Qecma Draft

Ecma/TC39/2013/052

altl_ECMA-262

- 6" Edition / Draft September 27, 2013

ECMAScript Language
Specification

Report Errors and Issues at: https://bugs.ecmascript.org

Product: Draft for 6th Edition
Component: choose an appropriate one
Version: Rev 19, September 27, 2013 Draft

Rue du Rhone 114 CH-1204 Geneva T: +41 22 849 6000 F: +41 22 849 6001

https://bugs.ecmascript.org/

A COPYRIGHT PROTECTED DOCUMENT

© Ecma International 2012

secmad

Contents Page

Introduction..

1

6.2.6

711
712
7.13
714
7.15
7.16
717
7.18
7.19
7.1.10

Scope..

Conformance

NOIMALIVE FEFEIENCES ...t e et ottt et et e st e reen e 1

OV IVIBW ...ttt ettt ettt ettt e na e bt st s be e bt st sbeesesdeae et et e sttt ne e bt et na e n et eest e e ennennes
Web Scripting
ECMAScript Overview.
(0] oJ[=To3 -SRI

The Strict Variant of ECMAScript ..
Terms and definitions.........cccccveee
Organization of This Specification

Notational Conventions
Syntactic and Lexical Grammars
Context-Free Grammars...............
The Lexical and RegExp Grammars.
The Numeric String Grammar
The Syntactic Grammar
The JSON Grammar
Grammar Notation....
Algorithm Conventions
Static Semantic Rules..............

ECMAScript Data Types and Values .
ECMAScript Language Types........ .14
The Undefined Type...........
The Null Type
The Boolean Type
The String Type......
The Symbol Type...
The Number Type
The Object Type
ECMAScript Specification Types
Data BIOCKScciveiiiniiccc e,

The List and Record Specification Type....
The Completion Record Specification Type.
The Reference Specification Type.................
The Property Descriptor Specification Type...
The Lexical Environment and Environment Record Specification TYPescccocceverreeneeieeneens 34

Abstract Operations
Type Conversion and Testing.
ToPrimitive
ToBoolean....
ToNumber..
Tolnteger
Tolnt32: (Signed 32 Bit Integer)
ToUint32: (Unsigned 32 Bit Integer)....
ToUint16: (Unsigned 16 Bit Integer).
ToString
ToObject.
ToPropertyKey

© Ecma International 2013 |

ecCimna

ToLength
Testing and Comparison Operations . .42
CheckObjectCoercible.................... .42

IsCallable......
SameValue(x, y)
SameValueZero(X, y) ..
IsConstructor
IsPropertyKey
IsExtensible (O)...............
Abstract Relational Comparison
Abstract Equality Comparison
Strict Equality Comparison..
Operations on Objects.........

Get (O, P)
Put (O, P, V, Throw)
CreateOwnDataProperty (O, P, V)....
DefinePropertyOrThrow (O, P, desc)..
DeletePropertyOrThrow (O, P)
HasProperty (O, P).....cccoovenn A7
HasOwnProperty (O, P).
GetMethod (O, P)
Invoke(O,P, [args])
SetintegrityLevel (O, level) ..
TestIntegrityLevel (O, level)....
CreateArrayFromList (elements)
CreateListFromArrayLike (obj)...
OrdinaryHasInstance (C, O)
GetPrototypeFromConstructor (constructor, intrinsicDefaultProto)
OrdinaryCreateFromConstructor (constructor, intrinsicDefaultProto, internalDataList)...

Executable Code and Execution Contexts ..
Lexical EnvironmentSi . o ieiiineeneeieenens
Environment Records
Lexical Environment Operations
Code Realms
Execution Contexts .
Identifier Resolution...
GetThisEnvironment ..
ThisResolution......
GetGlobalObject

ECMAScript Ordinary and Exotic Objects Behaviours
Ordinary Object Internal Methods and Internal Data Properties
[[GetPrototypeOf]] ()
[[SetPrototypeOf]] (V).
[[IsExtensible]] ()....4ces..
[[PreventExtensions]] ()..
[[GetOwnProperty]] (P)
[[DefineOwnProperty]] (P, Desc)
[[HasProperty]](P)
[[Get]] (P, Receiver)
[l

[l

([

([

Set]] (P, V, Receiver)...........
Invoke]] (P, ArgumentsList, Receiver).
Delete]] (P)
Enumerate]] ()
[[OwnPropertyKeys]] ()
ObjectCreate(proto, internalDataList) Abstract Operation ..
Ordinary Function Objects
Built-in Exotic Object Internal Methods and Data Fields ..
Bound Function Exotic Objects

© Ecma International 2013

secma

9.2.2
9.2.3
9.2.4
9.2.5
9.2.6
9.3

9.3.1
9.3.2

10.2.2

11 6.1
11.6.2
11.7

11.8

11.8.1
11.8.2
11.8.3
11.84
11.85
11.8.6
11.9

11.9.1
11.9.2

12
121
12.1.0
12.1.1
12.1.2
12.1.3
12.1.4
12.1.5
12.1.6
12.1.7
12.1.8
12.1.9

Array Exotic Objects
String Exotic Objects.......
Exotic Arguments Objects ...

Integer Indexed Exotic Objects
Built-in Function Objects
Proxy Object Internal Methods and Internal Data Propertles
[[GetPrototypeOf]] ()
[[SetPrototypeOf]] (V)
[[IsExtensible]] ()
[[PreventExtensions]] ()
[[GetOwnProperty]] (P)......
[[DefineOwnProperty]] (P, Desc)
[[HasProperty]] (P)
[[Get]] (P, Receiver)
[[Set]] (P, V, Receiver)
[[Invoke]] (P, ArgumentsList, Receiver)..
[[Delete]] (P)
[[Enumerate]] ()........... 97
[[OwnPropertyKeys]] () ...cccccuvereennens

[[Call]] (thisArgument, argumentsList)
[[Construct]] Internal Method

ECMASCript Language: SOUTCE COU@iiuiiiiiiieiitbae et et sfiriasse et ettt 98
Static Semantics: UTF-16 Encoding

Types of Executable Code
Strict Mode Code..........co....
Non-ECMAScript Functions.....

ECMAScript Language: LexXiCal GramMIar..... o i ooeeieerie siesseaiieesseeseeseesessness sieesseesieesseenseens 100
Unicode Format-Control Characters ...
White Space
Line Terminators
Comments.

Punctuators.....
LiteralS ...
Null'Literals......

Boolean Literals .
Numeric Literals
String Literals
Regular Expression Literals
Template Literal Lexical Components
Automatic Semicolon Insertion
Rules of Automatic Semicolon Insertion
Examples of Automatic Semicolon Insertion..

ECMAScript Language: Expressions
Primary Expressions...

Semantics.......ccoeue.
The this Keyword ...
Identifier Reference..
Literals......ccc......
Array Initialiser ..
Object Initialiser
Function Defining Expressions ..
Generator Comprehensions
Regular Expression Literals....
Template Literals

© Ecma International 2013 1l

secnd

12.1.10 The Grouping Operator
12.2 Left-Hand-Side Expressions .135
12.2.1 Static Semantics................
12.2.2 Property Accessors.
12.2.3 The new Operator..
12.2.4 Function Calls.......
12.2.5 The super Keyword
12.2.6 Argument Lists
12.2.7 Tagged Templates ...
12.3 Postfix Expressions
12.3.1 Static Semantics: Early Errors
12.3.2 Static Semantics: IsValidSimpleAssignmentTarget
12.3.3 Postfix Increment OPeratorcccoccoveeiieiiis e
12.3.4 Postfix Decrement Operator ...
12.4 Unary Operatorsccooeeeeenns
12.4.1 Static Semantics: Early Errors
12.4.2 Static Semantics: IsValldSlmpIeASS|gnmentTarget .
12.4.3 The delete Operator
12.4.4 The void Operator......
12.4.5 The typeof Operator.
12.4.6 Prefix Increment Operator ...
12.4.7 Prefix Decrement Operator..
12.4.8 Unary + Operator
12.4.9 Unary - Operator
12.4.10 Bitwise NOT Operator (~)
12.5 Multiplicative Operators...........cceeiaeecaesaiione.
12.5.1 Static Semantics: IsValldSlmpIeASS|gnmentTarget
12.5.2 Runtime Semantics: Evaluation .
12.6 Additive Operators
12.6.1 Static Semantics: IsValidSimpleAssignmentTarget
12.6.2 The Addition operator (+)
12.6.3 The Subtraction Operator (-)
12.6.4 Applying the Additive Operators to Numbers
12.7 Bitwise Shift OpPerators.........feecoeeiciiciic i
12.7.1 Static Semantics: IsValidSimpleAssignmentTarget
12.7.2 The Left Shift Operator (<<)...........
12.7.3 The Signed Right Shift Operator (>>)...
12.7.4 TheUnsigned Right Shift Operator (>>>)
12.8 Relational Operators
12.8.1 Static Semantics: IsValidSimpleAssignmentTarget
12.8:2 Runtime Semantics: Evaluation..............c..ccocecu.ee.
12.8.3 Runtime Semantics: InstanceofOperator(O, C)..
12.9 Equality Operators. ... ecerereninenre e
12.9.1 Static Semantics: IsValidSimpleAssignmentTarget
12.9.2 Runtime Semantics: Evaluation
12.10 Binary Bitwise Operators
12.10.1 Static Semantics: IsValidSimpleAssignmentTarget
12.10.2 Runtime Semantics: Evaluation
12.11 Binary Logical Operators........cccceoueeeneeneenererennens
12.11.1 Static Semantics: IsValidSimp eA55|gnmentTarget
12.11.2 Runtime Semantics: Evaluation
12.12 Conditional Operator (? :)
12.12.1 Static Semantics: IsVaIldSlmpIeA55|gnmentTarget .
12.12.2 Runtime Semantics: Evaluation .
12.13 Assignment Operators
12.13.1 Static Semantics: Early Errors
12.13.2 Static Semantics: IsValidSimpleAssignmentTarget
12.13.3 Runtime Semantics: Evaluation

v © Ecma International 2013

oeChna

12.13.4 Destructuring Assignment
12.14 Comma Operator (,)
12.14.1 Static Semantics: IsValidSimpleAssignmentTarget
12.14.2 Runtime Semantics: Evaluation

13 ECMAScript Language: Statements and Declarations
13.0 Statement Semantics
13.0.1 Static Semantics: VarDeclaredNames
13.0.2 Runtime Semantics: LabelledEvaluation
13.0.3
13.1
13.1.1 Static Semantics: Early Errors..
13.1.2 Static Semantics: LexicalDeclarations
13.1.3 Static Semantics: LexicallyDeclaredNames
13.1.4 Static Semantics: TopLevelLexicallyDeclaredNames
13.1.5 Static Semantics: TopLevelLexicallyScopedDeclarations...
13.1.6 Static Semantics: TopLevelVarDeclaredNames
13.1.7 Static Semantics: TopLevelVarScopedDeclarations.
13.1.8 Static Semantics: VarDeclaredNames
13.1.9 Runtime Semantics: Evaluation
13.1.10 Runtime Semantics: Block Declaration Instantiation
13.2 Declarations and the Variable Statement
13.2.1 Let and Const Declarations
13.2.2 Variable Statement...................
13.2.3 Destructuring Binding Patterns....
13.3 Empty Statement
13.3.1 Runtime Semantics: Evaluation
13.4 Expression Statement
13.4.1 Runtime Semantics: Evaluation ..
13.5 The if Statement
13.5.1 Static Semantics: VarDeclaredNames
13.5.2 Runtime Semantics: Evaluation ..
13.6 Iteration Statements.
13.6.0 Semantics
13.6.1 The do-while Statement
13.6.2 The while Statement...
13.6.3 The for Statementeccene.e.
13.6.4 The for-in and for-of Statements
13.7 Thecontinue Statement
13.7.1 Static Semantics: Early Errors
13.7.2< Runtime Semantics: Evaluation
13.8° The break Statement...
13.8.1 Static Semantics: Early Errors..
13.8.2 Runtime Semantics: Evaluation ..
13.9 The return Statement

. 189

13.9.1 Static Semantics: Early Errors..
13.9.2 Runtime Semantics: Evaluation 190
13.10 The with Statement .. 190

.190
. 190

13.10.1 Static Semantics: Early Errors.....
13.10.2 Static Semantics: VarDeclaredNames ..
13.10.3 Runtime Semantics: Evaluation .. . 190
13.11 The switch Statement................ . 191
13.11.1 Static Semantics: Early Errors..... .191
13.11.2 Static Semantics: LexicalDeclarations....... . 191
13.11.3 Static Semantics: LexicallyDeclaredNames.. . 192
13.11.4 Static Semantics: VarDeclaredNames 192
13.11.5Runtime Semantics: CaseBlockEvaluation... . 193
13.11.6Runtime Semantics: CaseSelectorEvaluation . . 194
13.11.7 Runtime SemanticS: EVAlUationcociiiiiiiie e e e ... 194

© Ecma International 2013 \

secmd

13.12 Labelled Statements
13.12.1 Static Semantics: Early Errors...........
13.12.2 Static Semantics: VarDeclaredNames..
13.12.3Runtime Semantics: LabelledEvaluation
13.12.4Runtime Semantics: Evaluation............

13.13 The throw Statement........
13.13.1Runtime Semantics: Evaluation
13.14 The try Statement
13.14.1 Static Semantics: Early Errors
13.14.2 Static Semantics: VarDeclaredNames..
13.14.3Runtime Semantics: Bindinglnitialisation
13.14.4 Runtime Semantics: CatchClauseEvaluation
13.14.5 Runtime Semantics: Evaluation
13.15 The debugger statement

13.15.1 Runtime SemanticS: EVAlUATTIONc.oiiiiiiiiiicie et B

14
141
14.1.1
14.1.2
14.1.3
14.1.4
14.15
14.1.6
14.1.7
14.1.8
14.1.9

14.2

14.2.1
14.2.2
14.2.3
14.2.4
14.25
14.2.6
14.2.7
14.2:8
14.2.9

14.3

14.3.1
14.3.2
14.3.3
14.3.4
1435
14.3.6
14.3.7
14.4

14.4.1
14.4.2
14.4.3
14.4.4
14.45
14.4.6
14.4.7

\

ECMAScript Language: Functions and Classes
Function Definitionsc.ccooviienieiienenn,
Static Semantics:
Static Semantics:
Static Semantics:
Static Semantics:
Static Semantics:
Static Semantics:
Static Semantics:
Static Semantics:
Static Semantics:
14.1.10 Static Semantics:
14.1.11Runtime Semantics: Bindinglnitialisation
14.1.12 Runtime Semantics: EvaluateBody
14.1.13Runtime Semantics: IndexedBindinglnitialisation ..
14.1.14 Runtime Semantics: InstantiateFunctionObject
14.1.15 Runtime Semantics: Evaluation............
Arrow Function Definitions
Static Semantics:
Static Semantics:
Static Semantics:
Static Semantics:
Static Semantics:
Static Semantics:
Static Semantics:
Runtime Semantics: Bindinglnitialisation
Runtime Semantics: EvaluateBody
14.2.10 Runtime Semantics: Evaluation
Method Definitions
Static Semantics:
Static Semantics:
Static Semantics:
Static Semantics:
Static Semantics:
Static Semantics: .
Runtime Semantics: PropertyDefinitionEvaluation
Generator Function Definitions
Static Semantics:
Static Semantics:
Static Semantics:
Static Semantics:
Static Semantics:
Static Semantics:
Static Semantics:

Early Errors..
BoundNames ..
Containsccccevevene
ExpectedArgumentCount.
Haslnitialiser
IsConstantDeclaration
IsSimpleParameterList
IsStrict
LexicallyDeclaredNames...
VarDeclaredNames..

Early Errors..
BoundNames: ..
Contains....
CoveredFormalsList...

Expected ArgumentCount.
IsSimpleParameterList
LexicallyDeclaredNames

Early Errors
Expected ArgumentCount
IsSimpleParameterList...
PropName
ReferencesSuper
SpecialMethod .

Early Errors ..
BoundNames
Contains
IsConstantDeclaration ...
LexicallyDeclaredNames
PropName
ReferencesSuper

© Ecma International 2013

secmad

14.4.8 Static Semantics: VarDeclaredNames
14.4.9 Runtime Semantics: EvaluateBody
14.4.10 Runtime Semantics: InstantiateFunctionObject ..
14.4.11 Runtime Semantics: PropertyDefinitionEvaluation
14.4.12 Runtime Semantics: Evaluation ..
14.5 Class Definitions ...
14.5.1 Static Semantics: Early Errors..
14.5.2 Static Semantics: BoundNames..
14.5.3 Static Semantics: ConstructorMethod..
14.5.4 Static Semantics: Contains..........ccccce..
14.5.5 Static Semantics: IsConstantDeclaration
14.5.6 Static Semantics: IsStatic
14.5.7 Static Semantics: LexicallyDeclaredNames..
14.5.8 Static Semantics: PrototypeMethodDefinitions . 219
14.5.9 Static Semantics: PrototypePropertyNameList.. .219
14.5.10 Static Semantics: PropName.........c.cccocerenne. .219
14.5.11 Static Semantics: StaticPropertyNameList . 219
14.5.12 Static Semantics: StaticMethodDefinitions... . 220
14.5.13 Static Semantics: VarDeclaredNames 220
14.5.14 Runtime Semantics: ClassDefinitionEvaluation . 220
14.5.15 Runtime Semantics: Evaluationc...... .221
14.6 Tail Position Callscccocvvvinnene . 221

... 214

. 214
.214
.215
.215
. 217
.217
.217
.218
. 218
. 218
. 218
. 219

14.6.1 Runtime Semantics: PrepareForTailCall . 222
15 ECMAScript Language: Modules and Scripts... . 222
151 MOAUIES ..o il 222
15.1.0 Module Semantics. . 222
15.1.1 IMpPOrts .coccvvveernes .224

15.1.2 Exports
15.2 Scripts

15.2.1 Static Semantics: Early Errors..
15.2.2 Static Semantics: IsStrict
15.2.3 Static Semantics: LexicallyDeclaredNames.....
15.2.4 Static Semantics: LexicallyScopedDeclarations .
15.2.5 Static Semantics: VarDeclaredNames 227

15.2.6 Static Semantics: VarScopedDeclarations. 227
15.2.7 Runtime Semantics: Script Evaluation..... . 228

15.2.8 Runtime Semantics: Evaluation
15.2.9 Runtime Semantics: GlobalDeclarationInstantiation .
15.3 Directive Prologues and the Use Strict Directive

16 Error Handling and Language EXTENSIONSooiiiiiiiiiiiiie e e 230
17 Standard Built-in ECMASCIIPt ODJECTS ..ot e 232

18 The Global Object
18.1 Value Properties of the Global Object
18.1.1 Infinity..
18.1.2 NaN......
18.1.3 undefined ...,

18.2 Function Properties of the Global Object.
18.2.1 eval (x)
18.2.2 isFinite (number)
18.2.3 isNaN (number)...
18.2.4 parseFloat (string)....
18.2.5 parselnt (string , radix)c.cc.....
18.3 URI Handling Function Properties
18.3.1 decodeURI (encodedURI)
18.3.2 decodeURIComponent (encodedURIComponent)
18.3.3 enNCOdEURI (UFi).ceiiiiiiiiiiiiiie e e
18.3.4 encodeURIComponent (uriComponent)

© Ecma International 2013 Vil

oecmad

18.4 Constructor Properties of the Global Ob
18.4.1 Array (...)
18.4.2 ArrayBuffer (.
18.4.3 Boolean (...)
18.4.4 DataView (..
18.45 Date(...)....
18.4.6 Error(...)..
18.4.7 EvalError (...)
18.4.8 Float32Array (...) ..
18.4.9 Float64Array (...) ..
18.4.10 Function (. ..
18.4.11 Int8Array (. ..
18.4.12 Int16Array (...)
18.4.13 INt32Array (...) cereereeiieieenns
18.4.14Map (...)
18.4.15 Number (. . .
18.4.16 Object (...)
18.4.17 RangeError (...)..
18.4.18 ReferenceError (
18.4.19 RegEXp (...)....
18.4.20 Set (...)
18.4.21 String (. ..)
18.4.22 SyntaxError (.
18.4.23 TypeError (.. .)
18.4.24 Uint8Array (...)
18.4.25 Uint8ClampedArray (.
18.4.26 Uint16Array (...)....
18.4.27 Uint32Array (. ..)
18.4.28 URIError (...) ..
18.4.29 WeakMap (. . .
18.4.30 WeakSet (.. .)
18.5 Other Properties of the Global Obj
18.5.1
18.5.2

ject

——

ect

19 Fundamental Objects
19.1 Object Objects
19.1.1 The Object Constructor Called as a Function
19.1.2 The Object CoNStruCtor ..i..occvvereeereriieienes
19.1.3 Properties of the Object Constructor
19.1.4 Properties of the Object Prototype Object
19.1.5 Properties of Object Instances
19.2 © Function Objectscceo........
19.2.1 The Function Constructor
19.2.2 Properties of the Function Constructor....
19.2.3 Properties of the Function Prototype Object..
19.2.4 Function Instances
19.3 Boolean Objects
19.3.1 The Boolean Constructor
19.3.2 Properties of the Boolean Constructor.....
19.3.3 Properties of the Boolean Prototype Object
19.3.4 Properties of Boolean Instances.........

19.4 Symbol Objects......ccccceevveenn
19.4.1 The Symbol Constructor
19.4.2 Properties of the Symbol Constructor
19.4.3 Properties of the Symbol Prototype Object....
19.4.4 Properties of Symbol Instances..............
19.5 Error ObjectS....ccccovovevvevivaennnns
19.5.1 The Error Constructor
19.5.2 Properties of the Error Constructor

VIl © Ecma International 2013

secmad

19.5.3
1954
1955
19.5.6

20
20.1
20.1.1
20.1.2
20.1.3
20.1.4
20.2
20.2.1
20.2.2
20.3
20.3.1
20.3.2
20.3.3
20.3.4
20.3.5

21
21.1
2111
21.1.2
21.13
21.1.4
21.2
21.2.1
21.2.2
21.2.3
21.2.4
21.25
21.2.6

22
22.1
22.1.1
22.1.2
22.1.3
22.1.4
22.15
22.2
22.2.1
22.2.2
22.2.3
22.2.4
22.2.5
22.2.6
22.2.7

23
23.1
23.1.1
23.1.2
23.1.3
23.1.4
23.15
23.2
23.2.1
23.2.2

Properties of the Error Prototype Object
Properties of Error Instances..........c.cccco.....
Native Error Types Used in This Standard
NativeError Object Structure

Numbers and Dates..
Number Objects...........
The Number Constructor
Properties of the Number Constructor
Properties of the Number Prototype Object....
Properties of Number Instances..........

The Math Objectccccovviviiennne
Value Properties of the Math Object ...
Function Properties of the Math Object..
Date ODJECTS ...oviiiiiiieii et
Overview of Date Objects and Definitions of Abstract Operations
The Date Constructor
Properties of the Date Constructor ..
Properties of the Date Prototype Object.
Properties of Date Instances......

Text Processing
String Objects
The String Constructor
Properties of the String Constructor...
Properties of the String Prototype Object.
Properties of String Instances4....x
RegExp (Regular Expression) Objects
Patterns
Pattern Semantics
The RegExp Constructor
Properties of the RegExp Constructor
Properties of the RegExp Prototype Object.
Properties of RegExp Instances

Indexed Collections
Array Objects
The Array Constructor
Properties of the Array Constructor
Properties of the Array Prototype Object ..
Properties of Array Instances..............
Array lterator Object Structure
TypedArray Objects
The %TypedArray% Intrinsic Object ...
Properties of the %TypedArray% Intrinsic Object.
Properties of the %TypedArrayPrototype% Object..
The TypedArray CoNStructorsc.cceccveereenenne.
Properties of the TypedArray Constructors.
Properties of TypedArray Prototype Objects..
Properties of TYPedArray INSTANCEScceiiiiiiiiriieet ettt et

Keyed Collection
Map Objects..............
The Map Constructor...............

Properties of the Map Constructor...
Properties of the Map Prototype Object .
Properties of Map Instances..............
Map Iterator Object Structure
Set Objects
The Set Constructor....
Properties of the Set Constructor

© Ecma International 2013 IX

23.2.3 Properties of the Set Prototype Object
23.2.4 Properties of Set Instances
23.2.5 Set Iterator Object Structure ..

23.3

23.3.1 The WeakMap Constructor
23.3.2 Properties of the WeakMap Constructor......
23.3.3 Properties of the WeakMap Prototype Object
23.3.4 Properties of WeakMap Instances

23.4

23.4.1 The WeakSet Constructor
23.4.2 Properties of the WeakSet Constructor
23.4.3 Properties of the WeakSet Prototype Object..
23.4.4 Properties of WeakSet Instances

24.1.1 Abstract Operations For ArrayBuffer Object
24.1.2 The ArrayBuffer Constructor..........cccccoeevennn.
24.1.3 Properties of the ArrayBuffer Constructor ..
24.1.4 Properties of the ArrayBuffer Prototype Object.
24.1.5 Properties of the ArrayBuffer Instances

24.2.1 Abstract Operations For DataView Objects....
24.2.2 The DataView Constructor
24.2.3 Properties of the DataView Constructor
24.2.4 Properties of the DataView Prototype Object.
24.2.5 Properties of DataView Instances

24.3.1 The JSON Grammar....
24.3.2 JSON.parse (text[,reviver])
24.3.3 JSON.stringify (value [, replacer [, space]])..
24.3.4 JSON [@@toStringTag]

25.1.1 The lterable Iterface
25.1.2 The lterator Iterface
25.1.3 The IteratorResult lterface..

secmd

WeakMap Objects............

WeakSet Objects..........ccccvenen.

Structured Data
ArrayBuffer Objects

DataView ODbjJectS.......ccooeiienieiieeieieee

The JSON Object

Control Abstraction Objects
Common lteration Interfaces..

"std:iteration" Exports.........
GeneratorFunction Objects.....

25.3.1 The GeneratorFunction Constructor

25.3.2< Properties of the GeneratorFunction Constructor...
25.3:3 Properties of the GeneratorFunction Prototype Object
25.3.4 GeneratorFunction Instances

25.4.1 Properties of Generator Prototype ..
25.4.2 Properties of Generator Instances ..
25.4.3 lteration Related‘Abstract Operations

26.1.1 Reflect.defineProperty(target, propertyKey, attributes).
26.1.2 Reflect.deleteProperty (target, propertyKey)..
26.1.3 Reflect.enumerate (target).......ccoceevvevveciniviinenens
26.1.4 Reflect.get (target, propertyKey, receiver=target)
26.1.5 Reflect.getOwnPropertyDescriptor(target, propertyKey)
26.1.6 Reflect.getPrototypeOf (target)
26.1.7 Reflect.has (target, propertyKey).....
26.1.8 Reflect.hasOwn (target, propertyKey)
26.1.9 Reflect.isExtensible (target)ccoccoveiiiiiiiiiin i

Generator Objectsccciccevvenennne

Reflection
The Reflect Object

26.1.10 Reflect.invoke (target, propertyKey, argumentsList, receiver=target)ccccooeerverierinnvienns 432

© Ecma International 2013

secnd

26.1.11 Reflect.ownKeys (target)
26.1.12 Reflect.preventExtensions (target)...
26.1.13 Reflect.set (target, propertyKey, V, receiver= target)
26.1.14 Reflect.setPrototypeOf (target, proto)
26.2 Proxy Objects
26.2.1 The Proxy Factory Function..............
26.2.2 Properties of the Proxy Factory Function
26.2.3 Property 0f ProXy INSTANCEScc.iiiiiiiiiiiie et ettt ettt ettt e nbe et e e beeneanee s e eneesnee e

Annex A (informative) Grammar Summary
Al Lexical Grammarcccceene...
A.2 Number Conversions..
A3 Expressions....
A4 Statements.......
A5 Functions and Scripts
A.6 Universal Resource Identlfler Character Classes
A7 Regular Expressions...
A8 JSON ...ttt
A.8.1 JSON Lexical Grammar ..

A.8.2 JSON Syntactic Grammar .

Annex B (normative) Additional ECMAScript Featuresfor Web Browsers
B.1 Additional Syntax
B.1.1 Numeric Literals
B.1.2 String Literals
B.1.3 HTML-like Comments..
B.2 Additional Properties
B.2.1 Additional Properties of the Global Object
B.2.2 Additional Properties of the Object.prototype Object
B.2.3 Additional Properties of the String.prototype Object
B.2.4 Additional Properties of the Date.prototype Object
B.2.5 Additional Properties of the RegExp.prototype Object ..
B.3 Other Additional Features
B.3.1 _ proto___ Property Names in Object Initialisers.................

B.3.2 Web Legacy Compatibility for Block-Level Function Declarations

Annex C (informative) The Strict Mode of ECMASCIIPTccviiiiiiiiiieiee e e
Annex D (informative) Corrections and Clarifications with Possible Compatibility Impact 464

Annex E (informative). Additions and Changes that Introduce Incompatibilities with Prior

Editions
E.l In the 6" Edition .
E.2 In the 5" Edition

Annex F (informative) Static Semantic Rule Cross REfEreNCE........cocviiiiiiiiriieie e 473

Scrap Heap
26.2.4 Symbol Exotic Objects
26.2.5 Preliminary workon Irrefutable Destructuring Binding Patterns ..
26.2.6 8.3.10 [[Enumerate]] (includePrototype, onlyEnumerable)..
26.2.7 9.1.11 ToPositivelnteger
26.2.8 10.5.3 Function Declaration Instantiation..
F.1.1 The __proto__ pseudo Property.coeeiencieereeenenns
F.1.2 Changes To Internal Methods___
26.2.9 [[HasOwnProperty]] (P)......
26.2.10 [[HasOwnProperty]] (P)

. Bmary ata Objects
26.3.1 The BinaryData Module.....
26.3.2 The BinaryData.Type Object ...
26.3.3 The BinaryData.ArrayType Object
26.3.4 The BinaryData.StructType Object

© Ecma International 2013 Xl

B INTERNATIONAL

Xl © Ecma International 2013

YT
“ecma

I INTERNATIONAL

© Ecma International 2013

Xl

secnd

Introduction

This Ecma Standard is based on several originating technologies, the most well known being JavaScript
(Netscape) and JScript (Microsoft). The language was invented by Brendan Eich at Netscape and first
appeared in that company’s Navigator 2.0 browser. It has appeared in all subsequent browsers from Netscape
and in all browsers from Microsoft starting with Internet Explorer 3.0.

The development of this Standard started in November 1996. The first edition of this Ecma Standard was
adopted by the Ecma General Assembly of June 1997.

That Ecma Standard was submitted to ISO/IEC JTC 1 for adoption under the fast-track procedure, and
approved as international standard ISO/IEC 16262, in April 1998. The Ecma General Assembly of June 1998
approved the second edition of ECMA-262 to keep it fully aligned with ISO/IEC 16262. Changes between the
first and the second edition are editorial in nature.

The third edition of the Standard introduced powerful regular expressions, better string handling, new control
statements, try/catch exception handling, tighter definition-of errors, formatting for numeric output and minor
changes in anticipation of forthcoming internationalisation facilities and future language growth. The third
edition of the ECMAScript standard was adopted by the Ecma General Assembly of December 1999 and
published as ISO/IEC 16262:2002 in June 2002.

Since publication of the third edition, ECMAScript has achieved massive adoption in conjunction with the
World Wide Web where it has become the programming language that is supported by essentially all web
browsers. Significant work was done to develop a fourth edition of ECMAScript. Although that work was not
completed and not published! as the fourth edition of ECMAScript, it informs continuing evolution of the
language. The fifth edition of ECMAScript (published as ECMA-262 5" edition) codifies de facto
interpretations of the language specification that have become common among browser implementations and
adds support for new features that have emerged since the publication of the third edition. Such features
include accessor properties, reflective creation and inspection of objects, program control of property
attributes, additional array manipulation functions, support for the JSON object encoding format, and a strict
mode that provides enhanced error checking and program security.

The edition 5.1 of the ECMAScript Standard has been fully aligned with the third edition of the international
standard ISO/IEC-16262:2011.

This present sixth edition of the Standard.........

ECMAScript is a vibrant language and the evolution of the language is not complete. Significant technical
enhancement will continue with future editions of this specification.

This Ecma Standard has been adopted by the General Assembly of <month> <year>.

1 Note: Please note that for ECMAScript Edition 4 the Ecma standard number “ECMA-262 Edition 4" was reserved but not
used in the Ecma publication process. Therefore “ECMA-262 Edition 4" as an Ecma International publication does not
exist.

XV © Ecma International 2013

oeChna

"DISCLAIMER

This draft document may be copied and furnished to others, and derivative works that comment on or
otherwise explain it or assist in its implementation may be prepared, copied, published, and distributed,
in whole or in part, without restriction of any kind, provided that the above copyright notice and this
section are included on all such copies and derivative works. However, this document itself may not be
modified in any way, including by removing the copyright notice or references to Ecma International,
except as needed for the purpose of developing any document or deliverable produced by Ecma
International.

This disclaimer is valid only prior to final version of this document. After approval all rights on the
standard are reserved by Ecma International.

The limited permissions are granted through the standardization phase and will not be revoked by
Ecma International or its successors or assigns during this time:

This document and the information contained herein is provided on an "AS IS" basis and ECMA
INTERNATIONAL DISCLAIMS ALL WARRANTIES, EXPRESS OR IMPLIED, INCLUDING BUT NOT
LIMITED TO ANY WARRANTY THAT THE USE OF THE INFORMATION HEREIN WILL NOT INFRINGE
ANY OWNERSHIP RIGHTS OR ANY IMPLIED WARRANTIES OF MERCHANTABILITY OR FITNESS FOR
A PARTICULAR PURPOSE."

© Ecma International 2013 XV

~2echnd

ECMAScript Language Specification

1 Scope
This Standard defines the ECMAScript scripting language.
2 Conformance

A conforming implementation of ECMAScript must provide and support all the types, values, objects,
properties, functions, and program syntax and semantics described in this specification.

A conforming implementation of this Standard shall interpret characters in conformance with the Unicode
Standard, Version 5.1.0 or later and ISO/IEC 10646. If the adopted ISO/IEC 10646-1 subset is not otherwise
specified, it is presumed to be the Unicode set, collection 10646.

A conforming implementation of ECMAScript is permitted to provide additional types, values, objects,
properties, and functions beyond those described in® this specification. In particular, a conforming
implementation of ECMAScript is permitted to provide properties not-described in this specification, and
values for those properties, for objects that are described in this specification.

A conforming implementation of ECMAScript is permitted to support program and regular expression syntax
not described in this specification. In particular, a.conforming implementation of ECMAScript is permitted to
support program syntax that makes use of the “future reserved words” listed in subclause 0 of this
specification.

3 Normative references

The following referenced documents are indispensable for the application of this document. For dated
references, only the edition cited applies. For undated references, the latest edition of the referenced
document (including any amendments) applies.

ISO/IEC 9899:1996, Programming Languages — C, including amendment 1 and technical corrigenda 1 and 2
ISO/IEC 10646:2003: Information Technology — Universal Multiple-Octet Coded Character Set (UCS) plus
Amendment 1:2005, Amendment 2:2006, Amendment 3:2008, and Amendment 4:2008, plus additional
amendments and corrigenda; or successor

The Unicode Standard, Version 5.0, as amended by Unicode 5.1.0, or successor

Unicode Standard Annex #15, Unicode Normalization Forms, version Unicode 5.1.0, or successor

Unicode Standard Annex #31, Unicode Identifiers and Pattern Syntax, version Unicode 5.1.0, or successor.

4 Overview
This section contains a non-normative overview of the ECMAScript language.

ECMAScript is an object-oriented programming language for performing computations and manipulating
computational objects within a host environment. ECMAScript as defined here is not intended to be
computationally self-sufficient; indeed, there are no provisions in this specification for input of external data or
output of computed results. Instead, it is expected that the computational environment of an ECMAScript
program will provide not only the objects and other facilities described in this specification but also certain
environment-specific objects, whose description and behaviour are beyond the scope of this specification
except to indicate that they may provide certain properties that can be accessed and certain functions that can
be called from an ECMAScript program.

© Ecma International 2012 1

secmd

A scripting language is a programming language that is used to manipulate, customise, and automate the
facilities of an existing system. In such systems, useful functionality is already available through an user
interface, and the scripting language is a mechanism for exposing that functionality to program control. In this
way, the existing system is said to provide a host environment of objects and facilities, which completes the
capabilities of the scripting language. A scripting language is intended for use by both professional and non-
professional programmers. ECMAScript was originally designed to be used as a scripting language, but has
become widely used as a general purpose programming language.

ECMAScript was originally designed to be a Web scripting language, providing a mechanism to enliven Web
pages in browsers and to perform server computation as part of a Web-based client-server architecture.
ECMAScript is now used both as a general propose programming language and to provide core scripting
capabilities for a variety of host environments. Therefore the core language is specified in this document apart
from any particular host environment.

Some of the facilities of ECMAScript are similar to those used in other programming languages; in particular
Java™, Self, and Scheme as described in:

Gosling, James, Bill Joy and Guy Steele. The Java™ Language Specification. Addison Wesley Publishing Co.,
1996.

Ungar, David, and Smith, Randall B. Self: The Power of Simplicity. OOPSLA '87 Conference Proceedings, pp.
227-241, Orlando, FL, October 1987.

IEEE Standard for the Scheme Programming Language. |IEEE Std 1178-1990.
4.1 Web Scripting

A web browser provides an ECMAScript host environment for client-side computation including, for instance,
objects that represent windows, menus, pop-ups, dialog boxes, text-areas, anchors, frames, history, cookies,
and input/output. Further, the host environment provides-@ means to attach scripting code to events such as
change of focus, page and image loading, unloading, error and abort, selection, form submission, and mouse
actions. Scripting code appears within the HTML and the displayed page is a combination of user interface
elements and fixed and computed text and images. The scripting code is reactive to user interaction and there
is no need for a main program.

A web server provides a different host environment for.server-side computation including objects representing
requests, clients, and files; and mechanisms to lock and share data. By using browser-side and server-side
scripting together, it is possible to distribute computation between the client and server while providing a
customised user interface for a Web-based application.

Each Web browser and server that supports ECMAScript supplies its own host environment, completing the
ECMAScript execution environment.

4.2 ECMAScript Overview

The following is an.informal overview of ECMAScript—not all parts of the language are described. This
overview is not part of the standard proper.

ECMAScript is object-based: basic language and host facilities are provided by objects, and an ECMAScript
program is a cluster of communicating objects. An ECMAScript object is a collection of properties each with
zero or more attributes that determine how each property can be used—for example, when the Writable
attribute for a property is set to false, any attempt by executed ECMAScript code to change the value of the
property fails. Properties are containers that hold other objects, primitive values, or functions. A primitive
value is a member of one of the following built-in types: Undefined, Null, Boolean, Number, and String; an
object is a member of the remaining built-in type Object; and a function is a callable object. A function that is
associated with an object via a property is a method.

ECMAScript defines a collection of built-in objects that round out the definition of ECMAScript entities. These
built-in objects include the global object, the Object object, the Function object, the Array object, the String

2 © Ecma International 2013

pecma

object, the Boolean object, the Number object, the Math object, the Date object, the RegExp object, the
JSON object, and the Error objects Error, EvalError, RangeError, ReferenceError, SyntaxError,
TypeError and URIError.

ECMAScript also defines a set of built-in operators. ECMAScript operators include various unary operations,
multiplicative operators, additive operators, bitwise shift operators, relational operators, equality operators,
binary bitwise operators, binary logical operators, assignment operators, and the comma operator.

ECMAScript syntax intentionally resembles Java syntax. ECMAScript syntax is relaxed to enable it to serve as
an easy-to-use scripting language. For example, a variable is not required to have its type declared nor are
types associated with properties, and defined functions are not required to have their declarations appear
textually before calls to them.

4.2.1 Objects

ECMAScript does not use classes such as those in C++, Smalltalk, or Java. Instead objects may be created in

Formatted: French (Switzerland)

C ed [AWB101]: This description probably need to

various ways including via a literal notation or via constructors which create objects and then execute code
that initialises all or part of them by assigning initial values to their properties. Each constructor is a function
that has a property named “prototype” that is used to implement prototype-based inheritance and shared
properties. Objects are created by using constructors in new expressions; for example, new
Date (2009,11) creates a new Date object. Invoking a constructor without.using new has consequences that
depend on the constructor. For example, Date () produces a string representation of the current date and
time rather than an object.

Every object created by a constructor has an implicit reference (called the object’s prototype) to the value of
its constructor’'s “prototype” property. Furthermore, a prototype may have a non-null implicit reference to its
prototype, and so on; this is called the prototype chain. When a reference is made to a property in an object,
that reference is to the property of that name in the first object.in the prototype chain that contains a property
of that name. In other words, first the object mentioned directly is examined for such a property; if that object
contains the named property, that is the property to which the reference refers; if that object does not contain
the named property, the prototype for that object is' examined next; and so on.

be tweaked in light of new features such as class declarations
and explicit exposure of the [[Prototype]] property

CF implicit prototypelink
prototype CF,

i explicit prototype property
b2 CFP1 plicitp peprop

A cfl Framns sz Cf3 Cf,‘ - Crs

gl ol gl ¢! ol
oz g2 = e o2

Figure 1 — Object/Prototype Relationships
In a class-based object-oriented language, in general, state is carried by instances, methods are carried by

classes, and inheritance is only of structure and behaviour. In ECMAScript, the state and methods are carried
by objects, while structure, behaviour, and state are all inherited.

© Ecma International 2013 3

secmd

All objects that do not directly contain a particular property that their prototype contains share that property
and its value. Figure 1 illustrates this:

CF is a constructor (and also an object). Five objects have been created by using new expressions: cfi, cfy,
cfs, cfs, and cfs. Each of these objects contains properties named g1 and g2. The dashed lines represent the
implicit prototype relationship; so, for example, cfs’s prototype is CFp. The constructor, CF, has two properties
itself, named P1 and P2, which are not visible to CFp, cfi, cfz, cfs, cf4, or cfs. The property named CFP1 in CFp
is shared by cfi, cfy, cfs, cfs, and cfs (but not by CF), as are any properties found in CFy’s implicit prototype
chain that are not named g1, g2, or CFP1. Notice that there is no implicit prototype link between CF and CFp.

Unlike class-based object languages, properties can be added to objects dynamically by assigning values to
them. That is, constructors are not required to name or assign values to all or any of the constructed object’s
properties. In the above diagram, one could add a new shared property for cfi, cfz, cfs, cfs, and cfs by
assigning a new value to the property in CFp.

4.2.2 The Strict Variant of ECMAScript

The ECMAScript Language recognises the possibility that some users of the language may wish to restrict
their usage of some features available in the language. They might do so in the interests of security, to avoid
what they consider to be error-prone features, to get enhanced error checking, or for other reasons of their
choosing. In support of this possibility, ECMAScript defines a strict variant of the language. The strict variant
of the language excludes some specific syntactic and semantic features of the regular ECMAScript language
and modifies the detailed semantics of some features. The strict’ variant also specifies additional error
conditions that must be reported by throwing error exceptions in situations that are not specified as errors by
the non-strict form of the language.

The strict variant of ECMAScript is commonly referred to as the strict mode of the language. Strict mode
selection and use of the strict mode syntax and semantics of ECMAScript is explicity made at the level of
individual ECMAScript code units. Because strict mode is selected at the level of a syntactic code unit, strict
mode only imposes restrictions that have local effect within such a code unit. Strict mode does not restrict or
modify any aspect of the ECMAScript semantics that must operate consistently across multiple code units. A
complete ECMAScript program may be composed for both strict mode and non-strict mode ECMAScript code
units. In this case, strict mode only applies when actually executing code that is defined within a strict mode
code unit.

In order to conform to this specification, an ECMAScript implementation must implement both the full
unrestricted ECMAScript language and the strict mode variant of the ECMAScript language as defined by this
specification. In-addition, an implementation must support the combination of unrestricted and strict mode
code units.into a single composite program.

4.3 Terms and definitions

For the purposes of this document, the following terms and definitions apply.

4.3.1

type

set of data values as defined in Clause 8 of this specification

4.3.2

primitive value

member of one of the types Undefined, Null, Boolean, Number, or String as defined in Clause 8
NOTE A primitive value is a datum that is represented directly at the lowest level of the language implementation.
433

object

member of the type Object

NOTE An object is a collection of properties and has a single prototype object. The prototype may be the null value.

4 © Ecma International 2013

secma

434

constructor

function object that creates and initialises objects
NOTE The value of a constructor’s “
and shared properties.

prototype” property is a prototype object that is used to implement inheritance

435

prototype

object that provides shared properties for other objects

NOTE When a constructor creates an object, that object implicitly references the constructor’'s “prototype” property
for the purpose of resolving property references. The constructor's “prototype” property can be referenced by the
program expression constructor.prototype, and properties added to an object’s prototype are shared, through
inheritance, by all objects sharing the prototype. Alternatively, a new object may.be created with an explicitly specified
prototype by using the Object. create built-in function.

4.3.6

ordinary object

object that has the default behaviour for the internal methods that must be supported by all ECMAScript
objects.

4.3.7

exotic object

object that has some alternative behaviour for one or more of the internal methods that must be supported by
all ECMAScript objects.

NOTE Any object that is not an ordinary object is an exotic object.

4.3.8
standard object
object whose semantics are defined by this specification.

439

built-in object

object supplied by an ECMAScript implementation, independent of the host environment, that is present at the
start of the execution of an ECMAScript program

NOTE Standard built-in objects are defined in this specification, and an ECMAScript implementation may specify and
define others. A built-in constructor is a built-in object that is also a constructor.

4.3.10
undefined value
primitive value used when a variable has not been assigned a value

43.11
Undefined type
type whose sole value is the undefined value

4.3.12
null value
primitive value that represents the intentional absence of any object value

4.3.13
Null type
type whose sole value is the null value

4.3.14

Boolean value
member of the Boolean type

© Ecma International 2013 5

secmd

NOTE There are only two Boolean values, true and false.

4.3.15
Boolean type
type consisting of the primitive values true and false

4.3.16
Boolean object
member of the Object type that is an instance of the standard built-in Boolean constructor

NOTE A Boolean object is created by using the Boolean constructor in a new expression, supplying a Boolean
value as an argument. The resulting object has an internal data property whose value is_the Boolean value. A Boolean
object can be coerced to a Boolean value.

4.3.17
String value
primitive value that is a finite ordered sequence of zero or more 16-bit unsigned integer

NOTE A String value is a member of the String type. Each integervalue in the sequence usually represents a single
16-bit unit of UTF-16 text. However, ECMAScript does not place any. restrictions or requirements onthe values except that
they must be 16-bit unsigned integers.

4.3.18
String type
set of all possible String values

4.3.19
String object
member of the Object type that is an instance of the standard built-in string constructor

NOTE A String object is created by using the String constructor in a new expression, supplying a String value as
an argument. The resulting object-has an internal data property whose value is the String value. A String object can be
coerced to a String value by calling the string constructor as a function (21.1.1.1).

4.3.20
Number value
primitive value corresponding to a double-precision 64-bit binary format IEEE 754 value

NOTE A Number value is a member of the Number type and is a direct representation of a number.
4.3.21
Number type

set of all possible Number values including the special “Not-a-Number” (NaN) value, positive infinity, and
negative infinity

4.3.22
Number object
member of the Object type that is an instance of the standard built-in Number constructor

NOTE A Number object is created by using the Number constructor in a new expression, supplying a Number value
as an argument. The resulting object has an internal data property whose value is the Number value. A Number object can
be coerced to a Number value by calling the Number constructor as a function (20.1.1.1).

4.3.23
Infinity
number value that is the positive infinite Number value

4.3.24

NaN
number value that is an IEEE 754 “Not-a-Number” value

6 © Ecma International 2013

secma

4.3.25
function
member of the Object type that may be invoked as a subroutine

NOTE In addition to its properties, a function contains executable code and state that determine how it behaves
when invoked. A function’s code may or may not be written in ECMAScript.

4.3.26
built-in function
built-in object that is a function

NOTE Examples of built-in functions include parseInt and Math.exp. An .implementation may provide
implementation-dependent built-in functions that are not described in this specification.

4.3.27

property
association between a name and a value that is a part of an object

NOTE Depending upon the form of the property the value may be represented either directly as a data value (a
primitive value, an object, or a function object) or indirectly by a pair of accessor functions.

4.3.28
method
function that is the value of a property

NOTE When a function is called as a method of an object, the object is passed to the function as its this value.
4.3.29
built-in method

method that is a built-in function

NOTE Standard built-in methods are defined in this specification, and an ECMAScript implementation may specify
and provide other additional built-in methods.

4.3.30

attribute

internal value that defines some characteristic of a property
4.3.31

own property

property that is directly contained by its object

4.3.32

inherited property

property of an object that is not an own property but is a property (either own or inherited) of the object’s
prototype

4.4 Organization of This Specification

The remainder of this specification is organized as follows:

Clause 5 defines the notational conventions used throughout the specification.

Clauses 6-9 define the execution environment within which ECMAScript programs operate.

Clauses 10-16 define the actual ECMAScript programming language includings its syntactic encoding and the
execution semantics of all language features.

Clauses 17-26 define the ECMAScript standard library. It includes the definitions of all of the standard objects
that are available for use by ECMAScript programs as the execute.

© Ecma International 2013 7

secmd

5 Notational Conventions

5.1 Syntactic and Lexical Grammars
5.1.1 Context-Free Grammars

A context-free grammar consists of a number of productions. Each production has an abstract symbol called a
nonterminal as its left-hand side, and a sequence of zero or more nonterminal and terminal symbols as its
right-hand side. For each grammar, the terminal symbols are drawn from a specified alphabet.

A chain production is a production that has exactly one nonterminal symbol on its right-hand side along with
zero or more terminal symbols.

Starting from a sentence consisting of a single distinguished nonterminal, called the goal symbol, a given
context-free grammar specifies a language, namely, the (perhaps infinite) set of possible sequences of
terminal symbols that can result from repeatedly replacing any nonterminal in the sequence with a right-hand
side of a production for which the nonterminal is the left-hand side.

5.1.2 The Lexical and RegExp Grammars

A lexical grammar for ECMAScript is given in clause 7. This grammar has as its terminal symbols characters
(Unicode code units) that conform to the rules for SourceCharacter defined in Clause 6. It defines a set of
productions, starting from the goal symbol. InputElementDiv or InputElementRegExp, that describe how
sequences of such characters are translated into a sequence of input elements.

Input elements other than white space and comments form the terminal symbols for the syntactic grammar for
ECMAScript and are called ECMAScript tokens. These tokens are the reserved words, identifiers, literals, and
punctuators of the ECMAScript language. Moreover, line terminators, although not considered to be tokens,
also become part of the stream of input elements and guide the process of automatic semicolon insertion
(11.9). Simple white space and single-line comments are discarded and do not appear in the stream of input
elements for the syntactic.grammar. A MultiLineComment (that is, a comment of the form “/*...*/” regardless
of whether it spans more than one line) is likewise simply discarded if it contains no line terminator; but if a
MultiLineComment contains one or more line-terminators, then it is replaced by a single line terminator, which
becomes part of the stream of input elements for the syntactic grammar.

A RegExp grammar for. ECMAScript is given in 21.2.1. This grammar also has as its terminal symbols the
characters as defined by SourceCharacter. It defines a set of productions, starting from the goal symbol Pattern,
that describe how sequences of characters are translated into regular expression patterns.

Productions of the lexical and RegExp grammars are distinguished by having two colons “::” as separating
punctuation. The lexical and RegExp grammars share some productions.

5.1.3 The Numeric String. Grammar

Another grammar is used for translating Strings into numeric values. This grammar is similar to the part of the
lexical grammar having to do with numeric literals and has as its terminal symbols SourceCharacter. This
grammar appears in 7.1.3.1.

Productions of the numeric string grammar are distinguished by having three colons “:::” as punctuation.

5.1.4 The Syntactic Grammar

The syntactic grammar for ECMAScript is given in clauses 11, 12, 13 and 14. This grammar has ECMAScript
tokens defined by the lexical grammar as its terminal symbols (5.1.2). It defines a set of productions, starting

from the goal symbol Script, that describe how sequences of tokens can form syntactically correct independent
components of an ECMAScript programs.

8 © Ecma International 2013

pecma

When a stream of characters is to be parsed as an ECMAScript script, it is first converted to a stream of input
elements by repeated application of the lexical grammar; this stream of input elements is then parsed by a
single application of the syntactic grammar. The script is syntactically in error if the tokens in the stream of
input elements cannot be parsed as a single instance of the goal nonterminal Script, with no tokens left over.

Productions of the syntactic grammar are distinguished by having just one colon “:” as punctuation.

The syntactic grammar as presented in clauses 12, 13, 14 and 15 is actually not a complete account of which
token sequences are accepted as correct ECMAScript scripts. Certain additional token sequences are also
accepted, namely, those that would be described by the grammar if only semicolons were added to the
sequence in certain places (such as before line terminator characters). Furthermore, certain token sequences
that are described by the grammar are not considered acceptable if a terminator character appears in certain
“awkward” places.

In certain cases in order to avoid ambiguities the syntactic grammar uses generalised productions that permit
token sequences that are not valid ECMAScript scripts. For example, this technique is used in with object
literals and object destructuring patterns. In such cases a more restrictive supplemental grammar is provided
that further restricts the acceptable token sequences. In certain contexts, when explicitly specific, the input
elements corresponding to such a production are parsed again using a goal symbol of a supplemental
grammar. The script is syntactically in error if the tokens in the stream of input elements cannot be parsed as
a single instance of the supplemental goal symbol, with no tokens left over.

5.1.5 The JSON Grammar

The JSON grammar is used to translate a String describing a set of ECMAScript objects into actual objects.
The JSON grammar is given in 24.3.1.

The JSON grammar consists of the JSON lexical grammar.and the JSON syntactic grammar. The JSON
lexical grammar is used to translate character sequences into tokens and is similar to parts of the ECMAScript
lexical grammar. The JSON syntactic grammar describes how sequences of tokens from the JSON lexical
grammar can form syntactically correct JSON object descriptions.

Productions of the JSON' lexical grammar are distinguished by having two colons “::” as separating
punctuation. The JSON.lexical grammar uses some productions from the ECMAScript lexical grammar. The
JSON syntactic grammar is similar to_parts of the ECMAScript syntactic grammar. Productions of the JSON

w.n

syntactic grammar are distinguished by using one colon “;” as separating punctuation.
5.1.6 Grammar Notation

Terminal'symbols of the lexical, RegExp, and numeric string grammars, and some of the terminal symbols of
the other grammars, are shown in fixed width font, both in the productions of the grammars and
throughout this specification whenever the text directly refers to such a terminal symbol. These are to appear
in a script either exactly as written or using equalvant Unicode escape sequences (see clause 10). All terminal
symbol characters specified in this way are to be understood as the appropriate Unicode character from the
ASCII range, as opposed to any similar-looking characters from other Unicode ranges.

Nonterminal symbols are shown in italic type. The definition of a nonterminal (also called a “production”) is
introduced by the name of the nonterminal being defined followed by one or more colons. (The number of
colons indicates to which grammar the production belongs.) One or more alternative right-hand sides for the
nonterminal then follow on succeeding lines. For example, the syntactic definition:

WhileStatement :
while (Expression) Statement

states that the nonterminal WhileStatement represents the token while, followed by a left parenthesis token,

followed by an Expression, followed by a right parenthesis token, followed by a Statement. The occurrences of
Expression and Statement are themselves nonterminals. As another example, the syntactic definition:

© Ecma International 2013 9

secmd

ArgumentList :
AssignmentExpression
ArgumentList , AssignmentExpression

states that an ArgumentList may represent either a single AssignmentExpression or an ArgumentList, followed by
a comma, followed by an AssignmentExpression. This definition of ArgumentList is recursive, that is, it is defined
in terms of itself. The result is that an ArgumentList may contain any positive number of arguments, separated
by commas, where each argument expression is an AssignmentExpression. Such recursive definitions of

nonterminals are common.

The subscripted suffix “opt”, which may appear after a terminal or nonterminal, indicates an optional symbol.
The alternative containing the optional symbol actually specifies two right-hand sides, one that omits the
optional element and one that includes it. This means that:

VariableDeclaration :
Identifier Initialiseropt

is a convenient abbreviation for:
VariableDeclaration :
Identifier
Identifier Initialiser

and that:

IterationStatement :
for (ExpressionNolngp ; EXxpressionopt ;. Expressiongs) Statement

is a convenient abbreviation for:

IterationStatement :
for (; Expressionopt ; Expressionop) Statement
for (ExpressionNoln ; Expressionoy ; Expressiong:) Statement

which in turn is an abbreviation for:

IterationStatement :
for(.; ; Expressionoy) Statement
for (; Expression ; Expressiongy:) Statement
for (ExpressionNoln ; ; Expressioney:) Statement
for (ExpressionNoln ; Expression ; Expressionoy:) Statement

which inturn is an abbreviation for:

IterationStatement :
for ; ;) Statement
for 7+ Expression) Statement
for 7 Expression ;) Statement

(
(
(
for (; Expression ; Expression) Statement
for (ExpressionNoln ; ;) Statement

for (ExpressionNoln ; ; Expression) Statement

for (ExpressionNoln ; Expression ;) Statement

for (ExpressionNoln ; Expression ; Expression) Statement

so the nonterminal IterationStatement actually has eight alternative right-hand sides.
When the words “one of” follow the colon(s) in a grammar definition, they signify that each of the terminal

symbols on the following line or lines is an alternative definition. For example, the lexical grammar for
ECMAScript contains the production:

10 © Ecma International 2013

pecma

NonZeroDigit :: one of
1 2 3 4 5 6 7 8 9

which is merely a convenient abbreviation for:

NonZeroDigit ::

WoOodoUldWN K

If the phrase “lempty]” appears as the right-hand side of a production; it indicates that the production's right-
hand side contains no terminals or nonterminals.

If the phrase “[lookahead ¢ set]” appears in the right-hand side of a production, it indicates that the production
may not be used if the immediately following input token is‘a member of the given set. The set can be written
as a list of terminals enclosed in curly braces. For convenience, the set can also be written as a nonterminal,
in which case it represents the set of all terminals to which that.nonterminal could expand. For example, given
the definitions

DecimalDigit :: one of
0 1 2 3 4 5 6 7 '8 9

DecimalDigits ::
DecimalDigit
DecimalDigits DecimalDigit

the definition

LookaheadExample ::
n [lookahead ¢ {1, 3, 5, 7, 9}] DecimalDigits
DecimalDigit [lookahead # DecimalDigit]

matches either the letter n followed by one or more decimal digits the first of which is even, or a decimal digit
not followed by another decimal digit.

If the phrase “[no LineTerminator here]” appears-'in the right-hand side of a production of the syntactic grammar, it
indicates that the production'is a restricted production: it may not be used if a LineTerminator occurs in the
input stream at the indicated position. For example, the production:

ThrowStatement :
throw [no LineTerminator here] Expression ;

indicates that the production may not be used if a LineTerminator occurs in the script between the throw token
and the Expression.

Unless the presence of a LineTerminator is forbidden by a restricted production, any number of occurrences of
LineTerminator may appear between any two consecutive tokens in the stream of input elements without
affecting the syntactic acceptability of the script.

The lexical grammar has multiple goal symbols and the appropriate goal symbol to use depends upon the
syntactic grammar context. If a phrase of the form “[Lexical goal LexicalGoalSymbol]” appears on the right-hand-
side of a syntactic production then the next token must be lexically recognised using the indicated goal symbol.
In the absence of such a phrase the default lexical goal symbol is used.

© Ecma International 2013 11

secmd

When an alternative in a production of the lexical grammar or the numeric string grammar appears to be a
multi-character token, it represents the sequence of characters that would make up such a token.

The right-hand side of a production may specify that certain expansions are not permitted by using the phrase
“but not” and then indicating the expansions to be excluded. For example, the production:

Identifier ::
IdentifierName but not ReservedWord

means that the nonterminal Identifier may be replaced by any sequence of characters that could replace
IdentifierName provided that the same sequence of characters could not replace ReservedWord.

Finally, a few nonterminal symbols are described by a descriptive phrase in sans-serif type in cases where it
would be impractical to list all the alternatives:

SourceCharacter ::
any Unicode character

5.2 Algorithm Conventions

The specification often uses a numbered list to specify steps in an algorithm. These algorithms are used to
precisely specify the required semantics of ECMAScript language constructs. The algorithms are not intended
to imply the use of any specific implementation technique. In practice; there may be more efficient algorithms
available to implement a given feature.

Algorithms may be explicitly parameterised, in which case the names and usage of the parameters must be
provided as part of the algorithm’s definition. In order to facilitate their use in multiple parts of this specification,
some algorithms, called abstract operations, are named and written in parameterised functional form so that
they may be referenced by name from within other algorithms.

Algorithms may be associated with productions of one of the ECMAScript grammars. A production that has
multiple alternative definitions will typically have a distinct algorithm for each alternative. When an algorithm is
associated with a grammar production, it may reference the terminal and non-terminal symbols of the
production alternative as'if they were parameters of the algorithm. When used in this manner, non-terminal
symbols refer to the actual alternative definition that is matched when parsing the script souce code.

Unless explicitly specified otherwise, all chain productions have an implicit associated definition for every
algorithm that is-might be applied to that production’s left-hand side nonterminal. The implicit definition simply
reapplies the same algorithm name with the same parameters, if any, to the chain production’s sole right-
hand side nonterminal and then result. For example, assume there is a production

Block :
{ StatementList }

but there is no evalution algorithm that is explicitly specified for that production. If in some algorithm there is a
statement of the form: “Return the result of evaluating Block” it is implicit that the algorithm has an evalution
algorithm of the form:

Runtime Semantics: Evaluation

Block : { StatementList }

1. Return the result of evaluating StatementList
For clarity of expression, algorithm steps may be subdivided into sequential substeps. Substeps are indented
and may themselves be further divided into indented substeps. Outline numbering conventions are used to
identify substeps with the first level of substeps labelled with lower case alphabetic characters and the second

level of substeps labelled with lower case roman numerals. If more than three levels are required these rules
repeat with the fourth level using numeric labels. For example:

12 © Ecma International 2013

pecma

1. Top-level step

a. Substep.
b. Substep.
i. Subsubstep.
il Subsubstep.
1. Subsubsubstep
a. Subsubsubsubstep
i. Subsubsubsubsubstep

A step or substep may be written as an “if’ predicate that conditions its substeps. In this case, the substeps
are only applied if the predicate is true. If a step or substep begins with the word “else”, it is a predicate that is
the negation of the preceding “if’ predicate step at the same level.

A step may specify the iterative application of its substeps.

A step may assert an invariant condition of its algorithm. Such assertions are used to make explicit
algorithmic invariants that would otherwise be implicit. Such assertions add no additional semantic
requirements and hence need not be checked by an implementation. They are used simply to clarify
algorithms.

Mathematical operations such as addition, subtraction, negation, multiplication, division, and the mathematical
functions defined later in this clause should always be understood as computing exact mathematical results
on mathematical real numbers, which do not include infinities and do not include a negative zero that is
distinguished from positive zero. Algorithms in this standard that model floating-point arithmetic include explicit
steps, where necessary, to handle infinities and signed zero and to perform rounding. If a mathematical
operation or function is applied to a floating-point. number, it should be understood as being applied to the
exact mathematical value represented by that floating-point number; such a floating-point number must be
finite, and if it is +0 or —0 then the corresponding mathematical.value is simply 0.

The mathematical function abs(x) produces the absolute value of x, which-is —x if x is negative (less than zero)
and otherwise is x itself.

The mathematical function‘sign(x) produces 1 if x is positive and -1 if x is negative. The sign function is not
used in this standard for.cases when x is zero.

The mathematical function min(xs, Xz;'..., Xn) produces the mathematically smallest of xi through xn.

The notation “x-modulo y” (y must be finite and nonzero) computes a value k of the same sign as y (or zero)
such that abs(k) < abs(y) and x—k =g x y.for some integer q.

The mathematical function floor(x) produces the largest integer (closest to positive infinity) that is not larger
than x.

NOTE floor(x) = x—(x modulo 1).
5.3 Static Semantic Rules

Context-free grammars are not sufficiently powerful to express all the rules that define whether a stream of
input elements make up a valid ECMAScript script that may be evaluated. In some situations additional rules
are needed that may be expressed using either ECMAScript algorithm conventions or prose requirements.
Such rules are always associated with a production of a grammar and are called the static semantics of the
production.

Static Semantic Rules have names and typically are defined using an algorithm. Named Static Semantic

Rules are associated with grammar productions and a production that has multiple alternative definitions will
typically have for each alternative a distinct algorithm for each applicable named static semantic rule.

© Ecma International 2013 13

secmd

Unless otherwise specified every grammar production alternative in this specification implicitly has a definition
for a static semantic rule named Contains which takes an argument named symbol whose value is a terminal or
non-terminal of the grammar that includes the associated production. The default definition of Contains is:

1. Foreach terminal and non-terminal grammar symbol, sym, in the definition of this production do
a. If sym is the same grammar symbol as symbol, return true.
b. If sym is a non-terminal, then
i Let contained be the result of Contains for sym with argument symbol.
ii. If contained is true, return true.
2. Return false.

The above definition is explicitly over-ridden for specific productions.

A special kind of static semantic rule is an Early Error Rule. Early error rules define early error conditions (see
clause 16) that are associate with specific grammar productions. Evaluation of most early error rules are not
explicitly invoked within the algorithms of this specification. A comforming implementation must, prior to the
first evaluation of a Script, validate all of the early error rules of the productions used to parse that Script. If any
of the early error rules are violated the Scriptis invalid and cannot be evaluated.

6 ECMAScript Data Types and Values

Algorithms within this specification manipulate values each of which has an associated type. The possible
value types are exactly those defined in this clause. Types are further.subclassified into ECMAScript language
types and specification types.

Within this specification, the notation “Type(x)” is used as shorthand for “the type of X" where “type” refers to the
ECMAScript language and specification types defined in this clause.

6.1 ECMAScript Language Types

An ECMAScript language type corresponds to values that are directly manipulated by an ECMAScript
programmer using the ECMAScript language. The ECMAScript language types are Undefined, Null, Boolean,
String, Symbol, Number, and Object. An ECMAScript language value is a value that is characterized by an
ECMAScript language type.

6.1.1 The Undefined Type

The Undefined type has exactly one value, called undefined. Any variable that has not been assigned a value
has the value undefined.

6.1.2¢ The Null Type

The Null'type has exactly one value, called null.

6.1.3 The Boolean Type

The Boolean type represents a logical entity having two values, called true and false.

6.1.4 The String Type

The String type is the set of all finite ordered sequences of zero or more 16-bit unsigned integer values
(“elements”). The String type is generally used to represent textual data in a running ECMAScript program, in
which case each element in the String is treated as an UTF-16 code unit value. Each element is regarded as
occupying a position within the sequence. These positions are indexed with nonnegative integers. The first
element (if any) is at index 0O, the next element (if any) at index 1, and so on. The length of a String is the

number of elements (i.e., 16-bit values) within it. The empty String has length zero and therefore contains no
elements.

14 © Ecma International 2013

Commented [AW2]: Perhaps this should be somewhere
else. Currently we don’t have a section that enumerates all
the steps in loading and evaluating a program.

pecma

Where ECMAScript operations interpret String values, each element is interpreted as a single UTF-16 code
unit. However, ECMAScript does not place any restrictions or requirements on the sequence of code units in a
String value, so they may be ill-formed when interpreted as UTF-16 code unit sequences. Operations that do
not interpret String contents treat them as sequences of undifferentiated 16-bit unsigned integers. No
operations ensure that Strings are in a normalized form. Only operations that are explicitly specified to be
language or locale sensitive produce language-sensitive results

NOTE The rationale behind this design was to keep the implementation of Strings as simple and high-performing as
possible. If ECMAScript source code is in Normalised Form C, string literals are guaranteed to also be normalised, as long
as they do not contain any Unicode escape sequences.

Some operations interpret String contents as UTF-16 encoded Unicode code points. In that case the
interpretation is:

e A code unitin the range 0 to OxD7FF or in the range 0XE000 to OxFFFF is interpreted as a code point
with the same value.

e A sequence of two code units, where the first code unit c1 is in.the range 0xD800 to 0XDBFF and the
second code unit c2 is in the range 0xDCOO to OxDFFF, is a surrogate pair and is interpreted as a code
point with the value (c1 - 0xD800) x 0x400 + (c2 — 0xDCO00) + 0x10000.

e A code unit that is in the range 0xD800 to OXDFFF, but is not part of a surrogate pair, is interpreted as
a code point with the same value.

6.1.5 The Symbol Type
The Symbol type is the set of all non-String values that may be used as the key of an Object property (6.1.7).
Each possible Symbol values is unique and immutable.

Symbol values have a single observable attribute called [[Description]] whose immutable value is either
undefined or a String value.

6.1.6 The Number Type

The Number type has exactly 18437736874454810627 (that is, 2%-2%°+3) values, representing the double-
precision 64-bit format IEEE 754 values as specified in the IEEE Standard for Binary Floating-Point Arithmetic,
except that the 9007199254740990 (that is, 25°-2) distinct “Not-a-Number” values of the IEEE Standard are
represented in ECMASCcript as a single special NaN value. (Note that the NaN value is produced by the
program expression NaN.) In some implementations, external code might be able to detect a difference
between various Not-a-Number values, but such behaviour is implementation-dependent; to ECMAScript code,
all NaN values are indistinguishable from each other.

There‘are two other special values, called positive Infinity and negative Infinity. For brevity, these values
are also referred to for expository purposes by the symbols +w and —w, respectively. (Note that these two
infinite Number values are produced by the program expressions +Infinity (or simply Infinity) and -
Infinity.)

The other 18437736874454810624 (that is, 2%-2%°) values are called the finite numbers. Half of these are
positive numbers ‘and.‘half are negative numbers; for every finite positive Number value there is a
corresponding negative value having the same magnitude.

Note that there is both a positive zero and a negative zero. For brevity, these values are also referred to for
expository purposes by the symbols +0 and -0, respectively. (Note that these two different zero Number
values are produced by the program expressions +0 (or simply 0) and -0.)

The 18437736874454810622 (that is, 254-2%-2) finite nonzero values are of two kinds:

18428729675200069632 (that is, 254~254) of them are normalised, having the form

sxmx 2°

© Ecma International 2013 15

secmd

where s is +1 or -1, m is a positive integer less than 2% but not less than 2%, and e is an integer ranging from
—1074 to 971, inclusive.

The remaining 9007199254740990 (that is, 2°°-2) values are denormalised, having the form

sxmx 2°

where sis +1 or —1, m is a positive integer less than 2%, and e is —~1074.

Note that all the positive and negative integers whose magnitude is no greater than 2% are representable in
the Number type (indeed, the integer 0 has two representations, +0 and -0).

A finite number has an odd significand if it is nonzero and the integer m used to express it (in one of the two
forms shown above) is odd. Otherwise, it has an even significand.

In this specification, the phrase “the Number value for x” where x represents. an exact nonzero real
mathematical quantity (which might even be an irrational number such as) means a Number value chosen in
the following manner. Consider the set of all finite values of the Number type, with —0 removed and with two
additional values added to it that are not representable in the Number type, namely 2% (which is +1 x 25 x
29 and -2'%4 (which is -1 x 2% x 2%"%). Choose the member of this set that is closest in value to x. If two
values of the set are equally close, then the one with an even significand is chosen; for this purpose, the two
extra values 2! and —21°* are considered to have even significands. Finally, if 2! was chosen, replace it
with +oo; if —21°%¢ was chosen, replace it with —oo; if +0 was chosen, replace it with -0 if and only if x is less than
zero; any other chosen value is used unchanged. The result is the Number value for x. (This procedure
corresponds exactly to the behaviour of the IEEE 754 “round to nearest” mode.)

Some ECMAScript operators deal only with integers in the range —2°! through 2%'-1, inclusive, or in the range
0 through 2%-1, inclusive. These operators accept any value of the Number type but first convert each such
value to one of 2% integer values. See the descriptions of.the Tolnt32 and ToUint32 operators in 7.1.5 and
7.1.6, respectively.

6.1.7 The Object Type

An Object is logically a collection of properties. Each property is either a data property, or an accessor
property:

e A data property associates 'a key value with an ECMAScript language value and a set of Boolean
attributes:

e A accessor property associates a key value with one or two accessor functions, and a set of Boolean
attributes. The accessor functions are used to store or retrieve an ECMAScript language value that is
associated with the property.

Properties are identified using key values. A key value is either an ECMAScript String value or a Symbol
object.

Property keys are used to access properties and their values. There are two kinds of access for properties:
get and set, corresponding to value retrieval and assignment, respectively. The properties accessible via get
and set access includes both own properties that are a direct part of an object and inherited properties which
are provided by another associated object via a property inheritance relationship. Inherited properties may be
either own or inherited properties of the associated object.

All objects are logically collections of properties, but there are multiple forms of objects that differ in their
semantics for accessing and manipulating their properties. Ordinary objects are the most common form of
objects and have the default object semantics. An exotic object is any form of object whose property
semantics differ in any way from the default semantics.

16 © Ecma International 2013

oechd

6.1.7.1 Property Attributes

Attributes are used in this specification to define and explain the state of Object properties. A data property
associates a key value with the attributes listed in Table 1.

Table 1 — Attributes of a Data Property

Attribute Name

Value Domain

Description

[[Value]]

Any ECMAScript
language type

The value retrieved by a get access of the property.

[[Writable]] Boolean If false, attempts by ECMAScript code to change the
property’s [[Value]] attribute using [[Set]] will not succeed.

[[Enumerable]] Boolean If true, the property will be.enumerated by a for-in
enumeration (see 13.6.4). Otherwise, the property is said
to be non-enumerable.

[[Configurable]] | Boolean If false, attempts to delete the property, change the

property to be an accessor property, or change its
attributes (other than [[Value]], or changing [[Writable]] to
false) will fail.

An accessor property associates a key value with the attributes listed in Table 2.

Table 2 — Attributes of an Accessor Property

Attribute Name

Value Domain

Description

[[Get]] Object or If the value is an Object it must be a function Object. The
Undefined function’s [[Call]] internal method (Table 5) is called with an
empty arguments list to retrieve the property value each
time a getaccess of the property is performed.

[[Set]] Object or If the value is an Object it must be a function Object. The

Undefined function’s [[Call]] internal method (Table 5) is called with an
arguments list containing the assigned value as its sole
argument each time a set access of the property is
performed. The effect of a property’s [[Set]] internal method
may; but is not required to, have an effect on the value
returned by subsequent calls to the property's [[Get]]
internal method.

[[Enumerable]] Boolean If true, the property is to be enumerated by a for-in
enumeration (see 13.6.4). Otherwise, the property is said to
be non-enumerable.

[[Configurable]] Boolean If false, attempts to delete the property, change the

property to be a data property, or change its attributes will
fail.

If the initial values of a property’s attributes are not explicitly specified by this specification, the default value
defined in Table 3 is used.

© Ecma International 2013

Table 3 — Default Attribute Values

Attribute Name Default Value
[[Value]] undefined
[[Get]] undefined
[[Set]] undefined
[[Writable]] false
[[Enumerable]] false
[[Configurable]] false

17

secmd

6.1.7.2 Object Internal Methods and Internal Data Properties

The actual semantics of ECMAScript objects are specified via algorithms called internal methods. Each object
in an ECMAScript engine is associated with a set of internal methods that defines its runtime behaviour.
These internal methods are not part of the ECMAScript language. They are defined by this specification purely
for expository purposes. However, each object within an implementation of ECMAScript must behave as
specified by the internal methods associated with it. The exact manner in which this is accomplished is
determined by the implementation.

Internal methods are identified within this specification using names enclosed in double square brackets [[]1.
Internal method names are polymorphic. This means that different ECMAScript object values may perform
different algorithms when a common internal method name is invoked upon'them. If, at runtime, the
implementation of an algorithm attempts to use an internal method of an object that the object does not
support, a TypeError exception is thrown.

Internal data properties correspond to internal state that is associated with objects and used by various
ECMAScript specification algorithms. Depending upon the specific internal data property such state may
consist of values of any ECMAScript language type or of specific ECMA specification type values. Unless
explicitly specified otherwise, internal data properties are allocated as part of the process of creating an
ECMAScript object and may not be dynamically added to ECMAScript objects. Unless specified otherwise, the
initial value of an internal data property is the value undefined.

Table 4 summarises the essential internal methods used by this specification that are applicable to all
ECMAScript objects. Every object must have algorithms for all of the essential internal methods. However, all
objects do not necessarily use the same algorithms for those methods.

The “Signature” column of Table 4 and other similar tables describes the invocation pattern for each internal
method. The invocation pattern always includes a parenthesised list of descriptive parameter names. If a
parameter name is the same as an ECMAScript type name then the name describes the required type of the
parameter value. If an internal method explicitly returns a value, its parameter list is followed by the symbol
“—” and the type name of the returned value. The type names used in signatures refer to the types defined in
Clause 6 augmented by the following additional names. “any” means the value may be any ECMAScript
language type. An internal method implicitly returns a Completion Record as described in 6.2.3. In addition to
its parameters, an internal method always has access to the object upon which it is invoked as a method.

18 © Ecma International 2013

oecmad

Table 4 — Essential Internal Methods

Internal Method

Signature

Description

[[GetPrototyeOf]]

()—Object or Null

Determine the object that provides inherited properties
for this object. A null value indicates that there are no
inherited properties.

[[SetPrototypeOf]]

(Object or Null)—Boolean

Associate with an object another object that provides
inherited properties. Passing null indicates that there
are no inherited properties. Returns true indicating
that the operation was completed successfully or
false indicating that the operation was not successful.

[[IsExtensible]]

()—Boolean

Determine whether it is permitted to add additional
properties to an object.

[[PreventExtensions]]

()—Boolean

Control whether new properties may be added to an
object. Returns true indicating that the operation was
completed successfully or false indicating that the
operation was not successful.

[[GetOwnProperty]]

(propertyKey) —
Undefined or Property
Descriptor

Returns a Property Descriptor for the own property of
this‘object whose key is propertyKey, or undefined if
no such property exists.

[[HasProperty]]

(propertyKey) — Boolean

Returns a Boolean value indicating whether the object
already has either an own or inherited property whose
key is propertyKey.

[[Get]]

(propertyKey, Receiver) — any

Retrive the value of an object's property using the
propertyKey parameter. If any ECMAScript code must
be executed to retrieve the property value, Receiver is
used as the this value when evaluating the code.

[[Set]]

(propertyKey,value, Receiver)
— Boolean

Try to set the value of an object’s property indentified
by propertyKey to value. If any ECMAScript code
must be executed to set the property value, Receiver
is used as the this value when evaluating the code.
Returns true indicating that the property value was set
or false indicating that it could not be set.

[[Invoke]]

(propertyKey, a List of any,
Receiver)’— any

Retrieve the value of an object's property using the
propertyKey parameter. If the retrieved property value
is a function, [[Call]] it using the List as the arguments
list and Receiver as the this value. A TypeError is
thrown if a function is not retrieved.

[[Delete]]

(propertyKey) — Boolean

Removes the own property indentified by the
propertyKey parameter from the object. Return false if
the property was not deleted and is still present.
Return true if the property was deleted or was not
present.

[[DefineOwnProperty]]

(propertyKey,
PropertyDescriptor) —
Boolean

Creates or alters the named own property to have the
state described by a Property Descriptor. Returns true
indicating that the property was successfully
created/updated or false indicating that the property
could not be created or updated.

[[Enumerate]]

()—Object

Returns an iterator object over the string values of the
keys of the enumerable properties of the object.

[[OwnPropertyKeys]]

()—Object

Returns an lterator object that produces all of the own
property keys for the object.

Table 5 summarises additional essential internal methods that are supported by objects that may be called as

functions.

© Ecma International 2013

19

secma

Table 5 — Additional Essential Internal Methods of Function Objects

Internal Method Signature Description
[[Call]] (any, a List of any) | Executes code associated with the object. Invoked via a
— any function call expression. The arguments to the internal

method are a this value and a list containing the arguments
passed to the function by a call expression. Objects that
implement this internal method are callable.

[[Construct]] (a List of any) — Creates an object. Invoked via the new operator. The
Object arguments to the internal method are the arguments passed
to the new operator. Objects that implement this internal
method are called constructors. <A Function object is not
necessarily a constructor and such non-constructor Function
objects do not have a [[Construct]] internal method.

6.1.7.3 Invariants of the Essential Internal Methods

Current this section is just a bunch of material merged together from the ES5
spec. and from the wiki Proxy pages. It need to be completely reworked.

The intent is that it lists all invariants of the Essential Internal Methods. This
includes both invariants that are enforced for Proxy objects and other
invariants that may not be enfored.

Definitions:

The target of an internal method is the object the internal method is called upon.

A sealed property is a non-configurable own property of a target.

A frozen property is a non-configurable non-writable own property of a target.

A new property is a property that does not exist on a non-extensible target.

Two property descriptors descl and desc2 for a property key value are incompatible if:

1. Descl is produced by calling [[GetOwnPropertyDescriptor]] of target with key, and

2. Calling [[DefineOwnProperty]] of target with arguments key and desc2 would throw a TypeError exception.

Exotic objects may define additional constraints upon their [[Set]] internal method behaviour.

[[GetPrototypeOf]]

Every [[Prototype]] chain must have finite length (that is, starting from any object, recursively accessing the
[[Prototype]] internal data property must eventually lead to a null value).

getOwnPropertyDescriptor

Non-configurability invariant: cannot return incompatible descriptors for sealed properties
Non-extensibility invariant: must return undefined for new properties
Invariant checks:
if trap returns undefined, check if the property is configurable
if property exists on target, check if the returned descriptor is compatible
if returned descriptor is non-configurable, check if the property exists on the target and is also non-
configurable

20 © Ecma International 2013

pecma

defineProperty

Non-configurability invariant: cannot succeed (return true) for incompatible changes to sealed properties
Non-extensibility invariant: must reject (return false) for new properties
Invariant checks:
on success, if property exists on target, check if existing descriptor is compatible with argument
descriptor
on success, if argument descriptor is non-configurable, check if the property exists on the target and is
also non-configurable

getOwnPropertyNames

Non-configurability invariant: must report all sealed properties
Non-extensibility invariant: must not list new property names
Invariant checks:
check whether all sealed target properties are present in the trap result
If the target is non-extensible, check that no new properties are listed in the trap result

deleteProperty
Non-configurability invariant: cannot succeed (return true) for sealed properties
Invariant checks:
on success, check if the target property is configurable
getPrototypeOf

Invariant check: check whether the target’s prototype and the trap result are identical (according to the egal
operator)

freeze | seal | preventExtensions
Invariant checks:
on success, check if isFrozen(target), isSealed(target) or lisExtensible(target)
isFrozen | isSealed | isExtensible

Invariant check: check whether the boolean trap result is equal to isFrozen(target), isSealed(target) or
isExtensible(target)

hasOwn

Non-configurability invariant: cannot return false for sealed properties
Non-extensibility invariant: must return false for new properties
Invariant checks:
if false is returned, check if the target property is configurable
if false is returned, the property does not exist on target, and the target is non-extensible, throw a
TypeError

has
Non-configurability invariant: cannot return false for sealed properties

Invariant checks:
if false is returned, check if the target property is configurable

© Ecma International 2013 21

secmd

get

Non-configurability invariant: cannot return inconsistent values for frozen data properties, and must return
undefined for sealed accessors with an undefined getter

Invariant checks:

if property exists on target as a data property, check whether the target property’s value and the trap
result are identical (according to the egal operator)

if property exists on target as an accessor, and the accessor’s get attribute is undefined, check whether
the trap result is also undefined.

set

Non-configurability invariant: cannot succeed (return true) for frozen data properties or sealed accessors
with an undefined setter
Invariant checks:
on success, if property exists on target as a data property, check whether the target property’s value and
the update value are identical (according to the egal operator)
on success, if property exists on target as an accessor, check whether the accessor’s set attribute is not
undefined

keys

Non-configurability invariant: must report all enumerable sealed properties
Non-extensibility invariant: must not list new property names
Invariant checks:

Check whether all enumerable sealed target properties are listed in the trap result

If the target is non-extensible, check that no new properties are listed in the trap result

enumerate

Non-configurability invariant: must report all enumerable sealed properties
Invariant checks:
Check whether all enumerable sealed target properties are listed in the trap result

Unless otherwise specified, the standard ECMAScript objects are ordinary objects and behave as described in
9.1. Some standard objects are exotic objects and have behaviour defined in 9.2.

Exotic objects may implement internal methods in any manner unless specified otherwise; for example, one
possibility is that [[Get]] and [[Set]] for a particular exotic object indeed fetch and store property values but
[[GetOwnProperty]] always generates undefined. However, if any specified manipulation of an exotic object's
internal properties is not supported by an implementation, that manipulation must throw a TypeError
exception when attempted.

The [[GetOwnProperty]] internal method of all objects must conform to the following invariants for each
property of the object:

e If a property is described as a data property and it may return different values over time, then either or
both of the [[Writable]] and [[Configurable]] attributes must be true even if no mechanism to change the
value is exposed via the other internal methods.

e If a property is described as a data property and its [[Writable]] and [[Configurable]] are both false, then

the SameValue (according to 7.2.3) must be returned for the [[Value]] attribute of the property on all calls
to [[GetOwnProperty]].

22 © Ecma International 2013

Commented [AWB123]: These are placeholders based
upon the proxy trap invariants. We need to provide new
versions for all the essential internal methods.

oechd

e If the attributes other than [[Writable]] may change over time or if the property might disappear, then the
[[Configurable]] attribute must be true.

e If the [[Writable]] attribute may change from false to true, then the [[Configurable]] attribute must be true.
e If the result of calling an object’s [[IsExtensible]] internal method has been observed by ECMAScript code
to be false, then if a call to [[GetOwnProperty]] describes a property as non-existent all subsequent calls

must also describe that property as non-existent.

The [[DefineOwnProperty]] internal method of all objects must not permit the addition of a new property to an
object if the [[Extensible]] internal method of that object has been observed by ECMAScript code to be false.

If the result of calling the [[IsExtensible]] internal method of an object has beenobserved by ECMAScript code
to be false then it must not subsequently become true.

6.1.7.4 Well-Known Symbols and Intrinsics

Well-known symbols are built-in Symbol values (6.1.5) that are explicitly referenced by algorithms of this
specification. They are typically used as the keys of properties whose values serve as extension points of a
specification algorithm. Unless otherwise specified, well-known symbols values are shared by all Code
Realms (8.2).

Within this specification a well-known symbol is referred to by using a notation of the form @@name, where
“name” is one of the values listed in Table 6.

Table 6 — Well-known Symbols

Specification Name | Value and Purpose

and [[Description]]

@@create A method used to allocate an object. Called from the
[[Construct]] internal method.

@ @haslnstance A method that determines if a constructor object

recognises ‘an object as one of the constructor’s
instances. ' Called by the semantics of the a
instanceof operator.

@@isConcatSpreadable A Boolean value that if true indicates that an object
should be flatten to its array elements by
Array.prototype.concat.

@@isRegEXp A Boolean value that if true indicates that an object
may be used as a regular expression.

@@iterator A method that returns the default iterator for an
object. Called by the semantics of the for-of
statement.

@@toPrimitive A method that converts an object to a corresponding
primitive value. Called by the toPrimitive abstract
operation.

@@toStringTag A string value that is used in the creation of the

default string description of an object. Called by the
built-in method Object.prototype.toString.

@@unscopables An Array of strings values that are property names
that are excluded from the with environment bindings
of the associated objects.

© Ecma International 2013 23

secmd

Well-known intrinsics are built-in objects that are explicitly referenced by the algorithms of this specification
and which usually have Realm specific identities. Unless otherwise specified each intrinsic object actually
corresponds to a set of similar objects, one per Realm.

Within this specification a reference such as %name% means the intrinsic object, associated with the current

Realm, corresponding to the name. Determination of the current Realm and its intrinsics is described in 8.2.
The well-known intrinsics are listed in Table 7.

24 © Ecma International 2013

oechd

Table 7 — Well-known Intrinsic Objects

Intrinsic Name

ECMAScript Language
Association

%0Object%

The initial value of the global object
property named "Object".

%0ObjectPrototype%

The initial value of the
"prototype" data property of the
intrinsic %0bject%.

%0ODbjProto_toString%

The initial value of the "toString"
data property of the
intrinsic %ObjectPrototype%:

%Function%

The initial value of the global object
property named "Function".

%FunctionPrototype%

The initial value of the
"prototype! data property of the
intrinsic %Function%.

%Array% The initial value of the global object
property named "Array".
%ArrayPrototype% The initial value of the

"prototype" data property of the
intrinsic %Array%.

%ArraylteratorPrototype%

The prototype object used for
lterator objects created by the
CreateArraylterator abstract
operation.

%String%

The initial value of the global object
property named "String".

%StringPrototype%

The initial value of the
"prototype" data property of the
intrinsic %String%.

%Boolean%

The initial value of the global object
property named "Boolean".

%BooleanPrototype%

The initial value of the
"prototype" data property of the
intrinsic %Boolean%.

%Number%

The initial value of the global object
property named "Number".

%NumberPrototype%

The initial value of the
"prototype" data property of the
intrinsic %Number%.

%Date% The initial value of the global object
property named "Date".

%DatePrototype% The initial value of the
"prototype" data property of the
intrinsic %Date%.

%RegExp% The initial value of the global object

property named "RegExp".

%RegExpPrototype%

The initial value of the
"prototype" data property of the
intrinsic %RegExp%.

%Map%

The initial value of the global object

© Ecma International 2013

25

26

y

ecma

property named "Map".

%MapPrototype%

The initial value of the
"prototype" data property of the
intrinsic %Map%.

%MaplteratorPrototype%

The prototype object used for
Iterator objects created by the
CreateMaplterator abstract operation

%W eakMap%

The initial value of the global object
property named "WeakMap".

%W eakMapPrototype%

The initial value of the
"prototype" data property of the
intrinsic %WeakMap%.

%Set% The initial value of the‘global object
property named "Set".

%SetPrototype% The initial value of the
"prototype" data property of the
intrinsic %Set%.

%W eakSet% The initial value of the global object

property named "WeakSet".

%W eakSetPrototype%

The initial value of the
"prototype! data property of the
intrinsic %WeakWeakSet%.

%SetlteratorPrototype%

The prototype object used for
Iterator objects created by the
CreateSetlterator abstract operation

%GeneratorFunction%

The _initial value of the name
"GeneratorFunction” exported from
the built-in module "std:iteration".

%Generator%

The initial value of the name
"Generator" exported from the built-
in module "std:iteration"

%GeneratorPrototype%

The initial value of the prototype
property of the %Generator%
intrinsic

%Error%

%EvalError%

%RangeError%

%ReferenceError%

%SyntaxError%

%TypeError%

%URIError%

%ErrorPrototype%

%EvalErrorPrototype%

%RangeErrorPrototype%

%ReferenceErrorPrototype%

%SyntaxErrorPrototype%

%TypeErrorPrototype%

%URIErrorPrototype%

%ArrayBuffer%

© Ecma International 2013

oecmad

%ArrayBufferPrototype% The initial value of the
"prototype" data property of the
intrinsic %ArrayBuffer%.

%TypedArray%
%TypedArrayPrototype% The initial value of the
"prototype" data property of the
intrinsic %TypedArray%.

%Int8AITay%

9%Int8ArrayPrototype%| C ed [AWB164]: TODO add all the other
%DataView% TypedArray view intrinsics

%DataViewPrototype%

%ThrowTypeError% A function object that unconditionally
throws a new instance
of %TypeError%.
P??\ Ci ed [AWB125]: TODO more to comeTODO

© Ecma International 2013 27

secma

6.2 ECMAScript Specification Types

A specification type corresponds to meta-values that are used within algorithms to describe the semantics of
ECMAScript language constructs and ECMAScript language types. The specification types are Reference,
List, Completion, Property Descriptor, Lexical Environment, Environment Record, and Data Block.
Specification type values are specification artefacts that do not necessarily correspond to any specific entity
within an ECMAScript implementation. Specification type values may be used to describe intermediate results
of ECMAScript expression evaluation but such values cannot be stored as properties of objects or values of
ECMAScript language variables.

6.2.1 Data Blocks

This section is a placeholder for describing the Data Block internal type. The
following material is verbatium from the Binary Data ES wiki proposal. The
material has not yet been reviewed or integrated with the rest of this spec.

This spec introduces a new, spec-internal block datatype, intuitively representing a contiguously allocated
block of binary data. Blocks are not ECMAScript language values and appear only in the program store (aka
heap).
A block is one of:

e anumber-block

e an array-block[t, n]

e astruct-block]tl, ..., tn]
A number-block is one of:

e anunsigned-integer; i.e.; 0ne of uint8, uint16, uint32, or uint64

e asigned-integer; i.e.,.one of int8, int16, int32, or int64

e afloating-point; i.e:, one of float32 or float64

A uintk is an integer in the range [0, 2K). An intk is an integer in the range [-2k-1, 2k-1). A floatk is a floating-
point number representable as a k-bit IEE754 value:

An array-blockft, n] is.an ordered sequence of n blocks of homogeneous block type t. Each element of the
array is stored at in independently addressable location in the program store, and multiple Data objects may
contain references to the element.

A struct-block[t1, ..., tn] is an ordered sequence of n blocks of heterogeneous types t1 to tn, respectively. Each
field of the struct is stored at in independently addressable location in the program store, and multiple Data
objects may contain references to the field.

The spec also introduces a datatype of Data objects, which are ECMAScript objects that encapsulate
references to block data.in the program store. Every Data object has the following properties:

[[Class]] = “Data”
[[Value]] : reference[block] — a reference to a block in the program store
[[DataType]] : reference[Type] — a reference to a Type object describing this object’s data block
6.2.2 The List and Record Specification Type
The List type is used to explain the evaluation of argument lists (see 12.2.6) in new expressions, in function

calls, and in other algorithms where a simple list of values is needed. Values of the List type are simply
ordered sequences of values. These sequences may be of any length.

28 © Ecma International 2013

oechd

The Record type is used to describe data aggregations within the algorithms of this specification. A Record
type value consists of one or more named fields. The value of each field is either an ECMAScript value or an
abstract value represented by a name associated with the Record type. Field names are always enclosed in
double brackets, for example [[value]]

For notational convenience within this specification, an object literal-like syntax can be used to express a
Record value. For example, {[[field1]]: 42, [[field2]]: false, [[field3]]: empty} defines a Record value that has
three fields each of which is initialised to a specific value. Field name order is not significant. Any fields that
are not explicitly listed are considered to be absent.

In specification text and algorithms, dot notation may be used to refer to a specific field of a Record value. For
example, if R is the record shown in the previous paragraph then R.[[field2]] is shorthand for “the field of R
named [[field2]]".

Schema for commonly used Record field combinations may be named,and that name may be used as a
prefix to a literal Record value to identify the specific kind of aggregations that is being described. For
example: Property Descriptor {[[Value]]: 42, [[Writable]]: false, [[Configurable]]: true}.

6.2.3 The Completion Record Specification Type

The Completion type is a Record used to explain the runtime propagation.of values and control flow such as
the behaviour of statements (break, continue, return and throw) that perform nonlocal transfers of
control.

Values of the Completion type are Record values whole fields are defined as by Table 8.

Table 8 — Completion Record Fields

Field Name | Value Meaning
[[type]l One of normal, break, continue, return, | The type of completion that occurred.
or throw
[[value]] any ECMAScript language value or empty | The value that was produced.
[[target]] any ECMAScript identifier or empty The target label for directed control transfers.

The term “abrupt completion” refers to any completion with a [[type]] value other than normal.

6.2.3.1 _NormalCompletion

The abstract operation NormalCompletion with a single argument, such as:

1. Return NormalCompletion(argument).

Is a short hand that is defined as follows:

1. Return Completion {[[type]]: normal, [[value]]: argument, [[target]]:empty}.

6.2.3.2 Implicit Completion Values

The algorithms of this specification often implicitly return Completion Records whose [[type]] is normal.
Unless it is otherwise obvious from the context, an algorithm statement that returns a value that is not a
Completion Record, such as:

1. Return "Infinity".

Generally means the same thing as:

1. Return NormalCompletion("Infinity").

© Ecma International 2013 29

secmd

A “return” statement without a value in an algorithm step means the same thing as:

1. Return NormalCompletion(undefined).

Similarly, any reference to a Completion Record value that is in a context that does not explicitly require a
complete Completion Record value is equivalent to an explicit reference to the [[value]] field of the Completion
Record value unless the Completion Record is an abrupt completion.

6.2.3.3 Throw an Exception

Algorithms steps that say to throw an exception, such as

1. Throw a TypeError exception.

Mean the same things as:

1. Return Completion {[[type]]: throw, [[value]]: a newly created TypeError object, [[target]]:empty}.
6.2.3.4 ReturnlfAbrupt

Algorithms steps that say

1. ReturnlfAbrupt(argument).

mean the same things as:

1. If argument is an abrupt completion, then return argument.
2. Else if argument is a Completion Record, then let argument be argument.[[value]].

6.2.4 The Reference Specification Type

NOTE The Reference type is used to explain the behaviour of such operators as delete, typeof, the assignment
operators, the super keyword and other language features. For example, the left-hand operand of an assignment is
expected to produce a reference.

A Reference is a resolved name or property binding. A Reference consists of three components, the base
value, the referenced name and the Boolean valued strict reference flag. The base value is either undefined, an
Object, a Boolean, a String, a Number, or an environment record (8.1.1). A base value of undefined indicates
that the Reference could not be resolved to a binding. The referenced name is a String or Symbol value.

A Super Reference is a Reference that is used to represents a name binding that was expressed using the
super keyword. A Super Reference has an additional thisValue component and its base value will never be an
environment record.

The following abstract operations are used in this specification to access the components of references:

e GetBase(V). Returns the base value component of the reference V.

o GetReferencedName(V). Returns the referenced name component of the reference V.

e IsStrictReference(V). Returns the strict reference flag component of the reference V.

e HasPrimitiveBase(V). Returns true if Type(base) is a Boolean, String, Symbol, or Number.

e IsPropertyReference(V). Returns true if either the base value is an object or HasPrimitiveBase(V) is true;
otherwise returns false.

e IsUnresolvableReference(V). Returns true if the base value is undefined and false otherwise.

e IsSuperReference(V). Returns true if this reference has a thisValue component.

The following abstract operations are used in this specification to operate on references:

30 © Ecma International 2013

secma

6.2.4.1 GetValue (V)

ReturnlfAbrupt(V).
If Type(V) is not Reference, return V.
Let base be the result of calling GetBase(V).
If IsUnresolvableReference(V), throw a ReferenceError exception.
If IsPropertyReference(V), then
a. If HasPrimitiveBase(V) is true, then
i Assert: In this case, base will never be null or undefined.
ii. Let base be ToObject(base).
b. Return the result of calling the [[Get]] internal method of base passing GetReferencedName(V) and
GetThisValue(V) as the arguments.
6. Else base must be an environment record,
a. Return the result of calling the GetBindingValue (see 8.1.1) concrete method of base passing
GetReferencedName(V) and IsStrictReference(V) as arguments.

arwn e

NOTE The object that may be created in step 5.a.ii is not accessible outside of the above abstract operation and the
ordinary object [[Get]] internal method. An implementation might choose to avoid the actual creation of the object.

6.24.2 Putvalue (V, W)

ReturnifAbrupt(V).
ReturnlfAbrupt(W).
If Type(V) is not Reference, throw a ReferenceError exception.
Let base be the result of calling GetBase(V).
If IsUnresolvableReference(V), then
a. IfIsStrictReference(V) is true, then
i. Throw ReferenceError exception.
b. Let globalObj be the result of the abstract operation.GetGlobalObject.
c. Return the result of calling Put(globalObj,GetReferencedName(V), W, false).
6. Else if IsPropertyReference(V), then
a. If HasPrimitiveBase(V) is true, then
i Assert: In‘this case, base will never be null or undefined.
ii. Set base to ToObject(base).
b. Let succeeded be the result of calling the [[Set]] internal method of base passing
GetReferencedName(V), W, and GetThisValue(V) as arguments.
c. ReturnlfAbrupt(succeeded).
d. If succeeded is false and IsStrictReference(V) is true, then throw a TypeError exception.
e. Return:
7. Else base must be a reference whose base is an environment record. So,
a. Return the result of calling the SetMutableBinding (8.1.1) concrete method of base, passing
GetReferencedName(V), W, and IsStrictReference(V) as arguments.
8. Return.

NOTE The object that may be created in step 6.a.ii is not accessible outside of the above algorithm and the ordinary
object [[Set]] internal method. Animplementation might choose to avoid the actual creation of that object.

arwd e

6.2.4.3 GetThisValue (V)

ReturnlfAbrupt(V).
If Type(V) is not Reference, return V.
If IsUnresolvableReference(V), throw a ReferenceError exception.
If IsSuperReference(V), then
a. Return the value of the thisValue component of the reference V.
5. Return GetBase(V).

o

6.2.5 The Property Descriptor Specification Type

The Property Descriptor type is used to explain the manipulation and reification of Object property attributes.
Values of the Property Descriptor type are Records composed of named fields where each field’s name is an

© Ecma International 2013 31

secmd

attribute name and its value is a corresponding attribute value as specified in 6.1.7.1. In addition, any field
may be present or absent.

Property Descriptor values may be further classified as data property descriptors and accessor property
descriptors based upon the existence or use of certain fields. A data property descriptor is one that includes
any fields named either [[Value]] or [[Writable]]. An accessor property descriptor is one that includes any fields
named either [[Get]] or [[Set]]. Any property descriptor may have fields named [[Enumerable]] and
[[Configurable]]. A Property Descriptor value may not be both a data property descriptor and an accessor
property descriptor; however, it may be neither. A generic property descriptor is a Property Descriptor value
that is neither a data property descriptor nor an accessor property descriptor. A fully populated property
descriptor is one that is either an accessor property descriptor or a data property descriptor and that has all of
the fields that correspond to the property attributes defined in either 6.1.7.1 Table X'or. Table 2.

A Property Descriptor may be derived from an ECMAScript object that has properties that directly correspond
to the fields of a Property Descriptor. Such a derived Property Descriptor has an additional field named
[[Origin]] whose value is the object from which the Property Descriptor was derived.

The following abstract operations are used in this specification to operate upon Property Descriptor values:
6.2.5.1 IsAccessorDescriptor (Desc)

When the abstract operation IsAccessorDescriptor is called with property descriptor Desc, the following steps
are taken:

1. If Desc is undefined, then return false.

2. If both Desc.[[Get]] and Desc.[[Set]] are absent, then return false.
3. Return true.
6.

2.5.2 IsDataDescriptor (Desc)

When the abstract operation IsDataDescriptor is called with property descriptor Desc, the following steps are
taken:

1. If Desc is undefined, then return false.

2. If both Desc.[[Value]] and Desc.[[Writable]] are absent, then return false.
3. Return true.
6.

253 IsGenericDescriptor (Desc)

When the abstract operation IsGenericDescriptor is called with property descriptor Desc, the following steps
are taken:

1. If Desc is undefined, then return false.

2. If IsAccessorDescriptor(Desc) and IsDataDescriptor(Desc) are both false, then return true.
3. Return false.
6.

2.5.4 FromPropertyDescriptor (Desc)

When the abstract operation FromPropertyDescriptor is called with property descriptor Desc, the following
steps are taken:

The following algorithm assumes that Desc is a fully populated Property Descriptor, such as that returned from
[[GetOwnProperty]] (see 9.1.6).

1. If Desc is undefined, then return undefined.

2. If Desc has an [[Origin]] field, then return Desc.[[Origin]].

3. Let obj be the result of the abstract operation ObjectCreate with the intrinsic object %ObjectPrototype% as its
argument.

4. Assert: obj is an extensible ordinary object with no own properties.

5. If Deschas a [[Value]] field, then

32 © Ecma International 2013

pecma

a. Call OrdinaryDefineOwnProperty with arguments obj, “value", and Property Descriptor {[[Value]]:
Desc.[[Value]], [[Writable]]: true, [[Enumerable]]: true, [[Configurable]]: true}
6. 1If Zeschas a [[Whitable]] field, then
a. Call OrdinaryDefineOwnProperty with arguments obj, "writable", and Property Descriptor {[[Value]]:
Desc.[[Writable]], [[Writable]]: true, [[Enumerable]]: true, [[Configurable]]: true}.
7. 1f Deschas a [[Get]] field, then
a. Call OrdinaryDefineOwnProperty with arguments obj, "get" , and Property Descriptor {[[Value]]:
Desc.[[Get]], [[Writable]]: true, [[Enumerable]]: true, [[Configurable]]: true}.
8. 1If Zeschas a [[Set]] field, then
a. Call OrdinaryDefineOwnProperty with arguments obj, "set", and Property Descriptor {[[Value]]:
Desc.[[Set]], [[Writable]]: true, [[Enumerable]]: true, [[Configurable]]: true}.
9. 1If Zeschas an [[Enumerable]] field, then
a. Call OrdinaryDefineOwnProperty with arguments obj, "enumerable", and Property Descriptor
{[[Value]]: Desc.[[Enumerable]], [[Writable]]: true, [[Enumerable]]: true, [[Configurable]]: true}.
10. If Deschas a [[Configurable]] field, then
a. Call OrdinaryDefineOwnProperty with arguments obj , "configurable", and Property Descriptor
{[[Value]]: Desc.[[Configurable]], [[Writable]]: true, [[Enumerable]]: true, [[Configurable]]: true}.
11. Return obj.

6.2.5.5 ToPropertyDescriptor (Obj)

When the abstract operation ToPropertyDescriptor is called with object Obj, the following steps are taken:

1. ReturnlfAbrupt(Obj).
2. If Type(Obj) is not Object throw a TypeError exception.
3. Let desc be the result of creating a new Property Descriptor that initially has no fields.
4. If the result of HasProperty(Obj, "enumerable®).is true, then
a. Letenum be the result of Get(Obj, "enumerable").
b. ReturnIfAbrupt(enum).
c. Setthe [[Enumerable]] field of desc to ToBoolean(enum).
5. If the result of HasProperty(Obj, "configurable") is true, then
a. Letconf be the result of Get(Obj, "configurable").
b. ReturnlfAbrupt(conf).
c. Setthe [[Configurable]] field of desc to ToBoolean(conf).
6. If the result of HasProperty(Obj, "value") is true, then
a. Letvalue be the result of Get(Obj, "value").
b. ReturnlfAbrupt(value).
c. Set the [[Value]] field of desc to value.
7. If the result of HasProperty(Obj, "writable") is true, then
a: Let writable be the result of Get(Obj, "writable").
b. ReturnlfAbrupt(writable).
c. Set the [[Writable]] field of desc to ToBoolean(writable).
8. If the result of HasProperty(Obj, "get") is true, then
a. Let getter be the result of Get(Obj, "get").
b. ReturnlfAbrupt(getter).
c. IfIsCallable(getter) is false and getter is not undefined, then throw a TypeError exception.
d. Set the [[Get]] field of desc to getter.
9. If the result of HasProperty(Obj, "set") is true, then
a. Let setter be the result of Get(Obj, "set").
b. ReturnlfAbrupt(setter).
c. If IsCallable(setter) is false and setter is not undefined, then throw a TypeError exception.
d. Set the [[Set]] field of desc to setter.
10. If either desc.[[Get]] or desc.[[Set]] are present, then
a. Ifeither desc.[[Value]] or desc.[[Writable]] are present, then throw a TypeError exception.
11. Set the [[Origin]] field of desc to Obj.
12. Return desc.

© Ecma International 2013 33

»ecind

6.2.5.6 CompletePropertyDescriptor (Desc, LikeDesc)

When the abstract operation CompletePropertyDescriptor is called with Property Descriptor Desc, the following
steps are taken:

1. Assert: LikeDesc is either a Property Descriptor or undefined.
2. ReturnlfAbrupt(Desc).
3. Assert: Desc is a Property Descriptor
4. If LikeDesc is undefined, then set LikeDesc to Record{[[Value]]: undefined, [[Writable]]: false, [[Get]]:
undefined, [[Set]]: undefined, [[Enumerable]]: false, [[Configurable]]: false}.
5. If either IsGenericDescriptor(Desc) or IsDataDescriptor(Desc) is true, then
a. If Desc does not have a [[Value]] field, then set Desc.[[Value]] to LikeDesc.[[Value]].
b. If Desc does not have a [[Writable]] field, then set Desc.[[Writable]] to LikeDesc.[[Writable]].
6. Else,
a. If Desc does not have a [[Get]] field, then set Desc.[[Get]] to LikeDesc.[[Get]].
b. If Desc does not have a [[Set]] field, then set Desc.[[Set]] to LikeDesc.[[Set]].
7. If Desc does not have an [[Enumerable]] field, then set Desc.[[Enumerable]] to LikeDesc.[[Enumerable]].
8. If Desc does not have a [[Configurable]] field, then set Desc.[[Configurable]] to LikeDesc.[[Configurable]].
9. Return Desc.
6

2.6 The Lexical Environment and Environment Record Specification Types

The Lexical Environment and Environment Record types are used to explain the behaviour of name resolution
in nested functions and blocks. These types and the operations upon them are defined in 8.1.

7 Abstract Operations

These operations are not a part of the ECMAScript language; they are defined here to solely to aid the
specification of the semantics of the ECMAScript language. Other, more specialized abstract operations are
defined throughout this specification.

7.1 Type Conversion and Testing

The ECMAScript language implicitly performs automatic type conversion as needed. To clarify the semantics
of certain constructs itis useful to define a set of conversion abstract operations. The conversion abstract
operations are polymorphic; they can accept-a.value of any ECMAScript language type or of a Completion
Record value. But no other specification types are used-with these operations.

7.1.1 ToPrimitive
The abstract operation ToPrimitive takes an input argument and an optional argument PreferredType. The
abstract operation ToPrimitive converts its input argument to a non-Object type. If an object is capable of

converting.to more than one primitive type, it may use the optional hint PreferredType to favour that type.
Conversion occurs according to Table 9:

34 © Ecma International 2013

pecma

Table 9 — ToPrimitive Conversions

Input Type Result

Completion Record | If argument is an abrupt completion, return argument. Otherwise return
ToPrimitive(argument.[[value]]) also passing the optional hint
PreferredType.

Undefined Return argument (no conversion).

Null Return argument (no conversion).

Boolean Return argument (no conversion).

Number Return argument (no conversion).

String Return argument (no conversion).

Symbol Return argument (no conversion).

Object Perform the steps following this table.

When the InputType is Object, the following steps are taken:

If PreferredType was not passed, let hint be "default".
Else if PreferredType is hint String, let hint be "string".
Else PreferredType is hint Number, let hint be "numbez".
Let exoticToPrim be the result of Get(argument, @ @ToPrimitive).
ReturnIfAbrupt(exoticToPrim).
If exoticToPrim is not undefined, then
a. If IsCallable(exoticToPrim) is false, then throw a TypeError exception.
b. Let result be the result of calling the [[Call]].internal method of exoticToPrim, with argument as
thisArgument and a List containing hint as argumentsList.
c. ReturnlfAbrupt(result).
d. If result is an ECMAScript language value and Type(result) is.not Object, then return result.
e. Else, throw a TypeError-exception.
7. Ifhintis "default" then,let hint be "'number".
8. Return the result of OrdinaryToPrimitive(argument,hint).

QU WD

When the OrdinaryToPrimitive is called with arguments O and hint, the following steps are taken:

Lo

Assert: Type(O) is Object
Assert: Type(hint) is String and its value is either "string" or "number".
3. Ifhintis"string", then
a. LettryFirstbe "toString".
b. Let trySecond be "valueOf".
4. Else,
a. LettryFirst be "valueOf".
b." Let trySecond be "toString".
Let first be the result of Get(O, tryFirst).
ReturnlfAbrupt(first).
7. If IsCallable(first) is-true then,
a. Let result be the result of calling the [[Call]] internal method of first, with O as thisArgument and an
empty List as argumentsList.
b. ReturnIfAbrupt(result).
c. Ifresultis an ECMAScript language value and Type(result) is not Object, then return result.
Let second be the result of Get(O, trySecond).
ReturnlfAbrupt(second).
10. If IsCallable(second) is true then,
a. Let result be the result of calling the [[Call]] internal method of second, with O as thisArgument and
an empty List as argumentsList.
b. ReturnlfAbrupt(result).
c. Ifresultis an ECMAScript language value and Type(result) is not Object, then return result.
11. Throw a TypeError exception.

I

o a

© ®

© Ecma International 2013 35

secmd

NOTE When ToPrimitive is called with no hint, then it generally behaves as if the hint were Number. However,
objects may over-ride this behaviour by defining a @ @ToPrimitive method. Of the objects defined in this specification only
Date objects (see 20.3) over-ride the default ToPrimitive behaviour. Date objects treat no hint as if the hint were String.

7.1.2 ToBoolean

The abstract operation ToBoolean converts its argument to a value of type Boolean according to Table 10:

Table 10 — ToBoolean Conversions

Argument Type Result

Completion Record | If argument is an abrupt completion, return the argument. Otherwise return
ToBoolean(argument.[[value]])

Undefined Return false

Null Return false

Boolean Return the input argument (no conversion).

Number Return false if the argument is +0, —0, or NaN; otherwise return true.

String Return false if the argument is the empty String (its length .is zero);
otherwise return true.

Symbol Return true

Object Return true

7.1.3 ToNumber

The abstract operation ToNumber converts its argument to a value of type Number according to Table 11:

Table 11 — ToNumber Conversions

Argument Type Result

Completion Record | If argument is an abrupt completion, return argument. Otherwise return
ToNumber(argument.[[value]])

Undefined ReturnNaN

Null Return +0

Boolean Return 1 if argument is true. Return +0 if argument is false.

Number Return argument (no conversion).

String See grammar and note below.

Symbol Return NaN

Object Apply the following steps:
1. Let primValue be ToPrimitive(argument, hint Number).
2. Return ToNumber(primValue).

7.1.3.1 ToNumber Applied to the String Type

ToNumber applied to Strings applies the following grammar to the input String. If the grammar cannot interpret

the String as an expansion of StringNumericLiteral, then the result of ToNumber is NaN.

Syntax

StringNumericLiteral :::
StrWhiteSpaceopt

StrWhiteSpaceop: StrNumericLiteral StrWhiteSpaceqpt

36

© Ecma International 2013

secma

StrWhiteSpace :::
StrWhiteSpaceChar StrWhiteSpaceopt

StrWhiteSpaceChar :::
WhiteSpace
LineTerminator

StrNumericLiteral :::
StrDecimalLiteral
HexIntegerLiteral

StrDecimalLiteral :::
StrUnsignedDecimalLiteral
+ StrUnsignedDecimalLiteral
- StrUnsignedDecimalLiteral

StrUnsignedDecimalLiteral :::
Infinity
DecimalDigits . DecimalDigitsopt ExponentPartop
. DecimalDigits ExponentPartop
DecimalDigits ExponentPartopt

DecimalDigits :::
DecimalDigit
DecimalDigits DecimalDigit

DecimalDigit ::: one of
0 1 2 3 4 5 6 7 8 9

ExponentPart :::
Exponentindicator Signedinteger

Exponentindicator ::: one of
e E

Signedlinteger :::
DecimalDigits
+ DecimalDigits
- DecimalDigits

HexIntegerLiteral :::
0x HexDigit
0X HexDigit
HexIntegerLiteral HexDigit

HexDigit ::: one of
0 1 2 3 4.5 6 7 8 9 a b c d e £ A B CDE F

NOTE Some differences should be noted between the syntax of a StringNumericLiteral and a NumericLiteral (see
11.8.3):

. A StringNumericLiteral may be preceded and/or followed by white space and/or line terminators.

. A StringNumericLiteral that is decimal may have any number of leading 0 digits.

. A StringNumericLiteral that is decimal may be preceded by + or - to indicate its sign.

. A StringNumericLiteral that is empty or contains only white space is converted to +0.

. Infinity and -Infinity are recognised as a StringNumericLiteral but not as a NumericLiteral.

Runtime Semantics

The conversion of a String to a Number value is similar overall to the determination of the Number value for a
numeric literal (see 11.8.3), but some of the details are different, so the process for converting a String

© Ecma International 2013 37

eCma

)

numeric literal to a value of Number type is given here in full. This value is determined in two steps: first, a
mathematical value (MV) is derived from the String numeric literal; second, this mathematical value is rounded
as described below.

38

The MV of StringNumericLiteral ::: [empty] is O.

The MV of StringNumericLiteral ::: StrWhiteSpace is 0.

The MV of StringNumericLiteral ::: StrWhiteSpaceopt StrNumericLiteral StrWhiteSpaceopt is the MV of
StrNumericLiteral, no matter whether white space is present or not.

The MV of StrNumericLiteral ::: StrDecimalLiteral is the MV of StrDecimalLiteral.

The MV of StrNumericLiteral ::: HexIntegerLiteral is the MV of HexIntegerLiteral.

The MV of StrDecimalLiteral ::: StrUnsignedDecimalLiteral is the MV of StrUnsignedDecimalLiteral.

The MV of StrDecimalLiteral ::: + StrUnsignedDecimalLiteral is the MV of StrUnsignedDecimalLiteral.

The MV of StrDecimalliteral ::: - StrUnsignedDecimalLiteral is the negative of the MV of
StrUnsignedDecimalLiteral. (Note that if the MV of StrUnsignedDecimalLiteral is 0, the negative of this MV is
also 0. The rounding rule described below handles the conversion of this signless mathematical zero to a
floating-point +0 or —0 as appropriate.)

The MV of StrUnsignedDecimalLiteral::: Infinity is 10'°% (a value so large that it will round to +o).

The MV of StrUnsignedDecimalLiteral::: DecimalDigits. is the MV of DecimalDigits.

The MV of StrUnsignedDecimalLiteral::: DecimalDigits . DecimalDigits is the MV of the first DecimalDigits
plus (the MV of the second DecimalDigits times 10™"),.where n is the number of characters in the second
DecimalDigits.

The MV of StrUnsignedDecimalLiteral::: DecimalDigits. ExponentPart is the MV of DecimalDigits times 10°,
where e is the MV of ExponentPart.

The MV of StrUnsignedDecimalLiteral::: DecimalDigits. DecimalDigits ExponentPart is (the MV of the first
DecimalDigits plus (the MV of the second DecimalDigits times 10™")) times. 10°, where n is the number of characters
in the second DecimalDigits and e is the MV of ExponentPart.

The MV of StrUnsignedDecimalLiteral:::. DecimalDigits is the-MV of DecimalDigits times 10™", where n is the
number of characters in DecimalDigits.

The MV of StrUnsignedDecimalLiteral::: . DecimalDigits ExponentPart is the MV of DecimalDigits times 10°",
where n is the number of characters in DecimalDigits and e is the MV of ExponentPart.

The MV of StrUnsignedDecimalLiteral::: DecimalDigitsis the MV of DecimalDigits.

The MV of StrUnsignedDecimalLiteral::: DecimalDigits ExponentPart is the MV of DecimalDigits times 10°
where e is the MV of ExponentPart.

The MV of DecimalDigits ::: DecimalDigit is the MV of DecimalDigit.

The MV of DecimalDigits ::: DecimalDigits DecimalDigit is (the MV of DecimalDigits times 10) plus the MV of
DecimalDigit.

The MV of ExponentPart ::: Exponentindicator Signedinteger is the MV of Signedinteger.

The MV of Signedinteger ::: DecimalDigits is the MV of DecimalDigits.

The MV of Signedinteger ::: + DecimalDigits is the MV of DecimalDigits.

The MV of Signedinteger ::: = DecimalDigits is the negative of the MV of DecimalDigits.

The MV of DecimalDigit :::'0 or of HexDigit ::: 0 is 0.

The MV of DecimalDigit ::: 1 or of HexDigit ::: 1 is 1.

The MV of DecimalDigit ::: 2 or of HexDigit ::: 2 is 2.

The MV of DecimalDigit ::: 3 or of HexDigit ::: 3 is 3.

The MV of DecimalDigit ::: 4 or of HexDigit ::: 4 is 4.

The MV of DecimalDigit ::: 5 or of HexDigit ::: 5 is 5.

The MV of DecimalDigit ::: 6 or of HexDigit ::: 6 is 6.

The MV of DecimalDigit ::: 7 or of HexDigit ::: 7 is 7.

The MV of DecimalDigit ::: 8 or of HexDigit ::: 8 is 8.

The MV of DecimalDigit ::: 9 or of HexDigit ::: 9 is 9.

The MV of HexDigit ::: a or of HexDigit ::: A is 10.

The MV of HexDigit ::: b or of HexDigit ::: B is 11.

The MV of HexDigit ::: ¢ or of HexDigit ::: C is 12.

© Ecma International 2013

secma

e The MV of HexDigit ::: d or of HexDigit ::: D is 13.
e The MV of HexDigit ::: e or of HexDigit ::: E is 14.
e The MV of HexDigit ::: £ or of HexDigit ::: F is 15.
e The MV of HexIntegerLiteral ::: 0x HexDigit is the MV of HexDigit.
e The MV of HexIntegerLiteral ::: 0X HexDigit is the MV of HexDigit.

e The MV of HexIntegerLiteral ::: HexIntegerLiteral HexDigit is (the MV of HexIntegerLiteral times 16) plus the
MV of HexDigit.

Once the exact MV for a String numeric literal has been determined, it is then rounded to a value of the
Number type. If the MV is 0, then the rounded value is +0 unless the first non white space character in the
String numeric literal is ‘-’, in which case the rounded value is —0. Otherwise, the rounded value must be the
Number value for the MV (in the sense defined in 6.1.5), unless the literal includes a StrUnsignedDecimalLiteral
and the literal has more than 20 significant digits, in which case the Number value may be either the Number
value for the MV of a literal produced by replacing each significant digit after the 20th with a O digit or the
Number value for the MV of a literal produced by replacing each significant digit after the 20th with a 0 digit
and then incrementing the literal at the 20th digit position. A digit is significant if it is not part of an ExponentPart
and

e itisnotO;or

e there is a nonzero digit to its left and there is a nonzero digit, not in the ExponentPart, to.its right.

7.1.4 Tolnteger

The abstract operation Tolnteger converts its argument to an integral numeric value. This abstract operation
functions as follows:

1. Let number be the result of calling ToNumber on the.input argument.
2. ReturnlfAbrupt(number).

3. Ifnumber is NaN, return +0.

4. If number is +0, =0, +o0, or —oo, return number.

5. Return the result of computingsign(number) x floor(abs(number)).
7.

1.5 Tolnt32: (Signed 32 Bit Integer)

The abstract operation ToInt32 converts its argument to one of 2% integer values in the range -2 through
231, inclusive. This abstract operation functions.as follows:

Let number be the result of calling ToNumber on the input argument.
Returnl fAbrupt(number).

If number is NaN, +0, —0, +o0, 0or —oo, return +0.

Letint be sign(number) x floor(abs(number)).

Let int32bit be int modulo 2%,

If int32bit > 23, return int32bit — 2%, otherwise return int32bit.

ok wWNE

NOTE Given the above definition of ToInt32:

e The TolInt32 abstract operation is idempotent: if applied to a result that it produced, the second application leaves that
value unchanged.

e Tolnt32(ToUint32(x)) is equal to ToInt32(x) for all values of x. (It is to preserve this latter property that +e« and —o are
mapped to +0.)

e ToInt32 maps -0 to +0.

7.1.6 ToUint32: (Unsigned 32 Bit Integer)

The abstract operation ToUint32 converts its argument to one of 2* integer values in the range 0 through
2%2_1, inclusive. This abstract operation functions as follows:

1. Let number be the result of calling ToNumber on the input argument.

2. ReturnIfAbrupt(number).
3. If number is NaN, +0, -0, +e, or —eo, return +0.

© Ecma International 2013 39

/

ecma

4,
5,
6.

Let int be sign(number) x floor(abs(number)).
Let int32bit be int modulo 2%,
Return int32bit.

NOTE Given the above definition of ToUint32:

Step 6 is the only difference between ToUint32 and ToInt32.

The ToUint32 abstract operation is idempotent: if applied to a result that it produced, the second application leaves
that value unchanged.

ToUint32(TolInt32(x)) is equal to ToUint32(x) for all values of x. (It is to preserve this latter property that +co and —o are
mapped to +0.)

ToUint32 maps —0 to +0.

7.1.7 ToUint16: (Unsigned 16 Bit Integer)

The abstract operation ToUintl6 converts its argument to one of 2! integer values in the range 0 through
26_1, inclusive. This abstract operation functions as follows:

ol wNE

Let number be the result of calling ToNumber on the input argument.
ReturnlfAbrupt(number).

If number is NaN, +0, -0, +o0, or —oo, return +0.

Let int be sign(number) x floor(abs(number)).

Let int16bit be int modulo 21€.

Return int16bit.

NOTE Given the above definition of ToUint16:

The substitution of 216 for 232 in step 4 is the only difference between ToUint32 and ToUint16.
ToUint16 maps -0 to +0.

7.1.8 ToString

The abstract operation ToString converts.its argument to a value of type String according to Table 12:

Table 12 — ToString Conversions

Argument Type Result

Completion Record | If argument is an abrupt completion, return argument. Otherwise return
TosString(argument.[[value]])

Undefined "undefined"
Null "null"
Boolean If argument is true, then return "true".
If argument is false, then return "false".
Number See 7.1.8.1.
String Return argument (no conversion)
Symbol Throw a TypeError exception.
Object Apply the following steps:

1. Let primValue be ToPrimitive(argument, hint String).
2. Return ToString(primValue).

7.1.8.1 ToString Applied to the Number Type

The abstract operation ToString converts a Number m to String format as follows:

Hwn e

40

If m is NaN, return the String "NaN".

If mis +0 or -0, return the String "0".

If m is less than zero, return the String concatenation of the String "-" and ToString(—m).
If m is +oo, return the String "Infinity".

© Ecma International 2013

secmd

5. Otherwise, let n, k, and s be integers such that k > 1, 10“* < s < 10%, the Number value for s x 10"* is m, and
k is as small as possible. Note that k is the number of digits in the decimal representation of s, that s is not
divisible by 10, and that the least significant digit of s is not necessarily uniquely determined by these
criteria.

6. Ifk <n <21, return the String consisting of the k digits of the decimal representation of s (in order, with no
leading zeroes), followed by n—k occurrences of the character ‘0°.

7. 1f 0 <n <21, return the String consisting of the most significant n digits of the decimal representation of s,
followed by a decimal point “.’, followed by the remaining k—n digits of the decimal representation of s.

8. If—6 <n <0, return the String consisting of the character ‘0, followed by a decimal point ., followed by
—n occurrences of the character ‘0°, followed by the k digits of the decimal representation of s.

9. Otherwise, if k = 1, return the String consisting of the single digit of s, followed by lowercase character ‘e’,
followed by a plus sign ‘4’ or minus sign ‘=’ according to whether n—1 is positive or negative, followed by
the decimal representation of the integer abs(n—1) (with no leading zeroes).

10. Return the String consisting of the most significant digit of the decimal representation of s, followed by a
decimal point “.”, followed by the remaining k—1 digits of the decimal representation of s, followed by the
lowercase character ‘e’, followed by a plus sign ‘+’ or minus sign ‘-’ according to whether n—1 is positive
or negative, followed by the decimal representation of the integer abs(n—1) (with noleading zeroes).

NOTE1 The following observations may be useful as guidelines for implementations, but are not part of the normative
requirements of this Standard:

e If xis any Number value other than —0, then ToNumber(ToString(x)) is exactly the same Number value as x.

e The least significant digit of s is not always uniquely determined by the requirements listed in step 5.

NOTE 2 For implementations that provide more accurate conversions than required by the rules above, it is
recommended that the following alternative versionof step 5 be used as a guideline:
Otherwise, let n, k, and s be integers such thatk > 1, 10+ < s < 10%, the Numbervalue for s x 10"* is m, and k is as small as
possible. If there are multiple possibilities for s, choose the value of s for which s x 10" is closest in value to m. If there are
two such possible values of s, choose the one that is even. Note that k is.the number of digits in the decimal representation of
s and that s is not divisible by 10.

NOTE 3 Implementers of ECMAScript may find useful the paper and code written by David M. Gay for binary-to-decimal
conversion of floating-point numbers:
Gay, David M. Correctly Rounded Binary-Decimal and Decimal-Binary Conversions. Numerical Analysis,
Manuscript 90-10. AT&T Bell Laboratories (Murray Hill, New Jersey). November 30, 1990. Available as
http://cm.bell-labs.com/cm/cs/doc/90/4-10.ps:gz. Associated code available as
http://netlib.sandia.gov/fp/dtoa:c and as
http://netlib.sandia.gov/fp/g_fmt.c and may also be found at the various netlib mirror sites.

7.1.9 ToObject

The abstract operation ToObject converts its argument to a value of type Object according to Table 13:

© Ecma International 2013 41

secma

Table 13 — ToObject Conversions

Argument Type Result

Completion Record | If argument is an abrupt completion, return argument. Otherwise return
ToObject(argument.[[value]])

Undefined Throw a TypeError exception.

Null Throw a TypeError exception.

Boolean Return a new Boolean object whose [[BooleanData]] internal data property
is set to the value of argument. See 19.3 for a description of Boolean
objects.

Number Return a new Number object whose [[NumberData]] internal data property
is set to the value of argument. See 20.1 for a description of Number
objects.

String Return a new String object whose [[StringData]] internal data property is
set to the value of argument. See 21.1 for'a description of String objects.

Symbol Return a new Symbol object whose [[SymbolData]] internal data property
is set to the value of argument. See 19.4 for a description. of Symbol
objects.

Object Return argument (no conversion).

7.1.10 ToPropertyKey

The abstract operation ToPropertyKey converts its argument to a value that can be used as a property key by
performing the following steps:

1. ReturnlfAbrupt(argument).

2. If Type(argument) is Symbol, then
a. Return argument.

3. Return ToString(argument).

7.1.11 TolLength

The abstract operation ToLength converts its argument to an integer suitable for use as the length of an array-
like object. It performs the following steps:

Let len be Tolnteger(argument).
ReturnlfAbrupt(len).

If len'< 0, then return 0.

Return min(len, 2%-1).

Eal ol o

7.2 Testing and Comparison Operations
7.2.1 CheckObjectCoercible

The abstract operation CheckObjectCoercible throws an error if its argument is a value that cannot be
converted to an Object using ToObject. It is defined by Table 14:

42 © Ecma International 2013

722

eCnd

Table 14 — CheckObjectCoercible Results

Argument Type Result
Completion Record | If argument is an abrupt completion, return argument. Otherwise return
CheckObjectCoercible(argument.[[value]])
Undefined Throw a TypeError exception.
Null Throw a TypeError exception.
Boolean Return argument
Number Return argument
String Return argument
Symbol Return argument
Object Return argument
IsCallable

The abstract operation IsCallable determines if its argument, which-must be an ECMAScript language value or
a Completion Record, is a callable function Object according to Table 15:

Table 15 — IsCallable Results

Argument Type Result

Completion Record | If argument is an abrupt completion, return argument. Otherwise return
IsCallable(argument.[[value]])

Undefined Return false.

Null Return false.

Boolean Return false.

Number Return false.

String Return false.

Symbol Return false.

Object If argument has a [[Call]] internal method, then return true, otherwise return
false.

7.2.3 SameValue(x,y)

The internal. comparison abstract operation SameValue(x, y), where x and y are ECMAScript language values,
produces true or false. Such a comparison is performed as follows:

ISR

8.

9.

ReturnlfAbrupt(x).
ReturnifAbrupt(y).
If Type(X) is different from Type(y), return false.
If Type(x) is.Undefined, return true.
If Type(x) is Null, returntrue.
If Type(x) is Number, then
a. IfxisNaNandy is NaN, return true.
b. Ifxis+0andy is -0, return false.
c. Ifxis-0Oandy is +0, return false.
d. If x is the same Number value as y, return true.
e. Return false.
If Type(x) is String, then
a. Ifx andy are exactly the same sequence of code units (same length and same code units in
corresponding positions) return true; otherwise, return false.
If Type(x) is Boolean, then
a. Ifxandy are both true or both false, then return true; otherwise, return false.
If Type(x) is Symbol, then
a. Ifxandy are both the same Symbol value, then return true; otherwise, return false.

10. Return true if x and y are the same Object value. Otherwise, return false.

© Ecma International 2013 43

secmd

7.2.4 SameValueZero(x,y)

The internal comparison abstract operation SameValueZero(x, y), where x and y are ECMAScript language
values, produces true or false. Such a comparison is performed as follows:

ReturnlfAbrupt(x).
ReturnlfAbrupt(y).
If Type(x) is different from Type(y), return false.
If Type(x) is Undefined, return true.
If Type(x) is Null, return true.
If Type(x) is Number, then
a. Ifxis NaN andy is NaN, return true.
b. Ifxis+0andy is -0, return true.
c. Ifxis-0andy is +0, return true.
d. If x is the same Number value as y, return true.
e. Return false.
7. If Type(x) is String, then
a. Ifx andy are exactly the same sequence of code units (same length and same code units in
corresponding positions) return true; otherwise, return false.
8. If Type(x) is Boolean, then
a. Ifxandy are both true or both false, then return'true; otherwise, return false.
9. If Type(x) is Symbol, then
a. Ifxandy are both the same Symbol value, then return true;otherwise, return false.
10. Return true if x and y are the same Object value. Otherwise, return false.

o wNE

NOTE SameValueZero differs from SameValue only in its treatment of +0 and -0.
7.2.5 IsConstructor

The abstract operation IsConstructor determines if its argument, which must be an ECMAScript language value
or a Completion Record, is a function object with a [[Construct]] internal method.

ReturnlfAbrupt(argument).

If Type(argument) is not Object, return false.

If argument has a [[Construct]] internal method, return true.
Return false.

Hwn e

7.2.6 IsPropertyKey

The abstract operation IsPropertyKey determines if its argument, which must be an ECMAScript language
value or‘a Completion Record, is a value that may be used as a property key.

1. ReturnlfAbrupt(argument).

2. If Type(argument) is String, return true.
3. If Type(argument) is Symbol, return true.
4. Return false.

7.2.7 IsExtensible (O)

The abstract operation IsExtensible is used to determine whether additional properties can be added to the
object that is O. A Boolean value is returned. This abstract operation performs the following steps:

1. Assert: Type(O) is Object.
2. Return the result of calling the [[IsExtensible]] internal method of O.

7.2.8 Abstract Relational Comparison
The comparison x <y, where x and y are values, produces true, false, or undefined (which indicates that at

least one operand is NaN). In addition to x and y the algorithm takes a Boolean flag named LeftFirst as a
parameter. The flag is used to control the order in which operations with potentially visible side-effects are

44 © Ecma International 2013

secma

performed upon x and y. It is necessary because ECMAScript specifies left to right evaluation of expressions.
The default value of LeftFirst is true and indicates that the x parameter corresponds to an expression that
occurs to the left of the y parameter’s corresponding expression. If LeftFirst is false, the reverse is the case
and operations must be performed upon y before x. Such a comparison is performed as follows:

1. ReturnlfAbrupt(x).
2. ReturnIfAbrupt(y).
3. If the LeftFirst flag is true, then

a. Let px be the result of calling ToPrimitive(x, hint Number).

b. ReturnlfAbrupt(px).

c. Let py be the result of calling ToPrimitive(y, hint Number).

d. ReturnIfAbrupt(py).

4. Else the order of evaluation needs to be reversed to preserve left to right evaluation

a. Let py be the result of calling ToPrimitive(y, hint Number).

b. ReturnlfAbrupt(py).

c. Let px be the result of calling ToPrimitive(x, hint Number).

d. ReturnlfAbrupt(px).

5. If both px and py are Strings, then

a. If pyis a prefix of px, return false. (A String value p is a prefix of String value g if g can be the
result of concatenating p and some other String r. Note that any String is a prefix of itself, because r
may be the empty String.)

b. If pxis a prefix of py, return true.

c. Letk be the smallest nonnegative integer such that the character at position k within px is different
from the character at position k within py. (There must besuch a k, for neither String is a prefix of
the other.)

d. Letm be the integer that is the code unit value for the character at position k within px.

e. Letn be the integer that is the code unit value for the character at position k within py.

f. If m <n, return true. Otherwise, return false.

a. Let nx be the result of calling ToNumber(px). Because px and.py are primitive values evaluation
order is not important.

Let ny be the result of calling ToNumber(py).

If nx is NaN, return undefined.

If ny is NaN, return undefined.

If nx and ny are the same Number value, return false.

If nx is +0 and ny is -0, return false.

If nx is —0 and ny is.+0; return false.

If nx.is +o0, return false.

If ny is +oo, return true.

If ny is —oo, return false.

If nx is —o0, return true.

If the mathematical value of nx'is less than the mathematical value of ny —note that these
mathematical values are both finite and not both zero—return true. Otherwise, return false.

mx- Sae@moeaono

NOTE 1 Step 5differs from step 11 in the algorithm for the addition operator + (12.6.2) in using and instead of or.

NOTE 2 The comparison of Strings uses a simple lexicographic ordering on sequences of code unit values. There is no
attempt to use the more complex, semantically oriented definitions of character or string equality and collating order
defined in the Unicode specification. Therefore String values that are canonically equal according to the Unicode standard
could test as unequal. In effect this algorithm assumes that both Strings are already in normalised form. Also, note that for
strings containing supplementary characters, lexicographic ordering on sequences of UTF-16 code unit values differs from
that on sequences of code point values.

7.2.9 Abstract Equality Comparison

The comparison x ==y, where x and y are values, produces true or false. Such a comparison is performed as
follows:

1. If Type(x) is the same as Type(y), then
a. Return the result of performing Strict Equality Comparison x ===y.

© Ecma International 2013 45

secma

n

If x is null and y is undefined, return true.
3. Ifx is undefined andy is null, return true.
4. 1f Type(x) is Number and Type(y) is String,
return the result of the comparison x == ToNumber(y).
5. If Type(x) is String and Type(y) is Number,
return the result of the comparison ToNumber(x) ==y.
6. If Type(x) is Boolean, return the result of the comparison ToNumber(x) ==y.
7. If Type(y) is Boolean, return the result of the comparison x == ToNumber(y).
8. If Type(x) is either String or Number and Type(y) is Object,
return the result of the comparison x == ToPrimitive(y).
9. If Type(x) is Object and Type(y) is either String or Number,
return the result of the comparison ToPrimitive(x) ==y.
10. Return false.

7.2.10 Strict Equality Comparison

The comparison x ===y, where x and y are values, produces true or false. Such a comparison is performed
as follows:

1. If Type(x) is different from Type(y), return false.

2. If Type(x) is Undefined, return true.

3. If Type(x) is Null, return true.

4. 1f Type(x) is Number, then

If x is NaN, return false.
If y is NaN, return false.
If x is the same Number value as y; return true.
If x is +0 and y is =0, return true.
If x is—0 and y is +0, return true.
f. Return false.
5. If Type(x) is String, then
a. Ifxandy are exactly the same sequence of characters (same length and same characters in
corresponding positions), return true.
b. Else, return false.
6. If Type(x) is Boolean; then
a. Ifxandy are both true or both false, return true.
b. Else, return false.
7. Ifxandy are the same Symbolvalue, return true.
8. Ifxandy are.the same Object value, return true.
9. Return false.

®coooe

NOTE This algorithm differs from the SameValue Algorithm (7.2.3) in its treatment of signed zeroes and NaNs.
7.3 Operations on Objects
7.3.1 Get(O,P)

The abstract operation Get is used to retrieve the value of a specific property of an object. The operation is
called with arguments ‘O and P where O is the object and P is the property key. This abstract operation
performs the following steps:

1. Assert: Type(O) is Object.
2. Assert: IsPropertyKey(P) is true.
3. Return the result of calling the [[Get]] internal method of O passing P and O as the arguments.

7.3.2 Put (O, P,V, Throw)
The abstract operation Put is used to set the value of a specific property of an object. The operation is called

with arguments O, P, V, and Throw where O is the object, P is the property key, V is the new value for the
property and Throw is a Boolean flag. This abstract operation performs the following steps:

46 © Ecma International 2013

secma

1. Assert: Type(O) is Object.

2. Assert: IsPropertyKey(P) is true.

3. Assert: Type(Throw) is Boolean.

4. Let success be the result of calling the [[Set]] internal method of O passing P, V, and O as the arguments.
5. ReturnlfAbrupt(success).

6. If success is false and Throw is true, then throw a TypeError exception.

7. Return success.

7.

3.3 CreateOwnbDataProperty (O, P, V)

The abstract operation CreateOwnDataProperty is used to create a new own property of an object. The
operation is called with arguments O, P, and V where O is the object, P is the property key, and V is the value
for the property. This abstract operation performs the following steps:

1. Assert: Type(O) is Object.

2. Assert: IsPropertyKey(P) is true.

3. Let newDesc be the Property Descriptor {[[Value]]: V, [[Writable]]:.true, [[Enumerable]]: true,
[[Configurable]]: true}.

