ It is a Syntax Error if the MV of HexDigits > 1114111.

Static Semantics: SVôs and CVôs

A string literal stands for a value of the String type. The String value (SV) of the literal is described in terms of
code unit values (CV) contributed by the various parts of the string literal. As part of this process, some
Unicode characters within the string literal are interpreted as having a mathematical value (MV), as described
below or in 7.8.3.

¶ The SV of StringLiteral :: "" is the empty code unit sequence.

¶ The SV of StringLiteral :: '' is the empty code unit sequence.

¶ The SV of StringLiteral :: " DoubleStringCharacters " is the SV of DoubleStringCharacters.

¶ The SV of StringLiteral :: ' SingleStringCharacters ' is the SV of SingleStringCharacters.

¶ The SV of DoubleStringCharacters :: DoubleStringCharacter is a sequence of one or two code units that is
the CV of DoubleStringCharacter.

¶ The SV of DoubleStringCharacters :: DoubleStringCharacter DoubleStringCharacters is a sequence of one or
two code units that is the CV of DoubleStringCharacter followed by all the code units in the SV of
DoubleStringCharacters in order.

¶ The SV of SingleStringCharacters :: SingleStringCharacter is a sequence of one or two code units that is the
CV of SingleStringCharacter.

¶ The SV of SingleStringCharacters :: SingleStringCharacter SingleStringCharacters is a sequence of one or
two code units that is the CV of SingleStringCharacter followed by all the code units in the SV of
SingleStringCharacters in order.

¶ The SV of LineContinuation :: \ LineTerminatorSequence is the empty code unit sequence.

¶ The CV of DoubleStringCharacter :: SourceCharacter but not one of " or \ or LineTerminator is the UTF-16

Encoding (clause 6) of the code point value of SourceCharacter.

¶ The CV of DoubleStringCharacter :: \ EscapeSequence is the CV of the EscapeSequence.

¶ The CV of DoubleStringCharacter :: LineContinuation is the empty character sequence.

¶ The CV of SingleStringCharacter :: SourceCharacter but not one of ' or \ or LineTerminator is the UTF-16

Encoding (clause 6) of the code point value of SourceCharacter .

¶ The CV of SingleStringCharacter :: \ EscapeSequence is the CV of the EscapeSequence.

¶ The CV of SingleStringCharacter :: LineContinuation is the empty character sequence.

¶ The CV of EscapeSequence :: CharacterEscapeSequence is the CV of the CharacterEscapeSequence.

¶ The CV of EscapeSequence :: 0 [lookahead Î DecimalDigit] is the code unit value 0.

¶ The CV of EscapeSequence :: HexEscapeSequence is the CV of the HexEscapeSequence.

¶ The CV of EscapeSequence :: UnicodeEscapeSequence is the CV of the UnicodeEscapeSequence.

30 © Ecma International 2012

¶ The CV of CharacterEscapeSequence :: SingleEscapeCharacter is the character whose code unit value is

determined by the SingleEscapeCharacter according to :

Table 4 ð String Single Character Escape Sequences

Escape Sequence Code Unit Value Name Symbol

\ b 0x000 8 backspace <BS>

\ t 0x000 9 horizontal tab <HT>

\ n 0x000 A line feed (new line) <LF>

\ v 0x000B vertical tab <VT>

\ f 0x000 C form feed <FF>

\ r 0x000 D carriage return <CR>

\ " 0x00 22 double quote "

\ ' 0x00 27 single quote '

\ \ 0x00 5C backslash \

¶ The CV of CharacterEscapeSequence :: NonEscapeCharacter is the CV of the NonEscapeCharacter.

¶ The CV of NonEscapeCharacter :: SourceCharacter but not one of EscapeCharacter or LineTerminator is the
UTF-16 Encoding (clause 6) of the code point value of SourceCharacter .

¶ The CV of HexEscapeSequence :: x HexDigit HexDigit is the code unit value that is (16 times the MV of the

first HexDigit) plus the MV of the second HexDigit.

¶ The CV of UnicodeEscapeSequence :: u HexDigit HexDigit HexDigit HexDigit is the code unit value that is

(4096 times the MV of the first HexDigit) plus (256 times the MV of the second HexDigit) plus (16 times the
MV of the third HexDigit) plus the MV of the fourth HexDigit.

¶ The CV of UnicodeEscapeSequence :: u{ HexDigits } the is the UTF-16 Encoding (clause 6) of the MV of

HexDigits.

7.9 Automatic Semicolon Insertion

Certain ECMAScript statements (empty statement, variable statement, expression statement, do-while

statement, continue statement, break statement, return statement, and throw statement) must be

terminated with semicolons. Such semicolons may always appear explicitly in the source text. For
convenience, however, such semicolons may be omitted from the source text in certain situations. These
situations are described by saying that semicolons are automatically inserted into the source code token
stream in those situations.

7.9.1 Rules of Automatic Semicolon Insertion

There are three basic rules of semicolon insertion:

1. When, as the script is parsed from left to right, a token (called the offending token) is encountered that is
not allowed by any production of the grammar, then a semicolon is automatically inserted before the
offending token if one or more of the following conditions is true:

¶ The offending token is separated from the previous token by at least one LineTerminator.

¶ The offending token is } .

2. When, as the script is parsed from left to right, the end of the input stream of tokens is encountered and
the parser is unable to parse the input token stream as a single complete ECMAScript script, then a

semicolon is automatically inserted at the end of the input stream.

3. When, as the script is parsed from left to right, a token is encountered that is allowed by some production
of the grammar, but the production is a restricted production and the token would be the first token for a
terminal or nonterminal immediately following the annotation ñ[no LineTerminator here]ò within the restricted

production (and therefore such a token is called a restricted token), and the restricted token is separated

Field Code Changed

© Ecma International 2012 31

from the previous token by at least one LineTerminator, then a semicolon is automatically inserted before

the restricted token.

However, there is an additional overriding condition on the preceding rules: a semicolon is never inserted
automatically if the semicolon would then be parsed as an empty statement or if that semicolon would become
one of the two semicolons in the header of a for statement (see 12.6.3).

NOTE The following are the only restricted productions in the grammar:

PostfixExpression :
LeftHandSideExpression [no LineTerminator here] ++
LeftHandSideExpression [no LineTerminator here] --

ContinueStatement :
continue [no LineTerminator here] Identifier ;

BreakStatement :
break [no LineTerminator here] Identifier ;

ReturnStatement :
return [no LineTerminator here] Expression ;

ThrowStatement :
throw [no LineTerminator here] Expression ;

The practical effect of these restricted productions is as follows:

When a ++ or -- token is encountered where the parser would treat it as a postfix operator, and at least one

LineTerminator occurred between the preceding token and the ++ or -- token, then a semicolon is automatically

inserted before the ++ or -- token.

When a continue , break , return , or throw token is encountered and a LineTerminator is encountered before

the next token, a semicolon is automatically inserted after the continue , break , return , or throw token.

The resulting practical advice to ECMAScript programmers is:

A postfix ++ or -- operator should appear on the same line as its operand.

An Expression in a return or throw statement should start on the same line as the return or throw token.

An Identifier in a break or continue statement should be on the same line as the break or continue token.

7.9.2 Examples of Automatic Semicolon Insertion

The source

{ 1 2 } 3

is not a valid sentence in the ECMAScript grammar, even with the automatic semicolon insertion rules. In
contrast, the source

{ 1

2 } 3

is also not a valid ECMAScript sentence, but is transformed by automatic semicolon insertion into the
following:

{ 1

;2 ;} 3;

which is a valid ECMAScript sentence.

The source

32 © Ecma International 2012

for (a; b

)

is not a valid ECMAScript sentence and is not altered by automatic semicolon insertion because the
semicolon is needed for the header of a for statement. Automatic semicolon insertion never inserts one of

the two semicolons in the header of a for statement.

The source

return

a + b

is transformed by automatic semicolon insertion into the following:

return;

a + b;

NOTE The expression a + b is not treated as a value to be returned by the return statement, because a

LineTerminator separates it from the token return .

The source

a = b

++c

is transformed by automatic semicolon insertion into the following:

a = b;

++c;

NOTE The token ++ is not treated as a postfix operator applying to the variable b, because a LineTerminator occurs

between b and ++.

The source

if (a > b)

else c = d

is not a valid ECMAScript sentence and is not altered by automatic semicolon insertion before the else token,

even though no production of the grammar applies at that point, because an automatically inserted semicolon
would then be parsed as an empty statement.

The source

a = b + c

(d + e).print()

is not transformed by automatic semicolon insertion, because the parenthesised expression that begins the
second line can be interpreted as an argument list for a function call:

a = b + c(d + e).print()

In the circumstance that an assignment statement must begin with a left parenthesis, it is a good idea for the
programmer to provide an explicit semicolon at the end of the preceding statement rather than to rely on
automatic semicolon insertion.

8 Types

Algorithms within this specification manipulate values each of which has an associated type. The possible
value types are exactly those defined in this clause. Types are further subclassified into ECMAScript language
types and specification types.

Within this specification, the notation ñType(x)ò is used as shorthand for ñthe type of xò where ñtypeò refers to the

ECMAScript language and specification types defined in this clause.

8.1 ECMAScript Language Types

An ECMAScript language type corresponds to values that are directly manipulated by an ECMAScript
programmer using the ECMAScript language. The ECMAScript language types are Undefined, Null, Boolean,

© Ecma International 2012 33

String, Number, Symbol, and Object. An ECMAScript language value is a value that is characterized by an
ECMAScript language type.

8.1.1 The Undefined Type

The Undefined type has exactly one value, called undefined. Any variable that has not been assigned a value
has the value undefined.

8.1.2 The Null Type

The Null type has exactly one value, called null.

8.1.3 The Boolean Type

The Boolean type represents a logical entity having two values, called true and false.

8.1.4 The String Type

The String type is the set of all finite ordered sequences of zero or more 16-bit unsigned integer values
(ñelementsò). The String type is generally used to represent textual data in a running ECMAScript program, in
which case each element in the String is treated as a UTF-16 code unit value. Each element is regarded as
occupying a position within the sequence. These positions are indexed with nonnegative integers. The first
element (if any) is at index 0, the next element (if any) at index 1, and so on. The length of a String is the
number of elements (i.e., 16-bit values) within it. The empty String has length zero and therefore contains no
elements.

Where ECMAScript operations interpret String values, each element is interpreted as a single UTF-16 code
unit. However, ECMAScript does not place any restrictions or requirements on the sequence of code units in a
String value, so they may be ill-formed when interpreted as UTF-16 code unit sequences. Operations that do
not interpret String contents treat them as sequences of undifferentiated 16-bit unsigned integers. No
operations ensure that Strings are in a normalized form. Only operations that are explicitly specified to be
language or locale sensitive produce language-sensitive results

NOTE The rationale behind this design was to keep the implementation of Strings as simple and high-performing as
possible. If ECMAScript source code is in Normalised Form C, string literals are guaranteed to also be normalised, as long

as they do not contain any Unicode escape sequences.

Some operations interpret String contents as UTF-16 encoded Unicode code points. In that case the
interpretation is:

¶ A code unit in the range 0 to 0xD7FF or in the range 0xE000 to 0xFFFF is interpreted as a code point

with the same value.

¶ A sequence of two code units, where the first code unit c1 is in the range 0xD800 to 0xDBFF and the
second code unit c2 is in the range 0xDC00 to 0xDFFF, is a surrogate pair and is interpreted as a code
point with the value (c1 - 0xD800) × 0x400 + (c2 ï 0xDC00) + 0x10000.

¶ A code unit that is in the range 0xD800 to 0xDFFF, but is not part of a surrogate pair, is interpreted as

a code point with the same value.

8.1.5 The Number Type

The Number type has exactly 18437736874454810627 (that is, 264-253+3) values, representing the double-

precision 64-bit format IEEE 754 values as specified in the IEEE Standard for Binary Floating-Point Arithmetic,

except that the 9007199254740990 (that is, 253-2) distinct ñNot-a-Numberò values of the IEEE Standard are

represented in ECMAScript as a single special NaN value. (Note that the NaN value is produced by the
program expression NaN.) In some implementations, external code might be able to detect a difference

between various Not-a-Number values, but such behaviour is implementation-dependent; to ECMAScript code,
all NaN values are indistinguishable from each other.

There are two other special values, called positive Infinity and negative Infinity. For brevity, these values

are also referred to for expository purposes by the symbols +¤ and -¤, respectively. (Note that these two

34 © Ecma International 2012

infinite Number values are produced by the program expressions +Infinity (or simply Infinity) and -

Infinity .)

The other 18437736874454810624 (that is, 264-253) values are called the finite numbers. Half of these are

positive numbers and half are negative numbers; for every finite positive Number value there is a
corresponding negative value having the same magnitude.

