

Reference number
ECMA-123:2009

© Ecma International 2009

Ecma/TC39/2013/033

ECMA-XXX
1st Edition / July 2013

2st Draft

The JSON Data
Interchange Format

 COPYRIGHT PROTECTED DOCUMENT

 © Ecma International 2013

© Ecma International 2013 I

Contents Page

1 Scope ...2

2 Conformance ..2

3 Normative references...2

4 JSON Text ...2

5 JSON Values ...2

6 Objects ..3

7 Arrays ..3

8 Numbers ..4

9 String ...4

10 Security Considerations ..6

II © Ecma International 2013

Introduction

JSON is a text format, a programming language-independent data representation, allowing structured data
interchange between all programming languages. It describes a syntax of braces, brackets, colons, and
commas that is useful in many contexts, profiles, and applications. JSON was inspired by the object literals of
JavaScript aka ECMAScript, as defined in the ECMASCRIPT PROGRAMMING LANGUAGE STANDARD, THIRD

EDITION. It does not attempt to impose ECMAScript’s internal data representations on other language. Instead,
it shares a small subset of ECMAScript’s textual representations with all other programming languages.

JSON is agnostic about numbers. In each programming language, there can be a variety of number types of
various capacities and complements, fixed or floating, binary or decimal. That can make interchange between
different programming languages difficult. JSON offers only the representation of numbers that humans use: a
sequence of digits. All programming languages know how to make sense of digit sequences, even if they
disagree on internal representations. That is enough to allow interchange.

It is wise to encode JSON in UNICODE, but JSON itself does not require that. JSON’s only dependence on
Unicode in the hex numbers used in the \u escapement notation. JSON can be used in contexts where there

is no character encoding at all, such as paper documents and marble monuments.

Programming languages vary widely on whether they support objects, and if so, what characteristics and
constraints the objects offer. The models of object systems can be wildly divergent, and are continuing to
evolve. JSON instead provides a simple notation for expressing collections of name/value pairs. All
programming languages will have some feature for representing such collections, which can go by names like
record, struct, dict, hash, or object.

JSON also provides support for ordered lists of values. All programming languages will have some feature for
representing such lists, which can go by names like array, vector, or list. Because objects and arrays

can nest, trees and other complex data structures can be represented. By accepting JSON’s simple
convention, complex data structures can be easily interchanged between incompatible programming
languages.

JSON does not support cyclic graphs, at least not directly. JSON is not indicated for applications requiring
binary data.

It is expected that other standards will refer to this one, strictly adhering to the JSON format, while imposing
restrictions on various encoding details. Such standards may require specific behaviours. JSON itself
specifies no behaviour.

Because it is so simple, it not expected that the JSON grammar will ever change. This gives JSON, as a
foundational notation, tremendous stability. JSON was first presented to the world at the JSON.org website in

2001. JSON stands for JavaScript Object Notation.

© Ecma International 2013 III

This Ecma Standard has been adopted by the General Assembly of <month> <year>.

IV © Ecma International 2013

"COPYRIGHT NOTICE

© 2013 Ecma International

This document may be copied, published and distributed to others, and certain derivative works of it
may be prepared, copied, published, and distributed, in whole or in part, provided that the above
copyright notice and this Copyright License and Disclaimer are included on all such copies and
derivative works. The only derivative works that are permissible under this Copyright License and
Disclaimer are:

(i) works which incorporate all or portion of this document for the purpose of providing commentary or
explanation (such as an annotated version of the document),

(ii) works which incorporate all or portion of this document for the purpose of incorporating features
that provide accessibility,

(iii) translations of this document into languages other than English and into different formats and

(iv) works by making use of this specification in standard conformant products by implementing (e.g.
by copy and paste wholly or partly) the functionality therein.

However, the content of this document itself may not be modified in any way, inc luding by removing the
copyright notice or references to Ecma International, except as required to translate it into languages
other than English or into a different format.

The official version of an Ecma International document is the English language version on the Ecma
International website. In the event of discrepancies between a translated version and the official
version, the official version shall govern.

The limited permissions granted above are perpetual and will not be revoked by Ecma Internationa l or
its successors or assigns.

This document and the information contained herein is provided on an "AS IS" basis and ECMA
INTERNATIONAL DISCLAIMS ALL WARRANTIES, EXPRESS OR IMPLIED, INCLUDING BUT NOT
LIMITED TO ANY WARRANTY THAT THE USE OF THE INFORMATION HEREIN WILL NOT INFRINGE
ANY OWNERSHIP RIGHTS OR ANY IMPLIED WARRANTIES OF MERCHANTABILITY OR FITNESS FOR
A PARTICULAR PURPOSE."