4. Return the result of calling the [[DefineOwnProperty]] internal-method of O passing P and newDesc as
arguments.

NOTE This abstract operation creates a property whose attributes are set to'the same defaults used for properties
created by the ECMAScript language assignment operator. Normally, the property will not already exist. If it does exist and
is not configurable or O is not extensible [[DefineOwnProperty]] will return false.

7.3.4 DefinePropertyOrThrow (O, P, desc)

The abstract operation DefinePropertyOrThrow is used to call the [[DefineOwnProperlty]] internal method of an
object in a manner that will throw a TypeError exception.if the requested property update cannot be
performed. The operation is called with arguments . O, P, and desc where O'is the object, P is the property key,
and desc is the Property Descriptor for the property. This abstract operation perform, the following steps:

1. Assert: Type(O) is Object:

2. Assert: IsPropertyKey(P) is true.

3. Let success be the result of calling the [[DefineOwnProperty]] internal method of O passing P and desc as
arguments.

4. ReturnlfAbrupt(success).

5. If success is false, then throw a TypeError exception.

6. Return success.

7.3.5 DeletePropertyOrThrow (O, P)

The abstract operation DeletePropertyOrThrow is used to remove a specific own property of an object. It
throws an exception if the property is not configurable. The operation is called with arguments O and P where
O is the objectand P is the property key. This abstract operation performs the following steps:

1. Assert: Type(O).is Object.

2. Assert: IsPropertyKey(P) is true.

3. Let success be the result of calling the [[Delete]] internal method of O passing P as the argument.
4. ReturnlfAbrupt(success).

5. If success is false, then throw a TypeError exception.

6. Return success.

7.

3.6 HasProperty (O, P)
The abstract operation HasProperty is used to determine whether an object has a property with the specified
property key. The property may be either an own or inherited. A Boolean value is returned. The operation is
called with arguments O and P where O is the object and P is the property key. This abstract operation
performs the following steps:

1. Assert: Type(O) is Object.

© Ecma International 2013 47

secmd

2. Assert: IsPropertyKey(P) is true.
3. Return the result of calling the [[HasProperty]] internal method of O with argument P.

7.3.7 HasOwnProperty (O, P)

The abstract operation HasOwnProperty is used to determine whether an object has an own property with the
specified property key. A Boolean value is returned. The operation is called with arguments O and P where O
is the object and P is the property key. This abstract operation performs the following steps:

Assert: Type(O) is Object.

Assert: IsPropertyKey(P) is true.

Let desc be the result of calling the [[GetOwnProperty]] internal method of O passing P as the argument.
ReturnlfAbrupt(desc).

If desc if undefined, return false.

Return true.

gk wn e

7.3.8 GetMethod (O, P)

The abstract operation GetMethod is used to get the value of a specific property of an object when the value of
the property is expected to be a function. The operation is-called with arguments O and P where O is the
object, P is the property key. This abstract operation performs the following steps:

1. Assert: Type(O) is Object.

2. Assert: IsPropertyKey(P) is true.

3. Let func be the result of calling the [[Get]] internal method of O passing P and O as the arguments.
4. ReturnlfAbrupt(func).

5. If func is undefined, then return undefined.

6. If IsCallable(func) is false, then throw a TypeError exception.

7. Return func.

7.

3.9 Invoke(O,P, [args])

The abstract operation Invoke is used to call a method property of an object. The operation is called with
arguments O, P, and optionally args where O serves as both the lookup point for the property and the this
value of the call, P is the property key, and args is the list of arguments values passed to the method. If args is
not present, an empty Listis used as its value: This abstract operation performs the following steps:

1. Assert: P is a valid property key.
2. If args was not passed, then let args be a new empty List.
3. If Type(O) is Object then,
a. Letbase be O.
4. Else,
a.. Let base be ToObject(O).
5. ReturnlfAbrupt(base).
6. Return the result of calling/the [[Invoke]] internal method of base passing arguments P, args, and O.

7.3.10 SetintegrityLevel (O, level)

The abstract operation SetintegrityLevel is used to fix the set of own properties of an object. This abstract
operation performs the following steps:

Assert: Type(O) is Object.
Assert: level is either "sealed" or "frozen".
Let keys be the result of calling the [[OwnPropertyKeys]] internal method of O.
ReturnlfAbrupt(keys).
Let pendingException be undefined.
If level is "sealed", then

a. Repeat for each element k of keys,

i. Let status be the result of DefinePropertyOrThrow(O, k, PropertyDescriptor{
[[Configurable]]: false}).

ok wpnE

48 © Ecma International 2013

secma

7.

8.
9.

ii. If status is an abrupt completion, then
1. If pendingException is undefined, then set pendingException to status.
Else level is "frozen",
a. Repeat for each element k of keys,
i. Let status be the result of calling the [[GetOwnProperty]] internal method of O with k.
ii. If status is an abrupt completion, then
1. If pendingException is undefined, then set pendingException to status.
iii. Else,
1. LetcurrentDesc be status.[[value]].
2. If currentDesc is not undefined, then
a. If IsAccessorDescriptor(currentDesc) is true, then
i. Letdesc be the PropertyDescriptor{[[Configurable]]: false}.
b. Else,
i. Letdesc be the PropertyDescriptor { [[Configurable]]: false,
[[Writable]]: false }.
c. Let status be the result of DefinePropertyOrThrow(O, k, desc).
d. If status is an abrupt completion, then
i. If pendingException is undefined, then set pendingException
to status.
If pendingException is not undefined, then return pendingException.
Return the result of calling the [[PreventExtensions]] internal method of O.

7.3.11 TestiIntegrityLevel (O, level)

The abstract operation TestIntegrityLevel is used to determine if the set of own properties of an object are fixed.
This abstract operation performs the following steps:

©ONOOA~WNE

13.
14.
15.

16

Assert: Type(O) is Object.
Assert: level is either "sealed" or "£rozen".
Let status be the result of IsExtensible(O).
ReturnlfAbrupt(status).
If status is true, then return false
NOTE If the object is extensible, none of its properties are examined.
Let keys be the result of calling the [[OwnPropertyKeys]] internal method of O.
ReturnIfAbrupt(keys).
Let pendingException be undefined.
. Let configurable be false.
. Let writable be false.
. Repeat foreach element k of keys,
a. Let status be the result of calling the [[GetOwnProperty]] internal method of O with k.
b. If statusis an abrupt completion, then
i. If pendingException is undefined, then set pendingException to status.
ii. Let configurable be true.
c. Else,
i. LetcurrentDesc be status.[[value]].
ii. If currentDesc is not undefined, then
1. Set configurable to configurable logically ored with
currentDesc.[[Configurable]].
2. If IsDataDescriptor(currentDesc) is true, then
a. Set writable to writable logically ored with currentDesc.[[Writable]].
If pendingException is not undefined, then return pendingException.
If level is "frozen" and writable is true, then return false.
If configurable is true, then return false.
. Return true.

7.3.12 CreateArrayFromList (elements)

The abstract operation CreateArrayFromList is used to create an Array object whose elements are provided by

an

internal List. This abstract operation performs the following steps:

© Ecma International 2013 49

secma

Assert: elements is a List whose elements are all ECMAScript language values.
Let array be the result of the abstract operation ArrayCreate with argument 0.
Let n be 0.
For each element e of elements
a. Let status be the result of CreateOwnDataProperty(array, ToString(n), e).
b. Assert: statusis true.
c. Incrementn by 1.
5. Return array.

7.3.13 CreateListFromArrayLike (obj)

ArwpnpE

The abstract operation CreateListFromArrayLike is used to create a List value whose elements are provided by
the indexed properties of an array-like object. This abstract operation performs the following steps:

If Type(obj) is not Object, then throw a TypeError exception.
Let len be the result of Get(obj, "length").
Let n be Tolnteger(len).
ReturnIfAbrupt(n).
Let list be an empty List.
Let index be 0.
Repeat while index < n
a. LetindexName be ToString(index).
b. Let next be the result of Get(obj, indexName).
¢. ReturnIfAbrupt(next).
d. Append next as the last element of list.
e. Setindextoindex + 1.
8. Return list.

NoohkowpE

7.3.14 OrdinaryHasInstance (C, O)

The abstract operation OrdinaryHaslnstance implements the default algorithm for determining if an object O
inherits from the instance object inheritance path provided by constructor C. This abstract operation performs
the following steps:

1. If IsCallable(C) is false, return false.

2. If C has a [[BoundTargetFunction]] internal data property, then
a. Let BC be the value of C’s [[BoundTargetFunction]] internal data property.
b. Return the result of InstanceofOperator(O,BC) (see 12.8.3).

If Type(Q) is not Object, return false.

Let P_be the result of Get(C, "prototype").

ReturnlfAbrupt(P).

If Type(P) is not Object, throw a TypeError exception.

Repeat
a. Set O to the result of calling the [[GetPrototypeOf]] internal method of O with no arguments.
b. “ReturnlfAbrupt(O).
c. IfOisnull, return false.
d. If SameValue(P, O) is true, return true.

Nogkow

7.3.15 GetPrototypeFromConstructor (constructor, intrinsicDefaultProto)

The abstract operation GetPrototypeFromConstructor determines the [[Prototype]] value that should be used to
create an object corresponding to a specific constructor. The value is retrieved from the constructor’s
prototype property, if it exists. Otherwise the supplied default is used for [[Prototype]]. This abstract
operation performs the following steps:

1. Assert: intrinsicDefaultProto is a string value that is this specification’s name of an intrinsic object. The
corresponding object must be an intrinsic that is intended to be used as the [[Prototype]] value of an object.

2. If IsConstructor (constructor) is false, then throw a TypeError exception.

3. Let proto be the result of Get(constructor, "prototype").

4. ReturnIfAbrupt(proto).

50 © Ecma International 2013

pecma

5. If Type(proto) is not Object, then
a. If constructor has a [[Realm]] internal data property, let realm be constructor’s [[Realm]].
b. Else,
i Let ctx be the running execution context.
ii. Let realm be czx’s Realm.
c. Letproto be realm’s intrinsic object named intrinsicDefaultProto.
6. Return proto.

NOTE If constructor does not supply a [[Prototype]] value, the default value that is used is obtained from the Code
Realm of the constructor function rather than from the running execution context. This accounts for the possibility that a
built-in @@create method from a different Code Realm might be installed on constructor.

7.3.16 OrdinaryCreateFromConstructor (constructor, intrinsicDefaultProto; internalDatalList)

The abstract operation OrdinaryCreateFromConstructor creates an ordinary-object whose [[Prototype]] value is
retrieved from a constructor's prototype property, if it exists. Otherwise the supplied default is used for
[[Prototype]]. The optional internalDatalList is a List of the names of internal data property names that should
be defined as part of the object. If the list is not provided, an empty List is used. This abstract operation
performs the following steps:

1. Assert: intrinsicDefaultProto is a string value that is this specification’s name of an intrinsic object. The
corresponding object must be an intrinsic that is intended to be used as the [[Prototype]] value of an object.

2. Let proto be the result of GetPrototypeFromConstructor(constructor, intrinsicDefaultProto).

3. ReturnlfAbrupt(proto).

4. Return the result of the abstract operation ObjectCreate(proto, internalDataList).

8 Executable Code and Execution Contexts
8.1 Lexical Environments

A Lexical Environment is a spegcification type used to define the association of Identifiers to specific variables
and functions based upon the lexical nesting structure of ECMAScript code. A Lexical Environment consists of
an Environment Record and a possibly null reference to an outer Lexical Environment. Usually a Lexical
Environment is associated with some specific syntactic structure of ECMAScript code such as a
FunctionDeclaration, a‘BlockStatement, or a Catch clause of a TryStatement and a new Lexical Environment is
created each time such code is evaluated.

An Environment Record records the identifier bindings that are created within the scope of its associated
Lexical Environment.

The outer environment reference is used.to model the logical nesting of Lexical Environment values. The
outer reference of a (inner) Lexical Environment is a reference to the Lexical Environment that logically
surrounds the inner Lexical Environment. An outer Lexical Environment may, of course, have its own outer
Lexical Environment. A Lexical Environment may serve as the outer environment for multiple inner Lexical
Environments. For example, if a FunctionDeclaration contains two nested FunctionDeclarations then the Lexical
Environments of each of the nested functions will have as their outer Lexical Environment the Lexical
Environment of the current evaluation of the surrounding function.

A global environment is a Lexical Environment which does not have an outer environment. The global
environment's outer environment reference is null. A global environment's environment record may be
prepopulated with identifier bindings and includes an associated global object whose properties provide some
of the global environment’s identifier bindings. This global object is the value of a global environment's this
binding. As ECMAScript code is executed, additional properties may be added to the global object and the
initial properties may be modified.

A method environment is a Lexical Environment that corresponds to the invocation of an ECMAScript function

object that establishes a new this binding. A method environment also captures the state necessary to
support super method invocations.

© Ecma International 2013 51

secma

Lexical Environments and Environment Record values are purely specification mechanisms and need not
correspond to any specific artefact of an ECMAScript implementation. It is impossible for an ECMAScript
program to directly access or manipulate such values.

8.1.1 Environment Records

There are two primary kinds of Environment Record values used in this specification: declarative environment
records and object environment records. Declarative environment records are used to define the effect of
ECMAScript language syntactic elements such as FunctionDeclarations, VariableDeclarations, and Catch
clauses that directly associate identifier bindings with ECMAScript language values. Object environment
records are used to define the effect of ECMAScript elements such as WithStatement that associate identifier
bindings with the properties of some object. Global Environment Records and Function Environment Records
are specializations that are used for specifically for Script global declarations<and for top-level declarations
within functions.

For specification purposes Environment Record values can be thought of as existing in a simple object-
oriented hierarchy where Environment Record is an abstract class with three concrete subclasses, declarative
environment record, object environment record, and global environment record. Function environment records
are a subclass of declarative environment record. The abstract class includes the abstract specification
methods defined in Table 16. These abstract methods have distinct concrete algorithms for each of the
concrete subclasses.

Table 16 — Abstract Methods of Environment Records

Method Purpose

HasBinding(N) Determine if an environment record has a binding for an
identifier. Return true if it does and false if it does not. The
String value N is the text of the identifier.

CreateMutableBinding(N, D) Create a new but wuninitialised mutable binding in an
environment record. The String value N is the text of the bound
name. If the optional Boolean argument D is true the binding is
may be subsequently deleted.

CreatelmmutableBinding(N) Create 'a new but uninitialised immutable binding in an
environment record. The String value N is the text of the bound
name.

InitialiseBinding(N,V) Set the value of an already existing but uninitialised binding in

an environment record. The String value N is the text of the
bound name. V is the value for the binding and is a value of any
ECMAScript language type.

SetMutableBinding(N,V, S) Set the value of an already existing mutable binding in an
environment record. The String value N is the text of the bound
name. V is the value for the binding and may be a value of any
ECMAScript language type. S is a Boolean flag. If Sis true and
the binding cannot be set throw a TypeError exception. S is
used to identify strict mode references.

GetBindingValue(N,S) Returns the value of an already existing binding from an
environment record. The String value N is the text of the bound
name. S is used to identify strict mode references. If S is true
and the binding does not exist or is uninitialised throw a
ReferenceError exception.

DeleteBinding(N) Delete a binding from an environment record. The String value
N is the text of the bound name If a binding for N exists, remove
the binding and return true. If the binding exists but cannot be
removed return false. If the binding does not exist return true.

HasThisBinding() Determine if an environment record establishes a this binding.
Return true if it does and false if it does not.

52 © Ecma International 2013

secma

HasSuperBinding() Determine if an environment record establishes a super
method binding. Return true if it does and false if it does not.

WithBaseObject () If this environment record is associated with a with statement,
return the with object. Otherwise, return undefined.

8.1.1.1 Declarative Environment Records

Each declarative environment record is associated with an ECMAScript program scope containing variable,
constant, let, class, module, import, and/or function declarations. A declarative environment record binds the
set of identifiers defined by the declarations contained within its scope.

The behaviour of the concrete specification methods for Declarative Environment Records is defined by the
following algorithms.

8.1.1.1.1HasBinding(N)

The concrete environment record method HasBinding for declarative environment records simply determines
if the argument identifier is one of the identifiers bound by the record:

1. LetenvRec be the declarative environment record for which the method was invoked.
2. If envRec has a binding for the name that is the value of N, return true.
3. Return false.

8.1.1.1.2 CreateMutableBinding (N, D)

The concrete Environment Record method CreateMutableBinding for declarative environment records creates
a new mutable binding for the name N that is uninitialised. A binding must not already exist in this
Environment Record for N. If Boolean argument D is provided and.has the value true the new binding is
marked as being subject to deletion.

1. LetenvRec be the declarative environment record for which the method was invoked.

2. Assert: envRec does not already have a binding for'N.

3. Create a mutable binding in envRec for N and record that it is uninitialised. If D is true record that the newly
created binding may be deleted by a subsequent DeleteBinding call.

4. Return NormalCompletion(empty).

8.1.1.1.3CreatelmmutableBinding (N)

The concrete Environment. Record method CreatelmmutableBinding for declarative environment records
creates a new immutable binding for the name N that is uninitialised. A binding must not already exist in this
environment record for N.

1. LetenvRec be the declarative environment record for which the method was invoked.
2. Assert: envRec does not already have a binding for N.
3. Create an immutable binding in envRec for N and record that it is uninitialised.

8.1.1.1.4InitialiseBinding (N,V)

The concrete Environment Record method InitialiseBinding for declarative environment records is used to set
the bound value of the current binding of the identifier whose name is the value of the argument N to the value
of argument V. An uninitialised binding for N must already exist.

Let envRec be the declarative environment record for which the method was invoked.
Assert: envRec must have an uninitialised binding for N.

Set the bound value for N in envRec to V.

Record that the binding for N in envRec has been initialised.

o

© Ecma International 2013 53

Commented [AWBG6]: This probably needs a D option
argument, just like createMutableEnvironment

secmd

8.1.1.1.5 SetMutableBinding (N,V,S)

The concrete Environment Record method SetMutableBinding for declarative environment records attempts to
change the bound value of the current binding of the identifier whose name is the value of the argument N to
the value of argument V. A binding for N must already exist. If the binding is an immutable binding, a
TypeError is thrown if S is true.

Let envRec be the declarative environment record for which the method was invoked.

Assert: envRec must have a binding for N.

If the binding for N in envRec has not yet been initialised throw a ReferenceError exception.

Else if the binding for N in envRec is a mutable binding, change its bound value to V.

Else this must be an attempt to change the value of an immutable binding so if S.s true throw a TypeError
exception.

6. Return NormalCompletion(empty).

8.1.1.1.6 GetBindingValue(N,S)

arwnE

The concrete Environment Record method GetBindingValue for-declarative environment records simply
returns the value of its bound identifier whose name is the value of the argument N. The binding must already
exist. If S is true and the binding is an uninitialised immutable binding throw a ReferenceError exception.

1. LetenvRec be the declarative environment record for which the method was invoked.
2. Assert: envRec has a binding for N.
3. If the binding for N in envRec is an uninitialised binding, then
a. IfSis false, return the value undefined, otherwise throw a ReferenceError exception.
4. Else,
a. Return the value currently bound to N in envRec.

8.1.1.1.7 DeleteBinding (N)

The concrete Environment Record method DeleteBinding for declarative environment records can only delete
bindings that have been explicitly designated as being subject to deletion.

1. LetenvRec be the declarative environment record for which the method was invoked.
2. If envRec does not have a binding for the name that is the value of N, return true.

3. If the binding for N in envRec cannot be deleted, return false.

4. Remove the binding for N. from envRec.

5. Return true.

8.

1.1.1.8HasThisBinding ()
Regular Declarative Environment Records do not provide a this binding.

1. Return false.
8.1.1.1.9HasSuperBinding ()

Regular Declarative. Environment Records do not provide a super binding.

1. Return false.
8.1.1.1.10 WithBaseObject()

Declarative Environment Records always return undefined as their WithBaseObject.

1. Return undefined.
8.1.1.2 Object Environment Records
Each object environment record is associated with an object called its binding object. An object environment

record binds the set of string identifier names that directly correspond to the property names of its binding
object. Property keys that are not strings in the form of an IdentifierName are not included in the set of bound

54 © Ecma International 2013

pecma

identifiers. Both own and inherited properties are included in the set regardless of the setting of their
[[Enumerable]] attribute. Because properties can be dynamically added and deleted from objects, the set of
identifiers bound by an object environment record may potentially change as a side-effect of any operation
that adds or deletes properties. Any bindings that are created as a result of such a side-effect are considered
to be a mutable binding even if the Writable attribute of the corresponding property has the value false.
Immutable bindings do not exist for object environment records.

Object environment records also have a possibly empty List of strings called unscopables. The strings in this
List are excluded from the environment records set of bound names, regardless of whether or not they exist
as property keys of its binding object.

Object environment records created for with statements (13.10) can provide their binding object as an
implicit this value for use in function calls. The capability is controlled by a withEnvironment Boolean value that
is associated with each object environment record. By default, the value of withEnvironment is false for any
object environment record.

The behaviour of the concrete specification methods for Object Environment Records is defined by the
following algorithms.

8.1.1.2.1HasBinding(N)

The concrete Environment Record method HasBinding for object environment records determines if its
associated binding object has a property whose name is the value of the argument N:

1. LetenvRec be the object environment record for which the method was invoked.
2. If Nis an element of envRec’s unscopables, then.return false.

3. Let bindings be the binding object for envRec.

4. Return the result of HasProperty(bindings, N).

8.

1.1.2.2 CreateMutableBinding (N, D)

The concrete Environment Record method CreateMutableBinding for object environment records creates in
an environment record’s associated binding object a property whose name is the String value and initialises it
to the value undefined. If Boolean argument D is provided and has the value true the new property’s
[[Configurable]] attribute is set to true, otherwise it is set to false.

Let envRec be the object environment record for which the method was invoked.

Let bindings be the binding object for envRec.

If D is true then let configValue be true otherwise let configValue be false.

Return the result of DefinePropertyOrThrow(bindings, N, Property Descriptor {[[Value]]:undefined,
[[Writable]]: true, [[Enumerable]]: true , [[Configurable]]: configValue}).

LN

NOTE Normally envRec will'not have a binding for N but if it does, the semantics of DefinePropertyOrThrow may
result in an existing binding being replaced or shadowed or cause an abrupt completion to be returned.

8.1.1.2.3CreatelmmutableBinding (N)

The concrete Environment Record method CreatelmmutableBinding is never used within this specification in
association with Object environment records.

8.1.1.2.4InitialiseBinding (N,V)

The concrete Environment Record method InitialiseBinding for object environment records is used to set the
bound value of the current binding of the identifier whose name is the value of the argument N to the value of
argument V. An uninitialised binding for N must already exist.

1. LetenvRec be the object environment record for which the method was invoked.

2. Assert: envRec must have an uninitialised binding for N.
3. Record that the binding for N in envRec has been initialised.

© Ecma International 2013 55

Commented [AWB?7]: This probably needs a D option
argument, just like createMutable Environment

secmd

4. Return the result of calling the SetMutableBinding concrete method of envRec with N, V, and false as
arguments.

8.1.1.2.5SetMutableBinding (N,V,S)

The concrete Environment Record method SetMutableBinding for object environment records attempts to set
the value of the environment record’s associated binding object’'s property whose name is the value of the
argument N to the value of argument V. A property named N normally already exists but if it does not or is not
currently writable, error handling is determined by the value of the Boolean argument S.

1. LetenvRec be the object environment record for which the method was invoked.
2. Let bindings be the binding object for envRec.

3. Return the result of Put(bindings, N, V, and S).
8.

1.1.2.6 GetBindingValue(N,S)

The concrete Environment Record method GetBindingValue for object environment records returns the value
of its associated binding object’s property whose name is the String value of the argument identifier N. The
property should already exist but if it does not the result depends.upon the value of the S argument:

Let envRec be the object environment record for which the method was invoked.
Let bindings be the binding object for envRec.
Let value be the result of HasProperty(bindings, N).
ReturnlfAbrupt(value).
If value is false, then
a. If Sis false, return the value undefined, otherwise throw a ReferenceError exception.
6. Return the result of Get(bindings, N).

8.1.1.2.7 DeleteBinding (N)

arwpnE

The concrete Environment Record method DeleteBinding for object environment records can only delete
bindings that correspond to properties. of the environment object whose [[Configurable]] attribute have the
value true.

Let envRec be the object environment record for which the method was invoked.

1.
2. Let bindings be the binding object for envRec.

3. Return the result of calling the [[Delete]] internal- method of bindings passing N as the argument.
8.

1.1.2.8HasThisBinding ()
Regular Object Environment Records do not provide a this binding.

1. Return false.
8.1.1.2.9HasSuperBinding ()

Regular Object Environment Records do not provide a super binding.

1. Return false.
8.1.1.2.10 WithBaseObject()

Object Environment Records return undefined as their WithBaseObject unless their withEnvironment flag is
true.

1. LetenvRec be the object environment record for which the method was invoked.

2. If the withEnvironment flag of envRec is true, return the binding object for envRec.
3. Otherwise, return undefined.

56 © Ecma International 2013

pecma

8.1.1.3 Function Environment Records

A function environment record is a declarative environment record that is used to represent the outer most
scope of a function that provides a this binding. In addition to its identifier bindings, a function environment
record contains the this value used within its scope. If such a function references super, its function
environment record also contains the state that is used to perform super method invocations from within the
function.

Function environment records store their this binding as the value of their thisValue. If the associated
function references super, the environment record stores in HomeObject the object that the function is bound
to as a method and in MethodName the property key used for unqualified super invocations from within the
function. The default value for HomeObject and MethodName is undefined.

Methods environment records support all of Declarative Environment Record methods listed in Table 16 and
share the same specifications for all of those methods except for HasThisBinding and HasSuperBinding. In
addition, declarative environment records support the methods listed in‘Table 17:

Table 17 — Additional Methods of Function Environment Records

Method Purpose
GetThisBinding() Return the value of this environment record’s this binding.
GetSuperBase() Return the object that is the base for super property accesses

bound in this environment record. The object is derived from this
environment record’s HomeObject binding. If the value is Empty,
return undefined.

GetMethodName() Return the value of this environment record’s MethodName binding.

The behaviour of the additional concrete specification methods for Function Environment Records is defined
by the following algorithms:

8.1.1.3.1HasThisBinding ()
Function Environment'Records always provide a this binding.

1. Return true.
8.1.1.3.2HasSuperBinding ()

1. If this environment record’s HomeObject has the value Empty, then return false. Otherwise, return true.
8.1.1.3.3GetThisBinding ()

1. Return the value of this environment record’s thisValue.
8.1.1.3.4GetSuperBase ()
Let home be the value of this environment record’s HomeObject.
If home has the value Empty, then return undefined.

1

2

3. Assert: Type(home) is Object.

4. Return the result of calling zome’s [[GetPrototypeOf]] internal method.
8.

1.1.3.5GetMethodName ()

1. Return the value of this environment record’s MethodName.

8.1.14 Global Environment Records

A global environment record is used to represent the outer most scope that is shared by all of the ECMAScript
Script elements that are processed in a common Realm (8.2). A global environment provides the bindings for

© Ecma International 2013 57

secmd

built-in globals (clause 18), properties of the global object, and for all declarations that are not function code
and that occur within Script productions.

A global environment record is logically a single record but it is specified as a composite encapsulating an
object environment record and a declarative environment record. The object environment record has as its
base object the global object of the associated Realm. This global object is also the value of the global
environment record’s thisValue. The object environment record component of a global environment record
contains the bindings for all built-in globals (clause 18) and all bindings introduced by a FunctionDeclaration or
VariableStatement contained in global code. The bindings for all other ECMAScript declarations in global code
are contained in the declarative environment record component of the global environment record.

Properties may be created directly on a global object. Hence, the object environment record component of a
global environment record may contain both bindings created explicity by FunctionDeclaration or
VariableStatement declarations and binding created implicitly as properties .of the global object. In order to
identify which bindings were explicitly created using declarations, a global-environment record maintains a list
of the names bound using its CreateGlobalVarBindings and CreateGlobalFunctionBindings concrete methods.

Global environment records have the additional state components. listed in Table 18 and the additional
methods listed in Table 19.

Table 18 -- Components of Global Environment. Records

Component Purpose

ObjectEnvironment A Object Environment Record whose base object is the global object.
Contains global built-in bindings. as well as bindings for
FunctionDeclaration or.VariableStatement declarations in global code for
the associated Realm.

DeclarativeEnvironment | A Declarative 'Environment Record that contains bindings for all
declarations in ‘global for the associated Realm code except for
FunctionDeclaration and VariableStatement declarations.

VarNames A List containing the string names bound by FunctionDeclaration or
VariableStatement declarations in global code for the associated Realm.

58 © Ecma International 2013

secma

Table 19 — Additional Methods of Global Environment Records

| Method Purpose |
I GetThisBinding() Return the value of this environment record’s this binding. |
HasVarDeclaration (N) Determines if the argument identifier has a binding in this

environment record that was created using a VariableStatement or a
FunctionDeclaration.

HasLexicalDeclaration (N) Determines if the argument identifier has a binding in this
environment record that was created using a lexical declaration
such as a LexicalDeclaration or a ClassDeclaration.

CanDeclareGlobalVar (N) Determines if a corresponding CreateGlobalVarBinding call would
succeed if called for the same argument N.

CanDeclareGlobalFunction (N) Determines if a corresponding CreateGlobalFunctionBinding call
would succeed if called for the same argument N.

CreateGlobalVarBinding(N, D) Used to create global var bindings in the

ObjectEnvironmentComponent of the environment record. The
binding will be a mutable binding. The corresponding global object
property will have attribute values approate for a wvar. The String
value N is the text of the bound name. V is the initial value of the
binding If the optional Boolean argument D is true the binding is
may be subsequently deleted. This is logically equivalent to
CreateMutableBinding but it allows var declarations to receive
special treatment.

CreateGlobalFunctionBinding(N, V, D) | Used to create and initialise global function bindings in the
ObjectEnvironmentComponent of the environment record. The
binding will be a mutable binding. The corresponding global object
property will have attribute values approate for a function.The
String value N is the text of the-bound name. If the optional Boolean
argument D.is true the binding is may be subsequently deleted.
This is logically equivalent to CreateMutableBinding followed by a
SetMutableBinding but it allows function declarations to receive
special treatment.

The behaviour of the concrete specification methods for Global Environment Records is defined by the
following algorithms.

8.1.1.4:1HasBinding(N)

The concrete environment record method HasBinding for global environment records simply determines if the
argument identifier is one of the identifiers bound by the record:

Let envRec be the global environment record for which the method was invoked.

Let DclRec be envRec’s DeclarativeEnvironment.

If the result of calling DclRec’s HasBinding concrete method with argument N is true, return true.
Let ObjRec be envRec’s ObjectEnvironment.

Return the result of calling ObjRec’s HasBinding concrete method with argument N.

arwd e

8.1.1.4.2 CreateMutableBinding (N, D)

The concrete environment record method CreateMutableBinding for global environment records creates a
new mutable binding for the name N that is uninitialised. The binding is created in the associated
DeclarativeEnvironment. A binding for N must not already exist in the DeclarativeEnvironment. If Boolean
argument D is provided and has the value true the new binding is marked as being subject to deletion.

1. LetenvRec be the global environment record for which the method was invoked.
2. Let DclRec be envRec’s DeclarativeEnvironment.

© Ecma International 2013 59

secmd

3. Assert: DclRec does not already have a binding for N.
4. Return the result of calling the CreateMutableBinding concrete method of DclRec with arguments N and D.

8.1.1.4.3CreatelmmutableBinding (N)

The concrete Environment Record method CreatelmmutableBinding for global environment records creates a
new immutable binding for the name N that is uninitialised. A binding must not already exist in this
environment record for N.

1. LetenvRec be the global environment record for which the method was invoked.

2. Let DclRec be envRec’s DeclarativeEnvironment.

3. Assert: DclRec does not already have a binding for N.

4. Return the result of calling the CreatelmmutableBinding concrete method of DclRec with argument N.
8.

1.1.4.4InitialiseBinding (N,V)

The concrete Environment Record method InitialiseBinding for global environment records is used to set the
bound value of the current binding of the identifier whose name is the value of the argument N to the value of
argument V. An uninitialised binding for N must already exist.

1. Let envRec be the global environment record for which thesmethod was invoked.
2. Let DclRec be envRec’s DeclarativeEnvironment.
3. If the result of calling DclRec’s HasBinding concrete method with argument N is true, then
a. Return the result of calling DclRec s InitialiseBinding concrete method with arguments N and V.
4. Assert: If the binding exists it must be in the object environment record.
5. Let ObjRec be envRec s ObjectEnvironment.
6. Return the result of calling ObjRec s InitialiseBinding concrete method with arguments N and V.

8.1.1.4.5SetMutableBinding (N,V,S)

The concrete Environment Record method SetMutableBinding for global environment records attempts to
change the bound value of the current binding of the identifier whose name is the value of the argument N to
the value of argument V. If the binding is an immutable binding, a TypeError is thrown if S is true. A property
named N normally already.exists but if it does not or'is not currently writable, error handling is determined by
the value of the Boolean-argument S.

1. LetenvRec be the declarative environment record for which the method was invoked.
2. Let DclRec be envRec’s DeclarativeEnvironment.
3. If the result-of calling DclRec’s HasBinding concrete method with argument N is true, then
a. ~Return the result of calling the SetMutableBinding concrete method of DclRec with arguments N, V,
and S.
4. Let ObjRec be envRec s ObjectEnvironment.
5. Return the result of calling the SetMutableBinding concrete method of ObjRec with arguments N, V, and S.

8.1.1.4.6 GetBindingValue(N,S)

The concrete Environment Record method GetBindingValue for global environment records simply returns the
value of its bound identifier whose name is the value of the argument N. If S is true and the binding is an
uninitialised binding throw a ReferenceError exception. A property named N normally already exists but if it
does not or is not currently writable, error handling is determined by the value of the Boolean argument S.

1. LetenvRec be the declarative environment record for which the method was invoked.
2. Let DclRec be envRec’s DeclarativeEnvironment.
3. If the result of calling DclRec’s HasBinding concrete method with argument N is true, then
a. Return the result of calling the GetBindingValue concrete method of DclRec with arguments N, and
S.
Let ObjRec be envRec’s ObjectEnvironment.
Return the result of calling the GetBindingValue concrete method of ObjRec with arguments N, and S.

o &

60 © Ecma International 2013

Commented [AWBS8]: This probably needs a D option
argument, just like createMutable Environment

secma

8.1.1.4.7 DeleteBinding (N)

The concrete Environment Record method DeleteBinding for global environment records can only delete
bindings that have been explicitly designated as being subject to deletion.

1. LetenvRec be the declarative environment record for which the method was invoked.
2. Let DclRec be envRec’s DeclarativeEnvironment.
3. If the result of calling DclRec’s HasBinding concrete method with argument N is true, then
a. Return the result of calling the DeleteBinding concrete method of DclRec with argument N.
Let ObjRec be envRec’s ObjectEnvironment.
5. If the result of calling ObjRec’s HasBinding concrete method with argument N is true, then
a. Let status be the result of calling the DeleteBinding concrete method of ObjRec with argument N.
b. ReturnlfAbrupt(status).
c. Ifstatusis true, then
i. Let varNames be envRec’s VarNames List.
ii. If N is an element of varNames, then remove that element from the varNames.
d. Return status.
6. Return true.

8.1.1.4.8HasThisBinding ()

Eal

Global Environment Records always provide a this binding whose value is the associated global object.

1. Return true.
8.1.1.4.9HasSuperBinding ()

1. Return false.

8.1.1.4.10 WithBaseObject()

Global Environment Records always return undefined as their WithBaseObject.
1. Return undefined.

8.1.1.4.11 GetThisBinding ()

Let envRec be the global environment record for which the method was invoked.
Let ObjRec be envRec’s ObjectEnvironment.

Let bindings be the binding object for ObjRec.
Return bindings.

o

8.1.1.4.12 HasVarDeclaration (N)

The concrete environment record method HasVarDeclaration for global environment records determines if the
argument identifier has a ‘binding in this record that was created using a VariableStatement or a
FunctionDeclaration:

Let envRec be the global environment record for which the method was invoked.
Let varDeclaredNames be envRec’s VarNames List.

If varDeclaredNames contains the value of N, return true.

Return false.

Ao E

8.1.1.4.13 HasLexicalDeclaration (N)
The concrete environment record method HasLexicalDeclaration for global environment records determines if
the argument identifier has a binding in this record that was created using a lexical declaration such as a
LexicalDeclaration or a ClassDeclaration:

1. LetenvRec be the global environment record for which the method was invoked.

© Ecma International 2013 61

2.
3.

ecma

&

Let DclRec be envRec’s DeclarativeEnvironment.
Return the result of calling DclRec’s HasBinding concrete method with argument N.

8.1.1.4.14 CanDeclareGlobalVar (N)

The concrete environment record method CanDeclareGlobalVar for global environment records determines if
a corresponding CreateGlobalVarBinding call would succeed if called for the same argument N. Redundent

var declarations and var declarations for pre-existing global object properties are allowed.

gk wn e

Let envRec be the global environment record for which the method was invoked.

Let ObjRec be envRec’s ObjectEnvironment.

If the result of calling ObjRec’s HasBinding concrete method with argument N is true, return true.
Let bindings be the binding object for ObjRec.

Let extensible be the result of IsExtensible(bindings).

Return extensible.

8.1.1.4.15 CanDeclareGlobalFunction (N)

The concrete environment record method CanDeclareGlobalFunction for global environment records
determines if a corresponding CreateGlobalFunctionBinding call would succeed if called for the same

argument N.

ok wnE

~

8.
9.
10.

11

Let envRec be the global environment record for which the method was invoked.

Let ObjRec be envRec’s ObjectEnvironment.

Let globalObject be the binding object for ObjRec.

Let extensible be the result of IsExtensible(globalObject).

ReturnlfAbrupt(extensible).

If the result of calling ObjRec’s HasBinding concrete method with argument N is false, then return
extensible.

Let existingProp be the result of calling the [[GetOwnProperty]] internal method of globalObject with
argument N.

If existingProp is undefined, then return extensible.

If existingProp.[[Configurable]] is true, then return true.

If IsDataDescriptor(existingProp) is true and existingProp has attribute values {[[Writable]]: true,
[[Enumerable]]: true}, then return true.

Return false.

8.1.1.4.16 CreateGlobalVarBinding (N, D)

The concrete Environment Record method CreateGlobalVarBinding for global environment records creates a
mutable binding in the associated object environment record and records the bound name in the associated

VarNames List. If a binding already exists, it is reused.

1
2.
3.

4,
5

6.

Let envRec be the declarative environment record for which the method was invoked.
Let ObjRec be envRec’s ObjectEnvironment.
If the result of calling ObjRec’s HasBinding concrete method with argument N is false, then
a. Let status be the result of calling the CreateMutableBinding concrete method of ObjRec with
arguments N and D.
b. ReturnlfAbrupt(status).
Let varDeclaredNames be envRec’s VarNames List.
If varDeclaredNames does not contain the value of N, then
a. Append N to varDeclaredNames.
Return NormalCompletion(empty).

8.1.1.4.17 CreateGlobalFunctionBinding (N, V, D)

The concrete Environment Record method CreateGlobalFunctionBinding for global environment records
creates a mutable binding in the associated object environment record and records the bound name in the

associated VarNames List. If a binding already exists, it is replaced.

62

© Ecma International 2013

Commented [AWB119]: Carry over from ES5, but perhaps
unnecessary

secma

1. LetenvRec be the declarative environment record for which the method was invoked.
2. Let ObjRec be envRec’s ObjectEnvironment.
3. Let globalObject be the binding object for ObjRec.
4. Let existingProp be the result of calling the [[GetOwnProperty]] internal method of globalObject with
argument N.
5. If existingProp is undefined or existingProp.[[Configurable]] is true, then
a. Let desc be the Property Descriptor {[[Value]]:V, [[Writable]]: true, [[Enumerable]]: true,
[[Configurable]]: D}.
6. Else,

a. Let desc be the Property Descriptor {[[Value]]:V }.
7. Let status be the result of DefinePropertyOrThrow(globalObject, N, desc).
8. ReturnIfAbrupt(status).
9. LetvarDeclaredNames be envRec’s VarNames List.
10. If varDeclaredNames does not contain the value of N, then
a. Append N to varDeclaredNames.
11. Return NormalCompletion(empty).

NOTE Global function declarations are always represented as own_properties of the global object. If possible, an
existing own property is reconfigured to have a standard set of attribute values.

8.1.2 Lexical Environment Operations
The following abstract operations are used in this specification to operate upon lexical environments:
8.1.2.1 GetldentifierReference (lex, name, strict)

The abstract operation GetldentifierReference is called with a Lexical Environment lex, a String name, and a
Boolean flag strict. The value of lex may be null. When called, the following steps are performed:

1. If lex is the value null, then
a. Return a value of type Reference whose base value is undefined, whose referenced name is name,

and whose strict reference flag, is strict.

Let envRec be lex’s environment record.

Let exists be the result of calling the HasBinding(N) concrete method of envRec passing name as the

argument N.

4. Ifexists is true, then
a. Return a value of type Reference whose base value is envRec, whose referenced name is name, and

whose strict reference flag is strict.

(S

5. Else
a: Let outer be the value of /ex’s outer environment reference.
b. Return the result of calling GetldentifierReference passing outer, name, and strict as arguments.

8.1.2.2 NewDeclarativeEnvironment (E)

When the abstract operation NewDeclarativeEnvironment is called with either a Lexical Environment or null
as argument E the following steps are performed:

1. Letenv be a new Lexical Environment.

2. LetenvRec be a new declarative environment record containing no bindings.
3. Setenv’s environment record to be envRec.

4. Set the outer lexical environment reference of env to E.

5. Return env.

8.

1.2.3 NewObjectEnvironment (O, E)

When the abstract operation NewObjectEnvironment is called with an Object O and a Lexical Environment E
(or null) as arguments, the following steps are performed:

1. Letenv be a new Lexical Environment.
2. LetenvRec be a new object environment record containing O as the binding object.

© Ecma International 2013 63

secmd

3. Set envRec’s unscopables be an empty List.

4. Set env’s environment record to be envRec.

5. Set the outer lexical environment reference of env to E.
6. Return env.

8.

1.2.4 NewFunctionEnvironment (F, T)

When the abstract operation NewFunctionEnvironment is called with an ECMAScript function Object F and an
ECMAScript value T as arguments, the following steps are performed:

Assert: The value of F’s [[ThisMode]] internal data property is not lexical.
Let env be a new Lexical Environment.
Let envRec be a new Function environment record containing containing no bindings.
Set envRec s thisValue to T.
If F has a [[HomeObiject]] internal data property, then
a. SetenvRec’s HomeObject to the value of F’s [[HomeObject]] internal data property.
b. SetenvRec’s MethodName to the value of F’s [[MethodName]] internal data property.
6. Else,
a. SetenvRec’s HomeObject to Empty.
7. Setenv’s environment record to be envRec.
8. Set the outer lexical environment reference of env to the value of F’s [[Scope]] internal data property.
9. Return env.
8.

arwdE

2 Code Realms|

C ed [AWB810]: Other possible terms that have

Before it is evaluated, all ECMAScript code must be associated with a Realm. Conceptually, a realm consists
of a set of intrinsic objects, an ECMAScript-global _environment, all of the ECMAScript code that is loaded
within the scope of that global environment, a Loader object that can associate new ECMAScript code with the
realm, and other associated state and resources.

A Realm is specified as a Record with the fields specified in Table 20:

Table 20 — Realm Record Fields

Field Name | Value Meaning

[[intrinsics]]

A record whose field names are intrinsic
keys and whose values are objects

These are the intrinsic values used by code
associated with this Realm

[[global This]]

An ECMAScript object

The global object for this Realm

[[globalEnv]]

An ECMAScript environment

The global environment for this Realm

[[loader]] any ECMAScript identifier or empty The Loader object that can associate
ECMAScript code with this Realm

The intrinsic objects associated with a code Realm include the well-known intrinsics listed in Table 7 and
additional intrinsics specified by Table 21.

Table 21 — Additional Intrinsic Objects with Realm Specific Bindings

Intrinsic Name ECMAScript Language Association

7? ???

7 277

8.3 Execution Contexts

An execution context is a specification device that is used to track the runtime evaluation of code by an
ECMAScript implementation. At any point in time, there is at most one execution context that is actually
executing code. This is known as the running execution context. A stack is used to track execution contexts.
The running execution context is always the top element of this stack. A new execution context is created

64 © Ecma International 2013

been discussed are “Home” and “Island”. We still need to get
final agreement on terminology.

Commented [AWB1311]: This is where we should list all
the per realm intrinsics that don
L T have %names%

secma

whenever control is transferred from the executable code associated with the currently running execution
context to executable code that is not associated with that execution context. The newly created execution
context is pushed onto the stack and becomes the running execution context.

An execution context contains whatever implementation specific state is necessary to track the execution
progress of its associated code. Each execution context has the state components listed in Table 22.

Table 22 —State Components for All Execution Contexts

Component Purpose

code evaluation state Any state needed to perform, suspend, and resume evaluation of the
code associated with this execution context.

Realm The Realm from which associated code accesses ECMAScript
resources.

Evaluation of code by the running execution context may be suspended at various points defined within this
specification. Once the running execution context has been suspended a different execution context may
become the running execution context and commence evaluating its code. At some latter time a suspended
execution context may again become the running execution context and continue evaluating its code at the
point where it had previously been suspended. Transition of the running execution context status among
execution contexts usually occurs in stack-like last-in/first-out manner.. However, some ECMAScript features
require non-LIFO transitions of the running execution context.

The value is the Realm component of the running execution contextis also called the current Realm.
Execution contexts for ECMAScript code have the additional state components listed in Table 23.

Table 23 —Additional State Components for ECMAScript Code Execution Contexts

Component Purpose

LexicalEnvironment Identifies the Lexical Environment used to resolve identifier references
made by code within this execution context.

VariableEnvironment Identifies the Lexical Environment whose environment record holds
bindings created by VariableStatements within this execution context.

The LexicalEnvironment and VariableEnvironment components of an execution context are always Lexical
Environments. When an execution context is created its LexicalEnvironment and VariableEnvironment
components initially have the same value. The value of the VariableEnvironment component never changes
while the value of the LexicalEnvironment component may change during execution of code within an
execution context.

Execution contexts. representing the evaluation of generator objects have the additional state components
listed in Table 24.

Table 24 -- Additional State Components for Generator Execution Contexts

Component Purpose

Generator The GeneratorObject that this execution context is evaluating.

In most situations only the running execution context (the top of the execution context stack) is directly
manipulated by algorithms within this specification. Hence when the terms “LexicalEnvironment’, and
“VariableEnvironment” are used without qualification they are in reference to those components of the running
execution context.

© Ecma International 2013 65

secmd

An execution context is purely a specification mechanism and need not correspond to any particular artefact
of an ECMAScript implementation. It is impossible for an ECMAScript program to directly access or observe
an execution context.

8.3.1 Identifier Resolution

Identifier resolution is the process of determining the binding of an IdentifierName using the
LexicalEnvironment of the running execution context. During execution of ECMAScript code, Identifier
Resolution is performed using the following algorithm:

1. Letenv be the running execution context’s LexicalEnvironment.

2. If the syntactic production that is being evaluated is contained in strict mode code, then let strict be true,
else let strict be false.

3. Return the result of calling GetldentifierReference abstract operation passing env, the StringValue of
IdentifierName, and strict as arguments.

The result of evaluating an identifier is always a value of type Reference with its referenced name component
equal to the IdentifierName String.
8.3.2 GetThisEnvironment

The abstract operation GetThisEnvironment finds the lexical environment that currently supplies the binding of
the keyword this. GetThisEnvironment performs the following steps:

1. Let lex be the running execution context’s LexicalEnvironment.
2. Repeat
a. LetenvRec be lex’s environment record.

b. Let exists be the result of calling the HasThisBinding concrete method of envRec.
c. Ifexists is true, then return envRec.
d. Let outer be the value of lex’s outer environment reference.
e. Letlex be outer.
NOTE The loop in step 2 will always terminate because the llst of environments always ends with the global

environment which has a this binding.
8.3.3 ThisResolution

The abstract operation ThisResolution is the process of determining the binding of the keyword this using
the LexicalEnvironment of the running execution context. ThisResolution performs the following steps:

1. Let env be the result of performing the GetThisEnvironment abstract operation.
2. Return the result of calling the GetThisBinding concrete method of env.
8.3.4 GetGlobalObject

The abstract operation GetGlobalObject returns the global object used by the currently running execution
context. GetGlobalObject performs the following steps:

1. Let ctx be the running execution context.
Let currentRealm be czx’s Realm.
Return currentRealm.[[globalThis]].

w N

9 ECMAScript Ordinary and Exotic Objects Behaviours

9.1 Ordinary Object Internal Methods and Internal Data Properties

All ordinary objects have an internal data property called [[Prototype]]. The value of this property is either null
or an object and is used for implementing inheritance. Data properties of the [[Prototype]] object are inherited

(are visible as properties of the child object) for the purposes of get access, but not for set access. Accessor
properties are inherited for both get access and set access.

66 © Ecma International 2013

secma

Every ordinary ECMAScript object has a Boolean-valued [[Extensible]] internal data property that controls
whether or not properties may be added to the object. If the value of the [[Extensible]] internal data property is
false then additional properties may not be added to the object. In addition, if [[Extensible]] is false the value
of [[Prototype]] internal data properties of the object may not be modified. Once the value of an object’s
[[Extensible]] internal data property has been set to false it may not be subsequently changed to true.

In the following algorithm descriptions, assume O is an ordinary ECMAScript object, P is a property key value,
V is any ECMAScript language value, and Desc is a Property Description record.

9.1.1 [[GetPrototypeOf]] ()

When the [[GetPrototypeOf]] internal method of O is called the following steps are taken:

1. Return the value of the [[Prototype]] internal data property of O.

9.1.2 [[SetPrototypeOf]] (V)

When the [[SetPrototypeOf]] internal method of O is called with argument V the following steps are taken:

Assert: Either Type(V) is Object or Type(V) is Null.
Let extensible be the value of the [[Extensible]] internal data property of O.
Let current be the value of the [[Prototype]] internal data property of O.
If SameValue(V, current), then return true.
If extensible is false, then return false.
If Vis not null, then
a. LetpbeV.
b. Repeat, while p is not null
i. If SameValue(p, O) is true, then return false.
il Let nextp be the result of calling the [[GetPrototypeOf]] internal method of p with no
arguments.
il ReturnIfAbrupt(nextp).
iv. Let p be nextp.
7. Set the value of the [[Prototype]] internal data property of O to V.
8. Return true.

S~ R

9.1.3 [[IsExtensible]] ()

When the [[IsExtensible]] internal method of O is called the following steps are taken:

1. Return the value of the [[Extensible]] internal data property of O.

9.1.4 [[PreventExtensions]] ()

When the [[PreventExtensions]] internal method of O is called the following steps are taken:

1. Set the value of the [[Extensible]] internal data property of O to false.
2. Return true.

9.15

1
2.
3.
9.1.6 [[GetOwnProperty]] (P)

When the [[GetOwnProperty]] internal method of O is called with property key P, the following steps are taken:

© Ecma International 2013 67

secmd

1. Return the result of OrdinaryGetOwnProperty with arguments O and P.
9.1.6.1 OrdinaryGetOwnProperty (O, P)

When the abstract operation OrdinaryGetOwnProperty is called with Object O and with property key P, the
following steps are taken:

Assert: IsPropertyKey(P) is true.
If O does not have an own property with key P, return undefined.
Let D be a newly created Property Descriptor with no fields.
Let X be O’s own property whose key is P.
If X is a data property, then
a. Set D.[[Value]] to the value of X’s [[Value]] attribute.
b. Set D.[[Writable]] to the value of X’s [[Writable]] attribute
6. Else X is an accessor property, so
a. Set D.[[Get]] to the value of X’s [[Get]] attribute.
b. Set D.[[Set]] to the value of X’s [[Set]] attribute.
7. Set D.[[Enumerable]] to the value of X’s [[Enumerable]] attributes
8. Set D.[[Configurable]] to the value of X’s [[Configurable]] attribute.
9. Return D.
9.1.7 [[DefineOwnProperty]] (P, Desc)

arowpe=

When the [[DefineOwnProperty]] internal method of O is called with property key P and property descriptor
Desc, the following steps are taken:

1. Return the result of OrdinaryDefineOwnProperty with arguments O, P, and Desc.
9.1.7.1 OrdinaryDefineOwnProperty (O, P, Desc)

When the abstract operation OrdinaryDefineOwnProperty is‘called with Object O, property key P, and property
descriptor Desc the following steps are taken:

1. Let current be the result of calling OrdinaryGetOwnProperty with arguments O and P.

2. Let extensible be the value of the [[Extensible]] internal data property of O.

3. Return the result of ValidateAndApplyPropertyDescriptor with arguments O, P, extensible, Desc, and
current.

9.1.7.2 IsCompatiblePropertyDescriptor (Extensible, Desc, Current)

When the abstract operation IsCompatiblePropertyDescriptor is called with Boolean value Extensible, and
property.descriptors Desc, and Current the following steps are taken:

1. Return the result of ValidateAndApplyPropertyDescriptor with arguments undefined, undefined,
Extensible, Desc, and Current.

9.1.7.3 ValidateAndApplyPropertyDescriptor (O, P, extensible, Desc, current)

When the abstract operation ValidateAndApplyPropertyDescriptor is called with Object O, property key P,
Boolean value extensible, and property descriptors Desc, and current the following steps are taken:

This algorithm contains steps that test various fields of the Property Descriptor Desc for specific values. The
fields that are tested in this manner need not actually exist in Desc. If a field is absent then its value is
considered to be false.

NOTE If undefined is passed as the O argument only validation is performed and no object updates are preformed.

1. Assert: If O is not undefined then P is a valid property key.
2. Ifcurrent is undefined, then
a. Ifextensible is false, then return false.
b. Assert: extensible is true.
c. If IsGenericDescriptor(Desc) or IsDataDescriptor(Desc) is true, then

68 © Ecma International 2013

secma

i. If O is not undefined, then create an own data property named P of object O whose
[[Value]], [[Writable]], [[Enumerable]] and [[Configurable]] attribute values are described
by Desc. If the value of an attribute field of Desc is absent, the attribute of the newly
created property is set to its default value.
d. Else Desc must be an accessor Property Descriptor,
i If O is not undefined, then create an own accessor property named P of object O whose
[[Get]], [[Set]], [[Enumerable]] and [[Configurable]] attribute values are described by Desc.
If the value of an attribute field of Desc is absent, the attribute of the newly created
property is set to its default value.
e. Return true.
Return true, if every field in Desc is absent.
Return true, if every field in Desc also occurs in current and the value of every field in Desc is the same
value as the corresponding field in current when compared using the SameValue algorithm.
5. If the [[Configurable]] field of current is false then
a. Return false, if the [[Configurable]] field of Desc is true.
b. Return false, if the [[Enumerable]] field of Desc is present and the [[Enumerable]] fields of current
and Desc are the Boolean negation of each other.
If IsGenericDescriptor(Desc) is true, then no further validation is required.
7. Else if IsDataDescriptor(current) and IsDataDescriptor(Desc).-have different results, then
a. Return false, if the [[Configurable]] field of current is false.
b. If IsDataDescriptor(current) is true, then
i. If O is not undefined, then convert the property named P of object O from a data property
to an accessor property. Preserve the existing values of the converted property’s
[[Configurable]] and [[Enumerable]] attributes and set the rest of the property’s attributes to
their default values.

~w

o

c. Else,
i. If O is not undefined, then convert.the property named P of object O from an accessor
property to a data property. Preserve the existing values of the converted property’s
[[Configurable]] and [[Enumerable]] attributes.and set the rest of the property’s attributes to
their default values.
8. Else if IsDataDescriptor(current)-and IsDataDescriptor(Desc) are both true, then
a. If the [[Configurable]] field of current is false, then
i. Return false, if the [[Writable]] field of current is false and the [[Writable]] field of Desc is
true.
ii. If the [[Writable]] field of current is false, then
1. Return false, if the [[\Value]] field of Desc is present and
SameValue(Desc.[[Value]], current.[[Value]]) is false.
b. else the [[Configurable]] field of currentis true, so any change is acceptable.
9. Else IsAccessorDescriptor(current) and IsAccessorDescriptor(Desc) are both true,
a. If the [[Configurable]] field of current is false, then
i. Return false, if the [[Set]] field of Desc is present and SameValue(Desc.[[Set]],
current.[[Set]]) is false.
ii. Return false, if the [[Get]] field of Desc is present and SameValue(Desc.[[Get]],
current.[[Get]]) is false.
10. If O is not undefined, then
a. For each attribute field of Desc that is present, set the correspondingly named attribute of the
property named P of object O to the value of the field.
11. Return true.

NOTE Step 8.b allows any field of Desc to be different from the corresponding field of current if current’s
[[Configurable]] field is true. This even permits changing the [[Value]] of a property whose [[Writable]] attribute is false. This
is allowed because a true [[Configurable]] attribute would permit an equivalent sequence of calls where [[Writable]] is first
set to true, a new [[Value]] is set, and then [[Writable]] is set to false.

9.1.8 [[HasProperty]](P)
When the [[HasProperty]] internal method of O is called with property key P, the following steps are taken:
1. Assert: IsPropertyKey(P) is true.

2. Let hasOwn be the result of calling the [[GetOwnProperty]] internal method of O with argument P.
3. ReturnIfAbrupt(hasOwn).

© Ecma International 2013 69

4.

5.

eCma

)

If hasOwn is undefined, then
a. Let parent be the result of calling the [[GetPrototypeOf]] internal method of O.
b. ReturnlfAbrupt(parent).
c. Ifparentis not null, then
i Return the result of calling the [[HasProperty]] internal method of parent with argument P.
Return hasOwn.

9.1.9 [[Get]] (P, Receiver)

When the [[Get]] internal method of O is called with property key P and ECMAScript language value Receiver
the following steps are taken:

Hwn e

® NG

Assert: IsPropertyKey(P) is true.
Let desc be the result of calling the [[GetOwnProperty]] internal method of O with argument P.
ReturnlfAbrupt(desc).
If desc is undefined, then

a. Let parent be the result of calling the [[GetPrototypeOf]] internal method of O.

b. ReturnlfAbrupt(parent).

c. If parentis null, then return undefined.

d. Return the result of calling the [[Get]] internal method of parent with arguments P and Receiver.
If IsDataDescriptor(desc) is true, return desc.[[Value]].
Otherwise, IsAccessorDescriptor(desc) must be true so; let getter be desc.[[Get]].
If getter is undefined, return undefined.
Return the result of calling the [[Call]] internal method of getter with Receiver as the thisArgument and an
empty List as argumentsList.

9.1.10 [[Set]] (P, V, Receiver)

When the [[Set]] internal method of O is called with property key P, value V, and ECMAScript language value
Receiver, the following steps are taken:

Eal ol o

70

Assert: IsPropertyKey(P) is true.
Let ownDesc be the result of calling the [[GetOwnProperty]] internal method of O with argument P.
ReturnlfAbrupt(ownDesc).
If ownDesc is undefined, then
a. Let parentbe the result of calling the [[GetPrototypeOf]] internal method of O.
b. ReturnIfAbrupt(parent).
c. If parentis not null, then
i Return the result of calling the [[Set]] internal method of parent with arguments P, V, and
Receiver.
d: Else,
i Let ownDesc be the Property Descriptor {[[Value]]: undefined, [[Writable]]: true,
[[Enumerable]]: true, [[Configurable]]: true}.
If IsDataDescriptor(ownDesc) is true, then
a. If ownDesc.[[Writable]] is false, return false.
b. "If Type(Receiver) is not Object, return false.
c. LetexistingDescriptor be the result of calling the [[GetOwnProperty]] internal method of Receiver
with argument P.
d. ReturnlfAbrupt(existingDescriptor).
e. [IfexistingDescriptor is not undefined, then
i Let valueDesc be the Property Descriptor {[[Valuel]: V}.
ii. Return the result of calling the [[DefineOwnProperty]] internal method of Receiver with
arguments P and valueDesc.
f. Else Receiver does not currently have a property P,
i Return the result of performing CreateOwnDataProperty(Receiver, P, V).
If IsAccessorDescriptor(ownDesc) is true, then
a. Let setter be ownDesc.[[Set]].
b. If setter is undefined, return false.
c. Let setterResult be the result of calling the [[Call]] internal method of setter providing Receiver as
thisArgument and a new List containing V as argumentsList.
d. ReturnlfAbrupt(setterResult).

© Ecma International 2013

secma

e. Return true.
9.1.11 [[Invoke]] (P, ArgumentsList, Receiver)

When the [[Invoke]] internal method of O is called with property key P, List ArgumentsList, and ECMAScript
language value Receiver the following steps are taken:

Assert: IsPropertyKey(P) is true.

Assert: ArgumentsList is a List.

Let method be the result of calling the [[Get]] internal method of O with arguments P, and Receiver.
ReturnlfAbrupt(method).

If Type(method) is not Object, throw a TypeError exception.

If IsCallable(method) is false, throw a TypeError exception.

Return the result of calling the [[Call]] internal method of method with Receiver as the thisArgument and
ArgumentsList as argumentsList.

9.1.12 [[Delete]] (P)

NooA~MWNE

When the [[Delete]] internal method of O is called with property key P the following steps are taken:

Assert: IsPropertyKey(P) is true.
Let desc be the result of calling the [[GetOwnProperty]] internal method of O with argument P.
If desc is undefined, then return true.
If desc.[[Configurable]] is true, then
a. Remove the own property with name P from O.
b. Return true.
5. Return false.

9.1.13 [[Enumerate]] ()

AwNE

When the [[Enumerate]] internal method of O is called the following steps are taken:

1. Return an Iterator object (25.1.2) whose next method iterates over all the String valued keys of enumerable
property keys of O. The‘mechanics and order of enumerating the properties is not specified but must
conform to the rules specified below.

Enumerated properties do not include properties whose property key is a Symbol. Properties of the object
being enumerated may be deleted during enumeration. If a property that has not yet been visited during
enumerationis deleted, then it will not be visited. If new properties are added to the object being enumerated
during enumeration, the newly added properties are not guaranteed to be visited in the active enumeration. A
property name must not be visited mare than once in any enumeration.

Enumerating the properties of an object includes enumerating properties of its prototype, and the prototype of
the prototype, and so on, recursively; but a property of a prototype is not enumerated if it is “shadowed”
because some previous object in the prototype chain has a property with the same name. The values of
[[Enumerable]] attributes are not considered when determining if a property of a prototype object is shadowed
by a previous object on the prototype chain.

The following is an informative algorithm that conforms to these rules

Let obj be O.
Let proto be the result of calling the [[GetPrototypeOf]] internal method of O with no arguments.
ReturnlfAbrupt(proto).
If proto is the value null, then
a. LetproplList be a new empty List.
Else
a. Let propList be the result of calling the [[Enumerate]] internal method of proto.
ReturnlfAbrupt(propList).
7. For each name that is the property key of an own property of O
a. If Type(name) is String, then

LN

o

o

© Ecma International 2013 71

Commented [AWB612]: TODO: Finish this up, and turn it
into iterator definition include a next method.

The algorithm is also confused about [[Enumerate]] called on
proto returning a list or Iterator. See
https://bugs.ecmascript.org/show_bug.cqi?id=944

https://bugs.ecmascript.org/show_bug.cgi?id=944

secmd

i Let desc be the result of calling OrdinaryGetOwnProperty with arguments O and name.
ii. If name is an element of propList, then remove name as an element of propList.
iii. If desc.[[Enumerable]] is true, then add name as an element of propList.
8. Order the elements of propList in an implementation defined order.
9. Return propList.

9.1.14 [[OwnPropertyKeys]] ()
When the [[OwnPropertyKeys]] internal method of O is called the following steps are taken:

1. Letkeys be a new empty List.
2. For each own property key P of O

a. Add P as the last element of keys.
3. Return MakeListlterator(keys).

9.1.15 ObjectCreate(proto, internalDataList) Abstract Operation

The abstract operation ObjectCreate with argument proto (an object or null) is used to specify the runtime
creation of new ordinary objects. The optional argument internalDataList is a List of the names of internal data
property names that should be defined as part of the object. If the list is not provided, an empty List is used. If
no arguments are provided %ObjectPrototype% is used as the value of proto. This abstract operation
performs the following steps:

1. If internalDataList was not provided, let internalDataList be an empty List.

Let obj be a newly created ECMAScript object with an internal data property for each name in
internalDataList.

Set obj’s essential internal methods to the default ordinary object definitions specified in 9.1.
Set the [[Prototype]] internal data property of obj to proto.

Set the [[Extensible]] internal data property of obj to true:

Return obj.

N

o 0k w

9.1.16 Ordinary Function Objects

Ordinary function objects encapsulate parameterised ECMAScript code closed over a lexical environment and
support the dynamic evaluation of that code. An ordinary function object is an ordinary object and has the
same internal data properties and (except as noted below) the same internal methods as other ordinary
objects.

Ordinary function objects have the additional internal data properties listed in Table 25.

Ordinary- function objects provide alternative definitions for the [[Get]] and [[GetOwnProperty]] internal
methods. These alternatives prevent the value of strict mode function from being revealed as the value of a
function object property named "caller". These alternative definitions exist sole to preclude a non-standard
legacy feature of some ECMAScript implementations from revealing information about strict mode callers. If
an implementation does not provide such a feature, it need not implement these alternative internal methods
for ordinary function objects.

72 © Ecma International 2013

(Commented [AWB1313]: TODO: need to define, returns
| an iterator object over the elements of an internal list.

oecmad

Table 25 -- Internal Data Properties of Ordinary Function Objects

Internal Data Property Type Description
[[Scopel]] Lexical The Lexical Environment that the function was closed over.
Environment Is used as the outer environment when evaluating the code
of the function.

[[FormalParameters]] Parse Node The root parse node of the source code that defines the
function’s formal parameter list.

[[FunctionKind]] String Either "normal" or "generator".

[[Code]] Parse Node The root parse node of the source code that defines the
function’s body.

[[Realm]] Realm Record | The Code Realm in which the_function was created and
which provides any intrinsic- objects that are accessed
when evaluating the function.

[[ThisMode]] (lexical, strict, Defines how this references are interpreted within the

global) formal parameters and code body of the function. lexical
means that this refers to the this value of a lexically
enclosing function. strict means that the this value is used
exactly as provided by an invocation of the function.
global means that a this value of undefined is interpreted
as a reference to the global object.

[[Strict]] Boolean true if this is a strict mode function, false this is not a strict
mode function.

[[HomeObject]] Object If the function uses super, this is the object whose
[[GetPrototypeOf]] provides the object where super
property lookups begin. Not present for functions that don’t
reference super.

[[MethodName]] String or If the function uses. super, this is the property keys that is

Symbol used for unqualified references to super. Not present for
functions that don’t reference super.

Ordinary function objects all have the [[Call]], [[Get]] and [[GetOwnProperty]] internal methods defined here.
Ordinary functions that are also constructors in addition have the [[Construct]] internal method.

9.1.16.1 [[Call]] (thisArgument, argumentsList)

The [[Call]]

internal-method for an ordinary Function object F is called with parameters thisArgument and

argumentsList, a List of ECMAScript language values. The following steps are taken:

1

2.

3.

4.

5.

6.

7.

8.
a.

9. Else,
a.
b.
c.

IfF’s [[Code]] internal data property has the value undefined, then throw a TypeError exception.
Let callerContext be the running execution context.

If, callerContext is not already suspended, then Suspend callerContext.

Let calleeContext be a new ECMAScript Code execution context.

Let calleeRealm be the value of F’s [[Realm]] internal data property.

Set calleeContext’s Realm to calleeRealm.

Let thisMode be the value of F’s [[ThisMode]] internal data property.

If thisMode is lexical, then

Let localEnv be the result of calling NewDeclarativeEnvironment passing the value of the [[Scope]]
internal data property of F as the argument.

If thisMode is strict, set thisValue to thisArgument.
Else
i if thisArgument is null or undefined, then
1. Set thisValue to calleeRealm.[[globalThis]].

il Else if Type(thisArgument) is not Object, set the thisValue to ToObject(thisArgument).

iii. Else set the thisValue to thisArgument.
Let localEnv be the result of calling NewFunctionEnvironment passing F and thisValue as the
arguments.

© Ecma International 2013 73

secmd

10. Set the LexicalEnvironment of calleeContext to localEnv.
11. Set the VariableEnvironment of calleeContext to localEnv.
12. Push calleeContext onto the execution context stack; calleeContext is now the running execution context.
13. Let status be the result of performing Function Declaration Instantiation using the function F, argumentsList
, and localEnv as described in 9.1.16.11.
14. If status is an abrupt completion, then
a. Remove calleeContext from the execution context stack and restore callerContext as the running
execution context.
b. Return status.
15. Let result be the result of EvaluateBody of the production that is the value of F's [[Code]] internal data
property passing F as the argument.
16. Remove calleeContext from the execution context stack and restore callerContext as the running execution
context.
17. Return result.

NOTE1 Most ordinary functions use a Function Environment Record as their‘LexicalEnvironment. Ordinary functions
that are arrow functions use a Declarative Environment Record as their LexicalEnvironment.

NOTE 2 When calleeContext is removed from the execution context stack it must not be destroyed because it may have
been suspended and retained by a generator object for later resumption.

9.1.16.2 [[Construct]] (argumentsList)

The [[Construct]] internal method for an ordinary Function object F is called with a single parameter
argumentsList which is a possibly empty List of ECMAScript language values. The following steps are taken:

1. Return the result of OrdinaryConstruct(F, argumentsList).
9.1.16.2.1 OrdinaryConstruct (F, argumentsList)

When the abstract operation OrdinaryConstruct is called with Object F and List argumentsList the following
steps are taken:

1. Letcreator be the result of Get(F, @ @create).
2. ReturnifAbrupt(creator).
3. Ifcreator is not undefined, then
a. IfIsCallable(creator) is false, then'throw.a TypeError exception.
b. Let obj be the result of calling the [[Call]] internal method of creator with arguments F and an empty List.
4. Else creator is undefined so fall back to object creation defaults
a. [Let obj be the result of calling OrdinaryCreateFromConstructor(F, "%objectPrototype%").\

C ed [AWB1414]: At Jan 29, 2012 TC39 serveral

ReturnlfAbrupt(obyj).
If Type(obj) is not Object, then throw a TypeError exception.

ReturnifAbrupt(result).
. If Type(result) is Object then return result.
0. Return obj.

9.1.16.3 [[Get]] (P, Receiver)

When the [[Get]] internal method of ordinary function object F is called with property key P and ECMAScript
language value Receiver the following steps are taken:

1. Letv be the result of calling the default ordinary object [[Get]] internal method (9.1.9) on F passing P and
Receiver as arguments.

2. ReturnlfAbrupt(v).

3. IfPis"caller" andv is a strict mode Function object, return null.

4. Returnv.

If an implementation does not provide such a built-in caller method for Function.prototype then it must
not use this definition. Instead the ordinary object [[Get]] internal method is used.

74 © Ecma International 2013

peopled suggest that this fall back was unnecessary
complexity and that it should this throw. However, that means
that an ordinary function whose __proto___is set to undefined
will throw if newed. I'm not sure that is desirable. It's a
breaking change for the reality web.

5
6.
7. Let result be the result of calling the [[Call]] internal method of F, providing obj and argumentsList as the arguments.
8
9
1

secma

9.1.16.4 [[GetOwnProperty]] (P)

When the [[GetOwnProperty]] internal method of ordinary function object F is called with property key P, the
following steps are taken:

1. Letv be the result of calling the default ordinary object [[GetOwnProperty]] internal method (9.1.6) on F
passing P as the argument.
2. ReturnlfAbrupt(v).
3. If IsDataDescriptor(v) is true, then
a. IfPis"caller" andv.[[Value]] is a strict mode Function object, then
i Set v.[[Value]] to null.
4. Returnv.

If an implementation does not provide such a built-in caller method for Function.prototype then it must
not use this definition. Instead the ordinary object [[GetOwnProperty]] internal method is used.

9.1.16.5 FunctionAllocate Abstract Operation

The abstract operation FunctionAllocate requires the one argument, functionPrototype and accepts one
optional argument, functionKind. FunctionAllocate performs the following steps:

Assert: Type(functionPrototype) is Object.

Assert: If functionKind is present, its value is either "normal" or "generator".

If functionKind is not present, then let functionKind be "normal".

Let F be a newly created ordinary function object with the internal data properties listed in Table 25. All of those

internal data properties are initialised to undefined.

Set F’s essential internal methods except for [[Get]] and [[GetOwnProperty]] to the default ordinary object

definitions specified in 9.1.

6. Set F’s essential internal methods for [[Call]], [[Get]] and [[GetOwnProperty]] to the default ordinary
object definitions specified in 9.1.16.

7. Set the [[FunctionKind]] internal data property of F to functionKind.

8. Set the [[Prototype]] internal data property of F to functionPrototype.

9. Set the [[Extensible]] internal data property of F to true.

10. Set the [[Realm]] internal data property. of F to the running execution context’s Realm.

11. ReturnF.

E SR

o1

9.1.16.6 Functioninitialise Abstract Operation

The abstract operation Functionlnitialise requires the arguments: a function object F, kind which is one of
(Normal; Method, Arrow), an parameter list production specified by ParameterList, a body production specified
by Body, a Lexical Environment specified by Scope, a Boolean flag Strict, and optionally, an object homeObject
and a property key methodName. Functionlinitialise performs the following steps:

1. Let len be the ExpectedArgumentCount of ParameterList.
2. Let status be the result of DefinePropertyOrThrow(F, "1length", Property Descriptor {[[Value]]: len, [[Writable]]:
false, [[Enumerable]]: false, [[Configurable]]: true}).

3. IfStrictis true, then
a. Let status be the result of the AddRestrictedFunctionProperties abstract operation with argument F.
b. ReturnIfAbrupt(status).

4. Setthe [[Scope]] internal data property of F to the value of Scope.

5. Set the [[FormalParameters]] internal property of F to ParameterList .

6. Setthe [[Code]] internal data property of F to Body.

7. If the homeObject argument was provided, set the [[HomeObject]] internal data property of F to homeObject.

8. If the methodName argument was provided, set the [[MethodName]] internal data property of F to methodName.

9. Setthe [[Strict]] internal data property of F to Strict.

10. Ifkind is Arrow, then set the [[ThisMode]] internal data property of F to lexical.

11. Else if Strict is true, then set the [[ThisMode]] internal data property of F to strict.

12. Else set the [[ThisMode]] internal data property of F to global.

13. ReturnF.

© Ecma International 2013 75

secmd

9.1.16.7 FunctionCreate Abstract Operation

The abstract operation FunctionCreate requires the arguments: kind which is one of (Normal, Method, Arrow),
an parameter list production specified by ParameterList, a body production specified by Body, a Lexical
Environment specified by Scope, a Boolean flag Strict, and optionally, an object functionPrototype, an object
homeObject and a property key methodName. FunctionCreate performs the following steps:

1. If the functionPrototype argument was not passed, then
a. Let functionPrototype be the intrinsic object %FunctionPrototype%.
2. LetF be the result of performing FunctionAllocate with argument functionPrototype.
3. Return the result of performing Functionlnitialise with passing F, kind, ParameterList, Body, Scope, and
Strict. Also pass homeObject and methodName if they are present.

9.1.16.8 GeneratorFunctionCreate Abstract Operation

The abstract operation GeneratorFunctionCreate requires the arguments: kind which is one of (Normal,
Method, Arrow), an parameter list production specified by ParameterList, a body production specified by Body,
a Lexical Environment specified by Scope, a Boolean flag Strict, and optionally, an object functionPrototype, an
object homeObject and a property key methodName. GeneratorFunctionCreate performs the following steps:

1. Ifthe functionPrototype argument was not passed, then
a. Let functionPrototype be the intrinsic object %Generator%.
2. Let F be the result of performing FunctionAllocate with arguments functionPrototype and "generator".
3. Return the result of performing Functioninitialise with passing F; kind, ParameterList, Body, Scope, and
Strict. Also pass homeObject and methodName if they are present.

9.1.16.9 AddRestrictedFunctionProperties Abstract Operation
The abstract operation is called with a function object F as its argument. It performs the following steps:

1. Let thrower be the %ThrowTypeError% intrinsic function Object.

2. Let status be the result of DefinePropertyOrThrow(F, "caller", PropertyDescriptor {[[Get]]: thrower, [[Set]]:
thrower, [[Enumerable]]: false, [[Configurable]]: false}).

3. ReturnIfAbrupt(status).

4. Return the result of DefinePropertyOrThrow(F , "arguments", PropertyDescriptor {[[Get]]: thrower, [[Set]]:
thrower, [[Enumerable]]: false, [[Configurable]]: false}).

The %ThrowTypeError% objectis an unique function object that is defined once for each Realm as follows:

Assert: %FunctionPrototype% for the current Realm has already been initialised.

Let functionPrototype be the intrinsic object %FunctionPrototype%.

Let scope be the Global Environment.

Let formalParameters be the syntactic production: FormalParameters : [empty].

Let body be the syntactic production: FunctionBody : ThrowTypeError.

Let F be the result of performing FunctionAllocate with argument functionPrototype.

Let % ThrowTypeError% be F.

Perform the abstract operation Functionlinitialise with arguments F, Normal, formalParameters, body, scope, and
true.

9. Call the [[PreventExtensions]] internal method of F.

PN~ WD

9.1.16.10 MakeConstructor Abstract Operation

The abstract operation MakeConstructor requires a Function argument F and optionally, a Boolean
writablePrototype and an object prototype. If prototype is provided it is assumed to already contain, if needed, a
"constructor" property whose value is F. This operation converts F into a constructor by performing the
following steps:

1. Assert: F is an ordinary function object, that has not already had MakeConstructor applied to it. It is extensible and
does not have a "constructor" ora "prototype" own property.

76 © Ecma International 2013

oechd

Let installNeeded be false.
3. If the prototype argument was not provided, then
a. LetinstallNeeded be true.
b. Let prototype be the result of the abstract operation ObjectCreate with the intrinsic
object %ObjectPrototype% as its argument.
4. If the writablePrototype argument was not provided, then
a. LetwritablePrototype be true.
Set F’s essential internal method [[Construct]] to the definition specified in 9.1.16.2.
If installNeeded, then
a. Call the [[DefineOwnProperty]] internal method of prototype with arguments "constructor" and
Property Descriptor {[[Value]]: F, [[Writable]]: writablePrototype, [[Enumerable]]: false, [[Configurable]]:
writablePrototype }.
7. Call the [[DefineOwnProperty]] internal method of F with arguments "prototype" and Property Descriptor
{[[\Value]]: prototype , [[Writable]]: writablePrototype , [[Enumerable]]: false, [[Configurable]]: false}.
8. Return.

N

oo

9.1.16.11 GetSuperBinding(obj) Abstract Operation
The abstract operation is called with a function object obj as its argument. It performs the following steps:

1. If Type(obj) is not Object, then return undefined.
2. If obj does not have a [[HomeObject] internal data property, then return undefined.
3. Return the value of ob;’s [[HomeObject] internal data property.

9.1.16.12 RebindSuper(function, newHome) Abstract Operation

The abstract operation is called with a function object function and an object newHome as its argument. It
performs the following steps:

1. Assert: function is an ordinary function object that has a [[HomeObject]] internal data property.

2. Assert: Type(newHome) is Object.

3. Let new be a new ordinary function objects that has all of the same internal methods and internal data properties as
function.

4. Set the value of each of new’s internal data properties, except for [[HomeObject]] to the value of function’s
corresponding internal data property.

5. Set the value of new’s [[HomeObject]] internal data property to newHome.

6. Return new.

9.1.16.13 Function Declaration Instantiation

This version reflects the concensus as of the Sept. 2012 TC39
meeting. A concensus for a new semantics was reach at the Sept.
2013 meeting. This specification has not yet been update.

NOTE When an execution context is established for evaluating function code a new Declarative Environment Record is
created and bindings for each formal parameter, and each function level variable, constant, or function declarated in the
function are instantiated in the environment record. Formal parameters and functions are initialised as part of this process.
All other bindings are initialised during execution of the function code.

Function Declaration Instantiation is performed as follows using arguments func, argumentsList, and env. func
is the function object that for which the execution context is being established. env is the declarative
environment record in which bindings are to be created.

1. Let code be the value of the [[Code]] internal data property of func.
2. Let strict be the value of the [[Strict]] internal data property of func.

© Ecma International 2013 7

Commented [AWB1915]: Same as ES5

secma

Let formals be the value of the [[FormalParameters]] internal data property of func.
Let parameterNames be the BoundNames of formals.

Let varDeclarations be the VarScopedDeclarations of code.

Let functionsTolnitialise be an empty List.

If the value of the [[ThisMode]] internal data property of func is [Iexical, then

Nouokw

a. Let argumentsObjectNeeded be false.| C ed [AWB1616]: Issure: should concise methods

Else, let argumentsObjectNeeded be true. also not get an arguments object?

© ©

For each d in varDeclarations, in reverse list order do
a. IfdisaFunctionDeclaration then
i NOTE If there are multiple FunctionDeclarations for the same name, the last declaration
is used.
ii. Let fn be the sole element of the BoundNames of d.
iii. If fn is "arguments", then let argumentsObjectNeeded be false.
iv. Let alreadyDeclared be the result of calling env’s HasBinding concrete method passing fn
as the argument.
V. If alreadyDeclared is false, then
1. Let status be the result of calling env’s CreateMutableBinding concrete method
passing fn as the argument.
2. Assert: status is never an abrupt completion.
3. Append d to functionsTolnitialise.
10. For each String paramName in parameterNames, do
a. LetalreadyDeclared be the result of calling env’s HasBinding concrete method passing paramName
as the argument.
b. NOTE Duplicate parameter names can only occurin non-strict functions. Parameter names that are
the same as function declaration names do not get initialised to undefined.
c. IfalreadyDeclared is false, then
i If paramName is "arguments"”, then let argumentsObjectNeeded be false.
ii. Let status be the result of calling env’s CreateMutableBinding concrete method passing
paramName as the argument.
iii. Assert: status is never an abrupt completion
iv. Call env’s InitialiseBinding concrete method passing paramName, and undefined as the
arguments.
11. NOTE If there is a function declaration or formal parameter with the name "arguments" then an
argument object is not.created.
12. If argumentsObjectNeeded is true, then
a. |Ifstrict is true, then
i Call env’s CreatelmmutableBinding concrete method passing the String "arguments" as
the argument:
b. Else,
i Let status be the result of calling env’s CreateMutableBinding concrete method passing the
String "arguments" as the argument.
ii. Assert: status is never an abrupt completion.
13. Let varNames be the VarDeclaredNames of code.
14. For each String varName in varNames, in list order do
a. LetalreadyDeclared be the result of calling env’s HasBinding concrete method passing varName as
the argument.
b. NOTE A VarDeclaredNames is only instantiated and initialied here if it is not also the name of a
formal parameter or a FunctionDeclarations.
c. IfalreadyDeclared is false, then
i Let status be the result of calling env’s CreateMutableBinding concrete method passing
varName as the argument.
il Assert: status is never an abrupt completion.
15. Let lexDeclarations be the LexicalDeclarations of code.
16. For each element d in lexDeclarations do
a. NOTE A lexically declared name cannot be the same as a function declaration, formal parameter,
or avar name. Lexically declarated names are only instantiated here but not initialised.
b. Foreach element dn of the BoundNames of d do
i. If IsConstantDeclaration of d is true, then
1. Call env’s CreatelmmutableBinding concrete method passing dn as the argument.
ii. Else,

78 © Ecma International 2013

secmd

1. Let status be the result of calling env’s CreateMutableBinding concrete method
passing dn and false as the arguments.

2. Assert: status is never an abrupt completion.

c. Ifdis aGeneratorDeclaration production, then

i Append d to functionsTolnitialise.
17. For each production f in functionsTolnitialise, do

a. Let fn be the sole element of the BoundNames of f.

b. Let fo be the result of performing InstantiateFunctionObject for f with argument env.

c. Let status be the result of calling env’s SetMutableBinding concrete method passing fn, fo, and false

as the arguments.

d. Assert: status is never an abrupt completion.

18. NOTE Function declaration are initialised prior to parameter initialisation so that default value expressions
may reference them. "arguments" is not initialised until after parameter initialisation.

19. Let ao be the result of InstantiateArgumentsObject with argument argumentsList.

20. NOTE If argumentsObjectNeeded is false then the value of ao is not directly observable to ECMAScript code
and need not actually exist. In that case, its use in the above steps is strictly as a device for specifying
formal parameter initialisation semantics.

21. Let formalStatus be the result of performing Bindinglnitialisationfor formals with-ao and undefined as
arguments.

22. ReturnlfAbrupt(formalStatus).

23. If argumentsObjectNeeded is true, then

a. |Ifstrictis true, then
i. Perform the abstract operation CompleteStrictArgumentsObject with argument ao.
b. Else,
i. Perform the abstract operation CompleteMappedArgumentsObject with arguments ao, func,
formals, and env.
c. Call env’s InitialiseBinding concrete method passing "arguments" and ao as arguments.
24. Return NormalCompletion(empty).

9.2 Built-in Exotic Object Internal Methods and Data Fields

This specification defines several kinds of built-in exotic objects. These objects generally behave similar to
ordinary objects except for.-a few specific situations. The following exotic objects use the ordinary object
internal methods except where it is explicitly specified otherwise below:

9.2.1 Bound Function Exotic Objects

A bound function is an exotic object that wrappers another function object. A bound function is callable (it has
a [[Call]] internal method and may have a [[Construct]] internal method). Calling a bound function generally

results in.a call of its wrappered function.

Bound function objects do not have the internal data properties of ordinary function objects defined in Table
25. Instead they have the internal data properties defined in Table 26.

Table 26 -- Internal Data Properties of Exotic Bound Function Objects

Internal Data Property Type Description

[[BoundTargetFunction]] | Callable Object | The wrappered function object.

[[BoundThis]] Any The value that is always passed as the this value when
calling the wrappered function.

[[BoundArguments]] List of Any A list of values that whose elements are used as the first
arguments to any call to the wrappered function.

Unlike ordinary function objects, bound function objects do not use alternative definitions of the [[Get]] and
[[GetOwnProperty]] internal methods. Bound function objects provide all of the essential internal methods as
specified in 9.1. However, they use the following definitions for the essential internal methods of function
objects.

© Ecma International 2013 79

»ecind

9211 [[Call]

When the [[Call]] internal method of an exotic bound function object, F, which was created using the bind
function is called with parameters thisArgument and argumentsList, a List of ECMAScript language values, the
following steps are taken:

Let boundArgs be the value of F’s [[BoundArguments]] internal data property.

Let boundThis be the value of F’s [[BoundThis]] internal data property.

Let target be the value of F’s [[BoundTargetFunction]] internal data property.

Let args be a new list containing the same values as the list boundArgs in the same order followed by the
same values as the list argumentsList in the same order.

Return the result of calling the [[Call]] internal method of target providing boundThis as thisArgument and
providing args as argumentsList.

9.2.1.2 [[Construct]]

Hwn e

o

When the [[Construct]] internal method of an exotic bound function object, F that was created using the bind
function is called with a list of arguments ExtraArgs, the following steps are taken:

Let target be the value of F’s [[BoundTargetFunction]] internal data property.

Assert: target has a [[Construct]] internal method.

Let boundArgs be the value of F’s [[BoundArguments]] internal data property.

Let args be a new list containing the same values as the list boundArgs in the same order followed by the
same values as the list ExtraArgs in the same order.

5. Return the result of calling the [[Construct]] internal method of target providing args as the arguments.

HwN e

9.2.1.3 BoundFunctionCreate Abstract Operation

The abstract operation BoundFunctionCreate with arguments targetFunction, boundThis and boundArgs is
used to specify the creation of new Bound Function exotic objects. It performs the following steps:

Let proto be the intrinsic %FunctionPrototype%.
Let obj be a newly created ECMAScript object.
Set obj’s essential internal methods to the default ordinary object definitions specified in 9.1.
Set the [[Call]] internal method of obj as described in 9.2.1.1.
If targetFunction has a [[Construct]] internal method, then
a. Set the [[Construct]] internal method of obj as described in 9.2.1.2.
Set the [[Prototype]] internal data property of obj to proto.
Set the [[Extensible]] internal data property of obj to true.
Set the [[BoundTargetFunction]] internal data property of obj to targetFunction.
9. Set the [[BoundThis]] internal data property of obj to the value of boundThis.
10. Set the [[BoundArguments]] internal data property of obj to boundArgs.
11. Return obj.

abrwpe=

© N o

9.2.2 Array Exotic Objects

An Array object is. an exotic object that gives special treatment to a certain class of property names. A
property name P (in the form of a String value) is an array index if and only if ToString(ToUint32(P)) is equal to
P and ToUint32(P) is not equal to 2*-1. A property whose property name is an array index is also called an
element. Every Array object has a length property whose value is always a nonnegative integer less than 2%,
The value of the 1ength property is numerically greater than the name of every property whose name is an
array index; whenever a property of an Array object is created or changed, other properties are adjusted as
necessary to maintain this invariant. Specifically, whenever a property is added whose name is an array index,
the length property is changed, if necessary, to be one more than the numeric value of that array index; and
whenever the 1length property is changed, every property whose name is an array index whose value is not
smaller than the new length is automatically deleted. This constraint applies only to own properties of an Array
object and is unaffected by 1ength or array index properties that may be inherited from its prototypes.

Exotic Array objects have the same internal data properties as ordinary objects. They also have an
[[ArrayInitialisationState]] internal data property.

80 © Ecma International 2013

secma

Exotic Array objects always have a non-configurable property named "length".

Exotic Array objects provide an alternative definition for the [[DefineOwnProperty]] internal method. Except for
that internal method, exotic Array objects provide all of the other essential internal methods as specified in 9.1.

9.2.2.1 [[DefineOwnProperty]] (P, Desc)

When the [[DefineOwnProperty]] internal method of an exotic Array object A is called with property key P, and
Property Descriptor Desc the following steps are taken:

1. Assert: IsPropertyKey(P) is true.
2. If Pis"length", then

a. Return the result of calling ArraySetLength with arguments A, and Desc.
3. Elseif Pis an array index, then

a. LetoldLenDesc be the result of calling the [[GetOwnProperty]]-internal method of A passing
"length' asthe argument. The result will never be undefined or an accessor descriptor because
Array objects are created with a length data property that cannot be deleted or.reconfigured.
Let oldLen be oldLenDesc.[[Value]].
Let index be ToUint32(P).
Assert: index will never be an abrupt completion.
If index > oldLen and oldLenDesc.[[Writable]].is false, then return false.
Let succeeded be the result of calling OrdinaryDefineOwnProperty passing A, P, and Desc as
arguments.
ReturnlfAbrupt(succeeded).
If succeeded is false, then return false.

i. If index >oldLen

i. Set oldLenDesc.[[Value]] to index + 1.
ii. Let succeeded be the result of calling OrdinaryDefineOwnProperty passing A, "length™,
and oldLenDesc as arguments.
il ReturnlfAbrupt(succeeded).

j. Return true.

4. Return the result of calling OrdinaryDefineOwnProperty passing A, P, and Desc as arguments.

~oooo

J@a

9.2.2.2 ArrayCreate Abstract Operation

The abstract operation ArrayCreate with- argument length (a positive integer or undefined) and optional
argument proto is used to specify the creation of new exotic Array objects. It performs the following steps:

1. If the proto argument was not passed, then let proto be the intrinsic object % ArrayPrototype%.

2. Let Abe anewly created Array exotic object.

3. Set'A’s essential internal methods except for [[DefineOwnProperty]] to the default ordinary object
definitions specified in 9.1.

4. Setthe [[DefineOwnProperty]] internal method of A as specified in 9.2.2.1.
5. Set the [[Prototype]] internal data property of A to proto.
6. Set the [[Extensible]] internal data property of A to true.
7. If length is not undefined, then
a. Set the [[ArraylnitialisationState]] internal data property of A to true.
8. Else

a. Setthe [[ArraylnitialisationState]] internal data property of A to false.
b. Letlength be 0.
9. Call OrdinaryDefineOwnProperty with arguments A, "length" and Property Descriptor {[[Value]]: length,
[[Writable]]: true, [[Enumerable]]: false, [[Configurable]]: false}.
10. Return A.

9.2.2.3 ArraySetLength Abstract Operation

When the abstract operation ArraySetLength is called with an exotic Array object A, and Property Descriptor
Desc the following steps are taken:

1. If the [[Value]] field of Desc is absent, then

© Ecma International 2013 81

&

o gk wn

10.
11.

16.

17.

4

ecma

a. Return the result of calling OrdinaryDefineOwnProperty passing A, ""length", and Desc as
arguments.
Let newLenDesc be a copy of Desc.
LLet newLen be ToUint32(Desc.[[Value]]).

If newLen is not equal to ToNumber(Desc.[[Value]]), throw a RangeError exception.\ C ed [AWB1417]: Note that if [Value]] is an object
Set newLenDesc,[[Value]] to newLen. this sequence wi_II pall its valueoOf me_thod tvs_/ice. That seems
LLetjoldLenDesc be the result of calling the [[GetOwnProperty]] internal method of A passing “*length" as l‘é';ds‘ﬁz"gg'ev butitis the legacy behaviour going back to at
the argument. The result will never be undefined or an accessor descriptor because Array objects are

created with a length data property that cannot be deleted or reconfigured. Commented [AWB1418]: Seebug

Let oldLen be oldLenDesc.[[Value]]. https://bugs.ecmascript.org/show_bug.cgi?id=1200 for why

these two lines moved.

If newLen >oldLen, then
a. Return the result of calling OrdinaryDefineOwnProperty passing A, ""1ength", and newLenDesc as
arguments.
If oldLenDesc.[[Writable]] is false, then return false.
If newLenDesc.[[Writable]] is absent or has the value true, let newWritable be true.
Else,
a. Need to defer setting the [[Writable]] attribute to false in case any elements cannot be deleted.
b. Let newWritable be false.
c. Set newLenDesc.[[Writable]] to true.

. Let succeeded be the result of calling OrdinaryDefineOwnProperty passing A, "length", and newLenDesc

as arguments.

. ReturnIfAbrupt(succeeded).
. If succeeded is false, return false.
. While newLen < oldLen repeat,

a. SetoldLen tooldLen — 1.
b. Let deleteSucceeded be the result of calling the [[Delete]] internal method of A passing
ToString(oldLen).
¢. ReturnIfAbrupt(succeeded).
d. IfdeleteSucceeded is false, then
i Set newLenDesc.[[Value]] to oldLen+1:
ii. If newWritable'is false, set newLenDesc.[[Writable]] to false.
iii. Let succeeded be the result of calling OrdinaryDefineOwnProperty passing A, ""length",
and newLenDesc as arguments.
iv. ReturnlfAbrupt(succeeded).
V. Return false.
If newWritable is false, then
a. Call OrdinaryDefineOwnProperty passing A, "1ength", and Property Descriptor{[[Writable]]:
false}-as.arguments. This call will always return true.
Return true.

9.2.3 < String Exotic Objects

A String object is an exotic object that encapsulates a String value and exposes virtual integer indexed data
properties corresponding to the individual code unit elements of the string value. Exotic String objects always
have a data property named "length" whose value is the number of code unit elements in the encapsulated
String value. Both the code unit data properties and the "length" property are non-writable and non-
configurable.

Exotic String objects have the same internal data properties as ordinary objects. They also have a
[[StringData]] internal data property.

Exotic String objects provide alternative definitions for the following internal methods. All of the other exotic
String object essential internal methods that are not defined below are as specified in 9.1.

9.23.1

82

© Ecma International 2013

https://bugs.ecmascript.org/show_bug.cgi?id=1200

secma

9.2.3.2 [[GetOwnProperty]] (P)

When the [[GetOwnProperty]] internal method of an exotic String object S is called with property key P the
following steps are taken:

Assert: IsPropertyKey(P) is true.

Let desc be the result of OrdinaryGetOwnProperty(S, P).

ReturnlfAbrupt(desc).

If desc is not undefined return desc.

If Type(P) is not String, then return undefined.

Let index be Tolnteger(P).

Assert: index is not an abrupt completion.

Let absIntindex be ToString(abs(index)).

If SameValue(absintindex, P) is false return undefined.

0. Let str be the String value of the [[StringData]] internal data property of S;.if the value of [[StringData]] is

undefined the empty string is used as its value.

11. Let len be the number of elements in str.

12. If len < index, return undefined:

13. Let resultStr be a String value of length 1, containing one code unit from str, specifically the code unit at
position index, where the first (leftmost) element in str is considered to be at position 0, the next one at
position 1, and so on.

14. Return a Property Descriptor { [[Value]]: resultStr, [[Enumerable]]: true, [[Writable]]: false,

[[Configurable]]: false }.

BOoNoOOGOA~AWONE

9.2.3.3 [[DefineOwnProperty]] (P, Desc)

When the [[DefineOwnProperty]] internal method of an exotic String object O is called with property key P, and
Property Descriptor Desc the following steps are taken:

1. Letcurrent be the result of calling the [[GetOwnProperty]] internal method of O with argument P.
2. Let extensible be the value of the [[Extensible]] internal data property of O.

3. Return the result of VValidateAndApplyPropertyDescriptor with arguments O, P, extensible, Desc, and
current.

NOTE This algorithm differs from the ordinary object OrdinaryDefineOwnProperty abstract operation algorithm only in
invocation of [[GetOwnProperty]] in step 1.

9.2.34 [[Enumerate]] ()
When the [[Enumerate]] internal method of an exotic String object O is called the following steps are taken:
9.23.5 [[OwnPropertyKeys]] ()

When the [[OwnPropertyKeys]] internal method of an exotic String object O is called the following steps are
taken;]

© Ecma International 2013 83

Commented [AWB1219]: TODO

Commented [AWB1220]: TODO

(c

ed [AWB1321]: TODO

secmd

9.2.3.6 StringCreate Abstract Operation

The abstract operation StringCreate with argument prototype is used to specify the creation of new exotic
String objects. It performs the following steps:

Let A be a newly created String exotic object.

Set A’s essential internal methods to the default ordinary object definitions specified in 9.1.
Set the [[GetOwnProperty]] internal method of A as specified in 9.2.3.2.

Set the [[DefineOwnProperty]] internal method of A as specified in 9.2.3.3.

Set the [[Enumerate]] internal method of A as specified in 9.2.3.4.

Set the [[OwnPropertyKeys]] internal method of A as specified in 9.2.3.5.

Set the [[Prototype]] internal data property of A to prototype.

Set the [[Extensible]] internal data property of A to true.

Return A.

COoNOGO A~ WNE

9.2.4 Exotic Arguments Objects

Most of the text in this section is copied from the ES5 spec. and still needs to be updated to work within the
context of the ES6 specification.

An arguments object is an exotic object whose array index properties map to the formal parameters bindings
of an invocation of a non-strict function.

Exotic arguments objects have the same internal data properties as ordinary objects. They also have a
[[ParameterMap]] internal data.

Exotic arguments objects provide alternative definitions for the following internal methods. All of the other
exotic arguments object essential internal methods that are not defined below are as specified in 9.1.

9.2.4.1 Arguments Object

When function code is evaluated, an arguments object is created unless (as specified in 9.1.16.11) the
identifier arguments occurs as an lIdentifier in the function’s FormalParameters or occurs as the
Bindingldentifier of a FunctionDeclaration contained in the outermost StatementList of the function code.

The abstract operation Instantiate ArgumentsObject called with an argument args performs the following steps:

1. Let len bethe number of elements in args.

2. Let obj be the result of the abstract operation ObjectCreate with the intrinsic object %ObjectPrototype% as
its argument.

3. Call the [[DefineOwnProperty]] internal. method on obj passing “"length" and the Property Descriptor

{[[\Valuell: len, [[Writable]]: true, [[Enumerable]]: false, [[Configurable]]: true} as arguments.

Letindx = len - 1.

Repeat while indx > 0,

a. Letval be the element of args at 0-origined list position indx.

b. Call the [[DefineOwnProperty]] internal method on obj passing ToString(indx) and the Property
Descriptor {[[Value]]: val, [[Writable]]: true, [[Enumerable]]: true, [[Configurable]]: true} as
arguments.

c. Letindx =indx-1

6. Return obj

o &

The abstract operation CompleteStrictArgumentsObject is called with argument obj which must have been
previously created by the abstract operation InstantiateArgumentsObject. The following steps are performed:

1. Perform the AddRestrictedFunctionProperties abstract operation with argument obj.
2. Return.

The abstract operation CompleteMappedArgumentsObject is called with object obj, object func, grammar
production formals, and environment record env. obj must have been previously created by the abstract
operation InstantiateArgumentsObject.The following steps are performed:

84 © Ecma International 2013

Commented [AWB 222]: Additional modification to this text
will probably be need to accout for the new declaration
statements.

secma

Let len be the result of Get(obj, "“1ength™).
Let mappedNames be an empty List.
Let numberOfNonRestFormals be NumberOfParameters of formals.
Let map be the result of the abstract operation ObjectCreate with the intrinsic object %ObjectPrototype%
as its argument.
Letindx =len - 1.
Repeat while indx > 0,
a. Ifindx is less than the numberOfNonRestFormals, then
i. Let param be getParameter of formals with argument indx.
il If param is a Bindingldentifier, then
1. Let name be the sole element of BoundNames of param.
2. If name is not an element of mappedNames, then
a. Add name as an element of the list mappedNames.
b. Let g be the result of calling the MakeArgGetter abstract operation with
arguments name and env.
c. Letp be the result of calling the MakeArgSetter abstract operation with
arguments name and env.
d. Call the [[DefineOwnProperty]] internal method of map passing
TosString(indx) and the Property Descriptor {[[Set]]: p, [[Get]]: g,
[[Configurable]]: true} as arguments.

AwON P

o u

b. Letindx =indx -1
7. If mappedNames is not empty, then
a. Setthe [[ParameterMap]] internal data property of obj to map.
b. Set the [[Get]], [[GetOwnProperty]], [[DefineOwnProperty]], and [[Delete]] internal methods of obj
to the definitions provided below.
8. Call the [[DefineOwnProperty]] internal method on obj passing "ecallee" and the Property Descriptor
{[[Valuell: func, [[Writable]]: true, [[Enumerable]]: false, [[Configurable]]: true} as arguments.
9. Return obj

The abstract operation MakeArgGetter called with String name and environment record env creates a function
object that when executed returns the value bound for name in env. It performs the following steps:

Let bodyText be the result of concatenating the Strings "return ", name, and "; ".

Let body be the result of parsing bodyText using FunctionBody as the goal symbol.

Let parameters be alFormalParameters : [empty] production.

Return the result of calling the abstract operation FunctionCreate using Normal as the kind, parameters as
FormalParameterList, body for FunctionBody, env as.Scope, and true for Strict.

S

The abstract operation MakeArgSetter called with String name and environment record env creates a function
object that when executed sets the value bound for name in env. It performs the following steps:

1. LetparamText be the String name concatenated with the String " arg".

2. Let parameters be the result of parsing paramText using FormalParameters as the goal symbol.

3. LetbodyText be the String "*<name> = <param>; " with <name> replaced by the value of name and
<param> replaced by the value of paramText.

4. Let body be the result of parsing bodyText using FunctionBody as the goal symbol.

5. Return the result of calling the abstract operation FunctionCreate using Normal as the kind, parameters as
FormalParameterList; body for FunctionBody, env as Scope, and true for Strict.

The [[Get]] internal method of an arguments object for a non-strict mode function with formal parameters when
called with a property name P performs the following steps:

1. Letargs be the arguments object.
2. Let map be the value of the [[ParameterMap]] internal data property of the arguments object.
3. LetisMapped be the result of calling the [[GetOwnProperty]] internal method of map passing P as the
argument.
4. If the value of isMapped is undefined, then
a. Letv be the result of calling the default ordinary object [[Get]] internal method (9.1.9) on args
passing P and args as the arguments.
b. IfPis"caller" andv is astrict mode Function object, throw a TypeError exception.

© Ecma International 2013 85

secmd

c. Returnv.
5. Else map contains a formal parameter mapping for P,
a. Return the result of calling Get(map, P).

The [[GetOwnProperty]] internal method of an arguments object for a non-strict mode function with formal
parameters when called with a property name P performs the following steps:

1. Let desc be the result of calling the default [[GetOwnProperty]] internal method for ordinary objects (9.1.6)
on the arguments object passing P as the argument.

2. If desc is undefined then return desc.

3. Let map be the value of the [[ParameterMap]] internal data property of the arguments object.

4. Let isMapped be the result of calling the [[GetOwnProperty]] internal method of map passing P as the
argument.

5. If the value of isMapped is not undefined, then

a. Setdesc.[[Value]] to the result of calling Get(map, P).
6. Return desc.

The [[DefineOwnProperty]] internal method of an arguments object for a non-strict mode function with formal
parameters when called with a property name P and Property Descriptor Desc performs the following steps:

1. Let map be the value of the [[ParameterMap]] internal data property of the arguments object:
2. LetisMapped be the result of calling the [[GetOwnProperty]] internal method of map passing P as the
argument.
3. Let allowed be the result of calling the default [[DefineOwnProperty]] internal method for ordinary objects
(9.1.7) on the arguments object passing P and Desc as the arguments.
ReturnIfAbrupt(allowed).
If allowed is false, then return false.
If the value of isMapped is not undefined, then
a. IfIsAccessorDescriptor(Desc) is true, then
i Call the [[Delete]] internal method of map passing P as the argument.
b. Else
i. If Desc.[[Valuel] s present, then
1. Let putStatus be the result of Put(map, P, Desc.[[Value]], false).
2. <Assert: putStatus is true because formal parameters mapped by argument objects
are always writable.
ii. If Desc.[[Writable]]'is present and its value is false, then
1. Call the [[Delete]] internal method of map passing P as the argument.

o oA

7. Return true.

The [[Delete]]-internal-method of an arguments object for a non-strict mode function with formal parameters
when called with a property key P performs the following steps:

1. Let map be the value of the [[ParameterMap]] internal data property of the arguments object.

2. LetisMapped be the result of calling the [[GetOwnProperty]] internal method of map passing P as the
argument.

3. Let result be the result of calling the default [[Delete]] internal method for ordinary objects (9.1.12) on the
arguments object passing P as the argument.

4. If resultis trueand thevalue of isMapped is not undefined, then

a. Call the [[Delete]] internal method of map passing P as the argument.
5. Return result.

NOTE 1 For non-strict mode functions the integer indexed data properties of an arguments object whose numeric
name values are less than the number of formal parameters of the corresponding function object initially share their values
with the corresponding argument bindings in the function’s execution context. This means that changing the property
changes the corresponding value of the argument binding and vice-versa. This correspondence is broken if such a
property is deleted and then redefined or if the property is changed into an accessor property. For strict mode functions,
the values of the arguments object’s properties are simply a copy of the arguments passed to the function and there is no
dynamic linkage between the property values and the formal parameter values.

NOTE 2 The ParameterMap object and its property values are used as a device for specifying the arguments object
correspondence to argument bindings. The ParameterMap object and the objects that are the values of its properties are
not directly accessible from ECMAScript code. An ECMAScript implementation does not need to actually create or use
such objects to implement the specified semantics.

86 © Ecma International 2013

secma

NOTE 3 Arguments objects for strict mode functions define non-configurable accessor properties named "caller" and
"callee" which throw a TypeError exception on access. The "callee" property has a more specific meaning for non-
strict mode functions and a "caller" property has historically been provided as an implementation-defined extension by
some ECMAScript implementations. The strict mode definition of these properties exists to ensure that neither of them is
defined in any other manner by conforming ECMAScript implementations.

9.2.5 |Integer Indexed Exotic Objects
An Integer Indexed object is an exotic object that |perf0rms special]handling of integer property keys.

Integer Indexed exotic objects have the same internal data properties as ordinary objects additionally
[[ViewedArrayBuffer]], [[ArrayLength]], [[ByteOffset]], and [[TypedArrayName]] internal data properties.

Integer Indexed Exotic objects provide alternative definitions for the following internal methods. All of the
other Integer Indexed exotic object essential internal methods that are not defined below are as specified in
9.1,

9.25.1
1.
2.
3.
a.
b.
c.
i.
ii.
iii.
iv.
V.
4.

9.25.2 [[GetOwnProperty]] (P)

When the [[GetOwnProperty]] internal method of an Integer Indexed exotic object O is called with property key
P the following steps are taken:

1. Assert: IsPropertyKey(P) is true.
2. Assert: O is an Object that has a [[ViewedArrayBuffer]] internal data.
3. If Type(P) is String, then
a. - LetintIndex be Tolnteger(P).
b. Assert: intIndex is not an abrupt completion.
c. If SameValue(ToString(intIndex), P) is true, then
i Let value be the result of IntegerindexedElementGet (O, intIndex).
ii. ReturnlfAbrupt(value).
iii. If value is undefined, then return undefined.
iv. Let writable be true [if the integer indexed properties of O are writable and false if they are

Commented [AWB1323]: Issue: does the TypedArray

spec./WEDbIDL specs require that such indexed properties

show up using [[GetOwnProperty]], keys, etc? If so, some
| more internal method over-rides will be needed.

ed [AWB1624]: TODO: need to formaize this.

not.
V. Return a Property Descriptor { [[Value]]: value, [[Enumerable]]: true, [[Writable]]:
writable, [[Configurable]]: false }.
4. Return the result of OrdinaryGetOwnProperty(O, P).

9.2.5.3 [[DefineOwnProperty]] (P, Desc)

When the [[DefineOwnProperty]] internal method of an Integer Indexed exotic object O is called with property
key P, and Property Descriptor Desc the following steps are taken:

1. Assert: IsPropertyKey(P) is true.

© Ecma International 2013 87

)

secmd

2. Assert: O is an Object that has a [[ViewedArrayBuffer]] internal data.
3. If Type(P) is String, then
a. LetintIndex be Tolnteger(P).
b. Assert: intindex is not an abrupt completion.
c. If SameValue(ToString(intindex), P) is true, then
i If intIndex < 0, then return false.
ii. Let length be the value of O’s [[ArrayLength]] internal data property.
iii. If length is undefined, then throw a TypeError exception.
iv. If intIndex > length, then return false.
V. If IsAccessorDescriptor(Desc) is true, then return false.
Vi. If Deschas a [[Configurable]] field and if Desc.[[Configurable]] is true, then return false.
vii. If Deschas an [[Enumerable]] field and if Desc.[[Enumerable]] is false, then return false.
viii. Let writable be true lif the integer indexed properties of O are writable pnd false if they are

ed [AWB1625]: TODO: need to formaize this.

not.
iX. Let makeReadOnly be false.
X. If Deschas a [[Writable]] field, then
1. If Desc.[[Writable]] is true and writable is false, then return false.
2. If Desc.[[Writable]] is false and writable s true, then let makeReadOnly be true.
Xi. If Deschas a [[Value]] field, then
1. Letvalue be Desc.[[Value]].
2. If writable is false, then
a. LetoldValue be the resultof IntegerindexedElementGet (O, intIndex).
b. ReturnlfAbrupt(oldValue).
c. Ifoldvalue is undefined, then return false.
d. If SameValue(value, oldValue) is false, then return false.

(c

)

(c

ed [AWB1626]: TODO: need to formaize this.

)

3. Else
a. Let status be the result of IntegerindexedElementSet (O, intIndex, value).
b. ReturnlfAbrupt(status):
Xil. If makeReadOnly is true, then mark the integer.indexed properties of O as non-writable. |
xiii. Return true.

4. Return the result of OrdinaryGetOwnProperty(O, P).
9.25.4 [[Get]] (P, Receiver)

When the [[Get]] internal method of an Integer Indexed exotic object O is called with property key P and
ECMAScript language value Receiver the following steps are taken:

1. Assert: IsPropertyKey(P) is true.
2. If Type(P) is String and if SameValue(O, Receiver) is true, then

a. Letintindex be Tolnteger(P).

b. Assert: intindex is.not an abrupt completion.

c. If SameValue(ToString(intindex), P) is true, then

i Return the result of IntegerindexedElementGet (O, intindex).
3. Return the result of calling the default ordinary object [[Get]] internal method (9.1.9) on O passing P and
Receiver as arguments.

9.255 [[Set]] (P, V, Receiver)

When the [[Set]] internal method of an Integer Indexed exotic object O is called with property key P, value V,
and ECMAScript language value Receiver, the following steps are taken:

1. Assert: IsPropertyKey(P) is true.
2. If Type(P) is String and if SameValue(O, Receiver) is true, then

a. Letintindex be Tolnteger(P).

b. Assert: intindex is not an abrupt completion.

c. If SameValue(ToString(intindex), P) is true, then

i Return the result of ToBoolean(IntegerindexedElementSet (O, intIndex, V)).
3. Return the result of calling the default ordinary object [[Set]] internal method (9.1.9) on O passing P, V, and
Receiver as arguments.

88 © Ecma International 2013

(il - /‘

ecmad

9.25.6 [[Enumerate]] ()

9.25.7 [[OwnPropertyKeys]] ()

ed [AWB1627]: TODO

9.2.5.8 IntegerindexedObjectCreate Abstract Operation

The abstract operation IntegerindexedObjectCreate with argument prototype is used to specify the creation of
new Integer Indexed exotic objects. It performs the following steps:

©OND TR WN P

10.
11.

Let A be a newly created ECMAScript object.

Set A’s essential internal methods to the default ordinary object definitions specified in 9.1.
Set the [[GetOwnProperty]] internal method of A as specified in 9.2.5.2.
Set the [[DefineOwnProperty]] internal method of A as specified in 9.2.5.3.
Set the [[Get]] internal method of A as specified in 9.2.5.4.

Set the [[Set]] internal method of A as specified in 9.2.5.5.

Set the [[Enumerate]] internal method of A as specified in 9.2.5.6.

Set the [[OwnPropertyKeys]] internal method of A as specified in 9.2.5.7.
Set the [[Prototype]] internal data property of A to prototype.

Set the [[Extensible]] internal data property of A to true.

Return A.

9.2.5.9 IntegerindexedElementGet (O, index) Abstract Operation

1
2.

Assert: Type(index) is Number and index is an integer.

Assert: O is an Object that has [[ViewedArrayBuffer]], [[ArrayLength]], [[ByteOffset]], and
[[TypedArrayName]] internal data properties.

Let buffer be the value of O’s [[ViewedArrayBuffer]].internal data property.

If buffer is undefined, then throw a TypeError exception:

Let length be the value of O’s [[ArrayLength]] internal data property.

If index < 0 or index > length, then return undefined.

Let offset be the value of O’s [[ByteOffset]] internal data property.

Let arrayTypeName be the string value O’s [[TypedArrayName]] internal data property.

Let elementSize be the Number value of the Element Size value specified in Table 36 for arrayTypeName.

. Let indexedPosition = (index x elementSize) + offset.
. Let elementType be the string value of the Element Type value in Table 36 for arrayTypeName.
. Return the result of GetValueFromBuffer(buffer; indexedPosition, elementType).

9.2.5.10 IntegerindexedElementSet (O, index, value) Abstract Operation

Assert: Type(index) is Number and index is an integer.

Assert: O is an Object that has [[ViewedArrayBuffer]], [[ArrayLength]], [[ByteOffset]], and
[[TypedArrayName]] internal data properties.

Let buffer be the value of O’s [[ViewedArrayBuffer]] internal data property.

If buffer is undefined, then throw a TypeError exception.

Let length be the value of O’s [[ArrayLength]] internal data property.

Let numValue be ToNumber(value).

ReturnlfAbrupt(numValue).

If index < 0 or index > length, then return false.

Let offset be the value of O’s [[ByteOffset]] internal data property.

. Let arrayTypeName be the string value O’s [[TypedArrayName]] internal data property.

. Let elementSize be the Number value of the Element Size value specified in Table 36 for arrayTypeName.
. Let indexedPosition = (index x elementSize) + offset.

. Let elementType be the string value of the Element Type value in Table 36 for arrayTypeName.

. Let status be the result of SetValuelnBuffer(buffer, indexedPosition, elementType, numValue).

. ReturnIfAbrupt(status).

. Return true.

© Ecma International 2013 89

secmd

9.2.6 Built-in Function Objects

The built-in function objects defined in this specification may be implemented as either ordinary function
objects whose behaviour is provided using ECMAScript code or as implementation provided exotic function
objects whose behaviour is provided in some other manner. In either case, the effect of calling such functions
must conform to their specifications.

If an implementation provided exotic object is used, the object must have the ordinary object behaviour
specified in 9.1 except for [[Get]] and [[GetOwnProperty]] which must be as specified in 9.1.16. All such exotic
function objects also have [[Prototype]] and [[Extensible]] internal data.

[[Call]] and [[Construct]]

9.2.6.1 CreateBuiltinFunction Abstract Operation

The abstract operation CreateBuiltinFunction takes a single argument, steps, that is a list of algorithm steps. It
returns a bult-in function object created by following steps:

1. |Let func be a new built-in function object, in the current Realm, that when called performs the action described by
steps)|

Commented [AWB1228]: TODO: need to talk about [[Call]]
and [[Construct]] behaviour of chapter 15 native functions.

C ed [AWB1629]: Perhaps this needs to be

2. Return func.
9.3 Proxy Object Internal Methods and Internal Data Properties

A proxy object is an exotic object whose essential internal methods are partially implemented using
ECMAScript code. Every proxy objects has:an internal data property called [[ProxyHandler]]. The value of
[[ProxyHandler]] is always an object, called the proxy’s handler object. Methods of a handler object may be
used to augment the implementation for one or more of the proxy object’s internal methods. Every proxy
object also has an internal data property called [[ProxyTarget]] whose value is either an object or the null
value. This object is called the proxy’s target object.

When a handler method is called to provide the implementation of a proxy object internal method, the handler
method is passed the proxy’s target object as a parameter. A proxy’s handler object does not necessarily
have a method corresponding to every essential internal method. Invoking an internal method on the proxy
results in the invocation of the corresponding internal method on the proxy’s target object if the handler object
does not have a method corresponding to the internal trap.

The [[ProxyHandler]}.and [[ProxyTarget]] internal data properties of a proxy object are always initialised when
the object.is created and. typically may not be modified. Some proxy objects are created in a manner that
permits them to be subsequently revoked. When a proxy is revoked, its [[ProxyHander]] internal data property
is setto a special revoked proxy handler object and its [[ProxyTarget]] internal data property is set to null.

Because proxy permit arbitrary ECMAScript code to be used to in the implementation of internal methods, it is
possible to define a proxy object whose handler methods violates the invariants defined in 6.1.7.3. Some of
the internal method invariants defined in 6.1.7.3 are essential integrity invariants. These invariants are
explicitly enforced by the proxy internal methods specified in this section. An ECMAScript implementation
must be robust in the presence of all possible invariant violations.

In the following algorithm descriptions, assume O is an ECMAScript proxy object, P is a property key value, V
is any ECMAScript language value, Desc is a Property Description record, and B is a Boolean flag.

9.3.1 [[GetPrototypeOf]] ()

When the [[GetPrototypeOf]] internal method of an exotic Proxy object O is called the following steps are
taken:

1. Let handler be the value of the [[ProxyHandler]] internal data property of O.

2. Let target be the value of the [[ProxyTarget]] internal data property of O.
3. Let trap be the result of GetMethod(handler, "getPrototypeOf£").

90 © Ecma International 2013

elaborated.

secma

4. ReturnlfAbrupt(trap).
5. If trap is undefined, then
a. Return the result of calling the [[GetPrototypeOf]] internal method of target.
6. Let handlerProto be the result of calling the [[Call]] internal method of trap with handler as the this value
and a new List containing target.
7. ReturnlfAbrupt(handlerProto).
8. Let extensibleTarget be the result of IsExtensible(target).
9. ReturnIfAbrupt(extensibleTarget).
10. If extensibleTarget is true, then return trapResult.
11. Let targetProto be the result of calling the [[GetPrototypeOf]] internal method of target.
12. ReturnlfAbrupt(targetProto).
13. If SameValue(handlerProto, targetProto) is false, then throw a TypeError exception.
14. Return handlerProto.

NOTE [[GetPrototypeOf]] for proxy objects enforces the following invariant:
* |If the target object is not extensible, [[GetPrototypeOf]] applied to the proxy object must return the same value as
[[GetPrototypeOf] applied to the proxy object’s target object.

9.3.2 [[SetPrototypeOf]] (V)

When the [[SetPrototypeOf]] internal method of an exotic Proxy object O is called with argument V the
following steps are taken:

Assert: Either Type(V) is Object or Type(V) is Null.
Let handler be the value of the [[ProxyHandler]] internal data property of O.
Let target be the value of the [[ProxyTarget]].internal data property of O.
Let trap be the result of GetMethod(handler, "setPrototypeOf").
ReturnIfAbrupt(trap).
If trap is undefined, then
a. Return the result of calling the [[SetPrototypeOf]] internal method of target with argument V.
Let trapResult be the result of calling the [[Call]] internal method of trap with handler as the this value and
a new List containing target and V.
8. ReturnlfAbrupt(trapResult).
9. Let trapResult be ToBoolean(trapResult).
10. Let extensibleTarget be the result of ASExtensible(target).
11. ReturnlfAbrupt(extensibleTarget).
12. If extensibleTarget is true, thenreturn trapResult.
13. Let targetProto be the result of calling the [[GetPrototypeOf]] internal method of target.
14. Returnl fAbrupt(targetProto).
15. If trapResult is true and SameValue(V, targetProto) is false, then throw a TypeError exception.
16. Return trapResult.

o0k wN R

~

NOTE [[SetPrototypeOf]] for proxy objects enforces the following invariant:
o If the target object is not extensible, the argument value must be the same as the result of [[GetPrototypeOf]]
applied to target object.
9.3.3 [[IsExtensible]] ()

When the [[IsExtensible]] internal method of an exotic Proxy object O is called the following steps are taken:

1. Let handler be the value of the [[ProxyHandler]] internal data property of O.
2. Let target be the value of the [[ProxyTarget]] internal data property of O.
3. Let trap be the result of GetMethod(handler, "isExtensible").
4. ReturnlfAbrupt(trap).
5. If trap is undefined, then
a. Return the result of calling the [[IsExtensible]] internal method of target.
6. Let trapResult be the result of calling the [[Call]] internal method of trap with handler as the this value and
a new List containing target.
7. ReturnlfAbrupt(trapResult).

8. Let booleanTrapResult be ToBoolean(trapResult).

© Ecma International 2013 91

secmd

9. Let targetResult be the result of calling the [[IsExtensible]] internal method of target.

10. ReturnlfAbrupt(targetResult).

11. If SameValue(booleanTrapResult, targetResult) is false, then throw a TypeError exception.
12. Return booleanTrapResult.

NOTE [[IsExtensible]] for proxy objects enforces the following invariant:
e [[IsExtensible]] applied to the proxy object must return the same value as [[ISExtensible]] applied to the proxy
object’s target object with the same argument.

9.3.4 [[PreventExtensions]] ()

When the [[PreventExtensions]] internal method of an exotic Proxy object O is called the following steps are
taken:

1. Let handler be the value of the [[ProxyHandler]] internal data property of O.
2. Lettarget be the value of the [[ProxyTarget]] internal data property of ©.
3. Let trap be the result of GetMethod(handler, "preventExtensions").
4. ReturnlfAbrupt(trap).
5. If trap is undefined, then
a. Return the result of calling the [[PreventExtensions]] internal method of target.
6. Let trapResult be the result of calling the [[Call]] internal method of trap.with handler as the this value and
a new List containing target.
7. Let booleanTrapResult be ToBoolean(trapResult)
8. ReturnlfAbrupt(booleanTrapResult).
9. Let targetlsExtensible be the result of calling the [[IsExtensible]] internal method of target.
10. ReturnIfAbrupt(targetlsExtensible).
11. If booleanTrapResult is true and targetlsExtensible is true, then throw a TypeError exception.
12. Return targetlsExtensible .

NOTE [[PreventExtensions]] for proxy objects enforces the following invariant:
e [[PreventExtensions]] applied-to.the proxy object only returns true if [[ISExtensible]] applied to the proxy object’s
target object is false.

9.35
1.
2.
3.
4,
5.
6.
a.
7.
8.
9.
10.
a.
b.
c.
i
ii.
iii.
iv.
11.
a.
b.
c.
d.

92 © Ecma International 2013

12.

9.3.6 [[GetOwnProperty]] (P)

When the [[GetOwnProperty]] internal method of an exotic Proxy object O is called with property key P, the

fol

SR

~

lowing steps are taken:

Assert: IsPropertyKey(P) is true.
Let handler be the value of the [[ProxyHandler]] internal data property of O.
Let target be the value of the [[ProxyTarget]] internal data property of O.
Let trap be the result of GetMethod(handler, "getOwnPropertyDescriptor").
ReturnlfAbrupt(trap).
If trap is undefined, then
a. Return the result of calling the [[GetOwnProperty]] internal method of target with argument P.
Let trapResultObj be the result of calling the [[Call]] internal method of trap with handler as the this value
and a new List containing target and P.
ReturnIfAbrupt(trapResultObyj).
If Type(trapResultObj) is neither Object or Undefined, then throw a TypeError exception.
. Let targetDesc be the result of calling the [[GetOwnProperty]] internal method of target with argument P.
. ReturnIfAbrupt(targetDesc).
. If trapResultObj is undefined, then
If targetDesc is undefined, then return undefined.
If targetDesc.[[Configurable]] is false, then throw a TypeError exception.
Let extensibleTarget be-the result of IsExtensible(target).
ReturnlfAbrupt(extensibleTarget).
If ToBoolean(extensibleTarget) is false, then throw a TypeError exception.
f. Return undefined.
. Let extensibleTarget be the result of IsExtensible(target).
. ReturnIfAbrupt(extensibleTarget).
. Set extensibleTarget to ToBoolean(extensibleTarget),
. Let resultDesc be ToPropertyDescriptor(trapResultObj).
. ReturnIfAbrupt(resultDesc).
. Call CompletePropertyDescriptor(resultDesc, targetDesc).
. Letvalid be the result of IsCompatiblePropertyDescriptor (extensibleTarget, resultDesc, targetDesc).
. If valid is false, then throw a TypeError exception.
. If resultDesc.[[Configurable]] is false, then
a. If targetDesc is undefined or targetDesc.[[Configurable]] is true, then
i. Throw a TypeError exception.
. Return resultDesc.

PoooTe

NOTE [[GetOwnProperty]] for proxy objects enforces the following invariants:

© Ecma International 2013

e The result of [[GetOwnProperty]] must be either an Object or undefined.

* A property cannot be reported as non-existent, if it exists as a non-configurable own property of the target object.
e A property cannot be reported as non-existent, if it exists as an own property of the target object and the target

object is not extensible.

e A property cannot be reported as existent, if it does not exists as an own property of the target object and the

target object is not extensible.

e A property cannot be reported as non-configurable, if it does not exists as an own property of the target object or

if it exists as a configurable own property of the target object.

e The result of [[GetOwnProperty]] can be applied to the target object using [[DefineOwnPropery]] and will not

throw an exception.

93

Commented [AWB1230]: Note the result descriptor
defaults are set to the values in the targetDesc (if there is one)
rather than the normal defaults. This is a change from the wiki
spec.

Commented [AWB1231]: The resultDesc carries a
reference to the original descriptor returned by the trap. A
copy is not made and missing attribute properties are not
added to it.

This is a change from the wiki spec.

secmd

9.3.7 [[DefineOwnProperty]] (P, Desc)

When the [[DefineOwnProperty]] internal method of an exotic Proxy object O is called with property key P and
property descriptor Desc, the following steps are taken:

Assert: IsPropertyKey(P) is true.
Let handler be the value of the [[ProxyHandler]] internal data property of O.
Let target be the value of the [[ProxyTarget]] internal data property of O.
Let trap be the result of GetMethod(handler, "defineProperty").
ReturnlfAbrupt(trap).
If trap is undefined, then
a. Return the result of calling the [[DefineOwnProperty]] internal method of target with arguments P
and Desc.
7. Let descObj be FromPropertyDescriptor(Desc).
8. NOTE If Desc was originally generated from an object using ToPropertyDescriptor, then descObj will be that original
object.
9. Let trapResult be the result of calling the [[Call]] internal method of trap with handler as the this value and
a new List containing target, P, and descObj.
10. ReturnlfAbrupt(trapResult).
11. If ToBoolean(trapResult) is false, then return false.
12. Let targetDesc be the result of calling the [[GetOwnProperty]] internal method of target with argument P.
13. ReturnlfAbrupt(targetDesc).
14. Let extensibleTarget be the result of IsExtensible(target).
15. ReturnlfAbrupt(extensibleTarget).
16. Set extensibleTarget to ToBoolean(extensibleTarget),
17. If Desc has a [[Configurable]] field and if Desc.[[Configurable]] is false, then
a. Let settingConfigFalse be true.
18. Else let settingConfigFalse be false.
19. If targetDesc is undefined, then
a. IfextensibleTarget is false, then throw a TypeError exception.
b. If settingConfigFalse is true, then throw a TypeError exception.
20. Else targetDesc is not undefined,
a. If IsCompatiblePropertyDescriptor(extensibleTarget, Desc , targetDesc) is false, then throw a
TypeError exception.
b. If settingConfigFalse is true and targetDesc.[[Configurable]] is true, then throw a TypeError
exception.
21. Return true.

o wn e

NOTE [[DefineOwnProperty]] for proxy objects enforces the following invariants:
e A property cannot be added, if the target object is not extensible.
e Aproperty cannot be added as or modified to be non-configurable, if it does not exists as a non-configurable own
property of the target object.
e A property may not be non-configurable, if is corresponding configurable property of the target object exists.
« If a property has a corresponding target object property then apply the property descriptor of the property to the
target object using [[DefineOwnPropery]] will not throw an exception.

9.3.8 [[HasProperty]] (P)

When the [[HasProperty]] internal method of an exotic Proxy object O is called with property key P, the
following steps are taken:

1. Assert: IsPropertyKey(P) is true.
2. Let handler be the value of the [[ProxyHandler]] internal data property of O.
3. Lettarget be the value of the [[ProxyTarget]] internal data property of O.
4. Let trap be the result of GetMethod(handler, "has").
5. ReturnlfAbrupt(trap).
6. If trap is undefined, then
a. Return the result of calling the [[HasProperty]] internal method of target with argument P.
7. Let trapResult be the result of calling the [[Call]] internal method of trap with handler as the this value and

a new List containing target and P.
8. ReturnIfAbrupt(trapResult).

94 © Ecma International 2013

secma

9. Let success be ToBoolean(trapResult).
10. If success is false, then
a. LettargetDesc be the result of calling the [[GetOwnProperty]] internal method of target with
argument P.
b. ReturnlfAbrupt(targetDesc).
c. If targetDesc is not undefined, then
i. If targetDesc.[[Configurable]] is false, then throw a TypeError exception.
il Let extensibleTarget be the result of IsExtensible(target).
iii. ReturnlfAbrupt(extensibleTarget).
iv. If ToBoolean(extensibleTarget) is false, then throw a TypeError exception.
11. Return success.

NOTE [[HasProperty]] for proxy objects enforces the following invariants:
* A property cannot be reported as non-existent, if it exists as a non-configurable own property of the target object.
* A property cannot be reported as non-existent, if it exists as an own property of the target object and the target
object is not extensible.

9.3.9 [[Get]] (P, Receiver)

When the [[Get]] internal method of an exotic Proxy object O'is called with property key P and ECMAScript
language value Receiver the following steps are taken:

Assert: IsPropertyKey(P) is true.
Let handler be the value of the [[ProxyHandler]] internal data property of O.
Let target be the value of the [[ProxyTarget]] internal data property of O.
Let trap be the result of GetMethod(handler, “"get").
ReturnIfAbrupt(trap).
If trap is undefined, then
a. Return the result of calling the [[Get]] internal method of target with arguments P and Receiver.
7. Let trapResult be the result of calling the [[Call]] internal method of trap with handler as the this value and
a new List containing target, P,-and Receiver.
8. ReturnlfAbrupt(trapResult):
9. Let targetDesc be the result of calling the [[GetOwnProperty]] internal method of target with argument P.
10. ReturnlfAbrupt(targetDesc).
11. If targetDesc is not‘undefined, then
a. If IsDataDescriptor(targetDesc) and targetDesc.[[Configurable]] is false and
targetDesc.[[Writable]] s false, then
i. If SameValue(trapResult, targetDesc.[[Value]]) is false, then throw a TypeError
exception.
b.< If IsAccessorDescriptor(targetDesc) and targetDesc.[[Configurable]] is false and targetDesc.[[Get]]
is undefined, then
i If trapResult is not undefined, then throw a TypeError exception.
12. Return trapResult.

o0k wN R

NOTE [[Get]] for proxy objects enforces the following invariants:
e The value reported for a property must be the same as the value of the corresponding target object property if the
target object property is a non-writable, non-configurable data property.
e The value reported for a property must be undefined if the corresponding corresponding target object property is
non-configurable accessor property that has undefined as its [[Get]] attribute.

9.3.10 [[Set]] (P, V, Receiver)

When the [[Set]] internal method of an exotic Proxy object O is called with property key P, value V, and
ECMAScript language value Receiver, the following steps are taken:

Assert: IsPropertyKey(P) is true.

Let handler be the value of the [[ProxyHandler]] internal data property of O.
Let target be the value of the [[ProxyTarget]] internal data property of O.
Let trap be the result of GetMethod(handler, "set").

ReturnlfAbrupt(trap).

g wnNE

© Ecma International 2013 95

secma

6. Iftrap is undefined, then
a. Return the result of calling the [[Set]] internal method of target with arguments P, V, and Receiver.
7. Let trapResult be the result of calling the [[Call]] internal method of trap with handler as the this value and
a new List containing target, P, V, and Receiver.
8. ReturnIfAbrupt(trapResult).
9. If ToBoolean(trapResult) is false, then return false.
10. Let targetDesc be the result of calling the [[GetOwnProperty]] internal method of target with argument P.
11. ReturnlfAbrupt(targetDesc).
12. If targetDesc is not undefined, then
a. If IsDataDescriptor(targetDesc) and targetDesc.[[Configurable]] is false and
targetDesc.[[Writable]] is false, then
i. If SameValue(V, targetDesc.[[Value]]) is false, then throw a TypeError exception.
b. If IsAccessorDescriptor(targetDesc) and targetDesc.[[Configurable]].is false, then
i If targetDesc.[[Set]] is undefined, then throw a TypeError exception.
13. Return true.

NOTE [[Set]] for proxy objects enforces the following invariants:
e Cannnot change the value of a property to be different from the value of the corresponding target object property
if the corresponding target object property is a non-writable, non-configurable data property.
e Cannot set the value of a property if the corresponding corresponding target object property is a non-configurable
accessor property that has undefined as its [[Set]] attribute.

9.3.11 [[Invoke]] (P, ArgumentsList, Receiver)

When the [[Invoke]] internal method of an exotic Proxy object O is called with property key P, List
ArgumentsList, and ECMAScript language value Receiver the following steps are taken:

1. Assert: IsPropertyKey(P) is true..
2. Let handler be the value of the [[ProxyHandler]] internal dataproperty of O.
3. Let target be the value of the [[ProxyTarget]] internal data property.of O.
4. Let trap be the result of GetMethod(handler, "invoke").
5. ReturnIfAbrupt(trap).
6. If trap is undefined, then
a. Return the result of calling the [[Invoke]] internal method of target with arguments P,
Argumentskist, and Receiver.
7. LetargArray be the result of CreateArrayFromList(ArgumentsList).

8. Return the result of calling the [[Call]] internal method of trap with handler as the this value and a new List
containing target, P, argArray, and Receiver.

NOTE There are no invariants enforced for [[Invoke]].
9.3.12 [[Delete]] (P)

When the [[Delete]] internal method of an exotic Proxy object O is called with property name P the following
steps are taken:

Assert: IsPropertyKey(P) is true.
Let handler be the value of the [[ProxyHandler]] internal data property of O.
Let target be the value of the [[ProxyTarget]] internal data property of O.
Let trap be the result of GetMethod(handler, "deleteProperty").
ReturnIfAbrupt(trap).
If trap is undefined, then
a. Return the result of calling the [[Delete]] internal method of target with argument P.
Let trapResult be the result of calling the [[Call]] internal method of trap with handler as the this value and
a new List containing target and P.
8. ReturnlfAbrupt(trapResult).
9. If ToBoolean(trapResult) is false, then return false.
10. Let targetDesc be the result of calling the [[GetOwnProperty]] internal method of target with argument P.
11. ReturnlfAbrupt(targetDesc).
12. If targetDesc is undefined, then return true.

o rwNE

~

96 © Ecma International 2013

»eCnd

13. If targetDesc.[[Configurable]] is false, then throw a TypeError exception.
14. Return true.

NOTE [[Delete]] for proxy objects enforces the following invariant:
* A property cannot be deleted, if it exists as a non-configurable own property of the target object.

9.3.13 [[Enumerate]] ()
When the [[Enumerate]] internal method of an exotic Proxy object O is called the following steps are taken:

Let handler be the value of the [[ProxyHandler]] internal data property of O.
Let target be the value of the [[ProxyTarget]] internal data property of O.
Let trap be the result of GetMethod(handler, "enumerate").
ReturnlfAbrupt(trap).
If trap is undefined, then
a. Return the result of calling the [[Enumerate]] internal method of target.
6. Let trapResult be the result of calling the [[Call]] internal method of trap with handler as the this value and
a new List containing target.
7. ReturnlfAbrupt(trapResult).
8. If Type(trapResult) is not Object, then throw a TypeError exception.
TODO: we may need to add a lot of additional invariant checking here according to the wiki spec. But maybe it
really isn’t necessary. Tomvc response: | think it may be possible to waive the extra invariant checks for
[[Enumerate]]. It's not a crucial primitive. My reasoning is that [[Enumerate]] deals with both own and inherited
properties, and we don't really enforce any invariants on inherited properties. So | guess it's ok if the invariants
for [[Enumerate]] are weakened.
Do note that this is a bit inconsistent with the way we treat internal methods like [[HasProperty]], [[GetP]] and
[[SetP]]: these also deal with own and inherited properties, but still enforce invariants on own properties.
9. Return trapResult.

aswnE

NOTE [[Enumerate]] for proxy objects enforces the following invariants:
e The result of [[Enumerate]] must be an Object.

9.3.14 [[OwnPropertyKeys]]()

When the [[OwnPropertyKeys]] internal method of an exotic Proxy object O is called the following steps are
taken:

1. Let handler be the value of the [[ProxyHandler]] internal data property of O.
2. Let target be the value of the [[ProxyTarget]] internal data property of O.
3. Let trapbe the result.of GetMethod(handler, "ownKeys").
4. ReturnlfAbrupt(trap).
5. If trap is undefined, then
a. Return the result of calling the [[OwnPropertyKeys]] internal method of target.
6. LettrapResult be the result of calling the [[Call]] internal method of trap with handler as the this value and

a new List containing target.

7. ReturnIfAbrupt(trapResult).

8. If Type(trapResult) is not Object, then throw a TypeError exception.

9. TODO: we may need to add a lot of additional invariant checking here according to the wiki spec. But
maybe it really isn’t necessary

10. Return trapResult.

NOTE [[OwnPropertyKeys]] for proxy objects enforces the following invariants:
e The result of [[OwnPropertyKeys]] must be an Object.

9.3.15 [[Call]] (thisArgument, argumentsList)

The [[Call]] internal method of an exotic Proxy object O is called with parameters thisArgument and
argumentsList, a List of ECMAScript language values. The following steps are taken:

1. Let handler be the value of the [[ProxyHandler]] internal data property of O.
2. Let target be the value of the [[ProxyTarget]] internal data property of O.

© Ecma International 2013 97

Commented [AWB1232]: TODO.

Commented [AWB1233]: TODO

Y,

secmd

w

Let trap be the result of GetMethod(handler, "apply").
4. ReturnlfAbrupt(trap).
If trap is undefined, then
a. Return the result of calling the [[Call]] internal method of target with arguments thisArgument and
argumentsList.
6. LetargArray be the result of CreateArrayFromList(argumentsList).
7. Return the result of calling the [[Call]] internal method of trap with handler as the this value and a new List
containing target, thisArgument, and argArray.

o

NOTE |A Proxy exotic object only has a [[Call]] internal method if the initial value of its [[ProxyTarget]] internal data
property is an object that has a [[Call]] internal method.|

C ed [AWB1834]: TODO Make sure this is

9.3.16 [[Construct]] Internal Method

The [[Construct]] internal method of an exotic Proxy object O is called with a single parameter argumentsList
which is a possibly empty List of ECMAScript language values. The following steps are taken:

Let handler be the value of the [[ProxyHandler]] internal data property of O.
Let target be the value of the [[ProxyTarget]] internal data property of O.
Let trap be the result of GetMethod(handler, "construct”).
ReturnlfAbrupt(trap).
If trap is undefined, then
a. Return the result of calling the [[Construct]] internal method of target with argument argumentsList.
Let argArray be the result of Create ArrayFromList(argumentsList).
Let newObj be the result of calling trap with handler as the this value and a new List containing target and
argArray.
8. ReturnIfAbrupt(newObj).
9. If Type(newObj) is not Object, then throw a TypeError exception.
10. Return newObj.

arwpE

No

NOTE1 A Proxy exotic object only has. a [[Construct]] internal method if the initial value of its [[ProxyTarget]] internal
data property is an object that has a [[Construct]] internal method.