Note that there is both a positive zero and a negative zero. For brevity, these values are also referred to for

expository purposes by the symbols +0 and -0, respectively. (Note that these two different zero Number
values are produced by the program expressions +0 (or simply 0) and - 0.)

The 18437736874454810622 (that is, 264-253-2) finite nonzero values are of two kinds:

18428729675200069632 (that is, 264-254) of them are normalised, having the form

s ³ m ³ 2e

where s is +1 or -1, m is a positive integer less than 253 but not less than 252, and e is an integer ranging from

-1074 to 971, inclusive.

The remaining 9007199254740990 (that is, 253-2) values are denormalised, having the form

s ³ m ³ 2e

where s is +1 or -1, m is a positive integer less than 252, and e is -1074.

Note that all the positive and negative integers whose magnitude is no greater than 253 are representable in

the Number type (indeed, the integer 0 has two representations, +0 and - 0).

A finite number has an odd significand if it is nonzero and the integer m used to express it (in one of the two
forms shown above) is odd. Otherwise, it has an even significand.

In this specification, the phrase ñthe Number value for xò where x represents an exact nonzero real

mathematical quantity (which might even be an irrational number such as p) means a Number value chosen in

the following manner. Consider the set of all finite values of the Number type, with -0 removed and with two

additional values added to it that are not representable in the Number type, namely 21024 (which is +1 ³ 253 ³

2971) and -21024 (which is -1 ³ 253 ³ 2971). Choose the member of this set that is closest in value to x. If two
values of the set are equally close, then the one with an even significand is chosen; for this purpose, the two

extra values 21024 and -21024 are considered to have even significands. Finally, if 21024 was chosen, replace it

with +¤; if -21024 was chosen, replace it with -¤; if +0 was chosen, replace it with -0 if and only if x is less than
zero; any other chosen value is used unchanged. The result is the Number value for x. (This procedure

corresponds exactly to the behaviour of the IEEE 754 ñround to nearestò mode.)

Some ECMAScript operators deal only with integers in the range -231 through 231-1, inclusive, or in the range

0 through 232-1, inclusive. These operators accept any value of the Number type but first convert each such
value to one of 232 integer values. See the descriptions of the ToInt32 and ToUint32 operators in 9.5 and 9.6,
respectively.

8.1.6 The Symbol Type

The Symbol type is the set of all non-String values that may be used as the key of an Object property (8.1.7).

Each possible Symbol values is unique and immutable.

Symbol values have a single observable attribute called [[Private]] whose immutable value is either true or

false. A private symbol is a Symbol value whose [[Private]] attribute has the value true.

© Ecma International 2012 35

8.1.7 The Object Type

An Object is logically a collection of properties. Each property is either a data property, or an accessor
property:

¶ A data property associates a key value with an ECMAScript language value and a set of Boolean
attributes.

¶ A accessor property associates a key value with one or two accessor functions, and a set of Boolean
attributes. The accessor functions are used to store or retrieve an ECMAScript language value that is
associated with the property.

Properties are identified using key values. A key value is either an ECMAScript String value or a Symbol
value.

Property keys are used to access properties and their values. There are two kinds of access for properties:
get and set, corresponding to value retrieval and assignment, respectively. The properties accessible via get
and set access includes both own properties that are a direct part of an object and inherited properties which
are provided by another associated object via a property inheritance relationship. Inherited properties may be
either own or inherited properties of the associated object.

All objects are logically collections of properties, but there are multiple forms of objects that differ in their
semantics for accessing and manipulating their properties. Ordinary objects are the most common form of
objects and have the default object semantics. An exotic object is any form of object whose property
semantics differ in any way from the default semantics.

8.1.7.1 Property Attributes

Attributes are used in this specification to define and explain the state of Object properties. A data property
associates a key value with the attributes listed in Table 5.

Table 5 ð Attributes of a Data Property

Attribute Name Value Domain Description

[[Value]] Any ECMAScript
language type

The value retrieved by a get access of the property.

[[Writable]] Boolean If false, attempts by ECMAScript code to change the
propertyôs [[Value]] attribute using [[Set]] will not succeed.

[[Enumerable]] Boolean If true, the property will be enumerated by a for-in
enumeration (see 12.6.4). Otherwise, the property is said
to be non-enumerable.

[[Configurable]] Boolean If false, attempts to delete the property, change the
property to be an accessor property, or change its
attributes (other than [[Value]], or changing [[Writable]] to
false) will fail.

An accessor property associates a key value with the attributes listed in Table 6.

36 © Ecma International 2012

Table 6 ð Attributes of an Accessor Property

Attribute Name Value Domain Description

[[Get]] Object or
Undefined

If the value is an Object it must be a function Object. The
functionôs [[Call]] internal method (8.6.2) is called with an
empty arguments list to retrieve the property value each
time a get access of the property is performed.

[[Set]] Object or
Undefined

If the value is an Object it must be a function Object. The
functionôs [[Call]] internal method (8.6.2) is called with an
arguments list containing the assigned value as its sole
argument each time a set access of the property is
performed. The effect of a property's [[Set]] internal method
may, but is not required to, have an effect on the value
returned by subsequent calls to the property's [[Get]]
internal method.

[[Enumerable]] Boolean If true, the property is to be enumerated by a for-in
enumeration (see 12.6.4). Otherwise, the property is said to
be non-enumerable.

[[Configurable]] Boolean If false, attempts to delete the property, change the
property to be a data property, or change its attributes will
fail.

If the initial values of a propertyôs attributes are not explicitly specified by this specification, the default value
defined in Table 7 is used.

Table 7 ð Default Attribute Values

Attribute Name Default Value

[[Value]] undefined

[[Get]] undefined

[[Set]] undefined

[[Writable]] false

[[Enumerable]] false

[[Configurable]] false

8.1.7.2 Object Internal Methods and Internal Data Properties

The actual semantics of ECMAScript objects are specified via algorithms called internal methods. Each object
in an ECMAScript engine is associated with a set of internal methods that defines its runtime behaviour.
These internal methods are not part of the ECMAScript language. They are defined by this specification purely
for expository purposes. However, each object within an implementation of ECMAScript must behave as
specified by the internal methods associated with it. The exact manner in which this is accomplished is
determined by the implementation.

Internal methods are identified within this specification using names enclosed in double square brackets [[]].
Internal method names are polymorphic. This means that different ECMAScript object values may perform
different algorithms when a common internal method name is invoked upon them. If, at runtime, the
implementation of an algorithm attempts to use an internal method of an object that the object does not
support, a TypeError exception is thrown.

Internal data properties correspond to internal state that is associated with objects and used by various
ECMAScript specification algorithms. Depending upon the specific internal data property such state may
consist of values of any ECMAScript language type or of specific ECMA specification type values. Unless
explicitly specified otherwise, internal data properties are allocated as part of the process of creating an
ECMAScript object and may not be dynamically added to ECMAScript objects. Unless specified otherwise, the
initial value of an internal data property is the value undefined.

© Ecma International 2012 37

Table 8 summarises the essential internal methods used by this specification that are applicable to all
ECMAScript objects. Every object must have algorithms for all of the essential internal methods. However, all
objects do not necessarily use the same algorithms for those methods.

The ñSignatureò column of Table 8 and other similar tables describes the invocation pattern for each internal
method. The invocation pattern always includes a parenthesised list of descriptive parameter names. If a
parameter name is the same as an ECMAScript type name then the name describes the required type of the
parameter value. If an internal method explicitly returns a value, its parameter list is followed by the symbol
ñŸò and the type name of the returned value. The type names used in signatures refer to the types defined in
Clause 8 augmented by the following additional names. ñanyò means the value may be any ECMAScript
language type. An internal method implicitly returns a Completion Record as described in 8.8. In addition to its
parameters, an internal method always has access to the object upon which it is invoked as a method.

Field Code Changed

38 © Ecma International 2012

Table 8 ð Essential Internal Methods

Internal Method Signature Description

[[GetInheritance]] ()ŸObject or Null Determine the object that provides inherited
properties for this object. A null value indicates
that there are no inherited properties. an object.

[[SetInheritance]] (Object or Null)ŸBoolean Associate with an object another object that
provides inherited properties. Passing null
indicates that there are no inherited properties.
Returns true indicating that the operation was
completed successfully or false indicating that
the operation was not successful.

[[HasIntegrity]] (String)ŸBoolean Determine whether the property structure of an
object is fixed to at least the specified level. The
argument is one of the values
"nonextensible ", "sealed ", or "frozen ".

[[SetIntegrity]] (String)ŸBoolean Restrict the mutability of an objectôs properties to
that which is allowed for the specified integrity
level. The argument is one of the values
"nonextensible ", "se aled ", or "frozen ".

Returns true indicating that the operation was
completed successfully or false indicating that
the operation was not successful. The integrity
level of an object may be raised but may not be
lowered.

[[HasOwnProperty]] (propertyKey) Ÿ Boolean Returns a Boolean value indicating whether the
object already has an own property whose key is
propertyKey.

[[GetOwnProperty]] (propertyKey) Ÿ
Undefined or Property
Descriptor

Returns a Property Descriptor for the own
property of this object whose key is propertyKey,
or undefined if no such property exists.

[[HasProperty]] (propertyKey) Ÿ Boolean Returns a Boolean value indicating whether the
object already has either an own or inherited
property whose key is propertyKey.

[[Get]] (propertyKey, Receiver) Ÿ
any

Retrive the value of an objectôs property using
the propertyKey parameter. If any ECMAScript
code must be executed to retrieve the property
value, Receiver is used as the this value when
evaluating the code.

[[Set]] (propertyKey,value,
Receiver) Ÿ Boolean

Try to set the value of an objectôs property
indentified by propertyKey to value. If any
ECMAScript code must be executed to set the
property value, Receiver is used as the this
value when evaluating the code. Returns true
indicating that the property value was set or
false indicating that it could not be set.

[[Delete]] (propertyKey) Ÿ Boolean Removes the own property indentified by the
propertyKey parameter from the object. Return
false if the property was not deleted and is still
present. Return true if the property was deleted

or was not present.

[[DefineOwnProperty]] (propertyKey,
PropertyDescriptor) Ÿ
Boolean

Creates or alters the named own property to
have the state described by a Property
Descriptor. Returns true indicating that the

property was successfully created/updated or
false indicating that the property could not be
created or updated.

[[Enumerate]] ()ŸObject Returns an iterator object over the string values
of the keys of the enumerable properties of the

© Ecma International 2012 39

object.

[[OwnPropertyKeys]] ()ŸObject Returns an Iterator object that produces all of the
own property keys for the object except those
that are private Symbols.

Table 9 summarises additional essential internal methods that are supported by objects that may be called as
functions.

Table 9 ð Additional Essential Internal Methods of Function Objects

Internal Method Signature Description

[[Call]] (any, a List of any)
Ÿ any

Executes code associated with the object. Invoked via a
function call expression. The arguments to the internal
method are a this value and a list containing the arguments
passed to the function by a call expression. Objects that
implement this internal method are callable.

[[Construct]] (a List of any) Ÿ

Object

Creates an object. Invoked via the new operator. The

arguments to the internal method are the arguments passed
to the new operator. Objects that implement this internal
method are called constructors. A Function object is not
necessarily a constructor and such non-construtor Function
object do not have a [[Construct]] internal method.

8.1.7.3 Invariants of the Essential Internal Methods

Current this section is just a bunch of material merged together from the ES5
spec. and from the wiki Proxy pages. It need to be completely reworked.

The intent is that it lists all invariants of the Essential Internal Methods. This
includes both invariants that are enforced for Proxy objects and other

invariants that may not be enfored.

Definitions:

¶ The target of an internal method is the object the internal method is called upon.

¶ A sealed property is a non-configurable own property of a target.

¶ A frozen property is a non-configurable non-writable own property of a target.

¶ A new property is a property that does not exist on a non-extensible target.

¶ Two property descriptors desc1 and desc2 for a property key value are incompatible if:
1. Descl is produced by calling [[GetOwnPropertyDescriptor]] of target with key, and

2. Calling [[DefineOwnProperty]] of target with arguments key and desc2 would throw a TypeError exception.

Exotic objects may define additional constraints upon their [[Set]] internal method behaviour. If possible, exotic
objects should not allow [[Set]] operations in situations where this definition of [[CanPut]] returns false.