© Ecma International 2013 V

© Ecma International 2013

The JSON Data Interchange Format

1 Scope

JSON is a lightweight, text-based, language-independent data interchange format. It was derived from the
ECMAScript Programming Language Standard, but is programming language independent. JSON defines a
small set of formatting rules for the portable representation of structured data.

2 Conformance

A conforming JSON generator or encoder will produce texts that strictly conform to the JSON grammar.

3 Normative references

The following referenced documents are indispensable for the application of this document. For dated
references, only the edition cited applies. For undated references, the latest edition of the referenced
document (including any amendments) applies.

ISO/IEC 10646-1:1993, Information Technology – Universal Multiple-Octet Coded Character Set (UCS) plus
its amendments and corrigenda

ECMA-262, The ECMAScript Programming Language, 3th edition (December 1999)

4 JSON Text

A JSON text is a sequence of tokens. The set of tokens includes six structural characters, strings, numbers,
and three literal names.

The six structural characters:

{ } [] : ,

Insignificant whitespace is allowed before or after any of the six structural characters.

There are three literal names:

true false null

5 JSON Values

A JSON value can be a string, number, object, array, true, false, or null.

© Ecma International 2009 – All rights reserved

number

string

value

object

false

null

array

true

Figure 1 — value

6 Objects

An object structure is represented as a pair of curly brackets surrounding zero or more name/value pairs. A
name is a string. A single colon comes after each name, separating the name from the value. A single
comma separates a value from a following name.

{ : }valuestring

object

,

Figure 2 — object

7 Arrays

An array structure is represented as square brackets surrounding zero or more values. Elements are
separated by commas.

© Ecma International 2013

[]value

array

,

Figure 3 — array

8 Numbers

A number is represented in base 10 with no superfluous leading. It may have a preceding minus sign. It may
have a "."-prefixed fractional part. It may have an exponent, prefixed by e or E and optionally + or -.

Figure 4 — number

Numeric values that cannot be represented as sequences of digits (such as Infinity and NaN) are not

permitted.

9 String

The representation of strings is similar to conventions used in the C family of programming languages, a
family that includes ECMAScript. A string is a sequence of characters wrapped with quotation marks. All
characters may be placed within the quotation marks except for the characters that must be escaped:
quotation mark, reverse solidus, and invisible control characters.

© Ecma International 2009 – All rights reserved

There are two-character sequence escape representations of some characters. So, for example, a string
containing only a single reverse solidus character may be represented as "\\".

Any character may be represented as a hexadecimal number. The meaning of such a number is determined
by the Unicode Standard. If the character is in the Basic Multilingual Plane (U+0000 through U+FFFF), then it
may be represented as a six-character sequence: a reverse solidus, followed by the lowercase letter u,
followed by four hexadecimal digits that encode the character's Unicode code point. The hexadecimal letters
A though F can be upper or lowercase. So, for example, a string containing only a single reverse solidus
character may be represented as "\u005C".

The following four cases all produce the same result:

"\u002F"

"\u002f"

"\/"

"/"

To escape an extended character that is not in the Basic Multilingual Plane, the character is
represented as a twelve-character sequence, encoding the UTF-16 surrogate pair. So for example, a
string containing only the G clef character (U+1D11E) may be represented as "\uD834\uDD1E".

string

"
Any UNICODE character except

" or \ or control character

\ "

\

quotation mark

reverse solidus

/
solidus

b
backspace

formfeed

newline

carriage return

horizontal tab

4 hexadecimal digits

f

n

r

t

u

"

Figure 5 — string

© Ecma International 2013

10 Security Considerations

With any data format, it is important to encode correctly. Care must be taken when constructing JSON texts
by concatenation. For example:

account = 4627;

comment = '","account":262'; // provided by attacker

json_text = '{"account":' + account + ',"comment":"' + comment + '"}';

The result will be

{"account":4627,"comment":"","account":262}

which in some situations might be seen as being the same as

{"comment":"","account":262}

This confusion allows an attacker to modify the account property or any other property.

It is much wiser to use JSON libraries, which are available in many forms for most programming languages, to
do the encoding, avoiding the confusion hazard.

JSON is so similar to some programming languages that the native parsing ability of the language processors
can be used to parse JSON texts. This should be avoided because the native parser will accept and execute
code that is not JSON.

For example, ECMAScript's eval() function is able parse JSON text, but is can also parse programs. If an

attacker can inject code into the JSON text (as we saw above), then it can compromise the system. JSON
decoders should always be used instead. The web browser's <script> tag is an alias for the eval()

function. It should not be used to deliver JSON text to web browsers.

	1 Scope
	2 Conformance
	3 Normative references
	4 JSON Text
	5 JSON Values
	6 Objects
	7 Arrays
	8 Numbers
	9 String
	10 Security Considerations