NOTE 2 [[Construct]]] forproxy objects enforces the following invariants:
e The result of [[Construct]] must be an Object.

10 ECMAScript Language:Source Code

Syntax

SourceCharacter ::
any Unicode character

The ECMAScript code is expressed using Unicode, version 5.1 or later. ECMAScript source text is a
sequence of Unicode characters. The phrase “Unicode character” refers to the abstract linguistic or
typographical unit. represented by a single Unicode scalar value. The actual encodings used to store and
interchange ECMAScript source text is not relevant to this specification. Any well-defined encoding such as
UTF-32 or UTF-16 may be used. Source text might even be externally represented using a non-Unicode
character encoding. Regardless of the external source text encoding, a conforming ECMAScript
implementation processes the source text as if it was an equivalent sequence of SourceCharacter values. Each
SourceCharacter being an abstract Unicode character with a corresponding Unicode scalar value. Conforming
ECMAScript implementations are not required to perform any normalisation of text, or behave as though they
were performing normalisation of text.

The phrase “code point” refers to such an Unicode scalar value. “Unicode character” only refers to entities
represented by single Unicode scalar values: the components of a combining character sequence are still
individual “Unicode characters,” even though an user might think of the whole sequence as a single character.

In string literals, regular expression literals,template literals and identifiers, any Unicode characters may also
be expressed as an Unicode escape sequence that explicitly express a code point’s numeric value. Within a

98 © Ecma International 2013

implemented when instantiating a Proxy.

secma

comment, such an escape sequence is effectively ignored as part of the comment. Within other contexts, such
an escape sequence contextually contributes one Unicode character.

NOTE ECMAScript differs from the Java programming language in the behaviour of Unicode escape sequences. In a
Java program, if the Unicode escape sequence \u000A, for example, occurs within a single-line comment, it is interpreted
as a line terminator (Unicode character 000A is line feed) and therefore the next Unicode character is not part of the
comment. Similarly, if the Unicode escape sequence \u000A occurs within a string literal in a Java program, it is likewise
interpreted as a line terminator, which is not allowed within a string literal—one must write \n instead of \u000A to cause
a line feed to be part of the string value of a string literal. In an ECMAScript program, an Unicode escape sequence
occurring within a comment is never interpreted and therefore cannot contribute to termination of the comment. Similarly,
an Unicode escape sequence occurring within a string literal in an ECMAScript program always contributes an Unicode
character to the literal and is never interpreted as a line terminator or as a quote mark that might terminate the string literal.

ECMAScript String values (6.1.4) are computational sequences of 16-bit integer values called “code units”.
ECMAScript language constructs that generate string values from SourceCharacter sequences use UTF-16
encoding to generate the code unit values.

10.1 Static Semantics: UTF-16 Encoding
The UTF-16 Encoding of a numeric code point value, cp, is determined as follows:

Assert: 0 < cp < Ox10FFFF

If cp < 65535, then return cp.

Let cul be floor((cp — 65536) / 1024) + 55296. NOTE 55296 is 0xD800.
Let cu2 be ((cp — 65536) modulo 1024) + 56320. NOTE 56320 is 0xDCO0O.
Return the code unit sequence consisting of cul followed by cu2.

arwn e

10.2 Types of Executable Code
There are four types of ECMAScript code:

e Global code is source text that is treated as an ECMAScript Script. The global code of a particular
Script does not include any source text that is parsed as part of a FunctionBody, GeneratorBody,
ConciseBody, ClassBody, or ModuleBody.

e Eval code is the source text supplied to-the built-in eval function. More precisely, if the parameter
to the built-in eval function.is a String, it is treated as an ECMAScript Script. The eval code for a
particular invocation of eval is the global code portion of that Script.

e Function code is source text that.is parsed to supply the value of the [[Code]] internal data property
(see 9.1.16) of function and generator objects. The function code of a particular function or
generator does not include any source text that is parsed as the function code of a nested
FunctionBody, GeneratorBody, ConciseBody, or ClassBody.

e Module code is source text that is code that is provided as a ModuleBody. It is the code that is
directly evaluated when a module is initialised. The module code of a particular module does not
include any source text that is parsed as part of a nested FunctionBody, GeneratorBody, ConciseBody,
ClassBody, or ModuleBody.

NOTE Function code is generally provided as the bodies of Function Definitions (0), Arrow Function Definitions (14.2),
Method Definitions (14.3) and Generator Definitions (14.4). Function code is also derived from the last argument to the
Function constructor (19.2.1.1) and the GeneratorFunction constructor (25.3.1.1).

10.2.1 Strict Mode Code
An ECMAScript Script syntactic unit may be processed using either unrestricted or strict mode syntax and
semantics. When processed using strict mode the four types of ECMAScript code are referred to as module

code, strict global code, strict eval code, and strict function code. Code is interpreted as strict mode code in
the following situations:

© Ecma International 2013 99

secma

e Global code is strict global code if it begins with a Directive Prologue that contains an Use Strict Directive
(see 15.3).

e Module code is always strict code.
e A ClassDeclaration or a ClassExpression is always strict code.

e Eval code is strict eval code if it begins with a Directive Prologue that contains an Use Strict Directive or if
the call to eval is a direct call (see 18.2.1.1) to the eval function that is contained in strict mode code.

e Function code that is part of a FunctionDeclaration, FunctionExpression, or accessor PropertyDefinition is
strict function code if its FunctionDeclaration, FunctionExpression, or PropertyDefinition is contained in strict
mode code or if the function code begins with a Directive Prologue that contains an Use Strict Directive.

e Function code that is supplied as the last argument to the built-in Function constructor is strict function
code if the last argument is a String that when processed as a FunctionBody begins with a Directive
Prologue that contains an Use Strict Directive.

10.2.2 Non-ECMAScript Functions

An ECMAScript implementation may support the evaluation of function objects whose evaluative behaviour is
expressed in some implementation defined form of executable code other than via ECMAScript code.
Whether a function object is an ECMAScript code function or a non<ECMAScript function is not semantically
observable from the perspective of an ECMAScript code function that calls or is called by such a non-
ECMAScript function.

11 ECMAScript Language: Lexical Grammar

The source text of an ECMAScript script is first converted into a sequence of input elements, which are tokens,
line terminators, comments, or white-space. The source text is scanned from left to right, repeatedly taking the
longest possible sequence of characters as the next input element.

There are several situations where the identification of lexical input elements is sensitive to the syntactic
grammar context thatds consuming the input elements. This requires multiple goal symbols for the lexical
grammar. The InputElementDiv goal symbol is the default goal symbol and is used in those syntactic grammar
contexts where a leading division (/) or division-assignment (/=) operator is permitted. The
InputElementRegExp. goal symbol is used in all syntactic grammar contexts where a RegularExpressionLiteral is
permitted. The InputElementTemplateTail goal is used in syntactic grammar contexts where a TemplateLiteral
logically continues after a substitution element.

NOTE| There are no syntactic grammar contexts where both a leading division or division-assignment, and a leading
RegularExpressionLiteral are permitted. This is not affected by semicolon insertion (see 11.9); in examples such as the
following:

a=>b
/hi/g.exec(c) .map (d) ;

where the first non-whitespace, non-comment character after a LineTerminator is slash (/) and the syntactic context allows
division or division-assignment, no semicolon is inserted at the LineTerminator. That is, the above example is interpreted in
the same way as:

a=b / hi / g.exec(c).map(d);

100 © Ecma International 2013

Commented [AWB1735]: See
https://github.com/rwidrn/tc39-notes/blob/master/es6/2013-
07/july-25.md#consensusresolution

Commented [AWB936]: May need to also say something
about TemplateSubstitution tail. Also need to consider with
there are any ASl issues concerning it.

https://github.com/rwldrn/tc39-notes/blob/master/es6/2013-07/july-25.md#consensusresolution
https://github.com/rwldrn/tc39-notes/blob/master/es6/2013-07/july-25.md#consensusresolution

oechd

Syntax

InputElementDiv ::
WhiteSpace
LineTerminator
Comment
Token
DivPunctuator
RightBracePunctuator

InputElementRegEXxp ::
WhiteSpace
LineTerminator
Comment
Token
RightBracePunctuator
RegularExpressionLiteral

InputElementTemplateTail ::
WhiteSpace
LineTerminator
Comment
Token
DivPunctuator
TemplateSubstitutionTail

11.1 Unicode Format-Control Characters

The Unicode format-control characters (i.e., the characters in category “Cf’ in the Unicode Character
Database such as LEFT-TO-RIGHT MARK or RIGHT-TO-LEFT MARK) are control codes used to control the
formatting of a range of text in the absence of higher-level protocols for this (such as mark-up languages).

It is useful to allow format-control characters in source text to facilitate editing and display. All format control
characters may be used within comments, and within string literals, template literals, and regular expression
literals.

<ZWNJ> and <ZWJ> are format-control characters that are used to make necessary distinctions when forming
words or phrases in certain languages. In ECMAScript source text, <ZWNJ> and <ZWJ> may also be used in
an identifier after the first character.

<BOM> is a format-control character used primarily at the start of a text to mark it as Unicode and to allow
detection of the text's encoding and byte order. <BOM> characters intended for this purpose can sometimes
also appear after the start of a text, for example as a result of concatenating files. <BOM> characters are
treated as white space characters (see 11.2).

The special treatment of certain format-control characters outside of comments, string literals, and regular
expression literals is summarised in Table 27.

Table 27 — Format-Control Character Usage

Code Point Name Formal Name Usage
U+200C Zero width non-joiner <ZWNJ> IdentifierPart
U+200D Zero width joiner <ZWJ> IdentifierPart
U+FEFF Byte Order Mark <BOM> Whitespace

© Ecma International 2013 101

secmd

11.2 White Space

White space characters are used to improve source text readability and to separate tokens (indivisible lexical
units) from each other, but are otherwise insignificant. White space characters may occur between any two
tokens and at the start or end of input. White space characters may occur within a StringLiteral, a
RegularExpressionLiteral, a Template, or a TemplateSubstitutionTail where they are considered significant
characters forming part of a literal value. They may also occur within a Comment, but cannot appear within any
other kind of token.

The ECMAScript white space characters are listed in Table 28.
Table 28 — Whitespace Characters

Code Point Name Formal Name
U+0009 Tab <TAB>
U+000B Vertical Tab <VT>
U+000C Form Feed <FF>
U+0020 Space <SP>
U+00A0 No-break space <NBSP>
U+FEFF Byte Order Mark <BOM>
Other category “Zs” Any other Unicode <USP>
“space separator”

ECMAScript implementations must recognise all of the white space characters defined in Unicode 5.1. Later
editions of the Unicode Standard may define‘other white space characters. ECMAScript implementations may
recognise white space characters from later editions of the Unicode Standard.

Syntax

WhiteSpace ::
<TAB>
<VT>
<FF>
<SpP>
<NBSP>
<BOM>
<UsP>

11.3 [Line Terminators|

Like‘white space characters, line terminator characters are used to improve source text readability and to
separate tokens (indivisible lexical units) from each other. However, unlike white space characters, line
terminators have some influence over the behaviour of the syntactic grammar. In general, line terminators
may occur between any two tokens, but there are a few places where they are forbidden by the syntactic
grammar. Line terminators also affect the process of automatic semicolon insertion (11.9). A line terminator
cannot occur within any token except a StringLiteral, Template, or TemplateSubstitutionTail. Line terminators may
only occur within a StringLiteral token as part of a LineContinuation.

A line terminator can occur within a MultiLineComment (11.4) but cannot occur within a SingleLineComment.

Line terminators are included in the set of white space characters that are matched by the \s class in regular
expressions.

The ECMAScript line terminator characters are listed in Table 29.

102 © Ecma International 2013

Commented [AWB937]: Need to talk about line terminators
in Templates

pecma

Table 29 — Line Terminator Characters

Code Point Name Formal Name
U+000A Line Feed <LF>
U+000D Carriage Return <CR>
U+2028 Line separator <LS>
U+2029 Paragraph separator <PS>

Only the Unicode characters in Table 29 are treated as line terminators. Other new line or line breaking
Unicode characters are treated as white space but not as line terminators. The sequence <CR><LF> is
commonly used as a line terminator. It should be considered a single SourceCharacter for the purpose of
reporting line numbers.

Syntax

LineTerminator ::
<LF>
<CR>
<LS>
<pPS>

LineTerminatorSequence ::
<LF>
<CR> [lookahead ¢ <LF>]
<LS>
<pPS>
<CR><LF>

11.4 Comments
Comments can be either single or multi-line. Multi-line comments cannot nest.

Because a single-line comment can contain any Unicode character except a LineTerminator character, and
because of the general rulée that a token is always as long as possible, a single-line comment always consists
of all characters from the // marker to the end of the line. However, the LineTerminator at the end of the line is
not considered to be part of the single-line.comment; it'is recognised separately by the lexical grammar and
becomes part of the stream of input elements for the syntactic grammar. This point is very important, because
it implies that the presence or absence of single-line comments does not affect the process of automatic
semicolon insertion (see 11.9).

Comments behave like white space and are discarded except that, if a MultiLineComment contains a line
terminator character, then the entire comment is considered to be a LineTerminator for purposes of parsing by
the syntactic grammar.

Syntax

Comment ::
MultiLineComment
SingleLineComment

MultiLineComment ::
/* MultiLineCommentCharsop: */

MultiLineCommentChars ::
MultiLineNotAsteriskChar MultiLineCommentCharsopt
* PostAsteriskCommentCharsept

PostAsteriskCommentChars ::

MultiLineNotForwardSlashOrAsteriskChar MultiLineCommentCharsopt
* PostAsteriskCommentCharsept

© Ecma International 2013 103

secmd

MultiLineNotAsteriskChar ::
SourceCharacter but not *

MultiLineNotForwardSlashOrAsteriskChar ::
SourceCharacter but not one of / or *

SingleLineComment ::
// SingleLineCommentCharsopt

SingleLineCommentChars ::
SingleLineCommentChar SingleLineCommentCharsopt

SingleLineCommentChar ::
SourceCharacter but not LineTerminator

11.5 Tokens

Syntax

Token ::
IdentifierName
Punctuator
NumericLiteral
StringLiteral
Template

NOTE The DivPunctuator, RegularExpressionLiteral, RightBracePunctuator, and TemplateSubstitutionTail productions
define tokens, but are not included in the Token production.

11.6 Names and Keywords

IdentifierName, Identifier, and‘ReservedWord are tokens that are interpreted according to the Default Identifier
Syntax given in Unicode Standard Annex #31, Identifier and Pattern Syntax, with some small modifications.
ReservedWord is is an-enumerated subset of IdentifierName and Identifier is an IdentifierName that is not a
ReservedWord (see 11.6.2). The Unicode identifier grammar is based on character properties specified by the
Unicode Standard. The Unicode characters in the specified categories in version 5.1.0 of the Unicode
standard must be treated as in those categories by all conforming ECMAScript implementations. ECMAScript
implementations may recognise identifier characters defined in later editions of the Unicode Standard.

NOTE 1.« This standard specifies specific character additions: The dollar sign (U+0024) and the underscore (U+005f)
are permitted anywhere in an IdentifierName, and the characters zero width non-joiner (U+200C) and zero width joiner
(U+200D) are permitted anywhere after the first character of an IdentifierName.

Unicode escape sequences are permitted in an ldentifierName, where they contribute a single Unicode
character to the IdentifierName. The code point of the contributed character is expressed by the HexDigits of
the UnicodeEscapeSequence (see 11.8.4). The \ preceding the UnicodeEscapeSequence and the u and { }
characters, if they appear, do not contribute characters to the IdentifierName. An UnicodeEscapeSequence cannot
be used to put a character into an IdentifierName that would otherwise be illegal. In other words, if a
\ UnicodeEscapeSequence sequence were replaced by the Unicode character it constributes, the result must
still be a valid IdentifierName that has the exact same sequence of characters as the original IdentifierName. All
interpretations of IdentifierName within this specification are based upon their actual characters regardless of
whether or not an escape sequence was used to contribute any particular characters.

Two IdentifierName that are canonically equivalent according to the Unicode standard are not equal unless

they are represented by the exact same sequence of code units (in other words, conforming ECMAScript
implementations are only required to do bitwise comparison on IdentifierName values).

104 © Ecma International 2013

secma

Syntax
Identifier ::
IdentifierName but not ReservedWord

IdentifierName ::
IdentifierStart
IdentifierName IdentifierPart

IdentifierStart ::
Unicodel DStart
$

\ UnicodeEscapeSequence

IdentifierPart ::
Unicodel DContinue
$

\ UnicodeEscapeSequence
<ZWNJ>
<ZWJ>

UnicodelDStart ::
any Unicode character with the Unicode property “ID_Start”.

UnicodelDContinue ::
any Unicode character with the Unicode property “ID_Continue”

The definitions of the nonterminal UnicodeEscapeSequence is given in-11.8.4.
11.6.1 Identifiers and Identifier Names
11.6.1.1 Static Semantics: StringValue
Identifier :: IdentifierName but not ReservedWord
1. Return the StringValue of IdentifierName.
IdentifierName ::
IdentifierStart
IdentifierName IdentifierPart
1. Return the String value consisting of the sequence of code units corresponding to IdentifierName. In
determining the sequence any occurrences of \ UnicodeEscapeSequence are first replaced with the code
point represented by the UnicodeEscapeSequence and then the code points of the entire IdentifierName are
converted to code units by UTF-16 Encoding (clause 10) each code point.
11.6.2 Reserved Words

A reserved word is an IdentifierName that cannot be used as an Identifier.

Syntax

ReservedWord ::
Keyword
FutureReservedWord
NullLiteral
BooleanLiteral

© Ecma International 2013 105

secmd

The ReservedWord definitions are specified as literal sequences of Unicode characters. However, any Unicode
character in a ReservedWord can also be expressed by a \ UnicodeEscapeSequence that expresses that same
Unicode character’'s code point. Use of such escape sequences does not change the meaning of the
ReservedWord.

11.6.2.1 Keywords

The following tokens are ECMAScript keywords and may not be used as ldentifiers in ECMAScript programs.

Syntax

Keyword :: one of
break do instanceof typeof
case else let var
catch export new void
class finally return while
const for super with
continue function switch yield
debugger if this
default import throw
delete in try

NOTE In some contexts yield is given the semantics of an Identifier. See 12.1.2, 12.13, 13.2.1

11.6.2.2 Future Reserved Words

The following words are used as keywords in proposed extensions and are therefore reserved to allow for the
possibility of future adoption of those extensions.
Syntax

FutureReservedWord :: one of
enum extends|

C ed [AWB838]: It isn't clear that extends actually

The following tokens are also considered to be FutureReservedWords when they occur within strict mode code
(see 10.2.1). The occurrence of any of these tokens within strict mode code in any context where the
occurrence of a FutureReservedWord would produce an error must also produce an equivalent error:

implements package protected static

interface private public

106 © Ecma International 2013

needs to be reserved. It's only usage is highly contextual.

secma

11.7 Punctuators

Syntax
Punctuator :: one of
{ () [
; , <
>= == = ===
+ - * %
<< >> >>> &
! ~ &&]
= += -= *=
>>= >>>= &= 1=
DivPunctuator :: one of
/=
RightBracePunctuator ::
}
11.8 Literals

11.8.1 Null Literals

Syntax

NullLiteral ::
null

11.8.2 Boolean Literals

Syntax

BooleanLiteral ::
true
false

11.8.3 Numeric Literals

Syntax

C ed [AWB739]: From March 29 meeting notes:

NumericLiteral ::
DecimalLiteral
BinarylntegerLiteral
OctallntegerLiteral
HexIntegerLiteral

DecimalLiteral ::
DecimalintegerLiteral . DecimalDigitsop: ExponentPartop
. DecimalDigits ExponentPartopt
DecimallintegerLiteral ExponentPartop:

DecimallintegerLiteral ::
0

NonZeroDigit DecimalDigitsopt
DecimalDigits ::

DecimalDigit
DecimalDigits DecimalDigit

© Ecma International 2013

107

Hex floating point literals:

Waldemar: Other languages include these things. They're
rarely used

but when you want one, you really want one. Use cases are
similar to

that of hex literals.

Will explore adding them.

MarkM: 0x3.p1 currently evaluates to undefined. This would
be a

breaking change.

Waldemar: Not clear anyone would notice. How did other
languages

deal with this?

secmd

DecimalDigit :: one of C ed [AWB740]: The various Digit productions
0 1 2 3 4 5 6 7 8 9 could be refactored to have less redundency

NonZeroDigit :: one of
1 2 3 4 5 6 7 8 9

ExponentPart ::
Exponentindicator Signedinteger

Exponentlndicator :: one of
e E

SignedInteger ::
DecimalDigits
+ DecimalDigits
- DecimalDigits

BinarylIntegerLiteral ::
Ob BinaryDigits
OB BinaryDigits

BinaryDigits ::
BinaryDigit
BinaryDigits BinaryDigit

BinaryDigit :: one of
01

OctallntegerLiteral ::
0o OctalDigits
00 OctalDigits

OctalDigits ::
OctalDigit
OctalDigits OctalDigit

OctalDigit :: one of
0123 4 567

HexIntegerLiteral ::
0x HexDigits
0X HexDigits

HexDigits ::
HexDigit
HexDigits HexDigit

HexDigit :: one of
0 1 2 3 4 5 6 7 8 9 a b c d e £ A B C D E F

The SourceCharacter immediately following a NumericLiteral must not be an IdentifierStart or DecimalDigit.
NOTE For example:

3in
is an error and not the two input elements 3 and in.

A conforming implementation, when processing strict mode code (see 10.1.1), must not extend the syntax of
NumericLiteral to include LegacyOctallntegerLiteral as described in B.1.1.

108 © Ecma International 2013

pecma

11.8.3.1 Static Semantics: MV’s

A numeric literal stands for a value of the Number type. This value is determined in two steps: first, a
mathematical value (MV) is derived from the literal; second, this mathematical value is rounded as described
below.

. The MV of NumericLiteral ::
. The MV of NumericLiteral ::

DecimalLiteral is the MV of DecimalLiteral.

BinarylIntegerLiteral is the MV of BinaryIntegerLiteral.

e The MV of NumericLiteral :: OctallntegerLiteral is the MV of OctalintegerLiteral.

e The MV of NumericLiteral :: HexIntegerLiteral is the MV of HexIntegerLiteral.

e The MV of DecimalLiteral :: DecimallntegerLiteral . is the MV of DecimallntegerLiteral.

e The MV of DecimallLiteral :: DecimallntegerLiteral . DecimalDigits is the MV of DecimallntegerLiteral plus
(the MV of DecimalDigits x 10™"), where n is the number of characters in DecimalDigits.

e The MV of DecimalLiteral :: DecimalintegerLiteral . ExponentPart is the MV of DecimalintegerLiteral x 10°,
where e is the MV of ExponentPart.

e The MV of DecimalLiteral DecimalintegerLiteral DecimalDigits ExponentPart is (the MV of
DecimalintegerLiteral plus (the MV of DecimalDigits x 10™")) x<10°%, where n is the number of characters in
DecimalDigits and e is the MV of ExponentPart.

e The MV of DecimalLiteral ::. DecimalDigits is the MV _of DecimalDigits x 10", where n is the number of
characters in DecimalDigits.

e The MV of DecimalLiteral :: . DecimalDigits ExponentPart is.the MV.of DecimalDigits x 10°", where n is the
number of characters in DecimalDigits and e is the MV of ExponentPart.

e The MV of DecimallLiteral :: DecimallntegerLiteral is the MV of DecimallntegerLiteral.

e The MV of DecimalLiteral :: DecimalintegerLiteral ExponentPart is the MV of DecimalintegerLiteral x 10°,
where e is the MV of ExponentPart.

e The MV of DecimallntegerLiteral :: 0 is 0.

e The MV of DecimallntegerLiteral :: NonZeroDigit is the MV of NonZeroDigit.

e The MV of DecimalintegerLiteral :: NonZeroDigit DecimalDigits is (the MV of NonZeroDigit x 10") plus the
MV of DecimalDigits, where n is the number of characters in DecimalDigits.

e The MV of DecimalDigits :: DecimalDigit is the MV of DecimalDigit.

e The MV of DecimalDigits :: DecimalDigits DecimalDigit is (the MV of DecimalDigits x 10) plus the MV of
DecimalDigit.

e The MV of ExponentPart.::

e The MV of Signedinteger ::

e The MV of SignedInteger ::

e The MV of Signedinteger ::

e The MV of DecimalDigit ::

Exponentindicator SignedInteger is the MV of SignedInteger.
DecimalDigits is the MV of DecimalDigits.

+ DecimalDigits is the MV of DecimalDigits.

- DecimalDigits is the negative of the MV of DecimalDigits.

0 or of HexDigit :: 0 or of OctalDigit :: 0 or of BinaryDigit:: 0 is 0.

The MV of DecimalDigit:: 1 or of NonZeroDigit :: 1 or of HexDigit :: 1 or of OctalDigit :: 1 or
of BinaryDigit:: 1 is 1.

The MV of DecimalDigit ::/2 or of NonZeroDigit :: 2 or of HexDigit :: 2 or of OctalDigit :: 2 is 2.
The MV of DecimalDigit :: 3 or of NonZeroDigit :: 3 or of HexDigit :: 3 or of OctalDigit :: 3 is 3.
The MV of DecimalDigit :: 4 or of NonZeroDigit :: 4 or of HexDigit :: 4 or of OctalDigit :: 4 is 4.
The MV of DecimalDigit :: 5 or of NonZeroDigit :: 5 or of HexDigit :: 5 or of OctalDigit:: 5 is 5.
The MV of DecimalDigit :: 6 or of NonZeroDigit :: 6 or of HexDigit :: 6 or of OctalDigit :: 6 is 6.
The MV of DecimalDigit :: 7 or of NonZeroDigit :: 7 or of HexDigit :: 7 or of OctalDigit :: 7 is 7.
The MV of DecimalDigit :: 8 or of NonZeroDigit :: 8 or of HexDigit :: 8 is 8.

The MV of DecimalDigit :: 9 or of NonZeroDigit :: 9 or of HexDigit:: 9is 9.

The MV of HexDigit ::
The MV of HexDigit ::
The MV of HexDigit ::
The MV of HexDigit ::
The MV of HexDigit ::

© Ecma International 2013

a or of HexDigit ::
b or of HexDigit ::
c or of HexDigit ::
d or of HexDigit ::
e or of HexDigit ::

Ais 10.
Bis 11.
Cis 12.
Dis 13.
Eis 14.

109

secmd

e The MV of HexDigit :: £ or of HexDigit :: Fis 15.

e The MV of BinaryintegerLiteral :: 0b BinaryDigits is the MV of BinaryDigits.

e The MV of BinaryIntegerLiteral :: 0B BinaryDigits is the MV of BinaryDigits.

e The MV of BinaryDigits :: BinaryDigit is the MV of BinaryDigit.

e The MV of BinaryDigits :: BinaryDigits BinaryDigit is (the MV of BinaryDigits x 2) plus the MV of
BinaryDigit.

e The MV of OctallntegerLiteral :: 0o OctalDigits is the MV of OctalDigits.

e The MV of OctallntegerLiteral :: 00 OctalDigits is the MV of OctalDigits.

e The MV of OctalDigits :: OctalDigit is the MV of OctalDigit.

e The MV of OctalDigits :: OctalDigits OctalDigit is (the MV of OctalDigits x 8) plus.the MV of OctalDigit.

e The MV of HexIntegerLiteral :: 0x HexDigits is the MV of HexDigits.

e The MV of HexIntegerLiteral :: 0X HexDigits is the MV of HexDigits.

e The MV of HexDigits :: HexDigit is the MV of HexDigit.

e The MV of HexDigits :: HexDigits HexDigit is (the MV of HexDigits x.16) plus the MV of HexDigit.

Once the exact MV for a numeric literal has been determined, it is.then rounded to a value of the Number type.
If the MV is 0, then the rounded value is +0; otherwise, the rounded value must be the Number value for the
MV (as specified in 6.1.5), unless the literal is a DecimalLiteral and the literal has more than 20 significant
digits, in which case the Number value may be either the Number value for the MV of a literal produced by
replacing each significant digit after the 20th with a 0 digit or the Number value for the MV of a literal produced
by replacing each significant digit after the 20th with a 0 digit-and then incrementing the literal at the 20th
significant digit position. A digit is significant if it is not part of an ExponentPart and

. itis not 0; or
e thereis a nonzero digit to its left and there is a nonzero digit, not in the ExponentPart, to its right.

11.8.4 String Literals

NOTE A string literal is zero or-more Unicode code points enclosed in single or double quotes. Unicode code points
may also be represented by an‘escape sequence. All characters may appear literally in a string literal except for the
closing quote character, backslash, carriage return, line separator, paragraph separator, and line feed. Any character may
appear in the form of an escape sequence. String literals evaluate to ECAMScript String values. When generating these
string values Unicode code points are UTF-16 encoded as defined in clause 6. Code points belonging to Basic Multilingual
Plane are encoded as a single code unit element of the string. All other code points are encoded as two code unit
elements of the string.

Syntax

StringLiteral ::
" DoubleStringCharactersop: "
' SingleStringCharactersopt '

DoubleStringCharacters ::
DoubleStringCharacter DoubleStringCharactersopt

SingleStringCharacters ::
SingleStringCharacter SingleStringCharactersopt

DoubleStringCharacter ::
SourceCharacter but not one of " or \ or LineTerminator
\ EscapeSequence
LineContinuation

SingleStringCharacter ::
SourceCharacter but not one of ' or \ or LineTerminator
\ EscapeSequence
LineContinuation

110 © Ecma International 2013

pecma

LineContinuation ::
\ LineTerminatorSequence

EscapeSequence ::
CharacterEscapeSequence
0 [lookahead ¢ DecimalDigit]
HexEscapeSequence
UnicodeEscapeSequence

A conforming implementation, when processing strict mode code (see 10.2.1), must not extend the syntax of

EscapeSequence to include LegacyOctalEscapeSequence as described in [B.l.ZL [r

ed [AWB1841]: Need to make a x-ref

CharacterEscapeSequence ::
SingleEscapeCharacter
NonEscapeCharacter

SingleEscapeCharacter :: one of
' " \ b £f n r t v

NonEscapeCharacter ::
SourceCharacter but not one of EscapeCharacter or LineTerminator

EscapeCharacter ::
SingleEscapeCharacter
DecimalDigit
X
u

HexEscapeSequence ::
x HexDigit HexDigit

UnicodeEscapeSequence ::
u HexDigit HexDigit HexDigit HexDigit
u{ HexDigits }

The definition of the nonterminal HexDigit is given.in 11.8.3. SourceCharacter is defined in clause 10.

NOTE A line terminator character cannot appear in a string literal, except as part of a LineContinuation to produce the
empty character sequence. The correct way to cause a line terminator character to be part of the String value of a string
literal is to use an escape sequence such as \n or \u000A.

Static Semantics
11.8.4.1 Static Semantics: Early Errors
UnicodeEscapeSequence :: u{ HexDigits }
e ltis a Syntax Error if the MV of HexDigits > 1114111.
11.8.4.2 Static Semantics: SV's and CV'’s
A string literal stands for a value of the String type. The String value (SV) of the literal is described in terms of
code unit values (CV) contributed by the various parts of the string literal. As part of this process, some
Unicode characters within the string literal are interpreted as having a mathematical value (MV), as described

below orin 11.8.3.

e The SV of StringLiteral :: "" is the empty code unit sequence.
e The SV of StringLiteral :: ' ' is the empty code unit sequence.
e The SV of StringLiteral :: " DoubleStringCharacters " is the SV of DoubleStringCharacters.

© Ecma International 2013 111

secmd

e The SV of StringLiteral :: ' SingleStringCharacters ' is the SV of SingleStringCharacters.

e The SV of DoubleStringCharacters :: DoubleStringCharacter is a sequence of one or two code units that is
the CV of DoubleStringCharacter.

e The SV of DoubleStringCharacters :: DoubleStringCharacter DoubleStringCharacters is a sequence of one or
two code units that is the CV of DoubleStringCharacter followed by all the code units in the SV of
DoubleStringCharacters in order.

e The SV of SingleStringCharacters :: SingleStringCharacter is a sequence of one or two code units that is the
CV of SingleStringCharacter.

e The SV of SingleStringCharacters :: SingleStringCharacter SingleStringCharacters is a sequence of one or
two code units that is the CV of SingleStringCharacter followed by all the code units in the SV of
SingleStringCharacters in order.

e The SV of LineContinuation :: \ LineTerminatorSequence is the empty code unit sequence.

e The CV of DoubleStringCharacter :: SourceCharacter but not one of " or.\ or LineTerminator is the UTF-16
Encoding (clause 6) of the code point value of SourceCharacter.

e The CV of DoubleStringCharacter :: \ EscapeSequence is the CV of the EscapeSequence.

e The CV of DoubleStringCharacter :: LineContinuation is the empty character sequence.

e The CV of SingleStringCharacter :: SourceCharacter but not one of ' or \ or LineTerminator is the UTF-16
Encoding (clause 6) of the code point value of SourceCharacter .

e The CV of SingleStringCharacter :: \ EscapeSequence is.the CV of the EscapeSequence.

e The CV of SingleStringCharacter :: LineContinuation is the empty character sequence.

e The CV of EscapeSequence :: CharacterEscapeSequence is the CV of the CharacterEscapeSequence.

. The CV of EscapeSequence :: 0 [lookahead ¢ DecimalDigit] is the code unit value 0.

e The CV of EscapeSequence :: HexEscapeSequence is the CV of the HexEscapeSequence.

e The CV of EscapeSequence :: UnicodeEscapeSequence is the CV of the UnicodeEscapeSequence.

e The CV of CharacterEscapeSequence :: SingleEscapeCharacter is the character whose code unit value is

determined by the SingleEscapeCharacter according to Table 30. [Formatted: Font: (Default) Arial, Complex Script Font: Arial]
Table 30 — String Single Character Escape Sequences Formatted: Font: (Default) Arial, Complex Script Font: Arial
Escape Sequence Code Unit Value Name Symbol

\b 0x0008 backspace <BS>
\t 0x0009 horizontal tab <HT>
\n 0x000A line feed (new line) <LF>
\v 0x000B vertical tab <VT>
\f 0x000C form feed <FF>
\r 0x000D carriage return <CR>
\" 0x0022 double quote "

\' 0x0027 single quote !

\\ 0x005C backslash \

e The CV of CharacterEscapeSequence :: NonEscapeCharacter is the CV of the NonEscapeCharacter.

e The CV of NonEscapeCharacter :: SourceCharacter but not one of EscapeCharacter or LineTerminator is the
UTF-16 Encoding (clause 6) of the code point value of SourceCharacter .

e The CV of HexEscapeSequence :: x HexDigit HexDigit is the code unit value that is (16 times the MV of the
first HexDigit) plus the MV of the second HexDigit.

e The CV of UnicodeEscapeSequence :: u HexDigit HexDigit HexDigit HexDigit is the code unit value that is
(4096 times the MV of the first HexDigit) plus (256 times the MV of the second HexDigit) plus (16 times the
MV of the third HexDigit) plus the MV of the fourth HexDigit.

e The CV of UnicodeEscapeSequence :: u{ HexDigits } is the UTF-16 Encoding (clause 6) of the MV of
HexDigits.

112 © Ecma International 2013

secma

11.8.5 Regular Expression Literals

NOTE A regular expression literal is an input element that is converted to a RegExp object (see 21.2) each time the
literal is evaluated. Two regular expression literals in a program evaluate to regular expression objects that never compare
as === to each other even if the two literals' contents are identical. A RegExp object may also be created at runtime by

new RegExp (see 21.2.3.2) or calling the RegExp constructor as a function (21.2.3.1).

The productions below describe the syntax for a regular expression literal and are used by the input element
scanner to find the end of the regular expression literal. The source code comprising the
RegularExpressionBody and the RegularExpressionFlags are subsequently parsed using the more stringent
ECMAScript Regular Expression grammar (21.2.1).

An implementation may extend the ECMAScript Regular Expression grammar- defined in 21.2.1, but it must
not extend the RegularExpressionBody and RegularExpressionFlags productions.defined below or the productions
used by these productions.

Syntax

RegularExpressionLiteral ::
/ RegularExpressionBody / RegularExpressionFlags

RegularExpressionBody ::
RegularExpressionFirstChar RegularExpressionChars

RegularExpressionChars ::
[empty]
RegularExpressionChars RegularExpressionChar

RegularExpressionFirstChar ::
RegularExpressionNonTerminator but not one of * or \\or / or._[
RegularExpressionBackslashSequence
RegularExpressionClass

RegularExpressionChar ::
RegularExpressionNonTerminator but not one of \ or / or [
RegularExpressionBackslashSequence
RegularExpressionClass

RegularExpressionBackslashSequence ::
\ RegularExpressionNonTerminator

RegularExpressionNonTerminator ::
SourceCharacter but not LineTerminator

RegularExpressionClass ::
[RegularExpressionClassChars]

RegularExpressionClassChars ::
[empty] .)
RegularExpressionClassChars RegularExpressionClassChar

RegularExpressionClassChar ::
RegularExpressionNonTerminator but not one of 1 or \
RegularExpressionBackslashSequence

RegularExpressionFlags ::
[empty]
RegularExpressionFlags IdentifierPart

NOTE Regular expression literals may not be empty; instead of representing an empty regular expression literal, the
characters // start a single-line comment. To specify an empty regular expression, use: /(?:)/.

© Ecma International 2013 113

secmd

11.8.5.1 Static Semantics: Early Errors
RegularExpressionFlags :: RegularExpressionFlags IdentifierPart
e Itis a Syntax Error if ldentifierPart contains an Unicode escape sequence.
11.8.5.2 Static Semantics: BodyText
RegularExpressionLiteral :: / RegularExpressionBody / RegularExpressionFlags
1. Return the source code that was recognised as RegularExpressionBody.
11.8.5.3 Static Semantics: FlagText
RegularExpressionLiteral :: / RegularExpressionBody / RegularExpressionFlags
2. Return the source code that was recognised as RegularExpressionFlags.
11.8.6 Template Literal Lexical Components

Syntax

Template ::
NoSubstitutionTemplate
TemplateHead

NoSubstitutionTemplate ::
* TemplateCharactersopt

TemplateHead ::
* TemplateCharactersopt $ {

TemplateSubstitutionTail ::
TemplateMiddle
TemplateTail

TemplateMiddle ::
} TemplateCharactersopt $ {

TemplateTail ::
} TemplateCharactersopt

TemplateCharacters ::
TemplateCharacter TemplateCharactersopt

TemplateCharacter ::
SourceCharacter butnot one of * or \ or $ or LineTerminatorSequence
$ [lookahead ¢ {]
\ EscapeSequence
LineContinuation
LineTerminatorSequence

11.8.6.1 Static Semantics: TV’s and TRV’s

A template literal component is interpreted as a sequence of Unicode characters. The Template Value (TV) of
a literal component is described in terms of code unit values (CV, 11.8.4) contributed by the various parts of
the template literal component. As part of this process, some Unicode characters within the template
component are interpreted as having a mathematical value (MV, 11.8.3). In determining a TV, escape
sequences are replaced by the code unit of the Unicode characters represented by the escape sequence.

114

© Ecma International 2013

secma

The Template Raw Value (TRV) is similar to a Template Value with the difference that in TRVs escape
sequences are interpreted literally.

The TV and TRV of NoSubstitutionTemplate :: ** is the empty code unit sequence.

The TV and TRV of TemplateHead :: *${ is the empty code unit sequence.

The TV and TRV of TemplateMiddle :: }${ is the empty code unit sequence.

The TV and TRV of TemplateTail :: } * is the empty code unit sequence.

The TV of NoSubstitutionTemplate :: * TemplateCharacters * is the TV of TemplateCharacters.

The TV of TemplateHead :: * TemplateCharacters ${ is the TV of TemplateCharacters.

The TV of TemplateMiddle :: } TemplateCharacters ${ is the TV of TemplateCharacters.

The TV of TemplateTail :: } TemplateCharacters " is the TV of TemplateCharacters.

The TV of TemplateCharacters :: TemplateCharacter is the TV of TemplateCharacter.

The TV of TemplateCharacters :: TemplateCharacter TemplateCharacters is a sequence consisting of the

code units in the TV of TemplateCharacter followed by all the code units in the TV of TemplateCharacters in
order.

The TV of TemplateCharacter :: SourceCharacter but not one of *or \ or $ is the UTF-16 Encoding (clause
6) of the code point value of SourceCharacter.

The TV of TemplateCharacter :: $ [ookahead ¢ {] is the code unit value 0x0024.

The TV of TemplateCharacter :: \ EscapeSequence is the CV of EscapeSeguence.

The TV of TemplateCharacter :: LineContinuation is the TV of LineContinuation.

The TV of TemplateCharacter :: LineTerminatorSequence is the TRV of LineTerminatorSequence.

The TV of LineContinuation :: \ LineTerminatorSequence is the empty code unit sequence.

The TRV of NoSubstitutionTemplate :: * TemplateCharacters * is'the TRV of TemplateCharacters.

The TRV of TemplateHead :: * TemplateCharacters ${.is the TRV of TemplateCharacters.

The TRV of TemplateMiddle :: } TemplateCharacters ${ is the TRV of TemplateCharacters.

The TRV of TemplateTail :: } TemplateCharacters ° is the TRV of TemplateCharacters.

The TRV of TemplateCharacters:: TemplateCharacter is the TRV of TemplateCharacter.

The TRV of TemplateCharacters :: TemplateCharacter TemplateCharacters is a sequence consisting of the
code units in the TRV of TemplateCharacter followed by all the code units in the TRV of
TemplateCharacters, in order.

The TRV of TemplateCharacter ::.SourceCharacter but not one of * or \ or $ is the UTF-16 Encoding
(clause 6) of the code point value of SourceCharacter.

The TRV of TemplateCharacter :: $ [lookahead ¢ {] is the code unit value 0x0024.

The TRV of TemplateCharacter :: \ EscapeSequence is the sequence consisting of the code unit value
0x005C followed by the code units of TRV of EscapeSequence.

The TRV of TemplateCharacter :: LineContinuation is the TRV of LineContinuation.

The TRV of TemplateCharacter :: LineTerminatorSequence is the TRV of LineTerminatorSequence.

The TRV of EscapeSequence :: CharacterEscapeSequence is the TRV of the CharacterEscapeSequence.

The TRV of EscapeSequence :: 0 [lookahead ¢ DecimalDigit] iS the code unit value 0x0030.

The TRV of EscapeSequence :: HexEscapeSequence is the TRV of the HexEscapeSequence.

The TRV of EscapeSequence :: UnicodeEscapeSequence is the TRV of the UnicodeEscapeSequence.

The TRV of CharacterEscapeSequence :: SingleEscapeCharacter is the TRV of the SingleEscapeCharacter.

The TRV of CharacterEscapeSequence :: NonEscapeCharacter is the CV of the NonEscapeCharacter.

The TRV of SingleEscapeCharacter :: oneof ' " \ b £ n r t v istheCVofthe
SourceCharacter that is that single character.

The TRV of HexEscapeSequence :: x HexDigit HexDigit is the sequence consisting of code unit value
0x0078 followed by TRV of the first HexDigit followed by the TRV of the second HexDigit.

The TRV of UnicodeEscapeSequence :: u HexDigit HexDigit HexDigit HexDigit is the sequence consisting of
code unit value 0x0075 followed by TRV of the first HexDigit followed by the TRV of the second HexDigit
followed by TRV of the third HexDigit followed by the TRV of the fourth HexDigit.

The TRV of UnicodeEscapeSequence :: u{ HexDigits } is the sequence consisting of code unit value
0x0075 followed by code unit value 0x007B followed by TRV of HexDigits followed by code unit value
0x007D.

© Ecma International 2013 115

secmd

e The TRV of HexDigits :: HexDigit is the TRV of HexDigit.

e The TRV of HexDigits :: HexDigits HexDigit is the sequence consisting of TRV of HexDigits followed by
TRV of HexDigit.

e The TRV of a HexDigit is the CV of the SourceCharacter that is that HexDigit.

e The TRV of LineContinuation :: \ LineTerminatorSequence is the sequence consisting of the code unit value
0x005C followed by the code units of TRV of LineTerminatorSequence.

e The TRV of LineTerminatorSequence :: <LF> is the code unit value 0x000A.

. The TRV of LineTerminatorSequence :: <CR> [lookahead ¢ <LF>] is the code unit value 0x000A.

e The TRV of LineTerminatorSequence :: <LS> is the code unit value 0x2028.

e The TRV of LineTerminatorSequence :: <PS> is the code unit value 0x2029.

e The TRV of LineTerminatorSequence :: <CR><LF> is the sequence consisting of the code unit value
0x000A.

NOTE TV excludes the code units of LineContinuation while TRV includes them. <CR><LF> and <CR>
LineTerminatorSequences are normalized to <LF> for both TV and TRV. An explicit EscapeSequence is needed to include a
<CR> or <CR><LF> sequenceed.

11.9 Automatic Semicolon Insertion

Certain ECMAScript statements (empty statement, let and const declarations, variable statement, expression
statement, debugger statement, continue statement, break statement, return statement, and throw
statement) must be terminated with semicolons. Such semicolons may always appear explicitly in the source
text. For convenience, however, such semicolons may be omitted from the source text in certain situations.
These situations are described by saying that semicolons are automatically inserted into the source code
token stream in those situations.

11.9.1 Rules of Automatic Semicolon Insertion
There are three basic rules of semicolon insertion:

1. When, as the script is parsed from left to right, a token (called the offending token) is encountered that is
not allowed by any production of the grammar, then a semicolon is automatically inserted before the
offending token if one or more of the following conditions is true:

e The offending token is separated from the previous token by at least one LineTerminator.
e The offending token is. } .

2. When,as the script.is parsed from left to right, the end of the input stream of tokens is encountered and
the parser is unable to parse the input token stream as a single complete ECMAScript script, then a
semicolon is automatically inserted at the end of the input stream.

3. When;, as the script is parsed from left to right, a token is encountered that is allowed by some production
of the grammar, but the production is a restricted production and the token would be the first token for a
terminal or nonterminal immediately following the annotation “[no LineTerminator here]” within the restricted
production (and therefore such a token is called a restricted token), and the restricted token is separated
from the previous token by at least one LineTerminator, then a semicolon is automatically inserted before
the restricted token.

However, there is an additional overriding condition on the preceding rules: a semicolon is never inserted
automatically if the semicolon would then be parsed as an empty statement or if that semicolon would become
one of the two semicolons in the header of a for statement (see 13.6.3).

NOTE The following are the only restricted productions in the grammar:

PostfixExpression :
LeftHandSideExpression [no LineTerminator here] ++
LeftHandSideExpression [no LineTerminator here] —-—

116 © Ecma International 2013

secma

ContinueStatement :
continue [no LineTerminator here] Identifier ;

BreakStatement :
break [no LineTerminator here] Identifier ;

ReturnStatement :
return [no LineTerminator here] Expression H

ThrowStatement :
throw [no LineTerminator here] Expression N

The practical effect of these restricted productions is as follows:

When a ++ or -- token is encountered where the parser would treat it as a postfix operator, and at least one
LineTerminator occurred between the preceding token and the ++ or -- token, then a semicolon is automatically
inserted before the ++ or -- token.

When a continue, break, return, or throw token is encountered and a LineTerminator is encountered before
the next token, a semicolon is automatically inserted after the continue, break, return, or throw token.

The resulting practical advice to ECMAScript programmers is:
A postfix ++ or -- operator should appear on the same line as its operand.
An Expression in a return or throw statement should start on the same line as the return or throw token.
An Identifier in a break or continue statement should be on the same line as the break or continue token.
11.9.2 Examples of Automatic Semicolon Insertion

The source

{121} 3
is not a valid sentence in the ECMAScript grammar, even with the automatic semicolon insertion rules. In
contrast, the source

{1

21} 3

is also not-a valid ECMAScript sentence, but is transformed by automatic semicolon insertion into the
following:

{1

i2 7} 3;
which is'a valid ECMAScript sentence.

The source

for (a; b

)
is not a valid ECMAScript sentence and is not altered by automatic semicolon insertion because the
semicolon is needed for the header of a for statement. Automatic semicolon insertion never inserts one of
the two semicolons in the header of a for statement.

The source
return
a+b
is transformed by automatic semicolon insertion into the following:
return;
a + b;

© Ecma International 2013 117

secmd

NOTE The expression a + b is not treated as a value to be returned by the return statement, because a
LineTerminator separates it from the token return.

The source
a=>b
++c
is transformed by automatic semicolon insertion into the following:
a =b;
++c;
NOTE The token ++ is not treated as a postfix operator applying to the variable b, because a LineTerminator occurs

betweenb and ++.

The source

if (a > b)

else c =d
is not a valid ECMAScript sentence and is not altered by automatic'semicolon insertion before the else token,
even though no production of the grammar applies at that point; because an automatically inserted semicolon
would then be parsed as an empty statement.

The source
a=b+c
(d + e) .print()

is not transformed by automatic semicolon insertion, because the parenthesised expression that begins the
second line can be interpreted as an argument list for.a function call:
a=b + c(d + e).print()

In the circumstance that an assignment statement must begin with a left parenthesis, it is a good idea for the
programmer to provide an explicit- semicolon at the end of the preceding statement rather than to rely on
automatic semicolon insertion.

12 ECMAScript Language: Expressions
12.1 Primary Expressions

Syntax

PrimaryExpression :
this
IdentifierReference
Literal
Arraylnitialiser
ObjectLiteral
FunctionExpression
ClassExpression
GeneratorExpression
GeneratorComprehension
RegularExpressionLiteral
TemplateLiteral
CoverParenthesisedExpressionAndArrowParameterList

CoverParenthesisedExpressionAndArrowParameterList :
(Expression)

()
(... ldentifier)
(Expression , ... Identifier)

118 © Ecma International 2013

secma

Supplemental Syntax
When processing the production PrimaryExpression : CoverParenthesisedExpressionAndArrowParameterList the
following grammar is used to refine the interpretation of CoverParenthesisedExpressionAndArrowParameterList.

ParenthesisedExpression :
(Expression)

12.1.0 Semantics
12.1.0.1 Static Semantics: CoveredParenthesisedExpression
CoverParenthesisedExpressionAndArrowParameterList : (Expression)

1. Return the result of parsing the lexical token stream matched by
CoverParenthesisedExpressionAndArrowParameterList using ParenthesisedExpression as the goal symbol.

12.1.0.2 Static Semantics: IsValidSimpleAssignmentTarget

See also: 12.1.10.2, 12.2.1.2, 12.3.2, 12.4.2,12.5.1, 12.6.1, 12.7.1, 12.8.1, 12.9.1, 12.10.1, 12.11.1, 12.12.1,
12.13.2,12.14.1

PrimaryExpression :
this
Literal
Arraylnitialiser
ObjectLiteral
FunctionExpression
ClassExpression
GeneratorExpression
GeneratorComprehension
RegularExpressionLiteral
TemplateLiteral

1. Return false.

PrimaryExpression : Identifier

1. If this PrimaryExpression is contained in strict code and StringValue of Identifier is "eval" or
"arguments", then return false.

2. Return true.

PrimaryExpression : CoverParenthesisedExpressionAndArrowParameterList

1. Letexpr be CoveredParenthesisedExpression of CoverParenthesisedExpressionAndArrowParameterList.
2. Return IsValidSimpleAssignmentTarget of expr.

12.1.1 The this Keyword
12.1.1.1 Runtime Semantics: Evaluation
PrimaryExpression : this

1. Return the result of calling the ThisResolution abstract operation.
12.1.2 Identifier Reference

IdentifierReference :
Identifier
[Only match if not within the FunctionBody of a GeneratorMethod, GeneratorDeclaration, or GeneratorExpression] yield

© Ecma International 2013 119

secmd

12.1.2.1 Static Semantics: Early Errors Commented [AWB1942]: It may make sense to define
some of the static semantic rules related to static name

IdentifierReference : yield resolution here

e Itis a Syntax Error if the IdentifierReference is contained in strict code.

12.1.2.2 Runtime Semantics: Evaluation

IdentifierReference : Identifier

1. Let ref be the result of performing Identifier Resolution as specified in 8.3.1 using the IdentifierName
corresponding to Identifier.

2. Return ref.

IdentifierReference : yield

1. Assert: The source code matching this production is not strict code.

2. Let ref be the result of performing Identifier Resolution as specified in 8.3.1 using the IdentifierName
corresponding to yield.

3. Return ref.

NOTE 1: The result of evaluating an IdentifierReference is always a value of type Reference.

NOTE 2: In non-strict code, the keyword yield may be used as an identifier. Evaluating the IdentifierReference production

resolved the binding of yield as if it was an Identifier. The Early Error restriction ensures that such an evaluation onlys

for non-strict code. See XXX for the handling of yield inbinding creation contexts. Commented [AWB1943]: TODO

12.1.3 Literals

Syntax
Literal :
NullLiteral
ValueLiteral
ValueLiteral :
BooleanLiteral
NumericLiteral
StringLiteral
12.1.3.1 Runtime Semantics: Evaluation
Literal : NullLiteral
1. Return null.
ValueLiteral : BooleanLiteral

1. Return false if BooleanLiteral is the token BooleanLiteral :: false
2. Return true if BooleanLiteral is the token BooleanLiteral :: true

ValueLiteral : NumericLiteral
1. Return the number whose value is MV of NumericLiteral as defined in 11.8.3.
ValueLiteral : StringLiteral

1. Return the string whose elements are the SV of StringLiteral as defined in 11.8.4.

120 © Ecma International 2013

secma

12.1.4 Array Initialiser

Syntax

Arraylnitialiser :
ArrayLiteral
ArrayComprehension

12.1.4.1 Array Literal

NOTE An ArrayLiteral is an expression describing the initialisation of an Array object, using a list, of zero or more
expressions each of which represents an array element, enclosed in square brackets. The elements need not be literals;

they are evaluated each time the array initialiser is evaluated.

Array elements may be elided at the beginning, middle or end of the element list. Whenever a comma in the element list is
not preceded by an AssignmentExpression (i.e., a comma at the beginning or after another comma), the missing array
element contributes to the length of the Array and increases the index of subsequent elements. Elided array elements are

not defined. If an element is elided at the end of an array, that element does:not contribute to the length of the Array.

Syntax

ArrayLiteral :
[Elisionep 1
[ElementList]
[ElementList , Elisiongp 1]
ElementList :
Elisiongp: AssignmentExpression
Elisionept SpreadElement
ElementList , Elisionop; AssignmentExpression:
ElementList , Elisiono SpreadElement
Elision :

Elision ,

SpreadElement :
. AssignmentExpression

12.1.4.1.1 -Static Semantics: Elision Width
Elision: ,

1. Return the numeric value 1.

Elision : Elision ,

1. Let preceding be the Elision Width of Elision.
2. Return preceding+1.

12.1.4.1.2 Runtime Semantics: Array Accumulation
With parameters array and nextindex.
ElementList : Elisionopt AssignmentExpression
Let initResult be the result of evaluating AssignmentExpression.

Let initValue be GetValue(initResult).
ReturnlfAbrupt(initvValue).

LN

© Ecma International 2013

Let padding be the Elision Width of Elision; if Elision is not present, use the numeric value zero.

121

&

6.
7.

ecma

Let created be the result of calling the [[DefineOwnProperty]] internal method of array with arguments
ToString(ToUint32(nextIndex+padding)) and the Property Descriptor { [[Value]]: initValue, [[Writable]]:
true, [[Enumerable]]: true, [[Configurable]]: true}.

Assert: created is true.

Return nextlndex+padding+1.

ElementList : Elisionopt SpreadElement

1
2.

Let padding be the Elision Width of Elision; if Elision is not present, use the numeric value zero.
Return the result of performing Array Accumulation for SpreadElement with arguments array and
nextindex+padding.

ElementList : ElementList , Elisionopt AssignmentExpression

1

Nookown

Let postindex be the result of performing Array Accumulation for ElementList with arguments array and
nextindex.

ReturnlfAbrupt(postindex).

Let padding be the Elision Width of Elision; if Elision is not present, use the numeric value zero.

Let initResult be the result of evaluating AssignmentExpression.

Let initValue be GetValue(initResult).

ReturnIfAbrupt(initvalue).

Let created be the result of calling the [[DefineOwnProperty]] internal method of array with arguments
ToString(ToUint32(postindex+padding)) and the Property Descriptor { [[Value]]: initValue, [[Writable]]:
true, [[Enumerable]]: true, [[Configurable]]: true}.

Assert: created is true.

Return postindex+padding+1.

ElementList : ElementList , Elisionopt SpreadElement

1.

2.
3.
4.

Let postindex be the result of performing Array Accumulation for ElementList with arguments array and
nextindex.

ReturnlfAbrupt(postindex).

Let padding be the Elision Width of Elision; if Elision is not present, use the numeric value zero.

Return the result of performing Array Accumulation for SpreadElement with arguments array and
postindex+padding:

SpreadElement: ... AssignmentExpression

©OND AWM

Let spreadRef be the result of evaluating AssignmentExpression.
Let spreadValue be GetValue(spreadRef).
Let spreadObj be ToObject(spreadValue).
ReturnlfAbrupt(spreadObyj).
Let lenVal be the result of calling Get(spreadObj, "length").
Let spreadLen be ToUint32(lenVal).
ReturnlfAbrupt(spreadLen).
Let n=0;
Repeat, while n < spreadLen
a. Let exists be the result of HasProperty(spreadObj, ToString(n)).
b. ReturnlfAbrupt(exists).
c. [Ifexists is true then,
i. Letv be the result of calling the [[Get]] internal method of spreadObj passing ToString(n) as the
argument.

ii. ReturnIfAbrupt(v).

iii. Let created be the result of calling the [[DefineOwnProperty]] internal method of array with
arguments ToString(ToUint32(nextIndex)) and Property Descriptor {[[Value]]: v, [[Writable]]:
true, [[Enumerable]]: true, [[Configurable]]: true}.

iv. Assert: created is true.

d. Letn=n+l.
e. Let nextindex = nextindex +1.

10. Return nextindex.

122

© Ecma International 2013

Commented [AW441]: Note that the value the spread
operator is applied to is coerced to an Object.

Commented [AW45]: Note that indices wrap. For example
consider:

[{4294967293: “x’, length: Math.pow(2,32)-2}]

secma

NOTE [[DefineOwnProperty]] is used to ensure that own properties are defined for the array even if the standard
built-in Array prototype object has been modified in a manner that would preclude the creation of new own properties

using [[Set]].

12.1.4.1.3 Runtime Semantics: Evaluation

ArrayLiteral : [Elisionopt]

1. Letarray be the result of the abstract operation ArrayCreate with argument 0.

2. Let pad be the Elision Width of Elision; if Elision is not present, use the numeric value zero.
3. Call Put(array, "length", pad, false).

4. Return array.

ArrayLiteral : [ElementList]

Let array be the result of the abstract operation ArrayCreate with argument 0.
ReturnlfAbrupt(len).

Call Put(array, "length", len, false).
Return array.

gaswNE

ArrayLiteral : [ElementList , Elisionopt]
Let array be the result of the abstract operation ArrayCreate with-argument 0.

ReturnlfAbrupt(len).

Let padding be the Elision Width of Elision; if Elision. is not present, use the numeric value zero.
Call Put(array, "length", ToUint32(padding+len), false).

Return array.

o gk wN e

12.1.4.2 Array Comprehension

Syntax

ArrayComprehension :
[Comprehension]

Comprehension :
ComprehensionFor. ComprehensionTail

ComprehensionTail :
AssignmentExpression
ComprehensionFor ComprehensionTail
Comprehensionlf ComprehensionTail

ComprehensionFor.:
for (ForBinding of AssignmentExpression)

Comprehensionlf :
if (AssignmentExpression)

ForBinding :
Bindingldentifier
BindingPattern
12.1.4.2.1 Static Semantics: Early Errors

ComprehensionFor : for (ForBinding of AssignmentExpression)

e ltis a Syntax Error if the BoundNames of ForBinding contains any duplicate entries.

© Ecma International 2013

Let len be the result of performing Array Accumulation for ElementList with arguments array and 0.

Let len be the result of performing Array Accumulation for ElementList with arguments array and 0.

123

secmd

12.1.4.2.2 Runtime Semantics: BindinglInitialisation

With arguments value and environment.

See also: 13.2.1.4,13.2.2.2, 13.2.3.4,13.14.3,14.1.11, 14.2.8

NOTE undefined is passed for environment to indicate that a PutValue operation should be used to assign the
initialisation value. This is the case for var statements formal parameter lists of non-strict functions. In those cases a

lexical binding is hosted and preinitialised prior to evaluation of its initialiser.

ForBinding

: BindingPattern

1. Letobj be ToObject(value).
2. ReturnlfAbrupt(obj).

3. Return the result of performing Bindinglnitialisation for BindingPattern passing obj and environment as the

arguments.

12.1.4.2.3 Runtime Semantics: ComprehensionEvaluation

With argument accumulator.

NOTE undefined is passed for accumulator to indicate that a comprehension.component is being evaluated as part of a
generator comprehension. Otherwise, the value of accumulator is the array object into the elements of an array

comprehension are to be accumulated.

Comprehension : ComprehensionFor ComprehensionTail

1. Return the result of performing ComprehensionComponentEvaluation for ComprehensionFor with
arguments ComprehensionTail and accumulator.

ComprehensionTail : ComprehensionFor ComprehensionTail

1. Return the result of performing ComprehensionComponentEvaluation for ComprehensionFor with
arguments ComprehensionTail and accumulator.

ComprehensionTail : Comprehensionlf -ComprehensionTail

1. Return theresult of performing ComprehensionComponentrEvaluation for Comprehensionlf with arguments

ComprehensionTail and accumulator.

ComprehensionTail : AssignmentExpression

1.

2.

3.

4.
a.
b.
c.
d.
e.
f.
g.
h.
i.
j.

5. Assert:

Let valueRef be the result of evaluating AssignmentExpression.
Let value be GetValue(valueRef).

ReturnlfAbrupt(value).

If accumulator is not undefined, then

Assert: this is part of an array comprehension.

Assert: accumulator is an exotic array object so access to its Length property should never fail.
Let len be the result of Get(accumulator, "1length").

If len>2%2-1, then throw a RangeError exception.

Let putStatus be the result of Put(accumulator, ToString(len), value, true).
ReturnlfAbrupt(putStatus).

Increase len by 1.

Let putStatus be the result of Put(accumulator, "length", len, true).
ReturnlfAbrupt(putStatus).

Return NormalCompletion(undefined).

accumulator is undefined, so this is part of a generator comprehension.

6. LetyieldStatus be the result of GeneratorYield(CreatelterResultObject(value, false)).
7. ReturnlfAbrupt(yieldStatus).

124

© Ecma International 2013

secma

8. Return NormalCompletion(undefined).
12.1.4.2.4 Runtime Semantics: ComprehensionComponentEvaluation
With arguments tail and accumulator.

NOTE undefined is passed for accumulator to indicate that a comprehension component is being evaluated as part of a
generator comprehension. Otherwise, the value of accumulator is the array object into the elements of an array
comprehension are to be accumulated.

ComprehensionFor : for (ForBinding of AssignmentExpression)

Let exprRef be the result of evaluating AssignmentExpression.

Let exprValue be GetValue(exprRef).

Let obj be ToObject(exprValue).

ReturnlfAbrupt(obj).

Let iterator be the result of performing Invoke with arguments obj, @@iterator, and an empty List.
Let keys be ToObject(iterator).

ReturnlfAbrupt(keys).

Let oldEnv be the running execution context’s LexicalEnvironment.

Repeat

©ONG A WN P

Let nextResult be the result of IteratorStep(keys).
ReturnIfAbrupt(nextResult).
If nextResult is true, then return true.
Let nextValue be IteratorValue(nextResult);
ReturnlfAbrupt(nextValue).
Let forEnv be the result of calling NewDeclarativeEnvironment passing oldEnv as the argument.
For each element name of the BoundNames of ForBinding do
i. Call forEnv’s CreateMutableBinding concrete method with argument name.
il Assert: The above call to CreateMutableBinding will never return an abrupt completion.
h. Let status be the result-of performing Bindinglnitialisation for ForBinding passing nextValue and
forEnv as the arguments.
i. ReturnlfAbrupt(status).
J. Set the running execution context’s LexicalEnvironment to forEnv.
k. Let continue be the result of performing ComprehensionEvaluation for tail with argument
accumulator.
I. Set the running execution context’s LexicalEnvironment to oldEnv.
m. ReturnlfAbrupt(continue).

@m0 o

Comprehensionlf : i£ (AssignmentExpression)

Let valueRef be the result of evaluating AssignmentExpression.
Let value be GetValue(valueRef).
Let boolValue be ToBoolean(value).
ReturnifAbrupt(boolValue).
If boolValue is true, then
a. Return the result of performing ComprehensionEvaluation for tail with argument accumulator.
Else,
a. Return NormalCompletion(undefined).

g wnE

o

12.1.4.2.5 Runtime Semantics: Evaluation
ArrayComprehension : [Comprehension]

Let array be the result of the abstract operation ArrayCreate with argument 0.

Let status be the result of performing ComprehensionEvaluation for Comprehension with argument array.
ReturnlfAbrupt(status).

Return array.

o

© Ecma International 2013 125

secmd

12.1.5 Object Initialiser

NOTE 1 An object initialiser is an expression describing the initialisation of an Object, written in a form resembling a
literal. It is a list of zero or more pairs of property names and associated values, enclosed in curly braces. The values need
not be literals; they are evaluated each time the object initialiser is evaluated.

Syntax

ObjectLiteral :
{1}
{ PropertyDefinitionList }
{ PropertyDefinitionList , }

PropertyDefinitionList :
PropertyDefinition
PropertyDefinitionList , PropertyDefinition

PropertyDefinition :
IdentifierName
CoverlnitialisedName
PropertyName : AssignmentExpression
MethodDefinition

PropertyName :
LiteralPropertyName
ComputedPropertyName

LiteralPropertyName :
IdentifierName
StringLiteral
NumericLiteral

ComputedPropertyName :
[AssignmentExpression 1]

CoverlnitialisedName :
IdentifierName Initialiser

Initialiser :
= AssignmentExpression

NOTE2 = MethodDefinition is defined in 14.3.

NOTE 3 In certain contexts, ObjectLiteral is used as a cover grammar for a more restricted secondary grammar. The
CoverlnitialissdName production is necessary to fully cover these secondary grammars. However, use of this production
results in an early Syntax Error in normal contexts where an actual ObjectLiteral is expected.

12.1.5.1 Static Semantics: Early Errors

In addition to describing an actual object initialiser the ObjectLiteral productions are also used as a cover
grammar for ObjectAssignmentPattern (12.13.4). When ObjectLiteral appears in a context where
ObjectAssignmentPattern is required, the following Early Error rules are not applied.

ObjectLiteral : { PropertyDefinitionList }
and
ObjectLiteral : { PropertyDefinitionList , }

e It is a Syntax Error if PropertyNameList of PropertyDefinitionList contains any duplicate entries, unless
one of the following conditions are true for each duplicate entry:

126 © Ecma International 2013

secmd

1. The source code corresponding to PropertyDefinitionList is not strict code and all occurrences
in the list of the duplicated entry were obtained from productions of the form
PropertyDefinition : PropertyName : AssignmentExpression.

2. The duplicated entry occurs exactly twice in the list and one occurrence was obtained from a
get accessor MethodDefinition and the other occurrence was obtained from a set accessor
MethodDefinition.

PropertyDefinition : MethodDefinition

o ltis L’a Syntax Error if ReferencesSuper bf MethodDefinition is true. Ci ed [AWB846]: The currently prevailing position in
TC39 is th_at use _of super shquld not be allowed in object
PropertyDefinition : IdentifierName literals. This restriction is arbitrary in the sense that the

runtime semantics would work.

e ltis a Syntax Error if IdentifierName is a ReservedWord.
PropertyDefinition : CoverlnitialisedName
e Always throw a Syntax Error if this production is present

NOTE This production exists so that ObjectLiteral can serve as.a cover grammar for ObjectAssignmentPattern (12.13.4).
It cannot occur in an actual object initialiser.

12.1.5.2 Static Semantics: Contains

With parameter symbol.
See also: 5.3,12.2.1.1, 14.1.3,14.2.3, 14.4.3,14.5.4
PropertyDefinition : MethodDefinition

1. If symbol is MethodDefinition, return true.
2. Return false.

NOTE Static semantic rules that depend upon substructure generally do not look into function definitions.

LiteralPropertyName : IdentifierName

1. If symbol isaReservedWord, return false.

2. If symbol is an Identifier and StringValue of symbol is the same value as the StringValue of IdentifierName,
return true;

3. Return false.

12.1.5.3 Static Semantics: IsComputedPropertyName

PropertyName : LiteralPropertyName

1. Return false.

PropertyName : ComputedPropertyName

1. Return true.

12.1.5.4 Static Semantics: PropName

See also: 14.3.4, 14.4.6, 14.5.10

PropertyDefinition : IdentifierName

1. Return StringValue of IdentifierName.

© Ecma International 2013 127

secmd

PropertyDefinition : PropertyName : AssignmentExpression

1. Return PropName of PropertyName.

LiteralPropertyName : StringLiteral

1. Return a String value whose characters are the SV of the StringLiteral.
LiteralPropertyName : NumericLiteral

1. Let nbr be the result of forming the value of the NumericLiteral.
2. Return [ToString(nbr).

C ed [AWB1047]: Issue: static semantic rules

ComputedPropertyName : [AssignmentExpression]
1. Return empty.

12.1.5.5 Static Semantics: PropertyNameList
PropertyDefinitionList : PropertyDefinition

1. If PropName of PropertyDefinition is empty, return a‘new empty List.
2. Return a new List containing PropName of PropertyDefinition.

PropertyDefinitionList : PropertyDefinitionList , PropertyDefinition
1. Let list be PropertyNameList of PropertyDefinitionList.

2. If PropName of PropertyDefinition is empty, return list.

3. Append PropName of PropertyDefinition to the end of list.

4. Return list.

12.1.5.6 Runtime Semantics: Evaluation

ObjectLiteral : { }

1. Return the result of the abstract operation ObjectCreate with the intrinsic object %ObjectPrototype% as its
argument.

ObjectLiteral :
{ PropertyDefinitionList. }
{ PropertyDefinitionList , }
1. Letobj be the result of the abstract operation ObjectCreate with the intrinsic object %ObjectPrototype% as
its argument.
2. Let status be the result of performing PropertyDefinitionEvaluation of PropertyDefinitionList with
argument obj.
3. ReturnlfAbrupt(status).
4. Return obj.
PropertyDefinition : IdentifierName
1. Return StringValue of IdentifierName.
PropertyDefinition : PropertyName : AssignmentExpression

1. Return the result of evaluating PropertyName.

LiteralPropertyName: IdentifierName

128 © Ecma International 2013

probably should call ToString (a runtime operation).

secma

1. Return StringValue of IdentifierName.

LiteralPropertyName : StringLiteral

1. Return a String value whose characters are the SV of the StringLiteral.
LiteralPropertyName : NumericLiteral

1. Letnbr be the result of forming the value of the NumericLiteral.
2. Return ToString(nbr).

ComputedPropertyName : [AssignmentExpression]

Let exprValue be the result of evaluating AssignmentExpression.
Let propName be GetValue(exprValue).
ReturnlfAbrupt(propName).

Return ToPropertyKey(propName).

AW

12.1.5.7 Runtime Semantics: PropertyDefinitionEvaluation
With parameter object and optional parameter functionPrototype.

See also: 14.3.7, 14.4.11, B.3.1

PropertyDefinitionList : PropertyDefinitionList , PropertyDefinition

1. Let status be the result of performing PropertyDefinitionEvaluation of PropertyDefinitionList with
argument object.

2. ReturnlfAbrupt(status).

3. Return the result of performing PropertyDefinitionEvaluation of PropertyDefinition with argument object.

PropertyDefinition : IdentifierName

1. Let propName be StringValue of IdentifierName.

2. Let exprValue be the result of performing Identifier Resolution as specified in 8.3.1 using IdentifierName.

3. Let propValue be GetValue(exprValue).

4. ReturnlfAbrupt(propValue).

5. Let desc be the Property Descriptor{[[Value]]: propValue, [[Writable]]: true, [[Enumerable]]: true,
[[Configurable]]: true}

6. Return the result of DefinePropertyOrThrow(object, propName, desc).

PropertyDefinition : PropertyName : AssignmentExpression

1. Let propKey be the result of evaluating PropertyName.
2. ReturnIfAbrupt(propKey).
3. If the source code corresponding to PropertyDefinition is strict code and if
IsComputedPropertyName(propKey) is true, then
a. LetduplicateKey be the result of HasOwnProperty(object, propKey).
b. ReturnIfAbrupt(duplicateKey).
c. If duplicateKey is true, then throw a TypeError exception.
Let exprValue be the result of evaluating AssignmentExpression.
Let propValue be GetValue(exprValue).
ReturnlfAbrupt(propValue).
Let desc be the Property Descriptor{[[Value]]: propValue, [[Writable]]: true, [[Enumerable]]: true,
[[Configurable]]: true}
8. Return the result of DefinePropertyOrThrow(object, propKey, desc).

No oM

NOTE An alternative semantics for this production is given in B.3.1.

© Ecma International 2013 129

secmd

12.1.6 Function Defining Expressions

See 0 for PrimaryExpression : FunctionExpression.
See 14.4 for PrimaryExpression : GeneratorExpression.
See 14.5 for PrimaryExpression : ClassExpression.
12.1.7 Generator Comprehensions

Syntax

GeneratorComprehension :
(Comprehension)

Syntax
12.1.7.1 Static Semantics: Early Errors

GeneratorComprehension : (Comprehension)

e Itis a Syntax Error if Comprehension Contains YieldExpression is true.
12.1.7.2 Runtime Semantics: Evaluation
GeneratorComprehension : (Comprehension)

If GeneratorComprehension is contained in strict mode code, then let strict be true; otherwise let strict be false.

Let scope be the LexicalEnvironment of the running execution context.

Let parameters be the production: FormalParameters : [empty].

Using Comprehension from the production that is being evaluated, let body be the supplemental syntactic grammar

production: GeneratorBody : Comprehension.

Let closure be the result of performing the GeneratorFunctionCreate abstract operation with arguments Arrow,

parameters, body, scope; and strict.

6. Let prototype be the result of the abstract operation ObjectCreate with the intrinsic object %GeneratorPrototype%
as its argument.

7. Perform the abstract operation MakeConstructor with arguments closure, true, and prototype.

8. Let iterator be the result of calling the [[Call]] internal method of closure with undefined as thisArgument
and an empty List-as argumentsList.

9. Returnditerator.

N

o1

NOTE The GeneratorFunction object created in step 5 is not observable from ECMAScript code so an
implementation may choose to avoid its allocation and initialisation. In that case use other semantically equivalent means
must be used to allocate and initialise the iterator object in step 8. In either case, the prototype object created in step 6
must be created because it is potentially observable as the value of the iterator object’s [[Prototype]] internal data property.

12.1.8 Regular Expression Literals

Syntax
See 11.8.4.

Semantics
12.1.8.1 Static Semantics: Early Errors
PrimaryExpression : RegularExpressionLiteral

e Itis a Syntax Error if BodyText of RegularExpressionLiteral cannot be recognised using the goal symbol
Pattern of the ECMAScript RegExp grammar specified in 21.2.1.

130 © Ecma International 2013

secma

e |tis a Syntax Error if FlagText of RegularExpressionLiteral contains any character other than "g", "i",
"m", "u", or "y", or if it contains the same character more than once.

12.1.8.2 Runtime Semantics: Evaluation
PrimaryExpression : RegularExpressionLiteral

1. |Aregular expression literal evaluates to a value of the Object type that is an instance of the standard built-
in constructor RegExp. This value is determined in two steps: first, the characters comprising the regular
expression's RegularExpressionBody and RegularExpressionFlags production expansions are collected
uninterpreted into two Strings Pattern and Flags, respectively. Then each time the literal is evaluated, a
new object is created as if by the expression new RegExp (Pattern, Flags) where RegExp is the
standard built-in constructor with that name. The newly constructed object becomes the value of the
RegularExpressionLiteral |

C ed [AWB848]: Should convert to a multistep

12.1.9 Template Literals

Syntax

TemplateLiteral :
NoSubstitutionTemplate
TemplateHead Expression [Lexical goal InputElementTemplateTail] TemplateSpans

TemplateSpans :
TemplateTail
TemplateMiddleList [Lexical goal InputElementTemplateTail] TemplateTalil

TemplateMiddleList :
TemplateMiddle Expression
TemplateMiddleList [Lexical goal InputElementTemplateTail] TemplateMiddle Expression

12.1.9.1 Static Semantics

12.1.9.1.1 Static Semantics: TemplateStrings
With parameter raw.

TemplateLiteral : NoSubstitutionTemplate

1. If rawis false, then

a. Let string be the TV of NoSubstitutionTemplate.
2. Else,

a. . Let string be the TRV of NoSubstitutionTemplate.
3. Return a List containing the single element, string.

TemplateLiteral : TemplateHead Expression [Lexical goal InputElementTemplateTail] TemplateSpans

1. If raw is false, then
a. Lethead be the TV of TemplateHead.
2. Else,
a. Lethead be the TRV of TemplateHead.
3. Let tail be TemplateStrings of TemplateSpans with argument raw.
4. Return a List containing head followed by the element, in order of tail.

TemplateSpans : TemplateTail
1. If raw is false, then
a. Lettail be the TV of TemplateTail.

2. Else,
a. Lettail be the TRV of TemplateTail.

© Ecma International 2013 131

algorithm and breakout a static semantic rule for the early
error

secmd

3. Return a List containing the single element, tail.
TemplateSpans : TemplateMiddleList [Lexical goal InputElementTemplateTail] TemplateTail

1. Letmiddle be TemplateStrings of TemplateMiddleList with argument raw.
2. If raw is false, then
a. Lettail be the TV of TemplateTail.
3. Else,
a. Let tail be the TRV of TemplateTail.
4. Return a List containing the elements, in order, of middle followed by tail.

TemplateMiddleList : TemplateMiddle Expression

1. If raw is false, then

a. Letstring be the TV of TemplateMiddle.
2. Else,

a. Letstring be the TRV of TemplateMiddle.
3. Return a List containing the single element, string.

TemplateMiddleList : TemplateMiddleList [Lexical goal InputElementTemplateTail] TemplateMiddle Expression

1. Let front be TemplateStrings of TemplateMiddleList with argument raw.
2. If raw is false, then
a. Let last be the TV of TemplateMiddle.
3. Else,
a. Let last be the TRV of TemplateMiddle.
4. Append last as the last element of the List front.
5. Return front.

12.1.9.2 Runtime Semantics

12.1.9.2.1 Runtime Semantics: ArgumentListEvaluation
See also: 12.2.6.1

TemplateLiteral : NoSubstitutionTemplate

1. Let siteObj be the result of the abstract operation GetTemplateCallSite passing this TemplateLiteral
production as the argument.
2. Return a List containing the one element which is siteObj.

TemplateLiteral : TemplateHead Expression [Lexical goal InputElementTemplateTail] TemplateSpans

1. Let siteObj be the result of the abstract operation GetTemplateCallSite passing this TemplateLiteral
production as the argument.

Let firstSub be the result.of evaluating Expression.

ReturnlfAbrupt(firstSub).

Let restSub be SubstitutionEvaluation of TemplateSpans.

ReturnlfAbrupt(restSub).

Assert: restSub is a List.

Return a List whose first element is siteObj, whose second elements is firstSub, and whose subsequent
elements are the elements of restSub, in order. restSub may contain no elements.

Nookown

12.1.9.2.2 Runtime Semantics: GetTemplateCallSite

The abstract operation GetTemplateCallSite is called with a grammar production, templateLiteral, as an
argument. It performs the following steps:

1. Ifacall site object for the source code corresponding to templateLiteral has already been created by a
previous call to this abstract operation, then

132 © Ecma International 2013

o Vi

PN AWN

9.

10.

11.
12.

13.

ecma

a. Return that call site object.
Let cookedStrings be TemplateStrings of templateLiteral with argument false.
Let rawStrings be TemplateStrings of templateLiteral with argument true.
Let count be the number of elements in the List cookedStrings.
Let siteObj be the result of the abstract operation ArrayCreate with argument count.
Let rawObj be the result of the abstract operation ArrayCreate with argument count.
Let index be 0.
Repeat while index < count

a. Let prop be ToString(index).

b. Let cookedValue be the string value at 0-based position index of the List cookedStrings.

c. Call the [[DefineOwnProperty]] internal method of siteObj with arguments prop and Property
Descriptor {[[Value]]: cookedValue, [[Enumerable]]: true, [[Writable]]: false, [[Configurable]]:
false}.

d. Let rawValue be the string value at 0-based position index of the List rawStrings.

e. Call the [[DefineOwnProperty]] internal method of rawObj with-arguments prop and Property
Descriptor {[[Value]]: rawValue, [[Enumerable]]: true, [[Writable]]: false, [[Configurable]]: false}.

f. Letindex be index+1.

Perform SetIntegrityLevel(rawObj, "frozen").

Call the [[DefineOwnProperty]] internal method of siteObj with arguments ""raw' and Property Descriptor
{[[\Value]]: rawObj, [[Writable]]: false, [[Enumerable]]: false, [[Configurable]]: false}.

Perform SetIntegrityLevel(siteObj, "frozen").

Remember an association between the source code corresponding to templateLiteral and siteObj such that
siteObj can be retrieve in subsequent calls to this abstract operation.

Return siteObj.

NOTE 1 The creation of a call site object cannotresult in an abrupt completion.

NOTE 2 Each TemplateLiteral in the program code is associated - with an unique Template call site object that is used in
the evaluation of tagged Templates (12.1.9.2.4). The same call site object.is used each time a specific tagged Template is
evaluated. Whether call site objects are created lazily upon first'evaluation of the TemplateLiteral or eagerly prior to first
evaluation is an implementation choice that is not observable to ECMAScript code.

12.1.9.2.3 Runtime Semantics: SubstitutionEvaluation

TemplateSpans : TemplateTail

1

Return an empty List.

TemplateSpans : TemplateMiddleList [Lexical goal InputElementTemplateTail] TemplateTail

1

Return the result of SubstitutionEvaluation of TemplateMiddleList.

TemplateMiddleList : TemplateMiddle Expression

1
2.
3.

Let sub be the result of evaluating Expression.
ReturnlfAbrupt(sub).
Return a List containing only sub.

TemplateMiddleList : TemplateMiddleList [Lexical goal InputElementTemplateTail] TemplateMiddle Expression

Ok wNE

Let preceeding be the result of SubstitutionEvaluation of TemplateMiddleList .
ReturnIfAbrupt(preceeding).

Let next be the result of evaluating Expression.

ReturnlfAbrupt(next).

Append next as the last element of the List preceeding.

Return preceeding.

12.1.9.2.4 Runtime Semantics: Evaluation

TemplateLiteral : NoSubstitutionTemplate

© Ecma International 2013 133

secmad

1. Return the string value whose elements are the TV of NoSubstitutionTemplate as defined in 11.8.6.
TemplateLiteral : TemplateHead Expression [Lexical goal InputElementTemplateTail] TemplateSpans

Let head be the TV of TemplateHead as defined in 11.8.6.

Let sub be the result of evaluating Expression.

Let middle be ToString(sub).|

ReturnIfAbrupt(middle).

Let tail be the result of evaluating TemplateSpans .

ReturnlfAbrupt(tail).

Return the string value whose elements are the code units of head followed by the code units of tail.

NookrwpE

TemplateSpans : TemplateTail

1. Lettail be the TV of TemplateTail as defined in 11.8.6.
2. Return the string whose elements are the code units of tail.

TemplateSpans : TemplateMiddleList [Lexical goal InputElementTemplateTail] TemplateTail

1. Let head be the result of evaluating TemplateMiddleList.

2. ReturnlfAbrupt(head).

3. Lettail be the TV of TemplateTail as defined in 11.8.6.

4. Return the string whose elements are the elements of head followed by the elements of tail.

TemplateMiddleList : TemplateMiddle Expression

Let head be the TV of TemplateMiddle as defined in.11.8.6.
Let sub be the result of evaluating Expression.

Let middle be [ToString(sub).|
ReturnlfAbrupt(middle).

arwpE

TemplateMiddleList : TemplateMiddleList [Lexical goal InputElementTemplateTail] TemplateMiddle Expression

Let rest be the result of evaluating TemplateMiddleList .

ReturnlfAbrupt(rest).

Let middle be the TV of TemplateMiddle as defined in 11.8.6.

Let sub be the result of evaluating Expression.

Let last be ToString(sub) |

ReturnlfAbrupt(last).

Return the sequence of characters consisting of the elements of rest followed by the code units of middle
followed by the elements of last.

NoorwNE

12.1.10 The Grouping Operator
12.1.10.1 Static Semantics: Early Errors
PrimaryExpression : CoverParenthesisedExpressionAndArrowParameterList
e ltis a Syntax Error if the lexical token sequence matched by
CoverParenthesisedExpressionAndArrowParameterList cannot be parsed with no tokens left over using
ParenthesisedExpression as the goal symbol.
e All Early Errors rules for ParenthesisedExpression and its derived productions also apply to the

CoveredParenthesisedExpression of CoverParenthesisedExpressionAndArrowParameterList.

12.1.10.2 Static Semantics: IsValidSimpleAssignmentTarget

See also: 12.1.0.2, 12.2.1.2, 12.3.2, 12.4.2, 12.5.1, 12.6.1, 12.7.1, 12.8.1, 12.9.1, 12.10.1, 12.11.1, 12.12.1,

12.13.2,12.14.1

134 © Ecma International 2013

Commented [AWB949]: Note that the conversion
semantics are like Stirng.prototype.concat rather than the +
operator.

Return the sequence of characters.consisting of the code units of head followed by the elements of middle.

Commented [AWB950]: Note that the conversion
semantics are like Stirng.prototype.concat rather than the +
operator.

Commented [AWB951]: Note that the conversion
semantics are like Stirng.prototype.concat rather than the +
operator.

secma

PrimaryExpression : CoverParenthesisedExpressionAndArrowParameterList

1. Letexpr be CoveredParenthesisedExpression of CoverParenthesisedExpressionAndArrowParameterList.
2. Return IsValidSimpleAssignmentTarget of expr.

ParenthesisedExpression : (Expression)

1. Return IsValidSimpleAssignmentTarget of Expression.

12.1.10.3 Runtime Semantics: Evaluation

PrimaryExpression : CoverParenthesisedExpressionAndArrowParameterList

1. Let expr be CoveredParenthesisedExpression of CoverParenthesisedExpressionAndArrowParameterList.
2. Return the result of evaluating expr.

ParenthesisedExpression : (Expression)

1. Return the result of evaluating Expression. This may be of type Reference.

NOTE This algorithm does not apply GetValue to the result of evaluating Expression. The principal motivation for this
is so that operators such as delete and typeof may be applied to parenthesised expressions.

12.2 Left-Hand-Side Expressions

Syntax

MemberExpression :
[Lexical goal InputElementRegExp] PrimaryExpression
MemberExpression [Expression]
MemberExpression . ldentifierName
MemberExpression TemplateLiteral
super [Expression]
super . ldentifierName
new super Argumentsopt
new MemberExpression. Arguments

NewExpression :
MemberExpression
new NewExpression

CallExpression :
MemberExpression Arguments
super Arguments
CallExpression Arguments
CallExpression [Expression]
CallExpression .. IdentifierName
CallExpression TemplateLiteral

Arguments :
()
(ArgumentList)

ArgumentList :
AssignmentExpression
. AssignmentExpression
ArgumentList , AssignmentExpression
ArgumentList , ... AssignmentExpression

© Ecma International 2013 135

secmd

LeftHandSideExpression :
NewExpression
CallExpression

12.2.1 Static Semantics
12.2.1.1 Static Semantics: Contains
With parameter symbol.
See also: 5.3,12.1.5.2, 14.1.3, 14.2.3, 14.4.3, 14.5.4
MemberExpression : MemberExpression . IdentifierName

1. If MemberExpression Contains symbol is true, return true.

2. If symbol is a ReservedWord, return false.

3. If symbol is an Identifier and StringValue of symbol is the same value as the StringValue of IdentifierName,
return true;

4. Return false.

MemberExpression : super . ldentifierName

1. If symbol is the ReservedWord super, return true.

2. If symbol is a ReservedWord, return false.

3. If symbol is an Identifier and StringValue of symbol is the same value as the StringValue of IdentifierName,
return true;

4. Return false.

CallExpression : CallExpression . IdentifierName

1. If CallExpression Contains symbol is true, return true.

2. If symbol is a ReservedWord, return false.

3. If symbol is an Identifier and StringValue of symbol is the same value as the StringValue of IdentifierName,
return true;

4. Return false.

MemberExpression : new super

1. If symbol isthe ReservedWord super, return true.
2. If symbol is the ReservedWord new, return true.
3. Return false.

MemberExpression : new super Arguments

1. If symbolis the ReservedWord super, return true.
2. If symbol isthe ReservedWord new, return true.
3. Return the result of Arguments Contains symbol.

12.2.1.2 Static Semantics: IsValidSimpleAssignmentTarget

See also: 12.1.0.2, 12.1.10.2, 12.3.2, 12.4.2, 12,51, 12.6.1, 12.7.1, 12.8.1, 12.9.1, 12.10.1, 12.11.1, 12.12.1,
12.13.2,12.14.1

CallExpression :

CallExpression [Expression 1]
CallExpression . IdentifierName

136 © Ecma International 2013

secma

MemberExpression :
MemberExpression [Expression]
MemberExpression . IdentifierName
super [Expression]
super . ldentifierName

1. Return true.

CallExpression :
ﬁ\/lemberExpression Arguments
super Arguments
CallExpression Arguments |

C ed [AWB1052]: These are false, because we

CallExpression TemplateLiteral
NewExpression : new NewExpression
MemberExpression :

new super ArgumentSopt

new MemberExpression Arguments

1. Return false.

12.2.2 Property Accessors

Properties are accessed by name, using either the dot notation:

MemberExpression . ldentifierName
CallExpression . IdentifierName

or the bracket notation:

MemberExpression [Expression 1
CallExpression [Expression 1

The dot notation is explained by the following syntactic conversion:

MemberExpression . ldentifierName

is identical in its behaviour to

MemberExpression. [<identifier-name-string>]

and similarly
CallExpression . IdentifierName

is identical in its behaviour to

CallExpression [<identifier-name-string>]

where <identifier-name-string> is a string literal containing the same sequence of characters after processing

of Unicode escape sequences as the IdentifierName.
12.2.2.1 Runtime Semantics: Evaluation

MemberExpression : MemberExpression [Expression 1]

ReturnlfAbrupt(baseValue).

NoohkwnE

© Ecma International 2013

Let baseReference be the result of evaluating MemberExpression.
Let baseValue be GetValue(baseReference).

Let propertyNameReference be the result of evaluating Expression.
Let propertyNameValue be GetValue(propertyNameReference).
ReturnlfAbrupt(propertyNameValue).

Let bv be CheckObjectCoercible(baseValue).

137

disallow host functions returning reference values.

secmd

ReturnIfAbrupt(bv).

Let propertyNameString be ToString(propertyNameValue).

10. If the code matched by the syntactic production that is being evaluated is strict mode code, let strict be true,
else let strict be false.

11. Return a value of type Reference whose base value is bv and whose referenced name is propertyNameString,

and whose strict reference flag is strict.

©

CallExpression : CallExpression [Expression]

Is evaluated in exactly the same manner as MemberExpression : MemberExpression [Expression] except that
the contained CallExpression is evaluated in step 1.

12.2.3 The new Operator
12.2.3.1 Runtime Semantics: Evaluation
NewExpression : new NewExpression

Let ref be the result of evaluating NewExpression.

Let constructor be GetValue(ref).

ReturnlfAbrupt(constructor).

If IsConstructor(constructor) is false, throw a TypeError exception.

Return thT result of calling the [[Construct]] internal method on constructor with an empty List as the
argument.

arwdE

MemberExpression : new MemberExpression Arguments

Let ref be the result of evaluating MemberExpression.

Let constructor be GetValue(ref).

ReturnIfAbrupt(constructor).

Let argList be the result of evaluating Arguments, producing an internal List of argument values (12.2.6).
ReturnlfAbrupt(argList).

If IsConstructor (constructor) is false, throw a TypeError exception.

Return the result of calling the [[Construct]] internal method on constructor, passing argList as the
argument.

Nouoh,rwnpE

12.2.4 Function Calls|

Commented [AWB953]: TODO probably need to do
something about new operators in tail position.

Ci ed [AWB754]: TODO: tail calls.

12.2.4.1 Runtime Semantics: Evaluation

CallExpression : MemberExpression Arguments

1. Let ref be the result of evaluating MemberExpression.

2. If this CallExpression is in a tail position (14.6) then let tailCall be true, otherwise let tailCall be false.
3. Return the result of the abstract operation EvaluateCall with arguments ref, Arguments, and tailCall.
CallExpression : CallExpression Arguments

1. Let ref be the result of evaluating CallExpression.

2. If this CallExpression is in a tail position (14.6) then let tailCall be true, otherwise let tailCall be false.
3. Return the result of the abstract operation EvaluateCall with arguments ref, Arguments, and tailCall.

12.2.4.2 Runtime Semantics: EvaluateCall

The abstract operation EvaluateCall takes as arguments a value ref, and a syntactic grammar production
arguments, and a Boolean argument tailPosition. It performs the following steps:

1. If Type(ref) is Reference, then
a. If IsPropertyReference(ref) is true, then

138 © Ecma International 2013

Jan 19 meeting notes: decision is to support tail calls in strict
mode only. Confirmed in Sept 2013 notes.

This is necessary because of the function.arguments
extension supported by the web for non-strict code.

oecha

i. [Return the result of the abstract operation EvaluateMethodCall with arguments ref,
arguments, and taiIPosition.l
b. Else, the base of ref is an Environment Record
i. LetthisValue be the result of calling the WithBaseObject concrete method of GetBase(ref).
ii. If thisValue is not undefined, then
1. Let newRef be a value of type Reference whose base value is thisValue and whose
referenced name is GetReferencedName(ref), and whose strict reference flag is
IsStrictReference(ref).
2. Return the result of the abstract operation EvaluateMethodCall with arguments
newRef, arguments, and tailPosition.
Else Type(ref) is not Reference,
a. LetthisValue be undefined.
Assert: This is a direct function call rather than a method call.
Let func be GetValue(ref).
ReturnlfAbrupt(func).
Let argList be the result of performing ArgumentListEvaluation of arguments.
ReturnlfAbrupt(argList).
If Type(func) is not Object, throw a TypeError exception.
If IsCallable(func) is false, throw a TypeError exception.
0. If tailPosition is true, then perform the PrepareForTailCall-abstract operation.
1. Let result be the result of calling the [[Call]] internal method on func, passing thisValue as the thisArgument
and argList as the argumentsList.
12. Assert: If tailPosition is true, the above call will not return here, butiinstead evaluation will continue with
the resumption of leafCallerContext as the running execution context.
13. Assert: If result is not an abrupt completion then Type(result) is an ECMAScript language type
14. Return result.

N

[a= e S i

12.2.4.3 Runtime Semantics: EvaluateMethodCall

The abstract operation EvaluateMethodCall takes as arguments a value ref, and a syntactic grammar production
arguments, and a Boolean argument tailPosition. It performs the following steps:

1. Assert: Type(ref) is Reference and IsPropertyReference(ref) is true
2. Let base be the result.of calling GetBase(ref).
3. [If HasPrimitiveBase(ref) is true, then
a. Assert: In this case, base will never be null or undefined.
b. Letbase be ToObject(base).|
Let argList be the result of performing ArgumentListEvaluation of arguments.
Returnl fAbrupt(argList).
Let thisValue be GetThisValue(ref).
Letkey be GetReferencedName(ref).
If tailPosition is true, then perform the PrepareForTailCall abstract operation.
Let result be the result of calling the [[[Invoke]]]internal method on base, passing key, argList, and
thisValue.
10. Assert: If tailPosition is true, the above [[Invoke]] will not return here, but instead evaluation will continue
with the resumption of leafCallerContext as the running execution context.
11. Assert: If result is not an abrupt completion then Type(result) is an ECMAScript language type
12. Return result.

© N U~

12.2.5 The super Keyword
Static Semantics
12.2.5.1 Static Semantics: Early Errors
MemberExpression :
super [Expression]

super . ldentifierName
new super Argumentsopt

© Ecma International 2013 139

(Commented [AWB1555]: Explict property references are
| handled as method calls.

Commented [AWB1556]: Implicit property references (via a
with binding or global object binding) are also handled as
method calls.

Commented [AWB1557]: This takes cares of property
access on primitive values.

(Commented [AWB1558]: It translate them into calls on the)

L [[MethodCall]] internal method of the base object.

secmd

CallExpression : super Arguments

e Itis a Syntax Error if the source code parsed with this production is global code that is not eval code.
e ltis a Syntax Error if the source code parsed with this production is eval code and the source code is
not being processed by a direct call to eval that is contained in function code.

12.2.5.2 Runtime Semantics: Evaluation
MemberExpression : super [Expression]

Let propertyNameReference be the result of evaluating Expression.

Let propertyNameValue be GetValue(propertyNameReference).

Let propertyKey be ToPropertyKey(propertyNameValue).

If the code matched by the syntactic production that is being evaluated is strict mode code, let strict be true,
else let strict be false.

5. Return the result of MakeSuperReference(propertyKey, strict).

el N

MemberExpression : super . IdentifierName

1. Let propertyKey be StringValue of IdentifierName.

2. If the code matched by the syntactic production that is being evaluated issstrict mode code, let strict be true,
else let strict be false.

3. Return the result of MakeSuperReference(propertyKey, strict).

MemberExpression : new super Argumentsopt

1. If the code matched by the syntactic production that is being evaluated is strict mode code, let strict be true,
else let strict be false.
Let ref be the result of MakeSuperReference(undefined, strict).
Let constructor be GetValue(ref).
ReturnlfAbrupt(constructor):
If Arguments is present, then
a. LetargList be.the result of evaluating Arguments, producing an internal List of argument values
(12.2.6).
b. ReturnIfAbrupt(argList).
6. Else,
a. LetargList be a new empty List.
If IsConstructor (constructor) is false, throw a TypeError exception.
8. Return.the result of calling the [[Construct]] internal method on constructor, passing argList as the
argument.

arown

~

CallExpression : super Arguments

1. If the code matched by the syntactic production that is being evaluated is strict mode code, let strict be true,
else let strict be false.

Let ref be the result of MakeSuperReference(undefined, strict).

ReturnlfAbrupt(ref).

If this CallExpression is in a tail position (13.7) then let tailCall be true, otherwise let tailCall be false.
Return the result of the abstract operation EvaluateMethodCall with arguments ref, Arguments, and tailCall.

abrwn

12.2.5.3 Runtime Semantics: MakeSuperReference(propertyKey, strict)

1. Letenv be the result of performing the GetThisEnvironment abstract operation.

2. If the result of calling the HasSuperBinding concrete method of env is false, then throw a ReferenceError
exception.

3. Let actualThis be the result of calling the GetThisBinding concrete method of env.

4. Let baseValue be the result of calling the GetSuperBase concrete method of env.

5. Let bv be CheckObjectCoercible(baseValue).

6. ReturnIfAbrupt(bv).

140 © Ecma International 2013

secma

7. If propertyKey is undefined, then
a. Let propertyKey be the result of calling the GetMethodName concrete method of env.
8. Return a value of type Reference that is a Super Reference whose base value is bv, whose referenced name is
propertyKey, whose thisValue is actualThis, and whose strict reference flag is strict.
12.2.6 Argument Lists
The evaluation of an argument list produces a List of values (see 6.2.2).
12.2.6.1 Runtime Semantics: ArgumentListEvaluation
See also: 12.1.9.2.1
Arguments: ()

1. Return an empty List.

ArgumentList : AssignmentExpression

1. Let ref be the result of evaluating AssignmentExpression.
2. Letarg be GetValue(ref).

3. ReturnIfAbrupt(arg).

4. Return a List whose sole item is arg.

ArgumentList: ... AssignmentExpression

1. Let list be an empty List.
2. Let spreadRef be the result of evaluating AssignmentExpression.
3. Let spreadValue be GetValue(spreadRef).
4. Let spreadObj be ToObject(spreadValue).
5. ReturnIfAbrupt(spreadObj).
6. Let lenVal be the result of calling Get(spreadObj, "1length").
7. Let spreadLen be ToUint32(lenVal).
8. ReturnIfAbrupt(spreadLen).
9. Letn=0.
10. Repeat, while n < spreadLen
a. Let nextArg be the result of calling Get(spreadObj, ToString(n)).
b. ReturnlfAbrupt(nextArg).
c. Append nextArg as the last element of list.
d. Letn=n+l.
11. Return list.

ArgumentList : ArgumentList , AssignmentExpression

1. Let precedingArgs be the result of evaluating ArgumentList.

2. ReturnIfAbrupt(precedingArgs).

3. Let ref be the result of evaluating AssignmentExpression.

4. Letarg be GetValue(ref).

5. ReturnlfAbrupt(arg).

6. Return a List whose length is one greater than the length of precedingArgs and whose items are the items of
precedingArgs, in order, followed at the end by arg which is the last item of the new list.

ArgumentList : ArgumentList , ... AssignmentExpression

1. Let precedingArgs be an empty List.

2. Let spreadRef be the result of evaluating AssignmentExpression.

3. Let spreadValue be GetValue(spreadRef).

4. Let spreadObj be ToObject(spreadValue).

5. ReturnIfAbrupt(spreadObj).

© Ecma International 2013 141

Commented [AW59]: Note that the value the spread
operator is applied to is coerced to an Object.

Commented [AW60]: Note that the value the spread
operator is applied to is coerced to an Object.

secmd

Let lenVal be the result of calling Get(spreadObj, "length").
Let spreadLen be ToUint32(lenVal).
ReturnlfAbrupt(spreadLen).
Letn=0.
0. Repeat, while n < spreadLen
a. Let nextArg be the result of calling Get(spreadObj, ToString(n)).
b. ReturnlfAbrupt(nextArg).
c. Append nextArg as the last element of precedingArgs.
d. Letn=n+l.
11. Return precedingArgs.

Boo~N®

12.2.7 Tagged Templates

12.2.7.1 Runtime Semantics: Evaluation

MemberExpression : MemberExpression TemplateLiteral

1. Let tagRef be the result of evaluating MemberExpression.

2. If this MemberExpression is in a tail position (13.7) then let tailCall be true, otherwise let tailCall be false.

3. Return the result of the abstract operation EvaluateCall with arguments tagRef, TemplateLiteral, and
tailCall.

CallExpression : CallExpression TemplateLiteral

1. Let tagRef be the result of evaluating CallExpression.

2. If this CallExpression is in a tail position (13.7).then let tailCall be true, otherwise let tailCall be false.

3. Return the result of the abstract operation EvaluateCall with arguments tagRef, TemplateLiteral, and
tailCall.

12.3 Postfix Expressions

Syntax
PostfixExpression :
LeftHandSideExpression
LeftHandSideExpression [no LineTerminator here]. ++
LeftHandSideExpression [no LineTerminator here] ——
12.3.1 Static Semantics: Early Errors
PostfixExpression :
LeftHandSideExpression [no LineTerminator here] ++
LeftHandSideExpression ' [no LineTerminator here] —-
e ltis an early Reference Error if IsValidSimpleAssignmentTarget of LeftHandSideExpression is false.
12.3.2 Static Semantics: IsValidSimpleAssignmentTarget

See also: 12.1.0.2, 12.1.10.2, 12.2.1.2, 12.4.2, 125.1, 12.6.1, 12.7.1, 12.8.1, 12.9.1, 12.10.1, 12.11.1,
12.12.1,12.13.2,12.14.1

PostfixExpression :
LeftHandSideExpression [no LineTerminator here] ++
LeftHandSideExpression [no LineTerminator here] --

1. Return false.

142 © Ecma International 2013

secma

12.3.3 Postfix Increment Operator
12.3.3.1 Runtime Semantics: Evaluation
PostfixExpression : LeftHandSideExpression [no LineTerminator here] ++

Let Ihs be the result of evaluating LeftHandSideExpression.

Let oldValue be ToNumber(GetValue(lhs)).

ReturnlfAbrupt(oldValue).

Let newValue be the result of adding the value 1 to oldValue, using the same rules as for the + operator (see
12.6.4).

5. Let status be PutValue(lhs, newValue).

6. ReturnlfAbrupt(status).

7. Return oldValue.

rwNE

12.3.4 Postfix Decrement Operator
12.3.4.1 Runtime Semantics: Evaluation
PostfixExpression : LeftHandSideExpression [no LineTerminator here] ==

1. Let Ihs be the result of evaluating LeftHandSideExpression.

2. LetoldVvalue be ToNumber(GetValue(lhs)).

3. Let newValue be the result of subtracting the value 1 from oldValue, using the same rules as for the -
operator (12.6.4).

4. Let status be PutValue(lhs, newValue).

5. ReturnlfAbrupt(status).

6. Return oldValue.

12.4 Unary Operators

Syntax

UnaryExpression :
PostfixExpression
delete UnaryExpression
void UnaryExpression
typeo£f UnaryExpression
++ UnaryExpression
-="UnaryExpression
+ UnaryExpression
- UnaryExpression
~ UnaryExpression
! UnaryExpression

12.4.1 Static Semantics: Early Errors
UnaryExpression :
++ UnaryExpression
-- UnaryExpression
e ltis an early Reference Error if IsValidSimpleAssignmentTarget of UnaryExpression is false.

12.4.2 Static Semantics: IsValidSimpleAssignmentTarget

See also: 12.1.0.2, 12.1.10.2, 12.2.1.2, 12.3.2, 12.5.1, 12.6.1, 12.7.1, 12.8.1, 12.9.1, 12.10.1, 12.11.1,
12.12.1, 12.13.2, 12.14.1

© Ecma International 2013 143

secmd

UnaryExpression :
delete UnaryExpression
void UnaryExpression
typeof UnaryExpression
++ UnaryExpression
-- UnaryExpression
+ UnaryExpression
- UnaryExpression
~ UnaryExpression
! UnaryExpression

1. Return false.

12.4.3 The delete Operator

12.4.3.1 Static Semantics: Early Errors
UnaryExpression : delete UnaryExpression

e Itis a Syntax Error if the UnaryExpression is contained in strict code and the derived UnaryExpression is
PrimaryExpression : Identifier.
e Itis a Syntax Error if the derived UnaryExpression is
PrimaryExpression : CoverParenthesisedExpressionAndArrowParameterList
and derives a production that, if used in place of UnaryExpression, would produce a Syntax Error
according to these rules. This rule is recursively applied.

NOTE The last rule means that expressions such as
delete (((foo0)))
produce early errors because of recursive application of the first rule.

12.4.3.2 Runtime Semantics: Evaluation
UnaryExpression : delete UnaryExpression

Let ref be the result of evaluating UnaryExpression.
ReturnlfAbrupt(ref).
If Type(ref) is not Reference, return true.
If IsUnresolvableReference(ref) is true, then,
a.« If IsStrictReference(ref) is.true, then throw a SyntaxError exception.
b. Return true.
5. If IsPropertyReference(ref) is true, then
a.. If IsSuperReference(ref), thenthrow a ReferenceError exception.
b. Let deleteStatus be the result of calling the [[Delete]] internal method on ToObject(GetBase(ref)),
providing GetReferencedName(ref) as the argument.
¢. ReturnlfAbrupt(deleteStatus).
d. If deleteStatus.is false and IsStrictReference(ref) is true, then throw a TypeError exception.
e. Return deleteStatus.
6. Else ref is a Reference to an Environment Record binding,
a. Let bindings be GetBase(ref).
b. Return the result of calling the DeleteBinding concrete method of bindings, providing
GetReferencedName(ref) as the argument.

Eal o o

NOTE When a delete operator occurs within strict mode code, a SyntaxError exception is thrown if its
UnaryExpression is a direct reference to a variable, function argument, or function name. In addition, if a delete operator
occurs within strict mode code and the property to be deleted has the attribute { [[Configurable]]: false }, a TypeError
exception is thrown.

144 © Ecma International 2013

oechd

12.4.4 The void Op
Runtime Semantics:

UnaryExpression : voi

erator
Evaluation

d UnaryExpression

1. Letexpr be the result of evaluating UnaryExpression.
2. Let status be GetValue(expr).
3. ReturnIfAbrupt(status).

4. Return undefined.

NOTE GetValue must be called even though its value is not used because it may have observable side-effects.

12.4.5 The typeof Operator

12.45.1 Runtime S

emantics: Evaluation

UnaryExpression : typeof UnaryExpression

1. Letval be the result of evaluating UnaryExpression.
2. If Type(val) is Reference, then
a. If IsUnresolvableReference(val) is true, return "undefined".

b. Letval be

w

GetValue(val).

ReturnlfAbrupt(val).

4. Return a String determined by Type(val) according to Table 31.

Table 31 — typeof Operator Results

Type of val Result
Undefined "undefined"
Null "object"
Boolean "boolean"
Number "number"
String "string"
Symbol "symbol"
Object (ordinary and does "object"

not implement [[Call]])

Object (standard exotic and | "object"
does not implement [[Call]])

Object (implements [[Call]]) | "function"

Object (non-standard exotic
and does not implement

[[Calll])

Implementation-defined. May not be
"undefined", "boolean",
"number"”, "symbol", or
"string".

NOTE Implementations are discouraged from defining new typeof result values for non-standard exotic objects. If
possible "object"should be used for such objects.

12.4.6 Prefix Increm

ent Operator

12.4.6.1 Runtime Semantics: Evaluation

UnaryExpression : ++

UnaryExpression

1. Letexpr be the result of evaluating UnaryExpression.

2. Letoldvalue be T

© Ecma International 2013

oNumber(GetValue(expr)).

145

secmd

ReturnIfAbrupt(oldValue).

Let newValue be the result of adding the value 1 to oldValue, using the same rules as for the + operator (see
12.6.4).

5. Let status be PutValue(expr, newValue).

6. ReturnlfAbrupt(status).

7. Return newValue.

> w

12.4.7 Prefix Decrement Operator

12.4.7.1 Runtime Semantics: Evaluation

UnaryExpression : =- UnaryExpression

1. Letexpr be the result of evaluating UnaryExpression.

2. LetoldValue be ToNumber(GetValue(expr)).

3. ReturnlfAbrupt(oldValue).

4. Let newValue be the result of subtracting the value 1 from oldValue, using the same rules as for the -

operator (see 12.6.4).

Let status be PutValue(expr, newValue).
ReturnIfAbrupt(status).

Return newValue.

Nowu

12.4.8 Unary + Operator

NOTE The unary + operator converts its operand to Number type.
12.4.8.1 Runtime Semantics: Evaluation

UnaryExpression : + UnaryExpression

1. Let expr be the result of evaluating UnaryExpression.
2. Return ToNumber(GetValue(expr)).

12.4.9 Unary - Operator

NOTE The unary - operator converts its operand to Number type and then negates it. Negating +0 produces -0, and
negating —0 produces +0.

12.4.9.1 Runtime Semantics: Evaluation
UnaryExpression : = UnaryExpression

Let expr be the result of evaluating UnaryExpression.

Let oldValue be ToNumber(GetValue(expr)).

ReturnlfAbrupt(oldValue).

If oldValue is NaN, return NaN.

Return the result of negating oldValue; that is, compute a Number with the same magnitude but opposite
sign.

arwNE

12.4.10 Bitwise NOT Operator (~)

12.4.10.1 Runtime Semantics: Evaluation
UnaryExpression : ~ UnaryExpression

Let expr be the result of evaluating UnaryExpression.
Let oldValue be Tolnt32(GetValue(expr)).

ReturnlfAbrupt(oldValue).
Return the result of applying bitwise complement to oldValue. The result is a signed 32-bit integer.

Hwn e

146 © Ecma International 2013

secma

12.4.10.2 Logical NOT Operator (!)
Runtime Semantics: Evaluation
UnaryExpression : ! UnaryExpression

Let expr be the result of evaluating UnaryExpression.
Let oldValue be ToBoolean(GetValue(expr)).
ReturnlfAbrupt(oldValue).

If oldValue is true, return false.

Return true.

garwnE

12.5 Multiplicative Operators

Syntax

MultiplicativeExpression :
UnaryExpression
MultiplicativeExpression * UnaryExpression
MultiplicativeExpression / UnaryExpression
MultiplicativeExpression $ UnaryExpression

12.5.1 Static Semantics: IsValidSimpleAssignmentTarget

See also: 12.1.0.2, 12.1.10.2, 12.2.1.2, 12.3.2, 12.4.2, 12.6.1, 12.7.1, 12.8.1, 12.9.1, 12.10.1, 12.11.1,
12.12.1,12.13.2,12.14.1

MultiplicativeExpression :
MultiplicativeExpression * UnaryExpression
MultiplicativeExpression / UnaryExpression
MultiplicativeExpression % UnaryExpression

1. Return false.
12.5.2 Runtime Semantics: Evaluation

The production MultiplicativeExpression : MultiplicativeExpression @ UnaryExpression, where @ stands for one
of the operators.in the above definitions, is evaluated as follows:

Let left be the result of evaluating MultiplicativeExpression.
Let leftvalue be GetValue(left).

ReturnlfAbrupt(leftValue).

Let right be the result of evaluating UnaryExpression.

Let rightValue be GetValue(right).

Let Inum be ToNumber(leftValue).

ReturnIfAbrupt(Inum).

Let rnum be ToNumber(rightValue).

ReturnIfAbrupt(rnum).

0. Return the result of applying the specified operation (*, /, or %) to Inum and rnum. See the Notes below
12.5.2.1,12.5.2.2, 12.5.2.3.

BOONTO WD PP

12.5.2.1 Applying the * Operator

The * operator performs multiplication, producing the product of its operands. Multiplication is commutative.
Multiplication is not always associative in ECMAScript, because of finite precision.

The result of a floating-point multiplication is governed by the rules of IEEE 754 binary double-precision
arithmetic:

o If either operand is NaN, the result is NaN.

© Ecma International 2013 147

secmd

e The sign of the result is positive if both operands have the same sign, negative if the
operands have different signs.

e Multiplication of an infinity by a zero results in NaN.

e Multiplication of an infinity by an infinity results in an infinity. The sign is determined by the
rule already stated above.

e Multiplication of an infinity by a finite nonzero value results in a signed infinity. The sign is
determined by the rule already stated above.

e In the remaining cases, where neither an infinity or NaN is involved, the product is computed
and rounded to the nearest representable value using IEEE 754 round-to-nearest mode. If
the magnitude is too large to represent, the result is then an infinity of appropriate sign. If
the magnitude is too small to represent, the result is then a zero of appropriate sign. The
ECMAScript language requires support of gradual underflow as defined by IEEE 754.

12.5.2.2 Applying the / Operator

The / operator performs division, producing the quotient of its operands. The left operand is the dividend and
the right operand is the divisor. ECMAScript does not perform integer division. The operands and result of all
division operations are double-precision floating-point numbers: The result of division is determined by the
specification of IEEE 754 arithmetic:

e If either operand is NaN, the result is NaN.

e The sign of the result is positive if both operands have the same sign, negative if the
operands have different signs.

e Division of an infinity by an infinity results in NaN.

e Division of an infinity by a zero‘results in an infinity. The sign is determined by the rule
already stated above.

e Division of an infinity by a nonzero finite value results in-a signed infinity. The sign is
determined by the rule already stated above.

e Division of a finite value by an infinity results in zero. The sign is determined by the rule
already stated above.

e Division of a zero by a zero results in NaN; division of zero by any other finite value results
in zero, with the sign determined by the rule already stated above.

e Division of a nonzero finite value by a zero results in a signed infinity. The sign is
determined by the rule already stated above.

e In the remaining cases, where neither an infinity, nor a zero, nor NaN is involved, the
quotient.is computed and rounded to the nearest representable value using IEEE 754 round -
to-nearest mode. If the magnitude is too large to represent, the operation overflows; the
result is then an infinity of appropriate sign. If the magnitude is too small to represent, the
operation underflows and the result is a zero of the appropriate sign. The ECMAScript
language requires support of gradual underflow as defined by IEEE 754.

12.5.2.3 Applying the % Operator

The % operator yields the remainder of its operands from an implied division; the left operand is the dividend
and the right operand is the divisor.

NOTE In C and C++, the remainder operator accepts only integral operands; in ECMAScript, it also accepts floating-
point operands.

The result of a floating-point remainder operation as computed by the % operator is not the same as the
“remainder” operation defined by IEEE 754. The IEEE 754 “remainder” operation computes the remainder
from a rounding division, not a truncating division, and so its behaviour is not analogous to that of the usual
integer remainder operator. Instead the ECMAScript language defines % on floating-point operations to
behave in a manner analogous to that of the Java integer remainder operator; this may be compared with the
C library function fmod.

The result of an ECMAScript floating-point remainder operation is determined by the rules of IEEE arithmetic:
o If either operand is NaN, the result is NaN.

148 © Ecma International 2013

secma

e The sign of the result equals the sign of the dividend.

e If the dividend is an infinity, or the divisor is a zero, or both, the result is NaN.

e If the dividend is finite and the divisor is an infinity, the result equals the dividend.

e |If the dividend is a zero and the divisor is nonzero and finite, the result is the same as the
dividend.

e In the remaining cases, where neither an infinity, nor a zero, nor NaN is involved, the
floating-point remainder r from a dividend n and a divisor d is defined by the mathematical
relation r = n — (d x g) where q is an integer that is negative only if n/d is negative and
positive only if n/d is positive, and whose magnitude is as large as possible without
exceeding the magnitude of the true mathematical quotient of n and d. r is computed and
rounded to the nearest representable value using IEEE 754 round-to-nearest mode.

12.6 Additive Operators

Syntax

AdditiveExpression :
MultiplicativeExpression
AdditiveExpression + MultiplicativeExpression
AdditiveExpression - MultiplicativeExpression

12.6.1 Static Semantics: IsValidSimpleAssignmentTarget

See also: 12.1.0.2, 12.1.10.2, 12.2.1.2, 12.3.2, 12.4.2, 1251, 12.7.1, 12.8.1, 12.9.1, 12.10.1, 12.11.1,
12.12.1,12.13.2, 12.14.1

AdditiveExpression :
AdditiveExpression + MultiplicativeExpression
AdditiveExpression - MultiplicativeExpression

1. Return false.

12.6.2 The Addition operator (+)

NOTE The addition operator either performs string concatenation or numeric addition.
12.6.2.1 Runtime Semantics: Evaluation

AdditiveExpression : AdditiveExpression + MultiplicativeExpression

Let Iref be the result of evaluating AdditiveExpression.
Let lval be GetValue(lIref).
ReturnlfAbrupt(lval).
Let rref be the result of evaluating MultiplicativeExpression.
Let rval be GetValue(rref).
ReturnIfAbrupt(rval).
Let Iprim be ToPrimitive(lval).
ReturnlfAbrupt(lprim).
Let rprim be ToPrimitive(rval).
0. ReturnlfAbrupt(rprim).
1. If Type(lprim) is String or Type(rprim) is String, then
a. Return the String that is the result of concatenating ToString(Iprim) followed by ToString(rprim)
12. Return the result of applying the addition operation to ToNumber(Iprim) and ToNumber(rprim). See the
Note below 12.6.4.

NOTE 1 No hint is provided in the calls to ToPrimitive in steps 7 and 9. All standard ECMAScript objects except Date
objects handle the absence of a hint as if the hint Number were given; Date objects handle the absence of a hint as if the
hint String were given. Exotic objects may handle the absence of a hint in some other manner.

RPBOONOOA~LNDE

© Ecma International 2013 149

secmd

NOTE 2

Step 11 differs from step 5 of the Abstract Relational Comparison algorithm (7.2.8), by using the logical-or

operation instead of the logical-and operation.

12.6.3 The Subtraction Operator (-)

12.6.3.1

Runtime Semantics: Evaluation

AdditiveExpression : AdditiveExpression - MultiplicativeExpression

@oNOGO A~ WNE

Let Iref be the result of evaluating AdditiveExpression.

Let Ival be GetValue(lIref).

ReturnlfAbrupt(lval).

Let rref be the result of evaluating MultiplicativeExpression.
Let rval be GetValue(rref).

ReturnlfAbrupt(rval).

Let Inum be ToNumber(lval).

ReturnlfAbrupt(Inum).

. Let rnum be ToNumber(rval).

10. ReturnIfAbrupt(rnum).
11. Return the result of applying the subtraction operation to Inum and rnum. See the note below 12.6.4.

12.6.4 Applying the Additive Operators to Numbers

The + operator performs addition when applied to two operands:of numeric type, producing the sum of the
operands. The - operator performs subtraction, producing the difference of two numeric operands.

Addition is a commutative operation, but not always associative.

The result of an addition is determined using the rules of IEEE 754 binary double-precision arithmetic:

NOTE

If either operand is NaN, the result is NaN.

The sum of two infinities of opposite sign is NaN.

The sum of twodinfinities of the same sign is the infinity of that sign.

The sum of an infinity and a finite value is equal to the infinite operand.

The sum of two negative zeroes.is —0. The sum of two positive zeroes, or of two zeroes of
opposite sign, is +0.

The sum of a zero and a nonzero finite value is equal to the nonzero operand.

The sum of two nonzero finite values of the same magnitude and opposite sign is +0.

In the remaining cases, where neither an infinity, nor a zero, nor NaN is involved, and the
operands have the same sign or have different magnitudes, the sum is computed and
rounded to the nearest representable value using IEEE 754 round-to-nearest mode. If the
magnitude is too large to represent, the operation overflows and the result is then an infinity
of appropriate sign. The ECMAScript language requires support of gradual underflow as
defined by IEEE 754.

The - operator performs subtraction when applied to two operands of numeric type, producing the difference

of its operands; the left operand is the minuend and the right operand is the subtrahend. Given numeric operands a and b,
it is always the case that a-b produces the same result as a + (-b) .

12.7 Bitwise Shift Operators

Syntax

ShiftExpression :
AdditiveExpression
ShiftExpression << AdditiveExpression
ShiftExpression >> AdditiveExpression
ShiftExpression >>> AdditiveExpression

150

© Ecma International 2013

secma

12.7.1 Static Semantics: IsValidSimpleAssignmentTarget

See also: 12.1.0.2, 12.1.10.2, 12.2.1.2, 12.3.2, 12.4.2, 1251, 12.6.1, 12.8.1, 12.9.1, 12.10.1, 12.11.1,
12.12.1,12.13.2, 12.14.1

ShiftExpression :
ShiftExpression << AdditiveExpression
ShiftExpression >> AdditiveExpression
ShiftExpression >>> AdditiveExpression

1. Return false.

12.7.2 The Left Shift Operator (<<)

NOTE Performs a bitwise left shift operation on the left operand by the amount specified by the right operand.
12.7.2.1 Runtime Semantics: Evaluation

ShiftExpression : ShiftExpression << AdditiveExpression

Let Iref be the result of evaluating ShiftExpression.

Let Ival be GetValue(lref).

ReturnIfAbrupt(lval).

Let rref be the result of evaluating AdditiveExpression.

Let rval be GetValue(rref).

ReturnifAbrupt(rval).

Let Inum be Tolnt32(lval).

ReturnlfAbrupt(Inum).

. Let rnum be ToUint32(rval).

0. ReturnlfAbrupt(rnum).

1. Let shiftCount be the result of-masking out all but the'least significant 5 bits of rnum, that is, compute rnum
& Ox1F.

12. Return the result of left:shifting Inum by shiftCount bits. The result is a signed 32-bit integer.

BBOONOOALNE

12.7.3 The Signed Right Shift Operator (>>)

NOTE Performs a sign-filling bitwise right shift operation on the left operand by the amount specified by the right
operand.

12.7.3.1 < Runtime Semantics: Evaluation
ShiftExpression : ShiftExpression >> AdditiveExpression

Let Iref be the result of evaluating ShiftExpression.

Let lval be GetValue(Iref);

ReturnlfAbrupt(lval).

Let rref be the result of evaluating AdditiveExpression.

Let rval be GetValue(rref).

ReturnlfAbrupt(rval).

Let Inum be Tolnt32(lval).

ReturnlfAbrupt(Inum).

Let rnum be ToUint32(rval).

0. ReturnIfAbrupt(rnum).

1. Let shiftCount be the result of masking out all but the least significant 5 bits of rnum, that is, compute rnum
& Ox1F.

12. Return the result of performing a sign-extending right shift of Inum by shiftCount bits. The most significant

bit is propagated. The result is a signed 32-bit integer.

PBOONOOTAWLNE

© Ecma International 2013 151

secmd

12.7.4 The Unsigned Right Shift Operator (>>>)

NOTE Performs a zero-filling bitwise right shift operation on the left operand by the amount specified by the right
operand.

12.7.4.1 Runtime Semantics: Evaluation
ShiftExpression : ShiftExpression >>> AdditiveExpression

Let Iref be the result of evaluating ShiftExpression.

Let Ival be GetValue(lref).

ReturnlfAbrupt(lval).

Let rref be the result of evaluating AdditiveExpression.

Let rval be GetValue(rref).

ReturnlfAbrupt(rval).

Let Inum be ToUint32(lval).

ReturnlfAbrupt(Inum).

Let rnum be ToUint32(rval).

0. ReturnlfAbrupt(rnum).

1. Let shiftCount be the result of masking out all but the least.significant 5 bits of rnum, that is, compute rnum
& Ox1F.

12. Return the result of performing a zero-filling right shift of Inum by shiftCount bits. Vacated bits are filled

with zero. The result is an unsigned 32-bit integer.

BPRoo~Noa~wNE

12.8 Relational Operators

NOTE The result of evaluating a relational operator is always of type Boolean, reflecting whether the relationship
named by the operator holds between its two operands.

Syntax

RelationalExpression :
ShiftExpression
RelationalExpression < ShiftExpression
RelationalExpression > ShiftExpression
RelationalExpression <= ShiftExpression
RelationalExpression >= ShiftExpression
RelationalExpression instanceof ShiftExpression
RelationalExpression in ShiftExpression

RelationalExpressionNoln :
ShiftExpression
RelationalExpressionNoln < ShiftExpression
RelationalExpressionNoln > ShiftExpression
RelationalExpressionNoln <= ShiftExpression
RelationalExpressionNoln >= ShiftExpression
RelationalExpressionNoln instanceof ShiftExpression

The semantics of the RelationalExpressionNoln productions are the same as the RelationalExpression
productions except that the contained RelationalExpressionNoln is used in place of the contained
RelationalExpression.

NOTE The “NolIn” variants are needed to avoid confusing the in operator in a relational expression with the in
operator in a for statement.

12.8.1 Static Semantics: IsValidSimpleAssignmentTarget

See also: 12.1.0.2, 12.1.10.2, 12.2.1.2, 12.3.2, 12.4.2, 125.1, 12.6.1, 12.7.1, 12.9.1, 12.10.1, 12.11.1,
12.12.1,12.13.2,12.14.1

152 © Ecma International 2013

secma

RelationalExpression :
RelationalExpression < ShiftExpression
RelationalExpression > ShiftExpression
RelationalExpression <= ShiftExpression
RelationalExpression >= ShiftExpression
RelationalExpression instanceof ShiftExpression
RelationalExpression in ShiftExpression

1. Return false.
12.8.2 Runtime Semantics: Evaluation
RelationalExpression : RelationalExpression < ShiftExpression

Let Iref be the result of evaluating RelationalExpression.

Let Ival be GetValue(lref).

ReturnIfAbrupt(lval).

Let rref be the result of evaluating ShiftExpression.

Let rval be GetValue(rref).

Let r be the result of performing Abstract Relational Comparison Ival < rval. (see 7.2.8)
ReturnlfAbrupt(r).

If r is undefined, return false. Otherwise, return r.

PN WN

RelationalExpression : RelationalExpression > ShiftExpression

Let Iref be the result of evaluating RelationalExpression.

Let lval be GetValue(lIref).

ReturnlfAbrupt(lval).

Let rref be the result of evaluating ShiftExpression.

Let rval be GetValue(rref).

Let r be the result of performing Abstract Relational Comparison rval < Ival with LeftFirst equal to false.
ReturnlfAbrupt(r).

If r is undefined, return false. Otherwise, return r.

©ONO A WNE

RelationalExpression : RelationalExpression <= ShiftExpression

Let Iref be the result of evaluating RelationalExpression.

Let Ival be GetValue(lref).

ReturntfAbrupt(lval).

Let rref be the result of evaluating ShiftExpression.

Let rval be GetValue(rref).

Let r be the result of performing Abstract Relational Comparison rval < Ival with LeftFirst equal to false.
ReturnlfAbrupt(r).

If r is true or undefined, return false. Otherwise, return true.

ONO A~ WNE

RelationalExpression : RelationalExpression >= ShiftExpression

Let Iref be the result of evaluating RelationalExpression.

Let Ival be GetValue(lref).

ReturnlfAbrupt(lval).

Let rref be the result of evaluating ShiftExpression.

Let rval be GetValue(rref).

Let r be the result of performing Abstract Relational Comparison lval < rval.
ReturnIfAbrupt(r).

If r is true or undefined, return false. Otherwise, return true.

PN A WNE

RelationalExpression : RelationalExpression instanceof ShiftExpression

1. Let Iref be the result of evaluating RelationalExpression.

© Ecma International 2013 153

secmd

Let Ival be GetValue(lref).

ReturnlfAbrupt(lval).

Let rref be the result of evaluating ShiftExpression.
Let rval be GetValue(rref).

ReturnlfAbrupt(rval).

Return the result of instanceofOperator(lval, rval).

Nooakrown

RelationalExpression : RelationalExpression in ShiftExpression

Let Iref be the result of evaluating RelationalExpression.

Let Ival be GetValue(lref).

ReturnlfAbrupt(lval).

Let rref be the result of evaluating ShiftExpression.

Let rval be GetValue(rref).

ReturnlfAbrupt(rval).

If Type(rval) is not Object, throw a TypeError exception.
Return the result of HasProperty(rval, ToPropertyKey(lval)).

N~ WNE

12.8.3 Runtime Semantics: InstanceofOperator(O, C)

The abstract operation instanceofOperator(O, C) implements the generic algorithm for determining if an object
O inherits from the inheritance path defined by constructor C. This abstract operation performs the following
steps:

If Type(C) is not Object, throw a TypeError exception.
Let instOfHandler be the result of GetMethod(C,@ @haslnstance).
ReturnlfAbrupt(instOfHandler).
If instOfHandler is not undefined, then
a. Let result be the result of calling the [[Call]] internal method of instOfHandler passing C as
thisArgument and a new List containing O as argumentsList.
b. Return ToBoolean(result):
5. If IsCallable(C) is false, then throw a TypeError exception.
6. Return the result of OrdinaryHaslnstance(C, O).

rwnpE

NOTE Steps 5 and .6 provide compatibility with previous editions of ECMAScript that did not use a @ @hasInstance
method to define the instanceof operator semantics. If a function object does not define or inherit @ @haslInstance it
uses the default instanceof semantics.

12.9 Equality Operators

NOTE The result of evaluating an equality operator is always of type Boolean, reflecting whether the relationship
named by the operator holds between its two operands.

Syntax

EqualityExpression :
RelationalExpression
EqualityExpression == RelationalExpression
EqualityExpression !'= RelationalExpression
EqualityExpression RelationalExpression
EqualityExpression RelationalExpression

EqualityExpressionNoln :
RelationalExpressionNoln
EqualityExpressionNoln == RelationalExpressionNoln
EqualityExpressionNoln RelationalExpressionNoln
EqualityExpressionNoln === RelationalExpressionNoln
EqualityExpressionNoln == RelationalExpressionNoln

154 © Ecma International 2013

secma

The semantics of the EqualityExpressionNoln productions are the same as the EqualityExpression productions
except that the contained EqualityExpressionNoln and RelationalExpressionNoln are used in place of the
contained EqualityExpression and RelationalExpression, respectively.

12.9.1 Static Semantics: IsValidSimpleAssignmentTarget

See also: 12.1.0.2, 12.1.10.2, 12.2.1.2, 12.3.2, 12.4.2, 12.5.1, 12.6.1, 12.7.1, 12.8.1, 12.10.1, 12.11.1,
12.12.1,12.13.2, 12.14.1

EqualityExpression :

EqualityExpression == RelationalExpression
EqualityExpression != RelationalExpression
EqualityExpression === RelationalExpression

EqualityExpression !'== RelationalExpression
1. Return false.
12.9.2 Runtime Semantics: Evaluation
EqualityExpression : EqualityExpression == RelationalExpression

Let Iref be the result of evaluating EqualityExpression.

Let Ival be GetValue(lref).

ReturnlfAbrupt(lval).

Let rref be the result of evaluating RelationalExpression.

Let rval be GetValue(rref).

ReturnifAbrupt(rval).

Return the result of performing Abstract Equality Comparison rval == lval.

NouorwNE

EqualityExpression : EqualityExpression != RelationalExpression

1. Let Iref be the result of evaluating EqualityExpression.

2. Let Ival be GetValue(lref).

3. ReturnIfAbrupt(lval).

4. Let rref be the result of evaluating RelationalExpression.

5. Let rval be GetValue(rref).

6. ReturnIfAbrupt(rval).

7. Letr be the result-of performing Abstract Equality Comparison rval == lval.
8. Ifris true, return false. Otherwise, return true.

EqualityExpression : EqualityExpression === RelationalExpression

1. Let Iref be the result of evaluating EqualityExpression.

2. Let Ival be GetValue(Iref).

3. ReturnIfAbrupt(lval)

4. Let rref be the result of evaluating RelationalExpression.

5. Let rval be GetValue(rref).

6. ReturnIfAbrupt(rval).

7. Return the result of performing Strict Equality Comparison rval === lval.

EqualityExpression : EqualityExpression !'== RelationalExpression

Let Iref be the result of evaluating EqualityExpression.

Let lval be GetValue(lIref).

ReturnlfAbrupt(lval).

Let rref be the result of evaluating RelationalExpression.

Let rval be GetValue(rref).

ReturnlfAbrupt(rval).

Let r be the result of performing Strict Equality Comparison rval === Ival.

Noohr~wnE

© Ecma International 2013 155

secmd

8. If ristrue, return false. Otherwise, return true.

NOTE 1 Given the above definition of equality:

e String comparison can be forced by: "" + a == "" + b.
e Numeric comparison can be forced by: +a == +b.
e Boolean comparison can be forced by: 'a == !b.

NOTE 2 The equality operators maintain the following invariants:
e A !=Bisequivalentto ! (A==B).
e A ==Bis equivalent to B == A, except in the order of evaluation of A and B.

NOTE 3 The equality operator is not always transitive. For example, there might be two distinct String objects, each
representing the same String value; each String object would be considered equal to the String value by the == operator,
but the two String objects would not be equal to each other. For Example:

e new String("a") =="a" and "a" == new String("a")are both true.

e new String("a") ==new String("a") is false.

NOTE 4 Comparison of Strings uses a simple equality test on sequences of code unit values. There is no attempt to
use the more complex, semantically oriented definitions of character or string equality and collating order defined in the
Unicode specification. Therefore Strings values that are canonically equal according to the Unicode standard could test as
unequal. In effect this algorithm assumes that both Strings are already in normalised form.

12.10 Binary Bitwise Operators

Syntax

BitwiseANDEXxpression :
EqualityExpression
BitwiseANDEXxpression & EqualityExpression

BitwiseANDEXxpressionNoln :
EqualityExpressionNoln
BitwiseANDExpressionNoIn & EqualityExpressionNoln

BitwiseXORExpression :
BitwiseANDEXxpression
BitwiseXORExpression ~ BitwiseANDEXxpression

BitwiseXORExpressionNoln.:
BitwiseANDExpressionNoIn
BitwiseXORExpressionNoln ~ BitwiseANDEXxpressionNoln

BitwiseORExpression :
BitwiseXORExpression
BitwiseORExpression | BitwiseXORExpression

BitwiseORExpressionNoln :
BitwiseXORExpressionNoln
BitwiseORExpressionNoln | BitwiseXORExpressionNoln

The semantics of the BitwissANDExpressionNoln, BitwiseXORExpressionNoln and BitwiseORExpressionNoln
productions are the same as the BitwiseANDEXxpression, BitwiseXORExpression and BitwiseORExpression
productions except that the contained EqualityExpressionNoln, BitwiseAndExpressionNoln,
BitwiseORExpressionNoln and BitwiseXORExpressionNoln are used in place of the contained EqualityExpression,
BitwiseAndExpression, BitwiseORExpression and BitwiseXORExpression, respectively.

156 © Ecma International 2013

pecma

12.10.1 Static Semantics: IsValidSimpleAssignmentTarget

See also: 12.1.0.2, 12.1.10.2, 12.2.1.2, 12.3.2, 12.4.2, 1251, 12.6.1, 12.7.1, 12.8.1, 12.9.1, 12.11.1, 12.12.1,
12.13.2,12.14.1

BitwiseANDExpression : BitwissANDExpression & EqualityExpression
BitwiseXORExpression : BitwiseXORExpression ~ BitwissANDEXxpression
BitwiseORExpression : BitwiseORExpression | BitwiseXORExpression

1. Return false.
12.10.2 Runtime Semantics: Evaluation

The production A: A @ B, where @ is one of the bitwise operators in the productions above, is evaluated as
follows:

Let Iref be the result of evaluating A.
Let Ival be GetValue(lref).
ReturnlfAbrupt(lval).

Let rref be the result of evaluating B.
Let rval be GetValue(rref).
ReturnlfAbrupt(rval).

Let Inum be Tolnt32(lval).
ReturnlfAbrupt(Inum).

. Let rnum be Tolnt32(rval).

10. ReturnlfAbrupt(rnum).

11. Return the result of applying the bitwise operator @ to.Inum and rnum. The result is a signed 32 bit integer.

©oONDT WD

12.11 Binary Logical Operators

Syntax

LogicalANDEXxpression :
BitwiseORExpression
LogicalANDEXxpression && BitwiseOREXxpression

Logical ANDExpressionNoln :
BitwiseOREXxpressionNoln
LogicalANDExpressionNolIn && BitwiseORExpressionNoln

Logical ORExpression :
Logical ANDExpression
LogicalORExpression | | LogicalANDExpression

Logical ORExpressionNoln :
Logical ANDEXxpressionNoln
LogicalORExpressionNoln | | LogicalANDExpressionNolIn

The semantics of the LogicalANDExpressionNoln and Logical ORExpressionNoln productions are the same as the
Logical ANDEXxpression and LogicalORExpression productions except that the contained
LogicalANDExpressionNoln, BitwissORExpressionNoln and LogicalORExpressionNoln are used in place of the
contained LogicalANDExpression, BitwiseOREXxpression and LogicalORExpression, respectively.

NOTE The value produced by a && or | | operator is not necessarily of type Boolean. The value produced will always
be the value of one of the two operand expressions.

12.11.1 Static Semantics: IsValidSimpleAssignmentTarget

See also: 12.1.0.2, 12.1.10.2, 12.2.1.2, 12.3.2, 12.4.2,12.5.1, 12.6.1, 12.7.1, 12.8.1, 12.9.1, 12.10.1, 12.12.1,
12.13.2,12.14.1

© Ecma International 2013 157

secmd

Logical ANDExpression : LogicalANDEXxpression && BitwiseORExpression
LogicalORExpression : Logical ORExpression | | LogicalANDExpression

1. Return false.
12.11.2 Runtime Semantics: Evaluation
Logical ANDExpression : LogicalANDExpression && BitwisesORExpression

Let Iref be the result of evaluating Logical ANDEXxpression.
Let Ival be GetValue(lref).

Let Ibool be ToBoolean(lval).

ReturnlfAbrupt(lbool).

If Ibool is false, return lval.

Let rref be the result of evaluating BitwiseOREXxpression.
Return GetValue(rref).

Nou,rwnpE

LogicalORExpression : LogicalORExpression | | LogicalANDExpression

Let Iref be the result of evaluating Logical ORExpression.
Let Ival be GetValue(lIref).

Let Ibool be ToBoolean(lval).

ReturnIfAbrupt(lbool).

If Ibool is true, return Ival.

Let rref be the result of evaluating LogicalANDExpression.
Return GetValue(rref).