[[GetInheritance]]

Every [[Prototype]] chain must have finite length (that is, starting from any object, recursively accessing the
[[Prototype]] internal data property must eventually lead to a null value).

getOwnPropertyDescriptor

Commented [AWB1212]: Need to decide what replaces
this when CanPut goes away

40 © Ecma International 2012

 Non-configurability invariant: cannot return incompatible descriptors for sealed propertiesΟ

 Non-extensibility invariant: must return undefined for new properties
 Invariant checks:
 if trap returns undefined, check if the property is configurable

 Οif property exists on target, check if the returned descriptor is compatible

 if returned descriptor is non-configurable, check if the property exists on the target and is also non-
configurable

defineProperty

 Non-configurability invariant: cannot succeed (return true) for incompatible changes to sealed propertiesΟ

 Non-extensibility invariant: must reject (return false) for new properties
 Invariant checks:
 on success, if property exists on target, check if existing descriptor is compatible with argument
descriptor
 on success, if argument descriptor is non-configurable, check if the property exists on the target and is
also non-configurable

getOwnPropertyNames

 Non-configurability invariant: must report all sealed properties

 Non-extensibility invariant: must not list new property namesΟ

 Invariant checks:
 check whether all sealed target properties are present in the trap result
 If the target is non-extensible, check that no new properties are listed in the trap result

deleteProperty

 Non-configurability invariant: cannot succeed (return true) for sealed properties
 Invariant checks:
 on success, check if the target property is configurable

getPrototypeOf

 Invariant check: check whether the targetôs prototype and the trap result are identical (according to the egal
operator)

freeze | seal | preventExtensions

 Invariant checks:
 on success, check if isFrozen(target), isSealed(target) or !isExtensible(target)

isFrozen | isSealed | isExtensible

 Invariant check: check whether the boolean trap result is equal to isFrozen(target), isSealed(target) or
isExtensible(target)

hasOwn

 Non-configurability invariant: cannot return false for sealed properties

 Non-extensibility invariant: must return false for new propertiesΟ

 Invariant checks:
 if false is returned, check if the target property is configurable

© Ecma International 2012 41

 if false is returned, the property does not exist on target, and the target is non-extensible, throw a
TypeError

has

 Non-configurability invariant: cannot return false for sealed properties
 Invariant checks:
 if false is returned, check if the target property is configurable

get

 Non-configurability invariant: cannot return inconsistent values for frozen data properties, and must return

undefined for sealed accessors with an undefined getterΟ

 Invariant checks:

 if property exists on target as a data property, check whether the target propertyôs value and the trap
result are identical (according to the egal operator)

 if property exists on target as an accessor, and the accessorôs get attribute is undefined, check whether
the trap result is also undefined.

set

 Non-configurability invariant: cannot succeed (return true) for frozen data properties or sealed accessors

with an undefined setterΟ

 Invariant checks:
 on success, if property exists on target as a data property, check whether the target propertyôs value and
the update value are identical (according to the egal operator)
 on success, if property exists on target as an accessor, check whether the accessorôs set attribute is not
undefined

keys

 Non-configurability invariant: must report all enumerable sealed properties
 Non-extensibility invariant: must not list new property names
 Invariant checks:
 Check whether all enumerable sealed target properties are listed in the trap result
 If the target is non-extensible, check that no new properties are listed in the trap result

enumerate

 Non-configurability invariant: must report all enumerable sealed properties
 Invariant checks:
 Check whether all enumerable sealed target properties are listed in the trap result

NOTE This specification defines no ECMAScript language operators or built-in functions that permit a program to
modify an objectôs [[Prototype]] internal properties or to change the value of [[Extensible]] from false to true.
Implementation specific extensions that modify [[Prototype]] or [[Extensible]] must not violate the invariants defined in the

preceding paragraph.

Unless otherwise specified, the standard ECMAScript objects are ordinary objects and behave as described in
8.3. Some standard objects are exotic objects and have behaviour defined in 8.4.

Commented [AWB1213]: These are placeholders based
upon the proxy trap invariants. We need to provide new
versions for all the essential internal methods.

Formatted: Strikethrough

Formatted: Strikethrough

Formatted: Strikethrough

Commented [AWB1214]: No longer true because of
Proxies.

Formatted: Strikethrough

42 © Ecma International 2012

Exotic objects may implement internal methods in any manner unless specified otherwise; for example, one
possibility is that [[Get]] and [[Set]] for a particular exotic object indeed fetch and store property values but
[[HasOwnProperty]] always generates false. However, if any specified manipulation of an exotic object's
internal properties is not supported by an implementation, that manipulation must throw a TypeError
exception when attempted.

The [[GetOwnProperty]] internal method of all objects must conform to the following invariants for each
property of the object:

¶ If a property is described as a data property and it may return different values over time, then either or
both of the [[Writable]] and [[Configurable]] attributes must be true even if no mechanism to change the
value is exposed via the other internal methods.

¶ If a property is described as a data property and its [[Writable]] and [[Configurable]] are both false, then
the SameValue (according to 9.12) must be returned for the [[Value]] attribute of the property on all calls
to [[GetOwnProperty]].

¶ If the attributes other than [[Writable]] may change over time or if the property might disappear, then the
[[Configurable]] attribute must be true.

¶ If the [[Writable]] attribute may change from false to true, then the [[Configurable]] attribute must be true.

¶ If the result of calling an objectôs [[IsExtensible]] internal method has been observed by ECMAScript code
to be false, then if a call to [[GetOwnProperty]] describes a property as non-existent all subsequent calls
must also describe that property as non-existent.

The [[DefineOwnProperty]] internal method of all objects must not permit the addition of a new property to an
object if the [[Extensible]] internal method of that object has been observed by ECMAScript code to be false.

If the result of calling the [[IsExtensible]] internal method of an object has been observed by ECMAScript code
to be false then it must not subsequently become true.

8.1.7.4 Well-Known Symbols and Intrinsics

Well-known symbols are built-in Symbol values (8.4.4) that are explicitly referenced by algorithms of this
specification. They are typically used as the keys of properties whose values serve as extension points of a
specification algorithm. Unless otherwise specified, well-known symbols values are shared by all Code
Realms (10.3) and the value of their [[Private]] attribute is false.

Within this specification a well-known symbol is referred to by using a notation of the form @@name, where
ñnameò is one of the values listed in Table 10.

© Ecma International 2012 43

Table 10--Well-known Symbols

Specification Name Value and Purpose

@@create A method used to allocate an object. Called from the
[[Construct]] internal method.

@@hasInstance A method that determines if a constructor object
recognizes an object as one of the constructorôs
instances. Called by the semantics of the instanceof

operator.

@@isRegExp A Boolean value that if true indicates that an object may
be used as a regular expression.

@@iterator A method that returns the default iterator for an object.
Called by the semantics of the for-of statement.

@@ToPrimitive A method that converts an object to a corresponding
primitive value. Called by the ToPrimitive abstract
operation.

@@toStringTag A string value that is used in the creation of the default
string description of an object. Called by the built-in
method Object.prototype.toString.

Well-known intrinsics are built-in objects that are explicitly referenced by the algorithms of this specification
and which usually have Realm specific identities. Unless otherwise specified each intrinsic object actually
corresponds to a set of similar objects, one per Realm.

Within this specification a reference such as %name% means the intrinsic object, associated with the current
Realm, corresponding to the name. Determination of the current Realm and its intrinsics is described in 10.4.
The well-known intrincs are listed in Table 11.

44 © Ecma International 2012

Table 11 ð Well-known Intrinsic Objects

Intrinsic Name ECMAScript Language Association

%Object% The initial value of the global object
property named "Object" .

%ObjectPrototype% The initial value of the " prototype "

data property of the intrinsic %Object%.

%ObjProto_toString% The initial value of the " toString " data

property of the
intrinsic %ObjectPrototype%.

%Function% The initial value of the global object
property named " Function " .

%FunctionPrototype% The initial value of the " prototype "

data property of the intrinsic %Function%.

%Array% The initial value of the global object
property named " Array " .

%ArrayPrototype% The initial value of the " prototype "

data property of the intrinsic %Array%.

%ArrayIteratorPrototype% The prototype object used for
Iterator objects created by the
CreateArrayIterator abstract operation.

%Map% The initial value of the global object
property named " Map" .

%MapPrototype% The initial value of the " prototype "

data property of the intrinsic %Map%.

%MapIteratorPrototype% The prototype object used for
Iterator objects created by the
CreateMapIterator abstract operation

%WeakMap% The initial value of the global object
property named " WeakMap" .

%WeakMapPrototype% The initial value of the " prototype "

data property of the
intrinsic %WeakMap%.

%Set% The initial value of the global object
property named " Set " .

%SetPrototype% The initial value of the " prototype "

data property of the intrinsic %Set%.

%SetIteratorPrototype% The prototype object used for
Iterator objects created by the
CreateSetIterator abstract operation

%GeneratorFunction% The initial value of the name
"GeneratorFunction" exported from the
built-in module "std:iteration".

%Generator% The initial value of the name "Generator"
exported from the built-in module
"std:iteration"

%ErrorPrototype%

%EvalErrorPrototype%

%RangeErrorPrototype%

Formatted Table

Formatted Table

© Ecma International 2012 45

%ReferenceErrorPrototype%

%SyntaxErrorPrototype%

%TypeErrorPrototype%

%URIErrorPrototype%

%ArrayBuffer%

%DateViewPrototype%

???

Formatted Table

Commented [AWB1215]: TODO more to comeTODO

46 © Ecma International 2012

8.2 ECMAScript Specification Types

A specification type corresponds to meta-values that are used within algorithms to describe the semantics of
ECMAScript language constructs and ECMAScript language types. The specification types are Reference,
List, Completion, Property Descriptor, Lexical Environment, Environment Record, and Data Block.
Specification type values are specification artefacts that do not necessarily correspond to any specific entity
within an ECMAScript implementation. Specification type values may be used to describe intermediate results
of ECMAScript expression evaluation but such values cannot be stored as properties of objects or values of
ECMAScript language variables.

8.2.1 Data Blocks

This section is a placeholder for describing the Data Block internal type. The

following material is verbatium from the the Binary Data ES wiki proposal. The

material has not yet been reviewed or integrated with the rest of this spec.

This spec introduces a new, spec-internal block datatype, intuitively representing a contiguously allocated
block of binary data. Blocks are not ECMAScript language values and appear only in the program store (aka
heap).

A block is one of:

¶ a number-block

¶ an array-block[t, n]

¶ a struct-block[t1, ..., tn]

A number-block is one of:

¶ an unsigned-integer; i.e., one of uint8, uint16, uint32, or uint64

¶ a signed-integer; i.e., one of int8, int16, int32, or int64

¶ a floating-point; i.e., one of float32 or float64

A uintk is an integer in the range [0, 2k). An intk is an integer in the range [-2k-1, 2k-1). A floatk is a floating-
point number representable as a k-bit IEE754 value.

An array-block[t, n] is an ordered sequence of n blocks of homogeneous block type t. Each element of the
array is stored at in independently addressable location in the program store, and multiple Data objects may
contain references to the element.

A struct-block[t1, ..., tn] is an ordered sequence of n blocks of heterogeneous types t1 to tn, respectively. Each
field of the struct is stored at in independently addressable location in the program store, and multiple Data
objects may contain references to the field.

The spec also introduces a datatype of Data objects, which are ECMAScript objects that encapsulate
references to block data in the program store. Every Data object has the following properties:

 [[Class]] = ñDataò

 [[Value]] : reference[block] ï a reference to a block in the program store

 [[DataType]] : reference[Type] ï a reference to a Type object describing this objectôs data block

© Ecma International 2012 47

8.2.2 The List and Record Specification Type

The List type is used to explain the evaluation of argument lists (see 11.2.4) in new expressions, in function

calls, and in other algorithms where a simple list of values is needed. Values of the List type are simply
ordered sequences of values. These sequences may be of any length.

The Record type is used to describe data aggregations within the algorithms of this specification. A Record
type value consists of one or more named fields. The value of each field is either an ECMAScript value or an
abstract value represented by a name associated with the Record type. Field names are always enclosed in
double brackets, for example [[value]]

For notational convenience within this specification, an object literal-like syntax can be used to express a
Record value. For example, {[[field1]]: 42, [[field2]]: false, [[field3]]: empty} defines a Record value that has
three fields each of which is initialized to a specific value. Field name order is not significant. Any fields that
are not explicitly listed are considered to be absent.

In specification text and algorithms, dot notation may be used to refer to a specific field of a Record value. For
example, if R is the record shown in the previous paragraph then R.[[field2]] is shorthand for ñthe field of R
named [[field2]]ò.

Schema for commonly used Record field combinations may be named, and that name may be used as a
prefix to a literal Record value to identify the specific kind of aggregations that is being described. For
example: Property Descriptor {[[Value]]: 42, [[Writable]]: false, [[Configurable]]: true}.

8.2.3 The Completion Record Specification Type

The Completion type is a Record used to explain the runtime propagation of values and control flow such as
the behaviour of statements (break , continue , return and throw) that perform nonlocal transfers of

control.

Values of the Completion type are Record values whole fields are defined as by Table 12.

Table 12 ð Completion Record Fields

Field Name Value Meaning

[[type]] One of normal, break, continue, return,
or throw

The type of completion that occurred.

[[value]] any ECMAScript language value or empty The value that was produced.

[[target]] any ECMAScript identifier or empty The target label for directed control transfers.

The term ñabrupt completionò refers to any completion with a [[type]] value other than normal.

8.2.3.1 NormalCompletion

The abstract operation NormalCompletion with a single argument, such as:

1. Return NormalCompletion(argument).

Is a short hand that is defined as follows:

1. Return Completion {[[type]]: normal, [[value]]: argument, [[target]]:empty} .

8.2.3.2 Implicit Completion Values

The algorithms of this specification often implicitly return Completion Records whose [[type]] is normal.
Unless it is otherwise obvious from the context, an algorithm statement that returns a value that is not a
Completion Record, such as:

48 © Ecma International 2012

1. Return "Infinity" .

Generally means the same thing as:

1. Return NormalCompletion("Infinity").

A ñreturnò statement without a value in an algorithm step means the same thing as:

1. Return NormalCompletion(undefined).

Similarly, any reference to a Completion Record value that is in a context that does not explicitly require a
complete Completion Record value is equivalent to an explicit reference to the [[value]] field of the Completion
Record value unless the Completion Record is an abrupt completion.

8.2.3.3 Throw an Exception

Algorithms steps that say to throw an exception, such as

1. Throw a TypeError exception.

Mean the same things as:

1. Return Completion {[[type]]: throw, [[value]]: a newly created TypeError object, [[target]]:empty} .

8.2.3.4 ReturnIfAbrupt

Algorithms steps that say

1. ReturnIfAbrupt(argument).

mean the same things as:

1. If argument is an abrupt completion, then return argument.

2. Else if argument is a Completion Record, then let argument be argument.[[value]].

8.2.4 The Reference Specification Type

NOTE The Reference type is used to explain the behaviour of such operators as delete , typeof , the assignment

operators, the super keyword and other language features. For example, the left-hand operand of an assignment is

expected to produce a reference.

A Reference is a resolved name or property binding. A Reference consists of three components, the base

value, the referenced name and the Boolean valued strict reference flag. The base value is either undefined, an
Object, a Boolean, a String, a Number, or an environment record (10.2.1). A base value of undefined indicates

that the Reference could not be resolved to a binding. The referenced name is a String or Symbol.

A Super Reference is a Reference that is used to represents a name binding that was expressed using the
super keyword. A Super Reference has an additional thisValue component and its base value will never be an
environment record.

The following abstract operations are used in this specification to access the components of references:

¶ GetBase(V). Returns the base value component of the reference V.

¶ GetReferencedName(V). Returns the referenced name component of the reference V.

¶ IsStrictReference(V). Returns the strict reference flag component of the reference V.

¶ HasPrimitiveBase(V). Returns true if the base value is a Boolean, String, or Number.

¶ IsPropertyReference(V). Returns true if either the base value is an object or HasPrimitiveBase(V) is true;
otherwise returns false.

¶ IsUnresolvableReference(V). Returns true if the base value is undefined and false otherwise.

© Ecma International 2012 49

¶ IsSuperReference(V). Returns true if this reference has a thisValue component.

The following abstract operations are used in this specification to operate on references:

8.2.4.1 GetValue (V)

1. ReturnIfAbrupt(V).

2. If Type(V) is not Reference, return V.

3. Let base be the result of calling GetBase(V).

4. If IsUnresolvableReference(V), throw a ReferenceError exception.

5. If IsPropertyReference(V), then

a. If HasPrimitiveBase(V) is true , then

i. Assert: In this case, base will never be a Symbol, null or undefined.

ii. Let base be ToObject(base).

b. Return the result of calling the [[Get]] internal method of base passing GetReferencedName(V) and

GetThisValue(V) as the arguments.

6. Else base must be an environment record,

a. Return the result of calling the GetBindingValue (see 10.2.1) concrete method of base passing

GetReferencedName(V) and IsStrictReference(V) as arguments.

NOTE The object that may be created in step 5.a.ii is not accessible outside of the above abstract operation and the

ordinary object [[Get]] internal method. An implementation might choose to avoid the actual creation of the object.

8.2.4.2 PutValue (V, W)

1. ReturnIfAbrupt(V).

2. ReturnIfAbrupt(W).

3. If Type(V) is not Reference, throw a ReferenceError exception.

4. Let base be the result of calling GetBase(V).

5. If IsUnresolvableReference(V), then

a. If IsStrictReference(V) is true , then

i. Throw ReferenceError exception.

b. Let globalObj be the result of the abstract operation GetGlobalObject.

c. Return the result of calling Put(globalObj,GetReferencedName(V), W, false).

6. Else if IsPropertyReference(V), then

a. If HasPrimitiveBase(V) is true , then

i. Assert: In this case, base will never be a Symbol, null or undefined.

ii. Set base to ToObject(base).

b. Let succeeded be the result of calling the [[Set]] internal method of base passing

GetReferencedName(V), W, and GetThisValue(V) as arguments.

c. ReturnIfAbrupt(succeeded).

d. If succeeded is false and IsStrictReference(V) is true , then throw a TypeError exception.

e. Return.

7. Else base must be a reference whose base is an environment record. So,

a. Return the result of calling the SetMutableBinding (10.2.1) concrete method of base, passing

GetReferencedName(V), W, and IsStrictReference(V) as arguments.

8. Return.

NOTE The object that may be created in step 6.a.ii is not accessible outside of the above algorithm and the ordinary

object [[Set]] internal method. An implementation might choose to avoid the actual creation of that object.

8.2.4.3 GetThisValue (V)

1. ReturnIfAbrupt(V).

2. If Type(V) is not Reference, return V.

3. If IsUnresolvableReference(V), throw a ReferenceError exception.

4. If IsSuperReference(V), then

a. Return the value of the thisValue component of the reference V.

5. Return GetBase(V).

50 © Ecma International 2012

8.2.5 The Property Descriptor Specification Type

The Property Descriptor type is used to explain the manipulation and reification of Object property attributes.
Values of the Property Descriptor type are Records composed of named fields where each fieldôs name is an
attribute name and its value is a corresponding attribute value as specified in 8.1.6.1. In addition, any field
may be present or absent.

Property Descriptor values may be further classified as data property descriptors and accessor property
descriptors based upon the existence or use of certain fields. A data property descriptor is one that includes
any fields named either [[Value]] or [[Writable]]. An accessor property descriptor is one that includes any fields
named either [[Get]] or [[Set]]. Any property descriptor may have fields named [[Enumerable]] and
[[Configurable]]. A Property Descriptor value may not be both a data property descriptor and an accessor
property descriptor; however, it may be neither. A generic property descriptor is a Property Descriptor value
that is neither a data property descriptor nor an accessor property descriptor. A fully populated property
descriptor is one that is either an accessor property descriptor or a data property descriptor and that has all of
the fields that correspond to the property attributes defined in either 8.1.6.1 Table 5 or Table 6.

A Property Descriptor may be derived from an ECMAScript object that has properties that directly correspond
to the fields of a Property Descriptor. Such a derived Property Descriptor has an additional field named
[[Origin]] whose value is the object from which the Property Descriptor was derived.

The following abstract operations are used in this specification to operate upon Property Descriptor values:

8.2.5.1 IsAccessorDescriptor (Desc)

When the abstract operation IsAccessorDescriptor is called with property descriptor Desc, the following steps

are taken:

1. If Desc is undefined, then return false.

2. If both Desc.[[Get]] and Desc.[[Set]] are absent, then return false.

3. Return true.

8.2.5.2 IsDataDescriptor (Desc)

When the abstract operation IsDataDescriptor is called with property descriptor Desc, the following steps are
taken:

1. If Desc is undefined, then return false.

2. If both Desc.[[Value]] and Desc.[[Writable]] are absent, then return false.

3. Return true.

8.2.5.3 IsGenericDescriptor (Desc)

When the abstract operation IsGenericDescriptor is called with property descriptor Desc, the following steps

are taken:

1. If Desc is undefined, then return false.

2. If IsAccessorDescriptor(Desc) and IsDataDescriptor(Desc) are both false, then return true.

3. Return false.

8.2.5.4 FromPropertyDescriptor (Desc)

When the abstract operation FromPropertyDescriptor is called with property descriptor Desc, the following
steps are taken:

The following algorithm assumes that Desc is a fully populated Property Descriptor, such as that returned from

[[GetOwnProperty]] (see 8.12.1).

1. If Desc is undefined, then return undefined.

2. If Desc has an [[Origin]] field, then return Desc.[[Origin]] .

Formatted: Outline numbered + Level: 1 + Numbering Style:
1, 2, 3, é + Start at: 1 + Alignment: Left + Aligned at: 0" +
Tab after: 0.25" + Indent at: 0.25"

© Ecma International 2012 51

3. Let obj be the result of

.

4. Assert: obj is an extensible ordinary object with no own properties.

5. , then

a. Call OrdinaryDefineOwnProperty with arguments obj, "value " , and Property Descriptor {[[Value]]:

Desc.[[Value]], [[Writable]]: true, [[Enumerable]]: true, [[Configurable]]: true}

6. , then

a. Call OrdinaryDefineOwnProperty with arguments obj, "writable ", and Property Descriptor {[[Value]]:

Desc.[[Writable]], [[Writable]]: true, [[Enumerable]]: true, [[Configurable]]: true} .

7. , then

a. Call OrdinaryDefineOwnProperty with arguments obj, "get " , and Property Descriptor {[[Value]]:

Desc.[[Set]], [[Writable]]: true, [[Enumerable]]: true, [[Configurable]]: true} .

8. , then

a. Call OrdinaryDefineOwnProperty with arguments obj, "set ", and Property Descriptor {[[Value]]:

Desc.[[Set]], [[Writable]]: true, [[Enumerable]]: true, [[Configurable]]: true} .

9. , then

a. Call OrdinaryDefineOwnProperty with arguments obj, "enumerable ", and Property Descriptor

{[[Value]]: Desc.[[Enumerable]], [[Writable]]: true, [[Enumerable]]: true, [[Configurable]]: true} .

10. , then

a. Call OrdinaryDefineOwnProperty with arguments obj , "configurable ", and Property Descriptor

{[[Value]]: Desc.[[Configurable]], [[Writable]]: true, [[Enumerable]]: true, [[Configurable]]: true} .

11. Return obj.

8.2.5.5 ToPropertyDescriptor (Obj)

When the abstract operation ToPropertyDescriptor is called with object Obj, the following steps are taken:

1. ReturnIfAbrupt(Obj).

2. If Type(Obj) is not Object throw a TypeError exception.

3. Let desc be the result of creating a new Property Descriptor that initially has no fields.

4. If the result of HasProperty(Obj, "enumerable ") is true , then

a. Let enum be the result of Get(Obj, "enumerable ").

b. ReturnIfAbrupt(enum).

c. Set the [[Enumerable]] field of desc to ToBoolean(enum).

5. If the result of HasProperty(Obj, "configurable ") is true , then

a. Let conf be the result of Get(Obj, "configurable ").

b. ReturnIfAbrupt(conf).

c. Set the [[Configurable]] field of desc to ToBoolean(conf).

6. If the result of HasProperty(Obj, "value ") is true , then

a. Let value be the result of Get(Obj, "value ").

b. ReturnIfAbrupt(value).

c. Set the [[Value]] field of desc to value.

7. If the result of HasProperty(Obj, "writable ") is true , then

a. Let writable be the result of Get(Obj, "writable ").

b. ReturnIfAbrupt(writable).

c. Set the [[Writable]] field of desc to ToBoolean(writable).

8. If the result of HasProperty(Obj, "get ") is true , then

a. Let getter be the result of Get(Obj, "get ").

b. ReturnIfAbrupt(getter).

c. If IsCallable(getter) is false and getter is not undefined, then throw a TypeError exception.

d. Set the [[Get]] field of desc to getter.

9. If the result of HasProperty(Obj, "set ") is true , then

a. Let setter be the result of Get(Obj, "set ").

b. ReturnIfAbrupt(setter).

c. If IsCallable(setter) is false and setter is not undefined, then throw a TypeError exception.

d. Set the [[Set]] field of desc to setter.

10. If either desc.[[Get]] or desc.[[Set]] are present, then

a. If either desc.[[Value]] or desc.[[Writable]] are present, then throw a TypeError exception.

11. Set the [[Origin]] field of desc to Obj.

52 © Ecma International 2012

12. Return desc.

8.2.5.6 CompletePropertyDescriptor (Desc, LikeDesc)

When the abstract operation CompletePropertyDescriptor is called with Property Descriptor Desc, the following

steps are taken:

1. Assert: LikeDesc is either a Property Descriptor or undefined.

2. ReturnIfAbrupt(Desc).

3. Assert: Desc is a Property Descriptor

4. If LikeDesc is undefined, then set LikeDesc to Record{[[Value]]: undefined, [[Writable]]: false, [[Get]]:

undefined, [[Set]]: undefined, [[Enumerable]]: false, [[Configurable]]: false} .