NoohkwpE

12.12 Conditional Operator (? :)

Syntax

Conditional Expression :
LogicalORExpression
LogicalORExpression 2 AssignmentExpression : AssignmentExpression

ConditionalExpressionNoln :
LogicalORExpressionNoln
LogicalORExpressionNoln 2 AssignmentExpression : AssignmentExpressionNoln

The semantics of the ConditionalExpressionNoln production is the same as the ConditionalExpression production
except-that the contained LogicalORExpressionNoln, AssignmentExpression and AssignmentExpressionNoln are
used in place of the contained LogicalORExpression, first AssignmentExpression and second AssignmentExpression,
respectively.

NOTE The grammar for a ConditionalExpression in ECMAScript is slightly different from that in C and Java, which

each allow the second subexpression to be an Expression but restrict the third expression to be a ConditionalExpression.

The motivation for this difference in ECMAScript is to allow an assignment expression to be governed by either arm of a
conditional and to eliminate the confusing and fairly useless case of a comma expression as the centre expression.

12.12.1 Static Semantics: IsValidSimpleAssignmentTarget

See also: 12.1.0.2, 12.1.10.2, 12.2.1.2, 12.3.2,12.4.2,125.1, 12.6.1, 12.7.1, 12.8.1, 12.9.1, 12.10.1, 12.11.1,
12.13.2,12.14.1

ConditionalExpression : LogicalORExpression 2 AssignmentExpression : AssignmentExpression

1. Return false.

158 © Ecma International 2013

secma

12.12.2 Runtime Semantics: Evaluation
ConditionalExpression : LogicalORExpression ? AssignmentExpression : AssignmentExpression

Let Iref be the result of evaluating LogicalORExpression.
Let lval be ToBoolean(GetValue(lref)).
ReturnlfAbrupt(lval).
If Ival is true, then
a. LettrueRef be the result of evaluating the first AssignmentExpression.
b. Return GetValue(trueRef).
5. Else
a. Let falseRef be the result of evaluating the second AssignmentExpression.
b. Return GetValue(falseRef).

LN

12.13 Assignment Operators

Syntax

AssignmentExpression :
ConditionalExpression
[Only match if within the FunctionBody of a GeneratorMethod, GeneratorDeclaration, or GeneratorExpression] YieldExpression
ArrowFunction
LeftHandSideExpression = AssignmentExpression
LeftHandSideExpression AssignmentOperator AssignmentExpression

AssignmentExpressionNoln :
ConditionalExpressionNoln
YieldExpressionNoln
ArrowFunctionNoln
LeftHandSideExpression = AssignmentExpressionNoln
LeftHandSideExpression AssignmentOperator AssignmentExpressionNoln

AssignmentOperator : one of

*= /= %= += - <<= >>= >S>>= &= A= |=
The semantics of the AssignmentExpressionNoln productions are the same as the AssignmentExpression
productions except that the contained ConditionalExpressionNoln, YieldExpressionNoln, ArrowFunctionNoln and
AssignmentExpressionNoln “are. used in place of the- contained ConditionalExpression, YieldExpressionNo,
ArrowFunctionNo and AssignmentExpression, respectively.

12.13.1 _Static Semantics: Early Errors
AssignmentExpression : LeftHandSideExpression = AssignmentExpression

e |tis a Syntax Error if LeftHandSideExpression is either an ObjectLiteral or an ArrayLiteral and if the
lexical token sequence matched by LeftHandSideExpression cannot be parsed with no tokens left over
using AssignmentPattern as the goal symbol.

e If LeftHandSideExpression is either an ObjectLiteral or an ArrayLiteral and if the lexical token sequence
matched by LeftHandSideExpression can be parsed with no tokens left over using AssignmentPattern as
the goal symbol then the following rules are not applied. Instead, the Early Error rules for
AssignmentPattern are used.

e Itis a Syntax Error if LeftHandSideExpression is an Identifier that can be statically determined to always
resolve to a declarative environment record binding and the resolved binding is an immutable binding.

e It is an early Reference Error if LeftHandSideExpression is neither an ObjectLiteral nor an ArrayLiteral
and IsValidSimpleAssignmentTarget of LeftHandSideExpression is false.

© Ecma International 2013 159

secmd

AssignmentExpression : LeftHandSideExpression AssignmentOperator AssignmentExpression

e It is a Syntax Error if the LeftHandSideExpression is an Identifier that can be statically determined to
always resolve to a declarative environment record binding and the resolved binding is an immutable
binding.

e Itis an early Reference Error if IsValidSimpleAssignmentTarget of LeftHandSideExpression is false.

12.13.2 Static Semantics: IsValidSimpleAssignmentTarget

See also: 12.1.0.2, 12.1.10.2, 12.2.1.2, 12.3.2, 12.4.2,125.1, 12.6.1, 12.7.1, 12.8.1, 12.9.1, 12.10.1, 12.11.1,
12.12.1,12.14.1

AssignmentExpression :
YieldExpression
ArrowFunction
LeftHandSideExpression = AssignmentExpression
LeftHandSideExpression AssignmentOperator AssignmentExpression

1. Return false.
12.13.3 Runtime Semantics: Evaluation
AssignmentExpression : LeftHandSideExpression = AssignmentExpression

1. If LeftHandSideExpression is neither an ObjectLiteral nor an ArrayLiteral then

a. Let Iref be the result of evaluating/LeftHandSideExpression.

ReturnlfAbrupt(lref).

c. Let rref be the result of evaluating AssignmentExpression.

d. Let rval be GetValue(rref).

e. Let status be PutValue(lIref, rval).

f. ReturnIfAbrupt(status).

g. Return rval.
Let AssignmentPattern be the parse of the source code corresponding to LeftHandSideExpression using
AssignmentPattern asthe goal symbol.
Let rref be the result of evaluating AssignmentExpression.
Let rval be GetValue(rref).
ReturnlfAbrupt(rval).
If Type(rval)-is-not Object, then throw a TypeError exception.
Let status be the result of performing DestructuringAssignmentEvaluation of AssignmentPattern using rval
as the argument.
8. ReturnlfAbrupt(status).
9. Return rval.

N

Nookow

AssignmentExpression : LeftHandSideExpression AssignmentOperator AssignmentExpression

Let Iref be the result of evaluating LeftHandSideExpression.
Let Ival be GetValue(lref).

ReturnlfAbrupt(lval).

Let rref be the result of evaluating AssignmentExpression.
Let rval be GetValue(rref).

ReturnlfAbrupt(rval).

Let operator be the @ where AssignmentOperator is @=
Let r be the result of applying operator @ to lval and rval.
9. Let status be PutValue(Iref, r).

10. ReturnIfAbrupt(status).

11. Returnr.

©NoO~wWNE

NOTE When an assignment occurs within strict mode code, it is an runtime error if Iref in step 1.e of the first
algorithm or step 9 of the second algorithm it is an unresolvable reference. If it is, a ReferenceError exception is thrown.
The LeftHandSide also may not be a reference to a data property with the attribute value {[[Writable]]:false}, to an accessor

160 © Ecma International 2013

secma

property with the attribute value {[[Set]]:undefined}, nor to a non-existent property of an object for which the IsExtensible
predicate returns the value false. In these cases a TypeError exception is thrown.

12.13.4 Destructuring Assignment

Supplemental Syntax

In certain circumstances when processing the production AssignmentExpression : LeftHandSideExpression =
AssignmentExpression the following grammar is used to refine the interpretation of LeftHandSideExpression.

AssignmentPattern :
ObjectAssignmentPattern
ArrayAssignmentPattern

ObjectAssignmentPattern :
{1}
{ AssignmentPropertyList }
{ AssignmentPropertyList , }

ArrayAssignmentPattern :
[Elisionep AssignmentRestElementopt 1
[AssignmentElementList]
[AssignmentElementList , Elisiongp: AssignmentRestElementop]

AssignmentPropertyList :

AssignmentProperty

AssignmentPropertyList , AssignmentProperty
AssignmentElementList :

Elisiongpe AssignmentElement

AssignmentElementList , Elisionop: AssignmentElement
AssignmentProperty :

Identifier Initialiseropt

PropertyName : <AssignmentElement

AssignmentElement :
DestructuringAssignmentTarget Initialiserop

AssignmentRestElement :
<. . DestructuringAssignmentTarget

DestructuringAssignmentTarget :
LeftHandSideExpression

12.13.4.1 Static Semantics: Early Errors
AssignmentProperty : Identifier Initialiseropt
e ltis a Syntax Error if Identifier is the Identifier eval or the Identifier arguments.
e Itis a Syntax Error if Identifier does not statically resolve to a declarative environment record binding

or f the resolved binding is an immutable binding.

AssignmentRestElement : . . . DestructuringAssignmentTarget

e Itis a Syntax Error if IsValidSimpleAssignmentTarget of DestructuringAssignmentTarget is false.

© Ecma International 2013 161

Commented [AW61]: This part probably doesn’'t need to be
here if 11.1.2 has this as a static semantic for extended code.

secmd

DestructuringAssignmentTarget : LeftHandSideExpression

e |t is a Syntax Error if LeftHandSideExpression is either an ObjectLiteral or an ArrayLiteral and if the
lexical token sequence matched by LeftHandSideExpression cannot be parsed with no tokens left over
using AssignmentPattern as the goal symbol.

e It is a Syntax Error if LeftHandSideExpression is neither an ObjectLiteral nor an ArrayLiteral and
IsValidSimpleAssignmentTarget of LeftHandSideExpression is false.

e Itis a Syntax Error if LeftHandSideExpression is an Identifier that can be statically determined to always
resolve to a declarative environment record binding and the resolved binding is an immutable binding.

e ltis a Syntax Error if LeftHandSideExpression is the Identifier eval or the Identifier arguments.

e Itis a Syntax Error if LeftHandSideExpression is
CoverParenthesisedExpressionAndArrowParameterList : (Expression)
and Expression derives a production that would produce a Syntax Error.according to these rules if that
production is substituted for LeftHandSideExpression. This rule is recursively applied.

NOTE The last rule means that the other rules are applied even if multiple levels of nested parenthesises surround
Expression.

12.13.4.2 Runtime Semantics: DestructuringAssignmentEvaluation
with parameter obj

ObjectAssignmentPattern : { }

and
ArrayAssignmentPattern :
[1
[Elision]

1. Return NormalCompletion(empty).
AssignmentPropertyList : AssignmentPropertyList , AssignmentProperty

1. Let status be the resultof performing DestructuringAssignmentEvaluation for AssignmentPropertyList using
obj as the argument.

2. ReturnlfAbrupt(status).

3. Return the result of performing DestructuringAssignmentEvaluation for AssignmentProperty using obj as the
argument.

AssignmentProperty : Identifier Initialiserop:

1. Let P be StringValue of Identifier.
2. Letv be the result of calling Get(obj, P).
3. ReturnlfAbrupt(v).
4. If Initialiseropt is present and v is undefined, then
a. LetdefaultValue be the result of evaluating Initialiser.
b. Letv be ToObject(GetValue(defaultvalue)).
5. ReturnlfAbrupt(v).
6. Let Iref be the result of performing Identifier Resolution(8.3.1) with the IdentifierName corresponding to

Identifier.
7. Return PutValue(lIref,v).

AssignmentProperty : PropertyName : AssignmentElement

1. Letname be the result of evaluating PropertyName.

2. ReturnlfAbrupt(name).

3. Return the result of performing KeyedDestructuringAssignmentEvaluation of AssignmentElement with obj
and name as the arguments.

ArrayAssignmentPattern : [Elisionept AssignmentRestElement]

162 © Ecma International 2013

1.
2.

eCnd

Let skip be the Elision Width of Elision; if Elision is not present, use the numeric value zero.

Return the result of performing IndexedDestructuringAssignmentEvaluation of AssignmentRestElement with

obj and skip as the arguments.

ArrayAssignmentPattern : [AssignmentElementList 1]

1

Return the result of performing IndexedDestructuringAssignmentEvaluation of AssignmentElementList
using obj and 0 as the arguments.

ArrayAssignmentPattern : [AssignmentElementList , Elisiongp: AssignmentRestElementop]

1.
2.
3.
4

5.

Let lastindex be the result of performing IndexedDestructuringAssignmentEvaluation of
AssignmentElementList using obj and 0 as the arguments.

ReturnlfAbrupt(lastindex).

Let skip be the Elision Width of Elision; if Elision is not present, use the numeric value zero.
If AssignmentRestElement is present, then return the result of performing

IndexedDestructuringAssignmentEvaluation of AssignmentRestElement with obj and lastIndex+skip as the

arguments.
Return lastindex.

12.13.4.3 Runtime Semantics: IndexedDestructuringAssignmentEvaluation

with parameters obj and index

AssignmentElementList : Elisionoy: AssignmentElement

Lo

>

Let skip be the Elision Width of Elision; if Elision is hot present, use the.numeric value zero.

Let name be ToString(index+skip).

Let status be the result of performing KeyedDestructuringAssignmentEvaluation of AssignmentElement
with obj and name as the arguments.

ReturnlfAbrupt(status).

Return index+skip+1.

AssignmentElementList : AssignmentElementList , Elisionos AssignmentElement

1

gk wn

~No

Let listNext be the result of performing IndexedDestructuringAssignmentEvaluation of
AssignmentElementList using obj as the obj parameter and index as the index parameter

Let skip be'the Elision Width of Elision; if Elision is not present, use the numeric value zero.
ReturnifAbrupt(listNext).

Let name be ToString(listNext+skip).

Let status be the result of performing KeyedDestructuringAssignmentEvaluation of AssignmentElement
with obj and name as the arguments.

ReturnlfAbrupt(status).

Return listNext+skip+1.

AssignmentRestElement : . . < DestructuringAssignmentTarget

N~ WD

Let Iref be the result of evaluating DestructuringAssignmentTarget.
ReturnIfAbrupt(lref).
Let lenVal be the result of Get(obj, "length").
Let len be ToUint32(lenVal).
ReturnifAbrupt(len).
Let A be the result of the abstract operation ArrayCreate with argument 0.
Let n=0;
Repeat, while index < len
a. Let P be ToString(index).
b. Let exists be the result of HasProperty(obj, P).
c. ReturnlfAbrupt(exists).
d. [Ifexists is true, then

© Ecma International 2013

163

secmd

i. Letv be the result of Get(obj, ToString(index)).
ii. ReturnlfAbrupt(len).
iii. Call the [[DefineOwnProperty]] internal method of A with arguments ToString(n) and Property
Descriptor {[[Value]]: v, [[Writable]]: true, [[Enumerable]]: true, [[Configurable]]: true}.
e. Letn=n+l.
f. Letindex = index+1.
9. Return PutValue(Iref,A).

12.13.4.4 Runtime Semantics: KeyedDestructuringAssignmentEvaluation
with parameters obj and propertyName
AssignmentElement : DestructuringAssignmentTarget Initialiserop

1. Letv be the result of Get(obj, propertyName).
2. ReturnIfAbrupt(v).
3. If Initialiseropt is present and v is undefined, then
a. LetdefaultValue be the result of evaluating Initialiser.
b. Letv be GetValue(defaultValue)
¢. ReturnIfAbrupt(v).
4. If DestructuringAssignmentTarget is an ObjectLiteral or'an ArrayLiteral then
a. Let AssignmentPattern be the parse of the source code corresponding to
DestructuringAssignmentTarget using AssignmentPattern as the goal symbol
b. 1f Type(v) is not Object, then throw a TypeError exception.
¢. Return the result of performing DestructuringAssignmentEvaluation of AssignmentPattern with v as
the argument.
5. Let Iref be the result of evaluating DestructuringAssignmentTarget.
6. Return PutValue(lIref,v).

12.14 Comma Operator (,)

Syntax
Expression :
AssignmentExpression
Expression , AssignmentExpression
ExpressionNoln :
AssignmentExpressionNoln
ExpressionNoln -, AssignmentExpressionNoln
The semantics of the ExpressionNoln production is the same as the Expression production except that the
contained ExpressionNoln and AssignmentExpressionNoln are used in place of the contained Expression and
AssignmentExpression, respectively.
12.14.1 Static Semantics: IsValidSimpleAssignmentTarget

See also: 12.1.0.2,12.1:10.2, 12.2.1.2, 12.3.2,12.4.2,125.1, 12.6.1, 12.7.1, 12.8.1, 12.9.1, 12.10.1, 12.11.1,
12.12.1,12.13.2

Expression : Expression , AssignmentExpression
1. Return false.

12.14.2 Runtime Semantics: Evaluation
Expression : Expression , AssignmentExpression

1. Let Iref be the result of evaluating Expression.

164 © Ecma International 2013

secma

2. ReturnlfAbrupt(GetValue(lref))
3. Let rref be the result of evaluating AssignmentExpression.
4. Return GetValue(rref).

NOTE GetValue must be called even though its value is not used because it may have observable side-effects.
13 ECMAScript Language: Statements and Declarations

Syntax

Statement :
BlockStatement
VariableStatement
EmptyStatement
ExpressionStatement
IfStatement
BreakableStatement
ContinueStatement
BreakStatement
ReturnStatement
WithStatement
LabelledStatement
ThrowStatement
TryStatement
DebuggerStatement

Declaration :
FunctionDeclaration
GeneratorDeclaration
ClassDeclaration
LexicalDeclaration

BreakableStatement :
IterationStatement
SwitchStatement

13.0 Statement Semantics

13.0.1 Static'Semantics: VarDeclaredNames

See also: 13.1.8, 13.5.1, 13.6.1.1, 13.6.2.1, 13.6.3.1, 13.6.4.3, 13.10.2, 13.11.4, 13.12.2, 13.14.2, 14.1.10,
14.4.8,14.5.13, 15.1.0.5, 15.2.5.

Statement :
EmptyStatement
ExpressionStatement
ContinueStatement
BreakStatement
ReturnStatement
ThrowStatement
DebuggerStatement

1. Return a new empty List.
13.0.2 Runtime Semantics: LabelledEvaluation
With argument labelSet.

See also: 13.6.1.2, 13.6.2.2, 13.6.3.2, 13.6.4.5, 13.12.3.

© Ecma International 2013 165

secmd

BreakableStatement : IterationStatement
1. Let stmtResult be the result of performing LabelledEvaluation of IterationStatement with argument labelSet.
2. If stmtResult.[[type]] is break and stmtResult.[[target]] is empty, then
a. If stmtResult.[[value]] is empty, then let stmtResult be NormalCompletion(undefined).
b. Else, let stmtResult be NormalCompletion(stmtResult.[[value]])
3. Return stmtResult.
BreakableStatement : SwitchStatement
1. Let stmtResult be the result of evaluating SwitchStatement.
2. If stmtResult.[[type]] is break and stmtResult.[[target]] is empty, then
a. If stmtResult.[[value]] is empty, then let stmtResult be NormalCompletion(undefined).
b. Else, let stmtResult be NormalCompletion(stmtResult.[[value]])
3. Return stmtResult.
NOTE A BreakableStatement is one that can be exited via an unlabelled BreakStatement.
13.0.3 Runtime Semantics: Evaluation
BreakableStatement :
IterationStatement
SwitchStatement

1. LetnewLabelSet be a new empty List.
2. Return the result of performing LabelledEvaluation of this BreakableStatement with argument newLabelSet.

13.1 Block

Syntax

BlockStatement :
Block

Block :
{ StatementListopt }

StatementList :

StatementListltem

StatementList StatementListItem
StatementListitem :

Statement

Declaration
13.1.1 Static Semantics: Early Errors
Block : { StatementList }

e [tis a Syntax Error if the LexicallyDeclaredNames of StatementList contains any duplicate entries.
e Itis a Syntax Error if any element of the LexicallyDeclaredNames of StatementList also occurs in the
VarDeclaredNames of StatementList.
13.1.2 Static Semantics: LexicalDeclarations
See also: 13.11.2.

StatementList : StatementList StatementListltem

1. Let declarations be LexicalDeclarations of StatementList.

166 © Ecma International 2013

secma

2. Append to declarations the elements of the LexicalDeclarations of StatementListItem.
3. Return declarations.

StatementListltem : Statement

1. Return a new empty List.

StatementListitem : Declaration

1. Return a new List containing Declaration.

13.1.3 Static Semantics: LexicallyDeclaredNames

See also: 13.11.3, 14.1.9, 14.2.7, 14.4.5, 14.5.7, 15.1.0.3, 15.2.3.
Block: { }

1. Return a new empty List.

StatementList : StatementList StatementListitem

1. Let names be LexicallyDeclaredNames of StatementList.

2. Append to names the elements of the LexicallyDeclaredNames of StatementListltem.
3. Return names.

StatementListitem : Statement

1. Return a new empty List.

StatementListitem : Declaration

1. Return the BoundNames of Declaration.

13.1.4 Static Semantics: TopLevelLexicallyDeclaredNames
StatementList : StatementList StatementListltem

1. Letnames be TopLevellLexicallyDeclaredNames of StatementList.
2. Append.to names the elements of the TopLevelLexicallyDeclaredNames of StatementListltem.
3. Return names.

StatementListltem : Statement

1. Return a new empty List.

StatementListltem : Declaration

1. If Declaration is Declaration : FunctionDeclaration, then return a new empty List.
2. Return the BoundNames of Declaration.

NOTE At the top level of a function, or script, function declarations are treated like var declarations rather than like
lexical declarations.

13.1.5 Static Semantics: TopLevelLexicallyScopedDeclarations
StatementList : StatementList StatementListltem
1. Letdeclarations be TopLevelLexicallyScopedDeclarations of StatementList.

2. Append to declarations the elements of the TopLevelLexicallyScopedDeclarations of StatementListltem.
3. Return declarations.

© Ecma International 2013 167

secmd

StatementListltem : Statement
1. Return a new empty List.
StatementListitem : Declaration

1. If Declaration is Declaration : FunctionDeclaration, then return a new empty List.
2. Return a new List containing Declaration.

13.1.6 Static Semantics: TopLevelVarDeclaredNames

StatementList : StatementList StatementListltem

1. Let names be TopLevelVarDeclaredNames of StatementList.

2. Append to names the elements of the TopLevelVarDeclaredNames of StatementListltem.

3. Return names.

StatementListltem : Declaration

1. If Declaration is Declaration : FunctionDeclaration, then return the LexicallyDeclaredNames of
Declaration.

2. Return a new empty List.

StatementListltem : Statement

1. Return VarDeclaredNames of Statement.

NOTE At the top level of a function or script, inner function declarations are treated like var declarations.

13.1.7 Static Semantics: TopLevelVarScopedDeclarations

StatementList : StatementList StatementListltem

1. Let declarations be TopLevelVarScopedDeclarations of StatementList.

2. Append to declarations the elements of the TopLevelVarScopedDeclarations of StatementListltem.

3. Return declarations.

StatementListltem : Statement

1. If Statement is Statement : VariableStatement, then return a new List containing VariableStatement.
2. Return a new empty List.

StatementListltem : Declaration

1. If Declaration is Declaration : FunctionDeclaration, then return a new List containing Declaration.
2. Return a new empty List.

13.1.8 Static Semantics: VarDeclaredNames

See also: 13.0.1, 13.5.1, 13.6.1.1, 13.6.2.1, 13.6.3.1, 13.6.4.3, 13.10.2, 13.11.4, 13.12.2, 13.14.2, 14.1.10,
14.4.8,14.5.13,15.1.0.5, 15.2.5.

Block: { }
1. Return a new empty List.
StatementList : StatementList StatementListltem

1. Let names be VarDeclaredNames of StatementList.
2. Append to names the elements of the VarDeclaredNames of StatementListltem.

168 © Ecma International 2013

oecmd

3. Return names.

StatementListitem : Declaration

1. Return a new empty List.

13.1.9 Runtime Semantics: Evaluation
Block: { }

1. Return NormalCompletion(undefined).|

(c ed [AWB1362]: Breaking change: completion

Block : { StatementList }

Let oldEnv be the running execution context’s LexicalEnvironment.
Let blockEnv be the result of calling NewDeclarativeEnvironment passing oldEnv as the argument.
Perform Block Declaration Instantiation using StatementList and blockEnv.
Set the running execution context’s LexicalEnvironment to blockEnv.
Let blockValue be the result of evaluating StatementList.
Set the running execution context’s LexicalEnvironment to 0ldEnv.
If blockValue.[[type]] is normal and blockValue.[[value]] is empty, then
a. Return NormalCompletion(undefined).
8. Return blockValue.

Nour~wNE

NOTE No matter how control leaves the Block the LexicalEnvironment is always restored to its former state.
StatementList : StatementList StatementListltem

Let sl be the result of evaluating StatementList.

ReturnIfAbrupt(sl).

Let s be the result of evaluating StatementListltem.

If s.[[type]] is throw, return s.

If s.[[value]] is empty, let V = sl.[[value]], otherwise let V = s.[[value]].
Return Completion {[[type]l: s.[[typell, [[valuel]l: V, [[target]]: s.[[target]]}.

oW E

NOTE Steps 5 and 6 of the above algorithm ensure that the value of a StatementList is the value of the last value
producing Statement in the StatementList. For example, the following calls to the eval function all return the value 1:

eval("1;{}")|
eval("1l;var a;")

13.110 Runtime Semantics: Block Declaration Instantiation|

reform

Commented [AWB1363]: TODO, need to verify that under
ompletion reform empty blocks evaluate to undefined.

(Commented [AWB1364]: Breaking change: completion
| reform

Commented [AWB1365]: ISSUE: above changes to
completion reform will means this evaluates to undefined
rather than 1 is

C ed [AWB766]: Jan 19 meeting nortes: Current

NOTE When a Block or CaseBlock production is evaluated a new Declarative Environment Record is created and
bindings for each block scoped variable, constant, or function declarated in the block are instantiated in the environment
record.

Block Declaration Instantiation is performed as follows using arguments code and env. code is the grammar
production corresponding to the body of the block. env is the declarative environment record in which
bindings are to be created.

1. Let declarations be the LexicalDeclarations of code.
2. Let functionsTolnitialise be an empty List.
3. Foreach element d in declarations do
a. Foreach element dn of the BoundNames of d do
i. If IsConstantDeclaration of d is true, then
1. Call env’s CreatelmmutableBinding concrete method passing dn as the argument.
ii. Else,

© Ecma International 2013 169

tentative decision is to support let, const, and local functions in
nonstrict ES5 in the same way as in strict ES6. Fallback to
either specifying limited cases or doing the ES5 nonstrict
status quo (i.e. syntax error + Clause 16) if experiments show
this to not be viable. We won't resolve this discussion without
running some experiments.

secmd

1. Let status be the result of calling env’s CreateMutableBinding concrete method passing dn
and false as the arguments.
2. Assert: status is never an abrupt completion.
b. IfdisaGeneratorDeclaration production or a FunctionDeclaration production, then
i. Append d to functionsTolnitialise.
4. For each production f in functionsTolnitialise, in list order do
a. Let fn be the sole element of the BoundNames of f.
b. Let fo be the result of performing InstantiateFunctionObject for f with argument env.
c. Call env’s InitialiseBinding concrete method passing fn, and fo as the arguments.

13.2 Declarations and the Variable Statement
13.2.1 Let and Const Declarations

NOTE A 1let and const declarations define variables that are scoped to the running execution context's
LexicalEnvironment. The variables are created when their containing Lexical Environment is instantiated but may not be
accessed in any way until the variable’s LexicalBinding is evaluated. A variable defined by a LexicalBinding with an
Initialiser is assigned the value of its Initialiser’s AssignmentExpression when the LexicalBinding is evaluated, not when the
variable is created. If a LexicalBinding in a 1let declaration does not have an Initialiser the variable is.assigned the value
undefined when the LexicalBinding is evaluated.

Syntax

LexicalDeclaration :
LetOrConst BindingList ;

LexicalDeclarationNoln :
LetOrConst BindingListNoln

LetOrConst :
let
const

BindingList :
LexicalBinding
BindingList , LexicalBinding

BindingListNoln :
LexicalBindingNoln
BindingListNoln , LexicalBindingNoln

LexicalBinding :
Bindingldentifier Initialiseropt
BindingPattern Initialiser

LexicalBindingNoln :
Bindingldentifier InitialiserNoInopt
BindingPattern InitialiserNoln

Bindingldentifier :
default
yield
Identifier

InitialiserNoln :
= AssignmentExpressionNoln

The semantics of the LexicalDeclarationNoln, BindingListNoln, LexicalBindingNoln and InitialiserNoln
productions are the same as the LexicalDeclaration, BindingList, LexicalBinding and Initialiser productions

170 © Ecma International 2013

secma

except that the contained BindingListNolIn, LexicalBindingNoln, InitialiserNoln and AssignmentExpressionNoln are
used in place of the contained BindingList, LexicalBinding, Initialiser and AssignmentExpression, respectively.

13.2.1.1 Static Semantics: Early Errors
LexicalBinding : Bindingldentifier

e |tis a Syntax Error if IsConstantDeclaration of the LexicalDeclaration containing this production is true.
Bindingldentifier : default

e Itis a Syntax Error if the innermost Declaration or VariableStatement containing this production is not
immediately contained in an ExportDeclaration.

Bindingldentifier : yield
e Itis a Syntax Error if this production is contained in strict code.
e |t is a Syntax Error if this production is contained in within the FunctionBody of a GeneratorMethod,
GeneratorDeclaration, or GeneratorExpression.

Bindingldentifier : Identifier

e It is a Syntax Error if the Bindingldentifier is contained in strict code and if the Identifier is eval or
arguments.

13.2.1.2 Static Semantics: BoundNames

See also:, 13.2.3.2,13.6.4.2, 14.1.2,14.2.2,14.4.2,14.5.2,15.1.1:2, 15.1.2.1.
LexicalDeclaration : LetOrConst BindingList ;

1. Return the BoundNames of BindingList.

BindingList : BindingList , LexicalBinding

1. Let names be the BoundNames of BindingList.

2. Append to.names the elements of the BoundNames of LexicalBinding.
3. Return.names.

LexicalBinding : Bindingldentifier Initialiseropt

1. Return the BoundNames of Bindingldentifier.

LexicalBinding : BindingPattern Initialiser

1. Return the BoundNames of BindingPattern.

Bindingldentifier : ldentifier

1. Return a new List containing the StringValue of Identifier.
Bindingldentifier : default

1. Return a new List containing the string "default".

Bindingldentifier : yield

2. Return a new List containing the string "yield".

© Ecma International 2013 171

Commented [AWB1967]: Maybe we can fine a better way
to express this. Is this legal:

export let [a,b,default,c] = [1,2,3,4];

oechna

13.2.1.3 Static Semantics: IsConstantDeclaration
See also: 14.1.6, 14.4.4, 14.5.5.
LexicalDeclaration : LetOrConst BindingList ;
1. Return IsConstantDeclaration of LetOrConst.
LetOrConst: let
1. Return false.
LetOrConst: const
1. Return true.
13.2.1.4 Runtime Semantics: Bindinglnitialisation

With arguments value and environment.
See also: 12.1.4.2.2,13.2.2.2, 13.2.3.4, 13.14.3, 14.1.11, 14.2.8
NOTE undefined is passed for environment to indicate that a PutValue operation should be used to assign the
initialisation value. This is the case for var statements formal parameter lists of non-strict functions. In those cases a
lexical binding is hosted and preinitialised prior to evaluation of its initialiser.
Bindingldentifier : Identifier
1. If environment is not undefined, then

a. Letname be StringValue of Identifier.

b. Letenv be the environment record component of environment.
c. Call the InitialiseBinding concrete method of env passing name and value as the arguments.
d. Return NormalCompletion(undefined).
2. Else

Let Ihs be the result of evaluating Identifier as described in 12.1.2.
Return PutValue(lhs, value).

o

13.2.1.5 Runtime Semantics: Evaluation

LexicalDeclaration : LetOrConst BindingList ;

1. Let next be the result of evaluating BindingList.

2. ReturnlfAbrupt(next).

3. Return NormalCompletion(empty).

BindingList : BindingList , LexicalBinding

1. Let next be the result of evaluating BindingList.

2. ReturnlfAbrupt(next).

3. Return the result of evaluating LexicalBinding.

LexicalBinding : Bindingldentifier

1. Letenv be the running execution context’s LexicalEnvironment.
2. Return the result of performing Bindinglnitialisation for Bindingldentifier passing undefined and env as the

arguments.

NOTE A static semantics rule ensures that this form of LexicalBinding never occurs in a const declaration.

172 © Ecma International 2013

secma

LexicalBinding : Bindingldentifier Initialiser

1. Let rhs be the result of evaluating Initialiser.

2. Letvalue be GetValue(rhs).

3. ReturnIfAbrupt(value).

4. Letenv be the running execution context’s LexicalEnvironment.

5. Return the result of performing Bindinglnitialisation for Bindingldentifier passing value and env as the
arguments.

LexicalBinding : BindingPattern Initialiser

1. Let rhs be the result of evaluating Initialiser.

2. Letvalue be GetValue(rhs).

3. ReturnIfAbrupt(value).

4. If Type(value) is not Object, then throw a TypeError exception.

5. Let env be the running execution context’s LexicalEnvironment.

6. Return the result of performing Bindinglnitialisation for BindingPattern using value and env as the
arguments.

13.2.2 Variable Statement

NOTE A var statement declares variables that are scoped to the running execution context's VariableEnvironment.
Var variables are created when their containing Lexical Environment is instantiated and are initialised to undefined when
created. Within the scope of any VariableEnvironemnt a common Identifier may appear in more than one
VariableDeclaration but those declarations collective define only one variable. A variable defined by a VariableDeclaration
with an Initialiser is assigned the value of its Initialiser’s AssignmentExpression when the VariableDeclaration is executed, not
when the variable is created.

Syntax

VariableStatement :
var VariableDeclarationList ;

VariableDeclarationList :
VariableDeclaration
VariableDeclarationList , VariableDeclaration

VariableDeclarationListNoln :
VariableDeclarationNoln
VariableDeclarationListNoln, VariableDeclarationNoln

VariableDeclaration :
Bindingldentifier Initialiseropt
BindingPattern Initialiser:

VariableDeclarationNoln :

Bindingldentifier InitialiserNolIngpt

BindingPattern InitialiserNoln
The semantics of the VariableDeclarationListNoln, VariableDeclarationNoln and InitialiserNoln productions are
the same as the VariableDeclarationList, VariableDeclaration and Initialiser productions except that the
contained VariableDeclarationListNoIn, VariableDeclarationNoln, InitialiserNoln and AssignmentExpressionNoln
are used in of the contained VariableDeclarationList, VariableDeclaration, Initialiser and AssignmentExpression,
respectively.
13.2.2.1 Static Semantics: BoundNames
See also: 13.2.1.2,13.2.3.2, 13.6.4.2, 14.1.2, 14.2.2,14.4.2,14.5.2,15.1.1.2,15.1.2.1.

VariableDeclarationList : VariableDeclarationList , VariableDeclaration

© Ecma International 2013 173

secma

=

Let names be BoundNames of VariableDeclarationList.
Append to names the elements of BoundNames of VariableDeclaration.
3. Return names.

I

VariableDeclaration : Bindingldentifier Initialiseropt
1. Return the BoundNames of Bindingldentifier.
VariableDeclaration : BindingPattern Initialiser
1. Return the BoundNames of BindingPattern.
13.2.2.2 Runtime Semantics: Bindinglnitialisation
With arguments value and environment.
See also: 12.1.4.2.2,13.2.1.4,13.2.3.4,13.14.3, 14.1.11, 14.2.8
NOTE undefined is passed for environment to indicate that a PutValue operation should be used to assign the
initialisation value. This is the case for var statements formal parameter lists of non-strict functions. In those cases a
lexical binding is hosted and preinitialised prior to evaluation of itsinitialiser.

VariableDeclaration : Bindingldentifier

1. Return the result of performing Bindinglnitialisation for Bindingldentifier passing value and undefined as
the arguments.

VariableDeclaration : Bindingldentifier Initialiser

1. Return the result of performing Bindinglnitialisation for Bindingldentifier passing value and undefined as
the arguments.

VariableDeclaration : BindingPattern Initialiser

1. Return the result of performing Bindinglnitialisation for BindingPattern passing value and undefined as the
arguments.

13.2.2.3 Runtime Semantics: Evaluation
VariableStatement : var VariableDeclarationList ;

1. Let next be the result of evaluating VariableDeclarationList.
2. ReturnlfAbrupt(next).

3. Return NormalCompletion(empty).

VariableDeclarationList : VariableDeclarationList , VariableDeclaration
1. Let next be the result of evaluating VariableDeclarationList.

2. ReturnlfAbrupt(next).

3. Return the result of evaluating VariableDeclaration.
VariableDeclaration : Bindingldentifier

1. Return NormalCompletion(empty).

VariableDeclaration : Bindingldentifier Initialiser

1. Let rhs be the result of evaluating Initialiser.
2. Letvalue be GetValue(rhs).

174 © Ecma International 2013

secma

3. ReturnlfAbrupt(value).
4. Return the result of performing Bindinglnitialisation for Bindingldentifier passing value and undefined as
the arguments.

NOTE If a VariableDeclaration is nested within a with statement and the Identifier in the VariableDeclaration is the
same as a property name of the binding object of the with statement’s object environment record, then step 3 will assign
value to the property instead of to the VariableEnvironment binding of the Identifier.

VariableDeclaration : BindingPattern Initialiser

Let rhs be the result of evaluating Initialiser.

Let rval be GetValue(rhs).

ReturnlfAbrupt(rval).

If Type(rval) is not Object, then throw a TypeError exception.

Return the result of performing Bindinglnitialisation for BindingPattern passing rval and undefined as
arguments.

arwnE

13.2.3 Destructuring Binding Patterns

Syntax

BindingPattern :
ObjectBindingPattern
ArrayBindingPattern

ObjectBindingPattern :
{1}
{ BindingPropertyList }
{ BindingPropertyList , }

ArrayBindingPattern :
[Elisionep BindingRestElementopt.]
[BindingElementList]
[BindingElementList , Elisionop BindingRestElementopt]

BindingPropertyList :
BindingProperty
BindingPropertyList , BindingProperty

BindingElementList :
Elisionop: BindingElement
BindingElementList , Elisiono,: BindingElement

BindingProperty :
SingleNameBinding
PropertyName |: BindingElement

C ed [AWB1668]: Note that this may be a

BindingElement :
SingleNameBinding
BindingPattern Initialiseropt

SingleNameBinding :
Bindingldentifier Initialiseropt

BindingRestElement :
. .. Bindingldentifier

13.2.3.1 Static Semantics: Early Errors

BindingPattern : ObjectBindingPattern

© Ecma International 2013 175

computed property name

secmd

e [tis a Syntax Error if the BoundNames of ObjectBindingPattern contains the string “eval” or the string
“arguments”.

BindingPattern : ArrayBindingPattern

e ltis a Syntax Error if the BoundNames of ArrayBindingPattern contains the string “eval” or the string
“arguments’”.

13.2.3.2 Static Semantics: BoundNames

See also: 13.2.1.2,13.2.2.1, 13.6.4.2,14.1.2,14.2.2,14.4.2,145.2,15.1.1.2, 15.1.2.1.
ObjectBindingPattern : { }

1. Return an empty List.

ArrayBindingPattern : [Elisiongpt]

1. Return an empty List.

ArrayBindingPattern : [Elisionop: BindingRestElement]

1. Return the BoundNames of BindingRestElement.

ArrayBindingPattern : [BindingElementList , Elisionopt]

1. Return the BoundNames of BindingElementList.

ArrayBindingPattern : [BindingElementList , Elisiongp: BindingRestElement 1]
1. Let names be BoundNamesof BindingElementList.

2. Append to names the elements of BoundNames of BindingRestElement.
3. Return names.

BindingPropertyList : BindingPropertyList , BindingProperty:

1. Let names be BoundNames of BindingPropertyList.

2. Append.to names the elements of BoundNames of BindingProperty.

3. Return names.

BindingElementList : Elisiongpt BindingElement

1. Return BoundNames of BindingElement.

BindingElementList : BindingElementList , Elisionop BindingElement

1. Let names be BoundNames of BindingElementList.

2. Append to names the elements of BoundNames of BindingElement.

3. Return names.

BindingProperty : PropertyName : BindingElement

1. Return the BoundNames of BindingElement.

SingleNameBinding : Bindingldentifier Initialiseropt

1. Return the BoundNames of Bindingldentifier.

176 © Ecma International 2013

secma

BindingElement : BindingPattern Initialiseropt

1. Return the BoundNames of BindingPattern.

13.2.3.3 Static Semantics: HaslInitialiser

See also: 14.1.5.

BindingElement : BindingPattern

1. Return false.

BindingElement : BindingPattern Initialiser

1. Return true.

SingleNameBinding : Bindingldentifier

1. Return false.

SingleNameBinding : Bindingldentifier Initialiser

1. Return true.

13.2.3.4 Runtime Semantics: Bindinglnitialisation
With parameters value and environment.

See also: 12.1.4.2.2,13.2.1.4,13.2.2.2,13.14.3,14.1.11, 14.2.8.

NOTE When undefined is passed for environment it indicates that a PutValue operation should be used to assign the

initialisation value. This is the case for formal parameter lists of non-strict functions. In that case the formal parameter

bindings are preinitialised in order to deal with the possibility of multiple parameters with the same name.

BindingPattern : ObjectBindingPattern

1. Assert: Type(value) is Object

2. Return the result.of performing Bindinglnitialisation for ObjectBindingPattern using value and environment
as arguments.

BindingPattern : ArrayBindingPattern

1. Assert: Type(value) is Object

2. Return the result of performing IndexedBindinglnitialisation for ArrayBindingPattern using value, 0, and
environment as arguments:

ObjectBindingPattern : { }

1. Return NormalCompletion(empty).

BindingPropertyList : BindingPropertyList , BindingProperty

1. Let status be the result of performing Bindinglnitialisation for BindingPropertyList using value and
environment as arguments.

2. ReturnlfAbrupt(status).

3. Return the result of performing Bindinglnitialisation for BindingProperty using value and environment as

arguments.

BindingProperty : SingleNameBinding

© Ecma International 2013 177

secmd

1. Let name be the string that is the only element of BoundNames of SingleNameBinding.
2. Return the result of performing KeyedBindinglnitialisation for SingleNameBinding using value,
environment, and name as the arguments.

BindingProperty : PropertyName : BindingElement

1. Let P be the result of evaluating PropertyName

2. ReturnlfAbrupt(P).

3. Return the result of performing KeyedBindinglnitialisation for BindingElement using value, environment,
and P as arguments.

13.2.3.5 Runtime Semantics: IndexedBindinglnitialisation
With parameters array, nextindex, and environment.

See also: 14.1.13.

NOTE When undefined is passed for environment it indicates that a PutValue operation should be used to assign the

initialisation value. This is the case for formal parameter lists of non-strict functions. In that case the formal parameter

bindings are preinitialised in order to deal with the possibility of multiple parameters with the same name.

ArrayBindingPattern : [Elisiongpt]

1. Return NormalCompletion(empty).

ArrayBindingPattern: [Elisionop BindingRestElement.]

1. Let nextIndex be the Elision Width of Elision; if Elision is not present, use the numeric value zero.

2. Return the result of performing IndexedBindinglnitialisation for BindingRestElement using array,
nextindex, and environment as arguments.

ArrayBindingPattern: [BindingElementList]

1. Return the result of performing IndexedBindinglnitialisation for BindingElementList using array, nextindex,
and environment as arguments.

ArrayBindingPattern: [BindingElementList , Elisiongpt]

1. Return.the result of performing IndexedBindinglnitialisation for BindingElementList using array, nextindex,
and.environment as arguments.

ArrayBindingPattern: [BindingElementList', Elisiongp BindingRestElement 1]

1. Let next be the result of performing IndexedBindinglnitialisation for BindingElementList using array ,
nextindex, and environment as arguments.

2. ReturnlfAbrupt(next).

3. Let skip be the Elision Width of Elision; if Elision is not present, use the numeric value zero.

4. Return the result of performing IndexedBindinglnitialisation for BindingRestElement using array, next+skip
, and environment as arguments.

BindingElementList : Elisiongp: BindingElement

1. Let skip be the Elision Width of Elision; if Elision is not present, use the numeric value zero.

2. Let status be the result of performing IndexedBindinglnitialisation for BindingElement using array,
nextindex+skip , and environment as arguments.

ReturnlfAbrupt(status).

4. Return nextindex +skip+1.

w

BindingElementList : BindingElementList , Elisiono, BindingElement

178 © Ecma International 2013

secma

1. Let listNext be the result of performing IndexedBindinglnitialisation for BindingElementList using array,
nextIndex, and environment as arguments.

2. ReturnIfAbrupt(listNext).

3. Let skip be the Elision Width of Elision; if Elision is not present, use the numeric value zero.

4. Let status be the result of performing IndexedBindinglnitialisation for BindingElement using array,
listNext+skip , and environment as arguments.

5. ReturnlfAbrupt(status).

6. Return listNext +skip+1.
BindingElement : SingleNameBinding

1. Return the result of performing KeyedBindinglnitialisation for SingleNameBinding using array,
environment, and ToString(nextIndex) as the arguments.

BindingElement : BindingPattern Initialiseropt

Let P be ToString(nextindex).

Let v be the result of Get(array, P).

ReturnlfAbrupt(v).

If Initialiseropt is present and v is undefined, then

a. LetdefaultValue be the result of evaluating Initialiser.

b. Letv be GetValue(defaultValue).

c. ReturnIfAbrupt(v).

If Type(v) is not Object, then throw a TypeError exception.

Return the result of performing Bindinglnitialisation for BindingPattern passing v and environment as
arguments.

o

o a

BindingRestElement : . .. Bindingldentifier

Let A be the result of the abstract operation ArrayCreate with argument 0.
Let lenVal be the result of Get(array, "length").
Let arrayLength be ToLength(lenVal).
ReturnlfAbrupt(arrayLength).
Let n=0.
Let index = nextIndex.
Repeat, while index < arraylLength
a. Let P be ToString(index).
b. Let exists be the result of HasProperty(array, P).
c. ReturnlfAbrupt(exists).
d If exists is true, then
i. Let v be the result of Get(array, P).
il ReturnlfAbrupt(v).
iii. Call the [[DefineOwnProperty]] internal method of A with arguments ToString(n) and
Property Descriptor {[[Value]]: v, [[Writable]]: true, [[Enumerable]]: true, [[Configurable]]: true}.

e. Letn = n+1.
f. Let index = index+1.
8. Return the result of performing Bindinglnitialisation for Bindingldentifier using A and environment as
arguments.

NouA~WNE

13.2.3.6 Runtime Semantics: KeyedBindinglnitialisation

With parameters obj, environment, and propertyName.
NOTE When undefined is passed for environment it indicates that a PutValue operation should be used to assign the
initialisation value. This is the case for formal parameter lists of non-strict functions. In that case the formal parameter

bindings are preinitialised in order to deal with the possibility of multiple parameters with the same name.

BindingElement : BindingPattern Initialiseropt

© Ecma International 2013 179

secma

=

Let v be the result of Get(obj, propertyName).
2. ReturnlfAbrupt(v).
3. If Initialiseropt is present and v is undefined, then
a. LetdefaultValue be the result of evaluating Initialiser.
b. Letv be GetValue(defaultValue).
c. ReturnIfAbrupt(v).
If Type(v) is not Object, then throw a TypeError exception.
Return the result of performing Bindinglnitialisation for BindingPattern passing v and environment as
arguments.

o &

SingleNameBinding : Bindingldentifier Initialiseropt

1. Letv be the result of Get(obj, propertyName).
2. ReturnIfAbrupt(v).
3. If Initialiseropt is present and v is undefined, then
a. LetdefaultValue be the result of evaluating Initialiser.
b. Letv be GetValue(defaultValue).
¢. ReturnIfAbrupt(v).
4. Return the result of performing Bindinglnitialisation for Bindingldentifier passing v and environment as
arguments.

13.3 Empty Statement

Syntax
EmptyStatement :

13.3.1 Runtime Semantics: Evaluation
EmptyStatement : ;

1. Return NormalCompletion(empty).
13.4 Expression Statement

Syntax

ExpressionStatement :
[lookahead ¢ {{, function, class}] Expression ;

NOTE An ExpressionStatement cannot start with an opening curly brace because that might make it ambiguous with a
Block. Also, an ExpressionStatement cannot start with the function or class keywords because that would make it
ambiguous with a FunctionDeclaration, a GeneratorDeclaration, or a ClassDeclaration.

13.4.1 Runtime Semantics: Evaluation

ExpressionStatement : [lookahead ¢ {{, function, class }] Expression;
Let exprRef be the result of evaluating Expression.

Let value be GetValue(exprRef).

ReturnlfAbrupt(value).
Return NormalCompletion(value).

Hwn e

13.5 The if Statement

Syntax

IfStatement :
if (Expression) Statement else Statement
if (Expression) Statement

180 © Ecma International 2013

»ecmad

Each else for which the choice of associated if is ambiguous shall be associated with the nearest possible
if that would otherwise have no corresponding else.

13.5.1 Static Semantics: VarDeclaredNames

See also: 13.0.1, 13.1.8, 13.6.1.1, 13.6.2.1, 13.6.3.1, 13.6.4.3, 13.10.2, 13.11.4, 13.12.2, 13.14.2, 14.1.10,
14.4.8, 14.5.13, 15.1.0.5, 15.2.5.

IfStatement : 1 £ (Expression) Statement else Statement

1. Let names be VarDeclaredNames of the first Statement.
2. Append to names the elements of the VarDeclaredNames of the second Statement.
3. Return names.

IfStatement : 1£ (Expression) Statement

1

Return the VarDeclaredNames of Statement.

13.5.2 Runtime Semantics: Evaluation

IfStatement : 1 £ (Expression) Statement else Statement

LN

o

6.

7.

Let exprRef be the result of evaluating Expression.
Let exprValue be ToBoolean(GetValue(exprRef)).
ReturnlfAbrupt(exprValue).
If exprValue is true, then
a. Let stmtValue be the result of evaluating the first Statement.
Else,
a. Let stmtValue be the result of evaluating the second Statement.
If stmtValue.[[type]] is normal and stmtValue.[[value]] is empty, then
a. Return NormalCompletion(undefined). |
Return stmtValue.

IfStatement : 1£ (Expression) Statement

LN

o

Let exprRef be the result of evaluating Expression.
Let exprValue be ToBoolean(GetValue(exprRef)).
ReturnifAbrupt(exprValue).
If exprValue is false, then
a. Return NormalCompletion(undefined).
Else,
a.. Let stmtValue be the result of evaluating Statement.
[If stmtValue.[[type]] is normal and stmtValue.[[value]] is empty, then
a. " Return NormalCompletion(undefined). |
Return stmtValue.

© Ecma International 2013

Commented [AWB1369]: Breaking change from ES5:
| completion reform

Commented [AWB670]: Breaking change from ES5:
completion reform

(Commented [AWB1371]: Breaking change from ES5:
| completion reform

181

secmd

13.6 lteration Statements

Syntax

IterationStatement :
do Statement while (Expression) ; opt
while (Expression) Statement
for (ExpressionNolnep; Expressionopt ; Expressiono) Statement
for (var VariableDeclarationListNolIn; Expressionop ; EXpressiongp) Statement
for (LexicalDeclarationNoln; Expressionopt ; Expressionop:) Statement
for (LeftHandSideExpression in Expression) Statement
for (var ForBinding in Expression) Statement
for (ForDeclaration in Expression) Statement
for (LeftHandSideExpression of AssignmentExpression) Statement
for (var ForBinding of AssignmentExpression) Statement
for (ForDeclaration of AssignmentExpression) Statement

ForDeclaration :
LetOrConst ForBinding

NOTE1 ForBinding is defined in 12.1.4.2.

NOTE 2 A semicolon is not required after a do-while statement.

13.6.0 Semantics

13.6.0.1 Runtime Semantics: LoopContinues

The abstract operation LoopContinues with arguments completion and-labelSet is defined by the following step:
I1f completion.[[type]] is normal, then return true.

If completion.[[type]] is not continue, then return false.

If completion.[[target]]iis empty, then return true.

If completion.[[target]] is an element of labelSet, then return true.
Return false.

abrwpE

NOTE Within the Statement part of an IterationStatement a ContinueStatement may be used to begin a new iteration.
13.6.1 The'do-while Statement
13.6.1.1 Static Semantics: VarDeclaredNames

See also: 13.0.1, 13.1.8, 13.5.1, 13.6.2.1, 13.6.3.1, 13.6.4.3, 13.10.2, 13.11.4, 13.12.2, 13.14.2, 14.1.10,
14.4.8,145.18, 15.1.0.5, 15.2.5.

IterationStatement : do Statement while (Expression) ; opt

1. Return the VarDeclaredNames of Statement.

13.6.1.2 Runtime Semantics: LabelledEvaluation
With argument labelSet.

See also: 13.0.2, 13.6.2.2, 13.6.3.2, 13.6.4.5, 13.12.3.

IterationStatement : do Statement while (Expression) ; opt

1. LetV =undefined.
2. Repeat

182 © Ecma International 2013

Commented [AWB672]: This is breaking change from ES5
which allowed a VariableDeclarationNoln to appear here. See
es-discuss thread “lexical for-in/for-of loose end”

Commented [AWB673]: Note that this is technically a
breaking change from ES5, however it is made to match web
reality.

Commented [AWB674]: Breaking change: completion
reform

secma

Let stmt be the result of evaluating Statement.

If stmt.[[value]] is not empty, let V = stmt.[[value]].

If stmt is an abrupt completion and LoopContinues (stmt,labelSet) is false, return stmt.

Let exprRef be the result of evaluating Expression.

Let exprValue be ToBoolean(GetValue(exprRef)).

If exprValue is false, Return NormalCompletion(V).

Else if exprValue is not true, then Commented [AWB675]: Break/continue/return in the
i. Assert: exprValue is an abrupt completion. expression works normally (future for do {} or block lamda
ii. If LoopContinues (exprValue,labelSet) is false, return exprvalue. expressions)

@mo oo o

13.6.2 The while Statement
13.6.2.1 Static Semantics: VarDeclaredNames

See also: 13.0.1, 13.1.8, 13.5.1, 13.6.1.1, 13.6.3.1, 13.6.4.3, 13.10.2, 13.11.4, 13.12.2, 13.14.2, 14.1.10,
14.4.8, 14.5.13,15.1.0.5, 15.2.5.

IterationStatement : while (Expression) Statement

1. Return the VarDeclaredNames of Statement.

13.6.2.2 Runtime Semantics: LabelledEvaluation
With argument labelSet.

See also: 13.0.2, 13.6.1.2, 13.6.3.2, 13.6.4.5,13.12.3.

IterationStatement : while (Expression) Statement

1. LetV =undefined. Commented [AWB676]: ES5 breaking change: completion
2. Repeat reform

a. Let exprRef be the result of evaluating Expression.
b. Let exprValue be ToBoolean(GetValue(exprRef)).

c. IfexprValueis false, return NormalCompletion(V).
d

If exprValue is.not true, then Commented [AWB677]: Break/continue/return in the
i. Assert: exprValue is-an abrupt completion. expression works normally (future for do {} or block lamda
ii. If LoopContinues(exprValue,labelSet) is false, return exprVvalue. expressions)

e. Letstmtbe the result of evaluating Statement.
f. <If stmt.[[value]] is not empty, let V = stmt.[[value]].
g. If LoopContinues (stmt,labelSet) is false, return stmt.

13.6.3 [The for Statement\ Ci ed [AWB 378]: The lexical scoping of for iteration
variables still needs to be taken care of

13.6.3.1 Static Semantics: VarDeclaredNames

See also: 13.0.1, 13.1.8, 13.5.1, 13.6.1.1, 13.6.2.1, 13.6.4.3, 13.10.2, 13.11.4, 13.12.2, 13.14.2, 14.1.10,
14.4.8, 14.5.13, 15.1.0.5,15.2.5.

IterationStatement : £or (ExpressionNolnep ; EXpressionept ; Expressionop) Statement

1. Return the VarDeclaredNames of Statement.

IterationStatement : for (var VariableDeclarationListNoln ; Expressionopt ; Expressionept) Statement
1. Let names be BoundNames of VariableDeclarationListNoln.

2. Append to names the elements of the VarDeclaredNames of Statement.

3. Return names.

IterationStatement : for (LexicalDeclarationNoln; Expressionopt ; Expressionep) Statement

© Ecma International 2013 183

secmd

1. Return the VarDeclaredNames of Statement.

13.6.3.2 Runtime Semantics: LabelledEvaluation

With argument labelSet.

See also: 13.0.2, 13.6.1.2, 13.6.2.2, 13.6.4.5, 13.12.3.

IterationStatement : for (ExpressionNolIney: ; Expressionep ; Expressionop) Statement

1. If ExpressionNoln is present, then

Let exprRef be the result of evaluating ExpressionNoln.

Let exprValue be GetValue(exprRef).

If LoopContinues(exprValue,labelSet) is false, return exprValue.

2. Return the result of performing ForBodyEvaluation with the first Expression as the testExpr argument, the
second Expression as the incrementExpr argument, Statement as the stmt argument, and with labelSet.

a.
b.
c.

IterationStatement : for (var VariableDeclarationListNoIn ; Expressionopt ; Expressionopt) Statement

1. LetvarDcl be the result of evaluating VariableDeclarationListNoln.

2. If LoopContinues(varDcl,labelSet) is false, return varDcl.

3. Return the result of performing ForBodyEvaluation with the first Expression as the testExpr argument, the
second Expression as the incrementExpr argument, Statement as the'stmt argument, and with labelSet.

IterationStatement : for (LexicalDeclarationNoln ; Expressionop ; Expressionopt) Statement

L

2.

3.

4.
a.
b.

5.

6.

7.
a.
b.

Let oldEnv be the running execution context’s LexicalEnvironment.

Let loopEnv be the result of calling NewDeclarativeEnvironment passing oldEnv as the argument.
Let isConst be the result of performing IsConstantDeclaration of LexicalDeclarationNoln.

For each element dn of the BoundNames of LexicalDeclarationNoln do

If isConst is true, then

i
Else,
i

Call loopEnv’s CreatelmmutableBinding concrete method passing dn as the argument.

CalllloopEnv’s CreateMutableBinding concrete method passing dn and false as the
arguments.
Assert: The above call to CreateMutableBinding will never return an abrupt completion.

Set the running execution context’s LexicalEnvironment to loopEnv.
Let forDel-be the result of evaluating LexicalDeclarationNoln.
If LoopContinues(forDcl,labelSet) is false, then

Set the running execution context’s LexicalEnvironment to oldEnv.

Return forDcl.

8. Let bodyResult be the result of performing ForBodyEvaluation with the first Expression as the testExpr
argument, the second Expression as the incrementExpr argument, Statement as the stmt argument, and with
labelSet.

9. Set the running execution context’s LexicalEnvironment to oldEnv.

10. Return bodyResult.

13.6.3.3 Runtime Semantics: ForBodyEvaluation

The abstract operation ForBodyEvaluation with arguments testExpr, incrementExpr, stmt, and labelSet is
performed as follows:

1. LetV =undefined.

2. Repeat
a.

184

If testExpr is not [empty], then

i
ii.
iii.
iv.

Let testExprRef be the result of evaluating testExpr.

Let testExprValue be ToBoolean(GetValue(testExprRef))

If testExprValue is false, return NormalCompletion(V).

Else if LoopContinues (testExprValue,labelSet) is false, return testExprValue.

© Ecma International 2013

Commented [AWB679]: A final decision has not yet been
reached on the scoping semantics used for this form of for
statement. This version uses “loop scoping” a single set of
let/const bindings are used for all iterations of the loop. This is
the simpliest of the semantics under consideration.

Commented [AWB680]: ES5 breaking change: Completion
reform

secma

Let result be the result of evaluating stmt.
If result.[[value]] is not empty, let V = result.[[value]].
If LoopContinues (result,labelSet) is false, return result.
If incrementExpr is not [empty], then
i Let incExprRef be the result of evaluating incrementExpr.
ii. Let incExprValue be GetValue(incExprRef).
il If LoopContinues(incExprValue,labelSet) is false, return incExprValue.

Poo o

13.6.4 The for-in and for-of Statements
13.6.4.1 Static Semantics: Early Errors

IterationStatement :
for (LeftHandSideExpression in Expression) Statement
for (LeftHandSideExpression of AssignmentExpression) Statement

e |t is a Syntax Error if LeftHandSideExpression is either an ObjectLiteral or an ArrayLiteral and if the
lexical token sequence matched by LeftHandSideExpression cannot be parsed with no tokens left over
using AssignmentPattern as the goal symbol.

e If LeftHandSideExpression is either an ObjectLiteral or-an ArrayLiteral and if the lexical token sequence
matched by LeftHandSideExpression can be parsed with no tokens left over using AssignmentPattern as
the goal symbol then the following rules are not. applied. < Instead, the Early Error rules for
AssignmentPattern are used.

e Itis a Syntax Error if LeftHandSideExpression is an Identifier that can be statically determined to always
resolve to a declarative environment record binding and the resolved binding is an immutable binding.

e |t is a Syntax Error if LeftHandSideExpression is neither an ObjectLiteral nor an ArrayLiteral and
IsValidSimpleAssignmentTarget of LeftHandSideExpression is false.

e ltis a Syntax Error if the LeftHandSideExpression is
CoverParenthesisedExpressionAndArrowParameterList : (Expression)
and Expression derives a production that would produce a Syntax Error according to these rules if that
production is substituted for LeftHandSideExpression. This rule is recursively applied.

NOTE The last rule means that the other rules are applied even if multiple levels of nested parenthesises surround
Expression.

IterationStatement :
for (ForDeclaration in Expression) Statement
for (ForDeclaration of AssignmentExpression) Statement

e It is a Syntax Error if any element of the BoundNames of ForDeclaration also occurs in the
VarDeclaredNames of Statement.

13.6.4.2" Static Semantics: BoundNames

See also: 13.2.1.2, 13.2.2.1, 13.2.3.2, 14.1.2, 14.2.2, 14.4.2,145.2,15.1.1.2, 15.1.2.1.
ForDeclaration : LetOrConst ForBinding

1. Return the BoundNames of ForBinding.

13.6.4.3 Static Semantics: VarDeclaredNames

See also: 13.0.1, 13.1.8, 13.5.1, 13.6.1.1, 13.6.2.1, 13.6.3.1, 13.10.2, 13.11.4, 13.12.2, 13.14.2, 14.1.10,
14.4.8,14.5.13, 15.1.0.5, 15.2.5.

IterationStatement : for (LeftHandSideExpression in Expression) Statement

1. Return the VarDeclaredNames of Statement.

© Ecma International 2013 185

secmd

IterationStatement : for (var ForBinding in Expression) Statement
1. Let names be the BoundNames of ForBinding.
2. Append to names the elements of the VarDeclaredNames of Statement.
3. Return names
IterationStatement : for (ForDeclaration in Expression) Statement
1. Return the VarDeclaredNames of Statement.
IterationStatement : for (LeftHandSideExpression of AssignmentExpression) Statement
1. Return the VarDeclaredNames of Statement.
IterationStatement : for (var ForBinding of AssignmentExpression) Statement
1. Let names be the BoundNames of ForBinding.
2. Append to names the elements of the VarDeclaredNames of Statement.
3. Return names
IterationStatement : for (ForDeclaration of AssignmentExpression) Statement
1. Return the VarDeclaredNames of Statement.
13.6.4.4 Runtime Semantics: Bindinglnstantiation
With arguments value and environment.
See also: 13.0.2, 13.6.1.2, 13.6.2.2, 13.6.3.2, 13.12.3.
ForDeclaration : LetOrConst ForBinding
1. Foreach element name of the BoundNames of ForBinding do
a. If IsConstantDeclaration of LetOrConst is false, then
i Call environment’s'CreateMutableBinding concrete method with argument name.
ii. Assert: The above call to CreateMutableBinding will never return an abrupt completion.
b. Else,
i Call environment’s CreatelmmutableBinding concrete method with argument name.
2. Return.the result of performing Bindinglnitialisation for ForBinding passing value and environment as the
arguments.
13.6.4.5 . Runtime Semantics: LabelledEvaluation
With argument labelSet.
See also: 13.0.2, 13.6.1.2,13.6.2.2, 13.6.3.2, 13.12.3.
IterationStatement : for (LeftHandSideExpression in Expression) Statement
1. Let keyResult be the result of performing Forln/OfExpressionEvaluation with Expression, enumerate, and
labelSet.
2. ReturnlfAbrupt(keyResult).
3. Return the result of performing ForIn/OfBodyEvaluation with LeftHandSideExpression, Statement,
keyResult, assignment, and labelSet.

IterationStatement : for (var ForBinding in Expression) Statement

1. Let keyResult be the result of performing ForIn/OfExpressionEvaluation with Expression, enumerate, and
labelSet.

186 © Ecma International 2013

secma

2. ReturnlfAbrupt(keyResult).
3. Return the result of performing Forln/OfBodyEvaluation with ForBinding, Statement, keyResult,
varBinding, and labelSet.

IterationStatement : for (ForDeclaration in Expression) Statement

1. Let keyResult be the result of performing Forln/OfExpressionEvaluation with Expression, enumerate, and
labelSet.

2. ReturnlfAbrupt(keyResult).

3. Return the result of performing Forln/OfBodyEvaluation with ForDeclaration, Statement, keyResult,
lexicalBinding, and labelSet.

IterationStatement : for (LeftHandSideExpression of AssignmentExpression) Statement

1. Let keyResult be the result of performing Forln/OfExpressionEvaluation ' with AssignmentExpression,
iterate, and labelSet.

2. ReturnlfAbrupt(keyResult).

3. Return the result of performing Forln/OfBodyEvaluation with LeftHandSideExpression, Statement,
keyResult, assignment, and labelSet.

IterationStatement : for (var ForBinding of AssignmentExpression) Statement

1. Let keyResult be the result of performing Forln/OfExpressionEvaluation with AssignmentExpression,
iterate, and labelSet.

2. ReturnlfAbrupt(keyResult).

3. Return the result of performing Forln/OfBodyEvaluation with ForBinding, Statement, keyResult,
varBinding, and labelSet.

IterationStatement : for (ForDeclaration of AssignmentExpression) Statement

1. Let keyResult be the result of performing Forln/OfExpressionEvaluation with AssignmentExpression,
iterate, and labelSet.

2. ReturnlfAbrupt(keyResult).

3. Return the result of performing Forln/OfBodyEvaluation with ForDeclaration, Statement, keyResult,
lexicalBinding, and labelSet.

13.6.4.6 Runtime Semantics: ForIn/OfExpressionEvaluation Abstract Operation

The abstract operation Forln/OfExpressionEvaluation is called with arguments expr, iterationKind, and labelSet.
The value of iterationKind is either enumerate or iterate.

1. [Let exprRef be the result of evaluating the production that is expr.]
2. LetexprValue be GetValue(exprRef).
3. IfexprValue is an abrupt completion,
a. If LoopContinues(exprValue,labelSet) is false, then return exprValue.
b. Else, return Completion {[[type]]: break, [[value]]: empty, [[target]]: empty}.
4. If exprValue.[[value]] is null or undefined, return Completion {[[type]]: break, [[value]]: empty, [[target]]:
empty}.
Let obj be ToObject(exprValue).
If iterationKind is enumerate, then
a. Let keys be the result of calling the [[Enumerate]] internal method of obj with no arguments.
7. Else,
a. Assert: iterationKind is iterate.
b. Let iterator be the result of performing Invoke with arguments obj, @ @iterator and an empty List.
c. Letkeys be ToObject(iterator).
8. If keys is an abrupt completion, then
a. If LoopContinues(exprValue,labelSet) is false, then return exprValue.
b. Assert: keys.[[type]] is continue
c. Return Completion {[[type]]: break, [[value]]: empty, [[target]]: empty}.

S

© Ecma International 2013 187

[Commented [AWB1581]: NOTE that if this is a for-let, this |

places the evaluation of the AssignmentExpression outside
the scope of the bindings. Perhaps in should be within that

| scope and subject to TDZ checks on the bond values.

Commented [AWB682]: Note a continue in the initializer
expression is just like a break

Commented [AWB683]: Break/continue in the expression
works normally (future for do {} or block lamda expressions)

Commented [AWB684]: Note a continue in the initialiser
expression is just like a break

secmd

9. Return keys.
13.6.4.7 Runtime Semantics: ForIn/OfBodyEvaluation

The abstract operation Forln/OfBodyEvaluation is called with arguments lhs, stmt, keys, IhsKind, and labelSet.
The value of IhsKind is either assignment, varBinding or lexicalBinding.

1. LetoldEnv be the running execution context’s LexicalEnvironment.
2. LetV =undefined .

3. Repeat
a. Let nextResult be the result of IteratorStep(keys).
b. ReturnlfAbrupt(nextResult).
c. If nextResult is false, then return NormalCompletion(V).
d. Let nextValue be the result of IteratorValue(nextResult).
e. ReturnIfAbrupt(nextValue).
f. If lhsKind is assignment, then

i Assert: Ihs is a LeftHandSideExpression.
ii. If Ihs is neither an ObjectLiteral nor an ArrayLiteral then
1. Let IhsRef be the result of evaluatinglhs (it may be evaluated repeatedly).
2. Let status be the result of performing PutValue(lhsRef, nextValue).
iii. Else
1. LetassignmentPattern be the parse of the source code corresponding to Ihs using
AssignmentPattern as the goal symbol.
2. If Type(rval) is not Object, then throw a TypeError exception.
3. Let status be the result of performing DestructuringAssignmentEvaluation of
AssignmentPattern using rval as the argument.
g. Elseif IhsKind is varBinding, then
i. Assert: lhs is a ForBinding.
ii. Let status be the result of performing Bindinglnitialisation for Ihs passing nextValue and
undefined as the arguments.
h. Else,
i Assert: IhsKind is lexicalBinding.
ii. Assert:lhs is a ForDeclaration.
iii. Let iterationEnv be the result of calling NewDeclarativeEnvironment passing oldEnv as the
argument.
iv. Perform Bindinglnstantiation for Ihs passing nextValue and iterationEnv as arguments.
v. |Let status be NormalCompletion(empty)|
vi._Set the running execution context’s LexicalEnvironment to iterationEnv.
i. _f status.[[type]] is normal, then
I Let status be the result of evaluating stmt.
ii. If status.[[type]] is normal and status.[[value]] is not empty, then
1. LetV = status.[[value]].
Set the running execution context’s LexicalEnvironment to oldEnv.
If status is an abrupt completion and LoopContinues(status,labelSet) is false, then return status.

b

13.7 The continue Statement

Syntax
ContinueStatement :

continue ;

continue [no LineTerminator here] Identifier ;
13.7.1 Static Semantics: Early Errors

ContinueStatement : continue ;

e It is a Syntax Error if this production is not nested, directly or indirectly (but not crossing
function boundaries), within an IterationStatement.

188 © Ecma International 2013

Commented [AWB685]: Completion value reform

Commented [AWB686]: ToDo, update this to return a
completion value

Commented [AWB1187]: Need to understand why result of
previous step is ignored. See bug 811

secma

ContinueStatement : continue [no LineTerminator here] ldentifier ;

e Itis a Syntax Error if Identifier does not appear in the CurrentLabelSet of an enclosing (but
not crossing function boundaries) lterationStatement.

13.7.2 Runtime Semantics: Evaluation

ContinueStatement : continue ;

1. Return Completion {[[type]]: continue, [[value]]: empty, [[target]]: empty}.
ContinueStatement : continue [no LineTerminator here] Identifier ;

1. Return Completion {[[type]]: continue, [[value]]: empty, [[target]]: Identifier}.
13.8 The break Statement

Syntax
BreakStatement :

break ;

break [no LineTerminator here] ldentifier ;
13.8.1 Static Semantics: Early Errors
BreakStatement : break ;

e It is a Syntax Error if this production is not nested, directly or indirectly (but not crossing
function boundaries), within an IterationStatement or-a SwitchStatement.

BreakStatement : break [no LineTerminator here] ldentifier;

e It is a Syntax Error if Identifier does not appear in the CurrentLabelSet of an enclosing (but
not crossing function boundaries) Statement.

13.8.2 Runtime Semantics: Evaluation

BreakStatement : break ;

1. Return‘Completion {[[type]]: break, [[value]]: empty, [[target]]: empty}.
BreakStatement : break [no LineTerminator here], Identifier ;

1. Return Completion {[[type]]: break, [[value]]: empty, [[target]]: Identifier}.
13.9 The return Statement

Syntax

ReturnStatement :
return ;
return [no LineTerminator here] EXp ression ;

NOTE A return statement causes a function to cease execution and return a value to the caller. If Expression is
omitted, the return value is undefined. Otherwise, the return value is the value of Expression.

13.9.1 Static Semantics: Early Errors

e |tis a Syntax Error if a return statement is not within a FunctionBody or a GeneratorBody.

© Ecma International 2013 189

secmd

13.9.2 Runtime Semantics: Evaluation

ReturnStatement : return ;

1. Return Completion {[[type]]: return, [[value]]: undefined, [[target]]: empty}.
ReturnStatement : return [no LineTerminator here] Expression ;

Let exprRef be the result of evaluating Expression.

Let exprValue be GetValue(exprRef).

ReturnlfAbrupt(exprValue).
Return Completion {[[type]]: return, [[value]]: exprValue, [[target]]: empty}.

Eali i o

13.10 The with Statement

Syntax
WithStatement :
with (Expression) Statement

NOTE The with statement adds an object environment record for a computed object to the lexical environment of the
running execution context. It then executes a statement using this augmented lexical environment. Finally, it restores the
original lexical environment.

13.10.1 Static Semantics: Early Errors
WithStatement : with (Expression) Statement

e ltis a Syntax Error if the code that matches this productioniis contained in strict code.
13.10.2 Static Semantics: VarDeclaredNames

See also: 13.0.1, 13.1.8, 13.5.1, 13.6.1.1, 13.6.2.1, 13.6.3.1, 13.6.4.3, 13.11.4, 13.12.2, 13.14.2, 14.1.10,
14.4.8, 14.5.13, 15.1.0.5,15.2.5.

WithStatement : with (Expression) Statement
1. Return the VarDeclaredNames of Statement.
13.10.3 <Runtime Semantics: Evaluation
WithStatement : with (Expression) Statement

1. Let val be the result of evaluating Expression.

2. Let obj be ToObject(GetValue(val)).

3. ReturnIfAbrupt(obj).

4. Let oldEnv be the running execution context’s LexicalEnvironment.

5. Let newEnv be the result of calling NewObjectEnvironment passing obj and oldEnv as the arguments.
6. Set the withEnvironment flag of newEnv’s environment record to true.

7. Set the running execution context’s LexicalEnvironment to newEnv.

8. Let C be the result of evaluating Statement.

9. Set the running execution context’s Lexical Environment to oldEnv.

10. Return C.

NOTE No matter how control leaves the embedded Statement, whether normally or by some form of abrupt
completion or exception, the LexicalEnvironment is always restored to its former state.

190 © Ecma International 2013

secma

13.11 The switch Statement

Syntax
SwitchStatement :
switch (Expression) CaseBlock

CaseBlock :
{ CaseClausesopt }
{ CaseClausesopt DefaultClause CaseClausesopt }

CaseClauses :
CaseClause
CaseClauses CaseClause

CaseClause :
case Expression : StatementListop

DefaultClause :
default : StatementListopt

13.11.1 Static Semantics: Early Errors

CaseBlock : { CaseClauses }
e ltis a Syntax Error if the LexicallyDeclaredNames of CaseClauses contains any duplicate entries.
e |t is a Syntax Error if any element of the LexicallyDeclaredNames of CaseClauses also occurs in the

VarDeclaredNames of CaseClauses.

13.11.2 Static Semantics: LexicalDeclarations

See also: 13.1.2.

CaseBlock : { }

1. Return a new empty List.

CaseBlock : { CaseClausesopt DefaultClause CaseClausesopt }

If the first CaseClauses is present, let declarations be the LexicalDeclarations of the first CaseClauses.

Else let declarations be a new empty List.

Append to declarations the elements of the LexicalDeclarations of the DefaultClause.

If the second CaseClauses'is not present, return declarations.

Else return the result of appending to declarations the elements of the LexicalDeclarations of the second
CaseClauses:

arwdE

CaseClauses : CaseClauses CaseClause

1. Letdeclarations be LexicalDeclarations of CaseClauses.

2. Append to declarations the elements of the LexicalDeclarations of CaseClause.
3. Return declarations.

CaseClause : case Expression : StatementListop

1. If the StatementList is present, return the LexicalDeclarations of StatementList.
2. Else return a new empty List.

DefaultClause : default : StatementListop

© Ecma International 2013 191

secmd

1. If the StatementList is present, return the LexicalDeclarations of StatementList.
2. Else return a new empty List.

13.11.3 Static Semantics: LexicallyDeclaredNames

See also: 13.1.3, 14.1.9, 14.2.7, 14.4.5, 14.5.7, 15.1.0.3, 15.2.3.

CaseBlock : { }

1. Return a new empty List.

CaseBlock : { CaseClausesopt DefaultClause CaseClausesopt }

If the first CaseClauses is present, let names be the LexicallyDeclaredNames of the first CaseClauses.
Else let names be a new empty List.

Append to names the elements of the LexicallyDeclaredNames of the DefaultClause.

If the second CaseClauses is not present, return names.

Else return the result of appending to names the elements of the LexicallyDeclaredNames of the second
CaseClauses.

arwpnE

CaseClauses : CaseClauses CaseClause

1. Let names be LexicallyDeclaredNames of CaseClauses.

2. Append to names the elements of the LexicallyDeclaredNames of CaseClause.
3. Return names.

CaseClause : case Expression : StatementListopt

1. If the StatementList is present, return the LexicallyDeclaredNames of StatementList.
2. Else return a new empty List.

DefaultClause : default : StatementListopt

1. If the StatementList is present, return the LexicallyDeclaredNames of StatementList.
2. Else return a new empty List.

13.11.4 Static Semantics: VarDeclaredNames

See also: 13.0.1, 13.1.8; 13.5.1, 18.6.1.1, 13.6.2.1, 13.6.3.1, 13.6.4.3, 13.10.2, 13.12.2, 13.14.2, 14.1.10,
14.4.8, 14.5.13, 15.1.0.5, 15.2.5.

SwitchStatement : switch (Expression) CaseBlock

1. Return the VarDeclaredNames of CaseBlock.

CaseBlock : { }

1. Return a new empty List.

CaseBlock : { CaseClausesopt DefaultClause CaseClausesopt }

If the first CaseClauses is present, let names be the VarDeclaredNames of the first CaseClauses.
Else let names be a new empty List.

Append to names the elements of the VVarDeclaredNames of the DefaultClause.

If the second CaseClauses is not present, return names.

Else return the result of appending to names the elements of the VarDeclaredNames of the second
CaseClauses.

arwpE

CaseClauses : CaseClauses CaseClause

192 © Ecma International 2013

secma

1. Letnames be VarDeclaredNames of CaseClauses.

2. Append to names the elements of the VarDeclaredNames of CaseClause.
3. Return names.

CaseClause : case Expression : StatementListopt

1. If the StatementList is present, return the VarDeclaredNames of StatementList.
2. Else return a new empty List.

DefaultClause : default : StatementListopt

1. If the StatementList is present, return the VarDeclaredNames of StatementList.
2. Else return a new empty List.

13.11.5 Runtime Semantics: CaseBlockEvaluation
With argument input.

CaseBlock : { CaseClausesopt }

1. LetV=undefined.
2. Let A be the list of CaseClause items in source text order.
3. Letsearching be true.
4. Repeat, while searching is true
a. Let C be the next CaseClause in A. If there is no such CaseClause, return NormalCompletion(V).
b. Let clauseSelector be the result of CaseSelectorEvaluation of C.
c. ReturnIfAbrupt(clauseSelector).
d. Let matched be the result of performing Strict Equality.Comparison input === clauseSelector.
e. If matched is true, then
i Set searching to false.
ii. If C has a StatementList, then
1. LetV be the result of evaluating C’s StatementList.
2. < ReturnIfAbrupt(V).
5. Repeat

a. Let C be the next CaseClausein A. If there is no such CaseClause, return NormalCompletion(V).
b. If C has a StatementList, then
i. Let R be the result of evaluating C’s StatementList.
iis If R.[[value]] is not empty, then let V = R.[[value]].
iii. If R is an abrupt completion, then return Completion {[[type]]: R.[[type]l, [[value]]: V, [[target]]:
R.[[target]]}.

CaseBlock : { CaseClausesop DefaultClause CaseClausesopt }

Let V = undefined.
Let A be the list of CaseClause items in the first CaseClauses, in source text order.
Let found be false.
Repeat letting C be in order each CaseClause in A
a. Iffound is false, then
i. Let clauseSelector be the result of CaseSelectorEvaluation of C.
il If clauseSelector is an abrupt completion, then
1. If clauseSelector.[[value]] is empty, then return Completion {[[typell:
clauseSelector.[[type]], [[value]]: undefined, [[target]]: clauseSelector.[[target]]}.
2. Else, return clauseSelector.
iii. Let found be the result of performing Strict Equality Comparison input === clauseSelector.
b. If found is true, then
i. Let R be the result of evaluating CaseClause C.
ii. If R.[[value]] is not empty, then let V = R.[[value]].
iii. If R is an abrupt completion, then return Completion {[[type]]: R.[[type]l, [[valuel]: V, [[target]]:
R.[[target]]}.

Eal ol

© Ecma International 2013 193

Commented [AWB688]: ES5 breaking change: completion
reform

Commented [AWB689]: ES5 breaking change: completion
reform

secmd

5. Let foundInB be false.
6. If found is false, then
a. LetB be anew List containing the CaseClause items in the second CaseClauses, in source text order.
b. Repeat, letting C be in order each CaseClause in B
i. If foundInB is false, then
1. LetclauseSelector be the result of CaseSelectorEvaluation of C.
2. If clauseSelector is an abrupt completion, then
a. If clauseSelector.[[value]] is empty, then return Completion {[[type]]:
clauseSelector.[[type]], [[value]]: undefined, [[target]]:
clauseSelector.[[target]]}.
b. Else, return clauseSelector.
2. Let foundInB be the result of performing Strict Equality Comparison input ===
clauseSelector.
ii. If foundInB is true, then
1. LetR be the result of evaluating CaseClause C.
2. IfR.[[value]] is not empty, then let V = R.[[value]].
3. IfRis an abrupt completion, then return Completion {[[type]]: R.[[type]l, [[value]]: V,
[[target]]: R.[[target]]}
2. IffoundInB is true, then return NormalCompletion(V).
3. LetR be the result of evaluating DefaultClause.
4. IfR.[[value]] is not empty, then let V = R.[[value]].
5. IfRis an abrupt completion, then return Completion {[[type]]: R.[[type]l, [[value]]: V, [[target]]: R-[[target]]}-
6. Let B be a new List containing the CaseClause items in the second CaseClauses, in source text order.
7. Repeat, letting C be in order each CaseClause in B (NOTE this is another complete iteration of the second CaseClauses)

a. LetR be the result of evaluating CaseClause C..
b. If R.[[value]] is not empty, then let V.=R.[[value]].
c. IfRis an abrupt completion, then return Completion {[[type]]: R.[[type]l, [[value]]: V, [[target]]:

R.[[target]]}.
8. Return NormalCompletion(V).

13.11.6 Runtime Semantics: CaseSelectorEvaluation
CaseClause : case Expression : StatementListop:

1. Let exprRef be the result of evaluating Expression.
2. Return GetValue(exprRef).

NOTE CaseSelectorEvaluation does not execute the associated StatementList. It simply evaluates the Expression and
returns the value; which the CaseBlock algorithm uses to determine which StatementList to start executing.

13.11.7 < Runtime Semantics: Evaluation
SwitchStatement : switch (Expression) CaseBlock

Let exprRef be the result of evaluating Expression.

Let switchValue be GetValue(exprRef).

ReturnlfAbrupt(switchValue).

Let oldEnv be the running execution context’s LexicalEnvironment.

Let blockEnv be the result of calling NewDeclarativeEnvironment passing oldEnv as the argument.
Perform Block Declaration Instantiation using CaseBlock and blockEnv.

Let R be the result of performing CaseBlockEvaluation of CaseBlock with argument switchValue.
Set the running execution context’s LexicalEnvironment to oldEnv.

Return R.

@oNOGOA WD E

NOTE No matter how control leaves the SwitchStatement the LexicalEnvironment is always restored to its former state.
CaseClause : case Expression :

1. Return NormalCompletion(empty).

194 © Ecma International 2013

secma

CaseClause : case Expression : StatementList

1. Return the result of evaluating StatementList.

DefaultClause : default:
1. Return NormalCompletion(empty).

DefaultClause : default: StatementList

1. Return the result of evaluating StatementList.

13.12 Labelled Statements

Syntax

LabelledStatement :
Identifier : Statement

NOTE A Statement may be prefixed by a label. Labelled statements are only used in conjunction with labelled break
and continue statements. ECMAScript has no goto statement. A Statement can be part of a LabelledStatement, which
itself can be part of a LabelledStatement, and so on. The labels introduced this‘way are collectively referred to as the
“current label set” when describing the semantics of individual statements. A LLabelledStatement has no semantic meaning
other than the introduction of a label to a label set. The label set of an<IterationStatement or a SwitchStatement initially

contains the single element empty. The label set of any other statement is initially empty.

13.12.1 Static Semantics: Early Errors

e |tis a Syntax Error if a LabelledStatement is enclosed by a LabelledStatement with the same Identifier as
the enclosed LabelledStatement. This does not apply to a LabelledStatement appearing within the body of

a FunctionDeclaration and a LabelledStatement

FunctionDeclaration .

13.12.2 Static Semantics: VarDeclaredNames

the

See also: 13.0.1,.13.1.8, 13.5.1, 13.6.1.1, 13.6.2.1, 13.6.3.1, 13.6.4.3, 13.10.2, 13.11.4, 13.14.2, 14.1.10,

14.4.8, 14,513, 15.1.0.5, 15.2.5.
LabelledStatement : Identifier : Statement

1. Return the VarDeclaredNames of Statement.

13.12.3 Runtime Semantics: LabelledEvaluation

With argument labelSet.

See also: 13.0.2, 13.6.1.2, 13.6.2.2, 13.6.3.2, 13.6.4.5.

LabelledStatement : Identifier : Statement

1. Let label be the StringValue of Identifier.

2. LetnewLabelSet be a new List containing label and the elements of labelSet.
3. If Statement is either LabelledStatement or BreakableStatement, then

a. Let stmtResult be the result of performing LabelledEvaluation of Statement with argument

newLabelSet.
4. Else,

a. Let stmtResult be the result of evaluating Statement.

© Ecma International 2013

195

&

K

6.

7.

ecma

If stmtResult.[[type]] is break and stmtResult.[[target]] is the same value as label, then
a. Let result be NormalCompletion(stmtResult.[[value]]).

Else,
a. Let result be stmtResult.

Return result.

13.12.4 Runtime Semantics: Evaluation

LabelledStatement : Identifier : Statement

1
2.

Let newLabelSet be a new empty List.
Return the result of performing LabelledEvaluation of this LabelledStatement with argument newLabelSet.

13.13 The throw Statement

Syn

tax

ThrowStatement :

throw [no LineTerminator here] Expression H

13.13.1 Runtime Semantics: Evaluation

The

rwnE

production ThrowStatement : throw [no LineTerminator here] Expression ;<is evaluated as follows:

Let exprRef be the result of evaluating Expression.

Let exprValue be GetValue(exprRef).

ReturnlfAbrupt(exprValue).

Return Completion {[[type]]: throw, [[value]]: exprValue, [[target]]: empty}.

13.14 The try Statement

Syn

tax

TryStatement :

try Block Catch
try Block Finally
try Block Catch Finally

Catch :

cateh (CatchParameter) Block

Finally :

finally Block

CatchParameter :

Bindingldentifier
BindingPattern

NOTE The try statement encloses a block of code in which an exceptional condition can occur, such as a runtime
error or a throw statement. The catch clause provides the exception-handling code. When a catch clause catches an
exception, its CatchParameter is bound to that exception.

13.14.1 Static Semantics: Early Errors

Catch : catch (CatchParameter) Block

196

e It is a Syntax Error if any element of the BoundNames of CatchParameter also occurs in the
LexicallyDeclaredNames of Block.

e [t is a Syntax Error if any element of the BoundNames of CatchParameter also occurs in the
VarDeclaredNames of Block.

© Ecma International 2013

Commented [AWB90]: Note that this is a new restriction
that does not exist in ES5

secma

13.14.2 Static Semantics: VarDeclaredNames

See also: 13.0.1, 13.1.8, 13.5.1, 13.6.1.1, 13.6.2.1, 13.6.3.1, 13.6.4.3, 13.10.2, 13.11.4, 13.12.2, 14.1.10,
14.4.8, 14.5.13, 15.1.0.5, 15.2.5.

TryStatement : try Block Catch
1. Let names be VarDeclaredNames of Block.
2. Append to names the elements of the VarDeclaredNames of Catch.
3. Return names.
TryStatement : try Block Finally
1. Let names be VarDeclaredNames of Block.
2. Append to names the elements of the VarDeclaredNames of Finally.
3. Return names.
TryStatement : try Block Catch Finally
1. Let names be VarDeclaredNames of Block.
2. Append to names the elements of the VarDeclaredNames of Catch.
3. Append to names the elements of the VarDeclaredNames of Finally.
4. Return names.
Catch : catch (CatchParameter) Block
1. Return the VarDeclaredNames of Block.
13.14.3 Runtime Semantics: Bindinglnitialisation

With arguments value and environment.
NOTE undefined is passed for environment to indicate that a PutValue operation should be used to assign the
initialisation value. This is the case for var statements formal parameter lists of non-strict functions. In those cases a
lexical binding is hosted and preinitialised prior to evaluation of its initialiser.
See also: 12.1.4.2.2,13.2.1.4,13.2.2.2, 13.2.3.4,14.1.11, 14.2.8.

CatchParameter: BindingPattern

1. [If Type(value) is not Object, then throw a TypeError exception.|

Ci ed [AWB1091]: Catching a thrown primitive value,

2. Return the result of performing Bindinglnitialisation for BindingPattern passing value and environment as
the arguments.

13.14.4 Runtime Semantics: CatchClauseEvaluation
with parameter thrownValue

Catch : catch (CatchParameter) Block

[

Let oldEnv be the running execution context’s LexicalEnvironment.
2. Let catchEnv be the result of calling NewDeclarativeEnvironment passing oldEnv as the argument.
3. Foreach element argName of the BoundNames of CatchParameter, do
a. Call the CreateMutableBinding concrete method of catchEnv passing argName as the argument.
b. Assert: The above call to CreateMutableBinding will never return an abrupt completion.
4. Let status be the result of performing Bindinglnitialisation for CatchParameter passing thrownValue and
catchEnv as arguments.
ReturnlfAbrupt(status).
Set the running execution context’s LexicalEnvironment to catchEnv.

o a

© Ecma International 2013 197

null or undefined with a destructuing parameter rethrows a
TypeError. Does this make sense?

secmd

7. Let B be the result of evaluating Block.
8. Set the running execution context’s LexicalEnvironment to oldEnv.
9. Return B.

NOTE No matter how control leaves the Block the LexicalEnvironment is always restored to its former state.
13.14.5 Runtime Semantics: Evaluation

TryStatement : try Block Catch

1. Let B be the result of evaluating Block.

2. If B.[[type]] is not throw, return B.

3. Return the result of performing CatchClauseEvaluation of Catch with parameter B.[[value]].
TryStatement : try Block Finally

Let B be the result of evaluating Block.

Let F be the result of evaluating Finally.

If F.[[type]] is normal, return B.
Return F.

HwN e

TryStatement : try Block Catch Finally

1. Let B be the result of evaluating Block.
2. If B.[[type]] is throw, then
a. Let C be the result of performing CatchClauseEvaluation of Catch with parameter B.value.
3. Else B.[[type]] is not throw,
a. LetCbeB.
4. Let F be the result of evaluating Finally.
5. If F.[[type]] is normal, return C.
6. Return F.

13.15 The debugger statement

Syntax
DebuggerStatement :
debugger ;
13.15.1 Runtime Semantics: Evaluation

NOTE Evaluating the DebuggerStatement production may allow an implementation to cause a breakpoint when run
under a debugger. If a debugger is not present or active this statement has no observable effect.

The production DebuggerStatement : debugger ; is evaluated as follows:

1. If an implementation defined debugging facility is available and enabled, then
a. Perform an implementation defined debugging action.
b. Let result'be an implementation defined Completion value.

2. Else
a. Let result be NormalCompletion(empty).

3. Return result.

14 ECMAScript Language: Functions and Classes

NOTE Various ECMAScript language elements cause the creation of ordinary function objects (9.1.16). Evaluation of
such functions starts with the execution of their [[Call]] internal method (9.1.16.1).

198 © Ecma International 2013

pecma

14.1 Function Definitions

Syntax

FunctionDeclaration :
function Bindingldentifier (FormalParameters) { FunctionBody }

FunctionExpression :
function Bindingldentifierqp (FormalParameters) { FunctionBody }

StrictFormalParameters :
FormalParameters

FormalParameters :
[empty])
FormalParameterList

FormalParameterList :
FunctionRestParameter
FormalsList
FormalsList, FunctionRestParameter

FormalsList :
FormalParameter
FormalsList , FormalParameter

FunctionRestParameter :
. .. Bindingldentifier

FormalParameter :
BindingElement

FunctionBody :
FunctionStatementList

FunctionStatementList :
StatementListopt

Supplemental Syntax

The following productions are used as an aid in specifying the semantics of certain ECMAScript language
features. They are not used when parsing ECMAScript source code.

FunctionBodly :
ThrowTypeError

ThrowTypeError :
[empty]

14.1.1 Static Semantics: Early Errors

FunctionDeclaration : function Bindingldentifier (FormalParameters) { FunctionBody }
and
FunctionExpression : function Bindingldentifieroy (FormalParameters) { FunctionBody }

e Itis a Syntax Error if FunctionBody Contains YieldExpression is true.

e |If the source code matching this production is strict code, the Early Error rules for
StrictFormalParameters : FormalParameters are applied.
It is a Syntax Error if IsSimpleParameterList of FormalParameters is false and any element of the
BoundNames of FormalParameters also occurs in the VarDeclaredNames of FunctionBody.

© Ecma International 2013 199

secmd

e [t is a Syntax Error if any element of the BoundNames of FormalParameters also occurs in the
LexicallyDeclaredNames of FunctionBody.

NOTE The LexicallyDeclaredNames of a FunctionBody does not include identifiers bound using var or function
declarations. Simple parameter lists bind identifiers as VarDeclaredNames. Parameter lists that contain destructuring
patterns, default value initialisers, or a rest parameter bind identifiers as LexicallyDeclaredNames.

StrictFormalParameters : FormalParameters

e Itis a Syntax Error if BoundNames of FormalParameters contains any duplicate elements.
e [tis a Syntax Error if BoundNames of FormalParameters contains either "eval” or "arguments”.

FormalParameters : FormalParameterList
e ltis a Syntax Error if FormalParameters Contains YieldExpression is true.
e It is a Syntax Error if IsSimpleParameterList of FormalParameterList is false and BoundNames of
FormalParameterList contains any duplicate elements.
e |t is a Syntax Error if IsSimpleParameterList of FormalParameterList is false and BoundNames of
FormalParameterList contains either "eval” or "arguments”.

e It is a Syntax Error if the source code matching this production is strict code and BoundNames of
FormalParameterList contains any duplicate elements.

NOTE Multiple occurrences of the same Identifier in a FormalParamterList is only allowed for non-strict functions and
generator functions that have simple parameter lists.

FunctionStatementList : StatementList
e ltis a Syntax Error if the LexicallyDeclaredNames of StatementList contains any duplicate entries.
e ltis a Syntax Error if any element of the LexicallyDeclaredNames of StatementList also occurs in the
VarDeclaredNames of StatementList.
FormalParameter : BindingElement
e ltis a Syntax Error if BindingElement Contains YieldExpression.
14.1.2 Static Semantics: BoundNames
See also: 13.2.1:2,13.2.2.1, 13.2.3.2, 13.6.4.2, 14.2.2, 14.4.2,14.5.2,15.1.1.2, 15.1.2.1.
FunctionDeclaration : function Bindingldentifier (FormalParameters) { FunctionBody }
1. Return the BoundNames of Bindingldentifier.
FormalParameters : [empty]
1. Return an empty List.
FormalParameterList : FormalsList , FunctionRestParameter
1. Let names be BoundNames of FormalsList.
2. Append to names the BoundNames of FunctionRestParameter.
3. Return names.
FormalsList : FormalsList , FormalParameter
1. Let names be BoundNames of FormalsList.

2. Append to names the elements of BoundNames of FormalParameter.
3. Return names.

200 © Ecma International 2013

secma

14.1.3 Static Semantics: Contains
With parameter symbol.
See also: 5.3,12.1.5.2,12.2.1.1, 14.2.3,14.4.3,14.5.4
FunctionDeclaration : function Bindingldentifier (FormalParameters) { FunctionBody }
1. Return false.
FunctionExpression : function Bindingldentifieroy (FormalParameters) { FunctionBody }
1. Return false.
NOTE Static semantic rules that depend upon substructure generally do not look into function definitions.
14.1.4 Static Semantics: ExpectedArgumentCount
See also: 14.2.5, 14.3.2.
FormalParameters : [empty]
1. Return 0.
FormalParameterList : FunctionRestParameter
1. Return 0.
FormalParameterList : FormalsList , FunctionRestParameter
1. Return the ExpectedArgumentCount.of FormalsList.

NOTE The ExpectedArgumentCount of a FormalParameterList is the number of FormalParameters to the left of either the
rest parameter or the first FormalParameter with an Initialiser. A FormalParameter without an initialiser is allowed after the
first parameter with an initialiser but such parameters are considered to be optional with undefined as their default value.

FormalsList : FormalParameter

1. If Haslnitialiser of FormalParameter is false return 0
2. Return 1.

FormalsList : FormalsList, FormalParameter

1. Let count be the ExpectedArgumentCount of FormalsList.

2. If Haslnitialiser of FormalsList is true or Haslnitialiser of FormalParameter is true, then return count.
3. Return count+1.

14.1.5 Static Semantics: Haslnitialiser

See also: 13.2.3.3.

FormalsList : FormalsList , FormalParameter

1. If Haslnitialiser of FormalsList is true, then return true.
2. Return Haslnitialiser of FormalParameter.

14.1.6 Static Semantics: IsConstantDeclaration

See also: 13.2.1.3, 14.4.4, 145.5.

© Ecma International 2013 201

secmd

FunctionDeclaration : function Bindingldentifier (FormalParameters) { FunctionBody }
1. Return false.

14.1.7 Static Semantics: IsSimpleParameterList

FormalParameters : [empty]

1. Return true.

FormalParameterList : FunctionRestParameter

1. Return false.

FormalParameterList : FormalsList , FunctionRestParameter

1. Return false.

FormalsList : FormalsList , FormalParameter

1. If IsSimpleParameterList of FormalsList is false, returnfalse.
2. Return IsSimpleParameterList of FormalParameter.

FormalParameter : BindingElement

1. If Haslnitialiser of BindingElement is true; return false.

2. If FormalParameter Contains BindingPattern is true; return false.
3. Return true.

14.1.8 Static Semantics: IsStrict

See also: 15.1.0.2, 15.2.2.

FunctionStatementList : StatementListop:

1. [lf this FunctionStatementList is contained in strict code or if StatementList is strict code, then return true.

Otherwise, return false.| (c

ed [AWB1092]: Need a better definition

14.1.9 Static Semantics: LexicallyDeclaredNames

See also: 13.1.3, 13.11.3,14.2.7, 14.4.5, 14.5.7, 15.1.0.3, 15.2.3.

FunctionDeclaration : function Bindingldentifier (FormalParameters) { FunctionBody }
1. Return the BoundNames of Bindingldentifier.

FunctionStatementList : - [empty]

1. Return an empty List.

FunctionStatementList : StatementList

1. Return TopLevelLexicallyDeclaredNames of StatementList.

14.1.10 Static Semantics: VarDeclaredNames

See also: 13.0.1, 13.1.8, 13.5.1, 13.6.1.1, 13.6.2.1, 13.6.3.1, 13.6.4.3, 13.10.2, 13.11.4, 13.12.2, 13.14.2,
14.4.8,14.5.13,15.1.0.5, 15.2.5.

202 © Ecma International 2013

pecma

FunctionDeclaration : function Bindingldentifier (FormalParameters) { FunctionBody }
1. Return an empty List.
FunctionBodyStatementList : [empty]
1. Return an empty List.
FunctionBodyStatementList : StatementList
1. Return TopLevelVarDeclaredNames of StatementList.
14.1.11 Runtime Semantics: Bindinglnitialisation
With parameters value and environment.
See also: 12.1.4.2.2,13.2.1.4,13.2.2.2, 13.2.3.4, 13.14.3, 14.2.8
NOTE When undefined is passed for environment it indicates that.a PutValue operation should be used to assign the
initialisation value. This is the case for formal parameter lists of non-strict functions. In that case the formal parameter
bindings are preinitialised in order to deal with the possibility of multiple parameters with the same name.
FormalParameters : [empty]
1. Return NormalCompletion(empty).

FormalParameterList : FunctionRestParameter

1. Return the result of performing IndexedBindinglnitialisation for FunctionRestParameter using value, 0, and
environment as the arguments.

FormalParameterList : FormalsList

1. Return the result of performing IndexedBindinglnitialisation for FormalsList using value, 0, and
environment as the‘arguments.

FormalParameterList : FormalsList ;; FunctionRestParameter

1. Let restindex be the result of performing IndexedBindinglnitialisation for FormalsList using value, 0, and
environment as the arguments.

2. ReturnlfAbrupt(restindex).

3. Return the result of performing IndexedBindinglnitialisation for FunctionRestParameter using value,
restindex, and environment as the arguments.

14.1.12 Runtime Semantics: EvaluateBody
With parameter functionObject.

See also: 14.2.9, 14.4.9.

FunctionBody : FunctionStatementList

1. The code of this FunctionBody is strict mode code if it is contained in strict mode code or if the Directive Prologue
(15.3) of its FunctionStatementList contains an Use Strict Directive or if any of the conditions in 10.2.1 apply. If the
code of this FunctionBody is strict mode code, FunctionStatementList is evaluated in the following steps as strict
mode code. Otherwise, StatementList is evaluated in the following steps as non-strict mode code.

Let result be the result of evaluating FunctionStatementList.

If result.[[type]] is return then return NormalCompletion(result.[[value]])

ReturnlfAbrupt(result).

Hwn

© Ecma International 2013 203

Formatted: Tab stops: 2.49", Left

secmd

5. Return NormalCompletion(undefined).

FunctionBodyStatementList : [empty]

1. Return NormalCompletion(undefined).

FunctionBody : ThrowTypeError

1. Throw a TypeError exception.

14.1.13 Runtime Semantics: IndexedBindinglnitialisation
With parameters array, nextindex, and environment.

NOTE When undefined is passed for environment it indicates that a PutValue operation should be used to assign the

initialisation value. This is the case for formal parameter lists of non-strict functions. In that case the formal parameter

bindings are preinitialised in order to deal with the possibility of multiple parameters with the same name.

See also: 13.2.3.5.

FormalsList : FormalParameter

1. Let status be the result of performing IndexedBindinglnitialisation for FormalParameter using array,
nextindex, and environment as the arguments.

2. ReturnlfAbrupt(status).

3. Return nextindex + 1.

FormalsList : FormalsList , FormalParameter

1. Let lastindex be the result of performing IndexedBindinglnitialisation for FormalsList using array,
nextindex, and environment as the arguments.

2. ReturnlfAbrupt(lastindex):

3. Let status be the result.of performing IndexedBindinglnitialisation for FormalParameter using array,
lastIndex, and environment as the arguments.

4. ReturnlfAbrupt(status).

5. Return lastindex + 1.

FunctionRestParameter : . . . Bindingldentifier

=

Assert: array is a well formed arguments object and hence it has a valid integer valued "1ength"

property.

Let status be the result of Get(array, "length").

Let argumentsLength be status.[[value]].

Let A be the result of the abstract operation ArrayCreate with argument 0.

Let n=0;

Repeat, while nextlndex < argumentsLength

a. Let P be ToString(nextindex).

b. Assert: array is a well formed arguments object, hence it must have a property P.

c. Letv be the result of Get(array, P).

d. Call the [[DefineOwnProperty]] internal method of A with arguments ToString(n) and Property
Descriptor {[[Value]]: v.[[value]], [[Writable]]: true, [[Enumerable]]: true, [[Configurable]]: true}.

e. Letn=n+l.

f. Let nextIndex = nextindex +1.

7. Return the result of performing Bindinglnitialisation for Bindingldentifier using A and environment as

arguments.

o gk wn

14.1.14 Runtime Semantics: InstantiateFunctionObject

With parameter scope.

204 © Ecma International 2013

secma

FunctionDeclaration : function Bindingldentifier (FormalParameters) { FunctionBody }

1. If the FunctionDeclaration is contained in strict code or if its FunctionBody is strict code, then let strict be true.
Otherwise let strict be false.

2. Let F be the result of performing the FunctionCreate abstract operation with arguments Normal, FormalParameters,
FunctionBody, scope, and strict.

3. Perform the abstract operation MakeConstructor with argument F.

4. ReturnF.

14.1.15 Runtime Semantics: Evaluation

FunctionDeclaration : function Bindingldentifier (FormalParameters) { FunctionBody }
1. Return NormalCompletion(empty)

FunctionExpression : function (FormalParameters) { FunctionBody }

1. If the FunctionExpression is contained in strict code or if its FunctionBody is strict code, then let strict be true.
Otherwise let strict be false.

Let scope be the LexicalEnvironment of the running execution context.

3. Let closure be the result of performing the FunctionCreate abstract ‘operation with arguments Normal,
FormalParameters, FunctionBody, scope, and strict.

Perform the abstract operation MakeConstructor with argument closure.

5. Return closure.

N

Eal

FunctionExpression : function Bindingldentifier (FormalParameters') { FunctionBody }

1. If the FunctionExpression is contained in strict code or if its FunctionBody is strict code, then let strict be true.
Otherwise let strict be false.

2. Let funcEnv be the result of calling NewDeclarativeEnvironment passing the running execution context’s Lexical
Environment as the argument

3. LetenvRec be funcEnv’s environment record.

4. Let name be StringValue of Bindingldentifier.

5. Call the CreatelmmutableBinding concrete method of envRec passing name as the argument.

6. Let closure be the result of performing the FunctionCreate abstract operation with arguments Normal,
FormalParameters, FunctionBody; funcEnv, and strict:

7. Perform the abstract operation MakeConstructor with argument closure.

8. Call the InitialiseBinding concrete method of envRec passing name and closure as the arguments.

9. ReturnNormalCompletion(closure).

NOTE1 = The Bindingldentifier .in a FunctionExpression can be referenced from inside the FunctionExpression's
FunctionBody to allow the function to call itself recursively. However, unlike in a FunctionDeclaration, the Bindingldentifier in
a FunctionExpression cannot be referenced from and does not affect the scope enclosing the FunctionExpression.

NOTE2 A prototype property is automatically created for every function defined using a FunctionDeclaration or
FunctionExpression, to allow for.the possibility that the function will be used as a constructor.

14.2 Arrow Function Definitions

Syntax
ArrowFunction :
ArrowParameters => ConciseBody

ArrowFunctionNoln :
ArrowParameters => ConciseBodyNoln

ArrowParameters :

Bindingldentifier
CoverParenthesisedExpressionAndArrowParameterList

© Ecma International 2013 205

secmd

ConciseBody :

[lookahead ¢ { { }] AssignmentExpression

{ FunctionBody }
ConciseBodyNoln :

[lookahead ¢ { { }] AssignmentExpressionNoln

{ FunctionBody }
The semantics of the ArrowFunctionNoln and ConciseBodyNoln productions are the same as the ArrowFunction
and ConciseBodyNoln productions except that the contained ConciseBodyNoln and AssignmentExpressionNoln are
used in place of the contained ConciseBodyand AssignmentExpression, respectively.

Supplemental Syntax

When processing the production ArrowParameters : CoverParenthesisedExpressionAndArrowParameterList the
following grammar is used to refine the interpretation of CoverParenthesisedExpressionAndArrowParameterList.

ArrowFormalParameters :
(StrictFormalParameters)

14.2.1 Static Semantics: Early Errors
ArrowFunction : ArrowParameters => ConciseBody
e It is a Syntax Error if any element of the BoundNames of ArrowParameters also occurs in the
VarDeclaredNames of ConciseBody.
e It is a Syntax Error if any element of the BoundNames of ArrowParameters also occurs in the
LexicallyDeclaredNames of ConciseBody.

ArrowParameters : Bindingldentifier

e ltis a Syntax Error.if the StringValue of the sole element of the BoundNames of Bindingldentifier is eval
Or arguments.

ArrowParameters : CoverParenthesisedExpressionAndArrowParameterList
e Itis a Syntax Error if the lexical token sequence matched by
CoverParenthesisedExpressionAndArrowParameterList cannot be parsed with no tokens left over using
ArrowFormalParameters as the goal symbol.
e Itis a Syntax Errorif any early errors are present for CoveredFormalsList of
CoverParenthesisedExpressionAndArrowParameterList.

ConciseBody : [lookahead ¢ { { }] AssignmentExpression

e [tis a Syntax Error.if AssignmentExpression Contains YieldExpression.

14.2.2 Static Semantics: BoundNames
See also: 13.2.1.2, 13.2.2.1, 13.2.3.2, 13.6.4.2,14.1.2, 14.4.2,145.2,15.1.1.2,15.1.2.1.
ArrowParameters : CoverParenthesisedExpressionAndArrowParameterList

1. Let formals be CoveredFormalsList of CoverParenthesisedExpressionAndArrowParameterList.
2. Return the BoundNames of formals.

206 © Ecma International 2013

secma

14.2.3 Static Semantics: Contains

With parameter symbol.
See also: 5.3,12.1.5.2,12.2.1.1, 14.1.3,14.4.3, 1454
ArrowFunction : ArrowParameters => ConciseBody
1. If symbol is neither super or this, then return false.
2. If ArrowParameters Contains symbol is true, return true;
3. Return ConciseBody Contains symbol .

NOTE Normally, Contains does not look inside most function forms However, Contains is used to detect this and
super usage within an ArrowFunction.

ArrowParameters : CoverParenthesisedExpressionAndArrowParameterList

1. Letformals be CoveredFormalsList of CoverParenthesisedExpressionAndArrowParameterList.
2. Return formals Contains symbol.

14.2.4 Static Semantics: CoveredFormalsList
ArrowParameters : Bindingldentifier
1. Return Bindingldentifier.

CoverParenthesisedExpressionAndArrowParameterList :
(Expression)

()
(... ldentifier)
(Expression , ... ldentifier)

1. Return the result of parsing the lexical token stream matched by
CoverParenthesisedExpressionAndArrowParameterList using ArrowFormalParameters as the goal symbol.

14.2.5 Static Semantics: ExpectedArgumentCount

See also: 14.1.4,14.3.2.

ArrowParameters : Bindingldentifier

1. Return 1.

ArrowParameters : CoverParenthesisedExpressionAndArrowParameterList

1. Letformals be CoveredFormalsList of CoverParenthesisedExpressionAndArrowParameterList.
2. Return the ExpectedArgumentCount of formals.

14.2.6 Static Semantics: IsSimpleParameterList

ArrowParameters : Bindingldentifier

1. Return true.

ArrowParameters : CoverParenthesisedExpressionAndArrowParameterList

1. Letformals be CoveredFormalsList of CoverParenthesisedExpressionAndArrowParameterList.
2. Return the IsSimpleParameterList of formals.

© Ecma International 2013 207

secmd

14.2.7 Static Semantics: LexicallyDeclaredNames
See also: 13.1.3, 13.11.3, 14.1.9, 14.4.5, 14.5.7, 15.1.0.3, 15.2.3.
ConciseBody : [lookahead ¢ { { }] AssignmentExpression
1. Return an empty List.
14.2.8 Runtime Semantics: Bindinglnitialisation
With parameters value and environment.
See also: 12.1.4.2.2,13.2.1.4,13.2.2.2, 13.2.3.4, 13.14.3, 14.1.11
NOTE When undefined is passed for environment it indicates that a PutValue operation should be used to assign the
initialisation value. This is the case for formal parameter lists of non-strict functions. In that case the formal parameter
bindings are preinitialised in order to deal with the possibility of multiple parameters with the same name.
ArrowParameters : Bindingldentifier

1. Return the result of performing Bindinglnitialisation for Bindingldentifier using value and environment as
the arguments.

ArrowParameters : CoverParenthesisedExpressionAndArrowParameterList

1. Let formals be CoveredFormalsList of CoverParenthesisedExpressionAndArrowParameterList.
2. Return the result of performing Bindinglnitialisation of formals with arguments value and environment.

14.2.9 Runtime Semantics: EvaluateBody
With parameter functionObject:
See also: 14.1.12, 14.4.9.
ConciseBody : [lookahead & { { }] AssignmentExpression

1. The code of this ConciseBody is strict mode code if it is contained in strict mode code or if any of the conditions in
10.2.1 apply: If the code of this ConciseBody is strict mode code, AssignmentExpression is evaluated in the
following steps as strict. mode code. Otherwise, AssignmentExpression is evaluated in the following steps as non-
strictmode code.

Let exprRef be the result of evaluating AssignmentExpression.

Let exprValue be GetValue(exprRef).

If exprValue.[[type]] is return then return NormalCompletion(exprValue.[[value]]).
ReturnlfAbrupt(exprValue).

Return NormalCompletion(exprValue).

ok wn

NOTE In the absence of extensions to this specification, the test is step 4 will never be true.
14.2.10 Runtime Semantics: Evaluation
ArrowFunction : ArrowParameters => ConciseBody

1. If code of this ArrowFunction is contained in strict mode code or if any of the conditions in 10.2.1 apply, then let
strict be true. Otherwise let strict be false.

2. Letscope be the LexicalEnvironment of the running execution context.

3. Let parameters be CoveredFormalsList of ArrowParameters.

4. Let closure be the result of performing the FunctionCreate abstract operation with arguments Arrow, parameters,
ConciseBody, scope, and strict.

5. Return closure.

208 © Ecma International 2013

secma

NOTE Even though an ArrowFunction may contain references to super, the FunctionCreate call in step 3 is not
passed the optional homeObject and methodName parameters. An ArrowFunction that references super is always contained
within a non-ArrowFunction and the necessary state to implement super is accessible via the scope that is captured by the
function object of the ArrowFunction.

14.3 Method Definitions

Syntax

MethodDefinition :
PropertyName (StrictFormalParameters) { FunctionBody }
GeneratorMethod
get PropertyName () { FunctionBody }
set PropertyName (PropertySetParameterList) { FunctionBody }

PropertySetParameterList :
Bindingldentifier
BindingPattern

NOTE The single element of a PropertySetParameterList may not have a default value Initialiser because set accessor
are always called with an implicitly provided argument.

14.3.1 Static Semantics: Early Errors
MethodDefinition : PropertyName (StrictFormalParameters) { FunctionBody }

e It is a Syntax Error if any element ‘of the BoundNames of StrictFormalParameters also occurs in the
VarDeclaredNames of FunctionBody.

e It is a Syntax Error if any element of the BoundNames.of StrictFormalParameters also occurs in the
LexicallyDeclaredNames of FunctionBody.

MethodDefinition : set PropertyName (PropertySetParameterList) { FunctionBody }

e It is a Syntax Error if IsSimpleParameterList of PropertySetParameterList is false and any element of
the BoundNames of PropertySetParameterList also occurs in the VarDeclaredNames of FunctionBody.

e |t is a Syntax Error if IsSimpleParameterList of PropertySetParameterList is false and BoundNames of
PropertySetParameterList contains any duplicate elements.

e Itis a Syntax Error if IsSimpleParameterList of PropertySetParameterList is false and BoundNames of
PropertySetParameterList contains either "eval” or "arguments”.

e |tis a Syntax Error if BoundNames of PropertySetParameterList contains any duplicate elements.

e Itis a Syntax Error if any element of the BoundNames of PropertySetParameterList also occurs in the
LexicallyDeclaredNames of FunctionBody.

e ltis a Syntax Error if PropertySetParameterList Contains YieldExpression.

14.3.2 Static Semantics: ExpectedArgumentCount
See also: 14.1.4, 14.2.5.

PropertySetParameterList : Bindingldentifier

1. Return 1.

PropertySetParameterList : BindingPattern

1. Return1.

© Ecma International 2013 209

secmd

14.3.3 Static Semantics: IsSimpleParameterList
PropertySetParameterList : Bindingldentifier
1. Return true.
PropertySetParameterList : BindingPattern
1. Return false.
14.3.4 Static Semantics: PropName
See also: 12.1.5.4, 14.4.6, 14.5.10
MethodDefinition :
PropertyName (StrictFormalParameters) { FunctionBody }
get PropertyName () { FunctionBody }
set PropertyName (PropertySetParameterList) { FunctionBody }
1. Return PropName of PropertyName.
14.3.5 Static Semantics: ReferencesSuper
See also: 14.4.7.

MethodDefinition : PropertyName (StrictFormalParameters) { FunctionBody }

1. If StrictFormalParameters Contains super is true, then return true.
2. Return FunctionBody Contains super.

MethodDefinition : get PropertyName () { FunctionBody }
1. Return FunctionBody Contains super.
MethodDefinition : set PropertyName (PropertySetParameterList) { FunctionBody }

1. If PropertySetParameterList Contains super is true, then return true.
2. Return FunctionBody Contains super.

14.3.6 Static Semantics: SpecialMethod
MethodDefinition : PropertyName (StrictFormalParameters) { FunctionBody }
1. Return false.
MethodDefinition :

GeneratorMethod

get PropertyName () { FunctionBody }

set PropertyName (PropertySetParameterList) { FunctionBody }
1. Return true.
14.3.7 Runtime Semantics: PropertyDefinitionEvaluation

With parameter object and optional parameter functionPrototype.

See also: 12.1.5.7,14.4.11, B.3.1

MethodDefinition : PropertyName (StrictFormalParameters) { FunctionBody }

210 © Ecma International 2013

secma

Let propKey be the result of evaluating PropertyName.

ReturnlfAbrupt(propKey).

Let strict be IsStrict of FunctionBody.

Let scope be the running execution context’s LexicalEnvironment.

If IsComputedPropertyName(propKey) is true, then
a. LetduplicateKey be the result of HasOwnProperty(object, propKey).
b. ReturnlfAbrupt(duplicateKey).
c. If duplicateKey is true, then throw a TypeError exception.

6. If ReferencesSuper of MethodDefinition is true, then

a. Let closure be the result of performing the FunctionCreate abstract operation with arguments Method,
StrictFormalParameters, FunctionBody, scope, and strict and with object as the homeObject optional
argument and propKey as the methodName optional argument. If functionPrototype was passed as a
parameter then also pass its value as the functionPrototype optional argument of FunctionCreate.

arwbnE

7. Else
a. Let closure be the result of performing the FunctionCreate abstract operation with arguments Method,

StrictFormalParameters, FunctionBody, scope, and strict. If functionPrototype was passed as a parameter
then also pass its value as the functionPrototype optional argument of FunctionCreate.

8. Let desc be the Property Descriptor{[[Value]]: closure, [[Writable]}: true, [[Enumerable]]: hrue], [[Configurable]]:

true}.

9. Let status be the result of DefinePropertyOrThrow(object, propKey, desc).

10. ReturnlfAbrupt(status).

11. Return NormalCompletion(closure).

MethodDefinition : GeneratorMethod
See 14.4.
MethodDefinition : get PropertyName () { FunctionBody }

Let propKey be the result of evaluating PropertyName.

ReturnlfAbrupt(propKey).

Let strict be IsStrict of FunctionBody.

Let scope be the running execution context’s LexicalEnvironment.

Let formalParameterList be the production FormalParameters : [empty]

If IsComputedPropertyName(propKey) is true, then
a. LetduplicateKey be the result of HasOwnProperty(object, propKey).
b. ReturnlfAbrupt(duplicateKey).
c. If duplicateKey istrue, then throw a TypeError exception.

7. If ReferencesSuper of MethodDefinition is true, then

a: Let closure be the result of performing the FunctionCreate abstract operation with arguments Method,
formalParameterList, FunctionBody, scope, and strict and with object as the homeObject optional argument
and propKey as the methodName optional argument.

Sk wWN P

8. Else
a. Let closure be the result of performing the FunctionCreate abstract operation with arguments Method,
formalParameterList, FunctionBody, scope, and strict.
9. Let desc be the Property Descriptor {[[Get]]: closure, [[Enumerable]]: true, [[Configurable]]: true}
10. Let status be the result of DefinePropertyOrThrow(object, propKey, desc).
11. ReturnlfAbrupt(status).
12. Return NormalCompletion(closure).

MethodDefinition : set PropertyName (PropertySetParameterList) { FunctionBody }

Let propKey be the result of evaluating PropertyName.

ReturnlfAbrupt(propKey).

Let strict be IsStrict of FunctionBody.

Let scope be the running execution context’s LexicalEnvironment.

If IsComputedPropertyName(propKey) is true, then
a. LetduplicateKey be the result of HasOwnProperty(object, with argument propKey).
b. ReturnlfAbrupt(duplicateKey).
c. If duplicateKey is true, then throw a TypeError exception.

aswn e

© Ecma International 2013 211

Commented [AWB1093]: At its sept 2012 meeting TC39
decided that it wants methods to be enumerable.

oechna

6. If ReferencesSuper of MethodDefinition is true, then
a. Let closure be the result of performing the FunctionCreate abstract operation with arguments Method,
PropertySetParameterList, FunctionBody, scope, and strict and with object as the homeObject optional
argument and propKey as the methodName optional argument.
7. Else
a. Let closure be the result of performing the FunctionCreate abstract operation with arguments Method,
PropertySetParameterList, FunctionBody, scope, and strict.
8. Letdesc be the Property Descriptor {[[Set]]: closure, [[Enumerable]]: true, [[Configurable]]: true}
9. Let status be the result of DefinePropertyOrThrow(object, propKey, desc).
10. ReturnlfAbrupt(status).
11. Return NormalCompletion(closure).

14.4 Generator Function Definitions

Syntax

GeneratorMethod :
* PropertyName (StrictFormalParameters) { FunctionBody }

GeneratorDeclaration :
function * Bindingldentifier (FormalParameters) { FunctionBody }

GeneratorExpression :
function * Bindingldentifieroy (FormalParameters) { FunctionBody }

YieldExpression :
yield
yield [no LineTerminator here] [[Lexical goal InputEIementRegExp]‘AssignmentEXp ression

C ed [AWB1094]: This actually doesn’t accomplish

yield * tLexicaI goal InputEIementRegExp]‘ASSignmentEXpressiOn

YieldExpressionNoln :
yield
yield [no LineTerminator here] [[Lexical goal InputEIementRegExp]‘ASSignmentEXp ressionNolIn

anything because a similar annotation within
MemberExpression takes care of the possibility of a leading
RegExp here.

yield * [[Lexical goal InputEIementRegExp]‘ASSignmentEXpreSSionNoln

The semantics of the YieldExpressionNoln productions are the same as the YieldExpression productions except
that the contained AssignmentExpressionNoln is used in place of the contained AssignmentExpression.

Supplemental Syntax

The following productions are used as an aid in specifying the semantics of certain ECMAScript language
features. They are not used when parsing ECMAScript source code.

GeneratorBody :

FunctionBody

Comprehension
NOTE: Abstract operations relating to generator objects are defined in 25.4.3.
14.4.1 Static Semantics: Early Errors
GeneratorMethod : * PropertyName (StrictFormalParameters) { FunctionBody }

e [t is a Syntax Error if any element of the BoundNames of StrictFormalParameters also occurs in the
VarDeclaredNames of FunctionBody.

e It is a Syntax Error if any element of the BoundNames of StrictFormalParameters also occurs in the
LexicallyDeclaredNames of FunctionBody.

212 © Ecma International 2013

'| Commented [AWB1095]: This actually doesn’t accomplish

anything because a similar annotation within
MemberExpression takes care of the possibility of a leading
RegEXxp here.

| Commented [AWB1096]: This actually doesn’'t accomplish

anything because a similar annotation within
MemberExpression takes care of the possibility of a leading
RegEXxp here.

Commented [AWB1097]: This actually doesn’t accomplish
anything because a similar annotation within
MemberExpression takes care of the possibility of a leading
RegEXxp here.

secma

GeneratorDeclaration : function * Bindingldentifier (FormalParameters) { FunctionBody }
gzgeratorExpression : function * Bindingldentifieroy: (FormalParameters) { FunctionBody }
e |If the source code matching this production is strict code, the Early Error rules for
StrictFormalParameters : FormalParameters are applied.
e It is a Syntax Error if IsSimpleParameterList of FormalParameters is false and any element of the
BoundNames of FormalParameters also occurs in the VarDeclaredNames of FunctionBody.
e It is a Syntax Error if any element of the BoundNames of FormalParameters also occurs in the
LexicallyDeclaredNames of FunctionBody.
14.4.2 Static Semantics: BoundNames
See also: 13.2.1.2,13.2.2.1, 13.2.3.2, 13.6.4.2, 14.1.2, 14.2.2,14.5.2, 15.1.1:2, 15.1.2.1.
GeneratorDeclaration : function * Bindingldentifier (FormalParameters) { FunctionBody }
1. Return the BoundNames of Bindingldentifier.
14.4.3 Static Semantics: Contains
With parameter symbol.
See also: 5.3,12.1.5.2,12.2.1.1, 14.1.3,14.2.3, 14.5.4
GeneratorDeclaration : function * Bindingldentifier (FormalParameters) { FunctionBody }
1. Return false.
GeneratorExpression : function * Bindingldentifieropt (FormalParameters’) { FunctionBody }
1. Return false.
NOTE Static semantic rules that depend upon substructure generally do not look into function definitions.
14.4.4 Static Semantics: IsConstantDeclaration
See also: 13.2.1.3, 14:1.6, 14.5.5.
GeneratorDeclaration : function * Bindingldentifier (FormalParameters) { FunctionBody }
1. Return false.
14.4.5 Static Semantics: LexicallyDeclaredNames
See also: 13.1.3,13.11.3,14.1.9, 14.2.7,14.5.7, 15.1.0.3, 15.2.3.
GeneratorDeclaration : function * Bindingldentifier (FormalParameters) { FunctionBody }
1. Return the BoundNames of Bindingldentifier.
14.4.6 Static Semantics: PropName
See also: 12.1.5.4, 14.3.4, 14.5.10

GeneratorMethod : * PropertyName (StrictFormalParameters) { FunctionBody }

1. Return PropName of PropertyName.

© Ecma International 2013 213

secmd

14.4.7 Static Semantics: ReferencesSuper
See also: 14.3.5.
GeneratorMethod : * PropertyName (StrictFormalParameters) { FunctionBody }

1. If StrictFormalParameters Contains super is true, then return true.
2. Return FunctionBody Contains super.

14.4.8 Static Semantics: VarDeclaredNames

See also: 13.0.1, 13.1.8, 13.5.1, 13.6.1.1, 13.6.2.1, 13.6.3.1, 13.6.4.3, 13.10.2; 13.11.4, 13.12.2, 13.14.2,
14.1.10, 14.5.13, 15.1.0.5, 15.2.5.

GeneratorDeclaration : function * Bindingldentifier (FormalParameters)< { FunctionBody }
1. Return an empty List.
14.4.9 Runtime Semantics: EvaluateBody
With parameter functionObject.
See also: 14.1.12, 14.2.9.
GeneratorBody : FunctionBody

1. Assert: A Function Environment Record containing a this binding has already been activated as the current

environment.

Let env be the result of the GetThisEnvironment abstract operation:

3. Let G be the result of calling the GetThisBinding concrete method of env.

4. If Type(G) is not Object or if Type(G) is Object andG does not have a [[GeneratorState]] internal data
property or if Type(G) is Object and G has a [[GeneratorState]] internal data property and the value of G’s
[[GeneratorState]] internal data property is not undefined, then

a. Let newG be the result of calling OrdinaryCreateFromConstructor(functionObject,
"%$GeneratorPrototype%", ([[GeneratorState]], [[GeneratorContext]])).
b. ReturnIfAbrupt(newG).
c. Let G be newG.
5. Return the result of GeneratorStart(G, FunctionBody).

I

GeneratorBody : Comprehension

Let G be the result of ObjectCreate(%GeneratorPrototype%, ([[GeneratorState]], [[GeneratorContext]])).
ReturnlfAbrupt(G).

Assert: the value of G’s [[GeneratorState]] internal data property is undefined..

Let startStatus be the result.of GeneratorStart(G, Comprehension).

ReturnifAbrupt(startStatus).

Return G.

o~ wnE

14.4.10 Runtime Semantics: InstantiateFunctionObject
With parameter scope.

GeneratorDeclaration : function * Bindingldentifier (FormalParameters) { FunctionBody }

1. If the GeneratorDeclaration is contained in strict code or if its FunctionBody is strict code, then let strict be true.
Otherwise let strict be false.

2. Using FunctionBody from the production that is being evaluated, let body be the supplemental syntactic grammar
production: GeneratorBody : FunctionBody.

214 © Ecma International 2013

secma

3. Let F be the result of performing the GeneratorFunctionCreate abstract operation with arguments Normal,
FormalParameters, body, scope, and strict.

4. Let prototype be the result of the abstract operation ObjectCreate with the intrinsic object %GeneratorPrototype%

as its argument.

Perform the abstract operation MakeConstructor with arguments F, true, and prototype.

Return F.

o v

14.4.11 Runtime Semantics: PropertyDefinitionEvaluation
With parameter object and optional parameter functionPrototype.
See also: 12.1.5.7, 14.3.7, B.3.1
GeneratorMethod : * PropertyName (StrictFormalParameters) { FunctionBody }

Let propKey be the result of evaluating PropertyName.

ReturnlfAbrupt(propKey).

Let strict be IsStrict of FunctionBody.

Let scope be the running execution context’s LexicalEnvironment:

If IsComputedPropertyName(propKey) is true, then
a. LetduplicateKey be the result of HasOwnProperty(object, propKey).
b. ReturnlfAbrupt(duplicateKey).
c. IfduplicateKey is true, then throw a TypeError exception.

6. Using FunctionBody from the production that is being evaluated, let body be the supplemental syntactic grammar
production: GeneratorBody : FunctionBody.

7. If ReferencesSuper of GeneratorMethod is true, then

a. Let closure be the result of performing the GeneratorFunctionCreate abstract operation with arguments
Method, StrictFormalParameters, body, scope, and-strict and with object as the homeObject optional
argument and propKey as the methodName optional argument.

aswn e

8. Else
a. Let closure be the result of performing the GeneratorFunctionCreate abstract operation with arguments
Method, StrictFormalParameters, body, scope, and strict.

9. Let prototype be the result of the abstract operation ObjectCreate with the intrinsic object %GeneratorPrototype%
as its argument.

10. Perform the abstract'operation MakeConstructor with arguments closure, true, and prototype.

11. Let desc be the Property Descriptor{[[Value]]: closure, [[Writable]]: true, [[Enumerable]]: true, [[Configurable]]:
true}.

12. Let status be.the result of DefinePropertyOrThrow(object, propKey, desc).

13. ReturnlfAbrupt(status).

14. Return NormalCompletion(closure).

14.4112 Runtime Semantics: Evaluation

GeneratorDeclaration : function * Bindingldentifier (FormalParameters) { FunctionBody }
1. Return NormalCompletion(empty)

GeneratorExpression : function * (FormalParameters) { FunctionBody }

1. If the GeneratorExpression is contained in strict code or if its FunctionBody is strict code, then let strict be true.
Otherwise let strict be false.

2. Using FunctionBody from the production that is being evaluated, let body be the supplemental syntactic grammar

production: GeneratorBody : FunctionBody.

Let scope be the LexicalEnvironment of the running execution context.

4. Let closure be the result of performing the GeneratorFunctionCreate abstract operation with arguments Normal,
FormalParameters, body, scope, and strict.

5. Let prototype be the result of the abstract operation ObjectCreate with the intrinsic object %GeneratorPrototype%
as its argument.

6. Perform the abstract operation MakeConstructor with arguments closure, true, and prototype.

w

© Ecma International 2013 215

7.

»ecmad

Return closure.

GeneratorExpression : function * Bindingldentifier (FormalParameters) { FunctionBody }

1

2.

w

No oA

8.

9.
10.
11

If the GeneratorExpression is contained in strict code or if its FunctionBody is strict code, then let strict be true.
Otherwise let strict be false.

Using FunctionBody from the production that is being evaluated, let body be the supplemental syntactic grammar
production: GeneratorBody : FunctionBody.

Let funcEnv be the result of calling NewDeclarativeEnvironment passing the running execution context’s Lexical
Environment as the argument

Let envRec be funcEnv’s environment record.

Let name be StringValue of Bindingldentifier.

Call the CreatelmmutableBinding concrete method of envRec passing name as the argument.

Let closure be the result of performing the GeneratorFunctionCreate abstract-operation with arguments Normal,
FormalParameters, body, funcEnv, and strict.

Let prototype be the result of the abstract operation ObjectCreate with the intrinsic object %GeneratorPrototype%
as its argument.

Perform the abstract operation MakeConstructor with arguments closure; true, and prototype.

Call the InitialiseBinding concrete method of envRec passing name and closure as the arguments:

Return NormalCompletion(closure).

NOTE1 The Bindingldentifier in a GeneratorExpression can be referenced from inside the GeneratorExpression's

Func

tionBody to allow the generator code to call itself recursively. However, unlike in a GeneratorDeclaration, the

Bindingldentifier in a GeneratorExpression cannot be referenced from and does not affect the scope enclosing the
GeneratorExpression.

YieldExpression : yield

1

Return the result of GeneratorYield(CreatelterResultObject(undefined, false)).

YieldExpression : yield AssignmentExpression

Awnpe

Let exprRef be the result of evaluating AssignmentExpression.

Let value be GetValue(exprRef).

ReturnlfAbrupt(value).

Return the result of GeneratorY ield(CreatelterResultObject(value, false)).

YieldExpression :.yield * AssignmentExpression

No~wWNE

216

Let exprRef be the result of evaluating AssignmentExpression.
Let value be GetValue(exprRef).
ReturnIfAbrupt(value).
Let iterator be the result of Getlterator(value).
ReturnlfAbrupt(iterator).
Let received be undefined.
Repeat
a. LetinnerResult be the result of IteratorNext(iterator, received).

b. ReturnlfAbrupt(innerResult).

c. Letdone be IteratorComplete(innerResult).
d. ReturnlfAbrupt(done).

e. Ifdone is true, then

i Let innerValue be the result of IteratorValue (innerResult).
ii. Return innerValue.
f. LetyieldCompletion be the result of GeneratorYield(innerResult).
Let received be yieldCompletion.[[value]].
If yieldCompletion.[[type]] is throw, then
i If HasProperty(iterator, "throw") is true, then
1. LetinnerResult be the result of Invoke(iterator, "throw", (received)).
2. ReturnlfAbrupt(innerResult).

JQ

© Ecma International 2013

secma

iil. Return yieldCompletion.
14.5 Class Definitions

Syntax
ClassDeclaration :
class Bindingldentifier ClassTail

ClassExpression :
class Bindingldentifierqp ClassTail

ClassTail :
ClassHeritageopt { ClassBodyopt }

ClassHeritage :
extends AssignhmentExpression

ClassBody :
ClassElementList

ClassElementList :

ClassElement

ClassElementList ClassElement
ClassElement :

MethodDefinition
static MethodDefinition

NOTE A ClassBody is always strict code.
14.5.1 Static Semantics: Early Errors
ClassBody : ClassElementList

e |t is a Syntax Error if PrototypePropertyNameList of ClassElementList contains any duplicate entries,
unless the following condition is true for each duplicate entry: The duplicated entry occurs exactly
twicein the list.and one occurrence was obtained from a get accessor MethodDefinition and the other
occurrence was obtained from.a set accessor MethodDefinition.

e Itis a Syntax Error if StaticPropertyNameList of ClassElementList contains any duplicate entries, unless
the following condition is true for each duplicate entry: The duplicated entry occurs exactly twice in
the list and one occurrence was obtained from a get accessor MethodDefinition and the other
occurrence was obtained from a set accessor MethodDefinition.

ClassElement : “MethodDefinition

e |t is a Syntax Error if PropName of MethodDefinition is "constructor” and SpecialMethod of
MethodDefinition is true.

ClassElement : static MethodDefinition
e ltis a Syntax Error if PropName of MethodDefinition is "prototype”.
14.5.2 Static Semantics: BoundNames
See also: 13.2.1.2,13.2.2.1, 13.2.3.2, 13.6.4.2,14.1.2,14.2.2,14.4.2,15.1.1.2,15.1.2.1.

ClassDeclaration: class Bindingldentifier ClassTail

© Ecma International 2013 217

secmd

1. Return the BoundNames of Bindingldentifier.

14.5.3 Static Semantics: ConstructorMethod

ClassElementList : ClassElement

1. If ClassElement is the production ClassElement : ; then, return empty.
2. If IsStatic of ClassElement is true, return empty.

3. If PropName of ClassElement is not "constructor”, return empty.
4. Return ClassElement.

ClassElementList : ClassElementList ClassElement

1. Let head be ConstructorMethod of ClassElementList.

2. If head is not empty, return head.

3. If ClassElement is the production ClassElement : ; then, return empty.

4. If IsStatic of ClassElement is true, return empty.

5. If PropName of ClassElement is not "constructor"”, return empty.

6. Return ClassElement.

NOTE Early Error rules ensure that there is only one method definition named “constructor” and that it isn’t an

accessor property or generator definition.
14.5.4 Static Semantics: Contains
With parameter symbol.
See also: 5.3,12.1.5.2,12.2.1.1, 14.1.3,14.2.3, 14.4.3
ClassTail : ClassHeritageopt { ClassBody }
1. If symbol is ClassBody, return true.
2. If ClassHeritage is not-present, return false.
3. If symbol is ClassHeritage, return true.
4. Return the result of Contains for ClassHeritage with argument symbol.
NOTE Static semantic rules that-depend upon substructure generally do not look into class bodies.
14.5.5 Static Semantics: IsConstantDeclaration
See also: 13.2.1.3, 14.1.6, 14.4.4.
ClassDeclaration: class Bindingldentifier ClassTail
1. Return false.
14.5.6 Static Semantics: IsStatic
ClassElement : MethodDefinition
1. Return false.
ClassElement : static MethodDefinition
1. Return true.

ClassElement : ;

1. Return false.

218 © Ecma International 2013

secma

14.5.7 Static Semantics: LexicallyDeclaredNames

See also: 13.1.3, 13.11.3, 14.1.9, 14.2.7, 14.4.5, 15.1.0.3, 15.2.3.
ClassDeclaration: class Bindingldentifier ClassTail

1. Return the BoundNames of Bindingldentifier.

14.5.8 Static Semantics: PrototypeMethodDefinitions

ClassElementList : ClassElement

1. If ClassElement is the production ClassElement : ; then, return a new empty_List.
2. If IsStatic of ClassElement is true, return a new empty List.

3. If PropName of ClassElement is "constructor”, return a new empty List.
4. Return a List containing ClassElement.

ClassElementList : ClassElementList ClassElement

Let list be PrototypeMethodDefinitions of ClassElementList.

If ClassElement is the production ClassElement : ; then; return list.

If IsStatic of ClassElement is true, return list.

If PropName of ClassElement is "constructor”, return list.

Append ClassElement to the end of list.
Return list.

o0~ wWNE

14.5.9 Static Semantics: PrototypePropertyNameList
ClassElementList : ClassElement

1. If PropName of ClassElement is empty, return a new empty List.
2. If IsStatic of ClassElement is true, return a new empty List.
3. Return a List containing PropName of ClassElement.

ClassElementList : ClassElementList ClassElement

Let list be PrototypePropertyNameList of ClassElementList.
If PropName of ClassElement is empty, return list.

If IsStatic of ClassElement is true; return list.

Append PropName of ClassElement to the end of list.
Return list.

aswn =

14.5.10 Static Semantics: PropName

See also: 12.1.5.4, 14.3.4,14.4.6

ClassElement : ;

1. Return empty.

14.5.11 Static Semantics: StaticPropertyNameList
ClassElementList : ClassElement

1. If PropName of ClassElement is empty, return a new empty List.
2. If IsStatic of ClassElement is false, return a new empty List.

3. Return a List containing PropName of ClassElement.

ClassElementList : ClassElementList ClassElement

© Ecma International 2013 219

secma

Let list be StaticPropertyNameList of ClassElementList.
If PropName of ClassElement is empty, return list.

If IsStatic of ClassElement is false, return list.

Append PropName of ClassElement to the end of list.
Return list.

abrwne

14.5.12 Static Semantics: StaticMethodDefinitions
ClassElementList : ClassElement

1. If ClassElement is the production ClassElement : ; then, return a new empty List.
2. If IsStatic of ClassElement is false, return a new empty List.
3. Return a List containing ClassElement.

ClassElementList : ClassElementList ClassElement

Let list be StaticMethodDefinitions of ClassElementList.

If ClassElement is the production ClassElement : ; then, return list.
If IsStatic of ClassElement is false, return list.

Append ClassElement to the end of list.