5. If either IsGenericDescriptor(Desc) or IsDataDescriptor(Desc) is true , then

a. If Desc does not have a [[Value]] field, then set Desc.[[Value]] to LikeDesc.[[Value]].

b. If Desc does not have a [[Writable]] field, then set Desc.[[Writable]] to LikeDesc.[[Writable]].

6. Else,

a. If Desc does not have a [[Get]] field, then set Desc.[[Get]] to LikeDesc.[[Get]].

b. If Desc does not have a [[Set]] field, then set Desc.[[Set]] to LikeDesc.[[Set]].

7. If Desc does not have a [[Enumerable]] field, then set Desc.[[Enumerable]] to LikeDesc.[[Enumerable]].

8. If Desc does not have a [[Configurable]] field, then set Desc.[[Configurable]] to LikeDesc.[[Configurable]].

9. Return Desc.

8.2.6 The Lexical Environment and Environment Record Specification Types

The Lexical Environment and Environment Record types are used to explain the behaviour of name resolution
in nested functions and blocks. These types and the operations upon them are defined in Clause 10.

8.3 Ordinary Object Internal Methods and Internal Data Properties

Sections 8.3-8.5 will eventually be subsectons of a new toplevel section that
follow the current section 10

All ordinary objects have an internal data property called [[Prototype]]. The value of this property is either null
or an object and is used for implementing inheritance. Data properties of the [[Prototype]] object are inherited
(are visible as properties of the child object) for the purposes of get access, but not for set access. Accessor
properties are inherited for both get access and set access.

Every ordinary ECMAScript object has a Boolean-valued [[Extensible]] internal data property that controls
whether or not properties may be added to the object. If the value of the [[Extensible]] internal data property is
false then additional properties may not be added to the object. In addition, if [[Extensible]] is false the value
of [[Prototype]] internal data properties of the object may not be modified. Once the value of an objectôs
[[Extensible]] internal data property has been set to false it may not be subsequently changed to true.

In the following algorithm descriptions, assume O is an ordinary ECMAScript object, P is a property key value,

V is any ECMAScript language value, Desc is a Property Description record, and B is a Boolean flag.

8.3.1 [[GetInheritance]] ()

When the [[GetInheritance]] internal method of O is called the following steps are taken:

1. Return the value of the [[Prototype]] internal data property of O.

8.3.2 [[SetInheritance]] (V)

When the [[SetInheritance]] internal method of O is called with argument V the following steps are taken:

1. Assert: Either Type(V) is Object or Type(V) is Null.

2. Let extensible be the value of the [[Extensible]] internal data property of O.

3. Let current be the value of the [[Prototype]] internal data property of O.

Commented [AWB1217]: TODO

© Ecma International 2012 53

4. If SameValue(V, current), then return true.

5. If extensible is false, then return false.

6. If V is not null , then

a. Let p be V.

b. Repeat, while p is not null

i. If SameValue(p, O) is true , then return false.

ii. Let nextp be the result of calling the [[GetInheritance]] internal method of p with no

arguments.

iii. ReturnIfAbrupt(nextp).

iv. Let p be nextp.

7. Set the value of the [[Prototype]] internal data property of O to V.

8. Return true .

8.3.3 [[HasIntegrity]] (Level)

When the [[HasIntegrity]] internal method of O is called the following steps are taken:

1. Assert: Level is one of "nonextensible ", "sealed ", or "frozen ".

2. If Level is "nonextensible ", then

a. Return Boolean negation of the value of the [[Extensible]] internal data property of O

3. Return the result of TestIntegrityLevel(O, Level).

8.3.4 [[SetIntegrity]] (Level)

When the [[SetIntegrity]] internal method of O is called the following steps are taken:

1. Assert: Level is one of "nonextensible ", "sealed ", or "frozen ".

2. Set the value of the [[Extensible]] internal data property of O to false.

3. If Level is not "nonextensible ", then

a. Return the result of SetIntegrityLevel(O, Level).

4. Return true.

8.3.5 [[HasOwnProperty]] (P)

When the [[HasOwnProperty]] internal method of O is called with property key P, the following steps are taken:

1. Assert: IsPropertyKey(P) is true .

2. If O does not have an own property with key P, return false

3. Return true .

8.3.6 [[GetOwnProperty]] (P)

When the [[GetOwnProperty]] internal method of O is called with property key P, the following steps are taken:

1. Return the result of OrdinaryGetOwnProperty with arguments O and P.

8.3.6.1 OrdinaryGetOwnProperty (O, P)

When the abstract operation OrdinaryGetOwnProperty is called with Object O and with property key P, the

following steps are taken:

1. Assert: IsPropertyKey(P) is true .

2. If O does not have an own property with key P, return undefined.

3. Let D be a newly created Property Descriptor with no fields.

4. Let X be Oôs own property whose key is P.

5. If X is a data property, then

a. Set D.[[Value]] to the value of Xôs [[Value]] attribute.

b. Set D.[[Writable]] to the value of Xôs [[Writable]] attribute

6. Else X is an accessor property, so

54 © Ecma International 2012

a. Set D.[[Get]] to the value of Xôs [[Get]] attribute.

b. Set D.[[Set]] to the value of Xôs [[Set]] attribute.

7. Set D.[[Enumerable]] to the value of Xôs [[Enumerable]] attribute.

8. Set D.[[Configurable]] to the value of Xôs [[Configurable]] attribute.

9. Return D.

8.3.7 [[DefineOwnProperty]] (P, Desc)

When the [[DefineOwnProperty]] internal method of O is called with property key P and property descriptor

Desc, the following steps are taken:

1. Return the result of OrdinaryDefineOwnProperty with arguments O, P, and Desc.

8.3.7.1 OrdinaryDefineOwnProperty (O, P, Desc)

When the abstract operation OrdinaryDefineOwnProperty is called with Object O, property key P, and property

descriptors Desc the following steps are taken:

1. Let current be the result of calling OrdinaryGetOwnProperty with arguments O and P.

2. Let extensible be the value of the [[Extensible]] internal data property of O.

3. Return the result of ValidateAndApplyPropertyDescriptor with arguments O, P, extensible, Desc, and

current.

8.3.7.2 IsCompatiblePropertyDescriptor (Extensible, Desc, Current)

When the abstract operation IsCompatiblePropertyDescriptor is called with Boolean value Extensible, and

property descriptors Desc, and Current the following steps are taken:

1. Return the result of ValidateAndApplyPropertyDescriptor with arguments undefined, undefined,

Extensible, Desc, and Current.

8.3.7.3 ValidateAndApplyPropertyDescriptor (O, P, extensible, Desc, current)

When the abstract operation ValidateAndApplyPropertyDescriptor is called with Object O, property key P,

Boolean value extensible, and property descriptors Desc, and current the following steps are taken:

This algorithm contains steps that test various fields of the Property Descriptor Desc for specific values. The
fields that are tested in this manner need not actually exist in Desc. If a field is absent then its value is

considered to be false.

NOTE If undefined is passed as the O argument only validation is performed and no object updates are preformed.

1. Assert: If O is not undefined then P is a valid property key.

2. If current is undefined, then

a. If extensible is false, then return false.

b. Assert: extensible is true .

c. If IsGenericDescriptor(Desc) or IsDataDescriptor(Desc) is true , then

i. If O is not undefined, then create an own data property named P of object O whose

[[Value]], [[Writable]], [[Enumerable]] and [[Configurable]] attribute values are described

by Desc. If the value of an attribute field of Desc is absent, the attribute of the newly

created property is set to its default value.

d. Else Desc must be an accessor Property Descriptor,

i. If O is not undefined, then create an own accessor property named P of object O whose

[[Get]], [[Set]], [[Enumerable]] and [[Configurable]] attribute values are described by Desc.

If the value of an attribute field of Desc is absent, the attribute of the newly created

property is set to its default value.

e. Return true .

3. Return true , if every field in Desc is absent.

4. Return true , if every field in Desc also occurs in current and the value of every field in Desc is the same

value as the corresponding field in current when compared using the SameValue algorithm (9.12).

5. If the [[Configurable]] field of current is false then

© Ecma International 2012 55

a. Return false, if the [[Configurable]] field of Desc is true .

b. Return false, if the [[Enumerable]] field of Desc is present and the [[Enumerable]] fields of current

and Desc are the Boolean negation of each other.

6. If IsGenericDescriptor(Desc) is true , then no further validation is required.

7. Else if IsDataDescriptor(current) and IsDataDescriptor(Desc) have different results, then

a. Return false, if the [[Configurable]] field of current is false.

b. If IsDataDescriptor(current) is true , then

i. If O is not undefined, then convert the property named P of object O from a data property

to an accessor property. Preserve the existing values of the converted propertyôs

[[Configurable]] and [[Enumerable]] attributes and set the rest of the propertyôs attributes to

their default values.

c. Else,

i. If O is not undefined, then convert the property named P of object O from an accessor

property to a data property. Preserve the existing values of the converted propertyôs

[[Configurable]] and [[Enumerable]] attributes and set the rest of the propertyôs attributes to

their default values.

8. Else if IsDataDescriptor(current) and IsDataDescriptor(Desc) are both true , then

a. If the [[Configurable]] field of current is false, then

i. Return false, if the [[Writable]] field of current is false and the [[Writable]] field of Desc is

true .

ii. If the [[Writable]] field of current is false, then

1. Return false, if the [[Value]] field of Desc is present and

SameValue(Desc.[[Value]], current.[[Value]]) is false.

b. else the [[Configurable]] field of current is true , so any change is acceptable.

9. Else IsAccessorDescriptor(current) and IsAccessorDescriptor(Desc) are both true ,

a. If the [[Configurable]] field of current is false, then

i. Return false, if the [[Set]] field of Desc is present and SameValue(Desc.[[Set]],

current.[[Set]]) is false.

ii. Return false, if the [[Get]] field of Desc is present and SameValue(Desc.[[Get]],

current.[[Get]]) is false.

10. If O is not undefined, then

a. For each attribute field of Desc that is present, set the correspondingly named attribute of the

property named P of object O to the value of the field.

11. Return true .

NOTE Step 8.b allows any field of Desc to be different from the corresponding field of current if currentôs
[[Configurable]] field is true . This even permits changing the [[Value]] of a property whose [[Writable]] attribute is false. This
is allowed because a true [[Configurable]] attribute would permit an equivalent sequence of calls where [[Writable]] is first
set to true , a new [[Value]] is set, and then [[Writable]] is set to false.

8.3.8 [[HasProperty]](P)

When the [[HasProperty]] internal method of O is called with property key P, the following steps are taken:

1. Assert: IsPropertyKey(P) is true .

2. Let hasOwn be the result of calling the [[HasOwnProperty]] internal method of O with argument P.

3. ReturnIfAbrupt(hasOwn).

4. If hasOwn is false, then

a. Let parent be the result of calling the [[GetInheritance]] internal method of O.

b. ReturnIfAbrupt(parent).

c. If parent is not null , then

i. Return the result of calling the [[HasProperty]] internal method of parent with argument P.

5. Return hasOwn.

8.3.9 [[Get]] (P, Receiver)

When the [[Get]] internal method of O is called with property key P and ECMAScript language value Receiver

the following steps are taken:

1. Assert: IsPropertyKey(P) is true .

2. Let desc be the result of calling the [[GetOwnProperty]] internal method of O with argument P.

56 © Ecma International 2012

3. ReturnIfAbrupt(desc).

4. If desc is undefined, then

a. Let parent be the result of calling the [[GetInheritance]] internal method of O.

b. ReturnIfAbrupt(parent).

c. If parent is null , then return undefined.

d. Return the result of calling the [[Get]] internal method of parent with arguments P and Receiver.

5. If IsDataDescriptor(desc) is true , return desc.[[Value]].

6. Otherwise, IsAccessorDescriptor(desc) must be true so, let getter be desc.[[Get]].

7. If getter is undefined, return undefined.

8. Return the result of calling the [[Call]] internal method of getter with Receiver as the thisArgument and an

empty List as argumentsList.

8.3.10 [[Set]] (P, V, Receiver)

When the [[Set]] internal method of O is called with property key P, value V, and ECMAScript language value

Receiver, the following steps are taken:

1. Assert: IsPropertyKey(P) is true .

2. Let ownDesc be the result of calling the [[GetOwnProperty]] internal method of O with argument P.

3. ReturnIfAbrupt(ownDesc).

4. If ownDesc is undefined, then

a. Let parent be the result of calling the [[GetInheritance]] internal method of O.

b. ReturnIfAbrupt(parent).

c. If parent is not null , then

i. Return the result of calling the [[Set]] internal method of parent with arguments P, V, and

Receiver.

d. Else,

i. If Type(Receiver) is not Object, return false.

ii. Return the result of performing CreateOwnDataProperty(Receiver, P, V).

5. If IsDataDescriptor(ownDesc) is true , then

a. If ownDesc.[[Writable]] is false, return false.

b. If Type(Receiver) is not Object, return false.

c. Let existingDescriptor be the result of calling the [[GetOwnProperty]] internal method of Receiver

with argument P.

d. ReturnIfAbrupt(existingDescriptor).

e. If existingDescriptor is not undefined, then

i. Let valueDesc be the Property Descriptor {[[Value]]: V}.

ii. Return the result of calling the [[DefineOwnProperty]] internal method of Receiver with

arguments P and valueDesc.

f. Else Receiver does not currently have a property P,

i. Return the result of performing CreateOwnDataProperty(Receiver, P, V).

6. If IsAccessorDescriptor(ownDesc) is true , then

a. Let setter be ownDesc.[[Set]].

b. If setter is undefined, return false.

c. Let setterResult be the result of calling the [[Call]] internal method of setter providing Receiver as

thisArgument and a new List containing V as argumentsList.

d. ReturnIfAbrupt(setterResult).

e. Return true .

8.3.11 [[Delete]] (P)

When the [[Delete]] internal method of O is called with property key P the following steps are taken:

1. Assert: IsPropertyKey(P) is true .

2. Let desc be the result of calling the [[GetOwnProperty]] internal method of O with argument P.

3. If desc is undefined, then return true .

4. If desc.[[Configurable]] is true , then

a. Remove the own property with name P from O.

b. Return true .

5. Return false.

© Ecma International 2012 57

8.3.12 [[Enumerate]] ()

When the [[Enumerate]] internal method of O is called the following steps are taken:

1. Return an Iterator object (reference xxxx) whose next method iterates over all the String valued keys of

enumerable property keys of O. The mechanics and order of enumerating the properties is not specified but

must conform to the rules specified below.

Enumerated properties do not include properties whose property key is a Symbol. Properties of the object
being enumerated may be deleted during enumeration. If a property that has not yet been visited during
enumeration is deleted, then it will not be visited. If new properties are added to the object being enumerated
during enumeration, the newly added properties are not guaranteed to be visited in the active enumeration. A
property name must not be visited more than once in any enumeration.

Enumerating the properties of an object includes enumerating properties of its prototype, and the prototype of
the prototype, and so on, recursively; but a property of a prototype is not enumerated if it is ñshadowedò
because some previous object in the prototype chain has a property with the same name. The values of
[[Enumerable]] attributes are not considered when determining if a property of a prototype object is shadowed
by a previous object on the prototype chain.

The following is an informative algorithm that conforms to these rules

1. Let obj be O.

2. Let proto be the result of calling the [[GetInheritance]] internal method of O with no arguments.

3. ReturnIfAbrupt(proto).

4. If proto is the value null , then

a. Let propList be a new empty List.

5. Else

a. Let propList be the result of calling the [[Enumerate]] internal method of proto.

6. ReturnIfAbrupt(propList).

7. For each name that is the property key of an own property of O

a. If Type(name) is String, then

i. Let desc be the result of calling OrdinaryGetOwnProperty with arguments O and name.
ii. If name is an element of propList, then remove name as an element of propList.

iii. If desc.[[Enumerable]] is true , then add name as an element of propList.

8. Order the elements of propList in an implementation defined order.

9. Return propList.

8.3.13 [[OwnPropertyKeys]] ()

When the [[OwnPropertyKeys]] internal method of O is called the following steps are taken:

1. Let keys be a new empty List.

2. For each own property key P of O

a. If P is not a private Symbol, then

i. Add P as the last element of keys.

3. Return MakeListIterator(keys).

8.3.14 ObjectCreate(proto, internalDataList) Abstract Operation

The abstract operation ObjectCreate with argument proto (an object or null) is used to specify the runtime
creation of new ordinary objects. The optional argument internalDataList is a List of the names of internal data

property names that should be defined as part of the object. If the list is not provided, an empty List is used. It
performs the following steps:

1. If proto was not provided, let proto be the intrinsic %ObjectPrototype%.

2. Let obj be a newly created ECMAScript object with an internal data property for each name in

internalDataList.

3. Set objôs essential internal methods to the default ordinary object definitions specified in 8.3.

4. Set the [[Prototype]] internal data property of obj to proto.

Commented [AWB623]: TODO

Commented [AWB624]: TODO: Finish this up, and turn it
into iterator definition include a next method.

The algorithm is also confused about [[Enumerate]] called on
proto returning a list or Iterator. See
https://bugs.ecmascript.org/show_bug.cgi?id=944

Commented [AWB1325]: TODO: need to define, returns
an iterator object over the elements of an internal list.

https://bugs.ecmascript.org/show_bug.cgi?id=944

58 © Ecma International 2012

5. Set the [[Extensible]] internal data property of obj to true .

6. Return obj.

8.3.15 Ordinary Function Objects

Ordinary function objects encapsulate parameterised ECMAScript code closed over a lexical environment and
support the dynamic evaluation of that code. An ordinary function object is an ordinary object and has the
same internal data properties and (except as noted below) the same internal methods as other ordinary
objects.

Ordinary function objects have the additional internal data properties listed in Table 13.

Ordinary function objects provide alternative definitions for the [[Get]] and [[GetOwnProperty]] internal
methods. These alternatives prevent the value of strict mode function from being revealed as the value of a
function object property named "caller ". These alternative definitions exist sole to preclude a non-standard

legacy feature of some ECMAScript implementations from revealing information about strict mode callers. If
an implementation does not provide such a feature, it need not implement these alternative internal methods
for ordinary function objects.

Table 13 -- Internal Data Properties of Ordinary Function Objects

Internal Data Property Type Description

[[Scope]] Lexical
Environment

The Lexical Environment that the function was closed over.
Is used as the outer environment when evaluating the code
of the function.

[[FormalParameters]] Parse Node The root parse node of the source code that defines the
functionôs formal parameter list.

[[FunctionKind]] String Either "normal " or "generator ".

[[Code]] Parse Node The root parse node of the source code that defines the
functionôs body.

[[Realm]] Realm Record The Code Realm in which the function was created and
which provides any intrinsic objects that are accessed
when evaluating the function.

[[ThisMode]] (lexical, strict,
global)

Defines how this references are interpreted within the

formal parameters and code body of the function. lexical
means that this refers to the this value of a lexically

enclosing function. strict means that the this value is used
exactly as provided by an invocation of the function.
global means that a this value of undefined is interpreted

as a reference to the global object.

[[Strict]] Boolean true if this is a strict mode function, false this is not a strict
mode function.

[[Home]] Object If the function uses super , this is the object whose

[[GetInheritance]] provides the object where super property
lookups begin. Not present for functions that donôt
reference super .

[[MethodName]] String or
Symbol

If the function uses super , this is the property keys that is

used for unqualified references to super . Not present for

functions that donôt reference super .

Ordinary function objects all have the [[Call]], [[Get]] and [[GetOwnProperty]] internal methods defined here.
Ordinary functions that are also constructors in addition have the [[Construct]] internal method.

8.3.15.1 [[Call]] (thisArgument, argumentsList)

The [[Call]] internal method for an ordinary Function object F is called with parameters thisArgument and

argumentsList, a List of ECMAScript language values. The following steps are taken:

© Ecma International 2012 59

1. Let callerContext be the running execution context.

2. If, callerContext is not already suspended, then Suspend callerContext.

3. Let calleeContext be a new ECMAScript Code execution context.

4. Let calleeRealm be the value of Fôs [[Realm]] internal data property.

5. Set calleeContextôs Realm to calleeRealm.

6. Let thisMode be the value of Fôs [[ThisMode]] internal data property.

7. If thisMode is lexical, then

a. Let localEnv be the result of calling NewDeclarativeEnvironment passing the value of the [[Scope]]

internal data property of F as the argument.

8. Else,

a. If thisMode is strict, set thisValue to thisArgument.

b. Else

i. if thisArgument is null or undefined, then

1. Set thisValue to calleeRealm.[[globalThis]] .

ii. Else if Type(thisArgument) is not Object, set the thisValue to ToObject(thisArgument).

iii. Else set the thisValue to thisArgument.

c. Let localEnv be the result of calling NewFunctionEnvironment passing F and thisValue as the

arguments.

9. Set the LexicalEnvironment of calleeContext to localEnv.

10. Set the VariableEnvironment of calleeContext to localEnv.

11. Push calleeContext onto the execution context stack; calleeContext is now the running execution context.

12. Let status be the result of performing Function Declaration Instantiation using the function F, argumentsList

, and localEnv as described in 10.5.3.

13. If status is an abrupt completion, then

a. Remove calleeContext from the execution context stack and restore callerContext as the running

execution context.

b. Return status.

14. Let result be the result of EvaluateBody of the production that is the value of F's [[Code]] internal data

property passing F as the argument.

15. Remove calleeContext from the execution context stack and restore callerContext as the running execution

context.

16. Return result.

NOTE 1 Most ordinary functions use a Function Environment Record as their LexicalEnvironment. Ordinary functions

that are arrow functions use a Declarative Environment Record as their LexicalEnvironment.

NOTE 2 When calleeContext is removed from the execution context stack it must not be destroyed because it may have

been suspended and retained by a generator object for later resumption.

8.3.15.2 [[Construct]] (argumentsList)

The [[Construct]] internal method for an ordinary Function object F is called with a single parameter

argumentsList which is a possibly empty List of ECMAScript language values. The following steps are taken:

1. Return the result of OrdinaryConstruct(F, argumentsList).

8.3.15.2.1 OrdinaryConstruct (F, argumentsList)

When the abstract operation OrdinaryConstruct is called with Object F and List argumentsList the following
steps are taken:

1. Let creator be the result of Get(F, @@create).

2. ReturnIfAbrupt(creator).

3. If creator is not undefined, then

a. If IsCallable(creator) is false, then throw a TypeError exception.

b. Let obj be the result of calling the [[Call]] internal method of creator with arguments F and an empty List.

4. Else creator is undefined so fall back to object creation defaults

a. Let obj be the result of calling OrdinaryCreateFromConstructor(F, " %ObjectPrototype% ").

5. ReturnIfAbrupt(obj).

6. If Type(obj) is not Object, then throw a TypeError exception.

7. Let result be the result of calling the [[Call]] internal method of F, providing obj and argumentsList as the arguments.

Commented [AWB 326]: May need to update section
number

Commented [AWB1427]: At Jan 29, 2012 TC39 serveral
peopled suggest that this fall back was unnecessary
complexity and that it should this throw. However, that means
that a ordinary function whose __proto__ is set to undefined
will throw if newed. Iôm not sure that is desirable. Itôs a
breaking change for the reality web.

60 © Ecma International 2012

8. ReturnIfAbrupt(result).

9. If Type(result) is Object then return result.

10. Return obj.

8.3.15.3 [[Get]] (P, Receiver)

When the [[Get]] internal method of ordinary function object F is called with property key P and ECMAScript

language value Receiver the following steps are taken:

1. Let v be the result of calling the default ordinary object [[Get]] internal method (8.3.7) on F passing P and

Receiver as arguments.

2. ReturnIfAbrupt(v).

3. If P is "caller" and v is a strict mode Function object, return null .

4. Return v.

If an implementation does not provide such a built-in caller method for Function.prototype then it must

not use this definition. Instead the ordinary object [[Get]] internal method is used.

8.3.15.4 [[GetOwnProperty]] (P)

When the [[GetOwnProperty]] internal method of ordinary function object F is called with property key P, the

following steps are taken:

1. Let v be the result of calling the default ordinary object [[GetOwnProperty]] internal method (8.3.6) on F

passing P as the argument.

2. ReturnIfAbrupt(v).

3. If IsDataDescriptor(v) is true , then

a. If P is "caller" and v.[[Value]] is a strict mode Function object, then

i. Set v.[[Value]] to null .

4. Return v.

If an implementation does not provide such a built-in caller method for Function.p rototype then it must

not use this definition. Instead the ordinary object [[GetOwnProperty]] internal method is used.

8.3.15.5 FunctionAllocate Abstract Operation

The abstract operation FunctionAllocate requires the one arguments, functionPrototype and accepts one

optional argument, functionKind. FunctionAllocate performs the following steps:

1. Assert: Type(functionPrototype) is Object.

2. Assert: If functionKind is present, its value is either "normal " or "generator ".

3. If functionKind is not present, then let functionKind be "normal ".

4. Let F be a newly created ordinary function object with the internal data properties listed in Table 13.

5. Set Fôs essential internal methods except for [[Get]] and [[GetOwnProperty]] to the default ordinary object

definitions specified in 8.3.

6. Set Fôs essential internal methods for [[Call]], [[Get]] and [[GetOwnProperty]] to the default ordinary

object definitions specified in 8.3.15.