Return list.

arwNE

14.5.13 Static Semantics: VarDeclaredNames

See also: 13.0.1, 13.1.8, 13.5.1, 13.6.1.1, 13.6.2.1, 13.6.3.1, 13.6.4.3, 13.10.2, 13.11.4, 13.12.2, 13.14.2,
14.1.10, 14.4.8,15.1.0.5, 15.2.5.

ClassDeclaration: class Bindingldentifier ClassTail

1. Return an empty List.

14.5.14 Runtime Semantics: ClassDefinitionEvaluation
With parameter className.

ClassTail : ClassHeritageopt { ClassBody }

1. If ClassHeritageoptis not present, then
a. < let protoParent be the intrinsic object %ObjectPrototype%.
b. Let constructorParent be the intrinsic object %FunctionPrototype%.
2. Else
a. Let superclass be the result of evaluating ClassHeritage.
b. ReturnlfAbrupt(superclass).
c. Ifsuperclass is null, then
i. Let protoParent be null.
ii. Let constructorParent be the intrinsic object %FunctionPrototype%.
d. Else if IsConstructor(superclass) is false, then throw a TypeError exception.
e. Else
i. Let protoParent be the result of Get(superclass, "prototype").
il ReturnIfAbrupt(protoParent).
iii. If Type(protoParent) is neither Object or Null, throw a TypeError exception.
iv. Let constructorParent be superclass.
Let proto be the result of the abstract operation ObjectCreate with argument protoParent.
4. Let lex be the LexicalEnvironment of the running execution context.
If className is not undefined, then
a. Letscope be the result of calling NewDeclarativeEnvironment passing lex as the argument
b. LetenvRec be scope’s environment record.
c. Call the CreatelmmutableBinding concrete method of envRec passing className as the argument.
d. Set the running execution context’s LexicalEnvironment to scope.

w

o

220 © Ecma International 2013

y

~No

8.
9.

10.

11

12.
13.
14.
15.

16.
17.

18.
19.

ecma

Let constructor be ConstructorMethod of ClassBody.
If constructor is empty, then
a. If ClassHeritageopt is present, then
i. Let constructor be the result of parsing the String "constructor (... args) {super
(...args) ; }" using the syntactic grammar with the goal symbol MethodDefinition.
b. Else,
i Let constructor be the result of parsing the String "constructor () { }" using the syntactic
grammar with the goal symbol MethodDefinition.
Let trict be true.
Let F be the kesult bf performing PropertyDefinitionEvaluation for constructor with argument proto and

|

Commented [AWB998]: Note that this variable currently
isn't used in this algorithm

|

constructorParent as the optional functionPrototype argument.
Perform the abstract operation MakeConstructor with argument F and false as the optional writablePrototype
argument and proto as the optional prototype argument.
If className is not undefined, then

a. Call the InitialiseBinding concrete method of envRec passing className and F as the arguments.
Let desc be the Property Descriptor{[[Enumerable]]: false, [[Writable]]: true, [[Configurable]]: true}.
Call the [[DefineOwnProperty]] internal method of proto with arguments "eonstructoxr" and desc
Let protoMethods be PrototypeMethodDefinitions of ClassBody.
For each MethodDefinition m in order from protoMethods

a. Perform PropertyDefinitionEvaluation for m with argument proto.
Let staticMethods be StaticMethodDefinitions of ClassBody:
For each MethodDefinition s in order from staticMethods

a. Perform PropertyDefinitionEvaluation for s with argument F.
Set the running execution context’s LexicalEnvironment to lex.
Return F.

14.5.15 Runtime Semantics: Evaluation

ClassDeclaration: class Bindingldentifier ClassTail

1. Letvalue be the result of ClassDefinitionEvaluation.of ClassTail with argument undefined.

2. ReturnlfAbrupt(value).

3. Letenv be the running execution context’s LexicalEnvironment.

4. Let status be the result of performing Bindinglnitialisation for Bindingldentifier passing value and env as the
arguments.

5. ReturnlfAbrupt(status).

6. Return NormalCompletion(empty).

NOTE The argument to ClassDefinitionEvaluation controls whether or not the class that is defined with a

Bindingldentifier has a local binding to the identifier. Only a ClassExpression gets a local name binding of its name. A
ClassDeclaration never has such abinding. This maintains the parallel with FunctionExpression and FunctionDeclaration.

ClassExpression: class Bindingldentifierop: ClassTail

arwnd e

If Bindingldentifieropt is not present, then let className be undefined.

Else, let className be StringValue of Bindingldentifier.

Let value be the result'of ClassDefinitionEvaluation of ClassTail with argument className.
ReturnlfAbrupt(value).

Return NormalCompletion(value).

14.6 [Tail Position Calls|

The wiki proposal has a preliminary attempt at defining tail position. See
http://wiki.ecmascript.org/doku.php?id=harmony:proper_tail calls .

This material still needs to be reviewed and updated for incorporation here.

© Ecma International 2013 221

|

Commented [AWB899]: As it now stands, this will never be
an abrupt completion

|

Commented [AWB9100]: TODO: Need to define tail
positions.

http://wiki.ecmascript.org/doku.php?id=harmony:proper_tail_calls

secmd

14.6.1 Runtime Semantics: PrepareForTailCall
The abstract operation PrepareForTailCall performs the following steps:

1. Let leafContext be the running execution context.

2. Suspend leafContext.

3. Pop leafContext from the execution context context stack. The execution context now on the top of the stack
becomes the running execution context, however it remains in its suspended state.

4. Assert: leafContext has no further use. It will never be activated as the running execution context.

A tail position call must either release any transient internal resources associated with the currently executing
function execution context before invoking the target function or reuse those resources in support of the target
function.

NOTE 1 For example, a tail position call should only grow an implementation’s activication record stack by the amount
that the size of the target function’s activation record exceeds the size of the calling function’s activation record. If the
target function’s activation record is smaller, then the total size of the stack should decrease.

15 ECMAScript Language: Modules and Scripts
15.1 Modules

Module :
ModuleBodyopt

ModuleBody :
ModuleltemList

ModuleltemList :
Moduleltem
ModuleltemList Moduleltem

Moduleltem :
ExportDeclaration
Scriptltem

Scriptitem :
ModuleDeclaration
ImportDeclaration
StatementListltem

15.1:.0 Module Semantics
15.1.0.1 Static Semantics: Early Errors
ModuleBody : ModuleltemList

e ltis a Syntax Error if the LexicallyDeclaredNames of ModuleltemList contains any duplicate entries.

e It is a Syntax Error if any element of the LexicallyDeclaredNames of ModuleltemList also occurs in the
VarDeclaredNames of ModuleltemList.

e [tis a Syntax Error if ModuleltemList Contains ReturnStatement.

e [tis a Syntax Error if ModuleltemList Contains super.

e [tis a Syntax Error if ModuleltemList Contains YieldExpression.

NOTE Additional error conditions relating to conflicting or duplicate declarations are checked during module
instantiation prior to evaluation of a Module. If any such errors are detected the Module is not evaluated.

222 © Ecma International 2013

secma

15.1.0.2 Static Semantics: IsStrict

See also: 14.1.8, 15.2.2.

ModuleBody : ModuleltemList

1. Return true.

15.1.0.3 Static Semantics: LexicallyDeclaredNames

See also: 13.1.3, 13.11.3, 14.1.9, 14.2.7, 14.4.5, 14.5.7, 15.2.3.
ModuleltemList : ModuleltemList Moduleltem

1. Letnames be LexicallyDeclaredNames of ModuleltemList.

2. Append to names the elements of the LexicallyDeclaredNames of Moduleltem.
3. Return names.

Scriptltem : ModuleDeclaration

1. Return the BoundNames of ModuleDeclaration.

Scriptitem : ImportDeclaration

1. Return the BoundNames of ImportDeclaration.

Scriptltem : StatementListitem

1. Return TopLevelLexicallyDeclaredNames of StatementListltem.

NOTE At the top level of a Module, function declarations are treated like lexical declarations rather than like var
declarations. Commented [AWB19101]: TODO:need to sort this out

15.1.0.4 Static Semantics: LexicallyScopedDeclarations
ModuleltemList : ModuleltemList Moduleltem

1. Letdeclarations be LexicallyScopedDeclarations of ModuleltemList.
2. Append to declarations the elements of the LexicallyScopedDeclarations of Moduleltem.
3. Return'declarations.

Scriptltem : ModuleDeclaration

1. Return anew List containing ModuleDeclaration.

Scriptltem : ImportDeclaration

1. Return a new List containing ImportDeclaration.

Scriptltem : StatementListitem

1. Return TopLevelLexicallyScopedDeclarations of StatementListltem.

15.1.0.5 Static Semantics: VarDeclaredNames

See also: 13.0.1, 13.1.8, 13.5.1, 13.6.1.1, 13.6.2.1, 13.6.3.1, 13.6.4.3, 13.10.2, 13.11.4, 13.12.2, 13.14.2,
14.1.10, 14.4.8,14.5.13, 15.2.5.

ModuleltemList : ModuleltemList Moduleltem

© Ecma International 2013 223

secma

=

Let names be VarDeclaredNames of ModuleltemList.

I

3. Return names.

Scriptitem : ModuleDeclaration

1. Return an empty List.

Scriptltem : ImportDeclaration

1. Return an empty List.

Scriptltem : StatementListitem

1. Return TopLevelVarDeclaredNames of StatementListitem.
15.1.0.6 Static Semantics: VarScopedDeclarations
ModuleltemList : ModuleltemList Moduleltem

1. Let declarations be VarScopedDeclarations of ModuleltemList.

2. Append to declarations the elements of the VVarScopedDeclarations of Moduleltem.

3. Return declarations.

Scriptitem : ModuleDeclaration

1. Return a new empty List.

Scriptltem : ImportDeclaration

1. Return a new empty List.

Scriptltem : StatementListitem

1. Return the TopLevelVarScopedDeclarations of StatementListltem.
15.1.0.7 Runtime Semantics: Module Declaration Instantiation
15.1.1 Imports

ModuleDeclaration :
module [no LineTerminator here] Bindingldentifier FromClause ;

ImportDeclaration :
import ImportsClause FromClause ;
import ModuleSpecifier ;

FromClause :
from ModuleSpecifier

ImportsClause :
Bindingldentifier
{ 1}
{ ImportsList }
{ ImportsList , }

ImportsList :

ImportSpecifier
ImportsList , ImportSpecifier

224

Append to names the elements of the VarDeclaredNames of Moduleltem.

© Ecma International 2013

Commented [AWB102]: TODO: The exact details of
declaration instantion for module code still need to be worked
out.

secma

ImportSpecifier :
Bindingldentifier
IdentifierName as Bindingldentifier

ModuleSpecifier :
StringLiteral

15.1.1.1 Static Semantics: Early Errors

ImportDeclaration : import ImportsClause FromClause ;

e |tis a Syntax Error if the BoundNames of ImportClause contains any duplicate entries.

e |t is a Syntax Error if the BoundNames of ImportClause contains the string "eval” or the string

"arguments".

ModuleDeclaration : module Bindingldentifier FromClause ;

e It is a Syntax Error if the BoundNames of Bindingldentifier contains the string "eval” or the string

"arguments"”.

15.1.1.2 Static Semantics: BoundNames

See also: 13.2.1.2,13.2.2.1, 13.2.3.2, 13.6.4.2, 14.1.2, 14.2.2,14.4.2, 14 5.2, 15.1.2.1.

ImportDeclaration : import ImportsClause FromClause ;

1. Return the BoundNames of ImportClause.
ImportDeclaration : import ModuleSpecifier ;

1. Return a new empty List.
ImportsList : ImportSpecifier

1. Return the BoundNames of ImportSpecifier.
ImportsList : ImportsList , ImportSpecifier

1. Let names be the BoundNames of ImportsList.

2. Append to names the elements of the BoundNames of ImportSpecifier.

3¢ Return names.
ImportSpecifier : IdentifierName as Bindingldentifier

1. Return the BoundNames of Bindingldentifier.
ModuleDeclaration : module Bindingldentifier FromClause ;

1. Return the BoundNames of Bindingldentifier.
15.1.1.3 Static Semantics: ImportedNames
ImportDeclaration : import ImportsClause FromClause ;

1. Return the BoundNames of ImportClause.
ImportDeclaration : import ModuleSpecifier ;

1. Return a new empty List.

© Ecma International 2013

225

Commented [AWB19103]: It's not clear that we need this
because as it currently stands it is identical to BoundNames

secmd

ModuleDeclaration : module Bindingldentifier FromClause ;
1. Return the BoundNames of Bindingldentifier.
15.1.2 Exports
ExportDeclaration :
export * FromClauseop ;
export ExportsClause FromClauseop ;
export VariableStatement ;

export Declaration ;
export BindingList ;

ExportsClause :
{ 1}
{ ExportsList }
{ ExportsList , }
ExportsList :
ExportSpecifier
ExportsList , ExportSpecifier
ExportSpecifier :
IdentifierReference
IdentifierReference as ldentifierName
15.1.2.1 Static Semantics: BoundNames
See also: 13.2.1.2,13.2.2.1, 13.2.3.2, 13.6.4.2, 14.1.2, 14.2.2,14.4.2, 145.2, 15.1.1.2.
ExportDeclaration : export * FromClauseep: ;
1. Return a new empty List.
ExportDeclaration : export ExportsClause FromClausespt. ;
1. Returnthe BoundNames of ExportsClause.

ExportDeclaration : export BindingList ;

1. Let names be the BoundNames of BindingList.
2. Return names.

15.2 Scripts

Syntax
Script :
ScriptBodyopt

ScriptBody :
ScriptltemList

ScriptltemList :

Scriptltem
ScriptltemList Scriptltem

226 © Ecma International 2013

secma

15.2.1 Static Semantics: Early Errors
ScriptBody : ScriptltemList
e ltis a Syntax Error if the LexicallyDeclaredNames of ScriptltemList contains any duplicate entries.
e |t is a Syntax Error if any element of the LexicallyDeclaredNames of ScriptltemList also occurs in the
VarDeclaredNames of ScriptltemList.
e Itis a Syntax Error if ScriptltemList Contains ReturnStatement.

e Itis a Syntax Error if ScriptltemList Contains super.
e |tis a Syntax Error if ScriptltemList Contains YieldExpression.

NOTE Additional error conditions relating to conflicting or duplicate declarations arechecked during module linking
prior to evaluation of a Script. If any such errors are detected the Script is not evaluated.

15.2.2 Static Semantics: IsStrict
See also: 14.1.8, 15.1.0.2.
ScriptBody : ScriptitemList

1. |If this ScriptBody is contained in strict code or if ScriptitemList is strict code, then return true. Otherwise,

return false.| (c ed [AWB10104]: Need a better definition

15.2.3 Static Semantics: LexicallyDeclaredNames

See also: 13.1.3, 13.11.3, 14.1.9, 14.2.7, 14.4,5, 14.5.7, 15.1.0.3.
ScriptltemList : ScriptltemList Scriptltem

1. Let names be LexicallyDeclaredNames of ScriptltemList.

2. Append to names the elements of the LexicallyDeclaredNames of Scriptlitem.

3. Return names.

NOTE At the top level of a Script, function declarations are treated like var declarations rather than like lexical
declarations. Commented [AWB19105]: TODO: Need to sort this out.

15.2.4 Static Semantics: LexicallyScopedDeclarations

ScriptltemList : ScriptltemList Scriptltem

1. Let declarations be LexicallyScopedDeclarations of ScriptltemList.

2. Append to declarations the elements of the LexicallyScopedDeclarations of Scriptltem.
3. Return declarations.

15.2.5 Static Semantics: VarDeclaredNames

See also: 13.0.1, 13.1.8; 13.5.1, 13.6.1.1, 13.6.2.1, 13.6.3.1, 13.6.4.3, 13.10.2, 13.11.4, 13.12.2, 13.14.2,
14.1.10, 14.4.8, 14.5.18, 15.1.0.5.

ScriptltemList : ScriptltemList Scriptitem

1. Let names be VarDeclaredNames of ScriptltemList.

2. Append to names the elements of the VVarDeclaredNames of Scriptltem.
3. Return names.

15.2.6 Static Semantics: VarScopedDeclarations

ScriptltemList : ScriptltemList Scriptltem

© Ecma International 2013 227

secmd

1. Letdeclarations be VarScopedDeclarations of ScriptltemList.
2. Append to declarations the elements of the VarScopedDeclarations of Scriptltem.
3. Return declarations.

15.2.7 Runtime Semantics: Script Evaluation
With argument realm and deletableBindings.
Script : ScriptBodyopt

1. The code of this Script is strict mode code if the Directive Prologue (15.3) of its ScriptBody contains an Use
Strict Directive or if any of the conditions of 10.2.1 apply. If the code of this Script is strict mode code,
ScriptBody is evaluated in the following steps as strict mode code. Otherwise ScriptBody is evaluated in the
following steps as non-strict mode code.

2. If ScriptBody is not present, return NormalCompletion(empty).

3. LetglobalEnv be realm.[[globalEnv]].

4. Let status be the result of performing GlobalDeclarationInstantiation as described in 15.2.9 using
ScriptBody, globalEnv, and deletableBindings as arguments.

5. ReturnlfAbrupt(status).

6. Let progCxt be a new ECMASCcript code execution context.

7. Set the progCxt’s Realm to realm.

8. Set the progCxt’s VariableEnvironment to globalEnv.

9. Set the progCxt’s LexicalEnvironment to globalEnv.

10. If there is a currently running execution context, suspend it.

11. Push progCxt on to the execution context stack; progCxt is now the running execution context.

12. Let result be the result of evaluating ScriptBody.

13. Suspend progCxt and remove it from the execution context stack.

14. If the execution context stack is not empty, resume the context that is now on the top of the execution
context stack as the running execution context. Otherwise, the execution context stack is now empty and
there is no running execution context.

15. Return result.

NOTE The processes for initiating the evaluation of a Script and for dealing with the result of such an evaluation are

defined by an ECMAScript implementation and not by this specification.] Commented [AWB11106]: Not strictly true any longer. Will
need to update.

15.2.8 Runtime Semantics: Evaluation
ScriptltemList : ScriptltemList Scriptltem

Let sl-be the result of evaluating ScriptltemList.

ReturnIfAbrupt(sl).

Let s be the result of evaluating Scriptltem.

If s.[[type]] is throw, returns.

If s.[[valuel] is empty, let V = sl.[[value]], otherwise let V = s.[[value]].
Return Completion {[[typel]: s.[[type]], [[value]]: V, [[target]]: s.[[target]]}.

g wn e

NOTE See the 13.1.9 NOTE regarding evaluation of StatementList : StatementList StatementListitem.
15.2.9 Runtime Semantics: GlobalDeclarationInstantiation

NOTE When an execution context is established for evaluating scripts, declarations are instantiated in the current
global environment. Each global binding declarated in the code is instantiated.

GlobalDeclarationInstantiation is performed as follows using arguments script, env, and deletableBindings. script
is the ScriptBody that for which the execution context is being established. env is the global environment
record in which bindings are to be created. deletableBindings is true if the bindings that are created should be
deletable.

1. Let strict be IsStrict of script.
2. Let lexNames be the LexicallyDeclaredNames of script.

228 © Ecma International 2013

secma

Let varNames be the VarDeclaredNames of script.
For each name in lexNames, do
a. If the result of calling env’s HasVarDeclaration concrete method passing name as the argument is
true, throw a SyntaxError exception.
b. If the result of calling env’s HasLexicalDeclaration concrete method passing name as the argument
is true, throw a SyntaxError exception.
5. For each name in varNames, do
a. If the result of calling env’s HasLexicalDeclaration concrete method passing name as the argument
is true, throw a SyntaxError exception.
Let varDeclarations be the VarScopedDeclarations of script.
Let functionsTolnitialise be an empty List.
Let declaredFunctionNames be an empty List.
For each d in varDeclarations, in reverse list order do
a. IfdisaFunctionDeclaration then
i. NOTE If there are multiple FunctionDeclarations for the same name, the last declaration
is used.
ii. Let fn be the sole element of the BoundNames of d.
iii. If fn is not an element of declaredFunctionNames; then
1. Let fnDefinable be the result of calling env’s CanDeclareGlobalFunction concrete
method passing fn as the argument.
2. If fnDefinable is false, throw TypeError exception.
3. Append fn to declaredFunctionNames.
4. Append d to functionsTolnitialise.
10. Let declaredVarNames be an empty List.
11. For each d in varDeclarations, do
a. Ifdisa VariableStatement then
i For each String vn in the BoundNames of d, do
1. Ifvnis not an element of declaredFunctionNames, then
a. LetvnDefinable be the result of calling env’s CanDeclareGlobalVar
concrete method passing vn and deletableBindings as the arguments.
b. _If vnDefinable is false, throw TypeError exception.
c. Ifvn.is not an element of declaredVarNames, then
i. Append vn to declaredVarNames.
12. NOTE: No abnormal terminations occur after this algorithm step.
13. For each FunctionDeclaration f in functionsTolnitialise, do
a. Let fn be the sole element of the BoundNames of f.
b. Let fo be the result of performing InstantiateFunctionObject for f with argument env.
c. Let status be the result of calling env’s CreateGlobalFunctionBinding concrete method passing fn,
fo; and deletableBindings as the arguments.
d. < ReturnIfAbrupt(status).
14. For.each String vn in'declaredVarNames, in list order do
a. Let status be the result of calling env’s CreateGlobalVarBinding concrete method passing vn and
deletableBindings as the argument.
b. ReturnlfAbrupt(status).
15. Let lexDeclarations be the LexicallyScopedDeclarations of script.
16. For each element d in lexDeclarations do
a. NOTE Except for generator function declarations, lexically declarated names are only
instantiated here but not initialised.
b. Foreachelement dn of the BoundNames of d do
i If ‘IsConstantDeclaration of d is true, then
1. Let status be the result of calling env’s CreatelmmutableBinding concrete method
passing dn as the argument.

> w

© o NP

ii. Else,
1. Let status be the result of calling env’s CreateMutableBinding concrete method
passing dn and false as the arguments.
il Assert: status is never an abrupt completion for lexically declared names.
c. IfdisaGeneratorDeclaration production, then
i. Let fn be the sole element of the BoundNames of d.
il Let fo be the result of performing InstantiateFunctionObject for d with argument env.

© Ecma International 2013 229

secmd

iii. Let status be the result of calling env’s SetMutableBinding concrete method passing fn, fo,
and false as the arguments.
iv. ReturnlfAbrupt(status).
17. Return NormalCompletion(empty)

NOTE Early errors specified in 15.2.1 prevent name conflicts between function/var declarations and
let/const/class/module declarations as well as redeclaration of let/const/class/module bindings for declaration contained
within a single Script. However, such conflicts and redeclarations that span more than one Script are detected as runtime
errors during GlobalDeclarationInstantiation. If any such errors are detected, no bindings are instantiated for the script.

Unlike explicit var or function declarations, properties that are directly created on the global object result in global bindings
that may be shadowed by let, const, class, and module declarations.

15.3 Directive Prologues and the Use Strict Directive

A Directive Prologue is the longest sequence of ExpressionStatement productions occurring as the initial
StatementListitem productions of a ScriptBody or FunctionBody land where each ExpressionStatement in the
sequence consists entirely of a StringLiteral token followed by a semicolon. The semicolon may appear
explicitly or may be inserted by automatic semicolon insertion. A Directive Prologue may be an empty
sequence.

A Use Strict Directive is an ExpressionStatement in a Directive Prologue whose StringLiteral is either the exact
character sequences "use strict" or 'use strict'. An Use Strict Directive may not contain an
EscapeSequence or LineContinuation.

A Directive Prologue may contain more than one Use Strict Directive. However, an implementation may issue
a warning if this occurs.

NOTE The ExpressionStatement productions of a Directive Prologue are evaluated normally during evaluation of the
containing production. Implementations may define implementation specific meanings for ExpressionStatement productions
which are not an Use Strict Directive and which occur in a Directive Prologue. If an appropriate notification mechanism
exists, an implementation should issue a warning if it encounters in a Directive Prologue an ExpressionStatement that is not
an Use Strict Directive or which does not have a meaning defined by the implementation.

16 Error Handling‘and Language Extensions

An implementation must report most errors at the time the relevant ECMAScript language construct is
evaluated. An early error is an error that can be detected and reported prior to the evaluation of any construct
in the Script-containing the error. An implementation must report early errors in a Script prior to the first
evaluation® of that Script. Early errors in eval code are reported at the time eval is called but prior to
evaluation of any construct within the eval code. All errors that are not early errors are runtime errors.

An implementation must treat'as an early error any instance of an early error that is specified in a static

An implementation shall not treat other kinds of errors as early errors even if the compiler can prove that a
construct cannot execute without error under any circumstances. An implementation may issue an early
warning in such a case, but it should not report the error until the relevant construct is actually executed.

An implementation shall report all errors as specified, except for the following:

e An implementation may extend script syntax and regular expression pattern or flag syntax.
To permit this, all operations (such as calling eval, using a regular expression literal, or
using the Function or RegExp constructor) that are allowed to throw SyntaxError are
permitted to exhibit implementation-defined behaviour instead of throwing SyntaxError
when they encounter an implementation-defined extension to the script syntax or regular
expression pattern or flag syntax.

e An implementation may provide additional types, values, objects, properties, and functions
beyond those described in this specification. This may cause constructs (such as looking up

230 © Ecma International 2013

\:Commented [AWB15107]: TODO: need to update

secma

a variable in the global scope) to have implementation-defined behaviour instead of
throwing an error (such as ReferenceError).

e An implementation may define behaviour other than throwing RangeError for toFixed,
toExponential, and toPrecision when the fractionDigits or precision argument is
outside the specified range.

© Ecma International 2013 231

secmd

17 Standard Built-in ECMAScript Objects

There are certain built-in objects available whenever an ECMAScript program begins execution. One, the
global object, is part of the lexical environment of the executing program. Others are accessible as initial
properties of the global object.

Unless specified otherwise, a built-in object that is callable as a function is a Built-in Function object with the
characteristics described in 9.2.6. Unless specified otherwise, the [[Extensible]] internal data property of a
built-in object initially has the value true.

Many built-in objects are functions: they can be invoked with arguments. Some of them furthermore are
constructors: they are functions intended for use with the new operator. For each built-in function, this
specification describes the arguments required by that function and properties of the Function object. For each
built-in constructor, this specification furthermore describes properties of the prototype object of that
constructor and properties of specific object instances returned. by a new expression that invokes that
constructor.

Unless otherwise specified in the description of a particular function, if a built-in function or constructor is given
fewer arguments than the function is specified to require, the function or constructor shall behave exactly as if
it had been given sufficient additional arguments, each such argument being the undefined value.

Unless otherwise specified in the description of a particular function, if a built-in function or constructor
described is given more arguments than the function is specified to allow, the extra arguments are evaluated
by the call and then ignored by the function. However, an implementation may define implementation specific
behaviour relating to such arguments as long as the behaviour is not the throwing of a TypeError exception
that is predicated simply on the presence of an extra argument.

NOTE Implementations that add additional capabilities to the set of built-in functions are encouraged to do so by
adding new functions rather than adding new parameters to existing functions.

Unless otherwise specified every built-in function and every built-in constructor has the Function prototype
object, which is the initial value of the expression Function.prototype (19.2.3), as the value of its
[[Prototype]] internal data property.

Unless otherwise specified every built-in prototype object has the Object prototype object, which is the initial
value of the expression Object.prototype (19.1.4), as the value of its [[Prototype]] internal data property,
except the Object prototype object itself.

Built-in functions that are not identified as constructors do not implement the [[Construct]] internal method
unless otherwise specified in the description of a particular function. The behaviour specified for each built-in
function is the specification of the [[Call]] internal method behaviour for that function with the [[Call]]
thisArgument providing the this value and the [[Call]] argumentsList providing the named parameters for each
built-in function. When a built-in constructor is called as part of a new expression the argumentsList parameter
of the invoked [[Construct]] internal method provides the values for the built-in constructor's named
parameters. Built-in functions do not have a prototype property unless otherwise specified in the description
of a particular function.

Clauses 18 through 26 generally describes distinct behaviours for when a constructor is “called as a function”
and for when it is “called as part of a new expression”. The “called as a function” behaviour corresponds to the
invocation of the constructor’s [[Call]] internal method and the “called as part of a new expression” behaviour
corresponds to the invocation of the constructor’s [[Construct]] internal method.

Every built-in Function object, F, whether as a constructor, an ordinary function, or both—has the properties
that are defined by performing the following step when the function object is created:

1. Perform the AddRestrictedFunctionProperties (9.1.16.9) abstract operation with argument F.

232 © Ecma International 2013

Commented [AW109]: https://bugs.ecmascript.org/show_b
ug.cqi?id=155

https://bugs.ecmascript.org/show_bug.cgi?id=155
https://bugs.ecmascript.org/show_bug.cgi?id=155

pecma

Every built-in Function object—whether as a constructor, an ordinary function, or both—has a length
property whose value is an integer. Unless otherwise specified, this value is equal to the largest number of
named arguments shown in the subclause headings for the function description, including optional parameters.
NOTE For example, the Function object that is the initial value of the s1ice property of the String prototype object is
described under the subclause heading “String.prototype.slice (start, end)” which shows the two named arguments start
and end; therefore the value of the 1ength property of that Function object is 2.

Unless otherwise specified, the length property of a built-in Function object described has the attributes
{ [[Writable]]: false, [[Enumerable]]: false, [[Configurable]]: true }.

Every other data property described in clauses 18 through 26 has the attributes { [[Writable]]: true,
[[Enumerable]]: false, [[Configurable]]: true } unless otherwise specified.

Every accessor property described in clauses 18 through 26 has the attributes {[[Enumerable]]: false,
[[Configurable]]: true } unless otherwise specified. If only a get accessor function is described, the set

accessor function is the default value, undefined. If only a set accessor is function is described the get
accessor is the default value, undefined.

18 The Global Object
The unique global object is created before control enters any execution context.

Unless otherwise specified, the standard built-in properties of the global object have attributes {[[Writable]]:
true, [[Enumerable]]: false, [[Configurable]]: true}.

The global object does not have a [[Construct]] internal method; it is not possible to use the global object as a
constructor with the new operator.

The global object does not have a [[Call]] internal method; it is not possible to invoke the global object as a
function.

The value of the [[Prototype]] internal data property of the global object is implementation-dependent.

In addition to the properties defined in this specification the global object may have additional host defined
properties. This may include a property whose value is the global object itself; for example, in the HTML
documentobject model the window property of the global object is the global object itself.

18.1 Value Properties of the Global Object

18.1.1 Infinity

The value of Infinity is +® (See 6.1.5). This property has the attributes { [[Writable]]: false, [[Enumerable]]:
false, [[Configurable]): false }.

18.1.2 NaN

The value of NaN is NaN (see 6.1.5). This property has the attributes { [[Writable]]: false, [[Enumerable]]: false,
[[Configurable]]: false }.

18.1.3 undefined

The value of undefined is undefined (see 6.1.1). This property has the attributes { [[Writable]]: false,
[[Enumerable]]: false, [[Configurable]]: false }.

© Ecma International 2013 233

ecma

&

18.2 Function Properties of the Global Object

18.2.1 eval (x)

When the eval function is called with one argument x, the following steps are taken:

1. If Type(x) is not String, return x.

2. Let script be the ECMAScript code that is the result of parsing x, interpreted as UTF-16 encoded Unicode text as
described in clause 10, for the goal symbol Script. If the parse fails or any early errors are detected, throw a
SyntaxError exception (but see also clause 16).

3. If script Contains ScriptBody is false, return undefined.

4. Let strictScript be IsStrict of script.

5. If thisis a direct call to eval (18.2.1.1), let direct be true, otherwise let direct be false.

6. Ifdirectis true and the code that made the direct call to eval is strict code, then let strictCaller be true.
Otherwise, let strictCaller be false.

7. Let ctx be the running execution context. If direct is true ctx will be the execution context that performed
the direct eval. If direct is false ctx will be the execution context for the invocation of the eval function.

8. LetevalRealm be c#x’s Realm.

9. Ifdirectis false and strictScript is false, then

a. Return the result of Script Evaluation for script with arguments evalRealm and true.
10. If direct is true, strictScript is false, strictCaller is false, and czx’s LexicalEnvironment is the same as
evalRealm.[[globalEnv]], then
a. Return the result of Script Evaluation for script with arguments evalRealm and true.
11. If direct is true, then
a. Ifthe code that made the direct call to eval is function code|and [ValidinFunction jof script is false,
then throw a SyntaxError exception.
b. If the code that made the direct call to eval isjmodule code and ValidinModule pf script is false,
then throw a SyntaxError exception.
12. If direct is true, then
a. LetlexEnv be ctx’s LexicalEnvironment.
b. LetvarEnv be czx’s VariableEnvironment.
13. Else,
a. Let lexEnv be evalRealm.[[globalEnv]].
b. LetvarEnv be evalRealm.[[globalEnv]].
14. If strictScript is true or if direct is true and strictCaller is true , then
a. Let strictvarEnv be the result of calling.NewDeclarativeEnvironment passing lexEnv as the
argument.
b. LetlexEny be strictVarEnv.
c. -LetvarEnv be strictVarEnv.

15. Let status be the result of performing Eval Declaration Instantiation as described in 18.2.1.2 with script,
varEnv, and lexEnv.

16. ReturnlfAbrupt(status).

17. Let evalCxt be a new ECMAScript code execution context.

18. Set the evalCxt’s Realm to evalRealm.

19. Set the evalCxt’s VariableEnvironment to varEnv.

20. Set the evalCxt’s LexicalEnvironment to lexEnv.

21. If there is a currently running execution context, suspend it.

22. Push evalCxt on to the execution context stack; evalCxt is now the running execution context.

23. Let result be the result of evaluating script.

24. Suspend evalCxt and remove it from the execution context stack.

25. Resume the context that is now on the top of the execution context stack as the running execution context.

26. Return result.

NOTE The eval code cannot instantiate variable or function bindings in the variable environment of the calling context

that invoked the eval if either the code of the calling context or the eval code is strict code. Instead such bindings are

ed [AWB11110]: or eval code that was direct

C
eval'ed by function code??
C

ed [AWB11111]: TODO

instantiated in a new VariableEnvironment that is only accessible to the eval code.

234

{
(
(

‘[commented [AWB11113]: TODO

© Ecma International 2013

Commented [AWB11112]: or module code that was direct
eval'ed by function code??

o)

eCnd

18.2.1.1 Direct Call to Eval

A direct call to the eval function is one that is expressed as a CallExpression that meets all of the following
conditions:

18.2.1.2 [Eval Declaration Instantiation|

e The Reference that is the result of evaluating the MemberExpression in the CallExpression has an
environment record as its base value and its reference name is "eval".

e If the base value of the Reference has true as its withEnvironment value, then its binding object is an
object that uses the ordinary definition of the [[Invoke]] internal method (9.1.11)

e The result of calling the abstract operation GetValue with that Reference as the argument is the
standard built-in function defined in 18.2.1.

ed [AWB18114]: TODO

18.2.2 isFinite (number)

Returns false if the argument coerces to NaN, +w, or —o, and otherwise returns true.

1
2
3.
4

Let num be ToNumber(number).
ReturnlfAbrupt(num).

If num is NaN, +o0, or —oo, return false.
Otherwise, return true.

18.2.3 isNaN (number)

Returns true if the argument coerces to NaN, and otherwise returns false.

1. Let num be ToNumber(number).

2. ReturnlfAbrupt(num).

3. Ifnumis NaN, return true.

4. Otherwise, return false.

NOTE A reliable way for ECMAScript code to test if @ value X is a NaN is an expression of the form x !== x. The

result will be true if and only if X is a NaN.

18.2.4 parseFloat (string)

The parseFloat function produces a Number value dictated by interpretation of the contents of the string
argument as-a decimal literal.

When the parseFloat function is called, the following steps are taken:

1. LetinputString be ToString(string).

2. ReturnlfAbrupt(inputString).

3. Let trimmedString be a /'substring of inputString consisting of the leftmost character that is not a
StrWhiteSpaceChar and all characters to the right of that character. (In other words, remove leading white
space.) If inputString does not contain any such characters, let trimmedString be the empty string.

4. If neither trimmedString nor any prefix of trimmedString satisfies the syntax of a StrDecimalLiteral (see
7.1.3.1), return NaN.

5. Let numberString be the longest prefix of trimmedString, which might be trimmedString itself, that satisfies
the syntax of a StrDecimalLiteral.

6. Return the Number value for the MV of numberString.

NOTE parseFloat may interpret only a leading portion of string as a Number value; it ignores any characters that

cannot be interpreted as part of the notation of an decimal literal, and no indication is given that any such characters were

ignored.

© Ecma International 2013 235

secmd

18.2.5 parselnt (string , radix)

The parselInt function produces an integer value dictated by interpretation of the contents of the string
argument according to the specified radix. Leading white space in string is ignored. If radix is undefined or O,
itis assumed to be 10 except when the number begins with the character pairs 0x or 0X, in which case a radix
of 16 is assumed. If radix is 16, the number may also optionally begin with the character pairs 0x or 0X.

When the parselInt function is called, the following steps are taken:

1. Let inputString be ToString(string).

2. ReturnIfAbrupt(string).

3. Let S be a newly created substring of inputString consisting of the first character that is not a

StrWhiteSpaceChar and all characters following that character. (In other words, remove leading white

space.) If inputString does not contain any such characters, let S be the empty string.

Let sign be 1.

If S is not empty and the first character of S is a minus sign -, let sign be —1.

If S is not empty and the first character of S is a plus sign + or a minus sign -, then remove the first character

from S.

Let R = Tolnt32(radix).

ReturnlfAbrupt(R).

Let stripPrefix be true.

0. IfR =0, then

a. IfR<2orR > 36, then return NaN.
b. IfR = 16, let stripPrefix be false.
11. Else R =0,
a. LetR=10.
12. If stripPrefix is true, then
a. If the length of S is at least 2 and the first two characters of S are either “0X” or “0X”, then remove
the first two characters from S and let R = 16.

13. If S contains any character that is not a radix-R digit, then let Z be the substring of S consisting of all
characters before the first such character; otherwise, let Z be S.

14. If Z is empty, return NaN«

15. Let mathiInt be the mathematical integer value that is represented by Z in radix-R notation, using the letters
A-Z and a-z for digits with values 10 through 35. (However, if R is 10 and Z contains more than 20
significant digits, every significant digit after the 20th may be replaced by a 0 digit, at the option of the
implementation; and if R is not-2, 4, 8, 10, 16, or 32, then mathInt may be an implementation-dependent
approximation to the mathematical integer value that is represented by Z in radix-R notation.)

16. Let number be the Number value for mathint.

17. Returnssign x number.

>

o u

B oo~

NOTE parseInt may interpret only a leading portion of string as an integer value; it ignores any characters that
cannot be interpreted as part of the notation of an integer, and no indication is given that any such characters were
ignored.

18.3 URI Handling Function Properties

Uniform Resource Identifiers, or URIs, are Strings that identify resources (e.g. web pages or files) and transport protocols
by which to access them (e.g. HTTP or FTP) on the Internet. The ECMAScript language itself does not provide any
support for using URIs except for functions that encode and decode URIs as described in 18.3.1, 18.3.2, 18.3.3 and
18.3.3.

NOTE Many implementations of ECMAScript provide additional functions and methods that manipulate web pages;
these functions are beyond the scope of this standard.

A URI is composed of a sequence of components separated by component separators. The general form is:

Scheme : First / Second ; Third ? Fourth

236 © Ecma International 2013

pecma

where the italicised names represent components and “:”, “/”, “;” and “?” are reserved characters used as
separators. The encodeURI and decodeURI functions are intended to work with complete URIs; they
assume that any reserved characters in the URI are intended to have special meaning and so are not
encoded. The encodeURIComponent and decodeURIComponent functions are intended to work with the
individual component parts of an URI; they assume that any reserved characters represent text and so must
be encoded so that they are not interpreted as reserved characters when the component is part of a complete
URL.

The following lexical grammar specifies the form of encoded URIs.

Syntax
uri
uriCharactersopt

uriCharacters :::
uriCharacter uriCharactersopt

uriCharacter :::
uriReserved
uriUnescaped
uriEscaped

uriReserved ::: one of
;0 / 0?2 @ & = + $

uriUnescaped :::
uriAlpha
DecimalDigit
uriMark

uriEscaped :::
% HexDigit HexDigit

uriAlpha ::: one of
a b c de £f ghd j k 1 m n o p g r s t uv w x y z
A B CDE F G HI J K L MNOUP QIR ST UUVWIX Y 2Z
uriMark ::: oneof
- N A N}

NOTE The above syntax is based upon RFC 2396 and does not reflect changes introduced by the more recent RFC
3986.

Runtime Semantics

When a character to be included in an URI is not listed above or is not intended to have the special meaning
sometimes given to the reserved characters, that character must be encoded. The character is transformed
into its UTF-8 encoding, with surrogate pairs first converted from UTF-16 to the corresponding code point
value. (Note that for code units in the range [0,127] this results in a single octet with the same value.) The
resulting sequence of octets is then transformed into a String with each octet represented by an escape
sequence of the form “$xx”.

Runtime Semantics: Encode Abstract Operation

The encoding and escaping process is described by the abstract operation Encode taking two String
arguments string and unescapedSet.

1. Let strLen be the number of characters in string.
2. LetR be the empty String.

© Ecma International 2013 237

secmd

3. LetkbeO.
4. Repeat

a.
b.
c.

d.

If k equals strLen, return R.
Let C be the character at position k within string.
If C is in unescapedSet, then

Let S be a String containing only the character C.
Let R be a new String value computed by concatenating the previous value of R and S.

Else C is not in unescapedSet,

If the code unit value of C is not less than 0xDCOO0 and not greater than OXDFFF, throw an
URIError exception.
If the code unit value of C is less than 0xD800 or greater than 0XDBFF, then
1. LetV be the code unit value of C.
Else,
1. Increase k by 1.
2. Ifk equals strLen, throw an URIError exception.
3. Let kChar be the code unit value of the character at position k within string.
4. If kChar is less than 0xDCOO or greater than OxDFFF, throw an URIError
exception.
5. Let V be (((the code unit value of C) — 0xD800) x 0x400 + (kChar — 0xDCO00) +
0x10000).
Let Octets be the array of octets resulting by applying the UTF-8 transformation to V, and
let L be the array size.
Let j be 0.

Repeat, while j <L
1.

Let jOctet be the value at position j within Octets.

2. Let S be a String containing three characters “%XY” where XY are two uppercase
hexadecimal digits encoding the value of jOctet.

3. LetR be a new String value computed by concatenating the previous value of R and
S.

4. Increase j by 1.

e. Increase k by l

Runtime Semantics: Decode Abstract Operation

The unescaping and .decoding process is described by the abstract operation Decode taking two String
arguments string and reservedSet.

Let strLen be the number of characters in string.
Let R be the empty String.

a. Ifkequals strLen, return R.

b. . Let C be the character at position k within string.

Cc. IfCisnot ‘%’, then

Let S be the String containing only the character C.
d. Else Cis ‘%’,
i Let start be k.

If k + 2 is greater than or equal to strLen, throw an URIError exception.

If the characters at position (k+1) and (k + 2) within string do not represent hexadecimal
digits, throw an URIError exception.

Let B be the 8-bit value represented by the two hexadecimal digits at position (k + 1) and (k

1.

2.

3. LetkbeO.

4. Repeat
i
ii.
iii.
iv.
2
vi.
vii.

238

+2).

Increment k by 2.
If the most significant bit in B is 0, then

1. Let C be the character with code unit value B.
2. If Cis not in reservedSet, then

a. LetS be the String containing only the character C.
3. Else Cisin reservedSet,

a. LetS be the substring of string from position start to position k included.

Else the most significant bit in B is 1,

© Ecma International 2013

Let n be the smallest non-negative number such that (B << n) & 0x80 is equal to 0.
If n equals 1 or n is greater than 4, throw an URIError exception.
Let Octets be an array of 8-bit integers of size n.
Put B into Octets at position 0.
Ifk + (3 x (n— 1)) is greater than or equal to strLen, throw an URIError exception.
Let j be 1.
Repeat, while j <n
a. Increment k by 1.
b. If the character at position k within string is not "% ", throw an URIError
exception.
c. If the characters at position (k +1) and (k + 2) within string do not
represent hexadecimal digits, throw an URIError exception.
d. Let B be the 8-bit value represented by the two hexadecimal digits at
position (k + 1) and (k + 2).
e. If the two most significant bits in B are not 10, throw an URIError
exception.
f. Incrementk by 2.
g. Put B into Octets at position j.
h. Increment j by 1.

8. Let V be the value obtained by applying the UTF-8 transformation to Octets, that is,
from an array of octets into a 21-bit value. If Octets does not contain a valid UTF-8
encoding of an Unicode code point throw an URIError exception.

9. IfV < 0x10000, then

a. Let C be the character with code unit value V.
b. If Cis not in reservedSet, then
i. Let S be the String containing only the character C.
c. Else Cisiin reservedsSet,
i. Let S be the substring of string from position start to position k
included.
10. Else V > 0x10000,
a: ket L be (((V = 0x10000) & 0x3FF) + 0xDCO00).
b. Let H be ((((V ~0x10000) >> 10) & O0x3FF) + 0xD800).
c. Let S be the String containing the two characters with code unit values H
and L.
e. LetR be anew String value.computed by concatenating the previous value of R and S.
f. Increase k by 1.

Nooh~wdE

NOTE
RFC 3986 whichreplaces RFC 2396. A formal description and implementation of UTF-8 is given in RFC 3629.

This syntax of Uniform Resource Identifiers is based upon RFC 2396 and does not reflect the more recent

In UTF-8; characters are encoded using sequences of 1 to 6 octets. The only octet of a "sequence” of one has the higher-
order bit set to 0, the remaining 7 bits being used to encode the character value. In a sequence of n octets, n>1, the initial
octet has the n higher-order bits set to 1, followed by a bit set to 0. The remaining bits of that octet contain bits from the
value of the character to be encoded. The following octets all have the higher-order bit set to 1 and the following bit set to
0, leaving 6 bits.in each to contain bits from the character to be encoded. The possible UTF-8 encodings of ECMAScript
characters are specified in Table 32.

Table 32 — UTF-8 Encodings

Code Unit Value Representation 1st Octet 2nd Octet 34 Octet 4 Octet
0x0000 - 0x007F 00000000 Ozzzzzzz Ozzzzzzz
0x0080 - O0x07FF 00000yyy yyzzzzzz 110yyyyy 10zzzzzz
0x0800 - OxD7FF XXXXYYVYY VYZZZZZZ 1110xxxx 10yyyyyy 10zzzzzz
0xD800 - OxDBFF 110110vv VVWWWWXX
followed by followed by 11110uuu 10uuwwww 10xxyyyy | 10zzzzzz
0xDC00 - OxDFFF 11011lyy yyzzzzzz
0xD800 - OxDBFF
not followed by causes URIError
0xDC00 - OxDFFF
0xDCO0 - OxDFFF causes URIError
0xE000 - OxFFFF XXXXYYYY YVZZZZZZ 1110xxxx 10yyyyyy 10zzzzzz

© Ecma International 2013

239

secmd

Where

uuuuu = vvvv +1

to account for the addition of 0x10000 as in Surrogates, section 3.7, of the Unicode Standard.

The range of code unit values 0xD800-0xDFFF is used to encode surrogate pairs; the above transformation combines an
UTF-16 surrogate pair into an UTF-32 representation and encodes the resulting 21-bit value in UTF-8. Decoding
reconstructs the surrogate pair.

RFC 3629 prohibits the decoding of invalid UTF-8 octet sequences. For example, the invalid sequence CO 80 must not
decode into the character U+0000. Implementations of the Decode algorithm are required to throw an URIError when
encountering such invalid sequences.

18.3.1 decodeURI (encodedURI)

The decodeURI function computes a new version of an URI in which each escape sequence and UTF-8
encoding of the sort that might be introduced by the encodeURT function is replaced with.the character that it
represents. Escape sequences that could not have been introduced by encodeURI are not replaced.

When the decodeURT function is called with one argument encodedURI, the following steps are taken:

1. LeturiString be ToString(encodedURI).

2. ReturnlfAbrupt(uriString).

3. Let reservedURISet be a String containing one instance of each character valid in uriReserved plus “#”.
4. Return the result of calling Decode(uriString, reservedURISet)

NOTE The character “#” is not decoded from escape sequences even though it is not a reserved URI character.

18.3.2 decodeURIComponent (encodedURIComponent)

The decodeURIComponent function computes a new version of an URI in which each escape sequence and
UTF-8 encoding of the sort that might be introduced by the encodeURIComponent function is replaced with
the character that it represents.

When the decodeURIComponent function is called with one argument encodedURIComponent, the following
steps are taken:

1. Let componentString be ToString(encodedURIComponent).

2. ReturnlfAbrupt(componentString).

3. Let reservedURIComponentSet be the empty String.

4. Return the result of calling Decode(componentString, reservedURIComponentSet)

18.3.3 encodeURI (uri)

The encodeURI function.computes a new version of an URI in which each instance of certain characters is
replaced by one, two, three, or four escape sequences representing the UTF-8 encoding of the character.

When the encodeURI function is called with one argument uri, the following steps are taken:

1. LeturiString be ToString(uri).

2. ReturnlfAbrupt(uriString).

3. LetunescapedURISet be a String containing one instance of each character valid in uriReserved and
uriUnescaped plus “#”.

4. Return the result of calling Encode(uriString, unescapedURISet)

NOTE The character “#” is not encoded to an escape sequence even though it is not a reserved or unescaped URI
character.

240 © Ecma International 2013

pecma

18.3.4 encodeURIComponent (uriComponent)

The encodeURIComponent function computes a new version of an URI in which each instance of certain
characters is replaced by one, two, three, or four escape sequences representing the UTF-8 encoding of the
character.

When the encodeURIComponent function is called with one argument uriComponent, the following steps are
taken:

1. Let componentString be ToString(uriComponent).

2. ReturnlfAbrupt(componentString).

3. LetunescapedURIComponentSet be a String containing one instance of each character valid in
uriUnescaped.

4. Return the result of calling Encode(componentString, unescapedURIComponentSet)

18.4 Constructor Properties of the Global Object

18.4.1 Array (...)

See 22.1.1.

18.4.2 ArrayBuffer (...)

See 24.1.2.

18.4.3 Boolean (...)

See 19.3.1.

18.4.4 DataView (...)

See 24.2.2.

18.45 Date (...)

See 20.3.2.

18.4.6 Error(...)

See 19.5.1.

18.4.7 EvalError (...)

See 19.5.5.1.

18.4.8 Float32Array.(. ..)

See 22.2.4.

18.4.9 Float64Array (...)

See 22.2.4.

18.4.10 Function (...)

See 19.2.1.

© Ecma International 2013 241

secmd

18.4.11 Int8Array (...)
See 22.2.4.

18.4.12 Intl6Array (...)
See 22.2.4.

18.4.13 Int32Array (...)
See 22.2.4.

18.4.14 Map (...)

See 23.1.1.

18.4.15 Number (...)
See 20.1.1.

18.4.16 Object (...)

See 19.1.1.

18.4.17 RangeError (...)
See 19.5.5.2.

18.4.18 ReferenceError (...)
See 19.5.5.3.

18.4.19 RegExp (...)
See 21.2.4.

18.4.20 Set(...)

See 23.2.1.

18.421 String (...)

See 21.1.1.

18.4.22 SyntaxError (...)
See 19.5.5.4.

18.4.23 TypeError (...)
See 19.5.5.5.

18.4.24 Uint8Array (...)

See 22.2.4.

18.4.25 Uint8ClampedArray (. ..

See 22.2.4.

242

© Ecma International 2013

pecma

18.4.26 Uintl6Array (...)
See 22.2.4.

18.4.27 Uint32Array (...)
See 22.2.4.

18.4.28 URIError (...)
See 19.5.5.6.

18.4.29 WeakMap (...)
See 23.3.1.

18.4.30 WeakSet (...)
See 23.4.

18.5 Other Properties of the Global Object
18.5.1 JSON

See 24.3.

18.5.2 Math

See 20.2.

19 Fundamental Objects

19.1 Object Objects

19.1.1 The Object Constructor Called as a Function

When Object.is.called as a function rather than as a constructor, it performs a type conversion.
19.1.1.1 - Object ([value])

When the Object function is called with no arguments or with one argument value, the following steps are
taken:

1. Ifvalue is null, undefined or not supplied, return the result of the abstract operation ObjectCreate with the
intrinsic object %0ObjectPrototype% as its argument.

2. Return ToObject(value).

19.1.2 The Object Constructor

When Object is called as part of a new expression, it is a constructor that may create an object.

19.1.2.1 new Object ([value])

When the Object constructor is called with no arguments or with one argument value, the following steps are
taken:

1. [Ifvalue is supplied, then
a. If Type(value) is Object, then return value.

© Ecma International 2013 243

secmd

b. If Type(value) is String, return ToObject(value).
c. If Type(value) is Boolean, return ToObject(value).
d. If Type(value) is Number, return ToObject(value).
2. Assert: The argument value was not supplied or its type was Null or Undefined.
3. Return the result of the abstract operation ObjectCreate with the intrinsic object %ObjectPrototype% as its
argument.

19.1.3 Properties of the Object Constructor

The value of the [[Prototype]] internal data property of the Object constructor is the standard built-in Function
prototype object.

Besides the 1ength property (whose value is 1), the Object constructor has the following properties:
19.1.3.1 Object.assign (target, source)

The assign function is used to copy the values of all of the enumerable own properties from a source object to
a target object. When the assign function is called, the following steps are taken:

Let to be ToObject(target).
ReturnlfAbrupt(to).
Let from be ToObject(source).
ReturnlfAbrupt(from).
Let keys be the result of calling the [[OwnPropertyKeys]] internal‘method of soure.
ReturnlfAbrupt(keys).
Let gotAlINames be false.
Let pendingException be undefined.
Repeat while gotAllNames is false,
a. Let next be the result of IteratorStep(keys).
b. ReturnIfAbrupt(next).
c. Ifnextis false, then let gotAllINames be true.
d. Else,
i. Let nextKey be lteratorValue(next).
ii. ReturnlfAbrupt(nextKey).
iii. Let desc bethe result of calling the [[GetOwnProperty]] internal method of from with argument
nextKey.

v. Ifdesc is an abrupt completion, then

1 If pendingException is undefined, then set pendingException to desc.
v. Else if desc is.not undefined and desc.[[Enumerable]] is true, then

1 Let propValue be Get(from, nextKey).

2. If propValue is an abrupt completion, then

a. If pendingException is undefined, then set pendingException to
propValue.
3. else

©oNOG AWM

a. Let status be Put(to, nextKey, propValue, true);
b. If status is an abrupt completion, then
i. If pendingException is undefined, then set pendingException to status.
10. If pendingException is not undefined, then return pendngException.
11. Return to.

19.1.3.2 Object.create (O [, Properties])

The create function creates a new object with a specified prototype. When the create function is called, the
following steps are taken:

1. If Type(O) is not Object or Null throw a TypeError exception.
2. Let obj be the result of the abstract operation ObjectCreate with argument O.

244 © Ecma International 2013

secma

3. If the argument Properties is present and not undefined, then
a. Return the result of the abstract operation ObjectDefineProperties(obj, Properties).
4. Return obj.

19.1.3.3 Object.defineProperties (O, Properties)

The defineProperties function is used to add own properties and/or update the attributes of existing own
properties of an object. When the defineProperties function is called, the following steps are taken:

1. Return the result of the abstract operation ObjectDefineProperties with arguments O and Properties.

Runtime Semantics: ObjectDefineProperties Abstract Operation
The abstract operation ObjectDefineProperties with arguments O and Properties performs the following steps:

If Type(O) is not Object throw a TypeError exception.
Let props be ToObject(Properties).
Let names be an internal list containing the keys of each enumerable own property of props.
Let descriptors be an empty internal List.
For each element P of names in list order,
a. Let descObj be the result of Get(props, P).
b. ReturnlfAbrupt(descObj).
c. Letdesc be the result of calling ToPropertyDescriptor with descObj as the argument.
d. ReturnlfAbrupt(desc).
e. Append the pair (a two element List) consisting of P and.desc to the end of descriptors.
Let pendingException be undefined.
For each pair from descriptors in list order,
a. Let P be the first element of pair.
b. Let desc be the second element of pair.
c. Let status be the result of DefinePropertyOrThrow(O,P; desc).
d. If status is an abrupt completion then,
i. If pendingException is undefined, then set pendingException to status.
8. ReturnlfAbrupt(pendingException).
9. Return O.

gahrwnE

~No

If an implementation defines a specific order of enumeration for the for-in statement, that same enumeration
order must be used to order the list elements.in step 3 of this algorithm.

NOTE An exception in defining an individual property in step 7 does not terminate the process of defining other
properties. All valid property definitions are processed.

19.1.3.4° Object.defineProperty (O, P, Attributes)

The defineProperty function is used to add an own property and/or update the attributes of an existing own
property of an object. When the defineProperty function is called, the following steps are taken:

If Type(O) is not Object throw a TypeError exception.

Let key be ToPropertyKey(P).

ReturnIfAbrupt(key).

Let desc be the result of calling ToPropertyDescriptor(Attributes).
ReturnIfAbrupt(desc).

Let success be the result of DefinePropertyOrThrow(O,key, desc).
ReturnlfAbrupt(success).

Return O.

19.1.3.5 Object.freeze (O)

PN RN

When the freeze function is called, the following steps are taken:

1. If Type(O) is not Object throw, return O.
2. Let status be the result of SetlntegrityLevel(O, "frozen").

© Ecma International 2013 245

secmd

3. ReturnlfAbrupt(status).
4. If status is false, throw a TypeError exception.
5. Return O.

19.1.3.6 Object.getOwnPropertyDescriptor (O, P)
When the getOwnPropertyDescriptor function is called, the following steps are taken:

Let obj be ToObject(O).

ReturnIfAbrupt(obj).

Let key be ToPropertyKey(P).

ReturnlfAbrupt(key).

Let desc be the result of calling the [[GetOwnProperty]] internal method of objwith argument key.
ReturnlfAbrupt(desc).

Return the result of calling FromPropertyDescriptor(desc).

19.1.3.7 Object.getOwnPropertyNames (O)

Nogakrowpe

When the getOwnPropertyNames function is called, the following steps are taken:

1. Return GetOwnPropertyKeys(O, String).

19.1.3.8 Object.getOwnPropertySymbols (O)

When the getOwnPropertySymbols function is called with argument O, the following steps are taken:
2. Return GetOwnPropertyKeys(O, Symbol).

19.1.3.9

19.1.3.9.1 GetOwnPropertyKey (O, Type) Abstract Operation

The abstract operation.getOwnPropertyKeys is called with arguments O and Type where O is an Object and
Type is one of the ECMASecript specification types String or Symbol. The following steps are taken:

Let obj be ToObject(O).
ReturnlfAbrupt(obj).
Let keys be the result of calling the [[OwnPropertyKeys]] internal method of obj.
ReturnlfAbrupt(keys).
Let nameList be a new empty List.
Let gotAlINames be false.
Repeat while gotAlINames'is false,
a. . Let next be the result of IteratorStep(keys).
b. ReturnlfAbrupt(next).
c. If next is false, then let gotAlINames be true.
d. Else,
i. Let nextKey be lteratorValue(next).
ii. “ReturnlfAbrupt(nextKey).
iii. If Type(nextKey) is Type, then
1. Append nextKey as the last element of nameList.
8. Return CreateArrayFromList(nameList).

NouorwnE

19.1.3.10 Object.getPrototypeOf (O)
When the getPrototypeOf function is called with argument O, the following steps are taken:

1. Letobj be ToObject(O).
2. ReturnlfAbrupt(obj).

246 © Ecma International 2013

secma

3. Return the result of calling the [[GetPrototypeOf]] internal method of obj.
19.1.3.11 Object.is (valuel, value2)

When the is function is called with arguments valuel and value2 the following steps are taken:
1. Return SameValue(valuel, value2).

19.1.3.12 Object.isExtensible (O)

When the isExtensible function is called with argument O, the following steps are taken:

1. If Type(O) is not Object, return false.
2. Return the result of IsExtensible(O).

19.1.3.13 Object.isFrozen (O)
When the isFrozen function is called with argument O, the following steps are taken:

1. If Type(O) is not Object, return true.
2. Return TestlIntegrityLevel(O, "frozen").

19.1.3.14 Object.isSealed (O)
When the isSealed function is called with argument O, the following steps are taken:

1. If Type(O) is not Object, return true.
2. Return TestlIntegrityLevel(O, "sealed").

19.1.3.15 Object.keys (O)
When the keys function is called with argument O, the following steps are taken:

Let obj be ToObject(O).
ReturnlfAbrupt(obj).
Let keys be the result of calling the [[OwnPropertyKeys]] internal method of obj.
ReturnlfAbrupt(keys).
Let nameList be a new empty List.
Let gotAlINames be false.
Repeat while gotAlINames is false,
a. Let next be the result of IteratorStep(keys).
b. ReturnlfAbrupt(next).
c. Ifnextis false, then let gotAlINames be true.
d.. Else,
i Let nextKey be lteratorValue(next).
ii. ReturnIfAbrupt(nextKey).
il If Type(nextKey) is String, then
1. < Let desc be the result of calling the [[GetOwnProperty]] internal method of O with
argument nextKey.
2. ReturnIfAbrupt(desc).
3. Ifdesc is not undefined and desc.[[Enumerable]] is true, then
a. Append nextKey as the last element of nameList.
8. Return CreateArrayFromList(nameList).

NooA~MONE

If an implementation defines a specific order of enumeration for the for-in statement, the same order must be
used for the elements of the array returned in step 7.

19.1.3.16 Object.mixin (target, source)

The mixin function is used to copy the definitions of all of the own properties from a source object to a target
object. When the mixin function is called, the following steps are taken:

© Ecma International 2013 247

&

gabhwnE

»ecma

Let to be ToObject(target).
ReturnlfAbrupt(to).

Let from be ToObject(source).
ReturnIfAbrupt(from).

Return the result of MixinProperties(to, from).

19.1.3.16.1MixinProperties(target, source)

The abstract operation MixinProperties copy the definitions of all of the own properties from a source object to
a target object. If a property value is a function that is super bound to source, a new function is created that is
super bound to target and the MixinProperties is recursively applied to the functions. When the MixinProperties
abstract operations called, the following steps are taken

NookrwhE

~No

248

Assert: Type(target) is Object.
Assert: Type(target) is Object.
Let keys be the result of calling the [[OwnPropertyKeys]] internal method of soure.
ReturnlfAbrupt(keys).
Let gotAlINames be false.
Let pendingException be undefined.
Repeat while gotAlINames is false,
Let next be the result of IteratorStep(keys).
ReturnlfAbrupt(next).
If next is false, then let gotAlINames be true.
Else,
i. Let nextKey be IteratorValue(next).
ii. ReturnlfAbrupt(nextKey).
iili. Let desc be the result of calling the [[GetOwnProperty]] internal method of from with argument
nextKey.
iv. Ifdesc is an abrupt completion, then
1 If pendingException is undefined, then set pendingException to desc.
ii. Else if desc is-not undefined and desc.[[Enumerable]] is true, then
1. If IsDataDescriptor(desc), then
Let propValue be desc.[[Value]].
If SameValue(GetSuperBinding (propValue), from), then
i Let newFunc be MixinProperties(RebindSuper(propValue, to),
propValue).
il If newFunc is an abrupt completion, then
1. If pendingException is undefined, then set pendingException to newFunc.
iii. Else, set desc.[[Value]] to newFunc.
2. Else, desc is an accessor descriptor
Let getter be desc.[[Get]].
b. If SameValue(GetSuperBinding (getter), from), then
i Let newFunc be MixinProperties(RebindSuper(getter, to),
getter).
ii. If newFunc is an abrupt completion, then
1. If pendingException is undefined, then set pendingException to newFunc.
iii, Else, set desc.[[Get]] to newFunc.
Let setter be desc.[[Set]].
d. If SameValue(GetSuperBinding (setter), from), then
i Let newFunc be MixinProperties(RebindSuper(setter, to),
setter).
ii. If newFunc is an abrupt completion, then
1. If pendingException is undefined, then set pendingException to newFunc.
iii. Else, set desc.[[Set]] to newFunc.
3. Let status be DefinePropertyOrThrow(to, nextKey, desc).
a. If status is an abrupt completion, then
i. If pendingException is undefined, then set pendingException
to status.
If pendingException is not undefined, then return pendngException.
Return to.

oo ow

» o

24

© Ecma International 2013

pecma

19.1.3.17 Object.preventExtensions (O)
When the preventExtensions function is called, the following steps are taken:

If Type(O) is not Object throw, return O.

Let status be the result of calling the [[PreventExtensions]] internal method of O.
ReturnlfAbrupt(status).

If status is false, throw a TypeError exception.

Return O.

19.1.3.18 Object.prototype

arwnE

The initial value of Object.prototype is the standard built-in Object prototype object (19.1.4).
This property has the attributes {[[Writable]]: false, [[Enumerable]]: false, [[Configurable]]: false }.
19.1.3.19 Object.seal (O)

When the seal function is called, the following steps are taken:

If Type(O) is not Object, return O.

Let status be the result of SetIntegrityLevel(O, "sealed"”).

ReturnlfAbrupt(status).

If status is false, throw a TypeError exception.
Return O.

g wn e

19.1.3.20 Object.setPrototypeOf (O, proto)
When the setPrototypeOf£ function is called with arguments O-and proto, the following steps are taken:

Let O be CheckObjectCoercible(O).

ReturnlfAbrupt(O).

If Type(proto) is neither Object or Null, then throw a TypeError exception.

I1f Type(O) is not Object, then return O.

Let status be the result of calling the [[SetPrototypeOf]] internal method of O with argument proto.
ReturnlfAbrupt(status).

If status is false, then throw.a TypeError exception.

Return O.

19.1.4 Properties of the Object Prototype Object

NG A WNE

The Object prototype object is an ordinary object.

The value of the [[Prototype]] internal data property of the Object prototype object is null and the initial value
of the [[Extensible]] internal data property is true.

19.1.4.1 Object.prototype.constructor

The initial value of Object.prototype.constructor is the standard built-in Object constructor.
19.1.4.2 Object.prototype.hasOwnProperty (V)

When the hasOwnProperty method is called with argument V, the following steps are taken:

Let P be ToPropertyKey(V).

ReturnlfAbrupt(P).

Let O be the result of calling ToObject passing the this value as the argument.

ReturnifAbrupt(O).
Return the result of HasOwnProperty(O, P).

garwn e

© Ecma International 2013 249

secmd

NOTE The ordering of steps 1 and 3 is chosen to ensure that any exception that would have been thrown by step 1
in previous editions of this specification will continue to be thrown even if the this value is undefined or null.

19.1.4.3 Object.prototype.isPrototypeOf (V)
When the isPrototypeOf method is called with argument V, the following steps are taken:

If V is not an object, return false.

Let O be the result of calling ToObject passing the this value as the argument.

ReturnlfAbrupt(O).

Repeat
a. LetV be the result of calling the [[GetPrototypeOf]] internal method of V with no arguments.
b. if Vis null, return false
c. If SameValue(O, V) is true, then return true.

HwN e

NOTE The ordering of steps 1 and 2 preserves the behaviour specified by previous editions of this specification for
the case where V is not an object and the this value is undefined or null.

19.1.4.4 Object.prototype.propertylsEnumerable (V)
When the propertyIsEnumerable method is called withargument V, the following steps are taken:

Let P be ToString(V).

ReturnIfAbrupt(P).

Let O be the result of calling ToObject passing the this value as the argument.

ReturnlfAbrupt(O).

Let desc be the result of calling the [[GetOwnProperty]] internal method of O passing P as the argument.
If desc is undefined, return false.

Return the value of desc.[[Enumerable]].

NookhwpE

NOTE 1 This method does not consider objects in the prototype chain.

NOTE 2 The ordering of steps 1 and 2 is chosen to ensure that any exception that would have been thrown by step 1
in previous editions of this specification will continue to be thrown even if the this value is undefined or null.

19.1.4.5 Object.prototype.toLocaleString.(.)
When the toLocaleString method is called, the following steps are taken:

1. Let O.be the this value.
2. Return the result of Invoke(O, "toString").

NOTE 1 . This function is provided to give all Objects a generic toLocaleString interface, even though not all may
use it. Currently, Array, Number, and Date provide their own locale-sensitive toLocaleString methods.

NOTE 2 The first parameter to this function is likely to be used in a future version of this standard; it is recommended
that implementations do not use this parameter position for anything else.

19.1.4.6 Object.prototype.toString ()
When the toString method is called, the following steps are taken:

If the this value is undefined, return " [object Undefined]".

If the this value is null, return " [object Null]".

Let O be the result of calling ToObject passing the this value as the argument.
If O is an exotic Array object, then let builtinTag be "Array".

Else, if O is an exotic String object, then let builtinTag be "String".

Else, if O is an exotic Proxy object, then let builtinTag be "Proxy".

Else, if O is an exotic arguments object, then let builtinTag be "Arguments".

Noahbowpe

250 © Ecma International 2013

Commented [AWB19115]: This could be used an isProxy
test. Do we really want that?

pecma

8. Else, if O is an ordinary function object, a built-in function object, or a bound function exotic object, then let
builtinTag be "Function".

9. Else, if O has an [[ErrorData]] internal data property, then let builtinTag be "Error".

10. Else, if O has a [[BooleanData]] internal data property, then let builtinTag be "Boolean".

11. Else, if O has a [[NumberData]] internal data property, then let builtinTag be "Number".

12. Else, if O has a [[DateValue]] internal data property, then let builtinTag be "Date".

13. Else, if O has a [[RegExpMatcher]] internal data property, then let builtinTag be "RegExp".

14. Else, let builtinTag be "Object".

15. Let hasTag be the result of HasProperty(O, @@toStringTag).

16. ReturnlfAbrupt(hasTag).

17. If hasTag is false, then let tag be builtinTag.

18. Else,
a. Lettag be the result of Get(O, @@toStringTag).
b. If tag is an abrupt completion, let tag be NormalCompletion("222").
c. Lettag be tag.[[value]].
d. If Type(tag) is not String, let tag be "222".
e. Iftagisany of "Arguments", "Array", "Boolean", "Date", "Error", "Function",

"JSON", "Math", "Number", "RegExp", or "String" and SameValue(tag, builtinTag) is
false, then let tag be the string value "~" concatenated with the current value of tag.
19. Return the String value that is the result of concatenatingthe three Strings "[object ", tag, and “]".

NOTE Historically, this function was occasionally used to access the string value of the [[Class]] internal data
property that was used in previous editions of this-specification as a nominal type tag for various built-in objects. The
above definition of toString preserves the ability to use.it as a reliable test for those specific kinds of built-in objects but
it does not provide a reliable type testing mechanism for other kinds of built-in or program defined objects.

19.1.4.7 Object.prototype.valueOf ()
When the valueOf method is called, the following steps are taken:

1. Let O be the result of calling ToObject passing the this value as the argument.
2. Return O.

19.1.5 Properties of Object Instances

Object instances have no special properties beyond those inherited from the Object prototype object.
19.2 Function Objects

19.2.1 The Function Constructor

The Function constructor is the %Function% intrinsic object and the initial value of the Function property of
the global object. When Function is called as a function rather than as a constructor, it creates and
initialises a new Function‘object. Thus the function call Function(..) is equivalent to the object creation
expression new Function (..) with the same arguments. However, if the this value value passed in the call
is an Object with a [[Code]] internal data property whose value is undefined, it initialises the this value using
the argument values. This permits Function to be used both as factory method and to perform
constructor instance initialisation.

Function may be subclassed and subclass constructors may perform a super invocation of the Function
constructor to initialise subclass instances. However, all syntactic forms for defining function objects create
instances of Function. There is no syntactic means to create instances of Function subclasses except for
the built-in Generator Function subclass.

© Ecma International 2013 251

secmd

19.2.1.1 Function (p1, p2, ..., pn, body)

The last argument specifies the body (executable code) of a function; any preceding arguments specify formal
parameters.

When the Function function is called with some arguments p1, p2, ..., pn, body (where n might be 0, that is,

“ o

there are no “p” arguments, and where body might also not be provided), the following steps are taken:

Let argCount be the total number of arguments passed to this function invocation.

Let P be the empty String.

If argCount = 0, let bodyText be the empty String.

Else if argCount = 1, let bodyText be that argument.

Else argCount > 1,

Let firstArg be the first argument.

Let P be ToString(firstArg).

ReturnlfAbrupt(P).

Let k be 2.

Repeat, while k < argCount

i Let nextArg be the k’th argument.
il Let nextArgString be ToString(nextArg).
iii. ReturnlfAbrupt(nextArgString).
iv. Let P be the result of concatenating the previous value of P, the String ", " (a comma), and
nextArgString.
V. Increase k by 1.
f. Let bodyText be the k’th argument.

6. Let bodyText be ToString(bodyText).

7. ReturnlfAbrupt(bodyText).

8. Let parameters be the result of parsing P, interpreted as UTF-16 encoded Unicode text as described in clause
10, using FormalParameters as the goal symbol. Throw a SyntaxError exception if the parse fails.

9. Let body be the result of parsing bodyText, interpreted as UTF-16 encoded Unicode text as described in
clause 10, using FunctionBody as the goal symbol. Throw a SyntaxError exception if the parse fails or if
any static semantics errors-are detected.

10. If body Contains YieldExpression is true, then throw a SyntaxError exception.

11. If IsSimpleParameterList of parameters is false and any element of the BoundNames of parameters also
occurs in the VarDeclaredNames of body, then throw a SyntaxError exception.

12. If any element of the BoundNames of parameters-also occurs in the LexicallyDeclaredNames of body, then throw
a SyntaxError exception.

13. If bodyText.is strict mode code (see 10.2.1) then let strict be true, else let strict be false.

14. Let scope be the Global Environment.

15. Let F'be the this value.

16. If Type(F) is not Object orif F does not have a [[Code]] internal data property or if the value of [[Code]] is
not undefined, then

a. - Let F be the result of calling FunctionAllocate with argument %FunctionPrototype%.

17. If the value of F’s [[FunctionKind]] internal data property is not "normal", then throw a TypeError exception.

18. Perform the Functionlnitialise abstract operation with arguments F, Normal, parameters, body, scope, and strict.

19. Perform the abstract operation MakeConstructor with argument F.

20. Return F.

arowpe=

ooo o

A prototype property is automatically created for every function created using the Function constructor, to
provide for the possibility that the function will be used as a constructor.

NOTE It is permissible but not necessary to have one argument for each formal parameter to be specified. For
example, all three of the following expressions produce the same result:

new Function("a", "b", "c", "return a+b+c")
new Function("a, b, c", "return at+b+c")

new Function("a,b", "c", "return a+b+c")

252 © Ecma International 2013

secma

19.2.1.2 new Function (... argumentsList)

When Function is called as part of a new expression, it initialises the newly created object.

1. Let F be the Function function object on which the new operator was applied.

2. LetargumentsList be the argumentsList argument of the [[Construct]] internal method that was invoked by
the new operator.

3. Return the result of OrdinaryConstruct (F, argumentsList).

If Function is implemented as an ordinary function object, its [[Construct]] internal method will perform the
above steps.

19.2.2 Properties of the Function Constructor

The Function constructor is itself a built-in Function object. The value of the [[Prototype]] internal data property
of the Function constructor is %FunctionPrototype%, the intrinsic Function prototype object (19.2.3).

The value of the [[Extensible]] internal data property of the Function constructor is true.
The Function constructor has the following properties:
19.2.2.1 Function.length

This is a data property with a value of 1. This property has the attributes { [[Writable]]: false, [[Enumerable]]:
false, [[Configurable]]: true }.

19.2.2.2 Function.prototype

The value of Function.prototype is %FunctionPrototype%, the intrinsic Function prototype object (19.2.3).
This property has the attributes{ [[Writable]]: false, [[Enumerable]]: false, [[Configurable]]: false }.

19.2.2.3 Function| @@create] ()

The @@create method of an object F performs the following steps:

Let F be the this value.

Let proto-be the result.of GetPrototypeFromConstructor(F, "$FunctionPrototype%").

ReturnlfAbrupt(proto).

Letobj be the result of calling FunctionAllocate with argument proto.
Return obj.

g~ wNE

This property has the attributes { [[Writable]]: false, [[Enumerable]]: false, [[Configurable]]: true }.

NOTE The Function @Rcreate function is intentionally generic; it does not require that its this value be the Function
constructor object. It can be transferred to other constructor functions for use as a @@create method. When used with
other constructors, this function will create an exotic function object whose [[Prototype]] value is obtained from the
associated constructor.

19.2.3 Properties of the Function Prototype Object

The Function prototype object is itself a Built-in Function object. When invoked, it accepts any arguments and
returns undefined.

NOTE The Function prototype object is specified to be a function object to ensure compatability with ECMAScript
code that was created prior to the 6" Edition of this specification.

© Ecma International 2013 253

secmd

The value of the [[Prototype]] internal data property of the Function prototype object is the intrinsic
object %ObjectPrototype% (19.1.4). The initial value of the [[Extensible]] internal data property of the Function
prototype object is true.

The function prototype object does not have a prototype property.
The length property of the Function prototype object is 0.
19.2.3.1 Function.prototype.apply (thisArg, argArray)

When the apply method is called on an object func with arguments thisArg and argArray, the following steps
are taken:

1. If IsCallable(func) is false, then throw a TypeError exception.

2. If argArray is null or undefined, then

a. Return the result of calling the [[Call]] internal method of func,providing thisArg as thisArgument and
an empty List of arguments as argumentsList.

Let argList be the result of CreateListFromArrayLike(argArray).

ReturnIfAbrupt(argList).

Return the result of calling the [[Call]] internal method of func, providing thisArg as thisArgument and

argList as argumentsList.

ok w

The length property of the apply method is 2.

NOTE The thisArg value is passed without modification as the this value. This is a change from Edition 3, where an
undefined or null thisArg is replaced with the global.object and ToObject is applied to all other values and that result is
passed as the this value.

19.2.3.2 Function.prototype.bind (thisArg [, arg1 [, arg2, ...]1])

The bind method takes one or more arguments, thisArg and (optionally) argl, arg2, etc, and returns a new
function object by performing the following steps:

1. Let Target be the thiswvalue.
2. If IsCallable(Target) is false, throw a TypeError exception.
3. Let A be a new (possibly.empty) internal-list-consisting of all of the argument values provided after thisArg
(argl, arg2 etc), in order.
4. Let F be the result of the abstract operation BoundFunctionCreate with arguments Target, thisArg, and A.
5 [If Target has a [[BoundTargetFunction]] internal data property, then
a. LettargetLen be the result of Get(Target, "length").
b. ReturnIfAbrupt(targetLen).
c. LetL be the larger of 0 and the result of targetLen minus the number of elements of A.
6. ElseletL be 0|
7. Call the [[DefineOwnProperty]] internal method of F with arguments "length" and PropertyDescriptor
{[[value]]: L, [[Writable]]: false, [[Enumerable]]: false, [[Configurable]]: false}.
8. Perform the AddRestrictedFunctionProperties abstract operation with argument F.
9. Return F.

The length property of the bind method is 1.

NOTE Function objects created using Function.prototype.bind are exotic objects. They also do not have a
prototype property.

19.2.3.3 Function.prototype.call (thisArg [, arg1[, arg2,...1]1)

When the call method is called on an object func with argument thisArg and optional arguments argl, arg2
etc, the following steps are taken:

1. If IsCallable(func) is false, then throw a TypeError exception.
2. LetargList be an empty List.

254 © Ecma International 2013

(Commented [AWB15116]: TODO This need to be
rethought in light of Proxy based functions and other callables
| that may not be “BuiltinFunctiona”

pecma

3. If this method was called with more than one argument then in left to right order starting with argl append
each argument as the last element of argList

4. Return the result of calling the [[Call]] internal method of func, providing thisArg as thisArgument and
argList as argumentsList.

The length property of the call method is 1.

NOTE The thisArg value is passed without modification as the this value. This is a change from Edition 3, where an
undefined or null thisArg is replaced with the global object and ToObject is applied to all other values and that result is
passed as the this value.

19.2.3.4 Function.prototype.constructor
The initial value of Function.prototype.constructor is the intrinsic object %Function%.
19.2.3.5 Function.prototype.toString ()

An implementation-dependent String source code representation of the this object is returned. This
representation has the syntax of a FunctionDeclaration® FunctionExpression, GeneratorDeclaration,
GeneratorExpession, ClassDeclaration, ClassExpression, ArrowFunction, MethodDefinition, or GeneratorMethod
depending upon the actual characteristics of the object. In particular that the use and placement of white space, line
terminators, and semicolons within the representation String is implementation-dependent.

If the object was defined using ECMAScript code and the returned string representation is in the form of a
FunctionDeclaration FunctionExpression, GeneratorDeclaration, GeneratorExpession, ClassDeclaration,
ClassExpression, or ArrowFunction then the representation must be such that if the string is evaluated, using
eval in a lexical context that is equivalent to the lexical context used to create the original object, it will result
in a new functionally equivalent object. The returned source code must not mention freely any variables that
were not mentioned freely by the original function’s source code; even if these “extra” names were originally in
scope. If the source code string does meet these criteria then it must.be a string for which eval will throw a
SyntaxError exception.

The toString function is_not generic; it throws a TypeError exception if its this value does not have a
[[Call]] internal method. Therefore, it cannot be transferred to other kinds of objects for use as a method.

19.2.3.6 Function.prototype[@@create] ()

The @@create method of an object F performs the following steps:

1. Return'the result of calling OrdinaryCreateFromConstructor(F, "$ObjectPrototype%").
This‘property has the attributes { [[Writable]]: false, [[Enumerable]]: false, [[Configurable]]: true }.

NOTE This is the default @ @create method that is inherited by all ordinary constructor functions that do not explicitly
over-ride it.

19.2.3.7 Function.prototype[@@haslInstance] (V)
When the @ @hasInstance method of an object F is called with value V, the following steps are taken:

1. Let F be the this value.
2. Return the result of OrdinaryHaslnstance(F, V).

This property has the attributes { [[Writable]]: false, [[Enumerable]]: false, [[Configurable]]: false }.

NOTE This is the default implementation of @RhasInstance that most functions inherit. @ehasInstance is called
by the instanceof operator to deterimine whether a value is an instance of a specific constructor. An expression such
as

v instanceof F
evaluates as

© Ecma International 2013 255

secmd

F[QRhasInstance] (v)
A constructor function can control which objects are recognized as its instances by instanceof by exposing a different
@@hasInstance method on the function.

This property is non-writable and non-configurable to prevent tampering that could be used to globally expose the target
function of a bound function.

19.2.4 Function Instances
Every function instance is an ordinary function object and has the internal data properties listed in Table 25.

Function instances that correspond to strict mode functions and function instances created using the
Function.prototype.bind method (19.2.3.2) have properties named caller and arguments that throw a
TypeError exception. An ECMAScript implementation must not associate any implementation specific
behaviour with accesses of these properties from strict mode function code.

The Function instances have the following properties:
19.2.4.1 length

The value of the 1length property is an integer that indicates the typical number of arguments. expected by
the function. However, the language permits the functionto be invoked with some other number of arguments.
The behaviour of a function when invoked on a number of arguments other than the number specified by its
length property depends on the function. This property has the attributes { [[Writable]]: false, [[Enumerable]]:
false, [[Configurable]]: true }.

19.2.4.2 prototype

Function instances that can be used as a constructor have a prototype property. Whenever such a function
instance is created another ordinary object is also created-and is the initial value of the function’s prototype
property. Unless otherwise specified, the value of the prototype property is used to initialise the [[Prototype]]
internal data property of a newly created ordinary object before the Function object is invoked as a constructor
for that newly created object.

This property has the attributes { [[Writable]]: true, [[Enumerable]]: false, [[Configurable]]: false }.

NOTE Function objects created using Function.prototype.bind, or by evaluating a MethodDefinition (that is not
a GeneratorMethod)-or.an ArrowFunction grammar production do not have a prototype property.

19.3 Boolean Objects
19.3.1 The Boolean Constructor

The Boolean constructor is the %Boolean% intrinsic object and the initial value of the Boolean property of
the global object. When Boolean is called as a function rather than as a constructor, it performs a type
conversion. However, if the this value passed in the call is an Object with an uninitialised [[BooleanData]]
internal data property, it'initialises the this value using the argument value. This permits Boolean to be
used both to perform type conversion and to perform constructor instance initialisation.

The Boolean constructor is designed to be subclassable. It may be used as the value of an extends clause
of a class declaration. Subclass constructors that intended to inherit the specified Boolean behaviour must
include a super call to the Boolean constructor to initialise the [[BooleanData]] state of subclass instances.
19.3.1.1 Boolean (value)

When Boolean is called with argument value, the following steps are taken:

1. Let O be the this value.
2. Letb be ToBoolean(value).

256 © Ecma International 2013

pecma

3. If Type(O) is Object and O has a [[BooleanData]] internal data property and the value of [[BooleanData]] is
undefined, then
a. Setthe value of O’s [[BooleanData]] internal data property to b.
b. Return O.
4. Return b.

19.3.1.2 new Boolean (... argumentsList)

Boolean called as part of a new expression , it initialises a newly created object:

1. Let F be the Boolean function object on which the new operator was applied.

2. Let argumentsList be the argumentsList argument of the [[Construct]] internal method that was invoked by
the new operator.

3. Return the result of OrdinaryConstruct (F, argumentsList).

If Boolean is implemented as an ordinary function object, its [[Construct]] internal method will perform the
above steps.

19.3.2 Properties of the Boolean Constructor

The value of the [[Prototype]] internal data property of the Boolean constructor is the Function prototype object
(19.2.3).

Besides the 1length property (whose value is 1), the Boolean constructor has the following properties:
19.3.2.1 Boolean.prototype

The initial value of Boolean.prototype is the Boolean prototype object (19.3.3).

This property has the attributes { [[Writable]]: false, [[Enumerable]]: false;, [[Configurable]]: false }.

19.3.2.2 Boolean[@@create] ()

The @@create method.of an object F performs the following steps:

1. LetF be the this value.

2. Let obj be the result of calling OrdinaryCreateFromConstructor(F, "$BooleanPrototype%", ([[BooleanData]])).
3. Return obj.

This property has the attributes { [[Writable]]: false, [[Enumerable]]: false, [[Configurable]]: true }.

NOTE [[BooleanData]] is initially assigned the value undefined as a flag to indicate that the instance has not yet been
initialised by. the Boolean constructor. This flag value is never directly exposed to ECMAScript code; hence
implementations may choose to encode the flag in some other manner.

19.3.3 Properties of the Boolean Prototype Object

The Boolean prototype object is an ordinary object. It is not a Boolean instance and does not have a
[[BooleanData]] internal data property.

The value of the [[Prototype]] internal data property of the Boolean prototype object is the standard built-in
Object prototype object (19.1.4).

The abstract operation thisBooleanValue(value) performs the following steps:
1. If Type(value) is Boolean, return value.
2. If Type(value) is Object and value has a [[BooleanData]] internal data property, then

a. Let b be the value of value’s [[BooleanData]] internal data property.
b. If b is not undefined, then return b.

© Ecma International 2013 257

secmd

3. Throw a TypeError exception.
19.3.3.1 Boolean.prototype.constructor
The initial value of Boolean.prototype.constructor is the built-in Boolean constructor.
19.3.3.2 Boolean.prototype.toString ()
The following steps are taken:
1. Let b be thisBooleanValue(this value).
2. ReturnlfAbrupt(b).
3. Ifbistrue, thenreturn "true"; else return "false".
19.3.3.3 Boolean.prototype.valueOf ()
The following steps are taken:
1. Return thisBooleanValue(this value).
19.3.4 Properties of Boolean Instances
Boolean instances are ordinary objects that inherit properties from.the Boolean prototype object. Boolean
instances have a [[BooleanData]] internal data property. The [[BooleanData]] internal data property is the
Boolean value represented by this Boolean object.
19.4 Symbol Objects
19.4.1 The Symbol Constructor
The Symbol constructor is the %Symbol% intrinsic object and the initial value of the Symbol property of the
global object. When Boolean is called as a function rather than as a constructor, it returns a new Symbol
value.
The Symbol constructor is not intended to be.used with the new operator or to be subclassed. It may be used
as the value of an extends clause of a class declaration but a super call to the Symbol constructor will not
initialise the state of subclass instances.
19.4.1.1 Symbol (description=undefined)
When Symbol is called with argument description, the following steps are taken:
If description is undefined, then let descString be undefined.
Else, let descString be ToString(description).

1.

2.

3. ReturnlfAbrupt(descString).

4. Return a new unigue Symbol value whose [[Description]] is descString.

19.4.1.2 new Symbol (... argumentsList)

Symbol called as part of a new expression , it initialises a newly created object:

1. Let F be the Symbol function object on which the new operator was applied.

2. LetargumentsList be the argumentsList argument of the [[Construct]] internal method that was invoked by
the new operator.

3. Return the result of OrdinaryConstruct (F, argumentsList).

If symbol is implemented as an ordinary function object, its [[Construct]] internal method will perform the
above steps.

258 © Ecma International 2013

pecma

NOTE Symbol has ordinary [[Construct]] behavor but the definition of its @@create method causes new Symbol to
throw a TypeError exception.

19.4.2 Properties of the Symbol Constructor

The value of the [[Prototype]] internal data property of the Symbol constructor is the Function prototype object
(19.2.3).

Besides the 1ength property (whose value is 0), the Symbol constructor has the following properties:
19.4.2.1 Symbol.create

The initial value of Symbol . create is the well known symbol @@create (Table 6).

This property has the attributes { [[Writable]]: false, [[Enumerable]]: false, [[Configurable]]: false }.
19.4.2.2 Symbol.hasInstance

The initial value of Symbol .hasInstance is the well known symbol @ @hasInstance (Table 6).
This property has the attributes { [[Writable]]: false, [[Enumerable]]: false, [[Configurable]]: false }.
19.4.2.3 Symbol.isRegExp

The initial value of Symbol . isRegExp is the well known symbol @@isRegExp (Table 6).

This property has the attributes { [[Writable]]: false, [[Enumerable]]: false, [[Configurable]]: false }.
19.4.2.4 Symbol.iterator

The initial value of Symbol . iterator is the well known symbol @@iterator (Table 6).

This property has the attributes { [[Writable]]: false, [[Enumerable]]: false, [[Configurable]]: false }.
19.4.2.5 Symbol.prototype

The initial value of Symbol . prototype is the Symbol prototype object (19.4.3).

This property has the attributes { [[Writable]]: false, [[Enumerable]]: false, [[Configurable]]: false }.
19.4:2.6 Symbol.toPrimitive

The initial value of Symbol . toPrimitive is the well known symbol @@toPrimitive (Table 6).
This property has the attributes { [[Writable]]: false, [[Enumerable]]: false, [[Configurable]]: false }.
19.4.2.7 Symbol.toStringTag

The initial value of Symbol . toStringTag is the well known symbol @ @toStringTag (Table 6).
This property has the attributes { [[Writable]]: false, [[Enumerable]]: false, [[Configurable]]: false }.
19.4.2.8 Symbol.unscopables

The initial value of Symbol . unscopables is the well known symbol @@unscopables (Table 6).

This property has the attributes { [[Writable]]: false, [[Enumerable]]: false, [[Configurable]]: false }.

© Ecma International 2013 259

secmd

19.4.2.9 Symbol[@@create] ()

The @@create method of a Symbol object F performs the following steps:

1. Throw a TypeError exception.

This property has the attributes { [[Writable]]: false, [[Enumerable]]: false, [[Configurable]]: true }.
19.4.3 Properties of the Symbol Prototype Object

The Symbol prototype object is an ordinary object. It is not a Symbol instance and does not have a
[[SymbolData]] internal data property.

The value of the [[Prototype]] internal data property of the Symbol prototype object is the standard built-in
Object prototype object (19.1.4).

19.4.3.1 Symbol.prototype.constructor

The initial value of Symbol .prototype.constructor is the built-in Symbol constructor.
19.4.3.2 Symbol.prototype.toString ()

The following steps are taken:

Let s be the this value.

I1f s does not have a [[SymbolData]] internal data property, then throw a TypeError exception.
Let sym be the value of s’s [[SymbolData]] internal data property.

Let desc be the value of sym’s [[Description]] atribute.

If desc is undefined, then let desc be the empty string.

Assert: Type(desc) is String.

Let result be the result of concatenating the strings "Symbol", desc, and ") ".

Return result.

©®NoOGAWNE

19.4.3.3 Symbol.prototype.valueOf ()

The following steps are taken:

1. Let s be the thisvalue.

2. If s does not have a [[SymbolData]] internal data property, then throw a TypeError exception.

3. Return the value of s’s [[SymbolData]] internal data property.

19.4.3.4 Symbol.prototype [@@toStringTag]

The initial value of the @ @toStringTag property is the string value "Symbol".

This property has the attributes { [[Writable]]: false, [[Enumerable]]: false, [[Configurable]]: true }.

19.4.4 Properties of Symbol Instances

Symbol instances are ordinary objects that inherit properties from the Symbol prototype object. Symbol
instances have a [[SymbolData]] internal data property. The [[SymbolData]] internal data property is the
Symbol value represented by this Symbol object.

19.5 Error Objects

Instances of Error objects are thrown as exceptions when runtime errors occur. The Error objects may also
serve as base objects for user-defined exception classes.

260 © Ecma International 2013

pecma

19.5.1 The Error Constructor

The Error constructor is the %Error% intrinsic object and the initial value of the Exrror property of the global
object. When Error is called as a function rather than as a constructor, it creates and initialises a new Error
object. Thus the function call Error (..) is equivalent to the object creation expression new Error(..) with
the same arguments. However, if the this value value passed in the call is an Object with an uninitialised
[[ErrorData]] internal data property, it initialises the this value using the argument value rather than creating a
new object. This permits Error to be used both as factory method and to perform constructor instance
initialisation.

The Error constructor is designed to be subclassable. It may be used as the value of an extends clause of
a class declaration. Subclass constructors that intended to inherit the specified Error behaviour should
include a super call to the Error constructor to initialise subclass instances.

19.5.1.1 Error (message)
When the Error function is called with argument message the following steps are taken:

1. Let func be this Exrror function object.

2. Let O be the this value.

3. If Type(O) is not Object or Type(O) is Object and O does not have an [[ErrorData]] internal data property or
Type(O) is Object and O has an [[ErrorData]] internal data property and the value of [[ErrorData]] is not
undefined, then|

Ci ed [AWB14117]: This then clause corresponds

a. Let O be the result of calling OrdinaryCreateFromConstructor(func, "$ErrorPrototype%",
([[ErrorDatal])).
b. ReturnlfAbrupt(O).
Assert: Type(O) is Object.
5. Set the value of O’s [[ErrorData]] internal data property to any value other than undefined.
6. If message is not undefined, then
a. Let msg be ToString(message).
b. ReturnIfAbrupt(msg).
c. Let msgDesc be.the Property Descriptor {[[Value]]: msg, [[Writable]]: true, [[Enumerable]]: false,
[[Configurable]]: true}.
d. Let status be the result of DefinePropertyOrThrow(O, "message", msgDesc).
e. ReturnifAbrupt(status).
7. Return O.

Eal

19.5.1.2 new Error(...argumentsList)

When Error called as part of a new expression with argument list argumentsList it performs the following

steps:

1. Let Fbe the Error function object on which the new operator was applied.

2. LetargumentsList be the argumentsList argument of the [[Construct]] internal method that was invoked by
the new operator.

3. Return the result of OrdinaryConstruct (F, argumentsList).

If Error is implemented as an ordinary function object, its [[Construct]] internal method will perform the above
steps.

19.5.2 Properties of the Error Constructor

The value of the [[Prototype]] internal data property of the Error constructor is the Function prototype object
(19.2.3).

Besides the internal properties and the length property (whose value is 1), the Error constructor has the
following properties:

© Ecma International 2013 261

to the “called as a function” case the ES5 spec.

secmd

19.5.2.1 Error.prototype
The initial value of Error.prototype is the Error prototype object (19.5.3).

This property has the attributes { [Writable]]: false, [[Enumerable]]: false, [[Configurable]]: false }.

19.5.2.2 Error[@@create] ()

The @@create method of an object F performs the following steps:

1. LetF be the this value.

2. Let obj be the result of calling OrdinaryCreateFromConstructor(F, "$ErrorPrototype%", ([[ErrorData]])).

3. Return obj.

This property has the attributes { [[Writable]]: false, [[Enumerable]]: false, [[Configurable]]: true }.

NOTE [[ErrorData]] is initially assigned the value undefined as a flag to indicate that the instance has not yet been
initialised by the Error constructor. This flag value is never directly exposed to ECMAScript code; hence implementations
may choose to encode the flag in some other manner.

19.5.3 Properties of the Error Prototype Object

The Error prototype object is an ordinary object. It is not an Error instance and does not have an [[ErrorData]
internal data property.

The value of the [[Prototype]] internal data property.of the Error prototype object is the standard built-in Object
prototype object (19.1.4).

19.5.3.1 Error.prototype.constructor

The initial value of Error.prototype.constructor is the built-in Error constructor.
19.5.3.2 Error.prototype.message

The initial value of Error.prototype.message is the empty String.

19.5.3.3 Error.prototype.name

The initial value of Error.prototype . name is "Error".

19.5.3.4 Error.prototype.toString ()

The following steps are taken:

Let O be the this value.

If Type(O) is not Object, throw a TypeError exception.

Let name be the result of Get(O, "name").

ReturnIfAbrupt(name).

If name is undefined, then let name be "Erroxr"; else let name be ToString(name).
Let msg be the result of Get(O, "message").

ReturnlfAbrupt(msg).

If msg is undefined, then let msg be the empty String; else let msg be ToString(msg).
If name is the empty String, return msg.

10. If msg is the empty String, return name.

11. Return the result of concatenating name, " : ", a single space character, and msg.

©WONOO O~ WNE

262 © Ecma International 2013

pecma

19.5.4 Properties of Error Instances
Error instances are ordinary objects that inherit properties from the Error prototype object and have an
[[ErrorData]] internal data property whose initial value is undefined. The only specified uses of [[ErrorData]] is

to flag whether or not an Error instance has been initialised by the Error constructor and to identify them as
Error objects within Object.prototype. toString.

19.5.5 Native Error Types Used in This Standard

A new instance of one of the NativeError objects below is thrown when a runtime error is detected. All of these
objects share the same structure, as described in 19.5.6.

19.5.5.1 EvalError

This exception is not currently used within this specification. This object remains for compatibility with previous
editions of this specification.

19.5.5.2 |RangeError

Indicates a value that is not in the set or range of allowable values. See 15.4.2.2, 15.4.5.1, 15.7.4.2, 15.7.4.5,
15.7.4.6, 15.7.4.7, and 15.9.5.43.

19.5.5.3 ReferenceError

Indicate that an invalid reference value has been detected. See 8.9.1, 8.9.2, 10.2.1, 10.2.1.1.4, 10.2.1.2.4,
and 11.13.1.

19.5.5.4 SyntaxError

Indicates that a parsing error has occurred. See 11.1.5,11.3.1, 11.3.2, 11.4.1,11.4.4, 11.4.5, 11.13.1, 11.13.2,
12.2.1, 12.10.1, 12.14.1, 13.1, 15.1.2.1, 15.3.2.1, 15.10.2.2, 15.10.2.5, 15.10.2.9, 15.10.2.15, 15.10.2.19,
15.10.4.1, and 15.12.2.

19.5.5.5 TypeError

Indicates the actual type of an operand is different than the expected type. See 8.6.2, 8.9.2, 8.10.5, 8.12.5,
8.12.7, 8.12.8, 8.12.9, 9.9, 9.10, 10.2.1, 10.2.1.1.3, 10.6, 11.2.2, 11.2.3, 11.4.1, 11.8.6, 11.8.7, 11.3.1, 13.2,
13.2.3, 15, 15.2.3.2, 15.2.3.3, 15.2.3.4, 15.2.3.5, 15.2.3.6, 15.2.3.7, 15.2.3.8, 15.2.3.9, 15.2.3.10, 15.2.3.11,
15.2.3.12, 15.2.3.13, 15.2.3.14, 15.2.4.3, 15.3.3.2, 15.3.3.3, 15.3.3.4, 15.3.3.5, 15.3.3.5.2, 15.3.3.5.3, 15.3.4,
15.3.4.3, 15.3.4.4, 15.4.3.3, 154.3.11, 15.4.3.16, 15.4.3.17, 15.4.3.18, 15.4.3.19, 15.4.3.20, 15.4.3.21,
15.4.3.22, 15.4.5.1, 15.5.4.2, 155.4.3, 15.6.4.2, 15.6.4.3, 15.7.4, 15.7.4.2, 15.7.4.4, 15.9.5, 15.9.5.44,
15.10.4.1, 15.10.6, 15.11.4.4 and 15.12.3.

19.5.5.6 URIError

Indicates that one of the global URI handling functions was used in a way that is incompatible with its

definition. See 15.1.3| C ed [AWB10118]: Sectin references have not yet
been updated to reflect ES6

19.5.6 NativeError Object Structure

When an ECMAScript implementation detects a runtime error, it throws a new instance of one of the
NativeError objects defined in 19.5.5. Each of these objects has the structure described below, differing only
in the name used as the constructor name instead of NativeError, in the name property of the prototype object,
and in the implementation-defined message property of the prototype object.

For each error object, references to NativeError in the definition should be replaced with the appropriate error
object name from 19.5.5.

© Ecma International 2013 263

secmd

19.5.6.1 NativeError Constructors

When a NativeError constructor is called as a function rather than as a constructor, it creates and initialises a
new object. A call of the object as a function is equivalent to calling it as a constructor with the same
arguments. However, if the this value value passed in the call is an Object with an uninitialised [[ErrorData]]
internal data property, it initialises the this value using the argument value. This permits a NativeError to be
used both as factory method and to perform constructor instance initialisation.

The NativeError constructor is designed to be subclassable. It may be used as the value of an extends
clause of a class declaration. Subclass constructors that intended to inherit the specified NativeError
behaviour should include a super call to the NativeError constructor to initialise subclass instances.

19.5.6.1.1 NativeError (message)
When a NativeError function is called with argument message the following steps are taken:

1. Let func be this NativeError function object.

2. Let O be the this value.

3. If Type(O) is not Object or Type(O) is Object and O does not have an [[ErrorData]] internal data property or
Type(O) is Object and O has an [[ErrorData]] internal data property and the value of [[ErrorData]] is not
undefined, then|

C ed [AWB14119]: This then clause corresponds

a. Let O be the result of calling OrdinaryCreateFromConstructor(func,
"$NativeErrorPrototype%", ([[ErrorData]])).
b. ReturnIfAbrupt(O).

4. Assert: Type(O) is Object.
5. Set the value of O’s [[ErrorData]] internal-data property to any value other than undefined.
6. If message is not undefined, then
a. Letmsg be ToString(message).
b. Let msgDesc be the Property Descriptor {[[Value]]: msg, [[Writable]]: true, [[Enumerable]]: false,
[[Configurable]]: true}.
c. Letstatus be the result-of DefinePropertyOrThrow(O, "message”, msgDesc).
d. ReturnlfAbrupt(status).
7. Return O.

The actual value of the string passed in'step 3.a is either "$EvalErrorPrototype%",
"%$RangeErrorPrototype%", "$ReferenceErrorPrototype%", "$SyntaxErrorPrototype%",
"$TypeErrorPrototype%", or "$URIErrorPrototype%" corresponding to which NativeError constructor is
being defined.

19.5.6.1:2 new NativeError (... argumentsList)

When a NativeError constructor is called as part of a new expression with argument list argumentsList it
performs the following steps:

1. Let F be this NativeError function object on which the new operator was applied.

2. LetargumentsList be the argumentsList argument of the [[Construct]] internal method that was invoked by
the new operator.

3. Return the result of OrdinaryConstruct (F, argumentsList).

If a NativeError constructor is implemented as an ordinary function object, its [[Construct]] internal method will
perform the above steps.

19.5.6.2 Properties of the NativeError Constructors

The value of the [[Prototype]] internal data property of a NativeError constructor is the Error constructor object
(19.5.1).

Besides the 1ength property (whose value is 1), each NativeError constructor has the following properties:

264 © Ecma International 2013

to the “called as a function” case the ES5 spec.

pecma

19.5.6.2.1 NativeError.prototype

The initial value of NativeError.prototype is a NativeError prototype object (19.5.6.3). Each NativeError
constructor has a separate prototype object.

This property has the attributes { [[Writable]]: false, [[Enumerable]]: false, [[Configurable]]: false }.

19.5.6.2.2 NativeError [@@create] ()

The @@create method of an object F performs the following steps:

1. LetF be the this value.

2. Let obj be the result of calling OrdinaryCreateFromConstructor(F, NativeErrorPrototype, ([[ErrorData]])).

3. Return obj.

The actual value passed as NativeErrorPrototype in step 2 is either "$EvalErrorPrototype%",
"$RangeErrorPrototype%", "$ReferenceErrorPrototype%", "$SyntaxErrorPrototype%",
"$TypeErrorPrototype%", or "$URIErrorPrototype%" corresponding to which NativeError constructor
is being defined.

This property has the attributes { [[Writable]]: false, [[Enumerable]]: false, [[Configurable]]: true }.

NOTE [[ErrorData]] is initially assigned the value undefined as a flag to'indicate that the instance has not yet been
initialised by the NativeError constructor. This flag value is never directly exposed to ECMAScript code; hence
implementations may choose to encode the flag in some other manner.

19.5.6.3 Properties of the NativeError Prototype Objects

Each NativeError prototype object is an ordinary object. It is not-an Error instance and does not have an
[[ErrorData] internal data property.

The value of the [[Prototype]}internal data property of each NativeError prototype object is the standard built-
in Error prototype object (19.5.3).

19.5.6.3.1 NativeError.prototype.constructor

The initial value of the constructor property of the prototype for a given NativeError constructor is the
NativeError constructor function itself (19.5.6.1).

19.5.6.3:22 NativeError.prototype.message

The initial value of the message property of the prototype for a given NativeError constructor is the empty
String.

19.5.6.3.3 NativeError.prototype.name

The initial value of the name property of the prototype for a given NativeError constructor is a string consisting
of the name of the constructor (the name used instead of NativeError).

19.5.6.4 Properties of NativeError Instances
NativeError instances are ordinary objects that inherit properties from their NativeError prototype object and

have an [[ErrorData]] internal data property whose initial value is undefined. The only specified use of
[[ErrorData]] is to flag whether or not an Error or NativeError instance has been initialised by its constructor.

© Ecma International 2013 265

secmd

20 Numbers and Dates

20.1 Number Objects

20.1.1 The Number Constructor

The Number constructor is the %Number% intrinsic object and the initial value of the Number property of the
global object. When Number is called as a function rather than as a constructor, it performs a type conversion.
However, if the this value value passed in the call is an Object with an uninitialised [[NumberData]] internal
data property, it initialises the this value using the argument value. This permits Number to be used both to

perform type conversion and to perform constructor instance initialisation.

The Number constructor is designed to be subclassable. It may be used as the value of an extends clause
of a class declaration. Subclass constructors that intended to inherit the specified Number behaviour must
include a super call to the Number constructor to initialise the [[NumberData]] state of subclass instances.
20.1.1.1 Number ([value])

When Number is called with argument number, the following steps are taken:

1. Let O be the this value.
2. If no arguments were passed to this function invocation, then let n be +0.
3. Else, let n be ToNumber(value).
4. ReturnlfAbrupt(n).
5. If Type(O) is Object and O has a [[NumberData]] internal data property and the value of [[NumberData]] is
undefined, then
a. Setthe value of O’s [[NumberData]] internal data property to n.
b. Return O.
6. Returnn.

20.1.1.2 new Number (...argumentsList)

Number called as part of anew expression with argument list argumentsListit performs the following steps:

1. Let F be the Numbex function object on-which the new operator was applied.

2. Let argumentsList be the argumentsList argument of the [[Construct]] internal method that was invoked by
the new operator.

3. Return the result of OrdinaryConstruct (F, argumentsList).

If Number is implemented as an ordinary function object, its [[Construct]] internal method will perform the
above steps.

20.1.2 Properties of the Number Constructor

The value of the [[Prototype]] internal data property of the Number constructor is the Function prototype object
(19.2.3).

Besides the 1ength property (whose value is 1), the Number constructor has the following properties:
20.1.2.1 Number.EPSILON

The value of Number.EPSILON is the difference between 1 and the smallest value greater than 1 that is
representable as a Number value, which is approximately 2.2204460492503130808472633361816 x 10-16.

This property has the attributes { [Writable]]: false, [[Enumerable]]: false, [[Configurable]]: false }.

266 © Ecma International 2013

secma

20.1.2.2 Number.isFinite (number)
When the Number . isFinite is called with one argument number, the following steps are taken:

1. If Type(number) is not Number, return false.
2. Ifnumber is NaN, +o0, or —oo, return false.
3. Otherwise, return true.

20.1.2.3 Number.isinteger (number)
When the Number . isInteger is called with one argument number, the following steps are taken:

If Type(number) is not Number, return false.
If number is NaN, +o, or —oo, return false.
Let integer be Tolnteger(number).

If integer is not equal to number, return false.
Otherwise, return true.

g LD

20.1.2.4 Number.isNaN (number)
When the Number . isNaN is called with one argument number, the following steps are taken:

1. If Type(number) is not Number, return false.
2. If number is NaN, return true.
3. Otherwise, return false.

NOTE This function differs from the global‘isNaN function (18.2.3) is that it does not convert its argument to a
Number before determining whether it is NaN.

20.1.2.5 Number.isSafelnteger (number)
When the Number . isSafeInteger is called with .one argument number, the following steps are taken:

If Type(number) is not'/Number, return false.
If number is NaN, +oo, or —oo, return false.
Let integer be Tolnteger(number).

If integer is not equal to number; return false.
If abs(integer) < 2%%-1, then return true.
Otherwise; return false.

OO WN

20.1.2.6 Number.MAX_SAFE_INTEGER

The value of Number.MAX_SAFE_INTEGER is 9007199254740991 (253-1).

This property has the attributes { [[Writable]]: false, [[Enumerable]]: false, [[Configurable]]: false }.
20.1.2.7 Number.MAX_VALUE

The value of Number.MAX VALUE is the largest positive finite value of the Number type, which is
approximately 1.7976931348623157 x 10°%,

This property has the attributes { [[Writable]]: false, [[Enumerable]]: false, [[Configurable]]: false }.
20.1.2.8 Number.NaN
The value of Number .NaN is NaN.

This property has the attributes { [[Writable]]: false, [[Enumerable]]: false, [[Configurable]]: false }.

© Ecma International 2013 267

secmd

20.1.2.9 Number.NEGATIVE_INFINITY

The value of Number.NEGATIVE_INFINITY is —o.

This property has the attributes { [[Writable]]: false, [[Enumerable]]: false, [[Configurable]]: false }.
20.1.2.10 Number.MIN_SAFE_INTEGER

The value of Number.MIN_SAFE_INTEGER is —9007199254740991 (—(253-1)).

This property has the attributes { [[Writable]]: false, [[Enumerable]]: false, [[Configurable]]: false }.
20.1.2.11 Number.MIN_VALUE

The value of Number .MIN VALUE is the smallest positive value of the Number type, which is approximately
5x 10-324.

In the IEEE-764 double precision binary representation, the smallest possible value is a denormalized number.
If an implementation does not support denormalized values, the value of Number .MIN VALUE must be the
smallest non-zero positive value that can actually be represented by the implementation.

This property has the attributes { [Writable]]: false, [[Enumerable]]: false, [[Configurable]]: false }.

20.1.2.12 Number.parseFloat (string)

The value of the Number .parseFloat data property is the same built-in function object that is the value of
the parseFloat property of the global object defined in 18.2.4.

20.1.2.13 Number.parselnt (string, radix)

The value of the Number . parseInt data property is the same built-in function object that is the value of the
parselnt property of the global object defined in 18.2.1.2.

20.1.2.14 Number.POSITIVE_INFINITY

The value of Number.POSITIVE_INFINITY is +oo.

This property has the attributes { [[Writable]]: false, [[Enumerable]]: false, [[Configurable]]: false }.
20.1.2:15 Number.prototype

The initial value of Number . prototype is the Number prototype object (20.1.3).

This property has the attributes { [[Writable]]: false, [[Enumerable]]: false, [[Configurable]]: false }.
20.1.2.16 Number[@@create] ()

The @@create method of an object F performs the following steps:

1. Let F be the this value.

2. Let obj be the result of calling OrdinaryCreateFromConstructor(F, "$NumberPrototype%", ([[NumberData]])).
3. Return obj.

This property has the attributes { [Writable]]: false, [[Enumerable]]: false, [[Configurable]]: true }.

NOTE [[NumberData]] is initially assigned the value undefined as a flag to indicate that the instance has not yet been
initialised by the Number constructor. This flag value is never directly exposed to ECMAScript code; hence
implementations may choose to encode the flag in some other manner.

268 © Ecma International 2013

secma

20.1.3 Properties of the Number Prototype Object

The Number prototype object is an ordinary object. It is not a Number instance and does not have a
[[NumberData]] internal data property.

The value of the [[Prototype]] internal data property of the Number prototype object is the standard built-in
Object prototype object (19.1.4).

Unless explicitly stated otherwise, the methods of the Number prototype object defined below are not generic
and the this value passed to them must be either a Number value or an object that has a [[NumberData]]
internal data property that has been initialised to a Number value.

The abstract operation thisNumberValue(value) performs the following steps:

1. If Type(value) is Number, return value.

2. If Type(value) is Object and value has a [[NumberData]] internal data property, then
a. Letn be the value of value’s [[NumberData]] internal data property.
b. If nis not undefined, then return n.

3. Throw a TypeError exception.

The phrase “this Number value” within the specification of a method refers to the result returned by calling the
abstract operation thisNumberValue with the this value of the method invocation passed as the argument.

20.1.3.1 Number.prototype.clz ()

C ed [AWB7120]: Added at March 29 TC39

When Number . prototype.clz is called with one argument number, the following steps are taken:

Let x be thisNumberValue(this value).
Let n be TolUint32(x).

|

meeting

C ed [AWB7121]: Unsigned seems most general,

ReturnlfAbrupt(n).
Let p be the number of leading zero bits in the 32-bit-binary representation of n.
Return p.

e

NOTE If nis 0, p will be 32./If the most significant bit of the 32-bit binary encoding of n is 1, p will be 0.
20.1.3.2 Number.prototype.constructor

The initial value of Number . prototype . constructor is the built-in Number constructor.
20.1.3.3< Number.prototype.toExponential (fractionDigits)

Return a String containing this Number value represented in decimal exponential notation with one digit before
the significand's decimal point and fractionDigits digits after the significand's decimal point. If fractionDigits is
undefined, include as many significand digits as necessary to uniquely specify the Number (just like in
ToString except that in this case the Number is always output in exponential notation). Specifically, perform
the following steps:

Let x be thisNumberValue(this value).
ReturnIfAbrupt(x).
Let f be Tolnteger(fractionDigits).
Assert: f is 0, when fractionDigits is undefined.
ReturnIfAbrupt(f).
If x is NaN, return the String "NaN".
Let s be the empty String.
I1f x < 0, then
a. Letsbe"-".
b. Letx=-x.
9. Ifx =+, then
a. Return the concatenation of the Strings s and "Infinity".

XN AWNE

269

© Ecma International 2013

|

signed values could be converted in a previous step.

|

secmd

10. If f <0 or f> 20, throw a RangeError exception.

11. If x =0, then
a. Letm be the String consisting of f+1 occurrences of the code unit 0x0030.
b. Lete=0.

12. Else x %0,
a. If fractionDigits is not undefined, then

i. Let e and n be integers such that 10" < n < 10™* and for which the exact mathematical value
of n x 10° — x is as close to zero as possible. If there are two such sets of e and n, pick the
e and n for which n x 10°"is larger.

b. Else fractionDigits is undefined,

i. Lete, n,and f be integers such that f > 0, 10’ < n < 10™%, the number value for n x 10°"is x,
and f is as small as possible. Note that the decimal representation of n has f+1 digits, n is
not divisible by 10, and the least significant digit of n is not.necessarily uniquely
determined by these criteria.

c. Let m be the String consisting of the digits of the decimal representation.of n (in order, with no
leading zeroes).
13. If f 20, then
a. Leta be the first element of m, and let b be the remaining f elements of m.
b. Letm be the concatenation of the three Strings a, " ., and b.
14. If e = 0, then
a. Letc=r"+m.

b. Letd="o".
15. Else
a. Ife>0,thenletc="+".
b. Elsee<0,
i Letc="-".
il Lete =—e.

c. Letd be the String consisting of the digits of the decimal representation of e (in order, with no
leading zeroes).
16. Let m be the concatenation of the four Strings m, "e",¢, and d.
17. Return the concatenation of-the Strings s and m.

The length property of the toExponential method is 1.

If the toExponential method is called with-more than one argument, then the behaviour is undefined (see
clause 17).

An implementation is permitted to extend the behaviour of toExponential for values of fractionDigits less
than 0 or‘greater than 20. In this case toExponential would not necessarily throw RangeError for such
values:

NOTE For implementations that provide more accurate conversions than required by the rules above, it is
recommended that the following alternative version of step 12.b.i be used as a guideline:

i. Let e, n, and f be integers such that f > 0, 10f < n < 10", the number value for n x 10% " is x, and f is as small
as possible. If there are multiple possibilities for n, choose the value of n for which n x 10¢is closest in value
to x. If there are two such possible values of n, choose the one that is even.

20.1.3.4 Number.prototype.toFixed (fractionDigits)

Note toFixed returns a String containing this Number value represented in decimal fixed-point notation with
fractionDigits digits after the decimal point. If fractionDigits is undefined, 0 is assumed.

The following steps are performed:

Let x be thisNumberValue(this value).

ReturnlfAbrupt(x).

Let f be Tolnteger(fractionDigits). (If fractionDigits is undefined, this step produces the value 0).
ReturnlfAbrupt(f).

Eal o

270 © Ecma International 2013

secma

If f <0 orf> 20, throw a RangeError exception.
If x is NaN, return the String "NaN".
Let s be the empty String.
If x <0, then
a. Letsbe"-".
b. Letx=-x.
9. Ifx>10%, then
a. Letm =ToString(x).
10. Else x < 10%,
a. Letn be an integer for which the exact mathematical value of n + 10" — x is as close to zero as
possible. If there are two such n, pick the larger n.
b. Ifn =0, let m be the String "0". Otherwise, let m be the String consisting of the digits of the
decimal representation of n (in order, with no leading zeroes).
c. Iff=0,then
i. Let k be the number of elements in m.
ii. If k <f, then
1. Let z be the String consisting of f+1-k occurrences of the code unit 0x0030.
2. Let m be the concatenation of Strings z:and m.
3. Letk=f+1.
iii. Let a be the first k—f elements of m, and let b be the remaining f elements of m.
iv. Let m be the concatenation of the three Strings a, " . ", and b.
11. Return the concatenation of the Strings s and m.

® N oG

The length property of the toFixed method is 1.

If the toFixed method is called with more than one argument, then the behaviour is undefined (see
clause 17).

An implementation is permitted to extend the behaviour of toFixed for values of fractionDigits less than 0 or
greater than 20. In this case toFixed would not necessarily throw RangeError for such values.

NOTE The output of toFixed may be more precise than toString for some values because toString only prints
enough significant digits to distinguish the number from adjacent number values. For example,

(1000000000000000128) . toString () returns "1000000000000000100",

while (1000000000000000128) . toFixed (0).returns "1000000000000000128".

20.1.3.5 Number.prototype.toLocaleString()

Produces a String value that represents this Number value formatted according to the conventions of the host
environment’s current locale. This function is implementation-dependent, and it is permissible, but not
encouraged, for it to return the same thing as toString.

NOTE The first parameter to this function is likely to be used in a future version of this standard; it is recommended
that implementations do not use this parameter position for anything else.

20.1.3.6 Number.prototype.toPrecision (precision)

Return a String containing this Number value represented either in decimal exponential notation with one digit
before the significand's decimal point and precision-1 digits after the significand's decimal point or in decimal
fixed notation with precision significant digits. If precision is undefined, call ToString (7.1.8) instead.
Specifically, perform the following steps:

Let x be thisNumberValue(this value).
ReturnlfAbrupt(x).

If precision is undefined, return ToString(x).
Let p be Tolnteger(precision).
ReturnlfAbrupt(p).

If x is NaN, return the String "NaN".

Let s be the empty String.

NogahrwdE

© Ecma International 2013 271

secmd

8. Ifx<0,then
a. Letsbe"-".
b. Letx=-x.
9. If X = +o0, then
a. Return the concatenation of the Strings s and "Infinity".
10. Ifp < 1lorp > 21, throw a RangeError exception.
11. If x =0, then
a. Let m be the String consisting of p occurrences of the code unit 0x0030 (the Unicode character <0°).
b. Lete=0.
12. Else x# 0,

a. Lete and n be integers such that 10°"* < n < 10° and for which the exact mathematical value of n x
10°P*1 _ x is as close to zero as possible. If there are two such sets of e-andn, pick the e and n for
which n x 10°P* is larger.

b. Let m be the String consisting of the digits of the decimal representation of n (in order, with no
leading zeroes).

c. Ife<-6ore=>p,then

i Let a be the first element of m, and let b be the remaining p—1 elements of m.
ii. Let m be the concatenation of the three Stringsa, ™. ", and b.
iii. Ife =0, then
1. Letc="+"andd="0".
iv. Elsee # 0,
1. Ife>0, then
a. Letc="+m.

2. Elsee<0,
a. Letc="-m,
b. Lete=-e.

3. Letd be the String consisting of the digits of the decimal representation of e (in
order, with no leading zeroes).
V. Let m be the concatenation of the five Strings s, m, "e", c, and d.
13. If e = p—1, then return the concatenation of the Strings's and m.
14. If e > 0, then
a. Let m be the concatenation of the first e+1 elements of m, the code unit 0x002E (Unicode character
¢.”), and the remaining p— (e+1) elements of m.
15. Elsee <0,
a. Letm be the concatenation of the String "0.", —(e+1) occurrences of code unit 0x0030 (the
Unicode character “0°);'and the String m.
16. Return the concatenation of the Strings s and m.

The length property of the toPrecision method is 1.

If the'toPrecision method is called with more than one argument, then the behaviour is undefined (see
clause 15).

An implementation is permitted to extend the behaviour of toPrecision for values of precision less than 1 or
greater than 21, In this case toPrecision would not necessarily throw RangeError for such values.

20.1.3.7 [Number.prototype.toString ([radix])|

C ed [AWB7122]: TODO: need to provide algorithm

The optional radix should be an integer value in the inclusive range 2 to 36. If radix not present or is undefined
the Number 10 is used as the value of radix. If Tolnteger(radix) is the Number 10 then this Number value is
given as an argument to the ToString abstract operation; the resulting String value is returned.

If Tolnteger(radix) is not an integer between 2 and 36 inclusive throw a RangeError exception. If
Tolnteger(radix) is an integer from 2 to 36, but not 10, the result is a String representation of this Number value
using the specified radix. Letters a-z are used for digits with values 10 through 35. The precise algorithm is
implementation-dependent if the radix is not 10, however the algorithm should be a generalisation of that
specified in 7.1.8.1.

272 © Ecma International 2013

that orders abnormal completion detection

pecma

The toString function is not generic; it throws a TypeError exception if its this value is not a Number or a
Number object. Therefore, it cannot be transferred to other kinds of objects for use as a method.

20.1.3.8 Number.prototype.valueOf ()

1. Letx be thisNumberValue(this value).
2. Return x.

20.1.4 Properties of Number Instances

Number instances are ordinary objects that inherit properties from the Number prototype object. Number
instances also have a [[NumberData]] internal data property. The [[NumberData]].internal data property is the
Number value represented by this Number object.

20.2 The Math Object

The Math object is a single ordinary object.

The value of the [[Prototype]] internal data property of the Math-object is the standard built-in. Object prototype
object (19.1.4).

The Math is not a function object. It does not have a [[Construct]] internal method; it is not possible to use the
Math object as a constructor with the new operator. The Math object also does not have a [[Call]] internal
method,; it is not possible to invoke the Math object as a function.

NOTE In this specification, the phrase “the Number value for x” has a technical meaning defined in 6.1.5.

20.2.1 Value Properties of the Math Object

20.2.1.1 Math.E

The Number value for e, the base of the natural logarithms, which is approximately 2.7182818284590452354.

This property has the attributes { [[Writable]]: false, [[Enumerable]]: false, [[Configurable]]: false }.

20.2.1.2 Math.LN10

The Number value for the natural logarithm of 10, which is approximately 2.302585092994046.

This property has the attributes { [[Writable]]: false, [[Enumerable]]: false, [[Configurable]]: false }.

20.2.1.3 Math.LOG10E

The Number value for the base-10 logarithm of e, the base of the natural logarithms; this value is
approximately 0.4342944819032518.

This property has the attributes { [[Writable]]: false, [[Enumerable]]: false, [[Configurable]]: false }.
NOTE The value of Math . LOG10E is approximately the reciprocal of the value of Math.LN10.
20.2.1.4 Math.LN2

The Number value for the natural logarithm of 2, which is approximately 0.6931471805599453.

This property has the attributes { [[Writable]]: false, [[Enumerable]]: false, [[Configurable]]: false }.

© Ecma International 2013 273

secmd

20.2.1.5 Math.LOG2E

The Number value for the base-2 logarithm of e, the base of the natural logarithms; this value is approximately
1.4426950408889634.

This property has the attributes { [[Writable]]: false, [[Enumerable]]: false, [[Configurable]]: false }.
NOTE The value of Math.LOG2E is approximately the reciprocal of the value of Math.LN2.
20.2.1.6 Math.PI

The Number value for =, the ratio of the circumference of a circle to its diameter, which is approximately
3.1415926535897932.

This property has the attributes { [[Writable]]: false, [[Enumerable]]: false, [[Configurable]]: false }.

20.2.1.7 Math.SQRT1_2

The Number value for the square root of %2, which is approximately 0.7071067811865476.

This property has the attributes { [[Writable]]: false, [[Enumerable]]: false, [[Configurable]]: false }.

NOTE The value of Math.SQRT1_2 is approximately the reciprocal of the value of Math . SQRT2.

20.2.1.8 Math.SQRT2

The Number value for the square root of 2, which is approximately 1.4142135623730951.

This property has the attributes { [Writable]]: false, [[Enumerable]]: false, [[Configurable]]: false }.

20.2.1.9 Math [@@toStringTag]

The initial value of the @@toStringTag property is the string value "Math".

This property has the attributes { [[Writable]]: false, [[Enumerable]]: false, [[Configurable]]: true }.

20.2.2 Function Properties of the Math Object

Each of the following Math object functions applies the ToNumber abstract operation to each of its arguments
(in left-to-right order if there is more than one). If ToNumber returns an abrupt completion, that completion
record is immediately returned. Otherwise, the function performs a computation on the resulting Number

value(s).

In the function descriptions below, the symbols NaN, -0, +0, —w and +o refer to the Number values described
in6.1.5.

NOTE The behaviour of the functions acos, acosh, asin, asinh, atan, atanh, atan2, cbrt, cos, cosh, exp,
hypot, log,loglp, log2, logl0, pow, sin, sinh, sqrt, tan, and tanh is not precisely specified here except to
require specific results for certain argument values that represent boundary cases of interest. For other argument values,
these functions are intended to compute approximations to the results of familiar mathematical functions, but some latitude
is allowed in the choice of approximation algorithms. The general intent is that an implementer should be able to use the
same mathematical library for ECMAScript on a given hardware platform that is available to C programmers on that
platform.

Although the choice of algorithms is left to the implementation, it is recommended (but not specified by this standard) that

implementations use the approximation algorithms for IEEE 754 arithmetic contained in £d1ibm, the freely distributable
mathematical library from Sun Microsystems (http://www.netlib.org/fdlibm) .

274 © Ecma International 2013

secma

20.2.2.1 Math.abs (x)
Returns the absolute value of x; the result has the same magnitude as x but has positive sign.

e Ifxis NaN, the result is NaN.
e Ifxis—0, the result is +0.
e Ifxis—oo, the result is +oo.

20.2.2.2 Math.acos (x)

Returns an implementation-dependent approximation to the arc cosine of x. The result is expressed in radians
and ranges from +0 to +n.

I1f x is NaN, the result is NaN.

If x is greater than 1, the result is NaN.
If x is less than —1, the result is NaN.
If x is exactly 1, the result is +0.

20.2.2.3 Math.acosh(x)
Returns an implementation-dependent approximation to the inverse hyperbolic cosine of x.

If x is NaN, the result is NaN.

If x is less than 1, the result is NaN.
If x is 1, the result is +0.

If X is +oo, the result is +co.

20.2.2.4 Math.asin (x)

Returns an implementation-dependent. approximation to the arc sine of x. The result is expressed in radians
and ranges from —n/2 to +n/2.

If x is NaN, the result is NaN.

If x is greater than 1, the result is NaN.
If x is less than —1, the result is NaN.
If x is +0, the result is +0.

1f xis —0, the result is —0.

20.2.2.5° Math.asinh(x)
Returns an implementation-dependent approximation to the inverse hyperbolic sine of x.

If x.is NaN, the result is NaN.
If x is +0, the result is +0.

If x is =0, the result is —0.

If X is +o0, the result is +oo.

If X is —oo, the result is —o.

20.2.2.6 Math.atan (x)

Returns an implementation-dependent approximation to the arc tangent of x. The result is expressed in
radians and ranges from —n/2 to +n/2.

If x is NaN, the result is NaN.

If x is +0, the result is +0.

I1f x is -0, the result is —0.

If x is +oo, the result is an implementation-dependent approximation to +n/2.

© Ecma International 2013 275

secmd

e Ifxis—oo, the result is an implementation-dependent approximation to —/2.
20.2.2.7 Math.atanh(x)

Returns an implementation-dependent approximation to the inverse hyperbolic tangent of x.

If x is NaN, the result is NaN.

If x is less than —1, the result is NaN.
If X is greater than 1, the resultis NaN.
If x is —1, the result is —oo.

e Ifxis +1, the resultis +oo.

e Ifxis +0, the resultis +0.

e Ifxis -0, the resultis 0.

20.2.2.8 Math.atan2 (y, x)

Returns an implementation-dependent approximation to the arc tangent of the quotient y/x of the arguments y
and x, where the signs of y and x are used to determine the quadrant of the result. Note that it is intentional
and traditional for the two-argument arc tangent function that the argument named y be first and the argument
named x be second. The result is expressed in radians and ranges from —x to +n.

If either x or y is NaN, the result is NaN.

If y>0 and x is +0, the result is an implementation-dependent approximation to +n/2.

If y>0 and x is -0, the result is an implementation-dependent approximation to +n/2.

Ify is +0 and x>0, the result is +0.

Ify is +0 and x is +0, the result is +0.

Ify is +0 and x is —0, the result is an implementation-dependent approximation to +7.

Ify is +0 and x<0, the result is an implementation-dependent approximation to +m.

Ify is —0 and x>0, the result is —0.

Ify is —0 and x is +0, the result is 0.

Ify is —0 and x is -0, the result is an implementation-dependent approximation to —n.

Ify is —0 and x<0, the result is an implementation-dependent approximation to —x.

If y<0 and x.is +0, the result is an implementation-dependent approximation to —n/2.

If y<0 and x'is =0, the result is an implementation-dependent approximation to —n/2.

If y>0 and y is finite and xis +oo, the result is +0.

If y>0 and y is finite and x is —oo, the result if an implementation-dependent approximation to +r.
1f y<0 and y.is finite and x.is +o, the result is —0.

I1f y<0 and'y is finite and X is —o, the result is an implementation-dependent approximation to —.
Ify is +o0 and X is finite, the result is an implementation-dependent approximation to +n/2.
Ify is —o and x is finite, the result'is an implementation-dependent approximation to —mn/2.
Ify is +o0 and x is +eo, the result is an implementation-dependent approximation to +n/4.
If y is +o0 and x is —ao, the result is an implementation-dependent approximation to +3n/4.
If y is —oo and x is +oo, the result is an implementation-dependent approximation to —n/4.
If yis —0 and x is—o0, the result is an implementation-dependent approximation to —3rx/4.

20.2.2.9 Math.cbrt(x)
Returns an implementation-dependent approximation to the cube root of x.

If x is NaN, the result is NaN.
If x is +0, the result is +0.

If X is -0, the resultis —0.

If X is +0, the result is +oo.

If X is —0, the result is —o.

276 © Ecma International 2013

secma

20.2.2.10 Math.ceil (x)

Returns the smallest (closest to —e) Number value that is not less than x and is equal to a mathematical
integer. If x is already an integer, the result is x.

If x is NaN, the result is NaN.

If x is +0, the result is +0.

If x is =0, the result is —0.

If X is +oo, the result is +oo.

If X is —oo, the result is —oo.

If x is less than 0 but greater than -1, the result is —0.

The value of Math.ceil (x) is the same as the value of -Math. floor (-x) .
20.2.2.11 Math.cos (x)
Returns an implementation-dependent approximation to the cosine of x. The argument is. expressed in radians.

If x is NaN, the result is NaN.
If x is +0, the result is 1.

If x is -0, the result is 1.

If X is +oo, the result is NaN.
If X is —oo, the result is NaN.

20.2.2.12 Math.cosh(x)
Returns an implementation-dependent approximation to the hyperbolic cosine of x.

If x is NaN, the result is NaN.
If x is +0, the result is 1.

If x is -0, the resultis 1.

If X is +o0, the result is +oo.

If X is —oo, the result is +oo.

NOTE The value of cosh(x) is the same as (exp(x) + exp(-x))/2.
20.2.2.13 Math:exp (x)

Returns-an implementation-dependent approximation to the exponential function of x (e raised to the power of
X, where e is the base of the natural logarithms).

If x is NaN, the result is NaN.
If x.is +0, the result is 1.

Ifx is =0, the resultis 1.

If x is o0, the result is +oo.

If x is —o0, the result is +0.

20.2.2.14 Math.expm1 (x)

Returns an implementation-dependent approximation to subtracting 1 from the exponential function of x (e
raised to the power of x, where e is the base of the natural logarithms). The result is computed in a way that
is accurate even when the value of x is close 0.

If x is NaN, the result is NaN.
If x is +0, the result is +0.
If x is -0, the result is —0.
If X is +oo, the result is +co.

© Ecma International 2013 277

secmd

e |fxis —o, the resultis -1.
20.2.2.15 Math.floor (x)

Returns the greatest (closest to +00) Number value that is not greater than x and is equal to a mathematical
integer. If x is already an integer, the resultis x.

If x is NaN, the result is NaN.

If x is +0, the result is +0.

If x is -0, the result is —0.

If X is +oo, the result is +co.

If x is —oo, the result is —oo.

e Ifxis greater than O but less than 1, the result is +0.

NOTE The value of Math. floor (x) is the same as the value of -Math.ceil (-x).
20.2.2.16 Math.fround (x)
When Math. fround is called with argument x the following steps are taken:

If x is NaN, return NaN.

If x is one of +0, -0, +o0, —c0, then return x.

Let x32 be the result of converting x to a value in IEEE-754-2005 binary32 format using roundTiesToEven.
Let x64 be the result of converting x32 to a value in IEEE-754-2005 binary64 format.

Return the ECMAScript Number value corresponding to x64.

arwn e

20.2.2.17 Math.hypot([value1 [, value2[,...11])

Math.hypot returns an implementation-dependent approximation of the square root of the sum of squares of
its arguments.

If no arguments are passed, the result is +0.

If any argument is +oo, the result is +o.

If any argument is —o, the result is +o.

If no argument is +o or —e, and any argument is NaN, the result is NaN.
If all arguments are either +0 or -0, the result is +0.

Theimplementation must avoid underlow.

The implementation must avoid overflow, where possible.

The implementation must minimise rounding errors.

The length property of the hypot functionis 2.
20.2.2.18 Math.imul(x, y)
When the Math. imul is called with arguments x and y the following steps are taken:

Let a be ToUint32(x).

ReturnlfAbrupt(a).

Let b be ToUint32(y).

ReturnlfAbrupt(b).

Let product be (a x b) modulo 2%2.

If product > 2%, return product — 2%, otherwise return product.

o ghwNE

20.2.2.19 Math.log (x)
Returns an implementation-dependent approximation to the natural logarithm of x.

e IfxisNaN, the result is NaN.

278 © Ecma International 2013

pecma

e Ifxislessthan 0, the result is NaN.
e Ifxis+0 or—0, the result is —oo.

e Ifxis 1, the resultis +0.

e Ifxis +o, the result is +oo.

20.2.2.20 Math.log1p (x)

Returns an implementation-dependent approximation to the natural logarithm of 1 + x. The result is computed
in a way that is accurate even when the value of x is close to zero.

If x is NaN, the result is NaN.

If x is less than -1, the result is NaN.
If x is -1, the result is -co.

If x is +0, the result is +0.

If x is -0, the result is -0.

If X is +oo, the result is +co.

20.2.2.21 Math.log10 (x)
Returns an implementation-dependent approximation to the base 10 logarithm of x.

If x is NaN, the result is NaN.

If x is less than 0, the result is NaN.
If x is +0, the result is —o.

If x is -0, the result is —oo.

If x is 1, the result is +0.

If X is +o, the resultis +oo.

20.2.2.22 Math.log2 (x)
Returns an implementation-dependent approximation to the base 2 logarithm of x.

If x is NaN, the result is NaN.

If x is less than 0, the result is NaN.
If x-is +0; the resultis —o.

If x is -0, the result is —oo.

If x is 1, the result is +0.

If X is +o0, the result is +oo.

20.2.2.23 Math.max ([valuel [, value2[,...111)

Given zero or more arguments, calls ToNumber on each of the arguments and returns the largest of the
resulting values.

e Ifnoarguments are given, the result is —oo.

e Ifany value is NaN, the result is NaN.

e The comparison of values to determine the largest value is done using the Abstract Relational Comparison
algorithm (7.2.8) except that +0 is considered to be larger than —0.

The 1length property of the max method is 2.

© Ecma International 2013 279

secmd

20.2.2.24 Math.min ([value1[,value2[,...111)

Given zero or more arguments, calls ToNumber on each of the arguments and returns the smallest of the
resulting values.

e If noarguments are given, the result is +co.

e Ifany value is NaN, the result is NaN.

e The comparison of values to determine the smallest value is done using the Abstract Relational Comparison
algorithm (7.2.8) except that +0 is considered to be larger than —0.

The length property of the min method is 2.
20.2.2.25 Math.pow (x,Yy)
Returns an implementation-dependent approximation to the result of raising x to the power y.

Ify is NaN, the result is NaN.

Ify is +0, the result is 1, even if x is NaN.

Ify is -0, the result is 1, even if x is NaN.

If x is NaN and y is nonzero, the result is NaN.

If abs(x)>1 and y is +oo, the result is +oo.

If abs(x)>1 and y is —oo, the result is +0.

If abs(x) is 1 and y is +oo, the result is NaN.

If abs(x) is 1 and y is —oo, the result is NaN.

If abs(x)<1 and y is +o, the result is +0.

If abs(x)<1 and y is —oo, the result is +oo.

If X is +o0 and y>0, the result is +oo.

If x is +o0 and y<0, the result is +0.

If x is —0 and y>0 and y is an odd integer, the result is —oo.

If X is —0 and y>0 and-y is not.an odd integer, the result is +oo.
If x is —0 and y<0.and y is an odd integer, the result is —0.

If x is —0 and y<0 and y is not an odd integer, the result is +0.
If x is +0 and y>0, the result is +0.

If x is +0 and y<0, the result.is +oo.

If x is —0 and y>0 and y is‘an odd integer, the result is —0.

If x is —0 and y>0and y is not an odd integer, the result is +0.
I1f X is —0 and y<0 andy is.an odd integer, the result is —.
I1fx is —0 and y<0 and y is not an odd integer, the result is +co.
If x<0 and x is finite and y is finite and y is not an integer, the result is NaN.

20.2.2.26 Math.random ()

Returns a Number value with positive sign, greater than or equal to 0 but less than 1, chosen randomly or
pseudo randomly with approximately uniform distribution over that range, using an implementation-dependent
algorithm or strategy. This function takes no arguments.

20.2.2.27 Math.round (x)
Returns the Number value that is closest to x and is equal to a mathematical integer. If two integer Number

values are equally close to x, then the result is the Number value that is closer to +o. If x is already an integer,
the result is x.

If x is NaN, the result is NaN.
If x is +0, the result is +0.

If x is -0, the result is —0.

If X is +oo, the result is +oo.

If X is —oo, the result is —oo.

280 © Ecma International 2013

secma

e Ifxis greater than O but less than 0.5, the result is +0.
e Ifxisless than O but greater than or equal to -0.5, the result is —0.

NOTE1 Math.round(3.5) returns 4, but Math.round (-3.5) returns -3.