7. Set the [[FunctionKind]] internal data property of F to functionKind.

8. Set the [[Prototype]] internal data property of F to functionPrototype.

9. Set the [[Extensible]] internal data property of F to true.

10. Set the [[Realm]] internal data property of F to the running execution contextôs Realm.

11. Return F.

8.3.15.6 FunctionInitialize Abstract Operation

The abstract operation FunctionInitialize requires the arguments: a function object F, kind which is one of
(Normal, Method, Arrow), an parameter list production specified by ParameterList, a body production specified
by Body, a Lexical Environment specified by Scope, a Boolean flag Strict, and optionally, an object homeObject

and a property key methodName. FunctionInitialize performs the following steps:

© Ecma International 2012 61

1. Set the [[Prototype]] internal data property of F to functionPrototype.

2. Set the [[Scope]] internal data property of F to the value of Scope.

3. Set the [[FormalParameters]] internal property of F to ParameterList .

4. Set the [[Code]] internal data property of F to Body.

5. If the homeObject argument was provided, set the [[HomeObject]] internal data property of F to homeObject.

6. If the methodName argument was provided, set the [[MethodName]] internal data property of F to methodName.

7. Set the [[Strict]] internal data property of F to Strict.

8. If kind is Arrow, then set the [[ThisMode]] internal data property of F to lexical.
9. Else if Strict is true, then set the [[ThisMode]] internal data property of F to strict.
10. Else set the [[ThisMode]] internal data property of F to global.
11. Let len be the ExpectedArgumentCount of ParameterList.

12. Call the [[DefineOwnProperty]] internal method of F with arguments " length " and Property Descriptor

{[[Value]]: len, [[Writable]]: false, [[Enumerable]]: false, [[Configurable]]: false}

13. If Strict is true, then

a. Perform the AddRestrictedFunctionProperties abstract operation with argument F.
14. Return F.

8.3.15.7 FunctionCreate Abstract Operation

The abstract operation FunctionCreate requires the arguments: kind which is one of (Normal, Method, Arrow),
an parameter list production specified by ParameterList, a body production specified by Body, a Lexical

Environment specified by Scope, a Boolean flag Strict, and optionally, an object functionPrototype, an object

homeObject and a string methodName. FunctionCreate performs the following steps:

1. If the functionPrototype argument was not passed,then

a. Let functionPrototype be the intrinsic object %FunctionPrototype%.
2. Let F be the result of performing FunctionAllocate with argument functionPrototype.

3. Return the result of performing FunctionInitialize with passing F, kind, ParameterList, Body, Scope, and

Strict. Also pass homeObject and methodName if they are present.

8.3.15.7 GeneratorFunctionCreate Abstract Operation

The abstract operation GeneratorFunctionCreate requires the arguments: kind which is one of (Normal,
Method, Arrow), an parameter list production specified by ParameterList, a body production specified by Body,
a Lexical Environment specified by Scope, a Boolean flag Strict, and optionally, an object functionPrototype, an

object homeObject and a string methodName. GeneratorFunctionCreate performs the following steps:

1. If the functionPrototype argument was not passed,then

a. Let functionPrototype be the intrinsic object %Generator%.
2. Let F be the result of performing FunctionAllocate with arguments functionPrototype and "generator " .

3. Return the result of performing FunctionInitialize with passing F, kind, ParameterList, Body, Scope, and

Strict. Also pass homeObject and methodName if they are present.

8.3.15.8 AddRestrictedFunctionProperties Abstract Operation

The abstract operation is called with a function object F as its argument. It performs the following steps:

1. Let thrower be the %ThrowTypeError% intrinsic function Object.

2. Call the [[DefineOwnProperty]] internal method of F with arguments "caller" and PropertyDescriptor {[[Get]]:

thrower, [[Set]]: thrower, [[Enumerable]]: false, [[Configurable]]: false}.

3. Call the [[DefineOwnProperty]] internal method of F with arguments "arguments" and PropertyDescriptor

{[[Get]]: thrower, [[Set]]: thrower, [[Enumerable]]: false, [[Configurable]]: false}.

The %ThrowTypeError% object is a unique function object that is defined once for each Realm as follows:

1. Let the scope be the Global Environment.

2. Let formalParameters be the syntactic production: FormalParameters : [empty].

3. Let body be the syntactic production: FunctionBody : ThrowTypeError.

62 © Ecma International 2012

4. Let F be the result of the abstract operation FunctionCreate with arguments Normal, formalParameters, body, scope,

and true.
5. Call the [[SetIntegrity]] internal method of F with argument "nonextensible ".

6. Let %ThrowTypeError% be F.

8.3.15.9 MakeConstructor Abstract Operation

The abstract operation MakeConstructor requires a Function argument F and optionally, a Boolean
writablePrototype and an object prototype. If prototype is provided it is assume to already contain, if needed, a
" constructor " property whose value is F. This operation converts F into a constructor by performs the

following steps:

1. Let installNeeded be false.

2. If the prototype argument was not provided,then

a. Let installNeeded be true.

b. Let prototype be the result of the abstract operation ObjectCreate with the intrinsic

object %ObjectPrototype% as its argument.

3. If the writablePrototype argument was not provided,then

a. Let writablePrototype be true.

4. Set Fôs essential internal method [[Construct]] to the definition specified in 8.3.15.2.

5. If installNeeded, then

a. Call the [[DefineOwnProperty]] internal method of prototype with arguments "constructor" and

Property Descriptor {[[Value]]: F, [[Writable]]: writablePrototype, [[Enumerable]]: false, [[Configurable]]:

writablePrototype }

7. Call the [[DefineOwnProperty]] internal method of F with arguments " prototype " and Property Descriptor

{[[Value]]: prototype , [[Writable]]: writablePrototype , [[Enumerable]]: false, [[Configurable]]: false}.

8. Return.

8.4 Built-in Exotic Object Internal Methods and Data Fields

This specification defines several kinds of built-in exotic objects. These objects generally behave similar to
ordinary objects except for a few specific situations. The following exotic objects use the ordinary object
internal methods except where it is explicitly specified otherwise below:

8.4.1 Bound Function Exotic Objects

A bound function is an exotic object that wrappers another function object. A bound function is callable (it has
[[Call]] and [[Construct]] internal methods). Calling a bound function generally results in a call of its wrappered
function.

Bound function objects do not have the internal data properties of ordinary function objects defined in Table
13. Instead they have the internal data properties defined in Table 14.

Table 14 -- Internal Data Properties of Exotic Bound Function Objects

Internal Data Property Type Description

[[BoundTargetFunction]] Callable Object The wrappered function object.

[[BoundThis]] Any The value that is always passed as the this value when
calling the wrappered function.

[[BoundArguments]] List of Any A list of values that whose elements are used as the first
arguments to any call to the wrappered function.

Unlike ordinary function objects, bound function objects do not use alternative definitions of the [[Get]] and
[[GetOwnPropety]] internal methods. Bound function objects provide all of the essential internal methods as
specified in 8.3. However, they use the following definitions for the essential internal methods of function
objects.

© Ecma International 2012 63

8.4.1.1 [[Call]]

When the [[Call]] internal method of an exotic bound function object, F, which was created using the bind

function is called with parameters thisArgument and argumentsList, a List of ECMAScript language values, the

following steps are taken:

1. Let boundArgs be the value of Fôs [[BoundArguments]] internal data property.

2. Let boundThis be the value of Fôs [[BoundThis]] internal data property.

3. Let target be the value of Fôs [[BoundTargetFunction]] internal data property.

4. Let args be a new list containing the same values as the list boundArgs in the same order followed by the

same values as the list argumentsList in the same order.

5. Return the result of calling the [[Call]] internal method of target providing boundThis as thisArgument and

providing args as argumentsList.

8.4.1.2 [[Construct]]

When the [[Construct]] internal method of an exotic bound function object, F that was created using the bind

function is called with a list of arguments ExtraArgs, the following steps are taken:

1. Let target be the value of Fôs [[BoundTargetFunction]] internal data property.

2. If target has no [[Construct]] internal method, a TypeError exception is thrown.

3. Let boundArgs be the value of Fôs [[BoundArguments]] internal data property.

4. Let args be a new list containing the same values as the list boundArgs in the same order followed by the

same values as the list ExtraArgs in the same order.

5. Return the result of calling the [[Construct]] internal method of target providing args as the arguments.

8.4.1.3 BoundFunctionCreate Abstract Operation

The abstract operation BoundFunctionCreate with arguments targetFunction, boundThis and boundArgs is

used to specify the creation of new Bound Function exotic objects. It performs the following steps:

1. Let proto be the the intrinsic %FunctionPrototype%.

2. Let obj be a newly created ECMAScript object.

3. Set objôs essential internal methods to the default ordinary object definitions specified in 8.3.

4. Set the [[Call]] internal method of obj as described in 8.4.1.1.

5. Set the [[Construct]] internal method of obj as described in 8.4.1.2.

6. Set the [[Prototype]] internal data property of obj to proto.

7. Set the [[Extensible]] internal data property of obj to true .

8. Set the [[BoundTargetFunction]] internal data property of obj to targetFunction.

9. Set the [[BoundThis]] internal data property of obj to the value of boundThis.

10. Set the [[BoundArguments]] internal data property of obj to boundArgs.

11. Return obj.

8.4.2 Array Exotic Objects

An Array object is an exotic object that gives special treatment to a certain class of property names. A
property name P (in the form of a String value) is an array index if and only if ToString(ToUint32(P)) is equal to

P and ToUint32(P) is not equal to 232-1. A property whose property name is an array index is also called an

element. Every Array object has a length property whose value is always a nonnegative integer less than 232.

The value of the length property is numerically greater than the name of every property whose name is an

array index; whenever a property of an Array object is created or changed, other properties are adjusted as
necessary to maintain this invariant. Specifically, whenever a property is added whose name is an array index,
the len gth property is changed, if necessary, to be one more than the numeric value of that array index; and

whenever the length property is changed, every property whose name is an array index whose value is not

smaller than the new length is automatically deleted. This constraint applies only to own properties of an Array
object and is unaffected by length or array index properties that may be inherited from its prototypes.

Exotic Array objects have the same internal data properties as ordinary objects. They also have an
[[ArrayInitialisationState]] internal data property.

64 © Ecma International 2012

Exotic Array objects always have a non-configurable property named "length ".

Exotic Array objects provide alternative definitions for the [[Set]] and [[DefineOwnProperty]] internal methods.
Except for these two internal methods, exotic Array objects provide all of the other essential internal methods
as specified in 8.3.

8.4.2.1 [[DefineOwnProperty]] (P, Desc)

When the [[DefineOwnProperty]] internal method of an exotic Array object A is called with property P, and

Property Descriptor Desc the following steps are taken:

1. Assert: IsPropertyKey(P) is true .

2. If P is " length " , then

a. Return the result of calling ArraySetLength with arguments A, and Desc.

3. Else if P is an array index, then

a. Let oldLenDesc be the result of calling the [[GetOwnProperty]] internal method of A passing

" length " as the argument. The result will never be undefined or an accessor descriptor because

Array objects are created with a length data property that cannot be deleted or reconfigured.

b. Let oldLen be oldLenDesc.[[Value]].

c. Let index be ToUint32(P).

d. ReturnIfAbrupt(index).

e. I f index Ó oldLen and oldLenDesc.[[Writable]] is false, then return false.

f. Let succeeded be the result of calling OrdinaryDefineOwnProperty passing A, P, and Desc as

arguments.

g. ReturnIfAbrupt(succeeded).

h. I f succeeded is false, then return false.

i. If index Ó oldLen

i. Set oldLenDesc.[[Value]] to index + 1.

ii. Let succeeded be the result of calling OrdinaryDefineOwnProperty passing A, " length " ,

and oldLenDesc as arguments.

iii. ReturnIfAbrupt(succeeded).

j. Return true .

4. Return the result of calling OrdinaryDefineOwnProperty passing A, P, and Desc as arguments.

8.4.2.2 ArrayCreate Abstract Operation

The abstract operation ArrayCreate with argument length (a positive integer or undefined) and optional
argument proto is used to specify the creation of new exotic Array objects. It performs the following steps:

1. If the proto argument was not passed, then let proto be the intrinsic object %ArrayPrototype%.

2. Let A be a newly created Array exotic object.

3. Set Aôs essential internal methods to the default ordinary object definitions specified in 8.3.

4. Set the [[DefineOwnProperty]] internal method of A as specified in 8.4.2.1.

5. Set the [[Prototype]] internal data property of A to proto.

6. Set the [[Extensible]] internal data property of A to true .

7. If length is not undefined, then

a. Set the [[ArrayInitiali sationState]] internal data property of A to true .

8. Else

a. Set the [[ArrayInitiali sationState]] internal data property of A to false.
b. Let length be 0.