NOTE 2 The value of Math. round (x) is the same as the value of Math.floor (x+0.5), except when x is -0 or is
less than 0 but greater than or equal to -0.5; for these cases Math.round(x) returns -0, but Math.floor (x+0.5)
returns +0.

20.2.2.28 Math.sign(x)

Returns the sign of the X, indicating whether x is positive, negative or zero.

If x is NaN, the result is NaN.

If x is -0, the resultis 0.

If x is +0, the result is +0.

If X is negative and not -0, the resultis —1.
If x is positive and not +0, the result is +1.

20.2.2.29 Math.sin (x)
Returns an implementation-dependent approximation to the sine of x. The argument is expressed in radians.

If x is NaN, the result is NaN.

If x is +0, the result is +0.

If x is -0, the result is —0.

If X is +o0 or —o0, the result is NaN.

20.2.2.30 Math.sinh(x)
Returns an implementation-dependent approximation to the hyperbolic sine of x.

If x is NaN, the result is NaN.
If x is +0, the result is +0.

If x is -0, the result is -0

If X is +o0, the result.is +o.

If X.is =00, the resultis —o.

NOTE The value of sinh(x).is the same as (exp(x) - exp(-x))/2.
20.2:2.31. Math.sqrt (x)

Returns an implementation-dependent approximation to the square root of x.

If x'is NaN, the result is NaN.

If x is less than 0, the result is NaN.
If x is +0, the result is +0.

If x is —0, the result is —0.

If X is +oo, the result is +oo.

20.2.2.32 Math.tan (x)

Returns an implementation-dependent approximation to the tangent of x. The argument is expressed in
radians.

e Ifxis NaN, the result is NaN.

e Ifxis +0, the result is +0.
e Ifxis—0, the result is —0.

© Ecma International 2013 281

secmd

e Ifxis +oo Or —oo, the result is NaN.
20.2.2.33 Math.tanh(x)
Returns an implementation-dependent approximation to the hyperbolic tangent of x.

If x is NaN, the result is NaN.
If x is +0, the result is +0.
If x is -0, the result is —0.
If X is +oo, the resultis +1.
If X is —o0, the resultis -1.

NOTE The value of tanh(x) is the same as (exp(x) - exp(-X))/(exp(x) + exp(-x)).
20.2.2.34 Math.trunc(x)

Returns the integral part of the number x, removing any fractional digits. If x is already an integer, the result is
X.

If x is NaN, the result is NaN.

If x is -0, the resultis —0.

If x is +0, the result is +0.

If X is +0, the result is +oo.

If X is —o0, the result is —o.

If x is greater than 0 but less than 1, the result is +0.
If x is less than 0 but greater than —1, the result.is —0.

20.3 Date Objects
20.3.1 Overview of Date Objects-and Definitions of Abstract Operations

The following functions are abstract operations that operate on time values (defined in 20.3.1.1). Note that, in
every case, if any argument to one of these functions is NaN, the result will be NaN.

20.3.1.1 Time Values and Time Range

A Date object contains a Number indicating a particular instant in time to within a millisecond. Such a Number
is called a_ time value. A time value may also be NaN, indicating that the Date object does not represent a
specific instant of time.

Time is measured in ECMAScript in milliseconds since 01 January, 1970 UTC. In time values leap seconds
are ignored. It is assumed that there are exactly 86,400,000 milliseconds per day. ECMAScript Number values
can represent all integers from —9,007,199,254,740,992 to 9,007,199,254,740,992; this range suffices to
measure times to millisecond precision for any instant that is within approximately 285,616 years, either
forward or backward, from 01 January, 1970 UTC.

The actual range of times supported by ECMAScript Date objects is slightly smaller: exactly —100,000,000
days to 100,000,000 days measured relative to midnight at the beginning of 01 January, 1970 UTC. This gives
a range of 8,640,000,000,000,000 milliseconds to either side of 01 January, 1970 UTC.

The exact moment of midnight at the beginning of 01 January, 1970 UTC is represented by the value +0.
20.3.1.2 Day Number and Time within Day

A given time value t belongs to day number
Day(t) = floor(t / msPerDay)

where the number of milliseconds per day is

282 © Ecma International 2013

pecma

msPerDay = 86400000
The remainder is called the time within the day:
TimeWithinDay(t) = t modulo msPerDay
20.3.1.3 Year Number

ECMAScript uses an extrapolated Gregorian system to map a day number to a year number and to determine
the month and date within that year. In this system, leap years are precisely those which are (divisible by 4)
and ((not divisible by 100) or (divisible by 400)). The number of days in year number y is therefore defined by

DaysInYear(y) =365 if (y modulo 4) =0
=366 if (y modulo 4) = 0 and (y modulo 100) = 0
=365 if (y modulo 100) = 0 and (y modulo 400) =0
=366 if (y modulo 400) =0

All non-leap years have 365 days with the usual number of days per month and leap years have an extra day
in February. The day number of the first day of year y is given by:

DayFromYear(y) =365 x (y—1970) + floor((y—1969)/4) — floor((y—1901)/100) + floor((y—1601)/400)
The time value of the start of a year is:

TimeFromYear(y) = msPerDay x DayFromYear(y)
A time value determines a year by:

YearFromTime(t) = the largest integer y (closest to positive infinity) such that TimeFromYear(y) <t
The leap-year function is 1 for a time within a/leap year and otherwise is zero:

InLeapYear(t) =0 if DaysInYear(YearFromTime(t)) = 365
=1 if DaysInYear(YearFromTime(t)) = 366

20.3.1.4 Month Number

Months are identified by an.integer in the range 0 to 11, inclusive. The mapping MonthFromTime(t) from a time
value t to a month number is defined by:

MonthFromTime(t) =0 if 0 < DayWithinYear(t) < 31
=1 if 31 < DayWithinYear (t) < 59+InLeapYear(t)
=2 if 59+InLeapYear(t) < DayWithinYear (t) < 90+InLeapYear(t)
=3 if 90+InLeapYear(t) < DayWithinYear (t) < 120+InLeapYear(t)
=4 if 120+InLeapYear(t) < DayWithinYear (t) < 151+InLeapYear(t)
=5 if. 151+InLeapYear(t) < DayWithinYear (t) < 181+InLeapYear(t)
=6 if ~ 181+InLeapYear(t) < DayWithinYear (t) < 212+InLeapYear(t)
=7 if 212+InLeapYear(t) < DayWithinYear (t) < 243+InLeapYear(t)
=8 if 243+InLeapYear(t) < DayWithinYear (t) < 273+InLeapYear(t)
=9 if 273+InLeapYear(t) < DayWithinYear (t) < 304+InLeapYear(t)
=10 if 304+InLeapYear(t) < DayWithinYear (t) < 334+InLeapYear(t)
=11 if 334+InLeapYear(t) < DayWithinYear (t) < 365+InLeapYear(t)
where
DayWithinYear(t) = Day(t)-DayFromYear(YearFromTime(t))

A month value of 0 specifies January; 1 specifies February; 2 specifies March; 3 specifies April; 4 specifies
May; 5 specifies June; 6 specifies July; 7 specifies August; 8 specifies September; 9 specifies October; 10
specifies November; and 11 specifies December. Note that MonthFromTime(0) = 0, corresponding to Thursday,
01 January, 1970.

20.3.1.5 Date Number

A date number is identified by an integer in the range 1 through 31, inclusive. The mapping DateFromTime(t)
from a time value t to a month number is defined by:

© Ecma International 2013 283

secmd

DateFromTime(t) = DayWithinYear(t)+1 if MonthFromTime(t)=0
= DayWithinYear(t)-30 if MonthFromTime(t)=1
= DayWithinYear(t)-58—InLeapYear(t) if MonthFromTime(t)=2
= DayWithinYear(t)—-89—InLeapYear(t) if MonthFromTime(t)=3
= DayWithinYear(t)-119—InLeapYear(t) if MonthFromTime(t)=4
= DayWithinYear(t)-150—InLeapYear(t) if MonthFromTime(t)=5
= DayWithinYear(t)-180—InLeapYear(t) if MonthFromTime(t)=6
= DayWithinYear(t)-211-InLeapYear(t) if MonthFromTime(t)=7
= DayWithinYear(t)-242—InLeapYear(t) if MonthFromTime(t)=8
= DayWithinYear(t)—272—InLeapYear(t) if MonthFromTime(t)=9
= DayWithinYear(t)—-303—InLeapYear(t) if MonthFromTime(t)=10
= DayWithinYear(t)-333-InLeapYear(t) if MonthFromTime(t)=11

20.3.1.6 Week Day

The weekday for a particular time value t is defined as
WeekDay(t) = (Day(t) + 4) modulo 7

A weekday value of 0 specifies Sunday; 1 specifies Monday; 2 specifies Tuesday; 3 specifies Wednesday;
4 specifies Thursday; 5 specifies Friday; and 6 specifies Saturday. Note that WeekDay(0) =4, corresponding to
Thursday, 01 January, 1970.

20.3.1.7 Local Time Zone Adjustment
An implementation of ECMAScript is expected to determine the local time zone adjustment. The local time
zone adjustment is a value LocalTZA measured.in milliseconds which when added to UTC represents the

local standard time. Daylight saving time is not reflected by LocalTZA.

NOTE It is recommended that implementations use the time zone information of khe JANA Time Zone Databasel.

20.3.1.8 Daylight Saving Time Adjustment

An implementation dependent algorithm using best available information on time zones to determine the local
daylight saving time adjustment DaylightSavingTA(t), measured in milliseconds. An implementation of
ECMAScript is expected to make its best effort to determine the local daylight saving time adjustment.

20.3.1.9 Local Time

Conversionfrom UTC to local time is defined by

LocalTime(t) = t + LocalTZA + DaylightSavingT A(t)
Conversion from local time to UTC is defined by

UTC(t) = t— LocalTZA — DaylightSavingTA(t — LocalTZA)

Note that UTC(LocalTime(t)) is not necessarily always equal to t.
20.3.1.10 Hours, Minutes, Second, and Milliseconds

The following functions are useful in decomposing time values:
HourFromTime(t) = floor(t / msPerHour) modulo HoursPerDay
MinFromTime(t) = floor(t/ msPerMinute) modulo MinutesPerHour
SecFromTime(t) = floor(t / msPerSecond) modulo SecondsPerMinute
msFromTime(t) =t modulo msPerSecond

where
HoursPerDay =24
MinutesPerHour = 60

284 © Ecma International 2013

(c

ed [AWB8123]: Need a reference

secma

SecondsPerMinute = 60

msPerSecond =1000
msPerMinute =60000 = msPerSecond x SecondsPerMinute
msPerHour =3600000 = msPerMinute x MinutesPerHour

20.3.1.11 MakeTime (hour, min, sec, ms)

The operator MakeTime calculates a number of milliseconds from its four arguments, which must be
ECMAScript Number values. This operator functions as follows:

If hour is not finite or min is not finite or sec is not finite or ms is not finite, return NaN.

Let h be Tolnteger(hour).

Let m be Tolnteger(min).

Let s be Tolnteger(sec).

Let milli be Tolnteger(ms).

Let t be h * msPerHour + m * msPerMinute + s * msPerSecond + milli, performing the arithmetic according
to IEEE 754 rules (that is, as if using the ECMAScript operators * and +).

7. Returnt.

oW E

20.3.1.12 MakeDay (year, month, date)

The operator MakeDay calculates a number of days from its three arguments, which must be ECMAScript
Number values. This operator functions as follows:

If year is not finite or month is not finite or date is not finite, return NaN.

Let y be Tolnteger(year).

Let m be Tolnteger(month).

Let dt be Tolnteger(date).

Let ym be y + floor(m /12).

Let mn be m modulo 12.

Find a value t such that YearFromTime(t) is ym and MonthFromTime(t) is mn and DateFromTime(t) is 1; but
if this is not possible (because some argument is out of range), return NaN.

8. Return Day(t) + dt —1.

NooA~wONE

20.3.1.13 MakeDate (day, time)

The operator-MakeDate calculates a number of milliseconds from its two arguments, which must be
ECMAScript Number values. This operator functions as follows:

1. Ifday is not finite or time is not finite, return NaN.
2. Return day x msPerDay + time.

20.3.1.14 TimeClip (time)

The operator TimeClip calculates a number of milliseconds from its argument, which must be an ECMAScript
Number value. This operator functions as follows:

1. If time is not finite, return NaN.
2. If abs(time) > 8.64 x 10%%, return NaN.
3. Return Tolnteger(time) + (+0). (Adding a positive zero converts —0 to +0.)

NOTE The point of step 3 is that an implementation is permitted a choice of internal representations of time values,

for example as a 64-bit signed integer or as a 64-bit floating-point value. Depending on the implementation, this internal
representation may or may not distinguish —0 and +0.

© Ecma International 2013 285

secmd

20.3.1.15 Date Time String Format

ECMAScript defines a string interchange format for date-times based upon a simplification of the ISO 8601
Extended Format. The format is as follows: YYYY-MM-DDTHH :mm: ss.sssZ

Where the fields are as follows:

YYYY is the decimal digits of the year 0000 to 9999 in the Gregorian calendar.
(hyphen) appears literally twice in the string.

MM is the month of the year from 01 (January) to 12 (December).

DD is the day of the month from 01 to 31.

T “T” appears literally in the string, to indicate the beginning of the time element.
HH is the number of complete hours that have passed since midnight as two decimal digits from
00 to 24.

:” (colon) appears literally twice in the string.

mm is the number of complete minutes since the start of the hour as two decimal digits from 00 to
59.

ss is the number of complete seconds since the start of the minute as two decimal digits from 00
to 59.
“.” (dot) appears literally in the string.

sss is the number of complete milliseconds since the start of the second as three decimal digits.

Z is the time zone offset specified as “2” (for UTC) or either “+” or “~” followed by a time
expression HH :mm

This format includes date-only forms:

YYYY
YYYY-MM
YYYY-MM-DD

It also includes “date-time” forms that consist of one of the above date-only forms immediately followed by one
of the following time forms with an optional time zone offset appended:

THH :mm
THH:mm:ss
THH:mm:ss.sss

All numbers must be base 10. If the MM or DD fields are absent “01” is used as the value. If the HH, mm, or ss
fields are absent “00” is used as the value and the value of an absent sss field is “000”. If the time zone offset
is absent, the date-time is interpreted as a local time.

lllegal values (out-of-bounds as well as syntax errors) in a format string means that the format string is not a
valid instance of this format:

NOTE1 As every day both starts and ends with midnight, the two notations 00:00 and 24:00 are available to
distinguish the two midnights that can be associated with one date. This means that the following two notations refer to
exactly the same point in time: 1995-02-04T24:00 and 1995-02-05T00:00

NOTE 2 There exists no international standard that specifies abbreviations for civil time zones like CET, EST, etc. and
sometimes the same abbreviation is even used for two very different time zones. For this reason, 1ISO 8601 and this
format specifies numeric representations of date and time.

20.3.1.15.1Extended years

ECMAScript requires the ability to specify 6 digit years (extended years); approximately 285,426 years, either
forward or backward, from 01 January, 1970 UTC. To represent years before 0 or after 9999, ISO 8601
permits the expansion of the year representation, but only by prior agreement between the sender and the

286 © Ecma International 2013

secma

receiver. In the simplified ECMAScript format such an expanded year representation shall have 2 extra year
digits and is always prefixed with a + or — sign. The year 0 is considered positive and hence prefixed with a +
sign.

NOTE Examples of extended years:

-283457-03-21T15:00:59.008Z 283458 B.C.
-000001-01-01T00:00:00Z 2B.C.
+000000-01-01T00:00:00Z 1B.C.
+000001-01-01T00:00:00Z 1AD.
+001970-01-01T00:00:00Z 1970 A.D.
+002009-12-15T00:00:00Z 2009 A.D.
+287396-10-12T08:59:00.992Z 287396 A.D.

20.3.2 The Date Constructor

The Date constructor is the %Date% intrinsic object and the initial value of the Date property of the global
object. When Date is called as a function rather than as a constructor, it returns a String representing the
current time (UTC). However, if the this value value passedqin the call is an Object with an uninitialised
[[DateValue]] internal data property, Date initialises the this object using the argument value. This permits
Date to be used both as a function for creating data strings and to perform constructor instance initialisation.

The Date constructor is designed to be subclassable. It may be usedas the value of an extends clause of a
class declaration. Subclass constructors that intended to inherit the specified Date behaviour must include a
super call to the Date constructor to initialise the [[DateValue]] state of subclass instances.

20.3.2.1 Date (year, month [, date [, hours[, minutes [, seconds [,ms]]]1])
This description applies only if the Date constructor is called with at least two arguments.
When the Date function is called the following steps are taken:

Let numberOfArgs be the number of arguments passed to this constructor call.

Assert: numberOfArgs > 2.

Let O be the this value.

If Type(O) is Object and O has a [[DateVValue]] internal data property and the value of [[DateValue]] is
undefined, then

Let y be ToNumber(year).

ReturnIfAbrupt(year).

Let m be ToNumber(month).

ReturnIfAbrupt(month).

If date is supplied then let dt be ToNumber(date); else let dt be 1.
ReturnlfAbrupt(dt).

If hours is supplied then let h be ToNumber(hours); else let h be 0.

Returnl fAbrupt(h).

If minutes is supplied then let min be ToNumber(minutes); else let min be 0.
ReturnlfAbrupt(min).

If seconds is supplied then let s be ToNumber(seconds); else let s be 0.
ReturnIfAbrupt(s).

If ms is supplied then let milli be ToNumber(ms); else let milli be 0.
ReturnIfAbrupt(milli).

If y is not NaN and 0 < Tolnteger(y) < 99, then let yr be 1900+Tolnteger(y); otherwise, let yr bey.
Let finalDate be MakeDate(MakeDay(yr, m, dt), MakeTime(h, min, s, milli)).
Set the [[DateValue]] internal data property of O to TimeClip(UTC(finalDate)).
Return O.

LN S

"evosITIAToS@mOQOTSe

5. Else,
a. Return the result computed as if by the expression (new Date()) .toString() where Date is
this function and toString is the standard built-in method Date . prototype . toString.

C ed [AWB14124]: Need to express as an intrinsic

© Ecma International 2013 287

from same realm as this function.

secmd

20.3.2.2 Date (value)
This description applies only if the Date constructor is called with exactly one argument.

When the Date function is called the following steps are taken:

1. Let numberOfArgs be the number of arguments passed to this constructor call.
2. Assert: numberOfArgs = 1.
3. Let O be the this value.
4. 1f Type(O) is Object and O has a [[DateValue]] internal data property and the value of
[[DateValue]] is undefined, then
a. If Type(value) is Object and value has a [[DateValue]] internal data property, then
i. Let tv be thisTimeValue(value).
b. Else,
i Let v be ToPrimitive(value).
il. If Type(v) is String, then
1. Lettv be the result of parsing v as a date, in exactly the same manner as for
the parse method (20.3.3.2). If the parse resulted in an abrupt
completion, tv is the Completion Record.
iii. Else,
1. Lettv be ToNumber(v).
c. ReturnlfAbrupt(tv).
d. Setthe [[DateValue]] internal data property of O to TimeClip(tv).
e. Return O.
5. Else,

a. Return the result computed as if by the expression (new Date()) .toString () where
Date is this function and teString.is the $tandard built-in method
Date.prototype. toString‘.

C ed [AWB14125]: Need to express as an intrinsic

20.3.2.3 Date ()
This description applies only.if the Date constructor is called with no arguments.
When the Date function'is called the following steps are taken:

Let numberOfArgs be the number of arguments passed to this constructor call.

Assert: numberOfArgs = 0.

Let O be the this value.

If Type(O) is Object and O has a [[DateValue]] internal data property and the value of [[DateValue]] is

undefined, then

a: Set the [[DateValue]] internal data property of O to the time value (UTC) identifying the current time.

b. Return O.

5. Else,

a. Return the result computed as if by the expression (new Date()) .toString () where Date is
this function and toString is the Standard built-in method Date . prototype . toString.

HwN e

from same realm as this function.

C ed [AWB14126]: Need to express as an intrinsic

20.3.2.4 new Date (... argumentsList)

Date called as part of a new expression with argument list argumentsList it performs the following steps:

1. Let F be the Date function object on which the new operator was applied.

2. LetargumentsList be the argumentsList argument of the [[Construct]] internal method that was invoked by
the new operator.

3. Return the result of OrdinaryConstruct (F, argumentsList).

If Date is implemented as an ordinary function object, its [[Construct]] internal method will perform the above
steps.

288 © Ecma International 2013

from same realm as this function.

pecma

20.3.3 Properties of the Date Constructor

The value of the [[Prototype]] internal data property of the Date constructor is the Function prototype object
(19.2.3).

Besides the 1ength property (whose value is 7), the Date constructor has the following properties:
20.3.3.1 Date.now ()

The now function return a Number value that is the time value designating the UTC date and time of the
occurrence of the call to now.

20.3.3.2 Date.parse (string)

The parse function applies the ToString operator to its argument. If ToString results in an abrupt completion
the Completion Record is immediately returned. Otherwise, parse interprets the resulting String as a date
and time; it returns a Number, the UTC time value correspondingto the date and time. The String may be
interpreted as a local time, an UTC time, or a time in some other-time zone, depending on the contents of the
String. The function first attempts to parse the format of the String according to the rules called out in Date
Time String Format (20.3.1.15). If the String does not conform to that format the function may fall back to any
implementation-specific heuristics or implementation-specific date formats. Unrecognisable Strings or dates
containing illegal element values in the format String shall cause Date .parse to return NaN.

If x is any Date object whose milliseconds amount is zero within a particular implementation of ECMAScript,
then all of the following expressions should produce the same numeric value in that implementation, if all the
properties referenced have their initial values:

x.valueOf ()

Date.parse (x.toString())

Date.parse (x.toUTCString())

Date.parse (x.toISOString())

However, the expression

Date.parse(x. toLocaleString())
is not required to produce the same Number value as the preceding three expressions and, in general, the
value produced by Date.parse is implementation-dependent when given any String value that does not
conform to the Date Time String Format (20.3.1.15) and-that could not be produced in that implementation by
the toString or toUTCString method.

20.3.3.3 Date.prototype

Theinitial value of Date . prototype is the built-in Date prototype object (20.3.4).

This property has the attributes { [[Writable]]: false, [[Enumerable]]: false, [[Configurable]]: false }.
20.3.3.4 Date.UTC (year, month [, date [, hours [, minutes [, seconds [,ms]]]11)

When the UTC function is called with fewer than two arguments, the behaviour is implementation-dependent.
When the uTc function is called with two to seven arguments, it computes the date from year, month and
(optionally) date, hours, minutes, seconds and ms. The following steps are taken:

Lety be ToNumber(year).

ReturnlfAbrupt(y).

Let m be ToNumber(month).

ReturnlfAbrupt(m).

If date is supplied then let dt be ToNumber(date); else let dt be 1.
ReturnIfAbrupt(dt).

If hours is supplied then let h be ToNumber(hours); else let h be 0.
ReturnlfAbrupt(h).

PN A WN

© Ecma International 2013 289

secmd

9. If minutes is supplied then let min be ToNumber(minutes); else let min be 0.

10. ReturnlfAbrupt(min).

11. If seconds is supplied then let s be ToNumber(seconds); else let s be 0.

12. ReturnlfAbrupt(s).

13. If ms is supplied then let milli be ToNumber(ms); else let milli be 0.

14. ReturnlfAbrupt(milli).

15. If y is not NaN and 0 < Tolnteger(y) < 99, then let yr be 1900+ Tolnteger(y); otherwise, let yr be y.
16. Return TimeClip(MakeDate(MakeDay(yr, m, dt), MakeTime(h, min, s, milli))).

The length property of the UTC function is 7.

NOTE The UTC function differs from the Date constructor in two ways: it returns a time value as a Number, rather
than creating a Date object, and it interprets the arguments in UTC rather than as local time.

20.3.3.5 Date[@@create] ()
The @@create method of an object F performs the following steps:

1. Let obj be the result of calling OrdinaryCreateFromConstructor(F; "$DatePrototype%", ([[DateValue]])).
2. Return obj.

This property has the attributes { [[Writable]]: false, [[Enumerable]]: false, [[Configurable]]: true }.

NOTE [[DateValue]] is initially assigned the value undefined as a flag to indicate that the instance has not yet been
initialised by the Date constructor. This flag value is never directly exposed to ECMAScript code; hence implementations
may choose to encode the flag in some other manner.

20.3.4 Properties of the Date Prototype Object

The Date prototype object is itself an ordinary object. It is not a Date instance and does not have a
[[DateValue]] internal data property:

The value of the [[Prototype]] internal data property of the Date prototype object is the standard built-in Object
prototype object (20.3.4).

Unless explicitly defined otherwise, the methods of the Date prototype object defined below are not generic
and the this value passed to them must be an object that has a [[DateValue]] internal data property that has
been initialised to.a time value.
The abstract operation thisTimeValue(value) performs the following steps:
1. If Type(value) is Object and value has a [[DateValue]] internal data property, then

a. Letn be the Number that is the value of value’s [[DateValue]] internal data property.

b. Ifn is not undefined, then return n.
2. Throw a TypeError exception.
In following descriptions of functions that are properties of the Date prototype object, the phrase “this Date
object” refers to the object that is the this value for the invocation of the function. The phrase “this time value”
within the specification of a method refers to the result returned by calling the abstract operation
thisTimeValue with the this value of the method invocation passed as the argument.
20.3.4.1 Date.prototype.constructor
The initial value of Date.prototype . constructor is the built-in Date constructor.
20.3.4.2 Date.prototype.getDate ()

1. Lett be this time value.
2. ReturnlfAbrupt(t).

290 © Ecma International 2013

secma

3. Iftis NaN, return NaN.
4. Return DateFromTime(LocalTime(t)).

20.3.4.3 Date.prototype.getDay ()

Let t be this time value.
ReturnlfAbrupt(t).

If tis NaN, return NaN.

Return WeekDay(LocalTime(t)).

LN S

20.3.4.4 Date.prototype.getFullYear ()

Let t be this time value.
ReturnIfAbrupt(t).

If tis NaN, return NaN.

Return YearFromTime(LocalTime(t)).

o

20.3.4.5 Date.prototype.getHours ()

Let t be this time value.
ReturnlfAbrupt(t).

If tis NaN, return NaN.

Return HourFromTime(LocalTime(t)).

o

20.3.4.6 Date.prototype.getMilliseconds ()

Let t be this time value.
ReturnlfAbrupt(t).

If tis NaN, return NaN.

Return msFromTime(LocalTime(t)).

AW

20.3.4.7 Date.prototype.getMinutes ()

Let t be this time value.
ReturnIfAbrupt(t).

If tis NaN, return NaN.

Return MinFromTime(Local Time(t)).

AN E

20.3.4.8 Date.prototype.getMonth ()

Lett be this time value.
ReturnIfAbrupt(t).

Iftis NaN, return NaN.

Return MonthFromTime(Local Time(t)).

LN

20.3.4.9 Date.prototype.getSeconds ()

Let t be this time value.
ReturnlfAbrupt(t).

If tis NaN, return NaN.

Return SecFromTime(Local Time(t)).

LN

20.3.4.10 Date.prototype.getTime ()
1. Return this time value.

20.3.4.11 Date.prototype.getTimezoneOffset ()

Returns the difference between local time and UTC time in minutes.

© Ecma International 2013

291

secma

Let t be this time value.
ReturnlfAbrupt(t).

If tis NaN, return NaN.

Return (t — LocalTime(t)) / msPerMinute.

Eal N

20.3.4.12 Date.prototype.getUTCDate ()

1. Lett be this time value.
2. ReturnlfAbrupt(t).

3. Iftis NaN, return NaN.
4. Return DateFromTime(t).

20.3.4.13 Date.prototype.getUTCDay ()

1. Lett be this time value.
2. ReturnlfAbrupt(t).

3. If tis NaN, return NaN.
4. Return WeekDay(t).

20.3.4.14 Date.prototype.getUTCFullYear ()

1. Lett be this time value.
2. ReturnlfAbrupt(t).

3. Iftis NaN, return NaN.
4. Return YearFromTime(t).

20.3.4.15 Date.prototype.getUTCHours ()

Let t be this time value.
ReturnIfAbrupt(t).

If tis NaN, return NaN.
Return HourFromTime(t).

Hwn e

20.3.4.16 Date.prototype.getUTCMilliseconds ()

Let t be this time value.
ReturnlfAbrupt(t).

If t is NaN, return NaN.
Return msFromTime(t).

Hwn e

20.3.4.17 Date.prototype.getUTCMinutes ()

Let t be this time value.

ReturnlfAbrupt(t).

If tis NaN, return NaN.

Return MinFromTime(t).

rwnpE

20.3.4.18 Date.prototype.getUTCMonth ()

Let t be this time value.
ReturnIfAbrupt(t).

If tis NaN, return NaN.
Return MonthFromTime(t).

Hwn e

20.3.4.19 Date.prototype.getUTCSeconds ()

Let t be this time value.
ReturnlfAbrupt(t).

If t is NaN, return NaN.
Return SecFromTime(t).

Hwn e

292

© Ecma International 2013

secma

20.3.4.20 Date.prototype.setDate (date)

Let t be the result of LocalTime(this time value).

Let dt be ToNumber(date).

Let newDate be MakeDate(MakeDay(YearFromTime(t), MonthFromTime(t), dt), TimeWithinDay(t)).
Let u be TimeClip(UTC(newDate)).

Set the [[DateValue]] internal data property of this Date object to u.

Return u.

U wLN R

20.3.4.21 Date.prototype.setFullYear (year [, month [, date]])
If month is not specified, this behaves as if month were specified with the value getMonth ().
If date is not specified, this behaves as if date were specified with the value getDate ().

Let t be the result of LocalTime(this time value); but if this time value is NaN, let t be +0.

Let y be ToNumber(year).

If month is not specified, then let m be MonthFromTime(t); otherwise, let m be ToNumber(month).
If date is not specified, then let dt be DateFromTime(t); otherwise, let dt be ToNumber(date).

Let newDate be MakeDate(MakeDay(y, m, dt), TimeWithinDay(t)).

Let u be TimeClip(UTC(newDate)).

Set the [[DateValue]] internal data property of this Date object to u.

Return u.

PN~ WNE

The length property of the setFullYear method is 3.

20.3.4.22 Date.prototype.setHours (hour [, min [, sec[, ms]]])

If min is not specified, this behaves as if min were specified with the value getMinutes ().

If sec is not specified, this behaves as if sec were specified with the value getSeconds () .

If ms is not specified, this behaves as if ms were specified with the value getMilliseconds ().

Let t be the result of Local Time(this time value).

Let h be ToNumber(hour).

If min is not specified, then let m be MinFromTime(t); otherwise, let m be ToNumber(min).
If sec is not specified, then let s be SecFromTime(t); otherwise, let s be ToNumber(sec).

If ms is not specified, then let milli. be msFromTime(t); otherwise, let milli be ToNumber(ms).
Let date be MakeDate(Day(t), MakeTime(h, m, s, milli)).

Let u be TimeClip(UTC(date)).

Set the [[DateValue]] internal data property of this Date object to u.

Return u.

©oOND TN

The length property of the setHours method is 4.
20.3.4.23 Date.prototype.setMilliseconds (ms)

Let t be the result of LocalTime(this time value).

Let time be MakeTime(HourFromTime(t), MinFromTime(t), SecFromTime(t), ToONumber(ms)).
Let u be TimeClip(UTC(MakeDate(Day(t), time))).

Set the [[DateValue]] internal data property of this Date object to u.

Return u.

ahrwNE

20.3.4.24 Date.prototype.setMinutes (min [,sec[,ms]])
If sec is not specified, this behaves as if sec were specified with the value getSeconds () .

If ms is not specified, this behaves as if ms were specified with the value getMilliseconds ().

© Ecma International 2013 293

secmd

Let t be the result of LocalTime(this time value).

Let m be ToNumber(min).

If sec is not specified, then let s be SecFromTime(t); otherwise, let s be ToNumber(sec).

If ms is not specified, then let milli be msFromTime(t); otherwise, let milli be ToNumber(ms).
Let date be MakeDate(Day(t), MakeTime(HourFromTime(t), m, s, milli)).

Let u be TimeClip(UTC(date)).

Set the [[DateValue]] internal data property of this Date object to u.

Return u.

XN~ WNE

The length property of the setMinutes method is 3.
20.3.4.25 Date.prototype.setMonth (month [, date])
If date is not specified, this behaves as if date were specified with the value getDate () .

Let t be the result of LocalTime(this time value).

Let m be ToNumber(month).

If date is not specified, then let dt be DateFromTime(t); otherwise, let dt be ToNumber(date).
Let newDate be MakeDate(MakeDay(YearFromTime(t), m, dt), TimeWithinDay(t)).

Let u be TimeClip(UTC(newDate)).

Set the [[DateValue]] internal data property of this Date-object to u.

Return u.

NooswhE

The length property of the setMonth method is 2.
20.3.4.26 Date.prototype.setSeconds (sec [, ms])
If ms is not specified, this behaves as if ms were specified with the value getMilliseconds ().

Let t be the result of LocalTime(this time value).

Let s be ToNumber(sec).

If ms is not specified, thenlet milli be msFromTime(t); otherwise, let milli be ToNumber(ms).
Let date be MakeDate(Day(t), MakeTime(HourFromTime(t), MinFromTime(t), s, milli)).

Let u be TimeClip(UTC(date)).

Set the [[DateValue]] internal data property of this Date object to u.

Return u.

NookrowpeR

The length property of the setSeconds method is 2.
20.3.4.27 Date.prototype.setTime (time)

Let v be TimeClip(ToNumber(time)).

ReturnlfAbrupt(v).

Set the [[DateValue]] internal data property of this Date object to v.
Return v.

rwnpE

20.3.4.28 Date.prototype.setUTCDate (date)

Let t be this time value.

ReturnlfAbrupt(t).

Let dt be ToNumber(date).

Let newDate be MakeDate(MakeDay(YearFromTime(t), MonthFromTime(t), dt), TimeWithinDay(t)).
Let v be TimeClip(newDate).

Set the [[DateValue]] internal data property of this Date object to v.

Return v.

NooswNE

20.3.4.29 Date.prototype.setUTCFullYear (year [, month [, date]])

If month is not specified, this behaves as if month were specified with the value getUTCMonth () .

294 © Ecma International 2013

secma

If date is not specified, this behaves as if date were specified with the value getUTCDate ().

Let t be this time value; but if this time value is NaN, let t be +0.

ReturnlfAbrupt(t).

Let y be ToNumber(year).

If month is not specified, then let m be MonthFromTime(t); otherwise, let m be ToNumber(month).
If date is not specified, then let dt be DateFromTime(t); otherwise, let dt be ToNumber(date).

Let newDate be MakeDate(MakeDay(y, m, dt), TimeWithinDay(t)).

Let v be TimeClip(newDate).

Set the [[DateValue]] internal data property of this Date object to v.

Return v.

©RONDG A WN P

The length property of the setUTCFullYear method is 3.

20.3.4.30 Date.prototype.setUTCHours (hour [, min[,sec[,ms]]])

If min is not specified, this behaves as if min were specified with the value getUTCMinutes () .

If sec is not specified, this behaves as if sec were specified with the value getUTCSeconds ().

If ms is not specified, this behaves as if ms were specified with the value getUTCMilliseconds ().

1. Lett be this time value.

2. ReturnIfAbrupt(t).

3. Leth be ToNumber(hour).

4. If min is not specified, then let m be MinFromTime(t); otherwise, let m be ToNumber(min).
5. If sec is not specified, then let s be SecFromTime(t); otherwise, let s'be ToNumber(sec).

6. If msis not specified, then let milli be msFromTime(t); otherwise, let milli be ToNumber(ms).
7. Let newDate be MakeDate(Day(t), MakeTime(h, m, s, milli)).

8. Letv be TimeClip(newDate).

9. Set the [[DateValue]] internal data property of this Date object to v.

10. Returnv.

The length property of the setUTCHours method is 4.
20.3.4.31 Date.prototype.setUTCMilliseconds (ms)

Let t be this time value.

ReturnifAbrupt(t).

Let time be MakeTime(HourFromTime(t), MinFromTime(t), SecFromTime(t), ToNumber(ms)).
Let v be TimeClip(MakeDate(Day(t), time)).

Set the [[DateValue]] internal data property of this Date object to v.

Return v.

Ok LN R

20.3.4.32 Date.prototype.setUTCMinutes (min [, sec[,ms]])
If sec is not specified, this' behaves as if sec were specified with the value getUTCSeconds () .

If ms is not specified, this function behaves as if ms were specified with the value return by
getUTCMilliseconds ().

Let t be this time value.

ReturnlfAbrupt(t).

Let m be ToNumber(min).

If sec is not specified, then let s be SecFromTime(t); otherwise, let s be ToNumber(sec).

If ms is not specified, then let milli be msFromTime(t); otherwise, let milli be ToNumber(ms).
Let date be MakeDate(Day(t), MakeTime(HourFromTime(t), m, s, milli)).

Let v be TimeClip(date).

Set the [[DateValue]] internal data property of this Date object to v.

PN A WNE

© Ecma International 2013 295

secmd

9. Returnv.

The length property of the setUTCMinutes method is 3.

20.3.4.33 Date.prototype.setUTCMonth (month [, date])

If date is not specified, this behaves as if date were specified with the value getUTCDate () .

Let t be this time value.

ReturnlfAbrupt(t).

Let m be ToNumber(month).

If date is not specified, then let dt be DateFromTime(t); otherwise, let dt be ToNumber(date).
Let newDate be MakeDate(MakeDay(YearFromTime(t), m, dt), TimeWithinDay(t)).

Let v be TimeClip(newDate).

Set the [[DateValue]] internal data property of this Date object to v.

Return v.

@®NoOG A~ WNE

The length property of the setUTCMonth method is 2.
20.3.4.34 Date.prototype.setUTCSeconds (sec [, ms])
If ms is not specified, this behaves as if ms were specified with the value getUTCMilliseconds ().

Let t be this time value.

ReturnlfAbrupt(t).

Let s be ToNumber(sec).

If ms is not specified, then let milli be msFromTime(t); otherwise, let milli be ToNumber(ms).
Let date be MakeDate(Day(t), MakeTime(HourFromTime(t); MinFromTime(t), s, milli)).

Let v be TimeClip(date).

Set the [[DateValue]] internal data property of this Date object to v.

Return v.

PN AWM

The length property of the setUTCSeconds method is 2.
20.3.4.35 Date.prototype.toDateString ()

This function returns a String value. The contents of the String are implementation-dependent, but are
intended to represent the “date” portion of the Date in the current time zone in a convenient, human-readable
form.

20.3.4.36 Date.prototype.tolSOString ()

This function returns a String value representing the instance in time corresponding to this time value. The
format of the String is the Date Time string format defined in 20.3.1.15. All fields are present in the String. The
time zone is always UTC, denoted by the suffix Z. If this time value is not a finite Number a RangeError
exception is thrown.

20.3.4.37 Date.prototype.toJSON (key)
This function provides a String representation of a Date object for use by JSON. stringify (24.3.3).
When the toJSON method is called with argument key, the following steps are taken:

Let O be the result of calling ToObject, giving it the this value as its argument.
Let tv be ToPrimitive(O, hint Number).

If tv is a Number and is not finite, return null.

Let tolSO be the result of Get(O, "toISOString").

ReturnlfAbrupt(tolSO).

If IsCallable(tolSO) is false, throw a TypeError exception.

ok wn e

296 © Ecma International 2013

secma

7. Return the result of calling the [[Call]] internal method of tolSO with O as thisArgument and an empty List
as argumentsList.

NOTE1 The argument is ignored.

NOTE 2 The toJsSON function is intentionally generic; it does not require that its this value be a Date object. Therefore,
it can be transferred to other kinds of objects for use as a method. However, it does require that any such object have a
toISsOString method. An object is free to use the argument key to filter its stringification.

20.3.4.38 Date.prototype.toLocaleDateString ()

This function returns a String value. The contents of the String are implementation-dependent, but are
intended to represent the “date” portion of the Date in the current time zone in a convenient, human-readable
form that corresponds to the conventions of the host environment’s current locale.

NOTE The first parameter to this function is likely to be used in a future version of this standard; it is recommended
that implementations do not use this parameter position for anything else.

20.3.4.39 Date.prototype.toLocaleString ()

This function returns a String value. The contents of the String are implementation-dependent, but are
intended to represent the Date in the current time .zone in a convenient, human-readable form that
corresponds to the conventions of the host environment’s current locale.

NOTE The first parameter to this function is likely to be used in a future version of this standard; it is recommended
that implementations do not use this parameter position for anything else.

20.3.4.40 Date.prototype.toLocaleTimeString ()

This function returns a String value. The contents of the String are implementation-dependent, but are
intended to represent the “time” portion of the Date in the current time zone in a convenient, human-readable
form that corresponds to the conventions of the host environment’s current locale.

NOTE The first parameter to this function is likely to be used in a future version of this standard; it is recommended
that implementations do not use this parameter position for anything else.

20.3.4.41 Date.prototype.toString ()

This functionreturns a String value. If this time value is NaN, the String value is "Invalid Date", otherwise
the contents of the String are implementation-dependent, but are intended to represent the Date in the current
time zone in a convenient, human-readable form.

NOTE For any Date value d whose milliseconds amount is zero, the result of Date.parse (d.toString()) is
equal to d.valueOf (). See 20.3.3.2.

20.3.4.42 Date.prototype.toTimeString ()

This function returns a String value. The contents of the String are implementation-dependent, but are
intended to represent the “time” portion of the Date in the current time zone in a convenient, human-readable
form.

20.3.4.43 Date.prototype.toUTCString ()

This function returns a String value. The contents of the String are implementation-dependent, but are
intended to represent this time value in a convenient, human-readable form in UTC.

NOTE The intent is to produce a String representation of a date that is more readable than the format specified in
20.3.1.15. It is not essential that the chosen format be unambiguous or easily machine parsable. If an implementation
does not have a preferred human-readable format it is recommended to use the format defined in 20.3.1.15 but with a

space rather than a “T” used to separate the date and time elements.

© Ecma International 2013 297

secmd

20.3.4.44 Date.prototype.valueOf ()
The valueOf function returns a Number, which is this time value.
20.3.4.45 Date.prototype [@@ToPrimitive] (hint)

This function is called by ECMAScript language operators to convert an object to a primitive value. The
allowed values for hint are "default”, "number", and "string". Date objects, are unique among built-in
ECMAScript object in that they treat "default" as being equivalent to "string", All other built-in
ECMAScript objects treat "default" as being equivalent to "number".

When the @@ToPrimitive method is called with argument hint, the following steps are taken:

1. Let O be the this value.

2. If Type(O) is not Object, then throw a TypeError exception.

3. If hintis the string value "string" or the string value "default"; then
a. LettryFirst be "string".

4. Else if hint is the string value "number", then
a. LettryFirst be "number".

5. Else, throw a TypeError exception.

6. Return the result of OrdinaryToPrimitive(O,tryFirst).

This property has the attributes { [[Writable]]: false, [[Enumerable]]: false, [[Configurable]]: true }.
20.3.5 Properties of Date Instances

Date instances are ordinary objects that inherit properties from the Date prototype object. Date instances also
have a [[DateValue]] internal data property. The [[DateValue]] internal data property is the time value
represented by this Date object.

21 Text Processing
21.1 String Objects
21.1.1 The String Constructor

The String constructor is the %String% intrinsic object and the initial value of the String property of the
global object. When String is called as a function rather than as a constructor, it performs a type conversion.
Howevery if the this value value passed in the call is an Object with an uninitialised [[StringData]] internal data
property, it initialises the this. value using the argument value. This permits String to be used both to
perform type conversion and to perform constructor instance initialisation.

The string constructor is designed to be subclassable. It may be used as the value of an extends clause
of a class declaration. Subclass constructors that intended to inherit the specified String behaviour must
include a super call to the String constructor to initialise the [[StringData]] state of subclass instances.

21.1.1.1 String (value= ")
When string is called with argument value, the following steps are taken:

Let O be the this value.
If no arguments were passed to this function invocation, then let s be "".
Else, let s be ToString(value).
ReturnlfAbrupt(s).
If Type(O) is Object and O has a [[StringData]] internal data property and the value of [[StringData]] is
undefined, then
a. Let length be the number of code unit elements in s.

arwneE

298 © Ecma International 2013

secma

b. Let status be the result of DefinePropertyOrThrow(O, "length", Property Descriptor{[[Value]]:
length, [[Writable]]: false, [[Enumerable]]: false, [[Configurable]]: false }).
c. ReturnIfAbrupt(status).
d. Set the value of O’s [[StringData]] internal data property to s.
e. Return O.
6. Returns.

The length property of the String functionis 1.
21.1.1.2 new String (... argumentsList)
String called as part of a new expression , it initialises a newly created exotic String object:

1. Let F be the String function object on which the new operator was applied.

2. LetargumentsList be the argumentsList argument of the [[Construct]] internal method that was invoked by
the new operator.

3. Return the result of OrdinaryConstruct (F, argumentsList).

If String is implemented as an ordinary function object, its [[Construct]] internal method will perform the
above steps.

21.1.2 Properties of the String Constructor

The value of the [[Prototypel]] internal data property of the String constructor is the standard built-in Function
prototype object (19.2.3).

Besides the 1ength property (whose value is 1), the String constructor has the following properties:
21.1.2.1 String fromCharCode|(...codeUnits)

The String.fromCharCode function.may be called with a variable number of arguments which form the
rest parameter codeUnits. The following steps are taken:

Assert: codeUnits isa well-formed rest parameter object.
Let length be the result of Get(codeUnits, "1length").
Let elements be a new List.
Let nextIndex be 0.
Repeat while nextindex < length
a. < Let next be the result of Get(codeUnits, ToString(nextindex)).
b. Let nextCU be ToUint16(next).
¢. ReturnlfAbrupt(nextCU).
d:.. Append nextCU to the end of elements.
€. Let nextIndex be nextindex + 1.
6. Return the String value whose elements are, in order, the elements in the List elements. If length is 0, the
empty string is returned.

gL

The length property of the £romCharCode function is 1.
21.1.2.2 String.fromCodePoint (...codePoints)

The String. fromCodePoint function may be called with a variable number of arguments which form the
rest parameter codePoints. The following steps are taken:

Assert: codePoints is a well-formed rest parameter object.
Let length be the result of Get(codePoints, "1length").
Let elements be a new List.
Let nextindex be 0.
Repeat while nextindex < length
a. Let next be the result of Get(codePoints, ToString(nextindex)).

g wNE

© Ecma International 2013 299

Commented [AWB9127]: Should we provide fromCodeUnit
as an alias for this property and lable fromCharCode as
obsolete.

secmd

Let nextCP be ToNumber(next).

ReturnlfAbrupt(nextCP).

If SameValue(nextCP, Tolnteger(nextCP)) is false, then throw a RangeError exception.

If nextCP < 0 or nextCP > 0x10FFFF, then throw a RangeError exception.

Append the elements of the UTF-16 Encoding (clause 6) of nextCP to the end of elements.

. Let nextIndex be nextindex + 1.

6. Return the String value whose elements are, in order, the elements in the List elements. If length is 0, the
empty string is returned.

emoooo

The length property of the fromCodePoint function is 0. Commented [AWB9128]: Note this follows the ES6
convention for rest parameters rather than the precedent

21.1.2.3 String.prototype established by fromCharCode

The initial value of String.prototype is the standard built-in String prototype object (21.1.3).
This property has the attributes { [Writable]]: false, [[Enumerable]]: false, [[Configurable]]: false }.
21.1.2.4 String.raw (callSite, ...substitutions)

The string.raw function may be called with a variable number of arguments. The first argument is callSite
and the remainder of the arguments form the rest parameter substitutions. The following steps are taken:

Assert: substitutions is a well-formed rest parameter object.

Let cooked be ToObject(callSite).

ReturnlfAbrupt(cooked).

Let rawValue be the result of Get(cooked, " raw").

Let raw be ToObject(rawValue).

ReturnlfAbrupt(raw).

Let len be the result of Get(raw, "length").

Let literalSegments be ToLength(len).

ReturnlfAbrupt(literalSegments).

10. If literalSegments < 0, then return the empty string.

11. Let stringElements be a new List.

12. Let nextindex be 0.

13. Repeat
a. Let nextKey be ToString(nextindex).

Let next be the result of Get(raw, nextKey).

Let nextSeg be ToString(next).

ReturnlfAbrupt(nextSeg).

Append in order the code unit elements of nextSeg to the end of stringElements.

If nextIndex + 1 = literalSegments, then

i Return the string value whose elements are, in order, the elements in the List

stringElements. If length is 0, the empty string is returned.

Let next be the result of Get(substitutions, nextKey).

Let nextSub be ToString(next).

ReturnlfAbrupt(nextSub).

Append in order the code unit elements of nextSub to the end of stringElements.

Let nextIndex be nextindex + 1.

@O NG A~WNE

ho oo o

o =)

The length property of the raw function is 1.

NOTE String.raw is intended for use as a tag function of a Tagged Template String (12.2.7). When called as such
the first argument will be a well formed template call site object and the rest parameter will contain the substitution values.

21.1.2.5 String[@@create] ()
The @@create method of an object F performs the following steps:

1. LetF be the this value.

300 © Ecma International 2013

secma

Let proto be the result of GetPrototypeFromConstructor(F, "$StringPrototype%").
ReturnlfAbrupt(proto).

Let obj be the result of calling StringCreate (proto).

Return obj.

S

This property has the attributes { [[Writable]]: false, [Enumerable]]: false, [[Configurable]]: true }.

NOTE [[StringData]] is initially assigned the value undefined as a flag to indicate that the instance has not yet been
initialised by the String constructor. This flag value is never directly exposed to ECMAScript code; hence implementations
may choose to encode the flag in some other manner.

21.1.3 Properties of the String Prototype Object

The String prototype object is itself an ordinary object. It is not a String-<instance and does not have a
[[StringData]] internal data property.

The value of the [[Prototype]] internal data property of the String prototype object is the standard built-in
Object prototype object (19.1.4).

Unless explicitly stated otherwise, the methods of the String prototype object defined below are not generic
and the this value passed to them must be either a Stringvalue or an object that has a [[StringData]] internal
data property that has been initialised to a String value.

The abstract operation thisStringVValue(value) performs the following steps:

1. If Type(value) is String, return value.

2. If Type(value) is Object and value has a [[StringData]] internal data property, then
a. Let s be the value of value’s [[StringData]] internal data property.
b. If s is not undefined, then return s.

3. Throw a TypeError exception.

The phrase “this String value” within the specification of a method refers to the result returned by calling the
abstract operation thisStringValue with the this value of the method invocation passed as the argument.

21.1.3.1 String.prototype.charAt |(pos)
NOTE Returns a single element String containing the code unit at element position pos in the String value resulting
from converting this object to a String. If there is no element at that position, the result is the empty String. The result is a

String value, not a String object.

If pos is'a value of Number type that is an integer, then the result of x.charAt(pos) is equal to the result of
x.substring (pos, pos+1).

When the eharAt method is called with one argument pos, the following steps are taken:

1. Let O be CheckObjectCoercible(this value).

2. LetS be ToString(O).

3. ReturnlfAbrupt(S).

4. Let position be Tolnteger(pos).

5. ReturnlfAbrupt(position).

6. Let size be the number of elements in S.

7. If position < 0 or position > size, return the empty String.

8. Return a String of length 1, containing one code unit from S, namely the code unit at position position,
where the first (leftmost) code unit in S is considered to be at position 0, the next one at position 1, and so
on.

NOTE The charAt function is intentionally generic; it does not require that its this value be a String object.

Therefore, it can be transferred to other kinds of objects for use as a method.

© Ecma International 2013 301

Commented [AWB9129]: Perhaps BMPCharAt should be
provided as an alias for this method and charAt should be
marked as obsolute.

»ecmad

21.1.3.2 String.prototype.charCodeAt (pos)

NOTE Returns a Number (a nonnegative integer less than 26) that is the code unit value of the string element at
position pos in the String resulting from converting this object to a String. If there is no element at that position, the result is
NaN.

When the charCodeAt method is called with one argument pos, the following steps are taken:

Let O be CheckObjectCoercible(this value).

Let S be ToString(O).

ReturnlfAbrupt(S).

Let position be Tolnteger(pos).

ReturnIfAbrupt(position).

Let size be the number of elements in S.

If position < 0 or position > size, return NaN.

Return a value of Number type, whose value is the code unit value of the element at position position in the
String S, where the first (leftmost) element in S is considered to be at position 0, the next one at position 1,
and so on.

NG~ WNE

NOTE The charCodeAt function is intentionally generic; it does not require that its this value be a String object.
Therefore it can be transferred to other kinds of objects for use as.a method.

21.1.3.3 String.prototype.codePointAt [(pos)

NOTE Returns a nonnegative integer Numberr less than 1114112 (0x110000) that is the UTF-16 encoded code point
value starting at the string element at position pos in.the String resulting from converting this object to a String. If there is
no element at that position, the result is undefined. If a valid UTF-16 surrogate pair does not begin at pos, the result is the
code unit at pos.

When the codePointAt method is called with one argument pos, the following steps are taken:

1. Let O be CheckObjectCoercible(this value).

2. Let S be ToString(O).

3. ReturnlfAbrupt(S).

4. Let position be Tolnteger(pos).

5. ReturnIfAbrupt(position).

6. Let size be the number of elements in'S.

7. If position < 0 or position > size, return undefined.

8. Let first be'the code unit value of the element at index position in the String S.

9. If first.< 0xD800 or first > OXDBFF or position+1 = size, then return first.

10 Let second be the code unit value of the element at index position+1 in the String S.
1f'second < 0xDCOO or second > OXDFFF, then return first.

12. Return ((first — 0xD800) x 1024) + (second — 0xDCO00) + 0x10000.

NOTE The codePointAt function is intentionally generic; it does not require that its this value be a String object.
Therefore it can be transferred to other kinds of objects for use as a method.

21.1.3.4 String.prototype.concat (...args)

NOTE When the concat method is called with zero or more arguments, it returns a String consisting of the string
elements of this object (converted to a String) followed by the string elements of each of the arguments converted to a
String. The result is a String value, not a String object.

The following steps are taken:

Assert: args is a well-formed rest parameter object.

Let O be CheckObjectCoercible(this value).

Let S be ToString(O).

ReturnlfAbrupt(S).

Let args be an internal list that is a copy of the argument list passed to this function.

arowpe=

302 © Ecma International 2013

Commented [AWB9130]: Do we also need
UnicodeCharAt that returns a string of length 1 or 2?

secma

6. LetRbeS.
7. Repeat, while args is not empty
a. Remove the first element from args and let next be the value of that element.
b. Let nextString be ToString(next)
c. ReturnIfAbrupt(nextString).
d. LetR be the String value consisting of the string elements in the previous value of R followed by the
string elements of nextString.
8. ReturnR.

The length property of the concat method is 1.

NOTE The concat function is intentionally generic; it does not require that its this value be a String object.
Therefore it can be transferred to other kinds of objects for use as a method.

21.1.3.5 String.prototype.constructor

The initial value of String.prototype.constructor is the built-in'String constructor.

21.1.3.6 String.prototype.contains (searchString, position.=0)

The contains method takes two arguments, searchString and position, and.performs the following steps:

Let O be CheckObjectCoercible(this value).

Let S be ToString(O).

ReturnIfAbrupt(S).

Let searchStr be ToString(searchString).

ReturnIfAbrupt(searchstr).

Let pos be Tolnteger(position). (If position is undefined, this step produces the value 0).

ReturnlfAbrupt(pos).

Let len be the number of elements in S.

Let start be min(max(pos, 0),len):

0. Let searchLen be the number of elements in searchStr.

1. If there exists any integer k not smaller than start such that k + searchLen is not greater than len, and for all
nonnegative integers j less than searchlLen, the character at position k+j of S is the same as the character at
position j of searchStr, return true; but if there is no such integer k, return false.

BPBOONOOTAWLNE

The length property of the contains method is 1.

NOTE 1 IfssearchString appears as a substring of the result of converting this object to a String, at one or more
positions that are greater than or equal to position, then return true; otherwise, returns false. If position is undefined, 0 is
assumed, so as to search all of the String.

NOTE2 The contains function is intentionally generic; it does not require that its this value be a String object.
Therefore, it can be transferred to other kinds of objects for use as a method.

21.1.3.7 String.prototype.endsWith (searchString [, endPosition])
The following steps are taken:

Let O be CheckObjectCoercible(this value).

Let S be ToString(O).

ReturnlfAbrupt(S).

Let searchStr be ToString(searchString).
ReturnlfAbrupt(searchStr).

Let len be the number of elements in S.

If endPosition is undefined, let pos be len, else let pos be Tolnteger(endPosition).
ReturnlfAbrupt(pos).

. Let end be min(max(pos, 0), len).

10. Let searchLength be the number of elements in searchStr.
11. Let start be end - searchLength.

©oONDT AN

© Ecma International 2013 303

secmd

12. If start is less than 0, return false.

13. If the searchLength sequence of elements of S starting at start is the same as the full element sequence of
searchStr, return true.

14. Otherwise, return false.

The length property of the endsWith method is 1.

NOTE1 Returns true if the sequence of elements of searchString converted to a String is the same as the
corresponding elements of this object (converted to a String) starting at endPosition — length(this). Otherwise returns
false.

NOTE 2 The endsWith function is intentionally generic; it does not require that its this value be a String object.
Therefore, it can be transferred to other kinds of objects for use as a method.

21.1.3.8 String.prototype.indexOf (searchString, position)

If searchString appears as a substring of the result of converting this object to a String, at one or more positions
that are greater than or equal to position, then the index of .the smallest such position is returned;
otherwise, -1 is returned. If position is undefined, 0 is assumed, so as to search all of the String.

The indexOf method takes two arguments, searchString and position, and performs the following steps:

Let O be CheckObjectCoercible(this value).

Let S be ToString(O).

ReturnlfAbrupt(S).

Let searchStr be ToString(searchString).

ReturnlfAbrupt(searchString).

Let pos be Tolnteger(position). (If positionis undefined; this step produces the value 0).

ReturnIfAbrupt(pos).

Let len be the number of elements in S.

Let start be min(max(pos, 0), len).

0. Let searchLen be the number of elements in searchStr.

1. Return the smallest possible integer k not smaller than start such that k+ searchLen is not greater than len,
and for all nonnegative integers j less than searchLen, the code unit at position k+j of S is the same as the
code unit at position j of searchStr; but if there is no such integer k, then return the value -1.

HBoOoo~NgarwNE

The length property of the indexOf method is 1.

NOTE The indexOf function is intentionally generic; it does not require that its this value be a String object.
Therefore, it can be transferred to other kinds of objects for use as a method.

21.1:8.9 String.prototype.lastindexOf (searchString, position)

If searchString appears as a substring of the result of converting this object to a String at one or more positions
that are smaller than or equal to position, then the index of the greatest such position is returned;
otherwise, -1 is returned. If position is undefined, the length of the String value is assumed, so as to search
all of the String.

The lastIndex0Of method takes two arguments, searchString and position, and performs the following steps:

Let O be CheckObjectCoercible(this value).

Let S be ToString(O).

ReturnlfAbrupt(S).

Let searchStr be ToString(searchString).

ReturnlfAbrupt(searchString).

Let numPos be ToNumber(position). (If position is undefined, this step produces the value NaN).
ReturnIfAbrupt(numPos).

If numPos is NaN, let pos be +oo; otherwise, let pos be Tolnteger(numPos).

Let len be the number of elements in S.

OO NGO~ WNE

304 © Ecma International 2013

secma

10. Let start be min(max(pos, 0), len).

11. Let searchLen be the number of elements in searchStr.

12. Return the largest possible nonnegative integer k not larger than start such that k+ searchLen is not greater
than len, and for all nonnegative integers j less than searchLen, the code unit at position k+j of S is the same
as the code unit at position j of searchStr; but if there is no such integer k, then return the value -1.

The length property of the 1astIndexOf method is 1.

NOTE The lastIndexOf function is intentionally generic; it does not require that its this value be a String object.
Therefore, it can be transferred to other kinds of objects for use as a method.

21.1.3.10 String.prototype.localeCompare (that)

When the localeCompare method is called with one argument that, it returns @ Number other than NaN that
represents the result of a locale-sensitive String comparison of the this value (converted to a String) with that
(converted to a String). The two Strings are S and That. The two Strings are compared in an implementation-
defined fashion. The result is intended to order String values in the sort order specified by the system default
locale, and will be negative, zero, or positive, depending on whether S.comes before That in the sort order, the
Strings are equal, or S comes after That in the sort order, respectively.

Before perform the comparisons the following steps are performed to prepare the Strings:

Let O be CheckObjectCoercible(this value).
Let S be ToString(O).

ReturnlfAbrupt(S).

Let That be ToString(that).
ReturnlfAbrupt(That).

garwn e

The localeCompare method, if considered as a function of two.arguments this and that, is a consistent
comparison function (as defined in 22.1.3.24) on the set of all Strings.

The actual return values are implementation-defined to permit implementers to encode additional information
in the value, but the function is required to define a total ordering on all Strings and to return 0 when
comparing Strings that are considered canonically equivalent by the Unicode standard.

If no language-sensitive comparison at all is available from the host environment, this function may perform a
bitwise comparison.

NOTE1 The localeCompare method itself is not directly suitable as an argument to Array.prototype.sort
because the latter requires a function of two arguments.

NOTE 2 . This function is intended to rely on whatever language-sensitive comparison functionality is available to the
ECMAScript environment from the host environment, and to compare according to the rules of the host environment's
current locale. It is strongly recommended that this function treat Strings that are canonically equivalent according to the
Unicode standard. as identical (in other words, compare the Strings as if they had both been converted to Normalised
Form C or D first). It is also recommended that this function not honour Unicode compatibility equivalences or
decompositions.

NOTE 3 The second parameter to this function is likely to be used in a future version of this standard; it is
recommended that implementations do not use this parameter position for anything else.

NOTE4 The localeCompare function is intentionally generic; it does not require that its this value be a String object.
Therefore, it can be transferred to other kinds of objects for use as a method.

21.1.3.11 String.prototype.match (regexp)
When the match method is called with argument regexp, the following steps are taken:

1. Let O be CheckObjectCoercible(this value).
2. LetS be ToString(O).

© Ecma International 2013 305

secmad

3. ReturnlfAbrupt(S).

4. If Type(regexp) is Object and HasProperty(regexp, @ @isRegExp) is true, then let rx be regexp;

5. Else, let rx be the result of the abstract operation RegExpCreate (21.2.3.3) with arguments regexp and
undefined.

6. ReturnlfAbrupt(rx).

7. Return the result of Invoke(rx, "match", (S))..

NOTE The match function is intentionally generic; it does not require that its this value be a String object. Therefore,
it can be transferred to other kinds of objects for use as a method.

21.1.3.12 String.prototype.normalize (form = "NFC")

When the normalize method is called with one argument form, the following steps are taken:

1. Let O be CheckObjectCoercible(this value).

2. Let S be ToString(0O).

3. ReturnlfAbrupt(S).

4. If form is not provided or undefined let form be "NFC™".

5. Let f be ToString(form).

6. ReturnlfAbrupt(f).

7. Iffisnotone of "NFC", "NFD", "NFKC", or "NFKD" then throw a RangeError Exception.

8. Let ns be the String value is the result of normalizing S into the normalization form named by f as specified
in http://www.unicode.org/reports/tr15/tr15-29.html.

9. Return ns.

The length property of the normalize methodis O.

NOTE The normalize function is intentionally generic; it does not require that its this value be a String object.
Therefore it can be transferred to other kinds of objects for use as a method.

21.1.3.13 String.prototype.repeat (count)
The following steps are taken:

Let O be CheckObjectCoercible(this value).

Let S be ToString(O).

ReturnlfAbrupt(S).

Let n be the result of calling Tolnteger(count).

ReturnlfAbrupt(n).

I1f n <0, then throw a RangeError exception.

I1fn is +oo, then throw a RangeError exception.

Let T be a String value that is made from n copies of S appended together. 1fn is 0, T is the empty String.
Return T.

©oNOG A~ WNE

NOTE 1 This method creates'a String consisting of the string elements of this object (converted to String) repeated
count time.

NOTE2 The repeat function is intentionally generic; it does not require that its this value be a String object.
Therefore, it can be transferred to other kinds of objects for use as a method.

21.1.3.14 String.prototype.replace (searchValue, replaceValue)

When the replace method is called with arguments searchValue and replaceValue the following steps are
taken:

Let O be CheckObjectCoercible(this value).

Let string be ToString(O).

ReturnlfAbrupt(string).

If Type(searchValue) is Object and HasProperty(searchValue, @ @isRegEXxp) is true, then

Hwn e

306 © Ecma International 2013

| Field Code Changed

file:///C:/Users/Patrick/AppData/Local/Microsoft/Windows/Temporary%20Internet%20Files/Content.Outlook/LMCQSP1C/Searches

»eChna

a. Return the result of Invoke(searchValue, "replace", (string, replaceValue)).

5. Let searchString be ToString(searchValue).

6. ReturnlfAbrupt(searchString).

7. Search string for the first occurrence of searchString and let pos be the index position within string of the
first code unit of the matched substring and let matched be searchString. If no occurrences of searchString
were found, return string.

8. If IsCallable(replaceValue) is true, then

a. Let replValue be the result of calling the [[Call]] internal method of replaceValue passing
undefined as the this value and a List containing matched, pos, and string as the argument list.

b. Let replStr be ToString(replValue).

c. ReturnIfAbrupt(replStr).

9. Else,

a. Let captures be an empty List.

b. Let replStr be the result of the abstract operation GetReplaceSubstitution(matched, string, pos,
captures).

10. Let tailPos be pos + the number of code units in matched.

11. Let newString be the String formed by concatenating the first pos code units of string, replStr, and the
trailing substring of string starting at index tailPos. If pos is 0, the first element of the concatenation will be
the empty String.

12. Return newsString.

NOTE The replace function is intentionally generic; it‘does not require that its this value be a String object.

Therefore, it can be transferred to other kinds of objects for use as a method.

Ru

ntime Semantics: GetReplaceSubstitution Abstract Operation

The abstract operation GetReplaceSubstitution(matched, string, position, captures) performs the following steps:

BOONOOTALDE

11.

Assert: Type(matched) is String.

Let matchLength be the number of code units in matched.
Assert: Type(string) is String.

Let stringLength be the number of code units in string.
Assert: position is a non<negative integer.

Assert: position < stringLength.

Assert: captures is@a possibly empty List of Strings.

Let tailPos be position + matchLength.

Let m be the number of elements in captures.

. Let result be a String value derived from matched by replacing code unit elements in matched by

replacement text as specified in Table 33. These $ replacements are done left-to-right, and, once such a
replacement is performed, the new replacement text is not subject to further replacements.
Return result.

Table 33 — Replacement Text Symbol Substitutions

Code unit |Unicode Characters|Replacement text

©E

0x0024, 0x0024 3 $

00024, 0x0026 & matched

0x0024, 0x0060 $° If position is 0, the replacement is the empty String. Otherwise the|
replacement is the substring of string that starts at index 0 and whose
last code point is at index position -1.

0x0024, 0x0027 S If tailPos > stringLength, the replacement is the empty String.
Otherwise the replacement is the substring of string that starts at index|
tailPos and continues to the end of string.

0x0024, N where Sn where The n™ element of captures, where n is a single digit in the range 1 to 9.
0x0031 <N < 0x0039in isoneof 1 2 3 |[If n<m and the nth element of captures is undefined, use the empty|
4 5 6 7 8 9 and [String instead. |f n>m, the result is implementation-defined.|

C ed [AWB14131]: Why is this impl defined? Can

$n is not followed by

la decimal digit

cma International 2013 307

we specify this??

secmad

0x0024, N, N where [$nn where [The nn™" elemet of captures, where nn is a two-digit decimal number in
0x0030 <N < 0x0039n isoneof 0 1 2 fhe range 01 to 99. If nn<m and the nn" element of captures is
3 4 56 7 8 9 [undefined, use the empty String instead. I nn is 00 or nn>m, the result
is implementation-defined.|

Ci ed [AWB14132]: "12345" replace("1",function(m,

0x0024 $ in any context that |$
does not match on of
the above.

21.1.3.15 String.prototype.search (regexp)

When the search method is called with argument regexp, the following steps are taken:

Let O be CheckObjectCoercible(this value).
Let string be ToString(O).
ReturnlfAbrupt(string).
If Type(regexp) is Object and HasProperty(regexp, @ @isRegExp) is true , then,
a. Letrx be regexp;
Else,
a. Let rx be the result of the abstract operation RegExpCreate (21.2.3.3) with arguments regexp and
undefined.
6. ReturnlfAbrupt(rx).
7. Return the result of Invoke(rx, "search", (string)).

Hwn e

o

NOTE The search function is intentionally generic; it does not require that its this value be a String object.
Therefore, it can be transferred to other kinds of objects for use as a method.

21.1.3.16 String.prototype.slice (start, end)

The slice method takes two arguments, start and end, and returns a substring of the result of converting this
object to a String, starting from element position start and running.to, but not including, element position end
(or through the end of the String if end is undefined). If start is negative, it is treated as sourceLength+start
where sourceLength is the length of the String. If end is negative, it is treated as sourceLength+end where
sourceLength is the length of the String. The result is'a String value, not a String object. The following steps are
taken:

Let O be CheckObjectCoercible(this value).

Let S be ToString(O).

ReturnlfAbrupt(S).

Let len be the.number of elements in S.

Let intStart be Tolnteger(start).

If end is undefined, let intEnd be len; else let intEnd be Tolnteger(end).

If <intStart is negative, let from be max(len + intStart,0); else let from be min(intStart, len).
If intEnd is negative, let to be max(len + intEnd,0); else let to be min(intEnd, len).

Let span be max(to — from,0).

0. Return a String value containing span consecutive elements from S beginning with the element at position
from.

BOooNoOrwNE

The 1length property.of the s1lice method is 2.

NOTE The slice function is intentionally generic; it does not require that its this value be a String object. Therefore
it can be transferred to other kinds of objects for use as a method.

21.1.3.17 String.prototype.split (separator, limit)
Returns an Array object into which substrings of the result of converting this object to a String have been
stored. The substrings are determined by searching from left to right for occurrences of separator; these

occurrences are not part of any substring in the returned array, but serve to divide up the String value. The
value of separator may be a String of any length or it may be a RegExp object.

308 © Ecma International 2013

p.r) {x=[this,m,p,r]; return null})

pecma

The value of separator may be an empty String, an empty regular expression, or a regular expression that can
match an empty String. In this case, separator does not match the empty substring at the beginning or end of
the input String, nor does it match the empty substring at the end of the previous separator match. (For
example, if separator is the empty String, the String is split up into individual code unit elements; the length of
the result array equals the length of the String, and each substring contains one code unit.) If separator is a
regular expression, only the first match at a given position of the this String is considered, even if
backtracking could yield a non-empty-substring match at that position. (For example, "ab" .split(/a*?/)
evaluates to the array ["a","b"], while "ab".split (/a*/) evaluates to the array["","b"].)

If the this object is (or converts to) the empty String, the result depends on whether separator can match the
empty String. If it can, the result array contains no elements. Otherwise, the result array contains one element,
which is the empty String.

If separator is a regular expression that contains capturing parentheses, then each time separator is matched
the results (including any undefined results) of the capturing parentheses are spliced into the output array.
For example,

"Aboldand<CODE>coded</CODE>".split (/< (\/) ? ([*<>]+)>/)

evaluates to the array
["A", undefined, "B", "bold", "/", "B", "and", undefined,
"CODE" , "Cod.ed." , n/u , HCODEH , " n]

If separator is undefined, then the result array contains just one String, which is the this value (converted to a
String). If limit is not undefined, then the output array is truncated so that it contains no more than limit
elements.

When the split method is called, the following steps are taken:

1. Let O be CheckObjectCoercible(this value).
2. ReturnlfAbrupt(O).
3. If Type(separator) is Object and HasProperty(separator, @ @isRegExp) is true , then,
a. Return the result of Invoke(separator, "split", (O, limit))
Let S be ToString(O).
ReturnlfAbrupt(S).
Let A be the resultof the abstract operation ArrayCreate with argument 0.
Let lengthA be 0.
If limit is undefined, let lim = 2%%-1; else let lim = ToUint32(limit).
Let s be the.number of elements in S.
10. Letp =.0.
11. Let R'be ToString(separator).
12. ReturnlfAbrupt(R).
13. If lim = 0, return A.
14. If separator is undefined, then
a. Let status be the result of calling the [[DefineOwnProperty]] internal method of A with arguments
"0"™ and Property Descriptor {[[Valuel]: S, [[Writable]]: true, [[Enumerable]]: true,
[[Configurable]]: true}.
b. Assert: statusis not an abrupt completion.
c. Return A.
15. If s =0, then
a. Let z be the result of SplitMatch(S, 0, R).
b. If zis not false, return A.
c. Let status be the result of calling the [[DefineOwnProperty]] internal method of A with arguments
"0" and Property Descriptor {[[Value]]: S, [[Writable]]: true, [[Enumerable]]: true,
[[Configurable]]: true}.
d. Assert: status is not an abrupt completion.
e. Return A.
16. Letq =p.
17. Repeat, while q # s
a. Let e be the result of SplitMatch(S, g, R).

© Ecma International 2013 309

secmd

b. Ifeis false, then let q = g+1.
c. Else eisan integer index into S,
i Ife =p, then let q = g+1.
ii. Else e = p,
1. Let T be a String value equal to the substring of S consisting of the code units at
positions p (inclusive) through g (exclusive).
2. Let status be the result of calling the [[DefineOwnProperty]] internal method of A

with arguments ToString(lengthA) and Property Descriptor {[[Value]]: T,

[[Writable]]: true, [[Enumerable]]: true, [[Configurable]]: true}.

Assert: status is not an abrupt completion.

Increment lengthA by 1.

If lengthA = lim, return A.

Letp =e.

. Letg=p.

18. Let T be a String value equal to the substring of S consisting of the code.units at positions p (inclusive)
through s (exclusive).

19. Let status be the result of calling the [[DefineOwnProperty]] internal method of A with arguments
ToString(lengthA) and Property Descriptor {[[Value]]: T, [[Writable]]: true, [[Enumerable]]: true,
[[Configurable]]: true}.

20. status is not an abrupt completion.

21. Return A.

No o sw

Runtime Semantics: SplitMatch Abstract Operation

The abstract operation SplitMatch takes three parameters, a String S, an integer g, and a String R, and
performs the following in order to return either false or the end index of a match:

Type(R) must be String. Let r be the number of code units.in R.

Let s be the number of code units in S.

If g+r > s then return false.

If there exists an integer i between.0 (inclusive) and r<{(exclusive) such that the code unit at position gq+i of S
is different from the code unit at position i of R, then return false.

5. Return g+r.

Hwn e

The length property of the split method is 2.

NOTE The split function is intentionally generic; it does not require that its this value be a String object. Therefore,
it can be transferred to other kinds of objects for use as a method.

21.1.3.18 String.prototype.startsWith (searchString [, position])
Thefollowing steps are taken:

Let O be CheckObjectCoercible(this value).

Let S be ToString(O).

ReturnlfAbrupt(S).

Let searchStr be ToString(searchString).

ReturnlfAbrupt(searchStr).

Let pos be Tolnteger(position). (If position is undefined, this step produces the value 0).

ReturnlfAbrupt(pos).

Let len be the number of elements in S.

Let start be min(max(pos, 0), len).

10. Let searchLength be the number of elements in searchStr.

11. If searchLength+start is greater than len, return false.

12. If the searchLength sequence of elements of S starting at start is the same as the full element sequence of
searchStr, return true.

13. Otherwise, return false.

©oOoND>T~WN R

The length property of the startsWith method is 1.

310 © Ecma International 2013

secma

NOTE 1 This method returns true if the sequence of elements of searchString converted to a String is the same as the
corresponding elements of this object (converted to a String) starting at position. Otherwise returns false.

NOTE 2 The startsWith function is intentionally generic; it does not require that its this value be a String object.
Therefore, it can be transferred to other kinds of objects for use as a method.

21.1.3.19 String.prototype.substring (start, end)

The substring method takes two arguments, start and end, and returns a substring of the result of converting
this object to a String, starting from element position start and running to, but not including, element position
end of the String (or through the end of the String is end is undefined). The result is a String value, not a String
object.

If either argument is NaN or negative, it is replaced with zero; if either argument is larger than the length of the
String, itis replaced with the length of the String.

If start is larger than end, they are swapped.
The following steps are taken:

Let O be CheckObjectCoercible(this value).

Let S be ToString(O).

ReturnlfAbrupt(S).

Let len be the number of elements in S.

Let intStart be Tolnteger(start).

If end is undefined, let intEnd be len; else let.intEnd be Tolnteger(end).

Let finalStart be min(max(intStart, 0), len).

Let finalEnd be min(max(intEnd, 0), len).

Let from be min(finalStart, finalEnd).

0. Let to be max(finalStart, finalEnd).

1. Return a String whose length is.to.- from, containing code units from S, namely the code units with indices
from through to —1, in ascending order.

BPBOONOOTAWLDE

The length property of the substring method is 2.

NOTE The substring function is_ intentionally-generic; it does not require that its this value be a String object.
Therefore, it can be transferred to other kinds of objects for use as a method.

21.1.3.20 String.prototype.toLocaleLowerCase ()

This function interprets a string value as a sequence of code points, as described in 6.1.4.

This function works exactly the same as toLowerCase except that its result is intended to yield the correct
result for the host environment’s current locale, rather than a locale-independent result. There will only be a
difference in the few cases (such as Turkish) where the rules for that language conflict with the regular

Unicode case mappings.

NOTE 1 The first parameter to this function is likely to be used in a future version of this standard; it is recommended
that implementations do not use this parameter position for anything else.

NOTE 2 The toLocaleLowerCase function is intentionally generic; it does not require that its this value be a String
object. Therefore, it can be transferred to other kinds of objects for use as a method.

21.1.3.21 String.prototype.toLocaleUpperCase ()
This function interprets a string value as a sequence of code points, as described in 6.1.4.

This function works exactly the same as toUpperCase except that its result is intended to yield the correct
result for the host environment's current locale, rather than a locale-independent result. There will only be a

© Ecma International 2013 311

secmd

difference in the few cases (such as Turkish) where the rules for that language conflict with the regular
Unicode case mappings.

NOTE 1 The first parameter to this function is likely to be used in a future version of this standard; it is recommended
that implementations do not use this parameter position for anything else.

NOTE 2 The toLocaleUpperCase function is intentionally generic; it does not require that its this value be a String
object. Therefore, it can be transferred to other kinds of objects for use as a method.

21.1.3.22 String.prototype.toLowerCase ()

This function interprets a string value as a sequence of code points, as described in 6.1.4. The following steps
are taken:

1. Let O be CheckObjectCoercible(this value).

2. LetS be ToString(O).

3. ReturnlfAbrupt(S).

4. Let cpList be a List containing in order the code points as defnedin 6.1.4 of S, starting at the first element of
S.

5. For each code point c in cpList, if the Unicode Character Database provides a language insensitive lower

case equivalent of ¢ then replace c in cpList with that equivalent code point(s).

6. Let cuList be a new List.

7. For each code point c in cpList, in order, append to cuList the elements of the UTF-16 Encoding (clause 6)
of c.

8. Let L be a String whose elements are, in order, the elements of cuList .

9. Return L.

The result must be derived according to the case mappings.in the Unicode character database (this explicitly
includes not only the UnicodeData.txt file, but also the SpecialCasings.txt file that accompanies it).

NOTE 1 The case mapping of some code points may produce multiple code points . In this case the result String may
not be the same length as the source String. Because both toUpperCase and toLowerCase have context-sensitive
behaviour, the functions are not symmetrical. In other words, s.toUpperCase () . toLowerCase () is not necessarily
equal to s . toLowerCase ()«

NOTE2 The toLowerCase function is‘intentionally generic; it does not require that its this value be a String object.
Therefore, it can be transferred to other kinds of objects for use as a method.

21.1.3.23 String.prototype.toString ()
When the tostring method.is called, the following steps are taken:

1. Let s be thisStringValue(this value).
2. Return s.

NOTE For a String object, the toString method happens to return the same thing as the valueOf method.
21.1.3.24 String.prototype.toUpperCase ()
This function interprets a string value as a sequence of code points, as described in 6.1.4.

This function behaves in exactly the same way as String.prototype.toLowerCase, except that code
points are mapped to their uppercase equivalents as specified in the Unicode Character Database.

NOTE The toUpperCase function is intentionally generic; it does not require that its this value be a String object.
Therefore, it can be transferred to other kinds of objects for use as a method.

21.1.3.25 String.prototype.trim ()

This function interprets a string value as a sequence of code points, as described in 6.1.4.

312 © Ecma International 2013

secma

The following steps are taken:

1. Let O be CheckObjectCoercible(this value).

2. LetS be ToString(O).

3. ReturnlfAbrupt(S).

4. Let T be a String value that is a copy of S with both leading and trailing white space removed. The definition
of white space is the union of WhiteSpace and LineTerminator. When determining whether an Unicode
character is in Unicode general category “Zs”, code unit sequences are interpreted as UTF-16 encoded code
point sequences as specified in 6.1.4.

5. ReturnT.

NOTE The trim function is intentionally generic; it does not require that its this value be a String object. Therefore, it

can be transferred to other kinds of objects for use as a method.
21.1.3.26 String.prototype.valueOf ()
When the valueOf method is called, the following steps are taken:

1. Let s be thisStringValue(this value).
2. Return s.

21.1.3.27 String.prototype [@@iterator]()

When the @@iterator method is called it returns an Iterator object(25.1.2) that iterates over the code points
of a String value, returning each code point as a String value. The following steps are taken:

21.1.4 Properties of String Instances

String instances are String exotic objects and have the internal methods specified for such objects. String
instances inherit properties from the String prototype object. String instances also have a [[StringData]]
internal data property.

String instances have @ length property, and a set of enumerable properties with integer indexed names.
21.1.4.1 length

The number of elements in the String value represented by this String object.

Once-a String object is initialised, this property is unchanging. It has the attributes { [[Writable]]: false,
[[Enumerable]]: false, [[Configurable]]: false }.

21.2 RegExp (Regular Expression) Objects

A RegExp object contains a regular expression and the associated flags.

NOTE The form and functionality of regular expressions is modelled after the regular expression facility in the Perl 5
programming language.

21.2.1 Patterns

The RegExp constructor applies the following grammar to the input pattern String. An error occurs if the
grammar cannot interpret the String as an expansion of Pattern.

Syntax

Pattern ::
Disjunction

© Ecma International 2013 313

Commented [AWB19133]: TODO: see
http://norbertlindenberg.com/2012/05/ecmascript-
supplementary-characters/index.htmk#String

http://norbertlindenberg.com/2012/05/ecmascript-supplementary-characters/index.html#String
http://norbertlindenberg.com/2012/05/ecmascript-supplementary-characters/index.html#String

secmd

Disjunction ::
Alternative
Alternative | Disjunction

Alternative ::
[empty]
Alternative Term

Term ::
Assertion
Atom
Atom Quantifier

Assertion ::

S

w o

$
\
\
(? = Disjunction)
(2 ! Disjunction)

AVINC]

Quantifier ::
QuantifierPrefix
QuantifierPrefix ?

QuantifierPrefix ::
*

+

?

{ DecimalDigits }

{ DecimalDigits , }

{ DecimalDigits , DecimalDigits }

Atom ::
PatternCharacter.

\ AtomEscape
CharacterClass
(Disjunction)
(2 : Disjunction)

PatternCharacter ::
SourceCharacter but not one of
A% N o+ 2 () L1 {4} |

AtomEscape ::
DecimalEscape
CharacterEscape
CharacterClassEscape

CharacterEscape ::
ControlEscape
c ControlLetter
HexEscapeSequence
UnicodeEscapeSequence
IdentityEscape

ControlEscape :: one of
f n r t v

314 © Ecma International 2013

secma

ControlLetter :: one of

a b c de £f gh i j k 1 m n o p g r s t u v w x 'y z

A B CDEF G HI J I KU LMNUOU P QI RS T UUVWIX Y 2
IdentityEscape ::

SourceCharacter but not IdentifierPart

<ZWJ>

<ZWNJ>

DecimalEscape ::
DecimalintegerLiteral [lookahead ¢ DecimalDigit]

CharacterClassEscape :: one of
d D s S w W

CharacterClass ::
[[lookahead ¢ {*}] ClassRanges]
[~ ClassRanges 1

ClassRanges ::
[empty]
NonemptyClassRanges

NonemptyClassRanges ::
ClassAtom
ClassAtom NonemptyClassRangesNoDash
ClassAtom - ClassAtom ClassRanges

NonemptyClassRangesNoDash ::
ClassAtom
ClassAtomNoDash NonemptyClassRangesNoDash
ClassAtomNoDash - ClassAtom ClassRanges

ClassAtom ::

ClassAtomNoDash

ClassAtomNoDash ::
SourceCharacter but not one of \ or] or -
\ ClassEscape

ClassEscape ::
DecimalEscape
b
CharacterEscape
CharacterClassEscape

21.2.2 Pattern Semantics

A regular expression pattern is converted into an internal procedure using the process described below. An
implementation is encouraged to use more efficient algorithms than the ones listed below, as long as the
results are the same. The internal procedure is used as the value of a RegExp object’s [[RegExpMatcher]]
internal data property.

21.2.2.1 Notation

The descriptions below use the following variables:

e Input is the String being matched by the regular expression pattern. The notation input[n] means
the n™ character of input, where n can range between 0 (inclusive) and InputLength (exclusive).

© Ecma International 2013 315

secmd

InputLength is the number of characters in the Input String.

NcapturingParens is the total number of left capturing parentheses (i.e. the total number of times
the Atom :: (Disjunction) production is expanded) in the pattern. A left capturing parenthesis is
any (pattern character that is matched by the (terminal of the Atom :: (Disjunction) production.
IgnoreCase is true if the RegExp object's [[OriginalFlags]] internal data property contains "i" and
otherwise is false.

Multiline is true if the RegExp object’s [[OriginalFlags]] internal data property contains "m" and
otherwise is false.

Furthermore, the descriptions below use the following internal data structures:

A CharSet is a mathematical set of characters.

A State is an ordered pair (endIndex, captures) where endIndex is‘an integer and captures is a List of
NcapturingParens values. States are used to represent partial match states in the regular
expression matching algorithms. The endindex is one plus the index of the last input character
matched so far by the pattern, while captures holds the'results of capturing parentheses. The n®
element of captures is either a String that represents the value obtained by the:n" set of capturing
parentheses or undefined if the n™ set of capturing parentheses hasn't been reached yet. Due to
backtracking, many States may be in use at any.time during the matching process.

A MatchResult is either a State or the special token failure thatindicates that the match failed.

A Continuation procedure is an internal closure (i.e. an internal procedure with some arguments
already bound to values) that takes one State argument and returns a MatchResult result. If an
internal closure references variables bound in the function that creates the closure, the closure
uses the values that these variables had at the time the closure was created. The Continuation
attempts to match the remaining portion (specified by the closure's already-bound arguments) of
the pattern against the input String, starting at the intermediate state given by its State argument. If
the match succeeds, the Continuation returns the final State that it reached; if the match fails, the
Continuation returns failure.

A Matcher procedure is an internal closure that takes two arguments -- a State and a Continuation --
and returns a MatchResult result. A Matcher attempts to match a middle subpattern (specified by
the closure's already-bound arguments) of the pattern against the input String, starting at the
intermediate state given by its State argument. The Continuation argument should be a closure that
matches the rest of the pattern. After matching the subpattern of a pattern to obtain a new State,
the Matcher then calls Continuation on that new State to test if the rest of the pattern can match as
well. If it can, the Matcher returns the State returned by Continuation; if not, the Matcher may try
different choices at its choice points, repeatedly calling Continuation until it either succeeds or all
possibilities have been exhausted.

An AssertionTester. procedure is an internal closure that takes a State argument and returns a
Boolean result. The assertion tester tests a specific condition (specified by the closure's already-
bound arguments) against the current place in the input String and returns true if the condition
matched or false if not.

An EscapeValue is either a character or an integer. An EscapeValue is used to denote the
interpretation of a DecimalEscape escape sequence: a character ch means that the escape
sequence is.interpreted as the character ch, while an integer n means that the escape sequence
is interpreted as a backreference to the n'" set of capturing parentheses.

21.2.2.2 Pattern

The production Pattern :: Disjunction evaluates as follows:

L
2.

Evaluate Disjunction to obtain a Matcher m.
Return an internal closure that takes two arguments, a String str and an integer index, and performs the

following:

316

1. Let Input be the given String str. This variable will be used throughout the algorithms in
21.2.2.

© Ecma International 2013

secma

2. Let InputLength be the length of Input. This variable will be used throughout the algorithms
in21.2.2.

3. Let c be a Continuation that always returns its State argument as a successful MatchResult.

4. Let cap be a List of NcapturingParens undefined values, indexed 1 through
NcapturingParens.

5. Let x be the State (index, cap).

6. Call m(x, c) and return its result.

NOTE A Pattern evaluates ("compiles”) to an internal procedure value. RegExp.prototype.exec can then apply
this procedure to a String and an offset within the String to determine whether the pattern would match starting at exactly
that offset within the String, and, if it does match, what the values of the capturing parentheses would be. The algorithms
in 21.2.2 are designed so that compiling a pattern may throw a SyntaxError exception;on the other hand, once the
pattern is successfully compiled, applying its result internal procedure to find a match in a String cannot throw an
exception (except for any host-defined exceptions that can occur anywhere such as out-of-memory).

21.2.2.3 Disjunction

The production Disjunction :: Alternative evaluates by evaluating Alternative to obtain a Matcher and returning
that Matcher.

The production Disjunction :: Alternative | Disjunction evaluates as follows:

1. Evaluate Alternative to obtain a Matcher m1.
2. Evaluate Disjunction to obtain a Matcher m2.
3. Return an internal Matcher closure that takes two arguments, a State x and a Continuation c, and performs
the following:
1.Call m1(x, c) and let r be its result.
2.1f risn't failure, return r.
3.Call m2(x, c) and return its result.

NOTE The | regular expression operator separates two alternatives. The pattern first tries to match the left Alternative
(followed by the sequel of the regular expression); if it fails, it tries to match the right Disjunction (followed by the sequel of
the regular expression). If the left Alternative, the right Disjunction, and the sequel all have choice points, all choices in the
sequel are tried before moving on to the next choice in the left Alternative. If choices in the left Alternative are exhausted,
the right Disjunction is tried instead of the left Alternative. Any capturing parentheses inside a portion of the pattern skipped
by | produce undefined values instead of Strings. Thus, for example,

/alab/.exec ("abec")
returns the result "a" and not "ab". Moreover,

/((a).| (ab)) ((ec) | (bc))/.exec("abc")
returns the array

["abc™, "a", "a", undefined, "bc", undefined, "bc"]
and not

["abec", "ab", undefined, "ab", "c", "c", undefined]

21.2.2.4 Alternative

The production Alternative :: [empty] evaluates by returning a Matcher that takes two arguments, a State x and a
Continuation c, and returns the result of calling c(x).

The production Alternative :: Alternative Term evaluates as follows:

1. Evaluate Alternative to obtain a Matcher m1.

2. Evaluate Term to obtain a Matcher m2.

3. Return an internal Matcher closure that takes two arguments, a State x and a Continuation c, and performs
the following:

1.Create a Continuation d that takes a State argument y and returns the result of calling m2(y, c).
2.Call m1(x, d) and return its result.

© Ecma International 2013 317

secmd

NOTE Consecutive Terms try to simultaneously match consecutive portions of the input String. If the left Alternative,
the right Term, and the sequel of the regular expression all have choice points, all choices in the sequel are tried before
moving on to the next choice in the right Term, and all choices in the right Term are tried before moving on to the next
choice in the left Alternative.

21.2.2.5 Term

The production Term :: Assertion evaluates by returning an internal Matcher closure that takes two arguments,
a State x and a Continuation c, and performs the following:

Evaluate Assertion to obtain an AssertionTester t.
Call t(x) and let r be the resulting Boolean value.
If r is false, return failure.

Call c(x) and return its result.

Hwn e

The production Term :: Atom evaluates by evaluating Atom to obtain a Matcher and returning that Matcher.
The production Term :: Atom Quantifier evaluates as follows:

Evaluate Atom to obtain a Matcher m.

Evaluate Quantifier to obtain the three results: an integer‘min, an integer (or «) max, and Boolean greedy.

If max is finite and less than min, then throw a SyntaxError exception,

Let parenindex be the number of left capturing parentheses in the entire regular expression that occur to the

left of this production expansion's Term. This is the total number of times the Atom :: (Disjunction)

production is expanded prior to this production's Term plus the total number of Atom :: (Disjunction)

productions enclosing this Term.

5. Let parenCount be the number of left capturing parentheses in the expansion of this production's Atom. This
is the total number of Atom :: (Disjunction) productions.enclosed by this production's Atom.

6. Return an internal Matcher closure that takes two arguments, a State x and a Continuation c, and performs

the following:

1.Call RepeatMatcher(m, min, max, greedy, X, c, parenindex, parenCount) and return its result.

Hwn e

Runtime Semantics: RepeatMatcher Abstract Operation

The abstract operation RepeatMatcher takes eight parameters, a Matcher m, an integer min, an integer (or o)
max, a Boolean greedy, a State x, a Continuation ¢, an integer parenindex, and an integer parenCount, and
performs the following:

1. If max.is zero, then call c(x) and return its result.
2. Create an internal Continuation closure d that takes one State argument y and performs the following:

1.1f min is zero and y's endindex is equal to x's endIndex, then return failure.
2.1f min is zero then let min2 be zero; otherwise let min2 be min-1.
3.1f max is oo, then let max2 be «; otherwise let max2 be max—1.
4.Call RepeatMatcher(m, min2, max2, greedy, y, c, parenindex, parenCount) and return its
result.
Let cap be a fresh copy of X's captures List.
For every integer k that satisfies parenindex < k and k < parenindex+parenCount, set cap[k] to undefined.
Let e be x's endIndex.
Let xr be the State (e, cap).
If min is not zero, then call m(xr, d) and return its result.
If greedy is false, then
a. Call c(x) and let z be its result.
b. If zis not failure, return z.
¢. Call m(xr, d) and return its result.
9. Call m(xr, d) and let z be its result.
10. If z is not failure, return z.
11. Call c(x) and return its result.

®NOoO G A W

318 © Ecma International 2013

»eCima

NOTE1 An Atom followed by a Quantifier is repeated the number of times specified by the Quantifier. A Quantifier can
be non-greedy, in which case the Atom pattern is repeated as few times as possible while still matching the sequel, or it
can be greedy, in which case the Atom pattern is repeated as many times as possible while still matching the sequel. The
Atom pattern is repeated rather than the input String that it matches, so different repetitions of the Atom can match different
input substrings.

NOTE 2 If the Atom and the sequel of the regular expression all have choice points, the Atom is first matched as many
(or as few, if non-greedy) times as possible. All choices in the sequel are tried before moving on to the next choice in the
last repetition of Atom. All choices in the last (n'") repetition of Atom are tried before moving on to the next choice in the
next-to-last (n—1)% repetition of Atom; at which point it may turn out that more or fewer repetitions of Atom are now possible;
these are exhausted (again, starting with either as few or as many as possible) before moving on to the next choice in the
(n-1) repetition of Atom and so on.

Compare
/ala-z]1{2,4}/.exec("abcdefghi")
which returns "abcde" with
/ala-z]{2,4}?/.exec("abcdefghi")
which returns "abe".

Consider also
/ (aa|aabaac|ba|b|c) */.exec ("aabaac")
which, by the choice point ordering above, returns the array
["aaba", "ba"]
and not any of:
["aabaac", "aabaac"]
["aabaac", "c"]
The above ordering of choice points can be used to write a regular expression that calculates the greatest common divisor
of two numbers (represented in unary notation). The following example calculates the gcd of 10 and 15:
"aaaaaaaaaa,aaaaaaaaaaaaaaa".replace (/*(a+) \1*,\1+$/,"$1")

which returns the gcd in unary notation "aaaaa".

NOTE 3 Step 4 of the RepeatMatcher clears Atom's captures each time Atom is repeated. We can see its behaviour in
the regular expression

/(2) ((a+)? (b+)?(c)) */.exec ("zaacbbbcac")
which returns the array

["zaacbbbecac", "z", "aec", "a", undefined, "c"]
and not

["zaacbbbcac", "z", "ac", "a", "bbb", "c"]
because each iteration of the outermost * clears all captured Strings contained in the quantified Atom, which in this case
includes capture Strings numbered 2, 3, 4, and 5.

NOTE 4 Step 1 of the RepeatMatcher's d closure states that, once the minimum number of repetitions has been
satisfied, any more expansions of Atom that match the empty String are not considered for further repetitions. This
prevents the regular expression engine from falling into an infinite loop on patterns such as:

/(a*)*/.exec("b")
or the slightly more complicated:

/ (a*)b\1+/.exec ("baaaac")
which returns the array

["b", ""]

21.2.2.6 Assertion

The production Assertion :: ~ evaluates by returning an internal AssertionTester closure that takes a State
argument x and performs the following:

1. Lete be x's endIndex.

2. Ifeis zero, return true.
3. If Multiline is false, return false.

© Ecma International 2013 319

secmd

4. If the character Input[e—1] is one of LineTerminator, return true.
5. Return false.

The production Assertion :: $ evaluates by returning an internal AssertionTester closure that takes a State
argument x and performs the following:

Let e be x's endIndex.

If e is equal to InputLength, return true.

If Multiline is false, return false.

If the character Input[e] is one of LineTerminator, return true.
Return false.

arwpe=

The production Assertion :: \ b evaluates by returning an internal AssertionTester closure that takes a State
argument x and performs the following:

Let e be x's endIndex.

Call IsWordChar(e—1) and let a be the Boolean result.
Call IsWordChar(e) and let b be the Boolean result.
If a is true and b is false, return true.

If a is false and b is true, return true.

Return false.

ok wnE

The production Assertion :: \ B evaluates by returning an internal AssertionTester closure that takes a State
argument x and performs the following:

Let e be x's endIndex.

Call IsWordChar(e—1) and let a be the Boolean result.
Call IsWordChar(e) and let b be the Boolean result.

If ais true and b is false, return false.

If a is false and b is true, return false.

Return true.

gl wpn e

The production Assertion :: (2 = Disjunction) evaluates as follows:

1. Evaluate Disjunction to obtain a Matcher m.
2. Return an internal Matcher closure that takes two.arguments, a State x and a Continuation c, and performs
the following steps:
1.Let.d be a Continuation that always returns its State argument as a successful MatchResult.
2.Call m(x, d) and let r be its result.
3.If ris failure, return failure.
4.Lety be r's State.
5.Let cap bey's captures List.
6.Let xe be x's endIndex.
7.Let z be the State (xe, cap).
8.Call c(z) and return its result.

The production Assertion:: (2 ! Disjunction) evaluates as follows:

1. Evaluate Disjunction to obtain a Matcher m.
2. Return an internal Matcher closure that takes two arguments, a State x and a Continuation c, and performs
the following steps:

1.Let d be a Continuation that always returns its State argument as a successful MatchResult.
2.Call m(x, d) and let r be its result.
3.1f risn't failure, return failure.
4.Call c(x) and return its result.
Runtime Semantics: IsWordChar Abstract Operation

The abstract operation IsWordChar takes an integer parameter e and performs the following:

320 © Ecma International 2013

pecma

1. Ifeis-1ore isInputLength, return false.
2. Letc be the character Input[e].
3. If c is one of the sixty-three characters below, return true.

abcde fghijklmnopgrs
A BCDEVFGHTIJKILMNOPO QRS
01234586 7829

4. Return false.

tuvwzxyz
TUVWIXYZ

21.2.2.7 Quantifier
The production Quantifier :: QuantifierPrefix evaluates as follows:

1. Evaluate QuantifierPrefix to obtain the two results: an integer min and an integer (or «) max.
2. Return the three results min, max, and true.

The production Quantifier :: QuantifierPrefix ? evaluates as follows:

1. Evaluate QuantifierPrefix to obtain the two results: an integer'min and an integer (or o) max.
2. Return the three results min, max, and false.

The production QuantifierPrefix :: * evaluates by returning the two results‘0 and oc.
The production QuantifierPrefix :: + evaluates by returning the two results 1 and o.
The production QuantifierPrefix :: ? evaluates by returning the two results 0 and 1.
The production QuantifierPrefix :: { DecimalDigits '} evaluates as follows:

1. Leti be the MV of DecimalDigits (see 11.8.3).
2. Return the two results i and.i.

The production QuantifierPrefix :: { DecimalDigits , '} evaluates as follows:

1. Leti be the MV of'DecimalDigits.
2. Return the two resultsi and .

The production-QuantifierPrefix :: { DecimalDigits , DecimalDigits } evaluates as follows:
1. Letibe the MV of the first DecimalDigits.

2. Let j be the MV of the second DecimalDigits.

3. Return the two results i and j.

21.2.2.8 Atom

The production Atom :: PatternCharacter evaluates as follows:

1. Letch be the character represented by PatternCharacter.

2. Let A be an one-element CharSet containing the character ch.

3. Call CharacterSetMatcher(A, false) and return its Matcher result.

The production Atom :: . evaluates as follows:

1. Let A be the set of all characters except LineTerminator.
2. Call CharacterSetMatcher(A, false) and return its Matcher result.

The production Atom :: \ AtomEscape evaluates by evaluating AtomEscape to obtain a Matcher and returning
that Matcher.

© Ecma International 2013 321

secmd

The production Atom :: CharacterClass evaluates as follows:

1. Evaluate CharacterClass to obtain a CharSet A and a Boolean invert.
2. Call CharacterSetMatcher(A, invert) and return its Matcher result.

The production Atom :: (Disjunction) evaluates as follows:

1. Evaluate Disjunction to obtain a Matcher m.

2. Let parenindex be the number of left capturing parentheses in the entire regular expression that occur to the
left of this production expansion's initial left parenthesis. This is the total number of times the
Atom :: (Disjunction) production is expanded prior to this production's Atom plus the total number of
Atom :: (Disjunction) productions enclosing this Atom.

3. Return an internal Matcher closure that takes two arguments, a State x and a Continuation c, and performs
the following steps:

1.Create an internal Continuation closure d that takes one State argument y and performs the
following steps:
Let cap be a fresh copy of y's captures List.
Let xe be x's endIndex.
Let ye be y's endIndex.
Let s be a fresh String whose characters are the characters of Input at
positions xe (inclusive) through ye (exclusive).
5. Set cap[parenindex+1] tos.
6. Let z be the State (ye, cap).
7. Call c(z) and return its result.
2.Call m(x, d) and return its result.

LN

The production Atom :: (? : Disjunction) evaluates by evaluating Disjunction to obtain a Matcher and
returning that Matcher.

Runtime Semantics: CharacterSetMatcher Abstract Operation

The abstract operation CharacterSetMatcher takes two arguments, a CharSet A and a Boolean flag invert, and
performs the following:

1. Return an internal Matcher closure that takes two arguments, a State x and a Continuation c, and performs
the following steps:

1.Let e be x'sendIndex.
2.1f e is.InputLength, return failure.
3.Let ch be the character Input[e].
4.Let cc be the result of Canonicalize(ch).
5.1f invert is false, then
a. If there does not exist a member a of set A such that Canonicalize(a) is cc, return
failure,
6.Else invert is true,
a. If.there exists a member a of set A such that Canonicalize(a) is cc, return failure.
7.Let cap be x's captures List.
8.Let y be the State (e+1, cap).
9.Call c(y) and return its result.

Runtime Semantics: Canonicalize Abstract Operation

The abstract operation Canonicalize takes a character parameter ch and performs the following steps:

1. If IgnoreCase is false, return ch.

2. Letu be ch converted to upper case as if by calling the standard built-in method
String.prototype. toUpperCase on the one-character String ch.

3. If u does not consist of a single character, return ch.
4. Let cu be u's character.

322 © Ecma International 2013

secma

5. If ch's code unit value is greater than or equal to decimal 128 and cu's code unit value is less than decimal
128, then return ch.
6. Return cu.

NOTE1 Parentheses of the form (Disjunction) serve both to group the components of the Disjunction pattern
together and to save the result of the match. The result can be used either in a backreference (\ followed by a nonzero
decimal number), referenced in a replace String, or returned as part of an array from the regular expression matching
internal procedure. To inhibit the capturing behaviour of parentheses, use the form (?: Disjunction) instead.

NOTE 2 The form (2= Disjunction) specifies a zero-width positive lookahead. In order for it to succeed, the pattern
inside Disjunction must match at the current position, but the current position is not advanced before matching the sequel.
If Disjunction can match at the current position in several ways, only the first one is tried. Unlike other regular expression
operators, there is no backtracking into a (2= form (this unusual behaviour is inherited from Perl). This only matters when
the Disjunction contains capturing parentheses and the sequel of the pattern contains backreferences to those captures.

For example,
/ (?=(a+))/.exec("baaabac")

matches the empty String immediately after the first b and therefore returns the array:
["", "aaa"]

To illustrate the lack of backtracking into the lookahead, consider:
/ (?=(a+))a*b\1l/.exec ("baaabac")

This expression returns

["aba", "a"]
and not:

["aaaba", "a"]

NOTE 3 The form (?! Disjunction) specifies a zero-width negative lookahead. In order for it to succeed, the pattern
inside Disjunction must fail to match at the current position. The current position is not advanced before matching the
sequel. Disjunction can contain capturing parentheses, but backreferences to them only make sense from within
Disjunction itself. Backreferences to these capturing parentheses from elsewhere in the pattern always return undefined
because the negative lookahead must fail for the pattern to succeed. For example,

/(.*2)a(?! (a+)b\2c)\2(.*)/.exec ("baaabaac")
looks for an a not immediately followed by some positive number n of a's, a b, another n a's (specified by the first \2) and
a c. The second \2 is outside the negative lookahead, so it matches against undefined and therefore always succeeds.
The whole expression returns the array:

["baaabaac", "ba", undefined, "abaac"]

In case-insignificant matches all characters are implicitly converted to upper case immediately before they are compared.
However, if converting a character to upper case would expand that character into more than one character (such as
converting "8" (\uOODF) into "Ss"), then the character is left as-is instead. The character is also left as-is if it is not an
ASCII character but converting it to upper case would make it into an ASCII character. This prevents Unicode characters
such as \u0131 and \u017F from matching regular expressions such as /[a-z]/i, which are only intended to match
ASCII letters. Furthermore, if these conversions were allowed, then / [~\W] /i would match each of a, b, ..., h, but not i
ors.

21.2.2.9 AtomEscape
The production AtomEscape :: DecimalEscape evaluates as follows:

1. Evaluate DecimalEscape to obtain an EscapeValue E.
2. If Eis acharacter, then
a. Letch be E's character.
b. Let A be an one-element CharSet containing the character ch.
c. Call CharacterSetMatcher(A, false) and return its Matcher result.
E must be an integer. Let n be that integer.
4. 1f n=0 or n>NcapturingParens then throw a SyntaxError exception.
5. Return an internal Matcher closure that takes two arguments, a State x and a Continuation c, and performs
the following:

w

© Ecma International 2013 323

oechna

1.Let cap be x's captures List.

2.Let s be cap[n].

3.1f s is undefined, then call c(x) and return its result.

4.Let e be x's endIndex.

5.Let len be s's length.

6.Let f be e+len.

7.1f f>InputLength, return failure.

8.1f there exists an integer i between 0 (inclusive) and len (exclusive) such that
Canonicalize(s[i]) is not the same character as Canonicalize(Input [e+i]), then return
failure.

9.Let y be the State (f, cap).

10. Call c(y) and return its result.

The production AtomEscape :: CharacterEscape evaluates as follows:
1. Evaluate CharacterEscape to obtain a character ch.

2. Let A be an one-element CharSet containing the character ch.

3. Call CharacterSetMatcher(A, false) and return its Matcher result.

The production AtomEscape :: CharacterClassEscape evaluates as follows:

1. Evaluate CharacterClassEscape to obtain a CharSet A«
2. Call CharacterSetMatcher(A, false) and return its Matcher result.

NOTE An escape sequence of the form \ followed by a nonzero decimal number n matches the result of the nth set
of capturing parentheses (see 21.2.2.11). It is an error.if the regular expression has fewer than n capturing parentheses. If
the regular expression has n or more capturing parentheses but the nth one is.undefined because it has not captured
anything, then the backreference always succeeds.

21.2.2.10 CharacterEscape

The production CharacterEscape:: ControlEscape evaluates by returning the character according to Table 34.

Table 34 — ControlEscape Character Values

ControlEscape Code Unit Name Symbol
t \u0009 horizontal tab <HT>
n \u000A line feed (new line) | <LF>
v \u000B vertical tab <VT>
£ \u000C form feed <FF>
r \u000D carriage return <CR>

The production CharacterEscape :: ¢ ControlLetter evaluates as follows:

1. Letch be the character represented by ControlLetter.

2. Leti be ch's code unit value.

3. Letj be the remainder of dividing i by 32.

4. Return the character whose code unit value is j.

The production CharacterEscape :: HexEscapeSequence evaluates by evaluating the CV of the

HexEscapeSequence (see 11.8.4) and returning its character resullt.

The production CharacterEscape :: UnicodeEscapeSequence evaluates by evaluating the CV of the
UnicodeEscapeSequence (see 11.8.4) and returning its character result.

The production CharacterEscape :: ldentityEscape evaluates by returning the character represented by
IdentityEscape.

324 © Ecma International 2013

pecma

21.2.2.11 DecimalEscape

The production DecimalEscape :: DecimallntegerLiteral [lookahead ¢ DecimalDigit] evaluates as follows:

1. Leti be the MV of DecimalintegerLiteral.

2. Ifiis zero, return the EscapeValue consisting of a <NUL> character (Unicode value 0000).

3. Return the EscapeValue consisting of the integer i.

The definition of “the MV of DecimallintegerLiteral” is in 11.8.3.

NOTE If \ is followed by a decimal number n whose first digit is not 0, then the escape sequence is considered to be
a backreference. It is an error if n is greater than the total number of left capturing parentheses in the entire regular
expression. \ 0 represents the <NUL> character and cannot be followed by a decimal digit.

21.2.2.12 CharacterClassEscape

The production CharacterClassEscape :: d evaluates by returning the ten-element set of characters containing
the characters 0 through 9 inclusive.

The production CharacterClassEscape :: D evaluates by returning the set of all characters not included in the set
returned by CharacterClassEscape :: d.

The production CharacterClassEscape :: s evaluates by returning the set of characters containing the
characters that are on the right-hand side of the WhiteSpace (11.2) or LineTerminator (11.3) productions.

The production CharacterClassEscape :: S evaluates by returning the set of all characters not included in the set
returned by CharacterClassEscape :: s.

The production CharacterClassEscape :: w evaluates by returning the set of characters containing the sixty-
three characters:

abcde fghijklmnopgerstuvwzxyz
A B CDETFGHTIJIJKILMNOPOQRS STUVWIXY?Z
01 23456 789

The production CharacterClassEscape :: W evaluates by returning the set of all characters not included in the set
returned by CharacterClassEscape :: w.

21.2.2.13 CharacterClass

The production CharacterClass :: [[ookahead ¢ {*}] ClassRanges] evaluates by evaluating ClassRanges to
obtain a CharSet and returning that CharSet and the Boolean false.

The production CharacterClass :: [~ ClassRanges] evaluates by evaluating ClassRanges to obtain a CharSet
and returning that CharSet-and the Boolean true.

21.2.2.14 ClassRanges
The production ClassRanges :: [empty] evaluates by returning the empty CharSet.

The production ClassRanges :: NonemptyClassRanges evaluates by evaluating NonemptyClassRanges to obtain a
CharSet and returning that CharSet.

21.2.2.15 NonemptyClassRanges

The production NonemptyClassRanges :: ClassAtom evaluates by evaluating ClassAtom to obtain a CharSet and
returning that CharSet.

© Ecma International 2013 325

secmd

The production NonemptyClassRanges :: ClassAtom NonemptyClassRangesNoDash evaluates as follows:

1. Evaluate ClassAtom to obtain a CharSet A.
2. Evaluate NonemptyClassRangesNoDash to obtain a CharSet B.
3. Return the union of CharSets A and B.

The production NonemptyClassRanges :: ClassAtom - ClassAtom ClassRanges evaluates as follows:

Evaluate the first ClassAtom to obtain a CharSet A.

Evaluate the second ClassAtom to obtain a CharSet B.
Evaluate ClassRanges to obtain a CharSet C.

Call CharacterRange(A, B) and let D be the resulting CharSet.
Return the union of CharSets D and C.

arowpe=

Runtime Semantics: CharacterRange Abstract Operation
The abstract operation CharacterRange takes two CharSet parameters A and B and performs the following:

1. If A does not contain exactly one character or B does not contain exactly one character then throw a
SyntaxError exception.

Let a be the one character in CharSet A.

Let b be the one character in CharSet B.

Let i be the code unit value of character a.

Let j be the code unit value of character b.

If i > j then throw a SyntaxError exception.

Return the set containing all characters numbered i through j, inclusive.

Nouhr~wn

21.2.2.16 NonemptyClassRangesNoDash

The production NonemptyClassRangesNoDash :: ‘ClassAtom evaluates by evaluating ClassAtom to obtain a
CharSet and returning that CharSet:

The production NonemptyClassRangesNoDash :: ClassAtomNoDash NonemptyClassRangesNoDash evaluates as
follows:

1. Evaluate ClassAtomNoDash to obtain a CharSet A.
2. Evaluate NonemptyClassRangesNoDash to obtain a CharSet B.
3. Return the union of CharSets A and B.

The production NonemptyClassRangesNoDash :: ClassAtomNoDash - ClassAtom ClassRanges evaluates as
follows:

Evaluate ClassAtomNoDash to obtain a CharSet A.

Evaluate ClassAtom to obtain a CharSet B.

Evaluate ClassRanges to obtain a CharSet C.

Call CharacterRange(A, B) and let D be the resulting CharSet.
Return the union of CharSets D and C.

abrwpnE

NOTE 1 ClassRanges can expand into single ClassAtoms and/or ranges of two ClassAtoms separated by dashes. In the
latter case the ClassRanges includes all characters between the first ClassAtom and the second ClassAtom, inclusive; an
error occurs if either ClassAtom does not represent a single character (for example, if one is \w) or if the first ClassAtom's
code unit value is greater than the second ClassAtom's code unit value.

NOTE 2 Even if the pattern ignores case, the case of the two ends of a range is significant in determining which
characters belong to the range. Thus, for example, the pattern / [E-F] /i matches only the letters E, F, e, and £, while the
pattern / [E-£] /i matches all upper and lower-case ASClI! letters as well as the symbols [, \, 1, %, _,and *

NOTE 3 A - character can be treated literally or it can denote a range. It is treated literally if it is the first or last character
of ClassRanges, the beginning or end limit of a range specification, or immediately follows a range specification.

326 © Ecma International 2013

pecma

21.2.2.17 ClassAtom
The production ClassAtom :: - evaluates by returning the CharSet containing the one character -.

The production ClassAtom :: ClassAtomNoDash evaluates by evaluating ClassAtomNoDash to obtain a CharSet
and returning that CharSet.

21.2.2.18 ClassAtomNoDash

The production ClassAtomNoDash :: SourceCharacter but not one of \ or] or - evaluates by returning an
one-element CharSet containing the character represented by SourceCharacter.

The production ClassAtomNoDash :: \ ClassEscape evaluates by evaluating ClassEscape to obtain a CharSet
and returning that CharSet.

21.2.2.19 ClassEscape

The production ClassEscape :: DecimalEscape evaluates as follows:
Evaluate DecimalEscape to obtain an EscapeValue E.

If E is not a character then throw a SyntaxError exception.

Let ch be E's character.
Return the one-element CharSet containing the character ch.

AW

The production ClassEscape :: b evaluates by returning the CharSet containing the one character <BS>
(Unicode value 0008).

The production ClassEscape :: CharacterEscape evaluates by evaluating CharacterEscape to obtain a character
and returning an one-element CharSet containing that character.

The production ClassEscape :: CharacterClassEscape evaluates by evaluating CharacterClassEscape to obtain a
CharSet and returning that CharSet.

NOTE A ClassAtom can use any of the escape sequences that are allowed in the rest of the regular expression
except for \b, \B, and backreferences. Inside._a CharacterClass, \b means the backspace character, while \B and
backreferences raise errors. Using a backreference inside a ClassAtom causes an error.

21.2.3 The RegExp Constructor

The RegExp constructoris the %RegExp% intrinsic object and the initial value of the RegExp property of the
global object. When RegExp is called as a function rather than as a constructor, it creates and initialises a
new RegExp object. Thus the function call RegExp (..) is equivalent to the object creation expression
new RegExp (..) with the same arguments. However, if the this value value passed in the call is an Object
with a [[RegExpMatcher]] internal data property whose value is undefined, it initialises the this value using the
argument values.. This permits RegExp to be used both as factory method and to perform constructor
instance initialisation.

The RegExp constructor is designed to be subclassable. It may be used as the value of an extends clause
of a class declaration. Subclass constructors that intended to inherit the specified RegExp behaviour must
include a super call to the RegExp constructor to initialise subclass instances.

21.2.3.1 RegExp(pattern, flags)

The following steps are taken:

1. Let func be this RegExp function object.
2. Let O be the this value.

© Ecma International 2013 327

Y,

secmd

3. If Type(O) is not Object or Type(O) is Object and O does not have a [[RegExpMatcher]] internal data
property or Type(O) is Object and O has a [[RegExpMatcher]] internal data property and the value of
[[RegExpMatcher]] is not undefined, then|

Ci ed [AWB14134]: This then clause corresponds

a. |If Type(pattern) is Object and O has a [[RegExpMatcher]] internal data property and flags is
undefined, then
i Return pattern;
b. Let O be the result of calling the abstract operation RegExpAlloc with argument func.
c. ReturnIfAbrupt(O).
4. If Type(pattern) is Object and pattern has a [[RegExpMatcher]] internal data property, then
a. If the value of pattern’s [[RegExpMatcher]] internal data property is undefined, then throw a
TypeError exception.
b. If flags is not undefined, then throw a TypeError exception.
c. Let P be the value of pastern’s [[OriginalSource]] internal data property.
d. Let F be the value of pattern’s [[OriginalFlags]] internal data property.
5. Else,
a. LetP be pattern.
b. LetF be flags.
6. Return the result of the abstract operation RegExplnitialise with arguments O, P, and F..

NOTE If pattern is supplied using a StringLiteral, the usual escape sequence substitutions are performed before the
String is processed by RegExp. If pattern must contain an escape sequence to be recognised by RegExp, any backslash
\ characters must be escaped within the StringLiteral to preventithem being removed when the contents of the StringLiteral
are formed.

21.2.3.2 new RegExp(...argumentsList)

RegExp called as part of a new expression with argument list argumentsList it performs the following steps:

1. Let F be the RegExp function object on which the new operator was applied.

2. Let argumentsList be the argumentsList argument of the {[[Construct]].internal method that was invoked by
the new operator.

3. Return the result of OrdinaryConstruct (F, argumentsList).

If RegExp is implemented as an ordinary function object, its [[Construct]] internal method will perform the
above steps.

21.2.3.3 Abstract Operations for the RegExp Constructor

21.2.3.3.1 Runtime Semantics: RegExpAlloc Abstract Operation

When.the abstract operation RegExpAlloc with argument constructor is called, the following steps are taken:

1. Let obj be the result of calling OrdinaryCreateFromConstructor(constructor, "$RegExpPrototype$%",
([[RegExpMatcher]], [[OriginalSource]], [[OriginalFlags]])).

2. Let status be the result of DefinePropertyOrThrow(obj, "lastIndex", PropertyDescriptor {[[Writable]]: true,
[[Enumberable]]: false, [[Configurable]]: false}).

3. ReturnlfAbrupt(status):

4. Return obj.

NOTE [[RegExpMatcher]] is initially assigned the value undefined as a flag to indicate that the instance has not yet
been initialised by the RegExp constructor. This flag value is never directly exposed to ECMAScript code; hence
implementations may choose to encode the flag in some other manner.

21.2.3.3.2 Runtime Semantics: RegExplnitialise Abstract Operation

When the abstract operation RegExplnitialise with arguments obj, pattern, and flags is called, the following
steps are taken:

1. If pattern is undefined, then let P be the empty String.

328 © Ecma International 2013

to the “called as a function” case the ES5 spec.

pecma

2. Else, let P be ToString(pattern).

3. ReturnlfAbrupt(P).

4. Ifflags is undefined, then let F be the empty String.

5. Else, let F be ToString(flags).

6. ReturnIfAbrupt(F).

7. If F contains any character other than "g", "i", "m", "u", or "y" or if it contains the same character more
than once, then throw a SyntaxError exception.

8. Parse P interpreted as UTF-16 encoded Unicode characters using the grammars in 21.2.1 for the goal symbol

Pattern. Throw a SyntaxError exception if P did not conform to the grammar or if all characters of P where
not matched by the parse.

9. Setobj’s [[RegExpMatcher]] internal data property to the internal procedure obtained by evaluating
("compiling™) the step 3’s parse of P and applying the semantics provided in 21.2.2.

10. Set the value of obj’s [[OriginalSource]] internal data property to P.

11. Set the value of obj’s [[OriginalFlags]] internal data property to F.

12. Let putStatus be the result of Put(obj, "1lastIndex", 0, true).

13. ReturnlfAbrupt(putStatus).

14. Return obj.

21.2.3.3.3 Runtime Semantics: RegExpCreate Abstract Operation
When the abstract operation RegExpCreate with arguments P and F is called, the following steps are taken:

1. Letobj be the result of calling the abstract operation RegExpAlloc with argument %RegExp%.
2. ReturnIfAbrupt(obj).
3. Return the result of the abstract operation RegExplnitialise with arguments obj, P, and F .

21.2.3.3.4 Runtime Semantics: EscapeRegExpPattern Abstract Operation
When the abstract operation EscapeRegExpPattern with arguments. P and F is called, the following occurs:

Let S be a String in the form of a Pattern equivalent to P.interpreted as UTF-16 encoded Unicode characters, in
which certain characters are escaped as described below. S may or may not be identical to P or pattern;
however, the internal procedure that would result from evaluating S as a Pattern must behave identically to the
internal procedure given by the constructed object's [[RegExpMatcher]] internal data property. Separate calls
to this abstract operation using the same values for P and F must produce identical results.

The characters / occurring in the pattern shall be escaped in S as necessary to ensure that the String value
formed by concatenating the Strings "/", S, "/", and F can be parsed (in an appropriate lexical context) as a
RegularExpressionLiteral that behaves. identically to the constructed regular expression. [For example, if P is
"/", then S could be "\/" or "\u002F", among other possibilities\, but not " /", because /// followed by F

C ed [AWB14135]: Why is this underspecified?

would be parsed as a SingleLineComment rather than a RegularExpressionLiteral. If P is the empty String, this
specification can be met by letting S be " (?:) .

Return S.
21.2.4 Properties of the RegExp Constructor

The value of the [[Prototype]] internal data property of the RegExp constructor is the standard built-in Function
prototype object (19.2.3).

Besides the 1ength property (whose value is 2), the RegExp constructor has the following properties:
21.2.4.1 RegExp.prototype
The initial value of RegExp . prototype is the RegExp prototype object (21.2.5).

This property shall have the attributes { [[Writable]]: false, [[Enumerable]]: false, [[Configurable]]: false }.

© Ecma International 2013 329

Why not specify an required escaping? Do different
implementation differ in their results?

secmd

21.2.4.2 RegExp[@@create] ()

The @@create method of an object F performs the following:

1. Return the result of calling the abstract operation RegExpAlloc with argument F.

This property has the attributes { [[Writable]]: false, [[Enumerable]]: false, [[Configurable]]: true }.

21.2.5 Properties of the RegExp Prototype Object

The RegExp prototype object is an ordinary object. It is not a RegExp instance and does not have a
[[RegExpMatcher]] internal data property or any of the other internal data properties of RegExp instance

objects.

The value of the [[Prototype]] internal data property of the RegExp prototype object is the standard built-in
Object prototype object (19.1.4).

The RegExp prototype object does not have a valueOf property.of its own; however, it inherits the valueOf
property from the Object prototype object.

21.25.1 RegExp.prototype.constructor
The initial value of RegExp . prototype . constructor is the standard built-in RegExp constructor.
21.2.5.2 RegExp.prototype.exec(string)

Performs a regular expression match of string against the regular expression and returns an Array object
containing the results of the match, or null if string did not match.

The String ToString(string) is searched for an occurrence of the regular expression pattern as follows:

Let R be the this value.

If Type(R) is not Object, then throw a TypeError exception.

If R does not have a[[RegExpMatcher]] internal data property, then throw a TypeError exception.
If the value of R’s [[RegExpMatcher]] internal data property is undefined, then throw a TypeError
exception.

Let S be the value of ToString(string)

ReturnlfAbrupt(S):

Return the result of the RegExpEXec abstract operation with arguments R and S.

Hwn e

Noon

Runtime Semantics: RegExpExec Abstract Operation

The abstract operation RegExpExec with arguments R (an object) and S (a string) performs the following
steps:

Assert: R is an initialised RegExp instance.

Let length be the length of S.

Let lastindex be the result of Get(R,"lastIndex").

Let i be the value of Tolnteger(lastindex).

ReturnlfAbrupt(i).

Let global be the result of ToBoolean(Get(R, "global™)).

ReturnlfAbrupt(global).

If global is false, then leti = 0.

9. Let matcher be the value of R’s [[RegExpMatcher]] internal data property.

10. Let matchSucceeded be false.

11. Repeat, while matchSucceeded is false

a. Ifi<O0ori>length, then
i. Let putStatus be the result of Put(R, "lastIndex", 0O, true).
il ReturnlfAbrupt(putStatus).

XN A WNE

330 © Ecma International 2013

pecma

iii. Return null.
b. Let r be the result of calling matcher with arguments S and i.
c. Ifrisfailure, then
i. Leti=i+1.
d. else
i. Assert: ris a State.
ii. Set matchSucceeded to true.
12. Lete be r's endIndex value.
13. If global is true,
a. Let putStatus be the result of Put(R, "lastIndex", e, true).
b. ReturnlfAbrupt(putStatus).
14. Let n be the length of r's captures List. (This is the same value as 21.2.2.1's NcapturingParens.)
15. Let A be the result of the abstract operation ArrayCreate with argument 0.
16. Let matchIndex be i.
17. Assert: The following [DefineOwnProperty]] calls will not result in an abrupt completion.
18. Call the [[DefineOwnProperty]] internal method of A with arguments “index" and Property Descriptor
{[[Value]]: matchIndex, [[Writable]]: true, [[Enumerable]]: true, [[Configurable]]: true}.
19. Call the [[DefineOwnProperty]] internal method of A with arguments "input" and Property Descriptor
{[[\Valuell: S, [[Writable]]: true, [[Enumerable]]: true, [[Configurable]]: true}.
20. Call the [[DefineOwnProperty]] internal method of A with arguments "1length" and Property Descriptor
{[[Value]]: n + 1}.
21. Let matchedSubstr be the matched substring (i.e. the portion of S between offset i inclusive and offset e
exclusive).
22. Call the [[DefineOwnProperty]] internal method of A with arguments "0" and Property Descriptor
{[[Value]]: matchedSubstr, [[Writable]]: true, [[Enumerable]]: true, [[Configurable]]: true}.
23. For each integer i such thati>0andi<n
a. Let capturel be i element of r's captures List.
b. Call the [[DefineOwnProperty]] internal method of A with arguments ToString(i) and Property
Descriptor {[[Value]]: capturel, [[Writable]]: true, [[Enumerable]]: true, [[Configurable]]: true}.
24. Return A.

21.2.5.3 get RegExp.prototype.global

RegExp.prototype.global is an accessor property whose set accessor function is undefined. Its get
accessor function performs the following steps:

Let R be the this value.

If Type(R)-is not-Object, then throw a TypeError exception.

If R does not have an [[OriginalFlags]] internal data property throw a TypeError exception.
Let flags be the value of R’s [[OriginalFlags]] internal data property.

I1f flags is undefined, then throw a TypeError exception.

I flags contains the character "g", then return true.

Return false.

NogokwnE

21.2.5.4 get RegExp.prototype.ignoreCase

RegExp .prototype.ignoreCase is an accessor property whose set accessor function is undefined. Its get
accessor function performs the following steps:

Let R be the this value.

If Type(R) is not Object, then throw a TypeError exception.

If R does not have an [[OriginalFlags]] internal data property throw a TypeError exception.
Let flags be the value of R’s [[OriginalFlags]] internal data property.

If flags is undefined, then throw a TypeError exception.

If flags contains the character "i", then return true.

Return false.

NooAMONE

© Ecma International 2013 331

secmd

21.25.5 RegExp.prototype.match (string)
When the match method is called with argument string, the following steps are taken:

Let rx be the this value.
If Type(rx) is not Object, then throw a TypeError exception.
If rx does not have a [[RegExpMatcher]] internal data property, then throw a TypeError exception.
If the value of rx’s [[RegExpMatcher]] internal data property is undefined, then throw a TypeError
exception.
Let S be the value of ToString(string)
ReturnlfAbrupt(S).
Let global be the result of ToBoolean(Get(rx, "global™")).
ReturnlfAbrupt(global).
If global is not true, then
a. Return the result of calling the abstract operation RegExpExec (see 21.2.5.2) with arguments rx and
S.
10. Else global is true,
Let putStatus be the result of Put(rx, "lastIndex", O, true).
ReturnlfAbrupt(putStatus).
Let A be the result of the abstract operation ArrayCreate with argument 0.
Let previousLastIndex be 0.
Let n be 0.
Let lastMatch be true.
Repeat, while lastMatch is true
i Let result be the result of the abstract operation RegExpExec with arguments rx and S.
ii. ReturnlfAbrupt(result).
iii. If result is null, then set lastMatch to.false.
iv. Else result is not null,
1. Letthisindex be the result of Tolnteger(Get(rx, "lastIndex")).
2. ReturnlfAbrupt(thisindex).
3. If thisIndex.= previousLastindex then
a. Let putStatus be the result of Put(rx, "lastIndex", thisIndex+1, true).
b. ReturnlfAbrupt(putStatus).
c. Set previousLastindex to thisindex+1.
4. Else,
a. -Set previousLastindex to thisIndex.
5. " LetmatchStr be the result of Get(result, "0").
6. Let defineStatus be the result of DefinePropertyOrThrow(A, ToString(n), Property
Descriptor {[[Value]]: matchStr, [[Writable]]: true, [[Enumerable]]: true,
[[configurable]]: true}).
7. ReturnlfAbrupt(defineStatus).
8. Increment n.
h. If n =0, then return null.
i. " Return A.

Hwn e

©o NG

Q@+eoo0oT e

21.25.6 get RegExp.prototype.multiline

RegExp.prototype.multiline is an accessor property whose set accessor function is undefined. Its get
accessor function performs the following steps:

Let R be the this value.

If Type(R) is not Object, then throw a TypeError exception.

If R does not have an [[OriginalFlags]] internal data property throw a TypeError exception.
Let flags be the value of R’s [[OriginalFlags]] internal data property.

If flags is undefined, then throw a TypeError exception.

If flags contains the character "m", then return true.

Return false.

Nooh,rwpR

332 © Ecma International 2013

oechd

21.2.5.7 RegExp.prototype.replace (S, replaceValue)

When the replace method is called with arguments S and replaceValue the following steps are taken:

TODO: need tol finish this and have it make use of GetReplaceSubstitution operation in 21.1.3.14

1. Let rx be the this value.

2. If Type(rx) is not Object, then throw a TypeError exception.

3. If rx does not have a [[RegExpMatcher]] internal data property, then throw a TypeError exception.

4. If the value of rx’s [[RegExpMatcher]] internal data property is undefined, then throw a TypeError
exception.

5. Let string be ToString(S).

6. ReturnlfAbrupt(string).

7. lIf searchValue.global is false, then search string for the first match of the regular expression searchValue. If

searchValue.global is true, then search string for all matches of the regular expression searchValue. Do the
search in the same manner as in RegExp . prototype .match, including the update of
searchValue.lastIndex. Let m be the number of left capturing parentheses in searchValue (using
NcapturingParens as specified in 21.2.2.1).
8. If replaceValue is a function, then
a. For each matched substring, call the function with the following m + 3 arguments. Argument 1 is the
substring that matched. If searchValue is a regular expression, the next m arguments are all of the
captures in the MatchResult (see 21.2.2.1). Argument m + 2 is the offset within string where the
match occurred, and argument m + 3 is string. The result is a String value derived from the original
input by replacing each matched substring with the corresponding return value of the function call,
converted to a String if need be.
9. Else,

a. Let newstring denote the result of converting replaceValue to a String. The result is a String value
derived from the original input String by replacing each matched substring with a String derived
from newstring by replacing elements in newstring by replacement text as specified in . These $
replacements are done left-to-right, and, once such a replacement is performed, the new replacement
text is not subject to further replacements. For example, "$1,$2" . replace (/ (\$(\d)) /g,
"$$1-$162") returns "$1-$11,$1-$22". A $ in newstring that does not match any of the

forms below is left as is.\ Ci ed [AWB7136]: Needs an real algorithm and also
completion record checks.

21.2.5:8 RegExp.prototype.search (S)

When the search method is called with argument S, the following steps are taken:

1. Let rx be the this value.
2. If Type(rx) is not Object, then throw a TypeError exception.
3. If rx does not have a [[RegExpMatcher]] internal data property, then throw a TypeError exception.
4. If the value of rx’s [[RegExpMatcher]] internal data property is undefined, then throw a TypeError
exception.
5. Let string be ToString(S).
6. ReturnIfAbrupt(string).
7. Search the value string from its beginning for an occurrence of the regular expression pattern rx. Let result
be a Number indicating the offset within string where the pattern matched, or —1 if there was no match. If an
abrupt completion occurs during the search, result is that Completion Record. The 1astIndex and
global properties of regexp are ignored when performing the search. The 1astIndex property of regexp
is left unchanged.| Ci ed [AWB7137]: TODO: Needs better spec
8. Return result. langauge

© Ecma International 2013 333

secmd

21.2.5.9 get RegExp.prototype.source

RegExp.prototype.source is an accessor property whose set accessor function is undefined. Its get
accessor function performs the following steps:

Let R be the this value.

If Type(R) is not Object, then throw a TypeError exception.

If R does not have an [[OriginalSource]] internal data property throw a TypeError exception.
If R does not have an [[OriginalFlags]] internal data property throw a TypeError exception.
Let src be the value of R’s [[OriginalSource]] internal data property.

Let flags be the value of R’s [[OriginalFlags]] internal data property.

If either src or flags is undefined, then throw a TypeError exception.

Return the result of the abstract operation EscapeRegExpPattern with arguments src and flags.

XN A~WNE

21.2.5.10 RegExp.prototype.split (string, limit)

Returns an Array object into which substrings of the result of converting string to a String have been stored.
The substrings are determined by searching from left to right for matches of the this value regular expression;
these occurrences are not part of any substring in the returned array, but serve to divide up the String value.

The this value may be an empty regular expression or a regular expression that can match an empty String.
In this case, regular expression does not match the empty substring at the beginning or end of the input String,
nor does it match the empty substring at the end of the previous separator match. (For example, if the regular
expression matches the empty String, the String is split up into individual code unit elements; the length of the
result array equals the length of the String, and each substring contains one code unit.) Only the first match at
a given position of the this String is considered, even if backtracking could yield a non-empty-substring match
at that position. (For example, /a*?/.split("ab") evaluates to the array ["a","b"], while
/a*/.split("ab") evaluates to the array["","b"]".)

If the string is (or converts to) the empty String, the result depends on whether the regular expression can
match the empty String. If it can; the result array contains no elements. Otherwise, the result array contains
one element, which is the empty String.

If the regular expression that contains capturing parentheses, then each time separator is matched the results
(including any undefined results) of the capturing parentheses are spliced into the output array. For example,

/<(\/)?([*<>]+)>/.split ("Aboldand<CODE>coded</CODE>")
evaluates to the array
["A", undefined, "B", "bold", "/", "B", "and", undefined,
IICODE" , " codedn , " /ll , HCODEII , wn]

If limit is not undefined, then the output array is truncated so that it contains no more than limit elements.
When the split method is called, the following steps are taken:

Let rx be the this value.

If Type(rx) is not Object, then throw a TypeError exception.

If rx does not have a [[RegExpMatcher]] internal data property, then throw a TypeError exception.
If the value of rx’s [[RegExpMatcher]] internal data property is undefined, then throw a TypeError
exception.

5. Let matcher be the value of rx’s [[RegExpMatcher]] internal data property.

6. LetS be ToString(string).
7.

8

Hwn e

ReturnlfAbrupt(S).
. Let A be the result of the abstract operation ArrayCreate with argument 0.
9. ReturnIfAbrupt(A).
10. Let lengthA be 0.
11. If limit is undefined, let lim = 25%-1; else let lim = ToLength(limit).
12. Let s be the number of elements in S.
13. Letp =0.

334 © Ecma International 2013

pecma

14. 1f lim = 0, return A.
15. If s =0, then

a. Let z be the result of calling the matcher with arguments S and 0.

b. ReturnifAbrupt(z).

c. Ifzisnot failure, return A.

d. Let status be the result of calling the [[DefineOwnProperty]] internal method of A with arguments

"0" and Property Descriptor {[[Value]]: S, [[Writable]]: true, [[Enumerable]]: true,
[[Configurable]]: true}.

e. Assert: status is not an abrupt completion.

f. Return A.
16. Letq =p.
17. Repeat, while q #s

a. Let z be the result of calling the matcher with arguments S and q

b. ReturnlfAbrupt(z).

c. Ifzisfailure, thenletq = q+1.

d. Else zis not failure,

i z must be a State. Let e be z's endIndex and let cap be z's captures List.
ii. Ife =p, thenlet g = q+1.
iii. Else e = p,
1. Let T be a String value equal to the substring of S consisting of the elements at
positions p (inclusive) through.q (exclusive).
2. Let status be the result of calling the [[DefineOwnProperty]] internal method of A

with arguments ToString(lengthA) and Property Descriptor {[[Value]]: T,

[[Writable]]: true, [[Enumerable]]: true; [[Configurable]]: true}.

Assert: status is not an abrupt completion.

Increment lengthA by 1.

If lengthA = lim, return A.

Letp =e.

Leti=0.

Repeat, while i is not'equal to the number of elements in cap.
ac Leti=i+l
b. Let status be the result of calling the [[DefineOwnProperty]] internal

method of A with arguments ToString(lengthA) and Property Descriptor
{[[Valuel]: cap[i], [[Writable]]: true, [[Enumerable]]: true,
[[Configurable]]: true}.
c. _Assert: status.is not an abrupt completion.
d.« Increment lengthA by 1.
e. If lengthA = lim, return A.
9. Letq=p.

18. Let T be a String value equal to the substring of S consisting of the elements at positions p (inclusive)
through s (exclusive).

19. Let status be the result of calling the [[DefineOwnProperty]] internal method of A with arguments
ToString(lengthA) and Property Descriptor {[[Value]]: T, [[Writable]]: true, [[Enumerable]]: true,
[[Configurable]]: true}.

20. Assert: status is not an abrupt completion.

21. Return A,

® NG AW

The length property of the split method is 2.
NOTE1 The split method ignores the value of the global property of this RegExp object.
21.2.5.11 get RegExp.prototype.sticky

RegExp.prototype.sticky is an accessor property whose set accessor function is undefined. Its get
accessor function performs the following steps:

1. LetR be the this value.

2. If Type(R) is not Object, then throw a TypeError exception.
3. If R does not have an [[OriginalFlags]] internal data property throw a TypeError exception.

© Ecma International 2013 335

secmd

Let flags be the value of R s [[OriginalFlags]] internal data property.
If flags is undefined, then throw a TypeError exception.

If flags contains the character "y", then return true.

Return false.

Noos

21.2.5.12 RegExp.prototype.test(string)

The following steps are taken:

1. LetR be the this value.

2. If Type(R) is not Object, then throw a TypeError exception.

3. If R does not have a [[RegExpMatcher]] internal data property, then throw a TypeError exception.

4. If the value of R’s [[RegExpMatcher]] internal data property is undefined, then throw a TypeError
exception.

5. Let S be the value of ToString(string)

6. ReturnlfAbrupt(S).

7. Let match be the result of the RegExpExec abstract operation with arguments R and S.

8. ReturnIfAbrupt(match).

9. If match is not null, then return true; else return false.

21.2.5.13 RegExp.prototype.toString()

Let R be the this value.

If Type(R) is not Object, then throw a TypeError exception.

If R does not have a [[RegExpMatcher]] internal data property, then throw a TypeError exception.
If the value of R’s [[RegExpMatcher]] internal data property is undefined, then throw a TypeError
exception.

5. Let pattern be the result of ToString(Get(R, "source")):

6. ReturnlfAbrupt(pattern).
7

8

AwnE

Let result be the String value formed by concatenating /", pattern, and " /".
. Let global be the result of ToBoolean(Get(R, "global")).
9. ReturnlfAbrupt(global).
10. If global is true, then append "g" as the last character of result.
11. Let ignoreCase be the result of ToBoolean(Get(R, "ignoreCase")).
12. ReturnlfAbrupt(ignoreCase).
13. If ignoreCase is true, then append "i" as the last-character of result.
14. Let multiline be the result of ToBoolean(Get(R, "multiline")).
15. ReturnlfAbrupt(multiline).
16. If multiline is true, then append "m" as the last character of result.
17. Letunicode be the result of ToBoolean(Get(R, "unicode™")).
18. ReturnlfAbrupt(unicode).
19. Ifunicode is true, then append "u" as the last character of result.
20. Let sticky be the result of ToBoolean(Get(R, "sticky")).
21. ReturnlfAbrupt(sticky).
22. If sticky istrue, then append "y" as the last character of result.
23. Return result.

NOTE The returned String has the form of a RegularExpressionLiteral that evaluates to another RegExp object with
the same behaviour as this object.

21.2.5.14 get RegExp.prototype.unicode

RegExp.prototype.unicode is an accessor property whose set accessor function is undefined. Its get
accessor function performs the following steps:

Let R be the this value.

If Type(R) is not Object, then throw a TypeError exception.

If R does not have an [[OriginalFlags]] internal data property throw a TypeError exception.
Let flags be the value of R’s [[OriginalFlags]] internal data property.

Hwn e

336 © Ecma International 2013

secma

5. If flags is undefined, then throw a TypeError exception.
6. If flags contains the character "u", then return true.
7. Return false.

21.2.5.15 RegExp.prototype [@@isRegExp]

The initial value of the @ @isRegExp property is true.

This property has the attributes { [[Writable]]: false, [[Enumerable]]: false, [[Configurable]]: true }.
21.2.6 Properties of RegExp Instances

RegExp instances are ordinary objects that inherit properties from the RegExp prototype object. RegExp
instances have internal data properties [[RegExpMatcher]], [[OriginalSource]], and [[OriginalFlags]]. The value
of the [[RegExpMatcher]] internal data property is an implementation dependent representation of the Pattern
of the RegExp object.

NOTE Prior to the 6" Edition, RegExp instances were specified as having the own data properties source, global,
ignoreCase, and multiline. Those properties are now specified as-accessor properties of RegExp.prototype.

RegExp instances also have the following properties:
21.2.6.1 lastindex

The value of the lastIndex property specifies the String position at which to start the next match. It is
coerced to an integer when used (see 21.2:5.2). This property shall have the attributes { [[Writable]]: true,
[[Enumerable]]: false, [[Configurable]]: false }.

NOTE Unlike the other standard built-in properties of RegExp instances, 1astIndex is writable.
22 Indexed Collections

22.1 Array Objects

Array objects are exotic objects that give special treatment to a certain class of property names. See 9.2.2 for
a definition of this special treatment.

/An Array object, O, is said to be sparse if the following algorithm returns true:

1. Let len be the result of Get(O, "length™).
2. For each integer i in the range 0<i<ToUint32(len)
a. Let elem be the result of calling the [[GetOwnProperty]] internal method of O with argument
ToString(i).
b. “If elem is undefined, return true.
3. Return false |

22.1.1 The Array Constructor

The Array constructor is the %Array% intrinsic object and the initial value of the Array property of the global
object. When Array is called as a function rather than as a constructor, it creates and initialises a new Array
object. Thus the function call Array (..) is equivalent to the object creation expression new Array (..) with
the same arguments. However, if the this value value passed in the call is an Object with an
[[ArrayInitialisationState]] internal data property whose value is undefined, it initialises the this value using the
argument values. This permits Array to be used both as factory method and to perform constructor
instance initialisation.

© Ecma International 2013 337

Commented [AWB11138]: TODO: see if this algorithm is
really needed

secmd

The Array constructor is designed to be subclassable. It may be used as the value of an extends clause of
a class declaration. Subclass constructors that intended to inherit the specified Array behaviour must include
a super call to the Array constructor to initialise subclass instances.

22.1.1.1 Array ([item1[,item2[,...111)

This description applies if and only if the Array constructor is called with no arguments or at least two
arguments.

When the Array function is called the following steps are taken:

Let numberOfArgs be the number of arguments passed to this constructor call.
Assert: numberOfArgs # 1.
Let O be the this value.
If Type(O) is Object and O has an [[ArraylInitialisationState]] internal data property and the value of
[[ArraylnitialisationState]] is false, then
a. Setthe value of O’s [[ArraylnitialisationState]] internal data property to true.
b. Letarray be O.
5. Else,
a. LetF be this function.
b. Let proto be the result of GetPrototypeFromConstructor(F, "$ArrayPrototype%").
¢. ReturnIfAbrupt(proto).
d. Letarray be the result of the abstract operation ArrayCreate with arguments numberOfArgs and
proto .
ReturnlfAbrupt(array).
Let k be 0.
Let items be a zero-origined List containing the argument items in order.
Repeat, while k < numberOfArgs
a. Let Pk be ToString(k).
b. LetitemK be k'™ element of items.
c. Let defineStatus be the result of DefinePropertyOrThrow(array, Pk, Property Descriptor {[[Value]]:
itemK, [[Writable]]: true, [[Enumerable]]: true, [[Configurable]]: true}).
d. ReturnIfAbrupt(defineStatus).
e. Increase k by 1.
10. Let putStatus be the result of Put(array, "length", numberOfArgs, true).
11. ReturnlfAbrupt(putStatus).
12. Return array.

Hwn e

© N

22.1.1.2 Array (len)

This description applies if and only if the Array constructor is called with exactly one argument.

1. Let numberOfArgs be the number of arguments passed to this constructor call.
2. Assert: numberOfArgs = 1.
3. Let O be the this value.
4. If Type(O) is Object and O has an [[ArraylnitialisationState]] internal data property and the value of
[[ArraylnitialisationState]] is false, then
a. Setthe value of O’s [[ArraylnitialisationState]] internal data property to true.
b. Letarray be O.
5. Else,

a. LetF be this function.
b. Let proto be the result of GetPrototypeFromConstructor(F, "$ArrayPrototype%").
¢. ReturnlfAbrupt(proto).
d. Letarray be the result of ArrayCreate(0, proto).
6. ReturnlfAbrupt(array).
7. If Type(len) is not Number, then
a. Let defineStatus be the result of DefinePropertyOrThrow(array, "0", Property Descriptor
{[[\Valuell: len, [[Writable]]: true, [[Enumerable]]: true, [[Configurable]]: true}).
b. ReturnlfAbrupt(defineStatus).

338 © Ecma International 2013

secma

c. LetintLen be 1.
8. Else,
a. LetintLen be ToUint32(len).
b. If intLen # len, then throw a RangeError exception.
9. Let putStatus be the result of Put(array, "length", intLen, true).
10. ReturnlfAbrupt(putStatus).
11. Return array.

22.1.1.3 new Array (... argumentsList)
When Array is called as part of a new expression, it initialises a newly created object.

1. Let F be the Array function object on which the new operator was applied.

2. LetargumentsList be the argumentsList argument of the [[Construct]] internal method that was invoked by
the new operator.

3. Return the result of OrdinaryConstruct (F, argumentsList).

If Array is implemented as an ordinary function object, its [[Construct]] internal method will perform the above
steps.

22.1.2 Properties of the Array Constructor

The value of the [[Prototype]] internal data property of the Array constructor is the Function prototype object
(19.2.3).

The Array constructor has a [[GlobalArray]] internal data property whose value is true.
Besides the length property (whose value is 1), the Array constructor has the following properties:
22.1.2.1 Array.from (arrayLike , mapfn=undefined, thisArg=undefined)

When the from method is_called with argument arrayLike and optional arguments mapfn and thisArg the
following steps are taken;

Let C be the this value.
Let items be ToObject(arrayLike).
ReturnlfAbrupt(items).
If mapfn.is undefined, then let mapping be false.
else
a. If IsCallable(mapfn) is false, throw a TypeError exception.
b. If thisArg was supplied, let T be thisArg; else let T be undefined.
C.. Let mapping be true
Let usinglterator be the result of HasProperty(items, @@ Iterator).
ReturnlfAbrupt(usinglterator).
8. If usinglterator is true, then
a. Letiterator bethe result of performing Getlterator(items).
b. ReturnlfAbrupt(iterator).
c. If IsConstructor(C) is true, then
i. Let ‘A be the result of calling the [[Construct]] internal method of C Mith an empty argument
list.

gL e

~No

Ci ed [AWB7139]: It would be nice to have a more

d. Else,
i. Let A be the result of the abstract operation ArrayCreate with argument 0.

e. ReturnIfAbrupt(A).

Let k be 0.

g. Repeat
i

-

Let Pk be ToString(k).

il Let next be the result of IteratorStep(iterator).
iii. ReturnlfAbrupt(done).

iv. If next is false, then

© Ecma International 2013 339

explicit way to create a collection with a pre-specified number
of elements.

secmd

9.

10
11
12

13.

14

18
19

1. Let putStatus be the result of Put(A, "length", k, true).
2. ReturnlfAbrupt(putStatus).
3. Return A.

2 Let nextValue be IteratorValue(next).

vi. ReturnlfAbrupt(nextValue).

vii. If mapping is true, then

1. Let mappedValue be the result of calling the [[Call]] internal method of mapfn with
T as thisArgument and a List containing nextValue as argumentsList.
2. ReturnlfAbrupt(mappedValue).
viii. Else, let mappedValue be nextValue.

iX. Let defineStatus be the result of DefinePropertyOrThrow(A, Pk, Property Descriptor
{[[Value]]: mappedValue, [[Writable]]: true, [[Enumerable]]: true, [[Configurable]]:
true}).

X. ReturnlfAbrupt(defineStatus).

Xi. Increase k by 1.

Assert: items is not an Iterator so assume it is an array-like object.
. Let lenValue be the result of Get(items, "length™").
. Let len be Tolnteger(lenValue).
. ReturnIfAbrupt(len).
If IsConstructor(C) is true, then
a. Let newObj be the result of calling the [[Construct]] internal method of C Mith an argument list
containing the single item len.|

Ci ed [AWB7140]: It would be nice to have a more

b. Let A be ToObject(newObj).
. Else,
a. Let A be the result of the abstract operation ArrayCreate with argument len.
. ReturnlfAbrupt(A).
. Letk be 0.
. Repeat, while k < len
a. Let Pk be ToString(k).
b. Let kPresent be the result of HasProperty(items; Pk).
¢. ReturnIfAbrupt(kPresent):
d. IfkPresent is true; then
i Let kValue be the result of Get(items; Pk).
ii. ReturnlfAbrupt(kValue).
iii. If.mapping is true, then
1. Let mappedValue be the result of calling the [[Call]] internal method of mapfn with
T as thisArgument and a List containing kValue, k, and items as argumentsList.
2. ReturnlfAbrupt(mappedValue).
iv. Else; let mappedValue be kValue.
V. Let defineStatus be the result of DefinePropertyOrThrow(A, Pk, Property Descriptor
{[[Value]]: mappedValue, [[Writable]]: true, [[Enumerable]]: true, [[Configurable]]:
true}).
Vi. ReturnlfAbrupt(defineStatus).
e. Increase k by 1.
. Let putStatus be the result of Put(A, "length™", len, true).
. ReturnIfAbrupt(putStatus).

20. Return A.

The length property of the £rom method is 1.

NOTE

nu

meric argument.

22.1.2.2 Array.isArray (arg)

The isArray function takes one argument arg, and performs the following:

1
2.

340

If Type(arg) is not Object, return false.
If arg is an exotic Array object, then return true.

explicit way to create a collection with a pre-specified number
of elements.

The £rom function is an intentionally generic factory method; it does not require that its this value be the Array
constructor. Therefore it can be transferred to or inherited by any other constructors that may be called with a single

© Ecma International 2013

secma

3. Return false.
22.1.2.3 Array.of (...items)

When the of method is called with any number of arguments, the following steps are taken:

Let lenValue be the result of Get(items, "length™").
Let len be Tolnteger(lenValue).
Let C be the this value.
If IsConstructor(C) is true, then
a. Let A be the result of calling the [[Construct]] internal method of C Mith an argument list containing
the single item len)

Hwn e

C ed [AWB7141]: It would be nice to have a more

5. Else,
a. Let A be the result of the abstract operation ArrayCreate with argument len.
ReturnlfAbrupt(A).
7. LetkbeO.
8. Repeat, while k < len
a. Let Pk be ToString(k).
b. Let kValue be the result of Get(items, Pk).
c. Let defineStatus be the result of DefinePropertyOrThrow(A,Pk, Property Descriptor {[[Value]l:
kValue.[[value]], [[Writable]]: true, [[Enumerable]]: true, [[Configurable]]: true}).
d. ReturnlfAbrupt(defineStatus).
e. Increase k by 1.
9. Let putStatus be the result of Put(A, "1length", len, true).
10. ReturnlfAbrupt(putStatus).
11. Return A.

IS

The length property of the of method is 0.

NOTE1 The items argument is assumed to be a well-formed rest argument value.

NOTE 2 The of function is an intentionally generic factory method; it does not require that its this value be the Array
constructor. Therefore it can be transferred to or inherited by other constructors that may be called with a single numeric
argument.

22.1.2.4 Array.prototype

The value of Array . prototype iS %ArrayPrototype%, the intrinsic Array prototype object (22.1.3).

This property has the attributes { [[Writable]]: false, [[Enumerable]]: false, [[Configurable]]: false }.

22.1.2.5 Array[@@create] ()

The @@create method of an object F performs the following steps:

Let F be the this value.

Let proto be the result of GetPrototypeFromConstructor(F, "$ArrayPrototype%").

ReturnlfAbrupt(proto):

Let obj be the result of calling ArrayCreate with arguments undefined and proto.
Return obj.

G wNE

This property has the attributes { [[Writable]]: false, [[Enumerable]]: false, [[Configurable]]: true }.

NOTE 1 Passing undefined as the first argument to ArrayCreate causes the [[ArraylnitialisationState]] internal data
property of the array to be initially assigned the value false. This is a flag used to indicate that the instance has not yet
been initialised by the Array constructor. This flag value is never directly exposed to ECMAScript code; hence
implementations may choose to encode the flag in any unobservable manner.

NOTE 2 The Array @@create function is intentionally generic; it does not require that its this value be the Array
constructor object. It can be transferred to other constructor functions for use as a @@create method. When used with

© Ecma International 2013 341

explicit way to create a collection with a pre-specified number
of elements.

secmd

other constructors, this function will create an exotic Array object whose [[Prototype]] value is obtained from the associated
constructor.

22.1.3 Properties of the Array Prototype Object

The value of the [[Prototype]] internal data property of the Array prototype object is the intrinsic
object %ObjectPrototype%.

The Array prototype object is itself an ordinary object. It is not an Array instance and does not have a 1length
property .

NOTE The Array prototype object does not have a valueOf property of its own; however, it inherits the valueOf
property from the standard built-in Object prototype Object.

22.1.3.1 Array.prototype.concat ([item1 [, item2[,...111)

When the concat method is called with zero or more arguments iteml, item2, etc., it returns an array
containing the array elements of the object followed by the array elements of each argument in order.

The following steps are taken:

Let O be the result of calling ToObject passing the this value as the argument.
ReturnIfAbrupt(O).
Let A be undefined.
If O is an exotic Array object, then
a. Let C be Get(O, "constructor!).
b. ReturnlfAbrupt(C).
c. If C does not have a [[Global Array]] internal data property, then
i. If IsConstructor(C) is true, then
1. Let A be the result of calling the [[Construct]] internal. method of C wirh argument (0)).
5. If Alis undefined, then
a. Let A be the result-of the abstract operation ArrayCreate with argument 0.
6. ReturnlfAbrupt(A).
7. Letn beO.
8. Letitems be an internal List whose first element is O and whose subsequent elements are, in left to right
order, the arguments that were passed to this function invocation.
9. Repeat, while items is not empty
a. Remove the first element from items and let E be the value of the element.
b. Let spreadable be the result of IsConcatSpreadable(E).
¢ ReturnlfAbrupt(spreadable).
d. If spreadable is true, then
i. LetkbeO.
ii. Let lenVal be the result of Get(E, "1length").
iii. . Let len be ToLength(lenVal).
iv. ReturnlfAbrupt(len).
v. Repeat, while'k <len
1.° Let P'be ToString(k).
2. Let exists be the result of HasProperty(E, P).
3. ReturnlfAbrupt(exists).
4. If exists is true, then
a. Let subElement be the result of Get(E, P).
b. Call the [[DefineOwnProperty]] internal method of A with arguments ToString(n) and
Property Descriptor {[[Value]]: subElement, [[Writable]]: true, [[Enumerable]]: true,
[[Configurable]]: true}.
5. Increase n by 1.
6. Increase k by 1.
e. Else E is added as a single item rather than spread,
i. Call the [[DefineOwnProperty]] internal method of A with arguments ToString(n) and Property
Descriptor {[[Value]]: E, [[Writable]]: true, [[Enumerable]]: true, [[Configurable]]: true}.

Hwn e

342 © Ecma International 2013

secma

ii. Increase n by 1.
10. Let putStatus be the result of Put(A, "length™", n, true).
11. ReturnlfAbrupt(putStatus).
12. Return A.

The length property of the concat method is 1.

NOTE1 The explicit setting of the length property in step 10 is necessary to ensure that its value is correct in
situations where the trailing elements of the result Array are not present.

NOTE 2 The concat function is intentionally generic; it does not require that its this value be an Array object.
Therefore it can be transferred to other kinds of objects for use as a method. Whether the concat function can be applied
successfully to an exotic object that is not an Array is implementation-dependent.

22.1.3.1.1 IsConcatSpreadable (O) Abstract Operation
The abstract operation IsConcatSpreadable with argument O performs the following steps:

If Type(O) is not Object, then return false.

Let spreadable be Get(O, @@isConcatSpreadable).
ReturnlfAbrupt(spreadable).

If spreadable is not undefined, then return ToBoolean(spreadable).
If O is an exotic Array object, then return true.

Return false.

Ok wNE

22.1.3.2 Array.prototype.constructor
The initial value of Array.prototype. constructor is the standard built-in Array constructor.
22.1.3.3 Array.prototype.copyWithin (target, start, end =this.length)

The copyWithin method takes up to three arguments target, start and end. The end argument is optional with
the length of the this object as its default value. If target is negative, it is treated as length+target where length
is the length of the array. If start is negative, it is treated as length+start. If end is negative, it is treated as
length+end. The following steps are taken:

Let O be the result of calling ToObject passing the this value as the argument.

ReturnlfAbrupt(O).

Let lenVal be the result of Get(O, "length").

Let len be ToLength(lenVal).

ReturnlfAbrupt(len).

Let len be max(len, 0).

Let relativeTarget be Tolnteger(target).

ReturnlfAbrupt(relativeTarget).

If relativeTarget is negative, let to be max((len + relativeTarget),0); else let to be min(relativeTarget, len).

©ONDUT A WN PP

11. Let relativeStart be Tolnteger(start).
12. ReturnlfAbrupt(relativeStart).
13. If relativeStart is negative, let from be max((len + relativeStart),0); else let from be min(relativeStart, len).
14. If end is undefined, let relativeEnd be len; else let relativeEnd be Tolnteger(end).
15. ReturnlfAbrupt(relativeEnd).
16. If relativeEnd is negative, let final be max((len + relativeEnd),0); else let final be min(relativeEnd, len).
17. Let count be min(final-from, len-to).
18. If from<to and to<from+count
a. Letdirection = -1.
b. Letfrom = from + count -1.
c. Letto=to+ count-1.
19. Else,
a. Letdirection = 1.

© Ecma International 2013 343

secmd

20. Repeat, while count > 0
a. LetfromKey be ToString(from).

b. Let toKey be ToString(to).

c. LetfromPresent be the result of HasProperty(O, fromKey).
d. ReturnIfAbrupt(fromPresent).

e. If fromPresent is true, then

i. Let fromVal be the result of Get(O, fromKey).
ii. ReturnlfAbrupt(fromVal).
iii. Let putStatus be the result of Put(O, toKey, fromVal, true).
iv. ReturnlfAbrupt(putStatus).
f. Else fromPresent is false,
i. Let deleteStatus be the result of DeletePropertyOrThrow(O, toKey).
ii. ReturnlfAbrupt(deleteStatus).
g. Letfrom be from + direction.
h. Let to be to + direction.
i. Letcountbe count- 1.
21. Return O.

The length property of the copyWithin method is 2.

NOTE1 The copyWithin function is intentionally generic; it/does not require that its this value be an Array object.
Therefore it can be transferred to other kinds of objects for use as a method. Whether the copyWith function can be
applied successfully to an exotic object that is not an Array is implementation-dependent.

22.1.3.4 Array.prototype.entries ()
The following steps are taken:

1. Let O be the result of calling ToObject with the this value as its. argument.

2. ReturnlfAbrupt(O).

3. Return the result of calling the Create Arraylterator abstract operation with arguments O and
"key+value".

22.1.3.5 Array.prototype.every (callbackfn [, thisArg])

callbackfn should be a function that accepts three.arguments and returns a value that is coercible to the
Boolean value true or false, every calls callbackfn once for each element present in the array, in ascending
order, until it finds one where callbackfn returns false. If such an element is found, every immediately returns
false. Otherwise, if callbackfn returned true for all elements, every will return true. callbackfn is called only for
elements of the array which actually exist; it is not called for missing elements of the array.

If a thisArg parameter is provided, it will be used as the this value for each invocation of callbackfn. If it is not
provided, undefined is used instead.

callbackfn is called with three'arguments: the value of the element, the index of the element, and the object
being traversed.

every does not directly mutate the object on which it is called but the object may be mutated by the calls to
callbackfn.

The range of elements processed by every is set before the first call to callbackfn. Elements which are
appended to the array after the call to every begins will not be visited by callbackfn. If existing elements of the
array are changed, their value as passed to callbackfn will be the value at the time every visits them;
elements that are deleted after the call to every begins and before being visited are not visited. every acts
like the "for all" quantifier in mathematics. In particular, for an empty array, it returns true.

When the every method is called with one or two arguments, the following steps are taken:

344 © Ecma International 2013

secma

Let O be the result of calling ToObject passing the this value as the argument.
ReturnlfAbrupt(O).
Let lenValue be the result of Get(O, "length")
Let len be ToLength(lenValue).
ReturnlfAbrupt(len).
If IsCallable(callbackfn) is false, throw a TypeError exception.
If thisArg was supplied, let T be thisArg; else let T be undefined.
Let k be 0.
Repeat, while k < len
a. Let Pk be ToString(k).
b. Let kPresent be the result of HasProperty(O, Pk).
c. ReturnifAbrupt(kPresent).
d. IfkPresentis true, then
i. Let kValue be the result of Get(O, Pk).
il ReturnlfAbrupt(kValue).
il Let testResult be the result of calling the [[Call]] internal method of callbackfn with T as
thisArgument and a List containing kValue, k, and O as argumentsList.
iv. ReturnlfAbrupt(testResult).
V. If ToBoolean(testResult) is false, return false:
e. Increase k by 1.
10. Return true.

©oONDT A WD

The length property of the every method is 1.

NOTE The every function is intentionally generic; it does not require that its this value be an Array object. Therefore
it can be transferred to other kinds of objects for use as a method. Whether the every function can be applied
successfully to an exotic object that is not an Array.is implementation-dependent.

22.1.3.6 Array.prototype.fill (value, start =0, end = this:length)

The £i11 method takes up to three arguments value, start‘and end. The start and end arguments are optional
with default values of 0 and the length.of the this ‘object. If start is negative, it is treated as length+start where
length is the length of the array. If end is negative, it is treated as length+end. The following steps are taken:

Let O be the result of calling ToObject passing the this value as the argument.
ReturnIfAbrupt(O):
Let lenVal be the result of Get(O,"1length"):
Let len be ToLength(lenVal).
ReturnIfAbrupt(len).
Let len_be max(len, 0).
Let relativeStart be Tolnteger(start).
ReturnlfAbrupt(relativeStart).
If relativeStart is negative, let k be max((len + relativeStart),0); else let k be min(relativeStart, len).
10. If end is undefined, let relativeEnd be len; else let relativeEnd be Tolnteger(end).
11. ReturnlfAbrupt(relativeEnd).
12. If relativeEnd is negative, let final be max((len + relativeEnd),0); else let final be min(relativeEnd, len).
13. Repeat, while k < final
a. Let Pk be ToString(k).
b. Let putStatus be the result of Put(O, Pk, value, true).
c. ReturnIfAbrupt(putStatus).
d. Increase k by 1.
14. Return O.

©CONOO A WNE

The length property of the £i11 method is 1.
NOTE1 The £il1 function is intentionally generic; it does not require that its this value be an Array object. Therefore

it can be transferred to other kinds of objects for use as a method. Whether the £i11 function can be applied successfully
to an exotic object that is not an Array is implementation-dependent.

© Ecma International 2013 345

secmd

22.1.3.7 Array.prototype.filter (callbackfn [, thisArg])

callbackfn should be a function that accepts three arguments and returns a value that is coercible to the
Boolean value true or false. £ilter calls callbackfn once for each element in the array, in ascending order,
and constructs a new array of all the values for which callbackfn returns true. callbackfn is called only for
elements of the array which actually exist; it is not called for missing elements of the array.

If a thisArg parameter is provided, it will be used as the this value for each invocation of callbackfn. If it is not
provided, undefined is used instead.

callbackfn is called with three arguments: the value of the element, the index of the element, and the object
being traversed.

filter does not directly mutate the object on which it is called but the object may be mutated by the calls to
callbackfn.

The range of elements processed by filter is set before the first call to callbackfn. Elements which are
appended to the array after the call to £ilter begins will not be‘visited by callbackfn. If existing elements of
the array are changed their value as passed to callbackfn will'be the value at the time £ilter visits them;
elements that are deleted after the call to £ilter begins and before being visited are not visited.

When the £ilter method is called with one or two arguments, the following steps are taken:

Let O be the result of calling ToObject passing the this value as the argument.
ReturnlfAbrupt(O).
Let lenValue be the result of Get(O, "length").
Let len be ToLength(lenValue).
ReturnlfAbrupt(len).
If IsCallable(callbackfn) is false, throw a TypeError exception.
If thisArg was supplied, let T be.thisArg; else let T be.undefined.
Let A be undefined.
If O is an exotic Array object, then
a. Let C be Get(O, "constructor").
b. ReturnlfAbrupt(C).
c. If C does not have a [[GlobalArray]]internal data property, then
i If IsConstructor(C) is true, then
1. Let newObj be the result of calling the [[Construct]] internal method of C Mith an
argument list containing the single item 0.

©@oNOG A WNE

C ed [AWB7142]: It would be nice to have a more

10. If A is'undefined, then
a. Let A be the result of the abstract operation ArrayCreate with argument 0.
11. ReturnIfAbrupt(A).
12. Letk be 0.
13. Let to be 0.
14. Repeat, while k < len
a. Let Pk be ToString(k).
Let kPresent be the result of HasProperty(O, Pk).
ReturnlfAbrupt(kPresent).
If kPresent is true, then
i Let kValue be the result of Get(O, Pk).
ii. ReturnlfAbrupt(kValue).
iii. Let selected be the result of calling the [[Call]] internal method of callbackfn with T as
thisArgument and a List containing kValue, k, and O as argumentsList.
iv. ReturnlfAbrupt(selected).
V. If ToBoolean(selected) is true, then
1. Call the [[DefineOwnProperty]] internal method of A with arguments ToString(to)
and Property Descriptor {[[Value]]: kValue, [[Writable]]: true, [[Enumerable]]:
true, [[Configurable]]: true}.
2. Increase to by 1.
e. Increase k by 1.

Qoo

346 © Ecma International 2013

explicit way to create a collection with a pre-specified number
of elements.

secma

15. Return A.
The 1length property of the £ilter method is 1.

NOTE The filter function is intentionally generic; it does not require that its this value be an Array object.
Therefore it can be transferred to other kinds of objects for use as a method. Whether the £ilter function can be applied
successfully to an exotic object that is not an Array is implementation-dependent.

22.1.3.8 Array.prototype.find (predicate , thisArg = undefined)

predicate should be a function that accepts three arguments and returns a value that is coercible to the
Boolean value true or false. £ind calls predicate once for each element present in the array, in ascending
order, until it finds one where predicate returns true. If such an element is found, £ind.immediately returns that
element value. Otherwise, £ind returns undefined. predicate is called only for elements of the array which
actually exist; it is not called for missing elements of the array.

If a thisArg parameter is provided, it will be used as the this value for each invocation of predicate. If it is not
provided, undefined is used instead.

predicate is called with three arguments: the value of the element, the index of the element, and the object
being traversed.

£ind does not directly mutate the object on which it is called but the object may be mutated by the calls to
predicate.

The range of elements processed by £ind is set before the first call to callbackfn. Elements that are appended
to the array after the call to £ind begins will not be visited by callbackfn. If existing elements of the array are
changed, their value as passed to predicate will be the value at the time that £ind visits them; elements that
are deleted after the call to £ind begins and before being visited are not visited.

When the £ind method is called with.one or two arguments, the following steps are taken:

Let O be the result of calling ToObject passing the this value as the argument.
ReturnifAbrupt(O).
Let lenValue be the result of Get(O,"1length").
Let len be ToLength(lenValue).
ReturnlfAbrupt(len).
If IsCallable(predicate) is false, throw a TypeError exception.
If thisArg was supplied, let T be thisArg; else let T be undefined.
Let k-be 0.
Repeat, while k < len
a. Let Pk be ToString(k).
b. . Let kPresent be the result of HasProperty(O, Pk).
¢. ReturnifAbrupt(kPresent).
d. If kPresent is true, then
i Let kValue be the result of Get(O, Pk).
ii. ReturnlfAbrupt(kValue).
il Let testResult be the result of calling the [[Call]] internal method of predicate with T as
thisArgument and a List containing kValue, k, and O as argumentsList.
iv. ReturnlfAbrupt(testResult).
V. If ToBoolean(testResult) is true, return kValue.
e. Increase k by 1.

10. Return undefined.

©ONDTOR NP

The 1length property of the £ind method is 1.

NOTE The £ind function is intentionally generic; it does not require that its this value be an Array object. Therefore
it can be transferred to other kinds of objects for use as a method. Whether the £ind function can be applied successfully
to an exotic object that is not an Array is implementation-dependent.

© Ecma International 2013 347

secmd

22.1.3.9 Array.prototype.findindex (predicate , thisArg = undefined)

predicate should be a function that accepts three arguments and returns a value that is coercible to the
Boolean value true or false. findIndex calls predicate once for each element present in the array, in
ascending order, until it finds one where predicate returns true. If such an element is found, £indIndex
immediately returns the index of that element value. Otherwise, £indIndex returns -1. predicate is called only
for elements of the array which actually exist; it is not called for missing elements of the array.

If a thisArg parameter is provided, it will be used as the this value for each invocation of predicate. If it is not
provided, undefined is used instead.

predicate is called with three arguments: the value of the element, the index of the element, and the object
being traversed.

findIndex does not directly mutate the object on which it is called but the object may be mutated by the
calls to predicate.

The range of elements processed by findIndex is set before the first call to callbackfn. Elements that are
appended to the array after the call to £indIndex begins will. not be visited by callbackfn. If existing elements
of the array are changed, their value as passed to predicate will be the value at the time that £indIndex visits
them; elements that are deleted after the call to £indIndex begins and before being visited are not visited.

When the £indIndex method is called with one or two arguments, the following steps are taken:

1. Let O be the result of calling ToObject passing.the this value as the argument.
2. ReturnlfAbrupt(O).
3. LetlenValue be the result of Get(O, "length").
4. Let len be ToLength(lenValue).
5. ReturnlfAbrupt(len).
6. If IsCallable(predicate) is false; throw a TypeError exception.
7. If thisArg was supplied, let T be thisArg; else let T be undefined.
8. LetkbeO.
9. Repeat, while k < len
a. Let Pk be ToString(k).
b. Let kPresent be the result-of HasProperty(O, Pk).
c. ReturnlfAbrupt(kPresent).
d. If kPresent is true, then
i Let kValue be the result of Get(O, Pk).
ii. ReturnifAbrupt(kValue).
iii. Let testResult be the result of calling the [[Call]] internal method of predicate with T as
thisArgument and a List containing kValue, k, and O as argumentsList.
iv. ReturnlfAbrupt(testResult).
V. If ToBoolean(testResult) is true, return k.
e. ‘Increase k by 1.
10. Return -1.

The length property of the £indIndex method is 1.

NOTE The findIndex function is intentionally generic; it does not require that its this value be an Array object.
Therefore it can be transferred to other kinds of objects for use as a method. Whether the £indIndex function can be
applied successfully to an exotic object that is not an Array is implementation-dependent.

22.1.3.10 Array.prototype.forEach (callbackfn [, thisArg])
callbackfn should be a function that accepts three arguments. forEach calls callbackin once for each element
present in the array, in ascending order. callbackfn is called only for elements of the array which actually exist;

itis not called for missing elements of the array.

If a thisArg parameter is provided, it will be used as the this value for each invocation of callbackfn. If it is not
provided, undefined is used instead.

348 © Ecma International 2013

pecma

callbackfn is called with three arguments: the value of the element, the index of the element, and the object
being traversed.

forEach does not directly mutate the object on which it is called but the object may be mutated by the calls to
callbackfn.

The range of elements processed by forEach is set before the first call to callbackfn. Elements which are
appended to the array after the call to forEach begins will not be visited by callbackfn. If existing elements of
the array are changed, their value as passed to callback will be the value at the time forEach visits them;
elements that are deleted after the call to forEach begins and before being visited are not visited.

When the forEach method is called with one or two arguments, the following steps are taken:

Let O be the result of calling ToObject passing the this value as the argument.
ReturnlfAbrupt(O).
Let lenValue be the result of Get(O, "length™")
Let len be ToLength(lenValue).
ReturnlfAbrupt(len).
If IsCallable(callbackfn) is false, throw a TypeError exception.
If thisArg was supplied, let T be thisArg; else let T be undefined.
Let k be 0.
Repeat, while k < len
a. Let Pk be ToString(k).
b. Let kPresent be the result of HasProperty(O, Pk).
c. ReturnifAbrupt(kPresent).
d. IfkPresentis true, then
i Let kValue be the result of Get(O, Pk):
il ReturnlfAbrupt(kValue).
iii. Let funcResult be the result of calling the [[Call]] internal method of callbackfn with T as
thisArgument and a List containing kValue, k, and O as argumentsList.
iv. ReturnlfAbrupt(funcResult).
e. Increase k by 1.

10. Return undefined.

©CONOG A WNE

The 1length property of the forEach method is 1.

NOTE The forEach function is _intentionally generic; it-does not require that its this value be an Array object.
Therefore it can be transferred to other kinds of objects for use as a method. Whether the forEach function can be
applied successfully to an exotic object that is not an Array is implementation-dependent.

22.1.3.11 Array.prototype.indexOf (searchElement [, fromindex])

indexOf compares searchElement to the elements of the array, in ascending order, using the Strict Equality
Comparison algorithm (7.2.10), and if found at one or more positions, returns the index of the first such
position; otherwise, -1 is returned.

The optional second argument fromindex defaults to O (i.e. the whole array is searched). If it is greater than or
equal to the length of the array, -1 is returned, i.e. the array will not be searched. If it is negative, it is used as
the offset from the end of the array to compute fromindex. If the computed index is less than 0, the whole array
will be searched.

When the indexOf method is called with one or two arguments, the following steps are taken:

Let O be the result of calling ToObject passing the this value as the argument.
ReturnlfAbrupt(O).

Let lenValue be the result of Get(O, "length")

Let len be ToLength(lenValue).

ReturnlfAbrupt(len).

If len is O, return -1.

If argument fromlIndex was passed let n be Tolnteger(fromIndex); else let n be 0.

Noo~LDE

© Ecma International 2013 349

secmd

ReturnIfAbrupt(n).
If n > len, return -1.
10. Ifn >0, then
a. Letkben.
11. Else n<0,
a. Letk be len - abs(n).
b. Ifk <0, then letk be 0.
12. Repeat, while k<len
a. LetkPresent be the result of HasProperty(O, ToString(k)).
b. ReturnlfAbrupt(kPresent).
c. IfkPresentis true, then
i. Let elementK be the result of Get(O, ToString(k)).
ii. ReturnlfAbrupt(elementK).
iii. Let same be the result of performing Strict Equality Comparison searchElement ===

©

elementK.
iv. If same is true, return k.
d. Increase k by 1.

13. Return -1.
The length property of the index0Of method is 1.

NOTE The indexOf function is intentionally generic; it does not require that its this value be an Array object.
Therefore it can be transferred to other kinds of objects for use as a method. Whether the indexOf function can be
applied successfully to an exotic object that is not an Array is implementation-dependent.

22.1.3.12 Array.prototype.join (separator)

The elements of the array are converted to Strings, and-these Strings are then concatenated, separated by
occurrences of the separator. If no separator is provided, a single. comma is used as the separator.

The join method takes one argument, separator, and performs the following steps:

Let O be the result of calling ToObject passing the this value as the argument.
ReturnIfAbrupt(O).
Let lenVal be the result of Get(O, "length").
Let len be ToLength(lenVal).
ReturnlfAbrupt(len).
If separator is undefined, let separator be the single-character String ", .
Let sep be ToString(separator).
If len_is zero, return the empty String.
Let-elementO be the result of Get(O, "0").
10. If element0 is undefined or null, let R be the empty String; otherwise, let R be ToString(element0).
11. ReturnlfAbrupt(R).
12. Letkbe 1.
13. Repeat, while k < len
a. LetS be the String value produced by concatenating R and sep.
b. Let element bethe result of Get(O, ToString(k)).
c. Ifelement is undefined or null, then let next be the empty String; otherwise, let next be
ToString(element).
d. ReturnIfAbrupt(next).
e. LetR be a String value produced by concatenating S and next.
f. Increase k by 1.
14. Return R.

COoNOOA~WNE

The length property of the join method is 1.
NOTE The join function is intentionally generic; it does not require that its this value be an Array object. Therefore,

it can be transferred to other kinds of objects for use as a method. Whether the join function can be applied successfully
to an exotic object that is not an Array is implementation-dependent.

350 © Ecma International 2013

secma

22.1.3.13 Array.prototype.keys ()
The following steps are taken:

1. Let O be the result of calling ToObject with the this value as its argument.
2. ReturnlfAbrupt(O).
3. Return the result of calling the CreateArraylterator abstract operation with arguments O and "key"".

22.1.3.14 Array.prototype.lastindexOf (searchElement [, fromIndex])

lastIndexOf compares searchElement to the elements of the array in descending order using the Strict
Equality Comparison algorithm (7.2.10), and if found at one or more positions, returns the index of the last
such position; otherwise, -1 is returned.

The optional second argument fromindex defaults to the array's length-minus one (i.e. the whole array is
searched). If it is greater than or equal to the length of the array, the whole array will be searched. If it is
negative, it is used as the offset from the end of the array to compute fromindex. If the computed index is less
than 0, -1 is returned.

When the 1astIndexOf method is called with one or two arguments, the following steps are taken:

Let O be the result of calling ToObject passing the this value as the argument.
ReturnlfAbrupt(O).
Let lenValue be the result of Get(O, "length")
Let len be ToLength(lenValue).
ReturnlfAbrupt(len).
If len is O, return -1.
If argument fromlIndex was passed let n be Tolnteger(fromindex); else let n be len-1.
ReturnIfAbrupt(n).
. Ifn>0, then let k be min(n, len — 1).
0. Else n<0,
a. Letk be len - abs(n).
11. Repeat, while k>0
a. Let kPresent be the result of HasProperty(O, ToString(k)).
b. ReturnlfAbrupt(kPresent).
c. IfkPresent is true, then
i. Let elementK be the result of Get(O, ToString(k)).
il ReturnlfAbrupt(elementK).
iii. Let same be the result of performing Strict Equality Comparison

1
2
3
4
5.
6.
7
8
9
1

searchElement === elementK.
iv. If same is true, return k.
d.. Decrease k by 1.

12. Return -1.
The 1length property of the LastIndexOf method is 1.

NOTE The lastIndexOf function is intentionally generic; it does not require that its this value be an Array object.
Therefore it can be transferred to other kinds of objects for use as a method. Whether the 1astIndexOf function can be
applied successfully to an exotic object that is not an Array is implementation-dependent.

22.1.3.15 Array.prototype.map (callbackfn [, thisArg])
callbackfn should be a function that accepts three arguments. map calls callbackfn once for each element in the
array, in ascending order, and constructs a new Array from the results. callbackfn is called only for elements of

the array which actually exist; it is not called for missing elements of the array.

If a thisArg parameter is provided, it will be used as the this value for each invocation of callbackfn. If it is not
provided, undefined is used instead.

© Ecma International 2013 351

secmd

callbackfn is called with three arguments: the value of the element, the index of the element, and the object
being traversed.

map does not directly mutate the object on which it is called but the object may be mutated by the calls to
callbackfn.

The range of elements processed by map is set before the first call to callbackin. Elements which are
appended to the array after the call to map begins will not be visited by callbackfn. If existing elements of the
array are changed, their value as passed to callbackfn will be the value at the time map visits them; elements
that are deleted after the call to map begins and before being visited are not visited.

When the map method is called with one or two arguments, the following steps are taken:

Let O be the result of calling ToObject passing the this value as the argument.
ReturnlfAbrupt(O).
Let lenValue be the result of Get(O, "1length")
Let len be ToLength(lenValue).
ReturnlfAbrupt(len).
If IsCallable(callbackfn) is false, throw a TypeError exception.
If thisArg was supplied, let T be thisArg; else let T be undefined.
Let A be undefined.
If O is an exotic Array object, then
a. Let Cbe Get(O, "constructor").
b. ReturnIfAbrupt(C).
c. If C does not have a [[Global Array]}.internal data property, then
i If IsConstructor(C) is true, then
1. Let newObj be the result of calling the [[Construct]] internal method of C Mith an
argument list containing the single item len

©oNOG M WNE

C ed [AWB7143]: It would be nice to have a more

10. If Ais undefined, then
a. Let A be the result of the abstract operation ArrayCreate with argument len.
11. ReturnlfAbrupt(A).
12. Letk be 0.
13. Repeat, while k < len
a. Let Pk be ToString(k).
Let kPresent be the result of HasProperty(O, Pk).
ReturnlfAbrupt(kPresent).
If kPresent is true, then

i. Let kValue be the result of Get(O, Pk).

ii. Returnl fAbrupt(kValue).

iii. Let mappedValue be the result of calling the [[Call]] internal method of callbackfn with T as
thisArgument and a List containing kValue, k, and O as argumentsList.

iv. ReturnlfAbrupt(mappedValue).

V. Call the [[DefineOwnProperty]] internal method of A with arguments Pk and Property
Descriptor {[[Value]]: mappedValue, [[Writable]]: true, [[Enumerable]]: true,
[[Configurable]]: true}.

e. Increase k by 1
14. Return A.

oo

The 1length property of the map method is 1.

NOTE The map function is intentionally generic; it does not require that its this value be an Array object. Therefore it
can be transferred to other kinds of objects for use as a method. Whether the map function can be applied successfully to
an exotic object that is not an Array is implementation-dependent.

22.1.3.16 Array.prototype.pop ()

The last element of the array is removed from the array and returned.

1. Let O be the result of calling ToObject passing the this value as the argument.
2. ReturnlfAbrupt(O).

352 © Ecma International 2013

explicit way to create a collection with a pre-specified number
of elements.

secma

Let lenVal be the result of Get(O, "length").
Let len be ToLength(lenVal).
ReturnlfAbrupt(len).
If len is zero,
a. Let putStatus be the result of Put(O, "length", 0, true).
b. ReturnlfAbrupt(putStatus).
¢. Return undefined.
7. Elselen>0,
Let newLen be len-1.
Let indx be ToString(newLen).
Let element be the result of Get(O, indx).
ReturnlfAbrupt(element).
Let deleteStatus be the result of DeletePropertyOrThrow(O, indx).
ReturnlfAbrupt(deleteStatus).
Let putStatus be the result of Put(O, "1length", newlLen, true):
ReturnlfAbrupt(putStatus).
Return element.

oA W

“Fe@meao o

NOTE The pop function is intentionally generic; it does not require that its this value be an Array object. Therefore it
can be transferred to other kinds of objects for use as a method. Whether the pop function can be applied successfully to
an exotic object that is not an Array is implementation-dependent.

22.1.3.17 Array.prototype.push ([item1[,item2[,...11]1)

The arguments are appended to the end of the array, in the order in which they appear. The new length of the
array is returned as the result of the call.

When the push method is called with zero or more arguments.item1, item2, etc., the following steps are taken:

Let O be the result of calling ToObject passing the thisvalue as the argument.
ReturnlfAbrupt(O).
Let lenVal be the result of Get(O, "length").
Let n be ToLength(lenVal).
ReturnlfAbrupt(n).
Let items be an internal List whose elements are, in left to right order, the arguments that were passed to this
function invocation.
Repeat, while items is not empty
a. Remove. the first element from items and let E be the value of the element.
b. Let putStatus be the result of Put(O, ToString(n), E, true).
¢ ReturnIfAbrupt(putStatus).
d. Increase n by 1.
8. Let putStatus be the result of Put(O, "length", n, true).
9. ReturnlfAbrupt(putStatus).
10. Returnn.

S UA~ LW

~

The length property of theipush method is 1.

NOTE The push function is intentionally generic; it does not require that its this value be an Array object. Therefore
it can be transferred to other kinds of objects for use as a method. Whether the push function can be applied successfully
to an exotic object that is not an Array is implementation-dependent.

22.1.3.18 Array.prototype.reduce (callbackfn [, initialValue])

callbackfn should be a function that takes four arguments. reduce calls the callback, as a function, once for
each element present in the array, in ascending order.

callbackfn is called with four arguments: the previousValue (or value from the previous call to callbackfn), the

currentValue (value of the current element), the currentindex, and the object being traversed. The first time
that callback is called, the previousValue and currentValue can be one of two values. If an initialValue was

© Ecma International 2013 353

secmd

provided in the call to reduce, then previousValue will be equal to initialValue and currentValue will be equal
to the first value in the array. If no initialValue was provided, then previousValue will be equal to the first value
in the array and currentValue will be equal to the second. It is a TypeError if the array contains no elements
and initialValue is not provided.

reduce does not directly mutate the object on which it is called but the object may be mutated by the calls to
callbackfn.

The range of elements processed by reduce is set before the first call to callbackfn. Elements that are
appended to the array after the call to reduce begins will not be visited by callbackfn. If existing elements of
the array are changed, their value as passed to callbackfn will be the value at the.time reduce visits them;
elements that are deleted after the call to reduce begins and before being visited are not visited.

When the reduce method is called with one or two arguments, the following steps are taken:

1. Let O be the result of calling ToObject passing the this value as the argument.
2. ReturnlfAbrupt(O).
3. LetlenValue be the result of Get(O, "length").
4. Let len be ToLength(lenValue).
5. ReturnlfAbrupt(len).
6. If IsCallable(callbackfn) is false, throw a TypeError exception.
7. If lenis 0 and initialValue is not present, throw a TypeError exception.
8. LetkbeO.
9. IfinitialValue is present, then
a. Setaccumulator to initialValue.
10. Else initialValue is not present,
a. LetkPresent be false.
b. Repeat, while kPresent is false and k < len
i Let Pk be ToString(k).
ii. Let kPresent be the result of HasProperty(O, Pk).
iii. ReturnlfAbrupt(kPresent).
iv. If kPresent is true, then
1. Let accumulator be the result of Get(O, Pk).
2. ReturnlfAbrupt(accumulator).
V. Increase k by 1.
c. IfkPresent is false, throw a TypeError exception.
11. Repeat, while k < len
a. Let Pk be ToString(k).
b.< Let kPresent be the result of HasProperty(O, Pk).
¢. ReturnlfAbrupt(kPresent).
d. IfkPresent is true, then
i Let kValue be the result of Get(O, Pk).
ii. ReturnlfAbrupt(kValue).

iii. Let accumulator be the result of calling the [[Call]] internal method of callbackfn with
undefined as thisArgument and a List containing accumulator, kValue, k, and O as
argumentsList.

iv. ReturnlfAbrupt(accumulator).

e. Increase k by 1.
12. Return accumulator.

The 1length property of the reduce method is 1.

NOTE The reduce function is intentionally generic; it does not require that its this value be an Array object.
Therefore it can be transferred to other kinds of objects for use as a method. Whether the reduce function can be applied
successfully to an exotic object that is not an Array is implementation-dependent.
22.1.3.19 Array.prototype.reduceRight (callbackfn [, initialValue])

callbackfn should be a function that takes four arguments. reduceRight calls the callback, as a function,
once for each element present in the array, in descending order.

354 © Ecma International 2013

secma

callbackfn is called with four arguments: the previousValue (or value from the previous call to callbackfn), the
currentValue (value of the current element), the currentindex, and the object being traversed. The first time the
function is called, the previousValue and currentValue can be one of two values. If an initialValue was provided
in the call to reduceRight, then previousValue will be equal to initialValue and currentValue will be equal to the
last value in the array. If no initialValue was provided, then previousValue will be equal to the last value in the
array and currentValue will be equal to the second-to-last value. It is a TypeError if the array contains no
elements and initialValue is not provided.

reduceRight does not directly mutate the object on which it is called but the object may be mutated by the
calls to callbackfn.

The range of elements processed by reduceRight is set before the first call to_callbackfn. Elements that are
appended to the array after the call to reduceRight begins will not be visited by callbackfn. If existing
elements of the array are changed by callbackfn, their value as passed to_callbackfn will be the value at the
time reduceRight visits them; elements that are deleted after the call t0 reduceRight begins and before
being visited are not visited.

When the reduceRight method is called with one or two arguments, the following steps are taken:

1. Let O be the result of calling ToObject passing the this value as the argument.
2. ReturnlfAbrupt(O).
3. LetlenValue be the result of Get(O, "length").
4. Letlen be ToLength(lenValue).
5. ReturnIfAbrupt(len).
6. If IsCallable(callbackfn) is false, throw a TypeError exception.
7. Iflenis 0 and initialValue is not present, throw a TypeError exception.
8. Letk belen-1.
9. IfinitialValue is present, then

a. Set accumulator to initialValue.
10. Else initialValue is not present,

a. LetkPresent be false.

b. Repeat, while kPresent is false and k > 0

i Let Pk be ToString(k).

ii. LetkPresent be the result of HasProperty(O, Pk).

il ReturnlfAbrupt(kPresent).

iv. If kPresent is true, then

1. Letaccumulator be the result of Get(O, Pk).
2. ReturnifAbrupt(accumulator).
v. Decrease k by 1.
c. IfkPresentis false, throw a TypeError exception.
11. Repeat, while k>0
a.. Let Pk be ToString(k).
b. Let kPresent be the result of HasProperty(O, Pk).
c. - ReturnIfAbrupt(kPresent).
d. [IfkPresent is true, then
I. Let kValue be the result of Get(O, Pk).

ii. ReturnlfAbrupt(kValue).

il Let accumulator be the result of calling the [[Call]] internal method of callbackfn with
undefined as thisArgument and a List containing accumulator, kValue, k, and O as
argumentsList.

iv. ReturnlfAbrupt(accumulator).

e. Decrease k by 1.
12. Return accumulator.

The 1length property of the reduceRight method is 1.

NOTE The reduceRight function is intentionally generic; it does not require that its this value be an Array object.
Therefore it can be transferred to other kinds of objects for use as a method. Whether the reduceRight function can be
applied successfully to an exotic object that is not an Array is implementation-dependent.

© Ecma International 2013 355

secmd

22.1.3.20 Array.prototype.reverse ()

The elements of the array are rearranged so as to reverse their order. The object is returned as the result of
the call.

1. Let O be the result of calling ToObject passing the this value as the argument.
2. ReturnlfAbrupt(O).
3. LetlenVal be the result of Get(O, "length").
4. Letlen be ToLength(lenVal).
5. ReturnlfAbrupt(len).
6. Let middle be floor(len/2).
7. Let lower be 0.
8. Repeat, while lower = middle
a. Letupper be len— lower —1.
b. Let upperP be ToString(upper).
c. LetlowerP be ToString(lower).
d. Let lowerValue be the result of Get(O, lowerP).
e. ReturnlfAbrupt(lowerValue).
f. Let upperValue be the result of Get(O, upper).
g. ReturnIfAbrupt(upperValue).
h. Let lowerExists be the result of HasProperty(O, lowerP).
i. ReturnlfAbrupt(lowerExists).
j. Let upperExists be the result of HasProperty(O, upperP).
k. ReturnlfAbrupt(upperExists).
. If lowerExists is true and upperExists is true, then
i. Let putStatus be the result’of Put(O, lowerP, upperValue, true).
ii. ReturnlfAbrupt(putStatus).
iii. Let putStatus be the result of Put(O, upperP, lowerValue, true).
iv. ReturnlfAbrupt(putStatus).
m. Else if lowerExists is false and upperExists is true, then
i Let putStatus-be the result of Put(O, lowerP, upperValue, true).
ii. ReturnlfAbrupt(putStatus).
iii. Let deleteStatus be the result of DeletePropertyOrThrow (O, upperP).
iv. ReturnlfAbrupt(deleteStatus).
n. Else if lowerExists is true and upperExists is false, then
i Let deleteStatus be the result of DeletePropertyOrThrow (O, lowerP).
ii. ReturnlfAbrupt(deleteStatus).
iil. Let putStatus be the result of Put(O, upperP, lowerValue, true).
iv. ReturnlfAbrupt(putStatus).
0. Else both lowerExists and upperExists are false,
i No action is required.
p. Increase lower by 1.
9. Return O .
NOTE The reverse function is intentionally generic; it does not require that its this value be an Array object.

Therefore, it can be transferred to other kinds of objects for use as a method. Whether the reverse function can be
applied successfully to an exotic object that is not an Array is implementation-dependent.

22.1.3.21 Array.prototype.shift ()
The first element of the array is removed from the array and returned.

Let O be the result of calling ToObject passing the this value as the argument.
ReturnlfAbrupt(O).
Let lenVal be the result of Get(O, "length").
Let len be ToLength(lenVal).
ReturnlfAbrupt(len).
If len is zero, then
a. Let putStatus be the result of Put(O, "length", 0, true).

Ol wNE

356 © Ecma International 2013

secma

b. ReturnlfAbrupt(putStatus).
c. Return undefined.
Let first be the result of Get(O, "0").
ReturnIfAbrupt(first).
Let k be 1.
0. Repeat, while k < len
Let from be ToString(k).
Let to be ToString(k-1).
Let fromPresent be the result of HasProperty(O, from).
ReturnlfAbrupt(fromPresent).
If fromPresent is true, then
i. Let fromVal be the result of Get(O, from).

il ReturnlfAbrupt(fromVal).

iii. Let putStatus be the result of Put(O, to, fromVal, true).

iv. ReturnlfAbrupt(putStatus).

f. Else fromPresent is false,
i. Let deleteStatus be the result of DeletePropertyOrThrow(O, to).
il ReturnlfAbrupt(deleteStatus).
g. Increase k by 1.

11. Let deleteStatus be the result of DeletePropertyOrThrow(O; ToString(len-1)).
12. ReturnlfAbrupt(deleteStatus).
13. Let putStatus be the result of Put(O, "length", len—4, true).
14. ReturnlfAbrupt(putStatus).
15. Return first.

B oo~

Poooe

NOTE The shift function is intentionally generic;.it does not require that its this value be an Array object. Therefore
it can be transferred to other kinds of objects for use as_a method. Whether the shift function can be applied
successfully to an exotic object that is not an Array is implementation-dependent.

22.1.3.22 Array.prototype.slice (start, end)

The slice method takes two-arguments, start and end, and returns an array containing the elements of the
array from element start up to, but not including, element end (or through the end of the array if end is
undefined). If start is negative, it is treated as length+start where length is the length of the array. If end is
negative, it is treated as length+end where length is the length of the array. The following steps are taken:

Let O be the result of calling ToObject passing the this value as the argument.
ReturnlfAbrupt(O).
Let lenVal be the result of Get(O, "length").
Let len be ToLength(lenVal).
ReturnlfAbrupt(len).
Let relativeStart be Tolnteger(start).
ReturnifAbrupt(relativeStart).
If relativeStart is negative, let k be max((len + relativeStart),0); else let k be min(relativeStart, len).
9. Ifend isundefined, let relativeEnd be len; else let relativeEnd be Tolnteger(end).
10. ReturnifAbrupt(relativeEnd).
11. If relativeEnd is negative, let final be max((len + relativeEnd),0); else let final be min(relativeEnd, len).
12. Let count be max(final - k, 0).
13. Let A be undefined.
14. If O is an exotic Array object, then
a. Let C be the result of Get(O, "constructor").
b. ReturnlfAbrupt(C).
c. If C does not have a [[GlobalArray]] internal data property, then
i. If IsConstructor(C) is true, then
1. LetA tﬁ the result of calling the [[Construct]] internal method of C with argument
(count),

ONOO A WD

C ed [AWB71441]: It would be nice to have a more

15. If A is undefined, then

a. Let A be the result of the abstract operation ArrayCreate with argument count.
16. ReturnIfAbrupt(A).
17. Letn be 0.

© Ecma International 2013 357

explicit way to create a collection with a pre-specified number
of elements.

secmd

18. Repeat, while k < final
a. Let Pk be ToString(k).
b. Let kPresent be the result of HasProperty(O, Pk).
c. ReturnlfAbrupt(kPresent).
d. IfkPresentis true, then
i Let kValue be the result of Get(O, Pk).
ii. ReturnlfAbrupt(kValue).
iii. Let status be the result of CreateOwnDataProperty(A, ToString(n), kValue).
iv. ReturnlfAbrupt(status).
V. If status is false, throw a TypeError exception.
e. Increase k by 1.
f. Increase n by 1.
19. Let putStatus be the result of Put(A, "length", n, true).
20. ReturnlfAbrupt(putStatus).
21. Return A.

The length property of the slice method is 2.

NOTE 1 The explicit setting of the 1length property of the result Array in step 20 is necessary to ensure that its value
is correct in situations where the trailing elements of the result Array are not present.

NOTE 2 The slice function is intentionally generic; it does<not require that its‘this value be an Array object. Therefore
it can be transferred to other kinds of objects for use as a method. Whether the slice function can be applied
successfully to an exotic object that is not an Array is implementation-dependent.

22.1.3.23 Array.prototype.some (callbackfn [, thisArg])

callbackfn should be a function that accepts three arguments and returns a value that is coercible to the
Boolean value true or false. some calls callbackfn once for each element present in the array, in ascending
order, until it finds one where callbackfn returns true. If such an element is found, some immediately returns
true. Otherwise, some returns false: callbackfn is called.only for elements of the array which actually exist; it is
not called for missing elements of the array.

If a thisArg parameter isprovided, it will be used as the this value for each invocation of callbackfn. If it is not
provided, undefined is used instead.

callbackfn is called with three arguments: the value of the element, the index of the element, and the object
being traversed.

some does not directly mutate the object on which it is called but the object may be mutated by the calls to
callbackfn.

The range of elements processed by some is set before the first call to callbackin. Elements that are appended
to the array after the call to some begins will not be visited by callbackfn. If existing elements of the array are
changed, their value as passed to callbackfn will be the value at the time that some visits them; elements that
are deleted after the call to' some begins and before being visited are not visited. some acts like the "exists"
quantifier in mathematics. In particular, for an empty array, it returns false.

When the some method is called with one or two arguments, the following steps are taken:

Let O be the result of calling ToObject passing the this value as the argument.
ReturnlfAbrupt(O).

Let lenValue be the result of Get(O, "length™").

Let len be ToLength(lenValue).

ReturnIfAbrupt(len).

If IsCallable(callbackfn) is false, throw a TypeError exception.

If thisArg was supplied, let T be thisArg; else let T be undefined.

Let k be 0.

Repeat, while k < len

©ONOG A WM

358 © Ecma International 2013

secma

Let Pk be ToString(k).
Let kPresent be the result of HasProperty(O, Pk).
ReturnlfAbrupt(kPresent).
If kPresent is true, then
i Let kValue be the result of Get(O, Pk).
ii. ReturnlfAbrupt(kValue).
il Let testResult be the result of calling the [[Call]] internal method of callbackfn with T as
thisArgument and a List containing kValue, k, and O as argumentsList.
iv. ReturnlfAbrupt(testResult).
V. If ToBoolean(testResult) is true, return true.
e. Increase k by 1.
10. Return false.

o0 oTp

The 1length property of the some method is 1.

NOTE The some function is intentionally generic; it does not require that its this value be an Array object. Therefore
it can be transferred to other kinds of objects for use as a method. Whether the some function can be applied successfully
to an exotic object that is not an Array is implementation-dependent.

22.1.3.24 Array.prototype.sort (comparefn)

The elements of this array are sorted. The sort is not necessarily stable (that is, elements that compare equal
do not necessarily remain in their original order). If comparefn is not undefined, it should be a function that
accepts two arguments x and y and returns a negative value if x <y, zero if x =y, or a positive value if x >y.
[Let obj be the result of calling ToObject passing the this value as the argument.

Let len be the result of applying Uint32 to the result of Get(obj, "length™)|

C ed [AWB7145]: TODO: take completion values

If comparefn is not undefined and is not a consistent comparison function for the elements of this array (see
below), the behaviour of sort is implementation-defined.

Let proto be the result of calling the [[GetPrototypeOf]] internal method of obj. If proto is not null and there
exists an integer j such'that all of the conditions below are satisfied then the behaviour of sort is
implementation-defined:

e objis sparse (22.1)
e 0<j<len
e The result of HasProperty(proto, ToString(j)) is true.

The behaviour of sort is also implementation defined if obj is sparse and any of the following conditions are
true:

e The result of the predicate IsExtensible(obj) is false.
e Any array index property of obj whose name is a nonnegative integer less than len is a data property
whose [[Configurable]] attribute is false.

The behaviour of sort'is also implementation defined if any array index property of obj whose name is a
nonnegative integer less than len is an accessor property or is a data property whose [[Writable]] attribute is
false.

Otherwise, the following steps are taken.

1. Perform an implementation-dependent sequence of calls to the [[Get]] and [[Set]] internal methods of obj, to
the DeletePropertyOrThrow abstract operation with obj as the first argument, and to SortCompare (described
below), where the property key argument for each call to [[Get]], [[Set]], or DeletePropertyOrThrow is the
string representation of a nonnegative integer less than len and where the arguments for calls to
SortCompare are results of previous calls to the [[Get]] internal method. If obj is not sparse then
DeletePropertyOrThrow must not be called. If any [[Set]] call returns false a TypeError exception is

© Ecma International 2013 359

into account.

secmd

thrown. If an abrupt completion is returned from any of these operations, it is immediately returned as the
value of this function.
2. Return obj.

The returned object must have the following two properties.

e There must be some mathematical permutation = of the nonnegative integers less than len, such that
for every nonnegative integer j less than len, if property old[j] existed, then new[r(j)] is exactly the
same value as old[j],. But if property old[j] did not exist, then new[r(j)] does not exist.

e Then for all nonnegative integers j and k, each less than len, if SortCompare(j,k) <0 (see SortCompare
below), then x(j) < m(k).

Here the notation old[j] is used to refer to the hypothetical result of calling the [[Get]] internal method of obj
with argument j before this function is executed, and the notation new[j] to refer to the hypothetical result of
calling the [[Get]] internal method of obj with argument j after this function has been executed.

A function comparefn is a consistent comparison function for a set of values S if all of the requirements below
are met for all values a, b, and c (possibly the same value) in the set S: The notation a <crb means
comparefn(a,b) < 0; a =cr b means comparefn(a,b) = 0 (of either sign); and a >cr b means comparefn(a,b) > 0.

e Calling comparefn(a,b) always returns the same value v'when given a specific pair of valuesa and b as its two
arguments. Furthermore, Type(v) is Number, and v is‘not NaN. Note that this implies that exactly one of a <cr b,
a =cr b, and a >cr b will be true for a given pair of a and b.

Calling comparefn(a,b) does not modify obj.

a=cra (reflexivity)

Ifa=crb, thenb=cra (symmetry)

Ifa =cr band b =cr c, thena =cr ¢ (transitivity of =cf)

Ifa <crband b <cr ¢, thena <cr ¢ (transitivity of <cg)

If a >cr band b >cr ¢, thena >cr ¢ (transitivity of >cr)

NOTE The above conditions are necessary and sufficient to ensure that comparefn divides the set S into equivalence
classes and that these equivalence classes are totally ordered.

Runtime Semantics: SortCompare Abstract Operation
When the SortCompare abstract operation is called with two arguments j and k, the following steps are taken:

Let jString-be ToString(j).

Let kString be ToString(k).

Let hasj be the result of HasProperty(obj, jString).

ReturnifAbrupt(hasj).

Let hask be the result of HasProperty(obj, kString).

ReturnlfAbrupt(hask).

If hasj and hask are both false, then return +0.

If hasj is false, then return'1.

If hask is false, then return —1.

10. Let x be the result of Get(obj,jString).

11. ReturnlfAbrupt(x).

12. Lety be the result of Get(obj, kString).

13. ReturnlfAbrupt(y).

14. If x and y are both undefined, return +0.

15. If x is undefined, return 1.

16. Ify is undefined, return —1.

17. If the argument comparefn is not undefined, then
a. If IsCallable(comparefn) is false, throw a TypeError exception.
b. Return the result of calling the [[Call]] internal method of comparefn passing undefined as

thisArgument and with a List containing the values of x and y as the argumentsList.
18. Let xString be ToString(x).
19. ReturnlfAbrupt(xString).

©INOTO~wWNE

360 © Ecma International 2013

secma

20. Let yString be ToString(y).
21. ReturnlfAbrupt(yString).

22. If xString < yString, return —1.
23. If xString > yString, return 1.
24. Return +0.

NOTE1 Because non-existent property values always compare greater than undefined property values, and
undefined always compares greater than any other value, undefined property values always sort to the end of the resuilt,
followed by non-existent property values.

NOTE 2 The sort function is intentionally generic; it does not require that its this value be an Array object. Therefore,
it can be transferred to other kinds of objects for use as a method. Whether the sort function can be applied successfully
to an exotic object that is not an Array is implementation-dependent.

22.1.3.25 Array.prototype.splice (start, deleteCount [, item1 [, item2[,<..111)

When the splice method is called with two or more arguments start, deleteCount and (optionally) item1, item2,
etc., the deleteCount elements of the array starting at integer index start are replaced by the arguments item1,
item2, etc. An Array object containing the deleted elements (if any)is returned. The following steps are taken:

Let O be the result of calling ToObject passing the this value as the argument.
ReturnlfAbrupt(O).
Let lenVal be Get(O, "1length")
Let len be ToLength(lenVal).
ReturnlfAbrupt(len).
Let relativeStart be Tolnteger(start).
ReturnlfAbrupt(relativeStart).
If relativeStart is negative, let actualStart be max((len + relativeStart),0); else let actualStart be
min(relativeStart, len).
If start is not present, then
a. LetactualDeleteCount be 0.

10. Else if deleteCount is not present, then

a. LetactualDeleteCount be len - actualStart
11. Else,

a. Letdc be Tolnteger(deleteCount).

b. ReturnIfAbrupt(dc).

c. LetactualDeleteCount be min(max(dc,0); len - actualStart).
12. Let A be undefined.
13. If O is an_exoticArray object, then
a. < Let C be the result of Get(O, "constructor").
b. ReturnlfAbrupt(C).
c. If C does not have a [[GlobalArray]] internal data property, then

i. If IsConstructor(C) is true, then
1. Let A be the result of calling the [[Construct]] internal method of C with argument

PN A WN

©

(actualDeleteCount)|

14. If A is undefined, then

a. Let'A be the result of the abstract operation ArrayCreate with argument actualDeleteCount.
15. ReturnlfAbrupt(A).
16. Letk be 0.
17. Repeat, while k < actualDeleteCount

a. Letfrom be ToString(actualStart+k).
b. Let fromPresent be the result of HasProperty(O, from).
c. ReturnifAbrupt(fromPresent).
d. If fromPresent is true, then

i. Let fromValue be the result of Get(O, from).

il ReturnlfAbrupt(fromValue).

iii. Call the [[DefineOwnProperty]] internal method of A with arguments ToString(k) and
Property Descriptor {[[Value]]: fromValue, [[Writable]]: true, [[Enumerable]]: true,
[[Configurable]]: true}.

e. Incrementk by 1.

© Ecma International 2013 361

Ci ed [AWB7146]: It would be nice to have a more
explicit way to create a collection with a pre-specified number
of elements.

secmd

18. Let putStatus be the result of Put(A, "length", actualDeleteCount, true).
19. ReturnlfAbrupt(putStatus).
20. Let items be an internal List whose elements are, in left to right order, the portion of the actual argument list
starting with item1. The list will be empty if no such items are present.
21. Let itemCount be the number of elements in items.
22. If itemCount < actualDeleteCount, then
a. Letk be actualStart.
b. Repeat, while k < (len — actualDeleteCount)
i Let from be ToString(k+actualDeleteCount).
ii. Let to be ToString(k+itemCount).
iii. Let fromPresent be the result of HasProperty(O, from).
iv. ReturnlfAbrupt(fromPresent).
V. If fromPresent is true, then
1. Let fromValue be the result of Get(O, from).
2. ReturnlfAbrupt(fromValue).
3. Let putStatus be the result of Put(O, to, fromValue, true).
4. ReturnlfAbrupt(putStatus).
Vi. Else fromPresent is false,
1. Let deleteStatus be the result of DeletePropertyOrThrow(O, to).
2. ReturnlfAbrupt(deleteStatus).
vii. Increase k by 1.
c. Letk be len.
d. Repeat, while k > (len — actualDeleteCount + itemCount)
i Let deleteStatus be the result of DeletePropertyOrThrow(O, ToString(k-1)).
ii. ReturnlfAbrupt(deleteStatus).
iii. Decrease k by 1.
23. Else if itemCount > actualDeleteCount, then
a. Letk be (len —actualDeleteCount).
b. Repeat, while k > actualStart
i. Let from be ToString(k + actualDeleteCount - 1).
ii. Let to be ToString(k + itemCount - 1)
iii. Let fromPresent be the result of HasProperty(O, from).
iv. ReturnlfAbrupt(fromPresent).
V. If fromPresent is true, then
1. Let fromValue be the result of Get(O, from).
2. ReturnlfAbrupt(fromValue).
3. Let putStatus be the result of Put(O, to, fromValue, true).
4. ReturnlfAbrupt(putStatus).
Vi. Else fromPresent is false,
1. Let deleteStatus be the result of DeletePropertyOrThrow(O, to).
2. ReturnIfAbrupt(deleteStatus).
vii. Decrease k by 1.
24. Letk be actualStart.
25. Repeat, while items is not empty
a. Remove the first element from items and let E be the value of that element.
b. Let putStatus be the result of Put(O, ToString(k), E, true).
¢. ReturnlfAbrupt(putStatus).
d. Increase k by 1.
26. Let putStatus be the result of Put(O, "1length", len — actualDeleteCount + itemCount, true).
27. ReturnlfAbrupt(putStatus).
28. Return A.

The length property of the splice method is 2.

NOTE 1 The explicit setting of the 1length property of the result Array in step 13 is necessary to ensure that its value
is correct in situations where its trailing elements are not present.

NOTE 2 The splice function is intentionally generic; it does not require that its this value be an Array object.
Therefore it can be transferred to other kinds of objects for use as a method. Whether the splice function can be applied
successfully to an exotic object that is not an Array is implementation-dependent.

362

© Ecma International 2013

secma

22.1.3.26 Array.prototype.toLocaleString ()

The elements of the array are converted to Strings using their toLocaleString methods, and these Strings
are then concatenated, separated by occurrences of a separator String that has been derived in an
implementation-defined locale-specific way. The result of calling this function is intended to be analogous to
the result of toString, except that the result of this function is intended to be locale-specific.

The result is calculated as follows:

Let array be the result of calling ToObject passing the this value as the argument.
ReturnifAbrupt(array).
Let arrayLen be the result of Get(array, "length").
Let len be ToLength(arrayLen).
ReturnlfAbrupt(len).
Let separator be the String value for the list-separator String appropriate for the host environment’s current
locale (this is derived in an implementation-defined way).
If len is zero, return the empty String.
Let firstElement be the result of Get(array, "0").
ReturnlfAbrupt(firstElement).
0. If firstElement is undefined or null, then
a. LetR be the empty String.
11. Else
a. LetR be the result of Invoke(firstElement, "toLocaleString").

SRS

2 © o~

b. lLet R be ToString(R)/ C ed [AWB7147]: This step was missing in
c. ReturnlfAbrupt(R). ES<=5.1

12. Letk be 1.
13. Repeat, while k <len
a. LetS be a String value produced by concatenating R-and separator.
b. Let nextElement be the result of Get(array, ToString(k)).
c. ReturnlfAbrupt(nextElement).
d. If nextElement is undefined or null, then
i Let R be the empty String.

e. Else
i. LetR be the result of Invoke(nextElement, "toLocaleString").
ii. [Let R be ToString(R).\ Ci ed [AWB7148]: This step was missing in
iii. ReturnlfAbrupt(R). ES<=5.1

f. LetR be a String value produced by concatenating S and R.
g. Increase k by 1.
14. ReturnR.

NOTE1 The first parameter to this functionis likely to be used in a future version of this standard; it is recommended
that implementations do not use this parameter position for anything else.

NOTE 2 The toLocaleString function is intentionally generic; it does not require that its this value be an Array object.
Therefore it can be transferred to other kinds of objects for use as a method. Whether the toLocaleString function can
be applied successfully to an exotic object that is not an Array is implementation-dependent.

22.1.3.27 Array.prototype.toString ()
When the toString method is called, the following steps are taken:

Let array be the result of calling ToObject on the this value.

ReturnIfAbrupt(array).

Let func be the result of Get(array, "join™").

ReturnlfAbrupt(func).

If IsCallable(func) is false, then let func be the standard built-in method Object.prototype.toString (19.1.4.6).
Return the result of calling the [[Call]] internal method of func providing array as thisArgument and an
empty List as argumentsList.

O U wWN P

© Ecma International 2013 363

secmd

NOTE The toString function is intentionally generic; it does not require that its this value be an Array object.
Therefore it can be transferred to other kinds of objects for use as a method. Whether the toString function can be
applied successfully to an exotic object that is not an Array is implementation-dependent.

22.1.3.28 Array.prototype.unshift ([item1 [, item2[,...11]1)

The arguments are prepended to the start of the array, such that their order within the array is the same as the
order in which they appear in the argument list.

When the unshift method is called with zero or more arguments iteml, item2, etc., the following steps are
taken:

Let O be the result of calling ToObject passing the this value as the argument:
ReturnlfAbrupt(O).
Let lenVal be the result of Get(O, "length")
Let len be ToLength(lenVal).
ReturnlfAbrupt(len).
Let argCount be the number of actual arguments.
Let k be len.
Repeat, while k > 0,
a. Letfrom be ToString(k-1).

NG AWNE

b. Letto be ToString(k+argCount —1).

c. LetfromPresent be the result of HasProperty(O, from).
d. ReturnlfAbrupt(fromPresent).

e. If fromPresent is true, then

i Let fromValue be the result of Get(O, from).
ii. ReturnlfAbrupt(fromValue).
iii. Let putStatus be the result of Put(O, to, fromValue, true).
iv. ReturnlfAbrupt(putStatus).
f. Else fromPresent is false,
i Let deleteStatus be the result of DeletePropertyOrThrow(O, to).
ii. ReturnlfAbrupt(deleteStatus).
g. Decrease k by 1«
9. LetjbeO.
10. Let items be an internal List whose elements are, in left to right order, the arguments that were passed to this
function invocation.
11. Repeat, while items is not empty
a. Remouve the first element from items and let E be the value of that element.
b. _Let putStatus be the result of Put(O, ToString(j), E, true).
¢ ReturnIfAbrupt(putStatus).
d. Increase j by 1.
12. Let putStatus be the result of Put(O, "1ength", len+argCount, true).
13. ReturnlfAbrupt(putStatus).
14. Return len+argCount.

The 1length property of the unshift method is 1.

NOTE The unshift function is intentionally generic; it does not require that its this value be an Array object.
Therefore it can be transferred to other kinds of objects for use as a method. Whether the unshift function can be
applied successfully to an exotic object that is not an Array is implementation-dependent.

22.1.3.29 Array.prototype.values ()

The following steps are taken:

1. Let O be the result of calling ToObject with the this value as its argument.

2. ReturnlfAbrupt(O).
3. Return the result of calling the CreateArraylterator abstract operation with arguments O and "value".

364 © Ecma International 2013

Commented [AWB11149]: Need to decide whether to
allow an argument that requests sparse iteration

pecma

22.1.3.30 Array.prototype [@@iterator] ()

The initial value of the @@iterator property is the same function object as the initial value of the
Array.prototype.values property.

22.1.3.31 Array.prototype [@@unscopables]
The initial value of the @@unscopables data property is an object created by the following steps:

Let blackList be the result of calling ArrayCreate(7, %ArrayPrototype%).
Call CreateOwnDataProperty(blackList, *'0", " £ind"").

Call CreateOwnDataProperty(blackList, 1", " £findIndex").

Call CreateOwnDataProperty(blackList, ""2*, ""£111"").

Call CreateOwnDataProperty(blackList, "'3", "copyWithin").

Call CreateOwnDataProperty(blackList, "4", "entries").

Call CreateOwnDataProperty(blackList, *'5", "keys"").

Call CreateOwnDataProperty(blackList, "'6", "values").

. Assert: Each of the above calls will return true.

0. Return blackList.

1
2
3
4
5.
6.
7
8
9
1

This property has the attributes { [[Writable]]: false, [[Enumerable]]: false, [[Configurable]]: true }.

NOTE The elements of this array are property names that were not included as standard properties of
Array.prototype prior to the sixth edition of this specification. These names are ignored for with statement binding
purposes in order to preserve the behaviour of existing code that might use one of these names as a binding in an outer
scope that is shadowed by a with statement whose binding object is an Array object.

22.1.4 Properties of Array Instances

Array instances are exotic Array objects and have the internal methods specified for such objects. Array
instances inherit properties from the Array prototype object. Array instances also have an
[[ArraylnitialisationState]] internal data property.

Array instances have alength property, and a set of enumerable properties with array index names.

22.1.4.1 length

The length property of this Array object is a data property whose value is always numerically greater than
the name of every deletable property whose name is an array index.

Thedlength property initially has the attributes { [[Writable]]: true, [[Enumerable]]: false, [[Configurable]]: false }.
NOTE Attempting to set the length property of an Array object to a value that is numerically less than or equal to the
largest numeric property name of an existing array indexed non-deletable property of the array will result in the length
being set to a numeric value that is one greater than that largest numeric property name. See 9.2.2.1.

22.1.5 Array lterator Object Structure

An Array lterator is an object, with the structure defined below, that represents a specific iteration over some
specific Array instance object. There is not a named constructor for Array lterator objects. Instead, Array
iterator objects are created by calling certain methods of Array instance objects.

22.1.5.1 CreateArraylterator Abstract Operation

Several methods of Array objects return Iterator objects. The abstract operation CreateArraylterator with
arguments array and kind is used to create such iterator objects. It performs the following steps:

1. Let O be the result of calling ToObject(array).
2. ReturnlfAbrupt(O).

© Ecma International 2013 365

Commented [AWB17150]: Should blacklist be frozen?

&

K

w

No ok

ecma

Let iterator be the result of ObjectCreate(%ArraylteratorPrototype%, ([[IteratedObject]],

[[ArraylteratorNextIndex]], [[ArraylterationKind]])).

Set iterator’s [[IteratedObject]] internal data property to O.

Set iterator’s [[ArraylteratorNextIndex]] internal data property to 0.
Set iterator’s [[ArraylterationKind]] internal data property to kind.
Return iterator.

22.1.5.2 The Array lterator Prototype

All Array Iterator Objects inherit properties from a common Array Iterator Prototype object. The [[Prototype]]
internal data property of the Array lterator Prototype is the %ObjectPrototype% intrinsic object. In addition, the

Array Iterator Prototype has the following properties:

22.1.5.2.1 Array|terator.prototype.constructor|

Ci ed [AWB10151]: 1.1.1.1.1.1TODO: need to

22.1.5.2.2 Arraylterator.prototype.next()

W

BOxo NGO

11

12.
13.

14.

15.
16.
17.

Let O be the this value.
If Type(O) is not Object, throw a TypeError exception.

If O does not have all of the internal properties of an Array/Iterator Instance (22.1.5.3), throw.a TypeError

exception.

Let a be the value of the [[IteratedObject]] internal data property of O.

Let index be the value of the [[ArraylteratorNextIndex]] internal data property of O.
Let itemKind be the value of the [[ArraylterationKind]] internal data property of O.
Let lenValue be the result of Get(a, "length™").

Let len be ToLength(lenValue).

ReturnlfAbrupt(len).

. If itemKind contains the substring "*sparse", then

a. Let found be false.
b. Repeat, while found is false and index < len
i Let elementKey be ToString(index).
ii. Let found be the result of HasProperty(a, elementKey).
iii. ReturnlfAbrupt(found).
iv. If found is false, then
1. Increase index by 1,
If index > len, then

a. Set the value of the [[ArraylteratorNextlndex]] internal data property of O to +o.

b. Return CreatelterResultObject(undefined, true).
Set the value of the [[ArraylteratorNextIndex]] internal data property of O to index+1.
If itemKind contains the substring "value", then

a. LetelementKey be ToString(index).

b. Let elementValue be the result of Get(a, elementKey).

c. ReturnlfAbrupt(elementValue).
If itemKind contains the substring "key+value", then

a. Let result be the result of performing ArrayCreate(2).

b. Assert: result isa new, well-formed Array object so the following operations will never fail.

c. Call the [[DefineOwnProperty]] internal method of result with arguments 0" and Property
Descriptor {[[Value]]: index, [[Writable]]: true, [[Enumerable]]: true, [[Configurable]]: true}.

d. Call the [[DefineOwnProperty]] internal method of result with arguments *"1** and Property
Descriptor {[[Value]]: elementValue, [[Writable]]: true, [[Enumerable]]: true, [[Configurable]]:

true}.
e. Return CreatelterResultObject(result, false).

Else If itemKind contains the substring "key" then, return CreatelterResultObject(index, false).

Assert: itemKind contains the substring "value",
Return CreatelterResultObject(elementValue, false).

22.1.5.2.3 Arraylterator.prototype.@@iterator ()

The

366

following steps are taken:

© Ecma International 2013

decide what to use for a constructor for these sort of
objects.

(Commented [AWB15152]: We don't current have a public)
API for requesting a sparse iteration. If that remains the case
we can delete this clause.

pecma

1. Return the this value.

22.1.5.2.4 Arraylterator.prototype.@@toStringTag

The initial value of the @@toStringTag property is the string value "Array Iterator".

22.1.5.3 Properties of Array Iterator Instances

Array lterator

instances

inherit properties

the Array lterator

prototype (the

intrinsic, %ArraylteratorPrototype%). Array lterator instances are initially created with the internal properties

listed in Table 35.

Table 35 — Internal Data Properties of Array Iterator Instances

Internal Data Property Description
Name
[[IteratedObject]] The object whose array elements are being iterated.

[[ArraylteratorNextIndex]]

The integer index of the next array index to be examined by this|

iteration.

[[ArraylterationKind]]

|A string value that identifies what is to be returned for each

element of the iteration. The possible values are: "key", "value",

"key+value", "sparse key", "sparse:value”,

'sparse:key+value".

22.2 TypedArray Objects

TypedArray objects present an array-like view of an underlying binary data buffer (24.1). Each element of a
TypedArray instance has the same underlying binary scalar data type. There is a distinct TypedArray
constructor. Listed in Table 36, for each of the nine supported element types. For each constructor in Table 36
have a corresponding distinct prototype object.

Table 36 — The TypedArray Constructors

Uint8ClampedArray | [Uint8C] 1

ToUint8Clamp

8-bit unsigned integer
(clamped)

unsigned char

Int16Array Int16 2 Tolntl6 16-bit 2’s complement Short
signed integer
Uint1l6Array Uint16 2 ToUint16 16-bit unsigned integer unsigned
short
Int32Array Int32 4 Tolnt32 32-bit 2’'s complement Int
signed integer
Uint32Array Uint32 4 ToUint32 32-bit unsigned integer unsigned int
Float32Array Float32 4 32-bit IEEE floating point Float
Float64Array Float64 8 64-bit IEEE floating point Double

In the definitions below, references to TypedArray should be replaced with the appropriate constructor name
from the above table. The phrase “the element size in bytes” refers to the value in the Element Size column of
the table in the row corresponding to the constructor. The phrase “element Type” refers to the value in the
Element Type column for that row.

© Ecma International 2013

367

Constructor Name | Element | Element | Conversion Description Equivalent C
Type Size Operation Type
Int8Array Int8 1 Tolntg) 8-bit 2’'s complement signed char (c ed [AWB13153]: TODO
signed integer)
Uint8Array Uint8 1 ToUint8 8-bit unsigned integer unsigned char \\r ed [AWB13154]: TODO

(Commented [AWB13155]: Issue: this is a made up name.)
What should it be?

| Commented [AWB13156]: TODO

secmd

22.2.1 The %TypedArray% Intrinsic Object

The %TypedArray% intrinsic object is a constructor-like function object that all of the TypedArray constructor
object inherit from. %TypedArray% and its corresponding prototype object provide common properties that are
inherited by all TypeArray constructors and their instances. The %TypedArray% intrinsic does not have a
global name or appear as a property of the global object.

If the this value value passed in the call is an Object with a [[ViewedArrayBuffer]] internal data property whose
value is undefined, it initialises the this value using the argument values. This permits super invocation of the
TypedArray constructors by TypedArray subclasses.

The %TypedArray% intrinsic function object is designed to act as the superclass of the various TypedArray
constructors. Those constructors use %TypedArray% to initialise their instances by invoking %TypedArray%
as if by making a super call. The %TypedArray% intrinsic function is not designed to be directly called in any
other way. If %TypedArray% is directly called or called as part of a new expression an exception is thrown.

The actual behaviour of a super call of %TypedArray% depends upon the number and kind of arguments
that are passed to it.

22.2.1.1 %TypedArray% (length)

This description applies if and only when %TypedArray% function is called and the Type of the first argument
is not Object.

%TypedArray% called with argument length performs the following steps:

Assert: Type(length) is not Object.|
Let O be the this value.
If Type(O) is not Object, then throw a TypeError exception.
I1f O does not have a [[TypedArrayName]] internal data property, then throw a TypeError exception.
Assert: O has a [[ViewedArrayBuffer]] internal data property.
If the value of O’s [[ViewedArrayBuffer]] internal data property is not undefined, then
a. Throw a TypeError exception.

ok wNE

8. Let constructorName be the string value O’s [[TypedArrayName]] internal data property.

9. Let elementType be the string value of the Element Type value in Table 36 for constructorName.
10. Let numberLength be ToNumber(length).

11. Let elementLength.be Tolnteger(numberLength).

12. ReturnifAbrupt(elementLength).

13. If numberLength # elementLength or elementLength < 0, then throw a RangeError exception.
14. Let data be the result of calling Allocate ArrayBuffer(%ArrayBuffer%).

15. ReturnlfAbrupt(data).

16. Let elementSize be the Size Element value in Table 36 for constructorName.

17. Let byteLength be elementSize x elementLength.

18. Let status be the result of SetArrayBufferData(data, byteLength).

19. ReturnIfAbrupt(status).

20. Set O’s [[ViewedArrayBuffer]] to data.

21. Set O’s [[ByteLength]] internal data property to byteLength.

22. Set O’s [[ByteOffset]] internal data property to 0.

23. Set O’s [[ArrayLength]] internal data property to elementLength.

24. Return O.

22.2.1.2 %TypedArray% (typedArray)

This description applies if and only if the % TypedArray% function is called with at least one argument and the
Type of the first argument is Object and that object has a [[TypedArrayName]] internal data property.

%TypedArray%called with argument typedArray performs the following steps:

1. LAssert Type(typedArray) is Object and typedArray has a [[TypedArrayName]] internal data property.]

368 © Ecma International 2013

(Commented [AWB13157]: Issue: we need to decide
whether we are going to fully apply WebIDL's complex set of
| overload resolution rules.

(Commented [AWB13158]: Issue: we need to decide
whether we are going to fully apply WebIDL's complex set of
| overload resolution rules.

secmd

2. LetsrcArray be typedArray.

3. Let O be the this value.

4. If Type(O) is not Object or if O does not have a [[TypedArrayName]] internal data property, then throw a
TypeError exception.

5. Assert: O has a [[ViewedArrayBuffer]] internal data property.

6. If the value of O’s [[ViewedArrayBuffer]] internal data property is not undefined, then throw a TypeError
exception.

7. If the value of srcArray’s [[ViewedArrayBuffer]] internal data property is undefined, then throw a
TypeError exception.

8. Let constructorName be the string value O’s [[TypedArrayName]] internal data property.

9. Let elementType be the string value of the Element Type value in Table 36 for constructorName.

10. Let elementLength be the value of srcArray’s [[ArrayLength]] internal data property.

11. Let srcName be the string value srcArray’s [[TypedArrayName]] internal dataproperty.

12. Let srcType be the string value of the Element Type value in Table 36 for srcName.

13. Let srcData be the value of srcArray’s [[ViewedArrayBuffer]] internal data property.

14. Let srcByteOffset be the value of srcArray’s [[ByteOffset]] internal data property.

15. Let data be the result of calling [CIoneArrayBuffed(srcData, srcByteOffset, srcType,elementType,
elementLength).

16. ReturnlfAbrupt(data).

17. Let elementSize be the Size Element value in Table 36 for constructorName.

18. Let byteLength be elementSize x elementLength.

19. Set O’s [[ViewedArrayBuffer]] to data.

20. Set O’s [[ByteLength]] internal data property to byteLength.

21. Set O’s [[ByteOffset]] internal data property to 0.

22. Set O’s [[ArrayLength]] internal data property to elementLength.

23. Return O.

22.2.1.3 %TypedArray% (array)

This description applies if and only if the %TypedArray% function is called with at least one argument and the
Type of first argument is Object and that object does not have either a [[TypedArrayName]] or an
[[ArrayBufferData]] internal data property.

%TypedArray% called with-argument array performs the following steps:

1. |Assert: Type(array) is Object and array does not have either a [[TypedArrayName]] or an
[[ArrayBufferData]] internal data property.|
2. Let O be the this value.
3. LetsrcArray be array.
4. 1f Type(O) is not Object or if O does not have a [[TypedArrayName]] internal data property, then throw a
TypeError exception.
Assert: O has a [[ViewedArrayBuffer]] internal data property.
If the value of O’s [[ViewedArrayBuffer]] internal data property is not undefined, then throw a TypeError
exception.
7. Let constructorName be the string value O’s [[TypedArrayName]] internal data property.
8. Let elementType be the string value of the Element Type value in Table 36 for constructorName.
9. Let arrayLength be the result of Get(srcArray, "length™).
10. Let elementLength be ToLength(arrayLength).
11. ReturnlfAbrupt(elementLength).
12. If elementLength < 0, then throw a RangeError exception.
13. Let data be the result of calling Allocate ArrayBuffer(%ArrayBuffer%).
14. ReturnlfAbrupt(data).
15. Let elementSize be the Size Element value in Table 36 for constructorName.
16. Let byteLength be elementSize x elementLength.
17. Let status be the result of SetArrayBufferData(data, byteLength)
18. ReturnlfAbrupt(status).
19. Letk be 0.
20. Repeat, while k < elementLength
a. Let Pk be ToString(k).
b. LetkValue be the result of Get(srcArray, Pk).

© Ecma International 2013 369

(commented [AWB13159]: TODO

Commented [AWB13160]: Issue: The khronos spec.

allows array-likes here. Should we also recognise iterables

and use @@iterator for them? This algorithm current doesn’t
L deal with iterables.

Commented [AWB13161]: Issue: we need to decide
whether we are going to fully apply WebIDL's complex set of
| overload resolution rules.

secmd

c. Let kNumber be ToNumber(kValue).
d. ReturnIfAbrupt(kNumber).
e. Perform SetValuelnBuffer(data, k < elementSize, elementType, kNumber).
f. Increase k by 1.

21. Assert: Side-effects of preceding steps may have already initialied O.

22. If the value of O’s [[ViewedArrayBuffer]] internal data property is not undefined, then throw a TypeError

exception.

23. Set O’s [[ViewedArrayBuffer]] to data.

24. Set O’s [[ByteLength]] internal data property to byteLength.

25. Set O’s [[ByteOffset]] internal data property to 0.

26. Set O’s [[ArrayLength]] internal data property to elementLength.

27. Return O.

22.2.1.4 %TypedArray% (buffer, byteOffset=0, length=undefined)

This description applies if and only if the %TypedArray% function is called with at least one argument and the
Type of the first argument is Object and that object has an [[ArrayBufferData]] internal data property.

%TypedArray% called with arguments buffer, byteOffset, and length performs the following steps:

1. Assert: Type(buffer) is Object and buffer has an [[ArrayBufferData]] internal data property.] [commented [AWB13162]: Issue: we need to decide
2. Let O be the this value. whether we are going to fully apply WebIDL's complex set of
3. If the value of buffer’s [[ArrayBufferData]] internal data property is undefined, then throw a TypeError | overload resolution rules.

exception.

4. 1f Type(O) is not Object or if O does not have a [[TypedArrayName]] internal data property, then throw a
TypeError exception.

Assert: O has a [[ViewedArrayBuffer]] internal data property.

If the value of O’s [[ViewedArrayBuffer]] internal data property is not undefined, then throw a TypeError
exception.

7. Let constructorName be the string value O’s [[TypedArrayName]] internal data property.

8. Let elementType be the string value of the Element Type value in Table 36 for constructorName.

9. Let elementSize be the Number value of the Element Size value in Table 36 for constructorName.

10. Let offset be Tolnteger(byteOffset).

11. [ReturnIfAbrupt(offset)] [Commented [AWB13163]: Issue, the order of exceptions
12. If offset < 0, then throw a RangeError exception. that may be thrown during argument validation is probably not
13. If offset modulo elementSize # 0, thén throw a RangeError exception. g\'j;'ﬁ::é’i:;epslfénﬁrﬁz[‘]"[’;’s“\'gﬁ’;azgdr“jsg gfytx\;‘fg'r')d'e-r N
14. Let bufferByteLength be the value of buffer’s [[ArrayBufferByteLength]] internal data property. well defined??). It isn't clear that this difference is very

15. If offset + elementSize > bufferByteLength, thenthrow a RangeError exception. important.

16. If length is-undefined, then
a. < If bufferByteLength modulo elementSize # 0, then throw a RangeError exception.
b. Let newByteLength be bufferByteLength — offset.

¢. If newByteLength < 0, thenthrow a RangeError exception. Formatted
17. Else,

a. Let newLength be ToLength(length).

b." ReturnIfAbrupt(newLength).

c. IfnewLength < 0,/then throw a RangeError exception.

d. LetnewByteLength be newLength x elementSize.

e. If offset+newByteLength > bufferByteLength, then throw a RangeError exception.
18. If the value of O’s [[ViewedArrayBuffer]] internal data property is not undefined, then throw a TypeError
exception.
19. Set O’s [[ViewedArrayBuffer]] to buffer.
20. Set O’s [[ByteLength]] internal data property to newByteLength.
21. Set O’s [[ByteOffset]] internal data property to offset.
22. Set O’s [[ArrayLength]] internal data property to newByteLength / elementSize .
23. Return O.

22.2.1.5 %TypedArray% (all other argument combinations)

If the %TypedArray% function is called with arguments that do not match any of the preceeding argument
descriptions a TypeError exception is thrown.

370 © Ecma International 2013

secma

22.2.2 Properties of the %TypedArray% Intrinsic Object

The %TypedArray% intrinsic object is a built-in function object. The value of the [[Prototype]] internal data
property of %TypedArray% is the Function prototype object (19.2.3).

The %TypedArray% intrinsic object does not have a [[TypedArrayConstructor]] internal data property.
Besides a 1length property (whose value is 3), %TypedArray% has the following properties:
22.2.2.1 %TypedArray%.from (source , mapfn=undefined, thisArg=undefined)

When the from method is called with argument source, and optional arguments mapfn and thisArg, the
following steps are taken:

1. Let C be the this value.

2. If IsConstructor(C) is false, then throw a TypeError exception.

3. Letitems be ToObject(source).

4. ReturnIfAbrupt(items).

5. If mapfn is undefined, then let mapping be false.

6. else
a. If IsCallable(mapfn) is false, throw a TypeError exception.
b. If thisArg was supplied, let T be thisArg; else let T be undefined.
c. Let mapping be true

7. Letusinglterator be the result of HasProperty(items, @ @ Iterator).

8. ReturnIfAbrupt(usinglterator).

9. If usinglterator is true, then

C ed [AWB7164]: It would be nice to have a more

a. Letiterator be the result of performing Getlterator(items).
b. ReturnlfAbrupt(iterator).
c. Letvalues be a new empty List.
d. Let next be true.
e. Repeat, while next is-not false
i Let next be the result of IteratorStep(iterator).
il ReturnifAbrupt(next).
iii. If next is not false, then
1. Let nextValue be IteratorValue(next).
2. ReturnlfAbrupt(nextValue).
3. Append nextValue to the end of the List values.
f. Letlen be the number of elements in values.
g. ~Let newObj be the result of calling the [[Construct]] internal method of C with argument (llen).\
h: ReturnlfAbrupt(newObj).
i. LetkbeO.
J.. Repeat, while k <len

i Let Pk be ToString(k).
ii. Let kValue be the first element of values and remove that element from list.
il If mapping is true, then
1. <Let mappedValue be the result of calling the [[Call]] internal method of mapfn with
T as thisArgument and a List containing kValue as argumentsList.
2. ReturnIfAbrupt(mappedValue).
iv. Else, let mappedValue be kValue.
V. Let putStatus be the result of Put(newObj, Pk, mappedValue, true).
vi. ReturnlfAbrupt(putStatus).
vil. Increase k by 1.
k. Assert: values is now an empty List.
I. Return newObj.
10. Assert: items is not an Iterator so assume it is an array-like object.
11. Let lenValue be the result of Get(items, "length™").
12. Let len be Tolnteger(lenValue).
13. ReturnlfAbrupt(len).
14. Let newObj be the result of calling the [[Construct]] internal method of C with argument ([Ien).]

© Ecma International 2013 371

explicit way to create a collection with a pre-specified number
of elements.

Commented [AWB7165]: It would be nice to have a more
explicit way to create a collection with a pre-specified number
of elements.

secmd

15. ReturnIfAbrupt(newObj).
16. Letk be 0.
17. Repeat, while k < len
a. Let Pk be ToString(k).
b. Let kValue be the result of Get(items, Pk).
c. ReturnIfAbrupt(kValue).
d. If mapping is true, then
i Let mappedValue be the result of calling the [[Call]] internal method of mapfn with T as
thisArgument and a List containing kValue, k, and items as argumentsList.
ii. ReturnlfAbrupt(mappedValue).
Else, let mappedValue be kValue.
Let putStatus be the result of Put(newObj, Pk, mappedValue, true).
ReturnlfAbrupt(putStatus).
Increase k by 1.
18. Return newObj.

SQ o

The length property of the £rom method is 1.

NOTE The £rom function is an intentionally generic factory method; it does not require that its this value be a Typed
Array constructor. Therefore it can be transferred to or inherited by any other constructors that may be called with a single
numeric argument. This function uses [[Put]] to store elements into a newly created object and assume that the
constructor sets the length property of the new object to the argument value passed to it.

22.2.2.2 %TypedArray%.of (...items)
When the of method is called with any number of arguments, the following steps are taken:

Let lenValue be the result of Get(items, "length").
Let len be Tolnteger(lenValue).
Let C be the this value.
If IsConstructor(C) is true, then
a. Let newObj be the result of calling the [[Construct]] internal method of C with argument ([Ien).\

Awn e

Ci ed [AWB7166]: It would be nice to have a more

b. ReturnlfAbrupt(newObj).
5. Else,
a. Throw a TypeError exception.
6. LetkbeO.
7. Repeat, while k < len
a. Let Pk be ToString(k):
b. LetkValue be the result of Get(items, Pk).
c. < Let status be the result of Put(newObj,Pk, kValue.[[value]], true).
d. ReturnlfAbrupt(status).
e. Increase k by 1.
8. Return newObj.

The 1length property of the of method is 0.

NOTE1 The items argumentis assumed to be a well-formed rest argument value.

NOTE 2 The of function is an intentionally generic factory method; it does not require that its this value be a
TypedArray constructor. Therefore it can be transferred to or inherited by other constructors that may be called with a

single numeric argument. However, it does assume that constructor creates and initialises a length property that is
initialised to its argument value.

22.2.2.3 %TypedArray%.prototype
The initial value of % TypedArray%.prototype is the %TypedArrayPrototype% intrinsic object (22.2.3).

This property has the attributes { [[Writable]]: false, [[Enumerable]]: false, [[Configurable]]: false }.

372 © Ecma International 2013

explicit way to create a collection with a pre-specified number
of elements.

»ecma

22.2.2.4 %TypedArray% [@@create] ()
The @@create method of %TypedArray% performs the following steps:

Let F be the this value.

If Type(F) is not Object, then throw a TypeError exception.

If F does not have a [[TypedArrayConstructor]] internal data property, then throw a TypeError exception.
Let proto be the result of GetPrototypeFromConstructor(F, "$TypedArrayPrototype%").
ReturnlfAbrupt(proto).

Let obj be the result of calling IntegerIndexedObjectCreate (proto).

Add a [[ViewedArrayBuffer]] internal data property to obj and set its initial value to undefined.

Add a [[TypedArrayName]] internal data property to obj and set its initial<value to the value of F’s
[[TypedArrayConstructor]] internal data property .

9. Add a [[ByteLength]] internal data property to obj and set its initial value to 0.

10. Add a [[ByteOffset]] internal data property to obj and set its initial value to 0.

11. Add an [[ArrayLength]] internal data property to obj and set its initial value to 0.

12. Return obj.

ONoGA~WNE

This property has the attributes { [[Writable]]: false, [[Enumerable]]: false, [[Configurable]]: true }.
22.2.3 Properties of the %TypedArrayPrototype% Object

The value of the [[Prototype]] internal data property of the %TypedArrayPrototype% object is the standard
built-in Object prototype object (19.1.4). The %TypedArrayPrototype% object is an ordinary object. It does not
have a [[ViewedArrayBuffer]] or or any other of the internal data properties that are specific to TypedArray
instance objects.

22.2.3.1 Qget|%TypedArray%.prototype.buffer

%TypedArray%.prototype .buffer is an accessor property whose set accessor function is undefined. Its
get accessor function performs the following steps:

Let O be the this value:

If Type(O) is not Object, throw a TypeError exception.

I1f O does not have a [[ViewedArrayBuffer]] internal data property throw a TypeError exception.
Let buffer be the value of O’s [[ViewedArrayBuffer]] internal data property.

If buffer is undefined, then throw a TypeError exception.

Return buffer:

gk wN R

22.2.3.24 get | %TypedArray%.prototype.byteL ength

%TypedArray%.prototype .byteLength is an accessor property whose set accessor function is undefined.
Its get accessor function performs the following steps:

Let O be the this value.

If Type(O) is not Object; throw a TypeError exception.

I1f O does not have a [[ViewedArrayBuffer]] internal data property throw a TypeError exception.
Let buffer be the value of O’s [[ViewedArrayBuffer]] internal data property.

If buffer is undefined, then throw a TypeError exception.

Let size be the value of O’s [[ByteLength]] internal data property.

Return size.

NouA~wN R

22.2.3.3 [get|%TypedArray%.prototype.byteOffset

%TypedArray%.prototype .byteOffset is an accessor property whose set accessor function is undefined.
Its get accessor function performs the following steps:

1. Let O be the this value.
2. If Type(O) is not Object, throw a TypeError exception.

© Ecma International 2013 373

[Commented [AWB13167]: buffer needs to be an accessor)

both to comply with WebIDL requirements and to support the

Kronos neutering strawman requirements.

Commented [AWB13168]: buffer needs to be an accessor
both to comply with WebIDL requirements and to support the

Kronos neutering strawman requirements.

(Commented [AWB13169]: buffer needs to be an accessor)

both to comply with WebIDL requirements and to support the

Kronos neutering strawman requirements.

secmd

If O does not have a [[ViewedArrayBuffer]] internal data property throw a TypeError exception.
Let buffer be the value of O’s [[ViewedArrayBuffer]] internal data property.

If buffer is undefined, then throw a TypeError exception.

Let offset be the value of O’s [[ByteOffset]] internal data property.

Return offset.

Nouokw

22.2.3.4 %TypedArray%.prototype.constructor
The initial value of % TypedArray%.prototype.constructor is the %TypedArray% intrinsic object.
22.2.3.5 %TypedArray%.prototype.copyWithin (target, start, end = this.length)

%TypedArray% . prototype. copyWithin is a distinct function that implements the same algorithm as
Array.prototype.copyWithin as defined in 22.1.3.3. However, the implementation of the algorithm may
be optimized with the knowledge that the this value is an object that has a fixed length and whose integer
indexed properties are not sparse. However, such optimization must not introduce any observable changes in
the specified behaviour of the algorithm.

This function is not generic. If the this value is not a object with a [[TypedArrayName]] internal data property,
a TypeError exception is immediately thrown when this function is called.

The 1length property of the copyWithin method is 2.
22.2.3.6 %TypedArray%.prototype.entries ()

The initial value of the %TypedArray%.prototype.entries data property is the same built-in function
object as the Array.prototype.entries method defined in 22.1.3.4.

22.2.3.7 %TypedArray%.prototype.every (callbackfn, thisArg = undefined)

%TypedArray% .prototype.every is a distinct. function that implements the same algorithm as
Array.prototype.every as defined in 22.1.3.5. However, the implementation of the algorithm may be
optimized with the knowledge that the this value is an object that has a fixed length and whose integer
indexed properties are not sparse. However, such optimization must not introduce any observable changes in
the specified behaviour of the algorithm.

This function is not generic. If the this value is not a object with a [[TypedArrayName]] internal data property,
a TypeError exception is immediately thrown when this function is called.

The 1ength property of the every method is 1.

22.23.8 %TypedArray%.prototype.fill (value, start = 0, end = this.length)

%TypedArray% .prototype.£ill is a distinct function that implements the same algorithm as
Array.prototype.fill as defined in 22.1.3.6. However, the implementation of the algorithm may be
optimized with the knowledge that the this value is an object that has a fixed length and whose integer

indexed properties are not sparse. However, such optimization must not introduce any observable changes in
the specified behaviour of the algorithm.

This function is not generic. If the this value is not a object with a [[TypedArrayName]] internal data property,
a TypeError exception is immediately thrown when this function is called.

The 1length property of the £111 method is 1.
22.2.3.9 %TypedArray%.prototype.filter (callbackfn, thisArg = undefined)

The interpretation and use of the arguments of %TypedArray% .prototype.filter are the same as for
Array.prototype. filter as defined in 22.1.3.7.

When the £ilter method is called with one or two arguments, the following steps are taken:

374 © Ecma International 2013

pecma

Let O be the this value.
If Type(O) is not Object, throw a TypeError exception.
If O does not have a [[TypedArrayName]] internal data property, then throw a TypeError exception.
Let lenValue be the result of Get(O, "length").
Let len be ToLength(lenValue).
ReturnIfAbrupt(len).
If IsCallable(callbackfn) is false, throw a TypeError exception.
If thisArg was supplied, let T be thisArg; else let T be undefined.
Let C be the result of Get(O, "constructor").
0. ReturnlfAbrupt(C).
1. If IsConstructor(C) is false, then
a. Throw a TypeError exception.
12. Let kept be a new empty List.
13. Letk be 0.
14. Let captured be 0.
15. Repeat, while k < len

a. Let Pk be ToString(k).

b. Let kValue be the result of Get(O, Pk).

c. ReturnifAbrupt(kValue).

d. Let selected be the result of calling the [[Call]] internal method of callbackfn with T as
thisArgument and a List containing kValue, k, and O as argumentsList.
ReturnlfAbrupt(selected).

If ToBoolean(selected) is true, then
i Append kValue to the end of kept.
ii. Increase captured by 1.

g. Increase k by 1.

16. Let A be the result of calling the [[Construct]] internal method of C with argument (capturedb.\

PBOOND O ML

=+ @

C ed [AWB7170]: It would be nice to have a more

17. ReturnlfAbrupt(A).

18. Letn be 0.

19. For each element e of kept
a. Let status be the result-of Put(A, ToString(n); e, true).
b. ReturnlfAbrupt(status).
c. Incrementn by 1.

20. Return A.

This function is not generic. If the this‘value.is not a object with a [[TypedArrayName]] internal data property,
a TypeError exception is immediately thrown when this function is called.

The length property-of the £ilter method is 1.
22.2.3.10 %TypedArray%.prototype.find (predicate, thisArg = undefined)

%TypedArray% .prototype. find is a distinct function that implements the same algorithm as
Array.prototype.find as defined in 22.1.3.8. However, the implementation of the algorithm may be
optimized with. the knowledge that the this value is an object that has a fixed length and whose integer
indexed properties are not sparse. However, such optimization must not introduce any observable changes in
the specified behaviour of the algorithm.

This function is not generic. If the this value is not a object with a [[TypedArrayName]] internal data property,
a TypeError exception is immediately thrown when this function is called.

The 1length property of the £ind method is 1.
22.2.3.11 %TypedArray%.prototype.findindex (predicate, thisArg = undefined)

%TypedArray% .prototype . findIndex is a distinct function that implements the same algorithm as
Array.prototype. findIndex as defined in 22.1.3.9. However, the implementation of the algorithm may
be optimized with the knowledge that the this value is an object that has a fixed length and whose integer
indexed properties are not sparse. However, such optimization must not introduce any observable changes in
the specified behaviour of the algorithm.

© Ecma International 2013 375

explicit way to create a collection with a pre-specified number
of elements.

secmd

This function is not generic. If the this value is not a object with a [[TypedArrayName]] internal data property,
a TypeError exception is immediately thrown when this function is called.

The length property of the £indIndex method is 1.
22.2.3.12 %TypedArray%.prototype.forEach (callbackfn, thisArg = undefined)

%TypedArray% . prototype. forEach is a distinct function that implements the same algorithm as
Array.prototype. forEach as defined in 22.1.3.10. However, the implementation of the algorithm may be
optimized with the knowledge that the this value is an object that has a fixed length and whose integer
indexed properties are not sparse. However, such optimization must not introduce any observable changes in
the specified behaviour of the algorithm.

This function is not generic. If the this value is not a object with a [[TypedArrayName]] internal data property,
a TypeError exception is immediately thrown when this function is called.

The length property of the forEach method is 1.
22.2.3.13 %TypedArray%.prototype.indexOf (searchElement,fromindex =0)

%TypedArray% .prototype. indexOf is a distinct function that implements the same algorithm as
Array.prototype. indexOf as defined in 22.1.3.11. However, the implementation of the algorithm may be
optimized with the knowledge that the this value is an object that has a fixed length and whose integer
indexed properties are not sparse. However, such optimization mustnot introduce any observable changes in
the specified behaviour of the algorithm.

This function is not generic. If the this value‘is not a object with a [[TypedArrayName]] internal data property,
a TypeError exception is immediately thrown when this function is called.

The length property of the indexOf method is 1.
22.2.3.14 %TypedArray%.prototype.join (separator)

%TypedArray% .prototype. join is a distinct function that implements the same algorithm as
Array.prototype.join as defined.in 22.1.3.12. However, the implementation of the algorithm may be
optimized with the knowledge that the this value is an object that has a fixed length and whose integer
indexed properties are not sparse..However, such optimization must not introduce any observable changes in
the specified behaviour of the algorithm.

This function is not generic. If the this value is not a object with a [[TypedArrayName]] internal data property,
a TypeError exception is immediately thrown when this function is called.

22.2.3.15 %TypedArray%.prototype.keys ()

The initial value of the %TypedArray%.prototype . keys data property is the same built-in function object as
the Array.prototype. keys method defined in 22.1.3.13.

22.2.3.16 %TypedArray%.prototype.lastindexOf (searchElement, fromindex = this.length-1)

%TypedArray% . prototype . lastIndexOf is a distinct function that implements the same algorithm as
Array.prototype.lastIndexOf as defined in 22.1.3.14. However, the implementation of the algorithm
may be optimized with the knowledge that the this value is an object that has a fixed length and whose
integer indexed properties are not sparse. However, such optimization must not introduce any observable
changes in the specified behaviour of the algorithm.

This function is not generic. If the this value is not a object with a [[TypedArrayName]] internal data property,
a TypeError exception is immediately thrown when this function is called.

376 © Ecma International 2013

secma

The 1length property of the LastIndexOf method is 1.

22.2.3.17 et |%TypedArray%.prototype.length

%TypedArray%.prototype . length is an accessor property whose set accessor function is undefined. Its
get accessor function performs the following steps:

Let O be the this value.

If Type(O) is not Object, throw a TypeError exception.

If O does not have a [[TypedArrayName]] internal data property, then throw a TypeError exception.
Assert: O has [[ViewedArrayBuffer]] and [[ArrayLength]] internal data properties.

Let buffer be the value of O’s [[ViewedArrayBuffer]] internal data property.

If buffer is undefined, then throw a TypeError exception.

Let length be the value of O’s [[ArrayLength]] internal data property.

Return length.

PN~ WNE

This function is not generic. If the this value is not a object with a [[TypedArrayName]] internal data property,
a TypeError exception is immediately thrown when this function is called.

22.2.3.18 %TypedArray%.prototype.map (callbackfn, thisArg = undefined)

The interpretation and use of the arguments of %TypedArray% .prototype.map are the same as for
Array.prototype.map as defined in 22.1.3.15.

When the map method is called with one or two arguments, the following steps are taken:

Let O be the this value.
If Type(O) is not Object, throw a TypeError exception.
If O does not have a [[TypedArrayName]] internal data property, then throw a TypeError exception.
Let lenValue be the result of Get(O, "length")
Let len be ToLength(lenValue):
ReturnlfAbrupt(len).
If IsCallable(callbackfn)is false, throw a TypeError exception.
If thisArg was supplied, let T be thisArg; else let T be undefined.
Let C be the result-of Get(O, "constructor").
0. ReturnlfAbrupt(C).
1. If IsConstructor(C) is true, then
a. Let A be the result of calling the [[Construct]] internal method of C with argument List ([Ien).\

BB O0ONDOA~WNE

Commented [AWB13171]: buffer needs to be an accessor
both to comply with WebIDL requirements and to support the
Kronos neutering strawman requirements.

C ed [AWB7172]: It would be nice to have a more

b. -ReturnlfAbrupt(A).
12. Else,
a. Throw a TypeError exception.
13. Letk be 0.
14. Repeat, while k < len
Let Pk be ToString(k).
Let kValue be the result of Get(O, Pk).
ReturnifAbrupt(kValue).
Let mappedValue be the result of calling the [[Call]] internal method of callbackfn with T as
thisArgument and a List containing kValue, k, and O as argumentsList.
ReturnlfAbrupt(mappedValue).
Let status be the result of Put(A, Pk, mappedValue, true).
ReturnlfAbrupt(status).
h. Increase k by 1.
15. Return A.

0T

@ ~o

This function is not generic. If the this value is not a object with a [[TypedArrayName]] internal data property,
a TypeError exception is immediately thrown when this function is called.

The 1length property of the map method is 1.

© Ecma International 2013 377

explicit way to create a collection with a pre-specified number
of elements.

secmd

22.2.3.19 %TypedArray%.prototype.reduce (callbackfn [, initialValue])

%TypedArray% .prototype . reduce is a distinct function that implements the same algorithm as
Array.prototype.reduce as defined in 22.1.3.18. However, the implementation of the algorithm may be
optimized with the knowledge that the this value is an object that has a fixed length and whose integer
indexed properties are not sparse. However, such optimization must not introduce any observable changes in
the specified behaviour of the algorithm.

This function is not generic. If the this value is not a object with a [[TypedArrayName]] internal data property,
a TypeError exception is immediately thrown when this function is called.

The length property of the reduce method is 1.
22.2.3.20 %TypedArray%.prototype.reduceRight (callbackfn [, initialValue])

%TypedArray% . prototype . reduceRight is a distinct function that’ implements the same algorithm as
Array.prototype.reduceRight as defined in 22.1.3.19. However, the implementation of the algorithm
may be optimized with the knowledge that the this value is an-object that has a fixed length and whose
integer indexed properties are not sparse. However, such optimization must not introduce any observable
changes in the specified behaviour of the algorithm.

This function is not generic. If the this value is not a object with a [[TypedArrayName]] internal data property,
a TypeError exception is immediately thrown when this function is called.

The 1ength property of the reduceRight method is 1.
22.2.3.21 %TypedArray%.prototype.reverse ()

%TypedArray% .prototype.reverse is a distinct function. that implements the same algorithm as
Array.prototype.reverse as defined in 22.1.3.20. However, the implementation of the algorithm may be
optimized with the knowledge that the this value is an object that has a fixed length and whose integer
indexed properties are not sparse. However, such optimization must not introduce any observable changes in
the specified behaviour of the algorithm.

This function is not generic. If the this value is not a object with a [[TypedArrayName]] internal data property,
a TypeError exception is immediately thrown when this function is called.

22.2.3.22 %TypedArray%.prototype.set(array, offset =0)

Set multiple values in this TypedArray, reading the values from the object array. The optional offset value
indicates the first elementindex in this TypedArray where values are written. If omitted, it is assumed to be 0.

=

Assert: array does not have a [[TypedArrayName]] internal data property. If it does, the definition in
22.2.3.23 applies.

2. Let target be the this value.

3. If Type(target).is not Object, throw a TypeError exception.

4. If target does not-havea [[TypedArrayName]] internal data property, then throw a TypeError exception.
5. Assert: target has [[ViewedArrayBuffer]] internal data property.

6. Let targetBuffer be the value of target’s [[ViewedArrayBuffer]] internal data property.

7. If targetBuffer is undefined, then throw a TypeError exception.

8. Let targetLength be the value of target’s [[ArrayLength]] internal data property.

9. Let targetOffset be Tolnteger (offset)

10. ReturnlfAbrupt(targetOffset).

11. If targetOffset < 0, then throw a RangeError exception.

12. Let targetName be the string value target’s [[TypedArrayName]] internal data property.

13. Let targetElementSize be the Number value of the Element Size value specified in Table 36 for targetName.
14. Let targetType be the string value of the Element Type value in Table 36 for targetName.

15. Let targetByteOffset be the value of target’s [[ByteOffset]] internal data property.

16. Let src be the result of ToObject(array).

17. ReturnlfAbrupt(src).

378 © Ecma International 2013

28.

ecma

(il - v

. Let srcLen be the result of Get(src, "length").

. Let numberLength be ToNumber(srcLen).

. Let srcLength be Tolnteger(numberLength).

. ReturnIfAbrupt(srcLength).

. If numberLength # srcLength or srcLength < 0, then throw a TypeError exception.

. If srcLength + targetOffset > targetLength, then throw a RangeError exception.

. Let targetBytelndex be targetOffset x targetElementSize + targetByteOffset.

. Letk be 0.

. Let limit be targetBytelndex + targetElementSize x min(srcLength, targetLength — targetOffset).
. Repeat, while targetBytelndex < limit

Let Pk be ToString(k).

Let kValue be the result of Get(src, Pk).

Let kNumber be ToNumber(kValue).

ReturnIfAbrupt(kNumber).

Perform SetValuelnBuffer(targetBuffer, targetBytelndex, targetType, kNumber).
Setktok + 1.

. Set targetBytelndex to targetBytelndex + targetElementSize.

Return undefined.

@moooos

22.2.3.23 %TypedArray%.prototype.set(typedArray, offset =0)

Set multiple values in this TypedArray, reading the values from the typedArray argument object. The optional
offset value indicates the first element index in this TypedArray where values are written. If omitted, it is
assumed to be 0.

1

Assert: typedArray has a [[TypedArrayName]]internal data property.. If it does not, the definition in 0
applies.

Let target be the this value.

If Type(target) is not Object, throw a TypeError exception.

If target does not have a [[TypedArrayName]] internal data property, then throw a TypeError exception.
Assert: target has [[ViewedArrayBuffer]] internal data property.

If target does not have a [[ViewedArrayBuffer]] internal data property throw a TypeError exception.
Let targetBuffer be the value of target’s [[ViewedArrayBuffer]] internal data property.

If targetBuffer is undefined, then throw a TypeError exception.

Let srcBuffer be the value of typedArray’s [[ViewedArrayBuffer]] internal data property.

. If srcBuffer is undefined, then throw a TypeError exception.

. Let targetLength be the value of target’s [[ArrayLength]] internal data property.

. Let targetOffset be Tolnteger (offset)

. ReturnIfAbrupt(targetOffset).

. If targetOffset < 0, then throw a RangeError exception.

. Let'targetName be the string value target’s [[TypedArrayName]] internal data property.

. Let targetType be the string value of the Element Type value in Table 36 for targetName.

. Let targetElementSize be the Number value of the Element Size value specified in Table 36 for targetName.
. Let targetByteOffset be the value of target’s [[ByteOffset]] internal data property.

. Let srcName be the string value typedArray’s [[TypedArrayName]] internal data property.

. Let srcType be the string value of the Element Type value in Table 36 for srcName .

. Let srcElementSize be the Number value of the Element Size value specified in Table 36 for srcName.
. Let srcLength be the value of typedArray’s [[ArrayLength]] internal data property.

. Let srcByteOffset be the value of typedArray’s [[ByteOffset]] internal data property.

. If srcLength + targetOffset > targetLength, then throw a RangeError exception.

. If SameValue(srcBuffer, targetBuffer) is true, then

a. Let srcBuffer be the result of calling k’:loneArrayBuffer](schuffer, srcByteOffset, srcType, srcType,
srcLength).
b. Let srcBytelndex be 0.

. Else, let srcBytelndex be srcByteOffset.

. Let targetBytelndex be targetOffset x targetElementSize + targetByteOffset.

. Let limit be targetBytelndex + targetElementSize x min(srcLength, targetLength — targetOffset).
. Repeat, while targetBytelndex < limit

© Ecma International 2013 379

(c

ed [AWB13173]: TODO, see bug 1675

secmd

a. Letvalue be the result of GetValueFromBuffer (srcBuffer, srcBytelndex, srcType).
b. Let status be the result of SetValuelnBuffer (targetBuffer, targetBytelndex, targetType, value).
c. Set srcBytelndex to srcBytelndex + srcElementSize.
d. SettargetBytelndex to targetBytelndex + targetElementSize.
32. Return undefined.

22.2.3.24 %TypedArray%.prototype.slice (start, end)

The interpretation and use of the arguments of %TypedArray% .prototype.slice are the same as for
Array.prototype.slice as defined in 22.1.3.22. The following steps are taken:

Let O be the this value.

If Type(O) is not Object, throw a TypeError exception.
If O does not have a [[TypedArrayName]] internal data property, then throw a TypeError exception.
Let lenVal be the result of Get(O, "length").

Let len be ToLength(lenVal).

ReturnlfAbrupt(len).

Let relativeStart be Tolnteger(start).

ReturnIfAbrupt(relativeStart).

If relativeStart is negative, let k be max((len + relativeStart),0); else let k be min(relativeStart, len).

10. If end is undefined, let relativeEnd be len; else let relativeEnd be Tolnteger(end).

11. ReturnlfAbrupt(relativeEnd).

12. If relativeEnd is negative, let final be max((len + relativeEnd),0); else let final be min(relativeEnd, len).
13. Let count be max(final -k, 0).

14. Let C be the result of Get(O, "constructor").

15. ReturnlfAbrupt(C).

16. If IsConstructor(C) is true, then

a. Let A be the result of calling the [[Construct]] internal method of C with argument (countb.\

©@oNOG A~ WD E

C ed [AWB7174]: It would be nice to have a more

b. ReturnlfAbrupt(A).
17. Else,

a. Throw a TypeError.exception.
18. Letn be 0.
19. Repeat, while k < final

a. Let Pk be ToString(k).

b. LetkValue be the result of Get(O, Pk).
¢. ReturnlfAbrupt(kValue).
d. Let status be the result'of Put(A, ToString(n), kvalue, true).
e. ReturnifAbrupt(status).
f. Increase k by 1.
g. Increase n by 1.
20. Return A.

This function is not generic. If the this value is not a object with a [[TypedArrayName]] internal data property,
a TypeError exception is immediately thrown when this function is called.

The length property of the'slice method is 2.

22.2.3.25 %TypedArray%.prototype.some (callbackfn, thisArg = undefined)

%TypedArray% .prototype.some is a distinct function that implements the same algorithm as
Array.prototype.some as defined in 22.1.3.23. However, the implementation of the algorithm may be
optimized with the knowledge that the this value is an object that has a fixed length and whose integer
indexed properties are not sparse. However, such optimization must not introduce any observable changes in

the specified behaviour of the algorithm.

This function is not generic. If the this value is not a object with a [[TypedArrayName]] internal data property,
a TypeError exception is immediately thrown when this function is called.

The 1length property of the some method is 1.

380 © Ecma International 2013

explicit way to create a collection with a pre-specified number
of elements.

secma

22.2.3.26 %TypedArray%.prototype.sort (comparefn)

%TypedArray% . prototype. sort is a distinct function that implements the same requirements as those of
Array.prototype.sort as defined in 22.1.3.24. However, the implementation of
the %TypedArray% . prototype . sort specification may be optimized with the knowledge that the this value
is an object that has a fixed length and whose integer indexed properties are not sparse. The only internal
methods of the this object call that the algorithm may use are [[Get]] and [[Set]].

This function is not generic. If the this value is not a object with a [[TypedArrayName]] internal data property, a
TypeError exception is immediately thrown when it is called.

The following version of SortCompare is used by %TypedArray% .prototype.sort. It performs a numeric
comparison rather than the string comparsion used in 22.1.3.24.

The Typed Array SortCompare abstract operation is called with two arguments j and k, the following steps are
taken:

Let jString be ToString(j).
Let kString be ToString(k).
Let x be the result of Get(obj,jString).
ReturnIfAbrupt(x).
Let y be the result of Get(obj, kString).
ReturnlfAbrupt(y).
Assert: Both Type(x) and Type(y) is Number.
If x and y are both NaN, return +0.
If x is NaN, return 1.
0. If y is NaN, return —1.
1. If the argument comparefn is not undefined, then
a. If IsCallable(comparefn) is false, throw a TypeError exception.
b. Return the result of calling the [[Call]] internal' method of comparefn passing undefined as
thisArgument and with a List containing the values of x and y as the argumentsList.
12. Ifx <y, return —1.
13. Ifx >y, return 1.
14. Return +0.

BB OONDTORWLN R

NOTE 1 Because NaN always compares greater than any other value, NaN property values always sort to the end of
the result.

22.2.3.27 %TypedArray%.prototype.subarray(begin = 0, end = this.length)|

Returns a new TypedArray object whose element types is the same as this TypedArray and whose
ArrayBuffer is the same as the ArrayBuffer of this TypedArray, referencing the elements at begin, inclusive, up
to end, exclusive. If either begin or end is negative, it refers to an index from the end of the array, as opposed
to from the beginning.

Let O be the this value.

If Type(O) is not Object, throw a TypeError exception.

I1f O does not have a [[TypedArrayName]] internal data property, then throw a TypeError exception.
Assert: O has [[ViewedArrayBuffer]] internal data property.

Let buffer be the value of O’s [[ViewedArrayBuffer]] internal data property.
If buffer is undefined, then throw a TypeError exception.

Let srcLength be the value of O’s [[ArrayLength]] internal data property.
Let beginint be Tolnteger(begin)

ReturnlfAbrupt(beginint).

10. If beginint < 0, then let beginint be srcLength + beginint.

11. Let beginindex be min(srcLength, max(0, beginint)).

12. If end is undefined, then let end be srcLength.

13. Let endInt be Tolnteger(end).

14. ReturnlfAbrupt(endint).

15. If endInt < 0, then let endInt be srcLength + endint.

©ONG A WN P

© Ecma International 2013 381

Formatted: Font: Times New Roman, Bold

(Commented [AWB13175]: TODO: not yet updated from
wik

secmd

16. Let endIndex be max(0,min(srcLength, endint)).

17. If endIndex < beginindex, then let endIndex be beginindex.

18. Let newLength be endIndex - beginindex.

19. Let constructorName be the string value O’s [[TypedArrayName]] internal data property.

20. Let elementType be the string value of the Element Type value in Table 36 for constructorName.

21. Let elementSize be the Number value of the Element Size value specified in Table 36 for constructorName.

22. Let srcByteOffset be the value of O’s [[ByteOffset]] internal data property.

23. Let beginByteOffset be srcByteOffset + beginIindex x elementSize.

24. Let constructor be the result of Get(O, "constructor").

25. ReturnlfAbrupt(constructor).

26. If IsConstructor(constructor) is false, then throw a TypeError exception.

27. Let argumentsList be a List consisting of buffer, beginByteOffset, and newLength.

28. Return the result of calling the [[Construct]] internal method of constructor with argumentsList as the
argument.

22.2.3.28 %TypedArray%.prototype.toLocaleString ()

The initial value of the %TypedArray%.prototype.toLocaleString data property is the same built-in function
object as the Array.prototype.toLocaleString method defined in 22.1.3.26.

22.2.3.29 %TypedArray%.prototype.toString ()

The initial value of the %TypedArray%.prototype.toString data property is the same built-in function object as
the Array.prototype.toString method defined in 22.1.3.27.

22.2.3.30 %TypedArray%.prototype.values()

The initial value of the %TypedArray%.prototype . values data property is the same built-in function object
as the Array.prototype.values method defined in 22.1.3.29.

22.2.3.31 %TypedArray%.prototype [@@iterator] ()

The initial value of the @@iterator property is the same function object as the initial value of
the %TypedArray%.prototype.values property.

22.2.3.32 get %TypedArray%.prototype [@@toStringTag]

%TypedArray%.prototype [@@toStringTag] is an accessor property whose set accessor function is
undefined. Its get accessor function performs the following steps:

Let O be the this.

I1f Type(O) is not Object, throw a TypeError exception.

If O does not have a [[TypedArrayName]] internal data property throw a TypeError exception.
Let name be the value of O’s [[TypedArrayName]] internal data property.

Assert: name is a String value.

Return name.

ol wnE

This property has the attributes { [[Enumerable]]: false, [[Configurable]]: true }.
22.2.4 The TypedArray Constructors

Each of these TypedArray constructor objects has the structure described below, differing only in the name
used as the constructor name instead of TypedArray, in Table 36.

When a TypedArray constructor is called as a function rather than as a constructor, it initialises a new
TypedArray object. The this value value passed in the call must be an Object with a [[TypedArrayName]]
internal data property and a [[ViewedArrayBuffer]] internal data property whose value is undefined. The
constructor function initialises the this value using the argument values.

382 © Ecma International 2013

pecma

The TypedArray constructors are designed to be subclassable. They may be used as the value of an
extends clause of a class declaration. Subclass constructors that intended to inherit the specified
TypedArray behaviour must include a super call to the TypedArray constructor to initialise subclass
instances.

22.2.4.1 TypedArray(... argumentsList)
A TypedArray constructor with a list of arguments argumentsList performs the following steps:

Let O be the this value.

Let F be the TypedArray function object that was called.

Let realmF be F’s [[Realm]] internal data property.

Let super be realmF’s %TypedArray% intrinsic object.

Let argumentsList be the argumentsList argument of the [[Call]] internal method that invoked F.
Return the result of calling the [[Call]] internal method of super with O.and argumentsList as arguments.

Ok WM R

22.2.4.2 new TypedArray(... argumentsList)

A TypedArray constructor called as part of a new expression performs the following steps:

1. Let F be the TypedArray function object on which the new operator was applied.

2. Let argumentsList be the argumentsList argument of the [[Construct]] internal method that was invoked by

the new operator.
3. Return the result of OrdinaryConstruct(F, argumentsList).

22.2.5 Properties of the TypedArray Constructors

The value of the [[Prototype]] internal data property of each TypedArray constructor is the %TypedArray%
intrinsic object (22.2.1).

Each TypedArray constructor has a [[TypedArrayConstructor]] internal data property whose String value is the
constructor name in the corresponding row in Table 36:

Besides a length property (whose value is 3), each TypedArray constructor has the following properties:
22.25.1 TypedArray.BYTES_PER.ELEMENT

The value of TypedArray.BYTES_PER_ELEMENT is the Number value of the Element Size value specified in
Table 36 for TypedArray.

This property has the attributes { [[Writable]]: false, [[Enumerable]]: false, [[Configurable]]: false }.

22.25:2 TypedArray.prototype

The initial value of TypedArray.prototype is the corresponding TypedArray prototype object (22.2.6).

This property has the attributes { [[Writable]]: false, [[Enumerable]]: false, [[Configurable]]: false }.

22.2.6 Properties of TypedArray Prototype Objects

The value of the [[Prototype]] internal data property of a TypedArray prototype object is the standard built-
in %TypedArrayPrototype% object (22.2.3). A TypedArray prototype object is an ordinary object. It does not
have a [[ViewedArrayBuffer]] or or any other of the internal data properties that are specific to TypedArray
instance objects.

22.2.6.1 TypedArray.prototype.BYTES_PER_ELEMENT

The value of TypedArray.prototype.BYTES_PER_ELEMENT is the Number value of the Element Size value
specified in Table 36 for TypedArray.

© Ecma International 2013 383

»ecind

This property has the attributes { [Writable]]: false, [[Enumerable]]: false, [[Configurable]]: false }.
22.2.6.2 TypedArray.prototype.constructor

The initial value of a TypedArray.prototype.constructor is the corresponding standard built-in TypedArray
constructor.

22.2.7 Properties of TypedArray Instances

TypedArray instances are Integer Indexed exotic objects. Each TypedArray instances inherits properties from
the corresponding TypedArray prototype object. Each TypedArray instances have the following internal data
properties: [[TypedArrayNamel]], [[ViewedArrayBuffer]], [[ByteLength]], [[ByteOffset]], and [[ArrayLength]].

23 Keyed Collection
23.1 Map Objects

Map objects are collections of key/value pairs where both the keys and values may be arbitrary ECMAScript
language values. A distinct key value may only occur in one key/value pair within the Map’s collection. Distinct
key values as discriminated using the a comparision algorithm that is selected when the Map is created.

A Map object can iterate its elements in insertion order. Map object must be implemented using either hash
tables or other mechanisms that, on average, provide access times that are sublinear on the number of
elements in the collection. The data structures used in this Map objects specification is only intended to
describe the required observable semantics of Map objects. It is not.intended to be a viable implementation
model.

23.1.1 The Map Constructor

The Map constructor is the %Map% intrinsic object and the initial value of the Map property of the global
object. When Map is called as a function rather than as a constructor, it initialises its this value with the
internal state necessary to support the Map. prototype internal methods.

The Map constructor is designed to be subclassable. It may be used as the value in an extends clause of a
class definition. Subclass constructors that intend to inherit the specified Map behaviour must include a super
call to Map.

23.1.1.1 Map (iterable = undefined , comparator = undefined)
When the Map function is called with optional arguments iterable and comparator the following steps are taken:

Let map be the this value.

If Type(map) is not Object then, throw a TypeError exception.

If map does not have a [[MapData]] internal data property, then throw a TypeError exception.

If map’s [[MapData]] internal data property is not undefined, then throw a TypeError exception.
If iterable is not present, let iterable be undefined.

If iterable is either undefined or null, then let iter be undefined.

Else,

Nouor~wnE

a. Letiter be the result of Getlterator(iterable).

b. ReturnlfAbrupt(iter).

c. Letadder be the result of Get(map, "set").

d. ReturnlfAbrupt(adder).

e. If IsCallable(adder) is false, throw a TypeError Exception.
8. If comparator is not undefined, then

a. Ifcomparatorisnot "is", then throw a RangeError Exception.
9. Setmap’s [[MapData]] internal data property to a new empty List.
10. Set map’s [[MapComparator]] internal data property to comparator.
11. If iter is undefined, then return map.

384 © Ecma International 2013

secma

12. Repeat
a. Let next be the result of IteratorStep(iter).
b. ReturnlfAbrupt(next).
c. If nextis false, then return NormalCompletion(map).
d. Let nextltem be IteratorValue(next).
e. ReturnIfAbrupt(nextltem).
f. If Type(nextltem) is not Object, then throw a TypeError exception.
g. Letk be the result of Get(nextltem, "0").
h. ReturnIfAbrupt(k).
i. Letv be the result of Get(nextltem, "1").
j. ReturnlfAbrupt(v).
k. Let status be the result of calling the [[Call]] internal method of adder with map as thisArgument

and a List whose elements are k and v as argumentsList.
ReturnlfAbrupt(status).

NOTE If the parameter iterable is present, it is expected to be an object that implements an @@iterator method that
returns an iterator object that produces a two element array-like object whose first element is a value that will be used as
an Map key and whose second element is the value to associate with that key.

23.1.1.2 new Map (... argumentsList)

When Map is called as part of a new expression it is a constructor: it initialises a newly created object.

Map called as part of a new expression with argument list argumentsList performs the following steps:

1. Let F be the Map function object on which.the new operator was applied.

2. LetargumentsList be the argumentsList argument of the [[Construct]] internal method that was invoked by

the new operator.
3. Return the result of OrdinaryConstruct(F, argumentsList).

If Map is implemented as an ordinary function object, its [[Construct]] internal method will perform the above
steps.

23.1.2 Properties of theiMap Constructor

The value of the [[Prototype]] internal data property of the Map constructor is the Function prototype object
(19.2.3).

Besides the 1ength property (whose value is 0), the Map constructor has the following properties:

23.1.21 Map.prototype

The initial value of Map . prototype is the Map prototype object (23.1.3).

This property has the attributes { [[Writable]]: false, [[Enumerable]]: false, [[Configurable]]: false }.

23.1.2.2 Map[@@create] ()

The @@create method of a Map function object F performs the following steps:

1. LetF be the this value.

2. Let obj be the result of calling OrdinaryCreateFromConstructor(F, "$MapPrototype%", ([[MapData]] ,
[[MapComparator]])).

3. Return obj.

This property has the attributes { [[Writable]]: false, [[Enumerable]]: false, [[Configurable]]: true }.

© Ecma International 2013 385

Commented [AWB17176]: There is a lack of concensus in
TC39 whether duplicate keys should throw or over-write.
Current spec. over-writes.

Commented [AWB12177]: Note that using a method call
for inserting pairs during initialisation provides allows
subclasses to be more expressive.

secmd

23.1.3 Properties of the Map Prototype Object

The value of the [[Prototype]] internal data property of the Map prototype object is the standard built-in Object
prototype object (19.1.4). The Map prototype object is an ordinary object. It does not have a [[MapData]] or a
[[MapComparator]] internal data property.

23.1.3.1 Map.prototype.clear ()
The following steps are taken:

Let M be the this value.
If Type(M) is not Object, then throw a TypeError exception.
If M does not have a [[MapData]] internal data property throw a TypeError exception.
If M’s [[MapData]] internal data property is undefined, then throw a TypeError exception.
Let entries be the List that is the value of M’s [[MapData]] internal data property.
Repeat for each Record {[[key]], [[value]]} p that is an element of entries,
a. Setp.[[key]] to empty.
b. Setp.[[value]] to empty.
7. Return undefined.

ok wnE

23.1.3.2 Map.prototype.constructor
The initial value of Map . prototype. constructor is the built-in Map constructor.
23.1.3.3 Map.prototype.delete (key)

The following steps are taken:

1. Let M be the this value.

2. If Type(M) is not Object, then throw a TypeError exception.

3. If M does not have a [[MapData]] internal data property throw a TypeError exception.

4. 1f M’s [[MapData]] internal data property is undefined, then throw a TypeError exception.

5. If M’s [[MapComparator]] internal data property is undefined, then let same be the abstract operation
SameValueZero.

6. Else, let same be the abstract operation SameValue.

7. Letentries be the List that is the value of M’s [[MapData]] internal data property.

8. Repeat for each Record {[[key]], [[value]]} p that is an element of entries,
a. If same(p.[[key]], key), then
i Set p.[[key]] to empty.
1. Set p.[[value]] to empty.
iii. Return true.
9. Return false.

NOTE The value empty is used as a specification device to indicate that an entry has been deleted. Actual
implementations may take other actions such as physically removing the entry from internal data structures.

23.1.3.4 Map.prototype.entries ()

[r

ed [AWB14178]: Need to move after delete

The following steps are taken:
1. Let M be the this value.

2. If Type(M) is not Object, then throw a TypeError exception.
3. Return the result of calling the CreateMaplterator abstract operation with arguments M and "key+value".