9. Call OrdinaryDefineOwnProperty with arguments A, "length" and Property Descriptor {[[Value]]: length,

[[Writable]]: true , [[Enumerable]]: false, [[Configurable]]: false} .

10. Return A.

8.4.2.3 ArraySetLength Abstract Operation

When the abstract operation ArraySetLength is called with an exotic Array object A, and Property Descriptor
Desc the following steps are taken:

1. If the [[Value]] field of Desc is absent, then

© Ecma International 2012 65

a. Return the result of calling OrdinaryDefineOwnProperty passing A, " length " , and Desc as

arguments.

2. Let newLenDesc be a copy of Desc.

3. Let newLen be ToUint32(Desc.[[Value]]).

4. If newLen is not equal to ToNumber(Desc.[[Value]]), throw a RangeError exception.

5. Set newLenDesc.[[Value]] to newLen.

6. Let oldLenDesc be the result of calling the [[GetOwnProperty]] internal method of A passing " length " as

the argument. The result will never be undefined or an accessor descriptor because Array objects are

created with a length data property that cannot be deleted or reconfigured.

7. Let oldLen be oldLenDesc.[[Value]].

8. If newLen ÓoldLen, then

a. Return the result of calling OrdinaryDefineOwnProperty passing A, " length " , and newLenDesc as

arguments.

9. I f oldLenDesc.[[Writable]] is false, then return false.

10. If newLenDesc.[[Writable]] is absent or has the value true , let newWritable be t rue.

11. Else,

a. Need to defer setting the [[Writable]] attribute to false in case any elements cannot be deleted.

b. Let newWritable be false.

c. Set newLenDesc.[[Writable]] to true .

12. Let succeeded be the result of calling OrdinaryDefineOwnProperty passing A, " length " , and newLenDesc

as arguments.

13. ReturnIfAbrupt(succeeded).

14. If succeeded is false, return false.

15. While newLen < oldLen repeat,

a. Set oldLen to oldLen ï 1.

b. Let deleteSucceeded be the result of calling the [[Delete]] internal method of A passing

ToString(oldLen).

c. ReturnIfAbrupt(succeeded).

d. If deleteSucceeded is false, then

i. Set newLenDesc.[[Value]] to oldLen+1.

ii. If newWritable is false, set newLenDesc.[[Writable]] to false.

iii. Let succeeded be the result of calling OrdinaryDefineOwnProperty passing A, " length " ,

and newLenDesc as arguments.

iv. ReturnIfAbrupt(succeeded).

v. Return false.

16. If newWritable is false, then

a. Call OrdinaryDefineOwnProperty passing A, " length " , and Property Descriptor{[[Writable]]:

false} as arguments. This call will always return true .

17. Return true .

8.4.3 String Exotic Objects

A String object is an exotic object that encapsulates a String value and exposes virtual array index data
properties corresponding to the individual code unit elements of the string value. Exotic String objects always
have a data property named "length " whose value is the number of code unit elements in the encapsulated

String value. Both the code unit data properties and the "length " property are non-writable and non-

configurable.

Exotic String objects have the same internal data properties as ordinary objects. They also have a
[[StringData]] internal data property.

Exotic String objects provide alternative definitions for the following internal methods. All of the other exotic
String object essential internal methods that are not defined below are as specified in 8.3.

8.4.3.1 [[HasOwnProperty]] (P)

When the [[HasOwnProperty]] internal method of exotic String object O is called with property key P, the

following steps are taken:

Commented [AWB1428]: Note that if [[Value]] is an object
this sequence will call its valueoOf method twice. That seems
undesirable, but it is the legacy behaviour going back to at
least ES3

Commented [AWB1429]: See bug
https://bugs.ecmascript.org/show_bug.cgi?id=1200 for why
these two lines moved.

https://bugs.ecmascript.org/show_bug.cgi?id=1200

66 © Ecma International 2012

1. Assert: IsPropertyKey(P) is true .

2. Let has be the result of calling the ordinary object [[HasOwnProperty]] internal method (8.3.5) on O with

argument P.

3. ReturnIfAbrupt(has).

4. If has is true , then return true .

5. Let index be ToInteger(P).

6. ReturnIfAbrupt(index).

7. Let absIntIndex be ToString(abs(index)).

8. ReturnIfAbrupt(absIntIndex).

9. If SameValue(absIntIndex, P) is false return false.

10. Let str be the String value of the [[StringData]] internal property of O, if the value of [[StringData]] is

undefined the empty string is used as its value.

11. Let len be the number of elements in str.

12. If len Ò index, return false.

13. Return true .

8.4.3.2 [[GetOwnProperty]] (P)

When the [[GetOwnProperty]] internal method of an an exotic String object S is called with property key P the

following steps are taken:

1. Assert: IsPropertyKey(P) is true .

2. Let desc be the result of OrdinaryGetOwnProperty(S, P).

3. ReturnIfAbrupt(desc).

4. If desc is not undefined return desc.

5. Let index be ToInteger(P).

6. ReturnIfAbrupt(index).

7. Let absIntIndex be ToString(abs(index)).

8. ReturnIfAbrupt(absIntIndex).

9. If SameValue(absIntIndex, P) is false return undefined.

10. Let str be the String value of the [[StringData]] internal data property of S, if the value of [[StringData]] is

undefined the empty string is used as its value.

11. Let len be the number of elements in str.

12. If len Ò index, return undefined.

13. Let resultStr be a String value of length 1, containing one code unit from str, specifically the code unit at

position index, where the first (leftmost) element in str is considered to be at position 0, the next one at

position 1, and so on.

14. Return a Property Descriptor { [[Value]]: resultStr, [[Enumerable]]: true , [[Writable]]: false,

[[Configurable]]: false } .

8.4.3.3 [[DefineOwnProperty]] (P, Desc)

When the [[DefineOwnProperty]] internal method of an exotic String object O is called with property P, and

Property Descriptor Desc the following steps are taken:

1. Let current be the result of calling the [[GetOwnProperty]] internal method of O with argument P.

2. Let extensible be the value of the [[Extensible]] internal data property of O.

3. Return the result of ValidateAndApplyPropertyDescriptor with arguments O, P, extensible, Desc, and

current.

NOTE This algorithm differs from the ordinary object OrdinaryDefineOwnProperty abstract operation algorithm only in

invocation of [[GetOwnProperty]] in step 1.

8.4.3.4 [[Enumerate]] ()

When the [[Enumerate]] internal method of an exotic String object O is called the following steps are taken:

Commented [AWB1230]: TODO

© Ecma International 2012 67

8.4.3.5 [[OwnPropertyKeys]] ()

When the [[OwnPropertyKeys]] internal method of an exotic String object O is called the following steps are

taken:

8.4.3.6 StringCreate Abstract Operation

The abstract operation StringCreate with argument prototype is used to specify the creation of new exotic

String objects. It performs the following steps:

1. Let A be a newly created String exotic object.

2. Set Aôs essential internal methods to the default ordinary object definitions specified in 8.3.

3. Set the [[HasOwnProperty]] internal method of A as specified in 8.4.3.1.

4. Set the [[GetOwnProperty]] internal method of A as specified in 8.4.3.2.

5. Set the [[DefineOwnProperty]] internal method of A as specified in 8.4.3.3.

6. Set the [[Enumerate]] internal method of A as specified in 8.4.3.4.

7. Set the [[OwnPropertyKeys]] internal method of A as specified in 8.4.3.5.

8. Set the [[Prototype]] internal data property of A to prototype.

9. Set the [[Extensible]] internal data property of A to true .

10. Return A.

8.4.4 Exotic Arguments Objects

An arguments object is an exotic object whose array index properties map to the formal parameters bindings
of an invocation of a non-strict function.

Exotic arguments objects have the same internal data properties as ordinary objects. They also have a
[[ParameterMap]] internal data.

Exotic arguments objects provide alternative definitions for the following internal methods. All of the other
exotic arguments object essential internal methods that are not defined below are as specified in 8.3.

8.4.5 Integer Indexed Delegation Exotic Objects

An Integer Indexed object is an exotic object that that delegates [[Get]] and [[Set]] handling of integer property
keys to methods of the object.

Integer Indexed exotic objects initially have the same internal data properties as ordinary objects.

Integer Indexed Exotic objects provide alternative definitions for the following internal methods. All of the
other Integer Indexed exotic object essential internal methods that are not defined below are as specified in
8.3.

8.4.5.1 [[Get]] (P, Receiver)

When the [[Get]] internal method of an Integer Indexed exotic object O is called with property key P and
ECMAScript language value Receiver the following steps are taken:

1. If SameValue(O, Receiver) is true , then

a. Let intIndex be ToInteger(P).

b. If SameVaue(ToString(intIndex, P) is true , then

i. Let args be a new List containing intIndex.

ii. Return the result of Invoke(O, @@elementGet, args).

2. Return the result of calling the default ordinary object [[Get]] internal method (8.3.7) on O passing P and

Receiver as arguments.

Commented [AWB1231]: TODO

Commented [AWB1332]: TODO

Commented [AWB1239]: TODO move arguments internal
methods here.

Commented [AWB1340]: Issue: does the TypedArray
spec./WEbIDL specs require that such indexed properties
show up using [[GetOwnProperty]], keys, etc? If so, some
more internal method over-rides will be needed.

Commented [AWB1341]: If we make this a private symbol
that is not exposed, then it is just a specification device. If we
make it an exposed symbol (whether private or not) it
becomes a ES programmer extension point.

68 © Ecma International 2012

8.4.5.2 [[Set]] (P, V, Receiver)

When the [[Set]] internal method of an an Integer Indexed exotic object O is called with property key P, value V,

and ECMAScript language value Receiver, the following steps are taken:

1. If SameValue(O, Receiver) is true , then

a. Let intIndex be ToInteger(P).

a. If SameVaue(ToString(intIndex, P) is true , then

i. Let args be a new List containing intIndex and V.

ii. Return the result of ToBoolean(Invoke(O, @@elementSet, args)).

2. Return the result of calling the default ordinary object [[Set]] internal method (8.3.7) on O passing P, V, and

Receiver as arguments.

8.4.5.3 IntegertIndexedObjectCreate Abstract Operation

The abstract operation IntegerIndexedObjectCreate with argument prototype is used to specify the creation of

new Integer Indexed exotic objects. It performs the following steps:

11. Let A be a newly created ECMAScript object.

12. Set Aôs essential internal methods to the default ordinary object definitions specified in 8.3.

13. Set the [[Get]] internal method of A as specified in 8.4.6.1.

14. Set the [[Set]] internal method of A as specified in 8.4.6.2.

15. Set the [[Prototype]] internal data property of A to prototype.

16. Set the [[Extensible]] internal data property of A to true .

17. Return A.

8.4.6 Built-in Function Objects

The function objects specified in Clause 15 may be implemented as either ordinary function objects whose
behaviour is provided using ECMAScript code or as implementation provided exotic function objects whose
behaviour is provided in some other manner. In either case, the effect of calling such functions must be that
specified for each one in Clause 15.

If an implementation provided exotic object is used, the object must have the ordinary object behaviour
specified in 8.3 except for [[Get]] and [[GetOwnProperty]] which must be as specified in 8.3.15. All such exotic
function objects also have [[Prototype]] and [[Extensible]] internal data.

[[Calll]] and [[Construct]]

8.5 Proxy Object Internal Methods and Internal Data Properties

A proxy object is an exotic object whose essential internal methods are partially implemented using
ECMAScript code. Every proxy objects has an internal data property called [[ProxyHandler]]. The value of
[[ProxyHandler]] is always an object, called the proxyôs handler object. Methods of a handler object may be
used to augment the implementation for one or more of the proxy objectôs internal methods. Every proxy
object also has an internal data property called [[ProxyTarget]] whose value is either an object or the null
value. This object is called the proxyôs target object.

When a handler method is called to provide the implementation of a proxy object internal method, the handler
method is passed the proxyôs target object as a parameter. A proxyôs handler object does not necessarily
have a method corresponding to every essential internal method. Invoking an internal method on the proxy
results in the invocation of the corresponding internal method on the proxyôs target object if the handler object
does not have a method corresponding to the internal trap.

The [[ProxyHandler]] and [[ProxyTarget]] internal data properties of a proxy object are always initialized when
the object is created and typically may not be modified. Some proxy objects are created in a manner that
permits them to be subsequently revoked. When a proxy is revoked, its [[ProxyHander]] internal data property
is set to a special revoked proxy handler object and its [[ProxyTarget]] internal data property is set to null.

Commented [AWB1342]: If we make this a private symbol
that is not exposed, then it is just a specification device. If we
make it an exposed symbol (whether private or not) it
becomes a ES programmer extension point.

Commented [AWB1243]: TODO: need to talk about [[Call]]
and [[Construct]] behaviour of chapter 15 native functions.