23.1.3.5 Map.prototype.forEach (callbackfn , thisArg = undefined)
callbackfn should be a function that accepts three arguments. forEach calls callbackin once for each

key/value pair present in the map object, in key insertion order. callbackfn is called only for keys of the map
which actually exist; it is not called for keys that have been deleted from the map.

386 © Ecma International 2013

secma

If a thisArg parameter is provided, it will be used as the this value for each invocation of callbackfn. If it is not
provided, undefined is used instead.

NOTE If callbackfn is an Arrow Function, this was lexically bound when the function was created so thisArg will have
no effect.

callbackfn is called with three arguments: the value of the item, the key of the item, and the Map object being
traversed.

forEach does not directly mutate the object on which itis called but the object may be mutated by the calls to
callbackfn.

NOTE Each key is visited only once with the value that is current at the time of the visit. If the value associated with a
key is modified after it has been visited, it is not re-visited. Keys that are deleted after the call to forEach begins and
before being visited are not visited. New keys added, after the call to forEach begins are visited.

When the forEach method is called with one or two arguments, the following steps are taken:

Let M be the this value.
If Type(M) is not Object, then throw a TypeError exception.
If M does not have a [[MapData]] internal data property throw a TypeError exception.
If M’s [[MapData]] internal data property is undefined, then throw a TypeError exception.
If IsCallable(callbackfn) is false, throw a TypeError exception.
If thisArg was supplied, let T be thisArg; else let T be undefined.
Let entries be the List that is the value of M’s [[MapData]] internal data property.
Repeat for each Record {[[key]], [[value]]} € that is an element of entries, in original key insertion order
a. Ife.[[key]] is not empty, then
i Let funcResult be the result of calling the [[Call]] internal method of callbackfn with T as
thisArgument and a List containing e.[[value]],e.[[key]], and M as argumentsList.
il ReturnlfAbrupt(funcResult).
9. Return undefined.

PN A WN

The 1length property of the forEach method is 1.

23.1.3.6 Map.prototype.get (key)

The following steps are taken:

1. Let M bethe this value.

2. If Type(M) is not Object, then throw a TypeError exception.

3. If M does not have a [[MapData]] internal data property throw a TypeError exception.

4. If M’s [[MapData]] internal data property is undefined, then throw a TypeError exception.

5. Letentries be the List that is the value of M’s [[MapData]] internal data property.

6. If M’s [[MapComparator]] internal data property is undefined, then let same be the abstract operation
SameValueZero.

7. Else, let same be the abstract operation SameValue.

8. Repeat for each Record {[[key]], [[value]]} p that is an element of entries,

a. If same(p.[[key]], key), then return p.[[value]]
9. Return undefined.

23.1.3.7 Map.prototype.has (key)
The following steps are taken:

Let M be the this value.

If Type(M) is not Object, then throw a TypeError exception.

If M does not have a [[MapData]] internal data property throw a TypeError exception.

If M’s [[MapData]] internal data property is undefined, then throw a TypeError exception.
Let entries be the List that is the value of M’s [[MapData]] internal data property.

arwnE

© Ecma International 2013 387

secmd

6. If M’s [[MapComparator]] internal data property is undefined, then let same be the abstract operation
SameValueZero.
Else, let same be the abstract operation SameValue.
8. Repeat for each Record {[[key]], [[value]]} p that is an element of entries,
a. If same(p.[[key]], key), then return true.
9. Return false.

~

23.1.3.8 Map.prototype.keys ()
The following steps are taken:

1. Let M be the this value.
2. If Type(M) is not Object, then throw a TypeError exception.
3. Return the result of calling the CreateMaplterator abstract operation with arguments M and "key"".

23.1.3.9 Map.prototype.set (key , value)
The following steps are taken:

Let M be the this value.
If Type(M) is not Object, then throw a TypeError exception.
If M does not have a [[MapData]] internal data property throw a TypeError exception.
If M’s [[MapData]] internal data property is undefined, then throw.a TypeError exception.
Let entries be the List that is the value of M’s [[MapData]] internal data property.
If M’s [[MapComparator]] internal data property is undefined, then let same be the abstract operation
SameValueZero.
Else, let same be the abstract operation SameValue.
8. Repeat for each Record {[[key]], [[value]]} p that is an element of entries,
a. If same(p.[[key]], key), then

i. Setp.[[value]] to value.

ii. Return M.
9. Let p be the Record {[[key]]: key, [[value]]: value}
10. Append p as the last element of entries.
11. Return M.

gk wpE

~

23.1.3.10 get Map.prototype.size

Map.prototype.sizeis_an accessor property whose set accessor function is undefined. Its get accessor
function performs the following steps:

Let M be the this value.
If Type(M) is not Object, then throw a TypeError exception.
If M does not have a [[MapData]] internal data property throw a TypeError exception.
If M’s [[MapData]] internal data property is undefined, then throw a TypeError exception.
Let entries be the List that'is the value of M’s [[MapData]] internal data property.
Let count be 0.
For each Record {[[key]], [[value]]} p that is an element of entries

a. If p.[[key]] is not empty then

i Set count to count+1.

8. Return count.

NookrwnE

23.1.3.11 Map.prototype.values ()
The following steps are taken:
1. Let M be the this value.

2. If Type(M) is not Object, then throw a TypeError exception.
3. Return the result of calling the CreateMaplterator abstract operation with arguments M and “"value".

388 © Ecma International 2013

secma

C ed [AWB10179]: This is how we identify a

23.1.3.12 Map.prototype|[@@iterator [|()

The initial value of the @ @iterator property is the same function object as the initial value of the entries
property.|

property whose key is a built-in Symbol

C ed [AWB10180]: Do we really want to do this

23.1.3.13 Map.prototype [@@toStringTag]

The initial value of the @@toStringTag property is the string value "Map".

This property has the attributes { [[Writable]]: false, [[Enumerable]]: false, [[Configurable]]: true }.
23.1.4 Properties of Map Instances

Map instances are ordinary objects that inherit properties from the Map prototype. Map instances also have a
[[MapData]] internal data property and a [[MapComparator]] internal data property.

23.1.5 Map Iterator Object Structure

A Map lterator is an object, with the structure defined below, that represents a specific iteration over some
specific Map instance object. There is not a named constructor for Map Iterator objects. Instead, map iterator
objects are created by calling certain methods of Map instance objects.

23.1.5.1 CreateMaplterator Abstract Operation

Several methods of Map objects return Iterator objects. The abstract operation CreateMaplterator with
arguments map and kind is used to create such iterator objects. It performs the following steps:

If Type(map) is not Object, throw a TypeError exception.

If map does not have a [[MapData]] internal data property throw a TypeError exception.

Let entries be the List that is the value of map’s [[MapData]] internal data property.

Let iterator be the result of ObjectCreate(%MaplteratorPrototype%, ([[Map]], [[MapNextIndex]],
[[MaplterationKind]])).

Set iterator’s [[Map]] internal data property to map.

Set iterator’s [[MapNextIndex]] internal data property to 0.

Set iterator’s [[MaplterationKind]].internal data property to kind.

Return iterator.

AN E

® N oG

23.1.5.2 TheMapiterator Prototype

All Map_Iterator Objects inherit properties from a common Map Iterator Prototype object. The [[Prototype]]
internal data property of the Map Iterator Prototype is the %ObjectPrototype% intrinsic object. In addition, the
Map lterator Prototype has the following properties:

23.1.5.2.1 Maplterator.prototype.constructor|

|

sort of method sharing. It has a bad smell.

C ed [AWB10181]: TODO: need to decide what to

23.1.5.2.2 Maplterator.prototype.next()

1. Let O be the this value.

2. If Type(O) is not Object, throw a TypeError exception.

3. If O does not have all of the internal properties of a Map Iterator Instance (23.1.5.3), throw a TypeError
exception.

4. Let m be the value of the [[Map]] internal data property of O.

5. Letindex be the value of the [[MapNextIndex]] internal data property of O.

6. LetitemKind be the value of the [[MaplterationKind]] internal data property of O.

7. Assert: m has a [[MapData]] internal data property and m has been initialised so the value of [[MapData]] is
not undefined.

8. Letentries be the List that is the value of the [[MapData]] internal data property of m.

9. Repeat while index is less than the total number of elements of entries. The number of elements must be

redetermined each time this method is evaluated.

© Ecma International 2013 389

use for a constructor for these sort of objects. Probably we
should try to consistently follow the “class model” wherever we
can.

secmd

Let e be the Record {[[key]], [[value]]} at 0-origined insertion position index of entries.
Set index to index+1;
Set the [[MapNextIndex]] internal data property of O to index.
If e.[[key]] is not empty, then
i. If itemKind is "key" then, let result be e.[[key]].
ii. Elseif itemKind is "value" then, let result be e.[[value]].
iii. Else,
1. Assert: itemKind is "key+value".
2. Let result be the result of performing ArrayCreate(2).
3. Assert: result is a new, well-formed Array object so the following operations will
never fail.
4. Call CreateOwnDataProperty(result, "0, e.[[key]]) .
5. Call CreateOwnDataProperty(result, "*1**, e.[[value]]).
iv. Return CreateletrResultObject(result, false).
10. Return CreatelterResultObject(undefined, true).

oo

23.1.5.2.3 Maplterator.prototype [@@iterator] ()

The following steps are taken:

1. Return the this value.

23.1.5.2.4 Maplterator.prototype [@@toStringTag]

The initial value of the @@toStringTag propertyis the string value "Map Iterator".

23.1.5.3 Properties of Map Iterator Instances

Map lterator instances are ordinary objects that inherit' properties from the Map Iterator prototype (the
intrinsic, %MaplteratorPrototype%).-Map Iterator instances are initially created with the internal properties

described in Table 37.

Table 37 — Internal Data Properties of Map Iterator Instances

Internal Data Property Description
Name

[[Map]] [The Map object that is being iterated.

[[MapNextIndex]] [The integer index of the next Map data element to be examined b
this iteration.

[[MaplterationKind]] A string value that identifies what is to be returned for each|
element of the iteration. The possible values are: "key", "value",
'key+value".

23.2 Set Objects

Set objects are collections of ECMAScript language values. A distinct value may only occur once as an
element of a Set’s collection. Distinct values are discriminated using a comparision algorithm that is selected
when the Set is created.

A Set object can iterate its elements in insertion order. Set objects must be implemented using either hash
tables or other mechanisms that, on average, provide access times that are sublinear on the number of
elements in the collection. The data structures used in this Set objects specification is only intended to
describe the required observable semantics of Set objects. It is not intended to be a viable implementation
model.

390 © Ecma International 2013

secma

23.2.1 The Set Constructor

The Set constructor is the %Set% intrinsic object and the initial value of the Set property of the global object.
When set is called as a function rather than as a constructor, it initialises its this value with the internal state
necessary to support the Set.prototype internal methods.

The set constructor is designed to be subclassable. It may be used as the value in an extends clause of a
class definition. Subclass constructors that intend to inherit the specified Set behaviour must include a super
call to set.

23.2.1.1 Set (iterable = undefined, comparator = undefined)
When the set function is called with optional arguments iterable and comparator the following steps are taken:

Let set be the this value.

If Type(set) is not Object then, throw a TypeError exception.

If set does not have a [[SetData]] internal data property, then throw a TypeError exception.

If set’s [[SetData]] internal data property is not undefined, then throw a TypeError exception.
If iterable is not present, let iterable be undefined.

If iterable is either undefined or null, then let iter be undefined.

Else,

Nou~wN R

Let iter be the result of Getlterator(iterable).
ReturnlfAbrupt(iter).
Let adder be the result of Get(set, "add").
ReturnlfAbrupt(adder).

e. IfIsCallable(adder) is false, throw a TypeError Exception.
8. If comparator is not present, let comparator be undefined.
9. If comparator is not undefined, then

a. Ifcomparatorisnot "is", then throw a RangeError Exception.
10. Set set’s [[SetData]] internal data property to a new empty List.
11. Set set’s [[SetComparator]] internal data property to comparator.
12. If iter is undefined, thenreturn set.

oo

13. Repeat
a. Let next bethe result of IteratorStep(iter).
b. ReturnlfAbrupt(next).
c. If nextis false, then return set.
d. Let nextValue be lteratorValue(next).
e. ReturnlfAbrupt(nextValue).
.« Let status be the result of calling the [[Call]] internal method of adder with set as thisArgument and

a List whose sole element is nextValue as argumentsList.
g. ReturnlfAbrupt(status).

23.2.1.2° new Set (... argumentsList)

When set is called as part of a new expression it is a constructor: it initialises a newly created object.

Set called as part of a new expression with argument list argumentsList performs the following steps:

1. Let F be the Set function object on which the new operator was applied.

2. LetargumentsList be the argumentsList argument of the [[Construct]] internal method that was invoked by

the new operator.
3. Return the result of OrdinaryConstruct(F, argumentsList).

If Set is implemented as an ordinary function object, its [[Construct]] internal method will perform the above
steps.

© Ecma International 2013 391

Commented [AWB12182]: Note that using a method call
for inserting pairs during initialisation allows subclasses to be
more expressive.

secmd

23.2.2 Properties of the Set Constructor

The value of the [[Prototype]] internal data property of the Set constructor is the Function prototype object
(19.2.3).

Besides the 1ength property (whose value is 0), the Set constructor has the following properties:

23.2.2.1 Set.prototype

The initial value of Set.prototype is the intrinsic %SetPrototype% object (23.2.3).

This property has the attributes { [[Writable]]: false, [[Enumerable]]: false, [[Configurable]]: false }.

23.2.2.2 Set[@@create] ()

The @@create method of a Set function object F performs the following steps:

1. LetF be the this value.

2. Let obj be the result of calling OrdinaryCreateFromConstructor(F, "$SetPrototype%", ([[SetData]],
[[SetComparator]])).

3. Return obj.

This property has the attributes H [[Writable]]: false, [[Enumerable]]: false, [[Configurable]]: true }.

C ed [AWB14183]: Because the @@create

23.2.3 Properties of the Set Prototype Object

The value of the [[Prototype]] internal data property of the Set prototype object is the standard built-in Object
prototype object (19.1.4). The Set prototype object is an ordinary object. It does not have a [[SetData]] or a
[[SetComparator]] internal data property.

23.2.3.1 Set.prototype.add (value)
The following steps are taken:

Let S be the this value.
If Type(S) is not Object, then throw a TypeError exception.
If S does not have a [[SetData]] internal data property throw a TypeError exception.
If S’s [[SetData]] internal data property is undefined, then throw a TypeError exception.
Let entries be the List that is the value of S’s [[SetData]] internal data property.
If S’s [[SetComparator]] internal data property is undefined, then let same be the abstract operation
SameValueZero.
Else, let same be the abstract operation SameValue.
8. Repeat for each e that is an element of entries, in original insertion order

a. Ife.is not empty and same(e, value) is true, then

i Return S

9. Append value as the last element of entries.
10. Return S.

ok wnE

~

23.2.3.2 Set.prototype.clear ()
The following steps are taken:

Let S be this value.
If Type(S) is not Object, then throw a TypeError exception.
If S does not have a [[SetData]] internal data property throw a TypeError exception.
If S’s [[SetData]] internal data property is undefined, then throw a TypeError exception.
Let entries be the List that is the value of S’s [[SetData]] internal data property.
Repeat for each e that is an element of entries,
a. Replace the element of entries whose value is e with an element whose value is empty.

ourwnE

392 © Ecma International 2013

method is essential to the integrity of this “class” definition,
just like the prototoype property, it seems appripiate to freeze
itin the same manner.

secma

7. Return undefined.

23.2.3.3 Set.prototype.constructor

The initial value of Set.prototype.constructor is the built-in Set constructor.
23.2.3.4 Set.prototype.delete (value)

The following steps are taken:

1. LetS be the this value.

2. If Type(S) is not Object, then throw a TypeError exception.

3. If S does not have a [[SetData]] internal data property throw a TypeError exception.

4. If S’s [[SetData]] internal data property is undefined, then throw a TypeError exception.

5. Letentries be the List that is the value of S’s [[SetData]] internal data property.

6. IfS’s [[SetComparator]] internal data property is undefined, then let.same be the abstract operation
SameValueZero.

7. Else, let same be the abstract operation SameValue.

8. Repeat for each e that is an element of entries, in original insertion order
a. Ifeis not empty and same(e, value) is true, then
i. Replace the element of entries whose value is e with an element whose value is empty.
ii. Return true.
9. Return false.

NOTE The value empty is used as a specification device to indicate that an entry has been deleted. Actual
implementations may take other actions such as physically removing the entry from internal data structures.

23.2.3.5 Set.prototype.entries ()
The following steps are taken:
1. LetS be the this value.

2. If Type(S) is not Object, then throw a TypeError exception.
3. Return the result of calling the CreateSetlterator abstract operation with arguments S and "key+value™.

NOTE For iteration purposes, a Set appears similar.to a Map where each entry has the same value for its key and
value.

23.2.3.6 Set.prototype.forEach (callbackfn , thisArg = undefined)
callbackfn should be a function that accepts three arguments. forEach calls callbackfn once for each value
present in the set object, in value insertion order. callbackfn is called only for values of the Set which actually

exist; itis not called for keys that have been deleted from the set.

If a thisArg parameter is provided, it will be used as the this value for each invocation of callbackfn. If it is not
provided, undefined is used instead.

NOTE 1 If callbackfn is an Arrow Function, this was lexically bound when the function was created so thisArg will have
no effect.

callbackfn is called with three arguments: the first two arguments are a value contained in the Set. The same
value of passed for both arguments. The Set object being traversed is passed as the third argument.

NOTE 2 The callbackfn is called with three arguments to be consistent with the call back functions used by forEach
methods for Map and Array. For Sets, each item value is considered to be both the key and the value.

forEach does not directly mutate the object on which it is called but the object may be mutated by the calls to
callbackfn.

© Ecma International 2013 393

secmd

NOTE 3 Each value is normally visited only once. However, a value will be revisited if it is deleted after it has been
visited and then re-added before the to forEach call completes. Values that are deleted after the call to forEach begins
and before being visited are not visited unless the value is added again before the to forEach call completes. New values
added, after the call to forEach begins are visited.

When the forEach method is called with one or two arguments, the following steps are taken:

Let S be the this value.
If Type(S) is not Object, then throw a TypeError exception.
If S does not have a [[SetData]] internal data property throw a TypeError exception.
If S’s [[SetData]] internal data property is undefined, then throw a TypeError exception.
If IsCallable(callbackfn) is false, throw a TypeError exception.
If thisArg was supplied, let T be thisArg; else let T be undefined.
Let entries be the List that is the value of S’s [[SetData]] internal data property.
Repeat for each e that is an element of entries, in original insertion order.
a. Ifeis not empty, then
i. Let funcResult be the result of calling the [[Call]] internal method of callbackfn with T as
thisArgument and a List containing e, e, and S as argumentsList.
ii. ReturnlfAbrupt(funcResult).
9. Return undefined.

N AWNE

The length property of the forEach method is 1.
23.2.3.7 Set.prototype.has (value)

The following steps are taken:

Let S be the this value.
If Type(S) is not Object, then throw a TypeError exception.
If S does not have a [[SetData]] internal data property throw a TypeError exception.
If S’s [[SetData]] internal data property is undefined, then throw a TypeError exception.
Let entries be the List that is the value of S’s [[SetData]] internal data property.
If S’s [[SetComparator]].internal data property is undefined, then let same be the abstract operation
SameValueZero.
Else, let same be the abstract operation SameValue.
8. Repeat for each e that is.an element of entries,
a. Ifeis not empty and same(e, value), then return true.
9. Return false.

[S o

~

23.2.3.8 _Set.prototype.keys ()

frhe initial value of the keys property is the same function object as the initial value of the values property.\ C ed [AWB10184]: Do we really want to do this
sort of method sharing.

NOTE For iteration purposes, a Set appears similar to a Map where each entry has the same value for its key and

value.

23.2.3.9 get Set.prototype.size

Set.prototype.size IS an accessor property whose set accessor function is undefined. Its get accessor
function performs the following steps:

Let S be the this value.
If Type(S) is not Object, then throw a TypeError exception.
If S does not have a [[SetData]] internal data property throw a TypeError exception.
If S’s [[SetData]] internal data property is undefined, then throw a TypeError exception.
Let entries be the List that is the value of S’s [[SetData]] internal data property.
Let count be 0.
For each e that is an element of entries
a. Ifeis not empty then
i Set count to count+1.

Nou,rwnE

394 © Ecma International 2013

secma

8. Return count.

23.2.3.10 Set.prototype.values ()
The following steps are taken:

1. LetS be the this value.

2. If Type(S) is not Object, then throw a TypeError exception.
3. Return the result of calling the CreateSetlterator abstract operation with argument S and "value".

23.2.3.11 Set.prototype [@@iterator] ()

The initial value of the @@iterator property is the same function object as the initial value of the values
property.

23.2.3.12 Set.prototype [@@toStringTag]

The initial value of the @@toStringTag property is the string value “Set".

This property has the attributes { [[Writable]]: false, [[Enumerable]]: false, [[Configurable]]: true }.

23.2.4 Properties of Set Instances

Set instances are ordinary objects that inherit properties from the Set prototype. After initialisation by the Set
constructor, Set instances also have a [[SetData]] internal data property and a [[SetComparator]] internal data
property.

23.2.5 Set Iterator Object Structure

A Set lterator is an ordinary object, with the structure defined below, that represents a specific iteration over
some specific Set instance object. There is not a named constructor for Set Iterator objects. Instead, set
iterator objects are created by calling certain methods of Set instance objects.

23.25.1 CreateSetlterator Abstract Operation

Several methods of Set objects return lterator objects. The abstract operation CreateSetlterator with
arguments set and kind is used to create such iterator objects. It performs the following steps:

1. If Type(set) is not Object, throw a TypeError exception.

2. If set does not have a [[SetData]] internal data property throw a TypeError exception.

3. Ifset’s [[SetData]] internal data property is undefined, then throw a TypeError exception.

4. Letentries be the List that is the value of set’s [[SetData]] internal data property.

5. Let iterator be the result of ObjectCreate(%SetlteratorPrototype%, ([[IteratedSet]], [[SetNextIndex]],
[[SetlterationKind]])).

6. Setiterator’s [[IteratedSet]] internal data property to set.

7. Setiterator’s [[SetNextIndex]] internal data property to 0.

8. Setiteraror’s [[SetlterationKind]] internal data property to kind.

9. Return iterator.

23.2.5.2 The Set Iterator Prototype
All Set lterator Objects inherit properties from a common Set Iterator Prototype object. The [[Prototype]]

internal data property of the Set Iterator Prototype is the %ObjectPrototype% intrinsic object. In addition, the
Set Iterator Prototype has the following properties:

© Ecma International 2013 395

secmd

23.2.5.2.1 Setlterator.prototype.constructor]

C ed [AWB10185]: TODO: need to decide what to

23.2.5.2.2 Setlterator.prototype.next()

1. Let O be the this value.

2. If Type(O) is not Object, throw a TypeError exception.

3. If O does not have all of the internal properties of a Set Iterator Instance (23.2.5.3), throw a TypeError
exception.

4. Let s be the value of the [[IteratedSet]] internal data property of O.

5. Let index be the value of the [[SetNextIndex]] internal data property of O.

6. LetitemKind be the value of the [[SetlterationKind]] internal data property of O.

7. Assert: s has a [[SetData]] internal data property and s has been initialised so the‘value of [[SetData]] is not
undefined.

8. Let entries be the List that is the value of the [[SetData]] internal data property of s.

9. Repeat while index is less than the total number of elements of entries. The number of elements must be

redetermined each time this method is evaluated.
a. Lete be the element at 0-origined insertion position index of entries.
b. Setindex to index+1;
c. Setthe [[SetNextIndex]] internal data property of O to index.
d. If e is not empty, then
i If itemKind is "key+value" then,
1. Let result be the result of performing ArrayCreate(2).
2. Assert: result is a new, well-formed Array object so the following operations will
never fail.
3. Call CreateOwnDataProperty(result, **0*, e) .
4. Call CreateOwnDataProperty(result, "1, e).
5. Return CreatelterResultObject(result, false).
ii. Return CreatelterResultObject(e, false).
10. Return CreatelterResultObject(undefined, true).

23.2.5.2.3 Setlterator.prototype.@@iterator ()

The following steps are taken:

1. Return the this value.

23.2.5.2.4 Setlterator.prototype.@@toStringTag

The initial value of the @@toStringTag property is the string value "Set Iterator".

23.25.3 Properties of Set Iterator Instances

Set lterator instances inherit properties from the Set Iterator prototype (the intrinsic, %SetlteratorPrototype%).

Set Iterator instances are initially created with the internal properties specified Table 38.

Table 38 — Internal Data Properties of Set Iterator Instances

Internal Data Property Description
Name

[[IteratedSet]] [The Set object that is being iterated.

[[SetNextindex]] The integer index of the next Set data element to be examined by|
this iteration.

[[SetlterationKind]] /A string value that identifies what is to be returned for each|
element of the iteration. The possible values are: "key", "value",
"key+value". "key" and "value" have the same meaning.

396 © Ecma International 2013

use for a constructor for these sort of objects.

secma

23.3 WeakMap Objects

WeakMap objects are collections of key/value pairs where the keys are ECMAScript objects and values may
be arbitrary ECMAScript language values. A WeakMap may be queried to see if it contains an key/value pair
with a specific key, but no mechanisms is provided for enumerating the objects it holds as keys. If an object
that is being used as the key of a WeakMap key/value pair is only reachable by following a chain of references
that start within that WeakMap, then that key/value pair is inaccessible and is automatically removed from the
WeakMap. WeakMap implementations must detect and remove such key/value pairs and any associated
resources.

An implementation may impose an arbitrarily determined latency between the time a key/value pair of a
WeakMap becomes inaccessible and the time when the key/value pair is removed from the WeakMap. If this
latency was observable to ECMAScript program, it would be a source of indeterminacy that could impact
program execution. For that reason, an ECMAScript implementation must not provide any means to observe
a key of a WeakMap that does not require the observer to present the observed key.

WeakMap objects must be implemented using either hash tables or other mechanisms that, on average,
provide access times that are sublinear on the number of key/value pairs in the collection. The data structure
used in this WeakMap objects specification are only intended to describe the required observable semantics
of WeakMap objects. It is not intended to be a viable implementation model.

NOTE WeakMap and WeakSets are intended to provide mechanisms for dynamically associating state with an object
in a manner that does not “leak” memory resources if, in the absence of the WeakMap or WeakSet, the object otherwise
became inaccessible and subject to resource reclamation by the implementation’s garbage collection mechanisms.
Achieving this characteristic requires coordination between the WeakMap or WeakSet implementation and the garbage
collector. The following references describe mechanism that may be useful to implementations of WeakMap and
WeakSets:

Barry Hayes. 1997. Ephemerons: a new finalization mechanism. In Proceedings of the 12th ACM SIGPLAN
conference on Object-oriented programming, systems, languages, and applications (OOPSLA '97), A. Michael
Berman (Ed.). ACM, New York, NY, USA, 176-183. http://doi.acm.org/10.1145/263698.263733.

Alexandra Barros, Roberto lerusalimschy, Eliminating Cycles in Weak Tables. Journal of Universal Computer
Science - J.UCS, vol. 14; no. 21, pp. 3481-3497, 2008. http://www.jucs.org/jucs 14 21/eliminating cycles in weak

23.3.1 The WeakMap'Constructor

The WeakMap constructor is the %WeakMap% intrinsic object and the initial value of the WeakMap property
of the global object: When WeakMap is called as a function rather than as a constructor, it initialises its this
value with the internal state necessary to support the WeakMap . prototype methods.

The WeakMap constructor is designed to be subclassable. It may be used as the value in an extends clause
of a class definition. Subclass constructors that intend to inherit the specified WeakMap behaviour must
include a super call to WeakMap.

23.3.1.1 WeakMap (iterable = undefined)
When the WeakMap function is called with optional argument iterable the following steps are taken:

Let map be the this value.
If Type(map) is not Object then, throw a TypeError exception.
If map does not have a [[WeakMapData]] internal data property, then throw a TypeError exception.
If map’s [[WeakMapData]] internal data property is not undefined, then throw a TypeError exception.
If iterable is not present, let iterable be undefined.
If iterable is either undefined or null, then let iter be undefined.
Else,
a. Letiter be the result of Getlterator(iterable).
b. ReturnlfAbrupt(iter).
c. Letadder be the result of Get(map, "set").
d. ReturnIfAbrupt(adder).

NouA~wNE

© Ecma International 2013 397

http://doi.acm.org/10.1145/263698.263733
http://www.jucs.org/jucs_14_21/eliminating_cycles_in_weak

secmd

e. If IsCallable(adder) is false, throw a TypeError Exception.
8. Setmap’s [[WeakMapData]] internal data property to a new empty List.
9. Ifiter is undefined, then return map.

10. Repeat
a. Let next be the result of IteratorStep(iter).
b. ReturnIfAbrupt(next).
c. If nextis false, then return NormalCompletion(map).
d. Let nextValue be IteratorValue(next).
e. ReturnlfAbrupt(nextValue).
f. If Type(nextValue) is not Object, then throw a TypeError exception
g. Letk be the result of Get(nextValue, "0").
h. ReturnlfAbrupt(k).
i. Letv be the result of Get(nextValue, "1").
J. ReturnlfAbrupt(v).
k. |Let status be the result of calling the [[Call]] internal method of adder with map as thisArgument

and a List whose elements are k and v as argumentsList.
ReturnIfAbrupt(status).

NOTE If the parameter iterable is present, it is expected to be an‘object that implements an @@iterator method that
returns an iterator object that produces a two element array-like object whose first element is a value that will be used as a
WeakMap key and whose second element is the value to associate with that key.

23.3.1.2 new WeakMap (... argumentsList)

When WeakMap is called as part of a new expression itis a constructor: it initialises a newly created object.
WeakMap called as part of a new expression with argument list argumentsList performs the following steps:

1. Let F be the WeakMap function object on which the new operator was applied.

2. LetargumentsList be the argumentsList argument of the [[Construct]] internal method that was invoked by

the new operator.
3. Return the result of OrdinaryConstruct(F, argumentsList).

If WeakMap is implemented as an ordinary function object, its [[Construct]] internal method will perform the
above steps.

23.3.2 Properties of the WeakMap Constructor

The value of the [[Prototype]] internal data property of the WeakMap constructor is the Function prototype
object (19:2.3).

Besides the 1ength property (whose value is 0), the WeakMap constructor has the following properties:
23.3.2.1 WeakMap.prototype

The initial value of WeakMap. prototype is the WeakMap prototype object (23.3.3).

This property has the attributes { [Writable]]: false, [[Enumerable]]: false, [[Configurable]]: false }.
23.3.2.2 WeakMap[@@create] ()

The @@create method of a WeakMap object F performs the following steps:

1. LetF be the this value.

2. Let obj be the result of calling OrdinaryCreateFromConstructor(F, "$WeakMapPrototype%",

([[WeakMapData]])).
3. Return obj.

This property has the attributes { [[Writable]]: false, [[Enumerable]]: false, [[Configurable]]: true }.

398 © Ecma International 2013

/
/

Commented [AWB12186]: Note that using a method call
for inserting pairs during initialisation provides allows
subclasses to be more expressive.

| Commented [AWB14187]: Because the @ @create

method is essential to the integrity of this “class” definition,
just like the prototoype property, it seems appripiate to freeze
itin the same manner.

secma

23.3.3 Properties of the WeakMap Prototype Object

The value of the [[Prototype]] internal data property of the WeakMap prototype object is the standard built-in
Object prototype object (19.1.4). The WeakMap prototype object is an ordinary object. It does not have a
[[WeakMapDatal]] internal data property.

23.3.3.1 WeakMap.prototype.clear ()
The following steps are taken:

Let M be the this value.

If Type(M) is not Object, then throw a TypeError exception.

If M does not have a [[WeakMapData]] internal data property throw a TypeError exception.

If M’s [[WeakMapData]] internal data property is undefined, then throw a-TypeError exception.
Set the value of M’s [[WeakMapData]] internal data property to a new empty List.

Return undefined.

S~ E

23.3.3.2 WeakMap.prototype.constructor

The initial value of WeakMap . prototype . constructor is the built-in WeakMap constructor.
23.3.3.3 WeakMap.prototype.delete (key)

The following steps are taken:

Let M be the this value.
If Type(M) is not Object, then throw a TypeError exception.
If M does not have a [[WeakMapData]] internal data property throw a TypeError exception.
Let entries be the List that is the value of M’s [[WeakMapData]] internal data property.
If entries is undefined, then throw a TypeError exception.
If Type(key) is not Object, then throw a TypeError exception.
Repeat for each Record {[[key]], [[value]]} p that is an element of entries,
a. Ifp.[[key]] andkey are the same object, then
i. Set p.[[key]] to empty.

il Set p.[[value]] to empty.

iii. Return true.
8. Return false.

NourwNE

NOTE The value empty is used as a specification device to indicate that an entry has been deleted. Actual
implementations may take other actions such as physically removing the entry from internal data structures.

23.3.3.4 WeakMap.prototype.get (key)
The following steps are taken:

Let M be the this value.
If Type(M) is not Object, then throw a TypeError exception.
If M does not have a [[WeakMapData]] internal data property throw a TypeError exception.
Let entries be the List that is the value of M’s [[WeakMapData]] internal data property.
If entries is undefined, then throw a TypeError exception.
If Type(key) is not Object, then throw a TypeError exception.
Repeat for each Record {[[key]], [[value]]} p that is an element of entries,
a. If p.[[key]] and key are the same object, then return p.[[value]]
8. Return undefined.

Nouor~wNE

23.3.3.5 WeakMap.prototype.has (key)

The following steps are taken:

© Ecma International 2013 399

secmd

Let M be the this value.
If Type(M) is not Object, then throw a TypeError exception.
If M does not have a [[WeakMapData]] internal data property throw a TypeError exception.
Let entries be the List that is the value of M’s [[WeakMapData]] internal data property.
If entries is undefined, then throw a TypeError exception.
If Type(key) is not Object, then throw a TypeError exception.
Repeat for each Record {[[key]], [[value]]} p that is an element of entries,
a. If p.[[key]] and key are the same object, then return true.
8. Return false.

NookrwnE

23.3.3.6 WeakMap.prototype.set (key , value)
The following steps are taken:

Let M be the this value.
If Type(M) is not Object, then throw a TypeError exception.
If M does not have a [[WeakMapData]] internal data property throwa TypeError exception.
Let entries be the List that is the value of M’s [[WeakMapData]]internal data property.
If entries is undefined, then throw a TypeError exception.
If Type(key) is not Object, then throw a TypeError exception.
Repeat for each Record {[[key]], [[value]]} p that is an element of entries,
a. If p.[[key]] and key are the same object, then
i Set p.[[value]] to value.
ii. Return M.
8. Let p be the Record {[[key]]: key, [[value]]: value}
9. Append p as the last element of entries.
10. Return M.

NookrwnE

23.3.3.7 WeakMap.prototype [@@toStringTag]

The initial value of the @@toStringTag property is the string value "WeakMap".

This property has the attributes { [[Writable]]: false, [[Enumerable]]: false, [[Configurable]]: true }.
23.3.4 Properties of WeakMap Instances

WeakMap instances are ordinary objects that inherit properties from the WeakMap prototype. WeakMap
instances also have a [[WeakMapData]] internal data property.

23.4 WeakSet Objects

WeakSet objects are collections of ECMAScript objects. A distinct object may only occur once as an element
of a WeakSet's collection. A WeakSet may be queried to see if it contains a specific object, but no
mechanisms is provided for enumerating the objects it holds. If an object that is contain by a WeakSet is only
reachable by following a chain of references that start within that WeakSet, then that object is inaccessible
and is automatically removed from the WeakSet. WeakSet implementations must detect and remove such
objects and any associated resources.

An implementation may impose an arbitrarily determined latency between the time an object contained in a
WeakSet becomes inaccessible and the time when the object is removed from the WeakSet. If this latency
was observable to ECMAScript program, it would be a source of indeterminacy that could impact program
execution. For that reason, an ECMAScript implementation must not provide any means to determine if a
WeakSet contains a particular object that does not require the observer to present the observed object.

WeakSet objects must be implemented using either hash tables or other mechanisms that, on average,
provide access times that are sublinear on the number of elements in the collection. The data structure used
in this WeakSet objects specification is only intended to describe the required observable semantics of
WeakSet objects. It is not intended to be a viable implementation model.

400 © Ecma International 2013

pecma

NOTE See the NOTE in 23.3.
23.4.1 The WeakSet Constructor

The WeakSet constructor is the %W eakSet% intrinsic object and the initial value of the WeakSet property of
the global object. When WeaksSet is called as a function rather than as a constructor, it initialises its this value
with the internal state necessary to support the WeakSet . prototype internal methods.

The WeakSet constructor is designed to be subclassable. It may be used as the value in an extends clause
of a class definition. Subclass constructors that intend to inherit the specified WeakSet behaviour must
include a super call to WeakSet.

23.4.1.1 WeakSet (iterable = undefined)
When the WeaksSet function is called with optional argument iterable the following steps are taken:

Let set be the this value.

If Type(set) is not Object then, throw a TypeError exception.

If set does not have a [[WeakSetData]] internal data property, then throw a TypeError exception.

If set’s [[WeakSetData]] internal data property is not undefined, then throw a TypeError exception.
If iterable is not present, let iterable be undefined.

If iterable is either undefined or null, then let iter be undefined.

Else,

NooA~wWNE

a. Let iter be the result of Getlterator(iterable).

b. ReturnlfAbrupt(iter).

c. Letadder be the result of Get(set, "add").

d. ReturnlfAbrupt(adder).

e. IfIsCallable(adder) is false, throw a TypeError Exception.
8. Setset’s [[WeakSetData]] internal data property to a new empty List.
9. Ifiter is undefined, then return.set.

10. Repeat
a. Let next be the result of IteratorStep(iter).
b. ReturnlfAbrupt(next).
c. If nextis false, then return NormalCompletion(set).
d. Let nextValue be IteratorValue(next).
e. ReturnifAbrupt(nextValue).
f. Let status be the result of calling the [[Call]] internal method of adder with set as thisArgument and

a-List whose sole element is nextValue as argumentsList.
9.« ReturnIfAbrupt(status).

23.441.2 new WeakSet (... argumentsList)

When WeakSet is called as part of a new expression it is a constructor: it initialises a newly created object.
WeaksSet called as part of a new expression with argument list argumentsList performs the following steps:

1. Let F be the weakSet function object on which the new operator was applied.

2. LetargumentsList be the argumentsList argument of the [[Construct]] internal method that was invoked by

the new operator.
3. Return the result of OrdinaryConstruct(F, argumentsList).

If WeakSet is implemented as an ordinary function object, its [[Construct]] internal method will perform the
above steps.

23.4.2 Properties of the WeakSet Constructor

The value of the [[Prototype]] internal data property of the WeakSet constructor is the Function prototype
object (19.2.3).

© Ecma International 2013 401

secmd

Besides the 1ength property (whose value is 0), the WeakSet constructor has the following properties:
23.4.2.1 WeakSet.prototype

The initial value of WeakSet . prototype is the intrinsic %W eakSetPrototype% object (23.4.3).

This property has the attributes { [[Writable]]: false, [[Enumerable]]: false, [[Configurable]]: false }.
23.4.2.2 WeakSet [@@create] ()

The @@create method of a WeakSet function object F performs the following steps:

1. LetF be the this value.

2. Letobj be the result of calling OrdinaryCreateFromConstructor(F, "$WeakSetPrototype$",
([[WeakSetData]])).

3. Return obj.

This property has the attributes { [[Writable]]: false, [[Enumerable]]: false, [[Configurable]]: true }.
23.4.3 Properties of the WeakSet Prototype Object

The value of the [[Prototype]] internal data property of the WeakSet prototype object is the standard built-in
Object prototype object (19.1.4). The WeakSet prototype object is<an ordinary object. It does not have a
[[WeakSetData]] internal data property.

23.4.3.1 WeakSet.prototype.add (value)
The following steps are taken:

Let S be the this value.
If Type(S) is not Object, then throw a TypeError exception.
If S does not have a [[WeakSetData]] internal data property throw a TypeError exception.
If S’s [[WeakSetData]]/internal data property is undefined, then throw a TypeError exception.
If Type(value) is not Object, then throw a TypeError exception.
Let entries be the List that is the value of S’s [[WeakSetData]] internal data property.
Repeat for each e that is an element of entries, in original insertion order

a. Ifeis not empty and SameValue(e, value)is true, then

i Return S.

8. Append value as the last element of entries.
9. ReturnS.

NoohkhwnE

23.4.3.2 WeakSet.prototype.clear ()
The following steps are taken:

Let S be this value.
If Type(S) is not Object, then throw a TypeError exception.
If S does not have a [[WeakSetData]] internal data property throw a TypeError exception.
If S’s [[WeakSetData]] internal data property is undefined, then throw a TypeError exception.
Let entries be the List that is the value of S’s [[WeakSetData]] internal data property.
Repeat for each e that is an element of entries,
a. Replace the element of entries whose value is e with an element whose value is empty.
7. Return undefined.

ol wn R

23.4.3.3 WeakSet.prototype.constructor

The initial value of WeakSet .prototype.constructor is the %WeakSet% intrinsic object.

402 © Ecma International 2013

secma

23.4.3.4 WeakSet.prototype.delete (value)
The following steps are taken:

Let S be the this value.

If Type(S) is not Object, then throw a TypeError exception.

If S does not have a [[WeakSetData]] internal data property throw a TypeError exception.

If S’s [[WeakSetData]] internal data property is undefined, then throw a TypeError exception.

If Type(value) is not Object, then throw a TypeError exception.

Let entries be the List that is the value of S’s [[WeakSetData]] internal data property.

Repeat for each e that is an element of entries, in original insertion order

a. If e is not empty and SameValue(e, value) is true, then

i Replace the element of entries whose value is e with an element whose value is empty.
ii. Return true.

8. Return false.

NooA~MwWNE

NOTE The value empty is used as a specification device to indicate that an entry has been deleted. Actual
implementations may take other actions such as physically removing the entry from internal data structures.

23.4.3.5 WeakSet.prototype.has (value)
The following steps are taken:

Let S be the this value.
If Type(S) is not Object, then throw a TypeError exception.
If S does not have a [[WeakSetData]] internal-data property throw a TypeError exception.
If S’s [[WeakSetData]] internal data property is undefined, then throw a TypeError exception.
Let entries be the List that is the value of S’s [[WeakSetData]] internal data property.
If Type(value) is not Object, then return false.
Repeat for each e that is an element of entries,
a. Ifeis not empty and SameValue(e, value), then return true.
8. Return false.

NourwNE

23.4.3.6 WeakSet.prototype [@@toStringTag]

The initial value of the @@toStringTag property is.the string value "Weakset".

This property has the attributes { [[Writable]]: false, [[Enumerable]]: false, [[Configurable]]: true }.
23.4.4 Properties of WeakSet Instances

WeakSet instances are ordinary objects that inherit properties from the WeakSet prototype. After initialisation
by the WeakSet constructor, WeakSet instances also have a [[WeakSetData]] internal data property.

24 Structured Data

24.1 ArrayBuffer Objects

24.1.1 Abstract Operations For ArrayBuffer Objects
24.1.1.1 AllocateArrayBuffer(constructor)

The abstract operation AllocateArrayBuffer with argument constructor is used to create an uninitialised
ArrayBuffer object. It performs the following steps:

1. Let obj be the result of calling OrdinaryCreateFromConstructor(constructor, "$ArrayBufferPrototype%",
([[ArrayBufferData]], [[ArrayBufferByteLength]])).

2. ReturnlfAbrupt(obj).

3. Setthe [[ArrayBufferByteLength]] internal data property of obj to 0.

© Ecma International 2013 403

&

4.

ecma

Return obj.

24.1.1.2 SetArrayBufferData(arrayBuffer, bytes)

The abstract operation SetArrayBufferData with arguments arrayBuffer and bytes is used to initialise the storage

block encapsulated by an ArrayBuffer object. It performs the following steps:

NouoswnE

Assert: arrayBuffer has an [[ArrayBufferData]] internal data property.
Assert: bytes is positive integer.

Let block be the result of CreateByteArrayBlock{(bytes).
ReturnlfAbrupt(block).

Set arrayBuffer’s [[ArrayBufferData]] to block.

Set arrayBuffer’s [[ArrayBufferByteLength]] internal data property to bytes.
Return arrayBuffer.

24.1.1.3 CloneArrayBuffer(srcBuffer, srcByteOffset, srcType,cloneElementType, srcLength).

The abstract operation CloneArrayBuffer 24.1.1.3 takes four parameters, an ArrayBuffer srcBuffer, an integer
srcByteOffset, a String srcType, a String cloneElementType, and integer srcLength. It creates a new ArrayBufer
containing the binary cloneElementType representation for srcLength elements convert from the corresponding

srcType elements start at srcByteOffset within srcBuffer.This-operation performs the follow steps:

TODO: Write the algorithm |

24.1.1.4 GetValueFromBuffer (arrayBuffer, bytelndex, type, isLittleEndian)

The abstract operation GetValueFromBuffer ‘takes four parameters, an ArrayBuffer arrayBuffer, an integer
bytelndex, a String type, and optionally a Boolean isLittleEndian. If isLittleEndian is not present, its default

value is undefined. This operation performs the follow steps:

Nogakrowpe

10.

11.

12.

13.

404

Assert: There are sufficient bytes.in arrayBuffer starting at bytelndex to represent a value of valueType.
Assert: bytelndex is a positive integer.
Let block be arrayBuffer’s [[ArrayBufferData]] internal data property.
If block is undefined.or null, then throw a TypeError exception.
Let elementSize be the Number value of the Element Size value specified in Table 36 for valueType.
Let rawValue be the elementSize bytes starting at bytelndex of block.
If isLittleEndian is undefined, set isLittleEndian to either true or false. The choice is implementation
dependent and should be the alternative that is most efficient for the implementation. An implementation
must use-the same value each time this step is executed and the same value must be used for the
corresponding stepin the SetValuelnBuffer abstraction operation.
If isLittleEndian is false, reverse the order of the bytes of rawValue.
If type is “Float32”, then
a.. rawValue is interpreted as a little-endian bit string encoding of an IEEE 754-208 binary32 value.
b. If rawValue is an IEEE 754-208 binary32 NaN value, return the NaN Number value.
c. Return the Number value that is encoded by rawValue.
If type is “Float64” , then
a. rawValue is interpreted as a little-endian bit string encoding of an IEEE 754-208 binary64 value.
b. If rawValueis an IEEE 754-208 binary64 NaN value, return the NaN Number value.
¢. Return the Number value that is encoded by rawValue.
If the first character of type is "U", then

a. LetintValue be the positive integer that is the result of interpreting rawValue as an unsigned little-

endian binary number.
Else

a. LetintValue be the signed integer that is the result of interpreting rawValue as a little-endian binary

2’s complement number of bit length elementSize x 8.
Return intValue.

© Ecma International 2013

Commented [AWB13188]: TODO: need to define abstract)
operations for allocting data blocks. Should throw a
| RangeError if alloc fails.

secma

24.1.1.5 SetValuelnBuffer (arrayBuffer, bytelndex, type, value, isLittleEndian)

The abstract operation SetValuelnBuffer takes five parameters, an ArrayBuffer arrayBuffer, an integer
bytelndex, a String type, a Number value, and optionally a Boolean isLittleEndian. If isLittleEndian is not
present, its default value is undefined. This operation performs the follow steps:

1. Assert: There are sufficient bytes in arrayBuffer starting at bytelndex to represent a value of valueType.

2. Assert: bytelndex is a positive integer.

3. Let block be arrayBuffer’s [[ArrayBufferData]] internal data property.

4. If block is undefined or null, then throw a TypeError exception.

5. Let elementSize be the Number value of the Element Size value specified in Table 36 for the row containing
the value of type as its Element Type entry.

6. Let rawValue be the elementSize bytes starting at byteIndex of arrayBuffer.

7. IfisLittleEndian is undefined, set isLittleEndian to either true or false. The choice is implementation

dependent and should be the alternative that is most efficient for the implementation. An implementation
must use the same value each time this step is executed and the same value must be used for the
corresponding step in the GetValueFromBuffer abstraction operation.
8. If type is “Float32”, then
a. Set rawValue to the 4 bytes that are the result of converting value to IEEE-868-2005 binary32
format using “Round to nearest, ties to even” rounding mode. If isLittleEndian is false, the bytes are
arranged in big endian order. Otherwise, the bytes are arranged in little endian order. If value is
NaN, rawValue is may be set of any implementation choosen non-signaling NaN encoding.
9. Else, if type is “Float64” , then
a. Set rawValue to the 8 bytes that are the IEEE-868-2005 binary64 format encoding of value. If
isLittleEndian is false, the bytes are arranged in big endian order. Otherwise, the bytes are arranged
in little endian order. If value is NaN; rawValue is may be set to any implementation choosen non-
signaling NaN encoding.
10. Else,
a. Letn be the Size Element value in Table 36 for the row containing the value of type as its Element
Type entry.
b. Let convOp be the abstract.operation named in the Conversion Operation column in Table 36 for the
row containing thevalue of type as its Element Type entry.
c. LetintValue be the result of calling convOp with value as its argument .
d. If intvValue >0, then

i. Let rawBytes be the n-byte binary encoding of intValue. If isLittleEndian is false, the bytes

are arranged in big endian order. Otherwise, the bytes are arranged in little endian order.
e. Else,

i, Let rawBytes be the n-byte binary 2’s complement encoding of intValue. If isLittleEndian
is false, the bytes are arranged in big endian order. Otherwise, the bytes are arranged in
little endian order.

11. Store the individual bytes of rawBytes in order starting at position bytelndex of block.
12. Return NormalCompletion (undefined).

24.1.2 The ArrayBuffer Constructor

The ArrayBuffer constructor is the %ArrayBuffer% intrinsic object and the initial value of the ArrayBuffer
property of the global object. When ArrayBuffer is called as a function rather than as a constructor, its this
value must be an Object with an [[ArrayBufferData]] internal data property whose value is undefined. The
ArrayBuffer constructor initialises the this value using the argument values.

The ArrayBuffer constructor is designed to be subclassable. It may be used as the value of an extends
clause of a class declaration. Subclass constructors that intended to inherit the specified ArrayBuffer
behaviour must include a super call to the ArrayBuffer constructor to initialise subclass instances.
24.1.2.1 ArrayBuffer(length)

ArrayBuffer called as function with argument length performs the following steps:

1. Let O be the this value.

© Ecma International 2013 405

secmd

2. If Type(O) is not Object or if O does not have an [[ArrayBufferData]] internal data property or if the value
of O’s [[ArrayBufferData]] internal data property is not undefined, then
a. Throw a TypeError exception.
Let numberLength be ToNumber(length).
Let byteLength be Tolnteger(numberLength).
ReturnIfAbrupt(byteLength).
If numberLength # byteLength or byteLength < 0, then throw a RangeError exception.
Return the result of SetArrayBufferData(O, byteLength).

Noohsw

24.1.2.2 new ArrayBuffer(... argumentsList)

ArrayBuffer called as part of a new expression performs the following steps:

1. Let F be the ArrayBuffer function object on which the new operator was applied.

2. LetargumentsList be the argumentsList argument of the [[Construct]] internal method that was invoked by

the new operator.
3. Return the result of OrdinaryConstruct(F, argumentsList).

If ArrayBuffer is implemented as an ordinary function object, its [[Construct]] internal method will perform the
above steps.

24.1.3 Properties of the ArrayBuffer Constructor

The value of the [[Prototype]] internal data property of the ArrayBuffer constructor is the Function prototype
object (19.2.3).

Besides its 1ength property (whose value is 1), the ArrayBuffer constructor has the following properties:
24.1.3.1 ArrayBuffer.isView (arg)

The isView function takes one argument arg, and performs the following steps are taken:

1. If Type(arg) is not Object; return false.

2. Ifarg has a [[ViewedArrayBuffer]] internal data property, then return true.
3. Return false.

24.1.3.2 ArrayBuffer.prototype

The initial value of ArrayBuffer.prototype is the ArrayBuffer prototype object (24.1.4).

This property has the attributes { [[Writable]]: false, [[Enumerable]]: false, [[Configurable]]: false }.
24.13.3 ArrayBuffer[@@create] ()

The @@create method of an ArrayBuffer function object F performs the following steps:

1. LetF be the this value.
2. Return the result of calling AllocateArrayBuffer(F).

This property has the attributes { [[Writable]]: false, [[Enumerable]]: false, [[Configurable]]: true }.
24.1.4 Properties of the ArrayBuffer Prototype Object
The value of the [[Prototype]] internal data property of the ArrayBuffer prototype object is the standard built-in

Object prototype object (19.1.4). The ArrayBuffer prototype object is an ordinary object. It does not have an
[[ArrayBufferData]] or [[ArrayBufferByteLength]] internal data property.

406 © Ecma International 2013

(il - v

ecma

24.1.4.1 [get ArrayBuffer.prototype.byteLength

ArrayBuffer.prototype.byteLength is an accessor property whose set accessor function is undefined.

Its get accessor function performs the following steps:

LN S

5.
6.

Let O be the this value.

If Type(O) is not Object, throw a TypeError exception.

If O does not have an [[ArrayBufferData]] internal data property throw a TypeError exception.

If the value of O’s [[ArrayBufferData]] internal data property is undefined or null, then throw a TypeError
exception.

Let length be the value of O’s [[ArrayBufferByteLength]] internal data property.

Return length.

24.1.4.2 ArrayBuffer.prototype.constructor

The initial value of ArrayBuffer.prototype.constructor is the standard built-in ArrayBuffer constructor.

24.1.4.3 ArrayBuffer.prototype.slice (start, end)

The following steps are taken:

o

Let O be the this value.

If Type(O) is not Object, throw a TypeError exception.

If O does not have an [[ArrayBufferData]] internal data property throw a TypeError exception.

If the value of O’s [[ArrayBufferData]] internal data property is undefined or null, then throw a TypeError
exception.

Let len be the value of O’s [[ArrayBufferByteLength]] internal data property.

Let relativeStart be Tolnteger(start).

ReturnlfAbrupt(relativeStart).

If relativeStart is negative, let first be max((len + relativeStart),0); else let first be min(relativeStart, len).
If end is undefined, let relativeEnd be len; else let relativeEnd be Tolnteger(end).

. ReturnIfAbrupt(relativeEnd).

. If relativeEnd is negative, let final be max((len + relativeEnd),0); else let final be min(relativeEnd, len).
. Let newLen be max(final-first,0).

. Let ctor be the result of GetMethod(O, "constructor").

. ReturnIfAbrupt(ctor).

. If IsConstructor(ctor) is false, then throw a TypeError exception.

. Let new be the result of calling the [[Construct]] internal method of ctor with a new List containing the

single element newLen.

. ReturnlfAbrupt(new).
. If new does not have an [[ArrayBufferData]] internal data property throw a TypeError exception.
. If the value of new’s [[ArrayBufferData]] internal data property is undefined, then throw a TypeError

exception.

. Let fromBuf be the value of O’s [[ArrayBufferData]] internal data property.

. Let toBuf be the value of new’s [[ArrayBufferData]] internal data property.

. Let status be the result of CopleIock}EIements(fromBuf, first, toBuf, 0, newLen).
. ReturnIfAbrupt(status).

. Return new.

24.1.4.4 ArrayBuffer.prototype [@@toStringTag]

The initial value of the @@toStringTag property is the string value "ArrayBuffer".

24.1.5 Properties of the ArrayBuffer Instances

ArrayBuffer instances inherit properties from the ArrayBuffer prototype object. ArrayBuffer instances each

have an [[ArrayBufferData]] internal data property and an [[ArrayBufferByteLength]] internal data property.

© Ecma International 2013

407

Commented [AWB13189]: byteLength needs to be an
accessor both to comply with WebIDL requirements and to
support the Kronos neutering strawman requirements.

" Commented [AWB13190]: TODO: need to define abstract |
| operations for allocting and manipulating data blocks.

secmd

ArrayBuffer instances whose [[ArrayBufferData]] is null are considered to be neutered and all operators to
access or modify data contained in the ArrayBuffer instance will fail.

24.2 DataView Objects
24.2.1 Abstract Operations For DataView Objects
24.2.1.1 GetViewValue(view, requestindex, isLittleEndian, type)

The abstract operation GetViewValue with arguments view, requestindex, isLittleEndian, and type is used by
functions on DataView instances is to retrieve values from the view’s buffer. It performs the following steps:

If Type(view) is not Object, throw a TypeError exception.

If view does not have a [[DataView]] internal data property, then throw a TypeError exception.
Let buffer be the value of view’s [[ViewedArrayBuffer]] internal data property.

If buffer is undefined, then throw a TypeError exception.

Let numberindex be ToNumber(requestindex)

Let getindex be Tolnteger(numberindex).

ReturnlfAbrupt(getindex).

If numberindex # getindex or getindex < 0, then throw a RangeError exception.

Let isLittleEndian be ToBoolean(isLittleEndian).

10. ReturnlfAbrupt(isLittleEndian).

11. Let viewOffset be the value of view’s [[ByteOffset]] internal data property.

12. Let viewSize be the value of view’s [[ByteLength]] internal data property.

13. Let elementSize be the Number value of the Element Size value specified in Table 36 for type.
14. If getindex +elementSize > viewSize, then throw.a RangeError exception.

15. Let bufferindex be getindex+viewOffset.

16. Return the result of GetVValueFromBuffer(buffer, bufferindex, type, isLittleEndian).

©oNOG A WD

24.2.1.2 SetViewValue(view, requestindex, isLittleEndian, type, value)

The abstract operation SetViewValue with arguments view, requestindex, isLittleEndian, type, and value is used
by functions on DataView instances to store values into the view’s buffer. It performs the following steps:

If Type(view) is not Object, throw aTypeError exception.

If view does not have a [[DataView]] internal data property, then throw a TypeError exception.
Let buffer be the value of view’s [[ViewedArrayBuffer]] internal data property.

If buffer is.undefined, then throw a TypeError exception.

Let numberindex be ToNumber(requestindex)

Let getindex be Tolnteger(numberlndex).

ReturnlfAbrupt(getindex).

If numberindex # getindex or getindex < 0, then throw a RangeError exception.
LetisLittleEndian be ToBoolean(isLittleEndian).

10. ReturnlfAbrupt(isLittleEndian).

11. Let viewOffset be the value of view’s [[ByteOffset]] internal data property.

12. Let viewSize be the value of view’s [[ByteLength]] internal data property.

13. Let elementSize be the'Number value of the Element Size value specified in Table 36 for type.
14. If getindex +elementSize > viewSize, then throw a RangeError exception.

15. Let bufferindex be getindex+viewOffset.

16. Return the result of SetValuelnBuffer(buffer, bufferindex, type, value, isLittleEndian).

WoNOG AWM E

NOTE The algorithms for GetViewValue and SetViewValue are identical except for their final steps.
24.2.2 The DataView Constructor
The DataView constructor is the %DataView% intrinsic object and the initial value of the bataView property

of the global object. When DataView is called as a function rather than as a constructor, it initialises its this
value with the internal state necessary to support the DataView.prototype internal methods.

408 © Ecma International 2013

»eCnd

The DataView constructor is designed to be subclassable. It may be used as the value of an extends
clause of a class declaration. Subclass constructors that intended to inherit the specified Dataview behaviour
must include a super call to the DataView constructor to initialise subclass instances.

24.2.2.1 DataView(buffer, byteOffset=0, byteLength=undefined)
DataView called with arguments buffer, byteOffset, and length performs the following steps:

1. Let O be the this value.
2. If Type(O) is not Object or if O does not have a [[DataView]] internal data property, throw a TypeError
exception.
3. Assert: O has a [[ViewedArrayBuffer]] internal data property.
4. If the value of O’s [[ViewedArrayBuffer]] internal data property is not undefined, then
a. Throw a TypeError exception.
5. If Type(buffer) is not Object, then throw a TypeError exception.
6. If buffer does not have an [[ArrayBufferData]] internal data property, then throw a TypeError exception.
7. Let numberOffset be ToNumber(byteOffset).
8. Let offset be Tolnteger(numberOffset).
9. ReturnIfAbrupt(offset).
10. If numberOffset # offset or offset < 0, then throw a RangeError exception.
11. Let bufferByteLength be the value of buffer’s [[ArrayBufferByteLength]} internal data property.
12. If offset > bufferByteLength, then throw a RangeError exception.
13. If byteLength is undefined, then
a. LetviewByteLength be bufferByteLength — offset.
14. Else,
Let numberLength be ToNumber(byteLength).
Let viewLength be Tolnteger (numberLength):
ReturnlfAbrupt(viewLength).
If numberLength # viewLength or viewLength < 0, then throw a RangeError exception.
Let viewByteLength be viewLength.
If offset+viewByteLength > bufferByteLength; then throw a RangeError exception.
15. If the value of O’s [[ViewedArrayBuffer]] internal data property is not undefined, then throw a TypeError
exception,
16. Set O’s [[ViewedArrayBuffer]] to buffer.
17. Set O’s [[ByteLength]] internal data property to viewByteLength.
18. Set O’s [[ByteOffset]] internal data property to offset.
19. Return O.

o oo o

24.2.2.2 new DataView(... argumentsList)
DataView called as part of a new expression it performs the following steps:

1. Let F be the function object on which the new operator was applied.

2. Let argumentsList be the argumentsList argument of the [[Construct]] internal method that was invoked by
the new operator.

3. Return the result of OrdinaryConstruct(F, argumentsList).

If Dataview is implemented as an ordinary function object, its [[Construct]] internal method will perform the
above steps.

24.2.3 Properties of the DataView Constructor

The value of the [[Prototype]] internal data property of the DataView constructor is the Function prototype
object (19.2.3).

Besides the internal properties and the length property (whose value is 3), the DataView constructor has the
following properties:

© Ecma International 2013 409

secmd

24.2.3.1 DataView.prototype

The initial value of DataView.prototype is the DataView prototype object (24.2.4).

This property has the attributes { [Writable]]: false, [[Enumerable]]: false, [[Configurable]]: false }.
24.2.3.2 DataView [@@create] ()

The @@create method of a DataView function object F performs the following steps:

1. LetF be the this value.

2. Let obj be the result of calling OrdinaryCreateFromConstructor(F, "$DataViewPrototype%", ([[DataView]],
[[ViewedArrayBuffer]] , [[ByteLength]], [[ByteOffset]])).

3. Setthe value of obj’s [[DataView]] internal data property to true.

4. Return obj.

This property has the attributes { [[Writable]]: false, [[Enumerable]]: false, [[Configurable]]: true }.

NOTE The value of the [[DataView]] internal property is not used within this specification. The simple presense of that
internal data property is used within the specification to identify objects created using this @ @create method.

24.2.4 Properties of the DataView Prototype Object

The value of the [[Prototype]] internal data property of the DataView prototype object is the standard built-in
Object prototype object (19.1.4). The DataView prototype object is an ordinary object. It does not have a
[[DataView]], [[ViewedArrayBuffer]], [[ByteLength]], or [[ByteOffset]] internal data property.

24.2.4.1 get|DataView.prototype.buffer

DataView.prototype.buffer is an accessor property whose set accessor function is undefined. Its get
accessor function performs the following steps:

Let O be the this value:

If Type(O) is not Object, throw a TypeError exception.

If O does not have a [[ViewedArrayBuffer]] internal data property throw a TypeError exception.
Let buffer be the value of O’s [[ViewedArrayBuffer]] internal data property.

If buffer is undefined, then throw a TypeError exception.

Return buffer.

[S o

24.2.4.2 get|DataView.prototype.byteL ength

DataView.prototype .byteLength iS an accessor property whose set accessor function is undefined. Its
get accessor function performs the following steps:

Let O be the this value.

If Type(O) is not Object, throw a TypeError exception.

If O does not have a [[ViewedArrayBuffer]] internal data property throw a TypeError exception.
Let buffer be the value of O’s [[ViewedArrayBuffer]] internal data property.

If buffer is undefined, then throw a TypeError exception.

Let size be the value of O’s [[ByteLength]] internal data property.

Return size.

Nou,rwnpE

24.2.4.3 get|DataView.prototype.byteOffset

DataView.prototype.byteOffset is an accessor property whose set accessor function is undefined. Its
get accessor function performs the following steps:

1. Let O the this value.
2. If Type(O) is not Object, throw a TypeError exception.

410 © Ecma International 2013

(Commented [AWB13191]: buffer needs to be an accessor)
both to comply with WebIDL requirements and to support the
Kronos neutering strawman requirements.

Commented [AWB19192]: Note this is identical
to % TypedArray%.prototype,buffer and in theory could be the
same function.

(Commented [AWB13193]: buffer needs to be an accessor)
both to comply with WebIDL requirements and to support the
Kronos neutering strawman requirements.

(Commented [AWB13194]: buffer needs to be an accessor)
both to comply with WebIDL requirements and to support the
| Kronos neutering strawman requirements.

pecma

I1f O does not have a [[ViewedArrayBuffer]] internal data property throw a TypeError exception.
Let buffer be the value of O’s [[ViewedArrayBuffer]] internal data property.

If buffer is undefined, then throw a TypeError exception.

Let offset be the value of O’s [[ByteOffset]] internal data property.

Return offset.

No U~

24.2.4.4 DataView.prototype.constructor
The initial value of DataView.prototype.constructor is the standard built-in DataView constructor.
24.2.4.5 DataView.prototype.getFloat32(byteOffset, littleEndian=false)

When the getFloat32 method is called with argument byteOffset and optional argument littleEndian the
following steps are taken:

1. Letv be the this value.

2. If littleEndian is not present, then let littleEndian be false.

3. Return the result of GetViewValue(v, byteOffset, littleEndian, "Float32").
24.2.4.6 DataView.prototype.getFloat64(byteOffset, littleEndian=false)

When the getFloat64 method is called with argument byteOffset and optional argument littleEndian the
following steps are taken:

1. Letv be the this value.

2. If littleEndian is not present, then let littleEndian. be false.

3. Return the result of GetViewValue(v, byteOffset, littleEndian, "Float64").
24.2.4.7 DataView.prototype.getint8(byteOffset)

When the getInt8 method is called with argument byteOffset the following steps are taken:

1. Letv be the this value:
2. Return the result of GetViewValue(v; byteOffset, undefined, "Int8").

24.2.4.8 DataView.prototype.getint16(byteOffset, littleEndian=false)

When the getIntl6 method is called with argument byteOffset and optional argument littleEndian the
following steps are taken:

1. Let v be the this value.

2. If littleEndian is not present, then let littleEndian be false.

3. Return the result of GetViewValue(v, byteOffset, littleEndian, "Int16").
24.2.4.9 DataView.prototype.getint32(byteOffset, littleEndian=false)

When the getInt32 method is called with argument byteOffset and optional argument littleEndian the
following steps are taken:

1. Letv be the this value.

2. If littleEndian is not present, then let littleEndian be undefined.

3. Return the result of GetViewValue(v, byteOffset, littleEndian, "Int32").
24.2.4.10 DataView.prototype.getUint8(byteOffset)

When the getUint8 method is called with argument byteOffset the following steps are taken:

1. Letv be the this value.

© Ecma International 2013 411

secmd

2. Return the result of GetViewValue(v, byteOffset, undefined, "Uint8").
24.2.4.11 DataView.prototype.getUint16(byteOffset, littleEndian=false)

When the getUintlé method is called with argument byteOffset and optional argument littleEndian the
following steps are taken:

1. Letv be the this value.

2. If littleEndian is not present, then let littleEndian be false.

3. Return the result of GetViewValue(v, byteOffset, littleEndian, "Uint16").
24.2.4.12 DataView.prototype.getUint32(byteOffset, littleEndian=false)

When the getUint32 method is called with argument byteOffset and optional argument littleEndian the
following steps are taken:

1. Letyv be the this value.

2. IflittleEndian is not present, then let littleEndian be false.

3. Return the result of GetViewValue(v, byteOffset, littleEndian, "Uint32").
24.2.4.13 DataView.prototype.setFloat32(byteOffset, value, littleEndian=false)

When the setFloat32 method is called with arguments byteOffset and value and optional argument
littleEndian the following steps are taken:

1. Letv be the this value.

2. If littleEndian is not present, then let littleEndian be false.

3. Return the result of SetViewValue(v, byteOffset, littleEndian, "Float32", value).
24.2.4.14 DataView.prototype.setFloat64(byteOffset, value, littleEndian=false)

When the setFloat64 method is called with arguments byteOffset and value and optional argument
littleEndian the following steps are taken:

1. Letv be the this value.

2. If littleEndian is not present, then let littleEndian be false.

3. Return the result of SetViewValue(v, byteOffset, littleEndian, "Float64", value).
24.2.4.15 DataView.prototype.setint8(byteOffset, value)

When the setInt8 method is called with arguments byteOffset and value the following steps are taken:

1. Letv be the this value.
2. Return the result of SetViewValue(v, byteOffset, undefined, "Int8", value).

24.2.4.16 DataView.prototype.setint16(byteOffset, value, littleEndian=false)

When the setInt16 method is called with arguments byteOffset and value and optional argument littleEndian
the following steps are taken:

1. Letv be the this value.

2. IflittleEndian is not present, then let littleEndian be false.

3. Return the result of SetViewValue(v, byteOffset, littleEndian, "Int16", value).
24.2.4.17 DataView.prototype.setint32(byteOffset, value, littleEndian=false)

When the setInt32 method is called with arguments byteOffset and value and optional argument littleEndian
the following steps are taken:

412 © Ecma International 2013

pecma

1. Letv be the this value.

2. If littleEndian is not present, then let littleEndian be false.

3. Return the result of SetViewValue(v, byteOffset, littleEndian, "Int32", value).
24.2.4.18 DataView.prototype.setUint8(byteOffset, value)

When the setUint8 method is called with arguments byteOffset and value the following steps are taken:

1. Letv be the this value.
2. Return the result of SetViewValue(v, byteOffset, undefined, "Uint8", value).

24.2.4.19 DataView.prototype.setUint16(byteOffset, value, littleEndian=false)

When the setUint16 method is called with arguments byteOffset and value and optional argument littleEndian
the following steps are taken:

1. Letv be the this value.

2. If littleEndian is not present, then let littleEndian be false.

3. Return the result of SetViewValue(v, byteOffset, littleEndian; "Uint16", value).
24.2.4.20 DataView.prototype.setUint32(byteOffset, value, littleEndian=false)

When the setUint32 method is called with arguments byteOffset and value and optional argument littleEndian
the following steps are taken:

1. Letv be the this value.

2. If littleEndian is not present, then let littleEndian be false.

3. Return the result of SetViewValue(v, byteOffset, littleEndian, "Uint32", value).
24.2.4.21 DataView.prototype[@@toStringTag]

The initial value of the @@toStringTag property is the string value "DataView".

24.2.5 Properties of DataView Instances

DataView instances are ordinary objects that inherit properties from the DataView prototype object. DataView
instances each have a [[ViewedArrayBuffer]], [[ByteLength]], and [[ByteOffset]] internal data properties.

24.3 The JSON Object

The JSON object is a single ordinary object that contains two functions, parse and stringify, that are used to
parse and construct JSON' texts. The JSON Data Interchange Format is described in RFC 4627
<http://www.ietf.org/rfc/rfc4627.txt>. The JSON interchange format used in this specification is exactly that
described by RFC 4627 with two exceptions:

e The top level JSONText production of the ECMAScript JSON grammar may consist of any JSONValue
rather than being restricted to being a JSONObject or a JSONArray as specified by RFC 4627.

e Conforming implementations of JSON.parse and JSON.stringify must support the exact interchange
format described in this specification without any deletions or extensions to the format. This differs
from RFC 4627 which permits a JSON parser to accept non-JSON forms and extensions.

The value of the [[Prototype]] internal data property of the JSON object is the standard built-in Object
prototype object (19.1.4). The value of the [[Extensible]] internal data property of the JSON object is set to
true.

The JSON object does not have a [[Construct]] internal method; it is not possible to use the JSON object as a
constructor with the new operator.

© Ecma International 2013 413

secmd

The JSON object does not have a [[Call]] internal method; it is not possible to invoke the JSON object as a
function.

24.3.1 The JSON Grammar

JSON. stringify produces a String that conforms to the following JSON grammar. JSON.parse accepts a
String that conforms to the JSON grammar.

24.3.1.1 The JSON Lexical Grammar

JSON is similar to ECMAScript source text in that it consists of a sequence of Unicode characters conforming
to the rules of SourceCharacter. The JSON Lexical Grammar defines the tokens<that make up a JSON text
similar to the manner that the ECMAScript lexical grammar defines the tokens.of an ECMAScript source text.
The JSON Lexical grammar only recognises the white space character specified by the production
JSONWhiteSpace. The JSON lexical grammar shares some productions with the ECMAScript lexical grammar.
All nonterminal symbols of the grammar that do not begin with the characters “JSON" are defined by
productions of the ECMAScript lexical grammar.

Syntax

JSONWhiteSpace ::
<TAB>
<CR>
<LF>
<SP>

JSONString ::
" JSONStringCharactersop: "

JSONStringCharacters ::
JSONStringCharacter JSONStringCharactersopt

JSONStringCharacter ::
SourceCharacter but not one of "or \ or U+0000 through U+001F
\ JSONEscapeSequence

JSONEscapeSequence ::
JSONEscapeCharacter
u HexDigit HexDigit HexDigit HexDigit

JSONEscapeCharacter :: one of
"/ \bfnrt

JSONNumber ::
-opt DecimalintegerLiteral JSONFractiongy: ExponentPartop:

JSONFraction ::
. DecimalDigits

JSONNullLiteral ::
NullLiteral

JSONBooleanLiteral ::
BooleanLiteral

24.3.1.2 The JSON Syntactic Grammar

The JSON Syntactic Grammar defines a valid JSON text in terms of tokens defined by the JSON lexical
grammar. The goal symbol of the grammar is JSONText.

414 © Ecma International 2013

secma

Syntax

JSONText :
JSONValue

JSONValue :
JSONNulILiteral
JSONBooleanLiteral
JSONODbject
JSONArray
JSONString
JSONNumber

JSONObject :
{1}
{ JSONMemberList }

JSONMember :
JSONString : JSONValue

JSONMemberList :
JSONMember
JSONMemberList , JSONMember

JSONArray :
[1]
[JSONElementList]

JSONEIlementList :
JSONValue
JSONEIlementList , JSONValue

24.3.2 JSON.parse (text [, reviver])

The parse function parses a JSON text (a JSON-formatted String) and produces an ECMAScript value. The
JSON format is a restricted form of ECMAScript literal. JSON objects are realized as ECMAScript objects.
JSON arrays are realized as ECMAScript-arrays. JSON strings, numbers, booleans, and null are realized as
ECMAScript Strings, Numbers, Booleans, and null. JSON uses a more limited set of white space characters
than WhiteSpace and allows Unicode code points U+2028 and U+2029 to directly appear in JSONString literals
without using-an escape sequence. The process of parsing is similar to 12.1.4.1 and 12.1.5 as constrained by
the JSON.grammar.

The .optional reviver parameter is a function that takes two parameters, (key and value). It can filter and
transform the results. It is called with each of the key/value pairs produced by the parse, and its return value is
used instead. of the original value. If it returns what it received, the structure is not modified. If it returns
undefined then the property is deleted from the result.

1. LetJText be ToString(text).

2. ReturnIfAbrupt(JText).

3. Parse JText interpreted as UTF-16 encoded Unicode characters using the grammars in 24.3.1. Throw a
SyntaxError exception if JText did not conform to the JSON grammar for the goal symbol JSONText.

4. Let scriptText be the result of concatenating " (", JText,and ") ;".

5. Let completion be the result of [parsing and evaluating bcriptText as if it was the source text of an [commented [AWB15195]: TODO: What about the static
ECMAScript Script but using JSONString in place of StringLiteral. Note that since JText conforms to the semantic rules? Do they all apply to JSON text? Don't want to
JSON grammar this result will be either a primitive value or an object that is defined by either an recognised __proto__, etc. It may be time to provide

H . . independent evaluation semantics for JSONText
ArrayLiteral or an ObjectLiteral. |incep

Let unfiltered be completion.[[value]].
If IsCallable(reviver) is true, then
a. Let root be the result of the abstract operation ObjectCreate with the intrinsic object
%ObjectPrototype% as its argument.
b. Let status be the result of CreateOwnDataProperty(root, the empty String, unfiltered).

No

© Ecma International 2013 415

secmd

c. Assert: status is true.
d. Return the result of calling the abstract operation Walk, passing root and the empty String. The
abstract operation Walk is described below.
8. Else
a. Return unfiltered.

Runtime Semantics: Walk Abstract Operation

The abstract operation Walk is a recursive abstract operation that takes two parameters: a holder object and
the String name of a property in that object. Walk uses the value of reviver that was originally passed to the
above parse function.

1. Letval be the result of Get(holder, name).
2. ReturnlfAbrupt(val).
3. Ifvalis an object, then
a. Ifvalis an exotic Array object then
i Set | to 0.
ii. Let len be the result of Get(val, "1length").
iii. Assert: len is not an abrupt completion and its value is a positive integer.
iv. Repeat while | < len,
1. Let newElement be the result of calling the abstract operation Walk, passing val and
ToString(l).
2. If newElement is undefined, then
a. Let status be the result of calling the [[Delete]] internal method of val with
ToString(l) as the argument.
3. Else
a. Let status be the result of calling the [[DefineOwnProperty]] internal
method of val with arguments ToString(l) and Property Descriptor
{[[Value]]: newElement, [[Writable]]: true, [[Enumerable]]: true,
[[Configurable]]: true}.
b:~“NOTE This algarithm-intentionally does not throw an exception if status is false.
4. ReturnlfAbrupt(status).
5 <Add 1tol.
b. Else
i Let keys be an internal List of String values consisting of the names of all the own
properties of val whose [[Enumerable]] attribute is true. The ordering of the Strings is the
same as that used by the Object.keys standard built-in function.
il For each String P in keys do,
1. LetnewElement be the result of calling the abstract operation Walk, passing val and
P.
2. If newElement is undefined, then
a. Letstatus be the result of calling the [[Delete]] internal method of val with
P as the argument.
3. Else
a. Let status be the result of calling the [[DefineOwnProperty]] internal
method of val with arguments P and Property Descriptor {[[Value]]:
newElement, [[Writable]]: true, [[Enumerable]]: true, [[Configurable]]:
true}.
b. NOTE This algorithm intentionally does not throw an exception if status is false.
4. ReturnlfAbrupt(status).
4. Return the result of calling the [[Call]] internal method of reviver passing holder as thisArgument and with a
List containing name and val as argumentsList.

It is not permitted for a conforming implementation of JSON.parse to extend the JSON grammars. If an
implementation wishes to support a modified or extended JSON interchange format it must do so by defining a
different parse function.

NOTE In the case where there are duplicate name Strings within an object, lexically preceding values for the same
key shall be overwritten.

416 © Ecma International 2013

secma

24.3.3 JSON.stringify (value [, replacer [, space]])

The stringify function returns a String in UTF-16 encoded JSON format representing an ECMAScript
value. It can take three parameters. The value parameter is an ECMAScript value, which is usually an object
or array, although it can also be a String, Boolean, Number or null. The optional replacer parameter is either a
function that alters the way objects and arrays are stringified, or an array of Strings and Numbers that acts as
a white list for selecting the object properties that will be stringified. The optional space parameter is a String or
Number that allows the result to have white space injected into it to improve human readability.

These are the steps in stringifying an object:

Let stack be an empty List.
Let indent be the empty String.
Let PropertyList and ReplacerFunction be undefined.
If Type(replacer) is Object, then
a. If IsCallable(replacer) is true, then
i Let ReplacerFunction be replacer.
b. Else if replacer is an exotic Array object, then
i. Let PropertyList be an empty internal List
il For each value v of a property of replacer.that has an array index property name. The
properties are enumerated in the ascending array index order of their names.
1. Letitem be undefined.
2. If Type(v) is String then let item be v.
3. Else if Type(v) is Number then let item be ToString(v).
4. Else if Type(v) is Object then,
a. Ifv has af[StringData]] or [[NumberData]] internal data property, then let
item be ToString(v):
5. If item is not undefined and item:is not currently an element of PropertyList then,
a. Append item to the end of PropertyList.
5. If Type(space) is Object then,
a. If space has a [[NumberData]] internal data property then,
i. Let space be ToNumber(space).
b. Else if space has a [[StringData]] internal data property then,
i. Let space be ToString(space).
6. If Type(space) is Number
a. Let space be min(10, Tolnteger(space)).
b. Set gap to a String containing space occurrences of code unit 0x0020 (the Unicode space character).
This will be the empty String if space is less than 1.
7. Else if Type(space) is String
a: If the number of elements in space is 10 or less, set gap to space otherwise set gap to a String
consisting of the first 10 elements of space.

rwNPE

8. Else
a. . Set gap to the empty String.
9. Let wrapper be the result of the abstract operation ObjectCreate with the intrinsic object
%ObjectPrototype% as its argument.
10. Let status be the result of CreateOwnDataProperty(wrapper, the empty String, value).
11. Assert: statusis true.
12. Return the result of calling the abstract operation Str with the empty String and wrapper.

Runtime Semantics: Str Abstract Operation

The abstract operation Str(key, holder) has access to ReplacerFunction from the invocation of the stringify
method. Its algorithm is as follows:

1. Letvalue be the result of Get(holder, key).

2. ReturnlfAbrupt(value).

3. If Type(value) is Object, then
a. LettoJSON be the result of Get(value, "toJSON").
b. If IsCallable(toJSON) is true

© Ecma International 2013 417

Y,

secmd

i Let value be the result of calling the [[Call]] internal method of toJSON passing value as
thisArgument and a List containing key as argumentsList.
ii. ReturnlfAbrupt(value).
4. If ReplacerFunction is not undefined, then
a. Letvalue be the result of calling the [[Call]] internal method of ReplacerFunction passing holder as
the this value and with an argument list consisting of key and value.
b. ReturnlfAbrupt(value).
5. If Type(value) is Object then,
a. Ifvalue has a [[NumberData]] internal data property then,
i Let value be ToNumber(value).
b. Else if value has a [[StringData]] internal data property then,
i. Let value be ToString(value).
c. Elseif value has a [[BooleanData]] internal data property then,
i Let value be the value of the [[BooleanData]] internal dataproperty of value.
ii. If value is undefined, then throw a TypeError exception:
If value is null then return "null".
If value is true then return " true".
If value is false then return "false™".
If Type(value) is String, then return the result of calling the abstract operation Quote with argument value.
0. If Type(value) is Number
a. Ifvalue is finite then return ToString(value).
b. Else, return "null".
11. If Type(value) is Object, and IsCallable(value) is false
a. Ifvalue is an exotic Array object then
i Return the result of calling the abstract operation JA with argument value.
b. Else, return the result of calling the abstract operation JO with argument value.
12. Return undefined.

BoO© N

Runtime Semantics: Quote Abstract Operation
The abstract operation Quote(value) wraps a String value.in double quotes and escapes characters within it.

1. Let product be code unit0x0022 (the Unicode double quote character).
2. Foreach code unit C in value
a. If Cis 0x0022 or 0x005C (the Unicode reverse solidus character)
i Let product be the ‘concatenation of product and code unit 0x005C.
ii. Let product be the concatenation of product and C.
b. Else if C is backspace, formfeed, newline, carriage return, or tab
i Let product be the concatenation of product and code unit 0x005C (the Unicode backslash

character).
ii. Let abbrev be the string value corresponding to the value of C as follows:
backspace "b"
formfeed "EY
newline "n"
carriage return "r"
tab e

iii. * Let product be the concatenation of product and abbrev.
c. Elseif C has a code unit value less than 0x0020 (the Unicode space character)
i Let product be the concatenation of product and code unit 0x005C (the Unicode backslash
character).

ii. Let product be the concatenation of product and "u".

iii. Let hex be the string result of converting the numeric code unit value of C to a String of
four hexadecimal digits. Alphabetic hexadecimal digits are presented as lowercase
characters.

iv. Let product be the concatenation of product and hex.

d. Else
i Let product be the concatenation of product and C.
3. Let product be the concatenation of product and code unit 0x0022 (the Unicode double quote character).
4. Return product.

418 © Ecma International 2013

Formatted

secma

Runtime Semantics: JO Abstract Operation

The abstract operation JO(value) serializes an object. It has access to the stack, indent, gap, and PropertyList of
the invocation of the stringify method.

1. If stack contains value then throw a TypeError exception because the structure is cyclical.
2. Append value to stack.
3. Let stepback be indent.
4. Letindent be the concatenation of indent and gap.
5. If PropertyList is not undefined, then

a. Let K be PropertyList.
6. Else

a. Let K be an internal List of Strings consisting of the keys of all the own properties of value whose

[[Enumerable]] attribute is true and whose property key is a String‘value. The ordering of the
Strings is the same as that used by the Object.keys standard built-in function.

7. Let partial be an empty List.
8. Foreachelement P of K,

a. Let strP be the result of calling the abstract operation Str with arguments P and value.

b. ReturnlfAbrupt(strP).

c. IfstrP is not undefined

i Let member be the result of calling the abstract operation Quote with argument.P.
il Let member be the concatenation of member and the string " : ™.
il I1f gap is not the empty String
1. Let member be the concatenation of member and code unit 0x0020 (the Unicode
space character).
iv. Let member be the concatenation of member and strP.
v. Append member to partial.
9. If partial is empty, then
a. Letfinalbe "{}".
10. Else
a. If gap is the empty String

i Let properties be a String formed by concatenating all the element Strings of partial with
each adjacent pair of Strings separated with code unit 0x002C (the Unicode comma
character). A comma is not inserted either before the first String or after the last String.

ii. Let final be the result of concatenating " { ", properties, and "} ".

b. Else gap is not the empty String

i. Let separator be the result of concatenating code unit 0x002C (the comma character), code
unit 0X000A (the line feed character), and indent.

ii. Let properties be a String formed by concatenating all the element Strings of partial with
each adjacent pair of Strings separated with separator. The separator String is not inserted
either before the first String or after the last String.

iii. Let final be the result of concatenating " { ", code unit 0XO00A (the line feed character),
indent, properties, code unit 0x000A, stepback, and " }".

11. Remove the last element of stack.
12. Let indent be stepback.
13. Return final.

Runtime Semantics: JA Abstract Operation

The abstract operation JA(value) serializes an array. It has access to the stack, indent, and gap of the invocation
of the stringify method. The representation of arrays includes only the elements between zero and
array.length — 1 inclusive. Properties whose keys are not array indexes are excluded from the
stringification. An array is stringified as an open left bracket, elements separated by comma, and a closing
right bracket.

1. If stack contains value then throw a TypeError exception because the structure is cyclical.
2. Append value to stack.

3. Let stepback be indent.

4. Letindent be the concatenation of indent and gap.

© Ecma International 2013 419

secma

5. Let partial be an empty List.
6. Assert: value is a standard array object and hence its "length" property is a non-negative integer.
7. LetlenVal be the result of Get(value, "length™")
8. Let len be ToLength(lenVal).
9. ReturnlfAbrupt(len).
10. Let index be 0.
11. Repeat while index < len
a. Let strP be the result of calling the abstract operation Str with arguments ToString(index) and value.
b. ReturnlfAbrupt(strP).
c. IfstrP is undefined
i Append "null" to partial.
d. Else
i Append strP to partial.
e. Incrementindex by 1.
2. If partial is empty, then
a. Letfinalbe "[]1".
13. Else
a. Ifgap is the empty String
i. Let properties be a String formed by concatenating all the element Strings of partial with
each adjacent pair of Strings separated with code unit 0x002C (the comma character). A
comma is not inserted either before the first String or after the last String.
ii. Let final be the result of concatenating " [, properties, and "] ".
b. Else

i Let separator be the result of concatenating code unit 0x002C (the comma character), code
unit 0x000A (the line feed character), and indent.

ii. Let properties be a Stringformed by concatenating all the element Strings of partial with
each adjacent pair of Strings separated with separator. The separator String is not inserted
either before the first String or after the last String.

iii. Let final be the result of concatenating " [", code unit 0XO00A (the line feed character),
indent, properties, code unit 0X000A, stepback, and "] ".

14. Remove the last element of stack.
15. Let indent be stepback.
16. Return final.

=

NOTE 1 JSON structures are allowed to'be nested to any depth, but they must be acyclic. If value is or contains a cyclic
structure, then the stringify function must throw a TypeError exception. This is an example of a value that cannot be
stringified:

a = [li

a[0] = a;

my text = JSON.stringify(a); // This must throw a TypeError.

NOTE2 Symbolic primitive values are rendered as follows:

. The null value is rendered in JSON text as the String null.

. The undefined value'is not rendered.

. The true value is rendered in JSON text as the String true.

. The false value is rendered in JSON text as the String false.

NOTE 3 String values are wrapped in double quotes. The characters " and \ are escaped with \ prefixes. Control
characters are replaced with escape sequences \uHHHH, or with the shorter forms, \b (backspace), \ £ (formfeed), \n
(newline), \ r (carriage return), \ t (tab).

NOTE 4 Finite numbers are stringified as if by calling ToString(number). NaN and Infinity regardless of sign are
represented as the String null.

NOTE5 Values that do not have a JSON representation (such as undefined and functions) do not produce a String.
Instead they produce the undefined value. In arrays these values are represented as the String null. In objects an
unrepresentable value causes the property to be excluded from stringification.

NOTE 6 An object is rendered as an opening left brace followed by zero or more properties, separated with commas,
closed with a right brace. A property is a quoted String representing the key or property name, a colon, and then the

420 © Ecma International 2013

pecma

stringified property value. An array is rendered as an opening left bracket followed by zero or more values, separated with
commas, closed with a right bracket.

24.3.4 JSON [@@toStringTag]

The initial value of the @@toStringTag property is the string value "JSON".

This property has the attributes { [[Writable]]: false, [[Enumerable]]: false, [[Configurable]]: true }.

25 Control Abstraction Objects

25.1 Common lteration Interfaces

An interface is a set of object property keys whose associated values match a specific specification. Any
object that provides all the properties of an interface in conformance to the interface’s specification conforms

to that interface.

An interface isn’'t represented by a single object and there may be many distinctly

implemented objects that conform to any interface. An individual object may conform to multiple interfaces.

25.1.1 The lterable Iterface

The Iterable interface includes the following property:

Property Value Requirements
@Riterator A zero arguments function that returns an | The function returns an object that
object. conforms to the iterator interface.

25.1.2 The lterator lIterface

The lterator interface includes the following properties:

Property Value Requirements

next A function that returns an object. The function returns an object that
conforms to the IteratorResult interface.

NOTE Arguments may be passed to the next function but their interpretation and validity is dependent upon the

target Iterator. Generic use of Iterators should not pass any arguments.

25.1.3 The lteratorResult Iterface

The IteratorResult interfaceincludes the following properties:

Property

Value

Requirements

done

Either true or false.

This is the result status of the an iterator
next method call. If the end of the iterator
was reached done is true. If the end was
not reached done is false and a value is
available.

value

Any ECMAScript languge value.

If done is false, this is the current iteration
element value. If done is true, this is the
return value of the iterator, if it supplied
one. If the iterator does not have a return
value, value is undefined. In that case, the

© Ecma International 2013

421

»ecnd

value property may be absent form the
conforming object if it does not inherit an
explicit value property.

25.2 "std:iteration" Exports

The "std:iteration" module exports the names:

iterator
GeneratorFunction
Generator

25.3 GeneratorFunction Objects

Generator Function objects are constructor functions that are usually created by evaluating
GeneratorDeclaration, GeneratorExpression, and GeneratorMethod syntactic productions. They may also be

created by calling the GeneratorFunction constructor.

<<prototype> >

[[Prototype]] of

is null

Object.prototype

Object.

+ prototype

+ constructor

<<prototype> >
Function.prototype
+ prototype
.| + @@ ()
“1 + @@create() : object
+ applyd
+ bind()
+ callp
FAY .
| <<prototypes >
< <constructor> > f%m(;‘:‘?pe
—{ < <constructors> <<callables > + prototype 5
<<callable>> koo 4--1' funcionfo g [
Function instanceof + constructor
instanceof- . _
=| newf

< <CONSIFUCIOr: >
<<callable>>
(GeneratorFunction)

+ constructor

< <CONSITUCTOr> >
<<callable> >
Object

+ create()
+ freeze()
+ keys()

L

The “GeneratorFunction”
and "Generator” do not
need global names.
Assume accessable as
System.GlobalFunction ar
import from a module.

GeneratorFunction is
essentially a subclass of
Function and is structured
as-if it was declaraed as:
class extends Function { }

1 v, + prototype |

<<prototype>>
(Generator)

_ + constructor

@@toStringTag : s = "GeneraterFunction”

@

+ 0@
he + @@create() : object

+ constructor

<<prototype> >
o

]

instances

(Generator) is neither callable or
constructable but it services both as
the common prototype of
GeneratorFunction intances and as
the abstract constructor of Generator

< <CONSTrUCTOr>>
<<callable>>
functlon *g1({yield }

+ prototype| @@toStringTag : s = "Generator”

+ next() : object
+ throw()
+ @@iterator() : object

+ prototype. |

<<prototype> >
gl.prototype

kN

Each Generator Function has
an associated prototype that
does not have a constructor

~ . |property. Hence a generator

instanceof . _

[revanr]

instance does not expase
access to its generator
function.

But the prototype be used to
add additonal behavior to
generator instances of a
specific generator function.

422

Figure 2 (Informative) -- Generator Objects Relationships]

© Ecma International 2013

(Commented [AWB15196]: Before final publication we
L should try to get a vector graphics version of this diagram.

pecma

25.3.1 The GeneratorFunction Constructor

The GeneratorFunction constructor is the %GeneratorFunction% intrinsic object and the value of the name
GeneratorFunction exported from the built-in ~ module "std:iteration". When
GeneratorFunction is called as a function rather than as a constructor, it creates and initialises a new
GeneratorFunction object. Thus the function call GeneratorFunction (..) is equivalent to the object
creation expression new GeneratorFunction (..) with the same arguments. However, if the this value
value passed in the call is an Object with a [[Code]] internal data property whose value is undefined, it
initialises the this value using the argument values. This permits GeneratorFunction to be used both as
factory method and to perform constructor instance initialisation.

GeneratorFunction may be subclassed and subclass constructors may perform a super invocation of the
GeneratorFunction constructor to initialise subclass instances. However, all syntactic forms for defining
generator function objects create direct instances of GeneratorFunction. There is no syntactic means to
create instances of GeneratorFunction subclasses.

25.3.1.1 GeneratorFunction (p1, p2, ..., pn, body)

The last argument specifies the body (executable code) of a generator function; any preceding arguments
specify formal parameters.

When the GeneratorFunction function is called with some arguments pl, p2, ..., pn, body (where n might
be 0, that is, there are no “p” arguments, and where body might also not be provided), the following steps are
taken:

Let argCount be the total number of arguments passed to this function invocation.

Let P be the empty String.

If argCount = 0, let bodyText be the empty String.

Else if argCount = 1, let bodyText be that argument.

Else argCount > 1,

Let firstArg be the first argument.

Let P be ToString(firstArg).

ReturnIfAbrupt(P).

Let k be 2.

Repeat, while k < argCount

i. Let nextArg be the k’th argument.
il. Let nextArgString be ToString(nextArg).
iii. ReturnIfAbrupt(nextArgString).
. Let P be the result of concatenating the previous value of P, the String ", " (a comma), and
nextArgString.
V. Increase k by 1.
f. . Let bodyText be the k’th argument.

Let bodyText be ToString(bodyText).

ReturnIfAbrupt(bodyText).

8. Let parameters be the result of parsing P, interpreted as UTF-16 encoded Unicode text as described in clause
10, using FormalParameters as the goal symbol. Throw a SyntaxError exception if the parse fails.

9. Let funcBody be the result of parsing bodyText, interpreted as UTF-16 encoded Unicode text as described in
clause 10, using FunctionBody as the goal symbol. Throw a SyntaxError exception if the parse fails or if
any static semantics errors are detected.

10. If funcBody Contains YieldExpression is false, then throw a SyntaxError exception.

11. If IsSimpleParameterList of parameters is false and any element of the BoundNames of parameters also
occurs in the VarDeclaredNames of funcBody, then throw a SyntaxError exception.

12. Ifany element of the BoundNames of parameters also occurs in the LexicallyDeclaredNames of funcBody, then
throw a SyntaxError exception.

13. If bodyText is strict mode code (see 10.1.1) then let strict be true, else let strict be false.

14. Let scope be the Global Environment.

15. Let F be the this value.

16. If Type(F) is not Object or if F does not have a [[Code]] internal data property or if the value of [[Code]] is

not undefined, then

arwnE

Poooe

~No

© Ecma International 2013 423

secmd

a. LetF be the result of calling FunctionAllocate with arguments %Generator% and "generator".

17. If the value of F’s [[FunctionKind]] internal data property is not "generator", then throw a TypeError
exception.

18. Using funcBody as the FunctionBody production, let body be the supplemental syntactic grammar production:
GeneratorBody : FunctionBody.

19. Perform the Functionlinitialise abstract operation with arguments F, Normal, parameters, body, scope, and strict.

20. Let prototype be the result of the abstract operation ObjectCreate with the intrinsic object %GeneratorPrototype%
as its argument.

21. Perform the abstract operation MakeConstructor with arguments F, true, and prototype.

22. Return F.

A prototype property is automatically created for every function created using the GeneratorFunction
constructor, to provide for the possibility that the function will be used as a constructor.

25.3.1.2 new GeneratorFunction (... argumentsList)

When GeneratorFunction is called as part of a new expression, it creates and initialises a newly created

object.

1. Let F be the GeneratorFunction function object on which the new operator was applied.

2. Let argumentsList be the argumentsList argument of the [[Construct]] internal method that was invoked by
the new operator.

3. Return the result of OrdinaryConstruct (F, argumentsList).

If GeneratorFunction is implemented as an ordinary function object, its [[Construct]] internal method will
perform the above steps.

25.3.2 Properties of the GeneratorFunction Constructor

The GeneratorFunction constructor is a built-in Function object that inherits from the Function constructor. The
value of the [[Prototype]] internal data property of the GeneratorFunction constructor is the intrinsic
object %Function%.

The value of the [[Extensible]] internal data property of the GeneratorFunction constructor is true.

The GeneratorFunction constructor has the following properties:

25.3.2.1 GeneratorFunction.length

This is-a data property with a value of 1. This property has the attributes { [[Writable]]: false, [[Enumerable]]:
false, [[Configurable]]: true }.

25.3.2.2" GeneratorFunction.prototype

The initial value of GeneratorFunction.prototype is %Generator%, the standard built-in
GeneratorFunction prototype.

This property has the attributes { [[Writable]]: false, [[Enumerable]]: false, [[Configurable]]: false }.
25.3.2.3 GeneratorFunction[@@create] ()

The @@create method of an object F performs the following steps:

Let F be the this value.

Let proto be the result of GetPrototypeFromConstructor(F, "$Generator$").
ReturnlfAbrupt(proto).

Let obj be the result of calling FunctionAllocate with argument proto and "generator".
Return obj.

SN

424 © Ecma International 2013

pecma

This property has the attributes { [Writable]]: false, [[Enumerable]]: false, [[Configurable]]: true }.

NOTE The GeneratorFunction @@create function is intentionally generic; it does not require that its this value be
the GeneratorFunction constructor object. It can be transferred to other constructor functions for use as a @@create
method. When used with other constructors, this function will create a function object whose [[Prototype]] value is obtained
from the associated constructor.

25.3.3 Properties of the GeneratorFunction Prototype Object

The GeneratorFunction prototype object is an ordinary object. It is not a function object and does not have a
[[Code]] internal data property or any other of the internal data properties listed in Table 25 or Table 39. In
addition to being the value of the prototype property of the %GeneratorFunction% intrinsic and is itself
the %Generator% intrinsic.

The value of the [[Prototype]] internal data property of the GeneratorFunction prototype object is
the %FunctionPrototype% intrinsic object. The initial value of the [[Extensible]] internal data property of the
GeneratorFunction prototype object is true.

25.3.3.1 GeneratorFunction.prototype.constructor

The initial value of GeneratorFunction.prototype.constructor is the intrinsic
object %GeneratorFunction%.

This property has the attributes { [[Writable]]: false, [[Enumerable]]: false, [[Configurable]]: true }.

25.3.3.2 GeneratorFunction.prototype.prototype

The value of GeneratorFunction.prototype. prototype is the %GeneratorPrototype% intrinsic object.

This property has the attributes { [[Writable]]: false, [[Enumerable]]: false, [[Configurable]]: true }.

25.3.3.3 GeneratorFunction.prototype [@@toStringTag]

The initial value of the @@toStringTag property is the string value "GeneratorFunction".

This property has the attributes { [[Writable]]: false, [[Enumerable]]: false, [[Configurable]]: true }.

25.3.34 GeneratorFunction.prototype [@@create] ()

The @@create method of an object F performs the following steps:

1. Let F be the this value.

2. Let obj be the result: of calling OrdinaryCreateFromConstructor(F, "%GeneratorPrototype%",
([[GeneratorState]], [[GeneratorContext]])).

3. Return obj.

This property has the attributes { [[Writable]]: true, [[Enumerable]]: false, [[Configurable]]: true }.

25.3.4 GeneratorFunction Instances

Every GeneratorFunction instance is an ordinary function object and has the internal data properties listed in
Table 25. The value of the [[FunctionKind]] internal data property for all such instances is "generator".

The GeneratorFunction instances have the following own properties:
25.3.4.1 length

The value of the 1ength property is an integer that indicates the typical number of arguments expected by
the GeneratorFunction. However, the language permits the function to be invoked with some other number of

© Ecma International 2013 425

secmd

arguments. The behaviour of a GeneratorFunction when invoked on a number of arguments other than the
number specified by its length property depends on the function.

This property has the attributes { [[Writable]]: false, [[Enumerable]]: false, [[Configurable]]: true }.

25.3.4.2 prototype

Whenever a GeneratorFunction instance is created another ordinary object is also created and is the initial
value of the generator function’s prototype property. The value of the prototype property is used to initialise
the [[Prototype]] internal data property of a newly created Generator object before the generator function
object is invoked as a constructor for that newly created object.

This property has the attributes { [[Writable]]: false, [[Enumerable]]: false, [[Configurable]]: true }.

NOTE Unlike function instances, the object that is the value of the a GeneratorFunction’s prototype property does
not have a constructor property whose value is the GeneratorFunction instance.

25.4 Generator Objects

A Generator object is an instance of a generator function‘and conforms to both the Iterator and lterable
interfaces.

Generator instances directly inherit properties from the object that is-the value of the prototype property of
the Generator function that created the instance. Generator instances indirectly inherit properties from the
Generator Prototype intrinsic, %GeneratorPrototype%.

25.4.1 Properties of Generator Prototype

The Generator prototype object is the %GeneratorPrototype% intrinsic. It is also the initial value of the
prototype property of the %Generator% intrinsic (the GeneratorFrunction.prototype).

The Generator prototype is an ordinary object. It is not a Generator instance and does not have a
[[GeneratorState]] internaldata property.

The value of the [[Prototype]] internal data.property of the Generator prototype object is the intrinsic
object %ObjectPrototype% (19.1.4): The initial value of the [[Extensible]] internal data property of the Function
prototype object is true.

All Generator instances indirectly inherit properties of the Generator prototype object.

25.44.1 Generator.prototype.constructor

The initial value of Generator.prototype.constructor is the intrinsic object %Generator%.

This property has the attributes { [[Writable]]: false, [[Enumerable]]: false, [[Configurable]]: true }.

254.1.2 Generator.prototype.next (value)

The next method performs the following steps:

1. Letg be the this value.
2. Return the result of GeneratorResume(g, value).

25.4.1.3 Generator.prototype.throw (exception)
The throw method performs the following steps:

1. Let generator be the this value.

426 © Ecma International 2013

pecma

If Type(generator) is not Object, then throw a TypeError exception.

If generator does not have a [[GeneratorState]] internal data property, then throw a TypeError exception.

Let state be the value of generator’s [[GeneratorState]] internal data property.

Assert: generator also has a [[GeneratorContext]] internal data property.

If state is neither "suspendedStart" or "suspendedYield", then throw a TypeError exception.

Let E be Completion {[[type]]: throw, [[value]]: exception, [[target]]: empty}.

If state is "suspendedStart" then,
a. Set generator’s [[GeneratorState]] internal data property to "completed".
b. Once a generator enters the "completed" state it never leaves it and its associated execution

context is never resumed. Any execution state associated with generator can be discard at this point.

c. ReturnE.

9. Let genContext be value of generator’s [[GeneratorContext]] internal data property.

10. Let methodContext be the running execution context.

11. Suspend methodContext.

12. Set generator’s [[GeneratorState]] internal data property to "executing".

13. Push genContext onto the execution context stack; genContext is now the running execution context.

14. Resume the suspended evaluation of genContext using E as the result of the operation that suspended it. Let result
be the value returned by the resumed compation.

15. Assert: When we return here, genContext has already been. removed from the execution context stack and
methodContext is the currently running execution context.

16. Return result.

NGO~ WN

25.4.1.4 Generator.prototype [@@iterator] ()

The following steps are taken:

1. Return the this value.

25.4.1.5 Generator.prototype [@@toStringTag]

The initial value of the @@toStringTag property is the string value "Generator".

This property has the attributes { [[Writable]]: false, [[Enumerable]]: false, [[Configurable]]: true }.
25.4.2 Properties of Generator Instances

Generator instances are initially created with the internal data properties described in Table 39.

Table 39 — Internal Data Properties of Generator Instances

Internal Data Property Description
Name
[[GeneratorState]] 'The current execution state of the generator. The possible values
are: undefined, "suspendedStart", "suspendedYield",
"executing", and "completed".
[[GeneratorContext]] The execution context that is used when executing the code of this|
generator.

25.4.3 lIteration Related Abstract Operations
2543.1 GeneratorStart (generator, generatorBody)

Assert: The value of generator’s [[GeneratorState]] internal data property is undefined.

Let genContext be the running execution context.

Set the Generator component of genContext to generator.

Set the code evaluation state of genContext such that when evaluation is resumed for that execution context the
following steps will be performed:

NP

© Ecma International 2013 427

&

ecmnd

5.
6.
7.

Let result be the result of evaluating generatorBody.
Assert: If we return here, the generator either threw an exception or performed either an implicit or explicit
return.
¢. Remove genContext from the execution context stack and restore the execution context that is at the
top of the execution context stack as the running execution context.
d. Set generator’s [[GeneratorState]] internal data property to "completed".
e. Once a generator enters the "completed™" state it never leaves it and its associated execution
context is never resumed. Any execution state associated with generator can be discard at this point.
f. ReturnlfAbrupt(result).
g. Return CreatelterResultObject(result, true).
Set generator’s [[GeneratorContext]] internal data property to genContext.
Set generator s [[GeneratorState]] internal data property to "suspendedStart".
Return NormalCompletion(generator).

o ®

25.4.3.2 GeneratorResume (generator, value)

The abstract operation GeneratorResume with arguments generator and value performs the following steps:

©OND TR WN P

13.

14.

If Type(generator) is not Object, then throw a TypeError exception.

If generator does not have a [[GeneratorState]] internal data property, then throw a TypeError exception.
Let state be the value of generator’s [[GeneratorState]] internal data property.

Assert: generator also has a [[GeneratorContext]] internal data property.

If state is neither "suspendedStart" or "suspendedYield", then throw a TypeError exception.
If state is "suspendedStart" and value is not undefined, then throw a TypeError exception.

Let genContext be value of generator’s [[GeneratorContext]] internal data property.

Let methodContext be the running execution context.

Suspend methodContext.

. Set generator’s [[GeneratorState]] internal data property to "executing".
. Push genContext onto the execution context stack; genContext is now the running execution context.
. Resume the suspended evaluation of genContext using NormalCompletion(value) as the result of the operation that

suspended it. Let result be the value returned by the resumed computation.

Assert: When we return here, genContext has already been removed from the execution context stack and
methodContext is the currently running execution context.

Return result.

25.4.3.3 GeneratorYield (iterNextObj)

The abstract operation. GeneratorYield with argument iterNextObj performs the following steps:

o~ wnE

~

8.

9.

10.
11

428

Assert: iterNextObj is an Object that implemented the IteratorResult interface.

Let genContext be the running execution context.

Assert: genContext is the execution context of a generator.

Let generator be the value of the Generator component of genContext.

Set the value of generator’s [[GeneratorState]] internal data property to "suspendedYield".

Remove genContext from/the execution context stack and restore the execution context that is at the top of
the execution context stack as the running execution context.

Set the code evaluation state of genContext such that when evaluation is resumed with a Completion
resumptionValue the following steps will be performed:

a. Return resumptionValue.

b. NOTE: This returns to the evaluation of the YieldExpression production that originally called this abstract operation.
Resume the suspended evaluation of genContext using NormalCompletion(value) as the result of the operation that
suspended it. Let result be the value returned by the resumed computation.

Assert: When we return here, genContext has already been removed from the execution context stack and the
currently running execution context is the context that most recently resumed execution of generator.

Return NormalCompletion(iterNextObj).

NOTE: This returns to the evaluation of the operation that had most previously resumed evaluation of genContext.

© Ecma International 2013

pecma

25.4.3.4 CreatelterResultObject (value, done)

The abstract operation CreatelterResultObject with arguments value and done creates an object that supports
the lteratorResult interface by performing the following steps:

Assert: Type(done) is Boolean.

Let obj be the result of performing ObjectCreate(%ObjectPrototype%).
Perform CreateOwnDataProperty(obj, "value", value).

Perform CreateOwnDataProperty(obj, "done™, done).

Return obj.

g~

25.4.3.5 Getlterator (obj)
The abstract operation Getlterator with argument obj performs the following steps:

1. Let iterator be the result of performing Invoke with arguments obj, @ @iterator and an empty List.
2. ReturnlfAbrupt(iterator).

3. If Type(iterator) is not Object, then throw a TypeError exception.

4. Return iterator.

25.4.3.6 IteratorNext (iterator, value)

The abstract operation IteratorNext with argument iterator and optional argument value performs the following
steps:

If value was not passed, let value be undefined.

Let result be the result of Invoke(iterator, "next", (value)).
ReturnifAbrupt(result).

If Type(result) is not Object, then throw a TypeError exception.
Return result.

gL E

25.4.3.7 lteratorComplete (iterResult)
The abstract operation IteratorComplete with argument iterResult performs the following steps:

1. Assert: Type(iterResult) is Object.
2. Let done be the result of Get(iterResult, "done™).
3. Return ToBoolean(done).

25.4.3.8 lIteratorValue (iterResult)
The abstract operation IteratorValue with argument iterResult performs the following steps:

1. Assert: Type(iterResult) is Object.
2. Return the result of Get(iterResult, "value").

25.4.3.9 IteratorStep (iterator, value)

The abstract operation IteratorStep with argument iterator and optional argument value requests the next value
from iterator and returns either false indicating that the iterator has reached its end or IteratorResukit object if a
next value is available. IteratorStep performs the following steps:

If value was not passed, let value be undefined.

Let result be the result of IteratorNext(iterator, value).
ReturnlfAbrupt(result).

Let done be the result of Get(result, "done™").
ReturnlfAbrupt(done).

I1f ToBoolean(done) is true, then return false.

Return result.

NOoO O AWNE

© Ecma International 2013 429

secmd

25.4.3.10 CreateEmptylterator ()

The abstract operation CreateEmptylterator with no arguments creates an Iterator object whose next method
always reports that the iterator is done. It performs the following steps:

Let obj be the result of performing ObjectCreate(%ObjectPrototype%).

Let emptyNextMethod be the result of performing CreateBuiltinFunction using the steps defined below.
Perform CreateOwnDataProperty(obj, "next", emptyNextMethod).

Return obj.

Eal Sl o

An emptyNextMethod method performs the following steps:

1. Let result be the result of performing CreatelterResultObject (undefined, true).
2. Return result.

26 Reflection.
26.1 The Reflect Object

The Reflect object is a single ordinary object.

The value of the [[Prototype]] internal data property of the Reflect.object is the standard built-in Object
prototype object (19.1.4).

The Reflect object is not a function object. It does not have a [[Construct]] internal method; it is not possible to
use the Reflect object as a constructor with the new operator. The Reflect object also does not have a [[Call]]
internal method; it is not possible to invoke the Reflect object as a function.

26.1.1 Reflect.defineProperty(target, propertyKey, attributes)

When the defineProperty function is called with arguments target, propertyKey, and attributes the following
steps are taken:

Let obj be ToObject(target).

ReturnlfAbrupt(obj).

Let key be ToPropertyKey(propertyKey).

ReturnIfAbrupt(key).

Let descbe the result of calling ToPropertyDescriptor with attributes as the argument.
ReturnlfAbrupt(desc).

Return the result of calling the [[DefineOwnProperty]] internal method of obj with arguments key, and desc.

NogrwNE

26.1.2 Reflect.deleteProperty (target, propertyKey)

When the deleteProperty function is called with arguments target and propertyKey, the following steps are
taken:

Let obj be ToObject(target).

ReturnlfAbrupt(obj).

Let key be ToPropertyKey(propertyKey).

ReturnlfAbrupt(key).

Return the result of calling the [[Delete]] internal method of obj with argument key.

gD

26.1.3 Reflect.enumerate (target)
When the enumerate function is called with argument target the following steps are taken:

1. Let obj be ToObject(target).
2. ReturnifAbrupt(obyj).

430 © Ecma International 2013

pecma

3. Let iterator be the result of calling the [[Enumerate]] internal method of obj.
4. Return iterator.

26.1.4 Reflect.get (target, propertyKey, receiver=target)
When the get function is called with arguments target, propertyKey, and receiver the following steps are taken:

Let obj be ToObject(target).
ReturnlfAbrupt(obj).
Let key be ToPropertyKey(propertyKey).
ReturnlfAbrupt(key).
If receiver is not present, then
a. Let receiver be target.
6. Return the result of calling the [[Get]] internal method of obj with arguments key, and receiver.

G WD

26.1.5 Reflect.getOwnPropertyDescriptor(target, propertyKey)

When the getOwnPropertyDescriptor function is called with arguments target and propertyKey, the
following steps are taken:

Let obj be ToObject(target).

ReturnlfAbrupt(obj).

Let key be ToPropertyKey(propertyKey).

ReturnlfAbrupt(key).

Let desc be the result of calling the [[GetOwnProperty]] internal method of obj with argument key.
ReturnlfAbrupt(desc).

Return the result of calling FromPropertyDescriptor(desc).

Nk wNE

26.1.6 Reflect.getPrototypeOf (target)
When the getPrototypeOf function is called with argument target the following steps are taken:

1. Letobj be ToObject(target).
2. ReturnIfAbrupt(obj).
3. Return the result of calling the [[GetPrototypeOf]] internal method of obj.

26.1.7 Reflect.has (target, propertyKey)
When the hasown function is called with arguments target and propertyKey, the following steps are taken:

Let.obj be ToObject(target).

ReturnlfAbrupt(obj).

Let key be ToPropertyKey(propertyKey).

ReturnlfAbrupt(key).

Return the result of calling the [[HasProperty]] internal method of obj with argument key.

g wN e

26.1.8 Reflect.hasOwn (target, propertyKey)
When the hasOwn function is called with arguments target and propertyKey, the following steps are taken:

Let key be ToPropertyKey(propertyKey).
ReturnlfAbrupt(key).

Let obj be ToObject(target).
ReturnlfAbrupt(obj).

Nk~ wNE

Return the result of HasOwnProperty(obj, key).

© Ecma International 2013 431

secmd

26.1.9 Reflect.isExtensible (target)
When the isExtensible function is called with argument target the following steps are taken:

1. Let obj be ToObject(target).
2. ReturnlfAbrupt(obj).
3. Return the result of calling the [[IsExtensible]] internal method of obj.

26.1.10 Reflect.invoke (target, propertyKey, argumentsList, receiver=target)

When the invoke function is called with arguments target, propertyKey, argumentsList, and receiver the
following steps are taken:

Let obj be ToObject(target).
ReturnlfAbrupt(obj).
Let key be ToPropertyKey(propertyKey).
ReturnlfAbrupt(key).
If receiver is not present, then
a. Let receiver be target.
Let argList be the result of CreateListFromArrayLike(argumentsList).
ReturnIfAbrupt(argList).
8. Return the result of calling the [[Invoke]] internal method of obj with arguments key, argList, and receiver.

g wN P

No

26.1.11 Reflect.ownKeys (target)
When the ownKeys function is called with argument target the following steps are taken:

1. Let obj be ToObject(target).
2. ReturnifAbrupt(obyj).
3. Return the result of calling the [[OwnPropertyKeys]] internal method: of obj.

26.1.12 Reflect.preventExtensions (target)
When the preventExtensions function is called with argument target, the following steps are taken:

1. Let obj be ToObject(target).
2. ReturnifAbrupt(obyj).
3. Return the result of calling the [[PreventExtensions]] internal method of obj.

26.1.13 Reflect.set (target, propertyKey, V, receiver=target)

When the set function is called with arguments target, V, propertyKey, and receiver the following steps are
taken:

Let obj be ToObject(target).
ReturnIfAbrupt(obj).
Let key be ToPropertyKey(propertyKey).
ReturnifAbrupt(key).
If receiver is not present, then
a. Letreceiver be target.
Return the result of calling the [[Set]] internal method of obj with arguments key, V, and receiver.

gD

s

26.1.14 Reflect.setPrototypeOf (target, proto)

When the setPrototypeOf function is called with arguments target and propertyKey, the following steps are
taken:

1. Let obj be ToObject(target).

2. ReturnlfAbrupt(obj).
3. If Type(proto) is not Object and proto is not null, then throw a TypeError exception

432 © Ecma International 2013

secma

4. Return the result of calling the [[SetPrototypeOf]] internal method of obj with argument proto.

26.2 Proxy Objects

26.2.1 The Proxy Factory Function

26.2.1.1 Proxy (target, handler)

When the Proxy function is called with arguments target and handler the following steps are taken:
26.2.2 Properties of the Proxy Factory Function

26.2.2.1 Proxy.revocable (target, handler)

The revocable function takes two arguments target and handler, and performs the following:

26.2.3 Property of Proxy Instances

© Ecma International 2013 433

oechna

Annex A
(informative)

Grammar Summary

TODO: The Grammars in the Annex have not yet been updated for ES6. For now,
see the grammars in the main body of the specification.

A.1 Lexical Grammar

SourceCharacter :: See clause 6
any Unicode code unit

InputElementDiv :: See clause 7
WhiteSpace
LineTerminator
Comment
Token
DivPunctuator

InputElementRegExp :: See clause 7
WhiteSpace
LineTerminator
Comment
Token
RegularExpressionLiteral

WhiteSpace :: See 7.2

<TAB>

<VT>

<FF>

<SP>

<NBSP>

<BOM>

<Usp>

LineTerminator :: See 7.3
<LF>
<CR>
<LS>
<PS>

434 © Ecma International 2013

secma

LineTerminatorSequence ::
<LF>
<CR> [lookahead ¢ <LF>]
<LS>
<PS>
<CR><LF>

Comment ::
MultiLineComment
SingleLineComment

MultiLineComment ::
/* MultiLineCommentCharsop: */

MultiLineCommentChars ::
MultiLineNotAsteriskChar MultiLineCommentCharsopt
* PostAsteriskCommentCharsept

PostAsteriskCommentChars ::
MultiLineNotForwardSlashOrAsteriskChar MultiLineCommentCharsgpt
* PostAsteriskCommentCharsopt

MultiLineNotAsteriskChar ::
SourceCharacter but not *

MultiLineNotForwardSlashOrAsteriskChar ::
SourceCharacter but not.one of / or *

SingleLineComment ::
// SingleLineCommentCharsopt

SingleLineCommentChars ::
SingleLineCommentChar SingleLineCommentCharsopt

SingleLineCommentChar ::
SourceCharacter but not LineTerminator

Token ::
IdentifierName
Punctuator
NumericLiteral
StringLiteral

Identifier ::
IdentifierName but not ReservedWord

IdentifierName ::
IdentifierStart
IdentifierName IdentifierPart

© Ecma International 2013

See 7.3

See 7.4

See 7.4

See 7.4

See 7.4

See 7.4

See 7.4

See 7.4

See 7.4

See 7.4

See 7.5

See 7.6

See 7.6

435

secma

IdentifierStart :: See 7.6
UnicodeLetter

\ UnicodeEscapeSequence

IdentifierPart :: See 7.6
IdentifierStart
UnicodeCombiningMark
UnicodeDigit
UnicodeConnectorPunctuation
<ZWNJ>
<ZWJ>

UnicodeLetter :: See 7.6
any character in the Unicode categories “Uppercase letter (Lu)”, “Lowercase letter
(LI), “Titlecase letter (Lt)”, “Modifier letter (Lm)’, “Other letter (Lo)”, or “Letter
number (NI)”.

UnicodeCombiningMark :: See 7.6
any character in the Unicode categories “Non-spacing mark (Mn)” or “Combining
spacing mark (Mc)”

UnicodeDigit :: See 7.6
any character in the Unicode category “Decimal number (Nd)”

UnicodeConnectorPunctuation :: See 7.6
any character in the Unicode category “Connector punctuation (Pc)”

ReservedWord :: See 7.6.1

Keyword
FutureReservedWord
NullLiteral
BooleanLiteral

Keyword :: one of See 7.6.1.1
break do instanceof typeof
case else new var
catch finally return void
continue for switch while
debugger function this with
default if throw
delete in try
FutureReservedWord:: one of See 7.6.1.2
class enum extends super
const export import

The following tokens are also considered to be FutureReservedWords when parsing strict mode

code (see 10.1.1).

implements let private public
interface package protected static
yield

436 © Ecma International 2013

pecma

Punctuator :: one of See 7.7
{ } () []
; , < > <=
>= == 1= === ==
+ - * % ++ --
<< >> >>> & | ~
1 ~ && | | i
= += -= *= %= <<=
>>= >>>= &= |= A=
DivPunctuator :: one of See 7.7
Literal :: See 7.8
NullLiteral

BooleanLiteral
NumericLiteral
StringLiteral
RegularExpressionLiteral

NullLiteral :: See 7.8.1
null

BooleanLiteral :: See 7.8.2
true
false

NumericLiteral :: See 7.8.3

DecimalLiteral
HexIntegerLiteral

DecimalLiteral :: See 7.8.3
DecimalintegerLiteral . DecimalDigitsop: ExponentPartop
. DecimalDigits ExponentPartop
DecimalintegerLiteral ExponentPartop

DecimallintegerLiteral :: See 7.8.3
0
NonZeroDigit DecimalDigitsopt

DecimalDigits :: See 7.8.3
DecimalDigit
DecimalDigits DecimalDigit

DecimalDigit :: one of See 7.8.3
0 1 2 3 4 5 6 7 8 9

© Ecma International 2013 437

secmd

NonZeroDigit :: one of See 7.8.3
1 2 3 4 5 6 7 8 9

ExponentPart :: See 7.8.3
Exponentindicator Signedinteger

Exponentindicator :: one of See 7.8.3
e E

Signedinteger :: See 7.8.3
DecimalDigits
+ DecimalDigits
- DecimalDigits

HexIntegerLiteral :: See 7.8.3
0x HexDigit
0X HexDigit
HexlIntegerLiteral HexDigit

HexDigit :: one of See 7.8.3
0123456789abcdefABCDEF

StringLiteral :: See 7.8.4
" DoubleStringCharactersop "
' SingleStringCharactersopt '

DoubleStringCharacters :: See 7.8.4
DoubleStringCharacter DoubleStringCharactersopt

SingleStringCharacters :: See 7.8.4
SingleStringCharacter SingleStringCharactersopt

DoubleStringCharacter :: See 7.8.4
SourceCharacter but not one of ! or .\ or LineTerminator
\ EscapeSequence
LineContinuation

SingleStringCharacter :: See 7.8.4
SourceCharacter but not one of ' or \ or LineTerminator
\ EscapeSequence
LineContinuation

LineContinuation :: See 7.8.4
\ LineTerminatorSequence

EscapeSequence :: See 7.8.4
CharacterEscapeSequence
0 [lookahead ¢ DecimalDigit]
HexEscapeSequence
UnicodeEscapeSequence

CharacterEscapeSequence :: See 7.8.4
SingleEscapeCharacter
NonEscapeCharacter

SingleEscapeCharacter :: one of See 7.8.4

' " \ b £f n r t v

438 © Ecma International 2013

secma

NonEscapeCharacter ::
SourceCharacter but not one of EscapeCharacter or LineTerminator

EscapeCharacter ::
SingleEscapeCharacter
DecimalDigit
X
u

HexEscapeSequence ::
x HexDigit HexDigit

UnicodeEscapeSequence ::
u HexDigit HexDigit HexDigit HexDigit

RegularExpressionLiteral ::
/ RegularExpressionBody / RegularExpressionFlags

RegularExpressionBody ::
RegularExpressionFirstChar RegularExpressionChars

RegularExpressionChars ::
[empty]))
RegularExpressionChars RegularExpressionChar

RegularExpressionFirstChar ::
RegularExpressionNonTerminator but not one of * or \ or / or [
RegularExpressionBackslashSequence
RegularExpressionClass

RegularExpressionChar:
RegularExpressionNonTerminator but not \ or/..or [
RegularExpressionBackslashSequence
RegularExpressionClass

RegularExpressionBackslashSequence ::
\ RegularExpressionNonTerminator

RegularExpressionNonTerminator ::
SourceCharacter but not LineTerminator

RegularExpressionClass ::
[RegularExpressionClassChars]

RegularExpressionClassChars ::
[empty]
RegularExpressionClassChars RegularExpressionClassChar

RegularExpressionClassChar ::
RegularExpressionNonTerminator but not] or \
RegularExpressionBackslashSequence

© Ecma International 2013

See 7.8.4

See 7.8.4

See 7.8.4

See 7.8.4

See 7.8.5

See 7.8.5

See 7.8.5

See 7.8.5

See 7.8.5

See 7.8.5

See 7.8.5

See 7.8.5

See 7.8.5

See 7.8.5

439

secmd

RegularExpressionFlags ::
[empty]

RegularExpressionFlags IdentifierPart

A.2 Number Conversions

StringNumericLiteral :::
StrWhiteSpaceopt

StrWhiteSpaceop: StrNumericLiteral StrWhiteSpaceopt

StrWhiteSpace :::

StrWhiteSpaceChar StrWhiteSpaceopt

StrWhiteSpaceChar :::
WhiteSpace
LineTerminator

StrNumericLiteral :::
StrDecimalLiteral
HexIntegerLiteral

StrDecimalLiteral :::
StrUnsignedDecimalLiteral
+ StrUnsignedDecimalLiteral
- StrUnsignedDecimalLiteral

StrUnsignedDecimalLiteral :::
Infinity

DecimalDigits . DecimalDigitsop: ExponentPartop
. DecimalDigits ExponentPartopt

DecimalDigits ExponentPartopt

DecimalDigits :::
DecimalDigit
DecimalDigits DecimalDigit

DecimalDigit ::: one of
001 2 3 4 5 6

ExponentPart :::

Exponentindicator Signedinteger

Exponentindicator ::: one of
e E

SignedlInteger :::
DecimalDigits
+ DecimalDigits
- DecimalDigits

440

See 7.8.5

See 9.1.3.1

See 9.1.3.1

See 9.1.3.1

See 9.1.3.1

See 9.1.3.1

See 9.1.3.1

See 9.1.3.1

See 9.1.3.1

See 9.1.3.1

See 9.1.3.1

See 9.1.3.1

© Ecma International 2013

pecma

HexIntegerLiteral ::: See 9.1.3.1
0x HexDigit
0X HexDigit
HexIntegerLiteral HexDigit

HexDigit ::: one of See 9.1.3.1
0123456789abcdefABCDETF

A.3 Expressions

PrimaryExpression : See 11.1
this
Identifier
Literal
ArrayLiteral
ObjectLiteral
(Expression)

ArrayLiteral : See 11.1.4
[Elisionept 1]
[ElementList]
[ElementList , Elisiongpt 1

ElementList : See 11.1.4
Elisiongpt AssignmentExpression
ElementList , Elisionopt AssignmentExpression

Elision : See 11.1.4
Elision ,

ObjectLiteral : See 11.1.5
{1}

{ PropertyDefinitionList }
{ PropertyDefinitionList , }

PropertyDefinitionList : See 11.1.5
PropertyDefinition
PropertyDefinitionList , 'PropertyDefinition

PropertyDefinition : See 11.1.5
PropertyName : AssignmentExpression
get PropertyName () { FunctionBody }
set PropertyName (PropertySetParameterList) { FunctionBody }

PropertyName : See 11.1.5
IdentifierName
StringLiteral
NumericLiteral

PropertySetParameterList : See 11.1.5
Identifier

© Ecma International 2013 441

secmd

MemberExpression :

PrimaryExpression
FunctionExpression
MemberExpression [Expression]
MemberExpression . ldentifierName
new MemberExpression Arguments

NewExpression :

MemberExpression
new NewExpression

CallExpression :

MemberExpression Arguments
CallExpression Arguments
CallExpression [Expression]
CallExpression . IdentifierName

Arguments :

()
(ArgumentList)

ArgumentList :

AssignmentExpression
ArgumentList , AssignmentExpression

LeftHandSideExpression :

NewExpression
CallExpression

PostfixExpression :

LeftHandSideExpression

LeftHandSideExpression [no LineTerminator here] ++
LeftHandSideExpression * [no LineTerminator here] —-

UnaryExpression :

PostfixExpression

delete UnaryExpression
void UnaryExpression
typeof UnaryExpression
++ UnaryExpression

-- UnaryExpression

+ UnaryExpression

- UnaryExpression

~ UnaryExpression

! UnaryExpression

MultiplicativeExpression :

442

UnaryExpression

MultiplicativeExpression * UnaryExpression
MultiplicativeExpression / UnaryExpression
MultiplicativeExpression % UnaryExpression

See 11.2

See 11.2

See 11.2

See 11.2

See 11.2

See 11.2

See 11.3

See 11.4

See 11.5

© Ecma International 2013

secma

AdditiveExpression :
MultiplicativeExpression
AdditiveExpression + MultiplicativeExpression
AdditiveExpression - MultiplicativeExpression

ShiftExpression :
AdditiveExpression
ShiftExpression << AdditiveExpression
ShiftExpression >> AdditiveExpression
ShiftExpression >>> AdditiveExpression

RelationalExpression :
ShiftExpression
RelationalExpression < ShiftExpression
RelationalExpression > ShiftExpression
RelationalExpression <= ShiftExpression
RelationalExpression >= ShiftExpression

RelationalExpression instanceof£ ShiftExpression

RelationalExpression in ShiftExpression

EqualityExpression :
RelationalExpression
EqualityExpression == RelationalExpression
EqualityExpression != RelationalExpression
EqualityExpression === RelationalExpression
EqualityExpression !== RelationalExpression

BitwiseANDEXxpression :
EqualityExpression
BitwiseANDExpression & EqualityExpression

BitwiseXOREXxpression :
BitwiseANDEXpression
BitwiseXORExpression # BitwiseANDEXxpression

BitwiseOREXpression :
BitwiseXORExpression
BitwiseOREXxpression |BitwiseXORExpression

Logical ANDExpression :
BitwiseORExpression
Logical ANDEXxpression && BitwiseORExpression

Logical ORExpression :
Logical ANDExpression
LogicalORExpression | | LogicalANDEXxpression

© Ecma International 2013

See 11.6

See 11.7

See 11.8

See 11.9

See 11.10

See 11.10

See 11.10

See 11.11

See 11.11

443

secmd

Conditional Expression :
LogicalORExpression
LogicalORExpression ? AssignmentExpression : AssignmentExpression

AssignmentExpression :
ConditionalExpression
LeftHandSideExpression = AssignmentExpression
LeftHandSideExpression AssignmentOperator AssignmentExpression

AssignmentOperator : one of
*= /= 9= += -= <<= >>= >>>= &= ~=

Expression :
AssignmentExpression
Expression , AssignmentExpression

A.4 Statements

Statement :
Block
VariableStatement
EmptyStatement
ExpressionStatement
IfStatement
IterationStatement
ContinueStatement
BreakStatement
ReturnStatement
WithStatement
LabelledStatement
SwitchStatement
ThrowStatement
TryStatement
DebuggerStatement

Block :
{ StatementListopt }

StatementList :
Statement
StatementL st Statement

VariableStatement :
var VariableDeclarationList ;

VariableDeclarationList :
VariableDeclaration
VariableDeclarationList , VariableDeclaration

VariableDeclaration :
Identifier Initialiseropt

444

See 11.12

See 11.13

See 11.13

See 11.14

See clause 12

See 12.1

See 12.1

See 12.2

See 12.2

See 12.2

© Ecma International 2013

secma

Initialiser :
= AssignmentExpression

EmptyStatement :

;

ExpressionStatement :
[lookahead ¢ {{, function}] Expression ;

IfStatement :
if (Expression) Statement else Statement
if (Expression) Statement

IterationStatement :
do Statement while (Expression) ;
while (Expression) Statement
for (Expressionop; EXpressiongp: ; Expressiongp) Statement
for (var VariableDeclarationList; Expressionept ; EXpressionep:) Statement
for (LeftHandSideExpression in Expression) Statement
for (var VariableDeclaration in Expression) Statement

ContinueStatement :
continue ;
continue [no LineTerminator here] Identifier ;

BreakStatement :
break ;
break [no LineTerminator here] Identifier ;

ReturnStatement :
return ;
return [noLineTerminator here] EXp ression ;

WithStatement :
with (Expression) Statement

SwitchStatement :
switch (Expression) CaseBlock

CaseBlock :
{ CaseClausesopt }
{ CaseClausesopt DefaultClause CaseClausesopt }

CaseClauses :
CaseClause
CaseClauses CaseClause

CaseClause :
case Expression : StatementListopt

© Ecma International 2013

See 12.2

See 12.3

See 12.4

See 12.5

See 12.6

See 12.7

See 12.8

See 12.9

See 12.10

See 12.11

See 12.11

See 12.11

See 12.11

445

secmd

DefaultClause : See 12.11
default : StatementListopt

LabelledStatement : See 12.12
Identifier : Statement

ThrowStatement : See 12.13
throw [no LineTerminator here] Expression H

TryStatement : See 12.14
try Block Catch
try Block Finally
try Block Catch Finally

Catch : See 12.14
catch (Identifier) Block

Finally : See 12.14
finally Block

DebuggerStatement : See 12.15
debugger ;

A.5 Functions and Scripts

FunctionDeclaration : See clause 13
function Identifier (FormalParameterListop) { FunctionBody }

FunctionExpression : See clause 13
function ldentifierop (FormalParameterListspr) { FunctionBody }

FormalParameterList : See clause 13
Identifier
FormalParameterList , Identifier

FunctionBody:: See clause 13
SourceElementsopt

Program : See clause 14
SourceElementsopt

SourceElements : See clause 14
SourceElement
SourceElements SourceElement

SourceElement : See clause 14
Statement
FunctionDeclaration

446 © Ecma International 2013

pecma

A.6 Universal Resource Identifier Character Classes

uri :::
uriCharactersopt

uriCharacters :::
uriCharacter uriCharactersopt

uriCharacter :::
uriReserved
uriUnescaped
uriEscaped

uriReserved ::: one of
;0 / ? @@ & = + $

uriUnescaped :::
uriAlpha
DecimalDigit
uriMark

uriEscaped :::
% HexDigit HexDigit

uriAlpha ::: one of
b d g h
B D G H

o g

g r s t
Q R s T

qu
=
[
-]
-
oo

a c e f i
A Cc E F I

uriMark ::: one of
- Y SN er

A.7 Regular Expressions

Pattern ::
Disjunction

Disjunction ::
Alternative
Alternative | Disjunction

Alternative ::
[empty]
Alternative Term

Term ::
Assertion
Atom
Atom Quantifier

© Ecma International 2013

u v
u v

See 15.1.3
See 15.1.3

See 15.1.3

See 15.1.3

See 15.1.3

See 15.1.3

See 15.1.3

5.
w X
W X

See 15.1.3

See 15.10.1

See 15.10.1

See 15.10.1

See 15.10.1

z
Z

447

secmd

Assertion :: See 15.10.1

>

$

\ b
\ B
(? = Disjunction)

(? ! Disjunction)

Quantifier :: See 15.10.1

QuantifierPrefix
QuantifierPrefix ?

QuantifierPrefix :: See 15.10.1
*

+

?

{ DecimalDigits }

{ DecimalDigits , }

{ DecimalDigits , DecimalDigits }

Atom :: See 15.10.1
PatternCharacter

\ AtomEscape
CharacterClass
(Disjunction)
(? : Disjunction)

PatternCharacter : See 15.10.1
SourceCharacter but not one of-
~ *+ 2 () [I { } |

AtomEscape :: See 15.10.1
DecimalEscape
CharacterEscape
CharacterClassEscape

CharacterEscape :: See 15.10.1

ControlEscape

c ControlLetter
HexEscapeSequence
UnicodeEscapeSequence
IdentityEscape

ControlEscape :: one of See 15.10.1
f n r t v

ControlLetter :: one of See 15.10.1
a b c d e £f gh i j k 1 m n o p gqr s t uwv w x y z
A B CDEVFGHTI JKILMNUOZPI QI R STUVWIX Y 2Z

448 © Ecma International 2013

secma

IdentityEscape ::
SourceCharacter but not IdentifierPart
<ZWJ>
<ZWNJ>

DecimalEscape ::
DecimallintegerLiteral [lookahead ¢ DecimalDigit]

CharacterClassEscape :: one of
d D s S w W

CharacterClass ::
[[lookahead ¢ {*}] ClassRanges 1
[~ ClassRanges 1

ClassRanges ::
[empty]
NonemptyClassRanges

NonemptyClassRanges ::
ClassAtom
ClassAtom NonemptyClassRangesNoDash
ClassAtom - ClassAtom ClassRanges

NonemptyClassRangesNoDash ::
ClassAtom
ClassAtomNoDash NonemptyClassRangesNoDash
ClassAtomNoDash - ClassAtom ClassRanges

ClassAtom ::

ClassAtomNoDash

ClassAtomNoDash ::
SourceCharacter but not one of \'or] or -
\ ClassEscape

ClassEscape ::
DecimalEscape
b

CharacterEscape
CharacterClassEscape

A.8 JSON
A.8.1 JSON Lexical Grammar

JSONWhiteSpace ::
<TAB>
<CR>

© Ecma International 2013

See 15.10.1

See 15.10.1

See 15.10.1

See 15.10.1

See 15.10.1

See 15.10.1

See 15.10.1

See 15.10.1

See 15.10.1

See 15.10.1

See 15.12.1.1

449

secmd

<LF>
<SP>

JSONString :: See 15.12.1.1
" JSONStringCharactersopt "

JSONStringCharacters :: See 15.12.1.1
JSONStringCharacter JSONStringCharactersopt

JSONStringCharacter :: See 15.12.1.1
SourceCharacter but not one of " or \ or U+0000 through U+001F
\ JSONEscapeSequence

JSONEscapeSequence :: See 15.12.1.1
JSONEscapeCharacter
UnicodeEscapeSequence

JSONEscapeCharacter :: one of See 15.12.1.1

"/ \bfnrt

JSONNumber :: See 15.12.1.1
-opt DecimalintegerLiteral JSONFractiong,: ExponentPartopt

JSONFraction :: See 15.12.1.1
. DecimalDigits

JSONNullILiteral :: See 15.12.1.1
NullLiteral

JSONBooleanLiteral :: See 15.12.1.1

BooleanLiteral

A.8.2 JSON Syntactic Grammar

JSONText : See 15.12.1.2
JSONValue
JSONValue : See 15.12.1.2

JSONNullLiteral
JSONBooleanLiteral
JSONODbject
JSONArray
JSONString
JSONNumber

JSONODbject : See 15.12.1.2
{1}
{ JSONMemberList}

JSONMember : See 15.12.1.2
JSONString : JSONValue

JSONMemberlList : See 15.12.1.2
JSONMember
JSONMemberList , JSONMember

JSONArray : See 15.12.1.2

[1
[JSONElementList]

450 © Ecma International 2013

% N , t
¥ | - S
N S N

i INTERNATIONAL

JSONElementList : See 15.12.1.2
JSONValue
JSONElementList , JSONValue

© Ecma International 2013 451

452 © Ecma International 2013

pecma

Annex B
(normative)

Additional ECMAScript Features for Web Browsers

The ECMAScript language syntax and semantics defined in this annex are required when the ECMAScript
host is a web browser. The content of this annex is normative but optional if the ECMAScript host is not a web
browser.

B.1 Additional Syntax
B.1.1 Numeric Literals

The syntax and semantics of 11.8.3 is extended as follows except that this extension is not allowed for strict
mode code:

Syntax

NumericLiteral ::
DecimalLiteral
BinarylntegerLiteral
OctallntegerLiteral
HexIntegerLiteral
LegacyOctallntegerLiteral

LegacyOctallntegerLiteral ::
0 OctalDigit
LegacyOctallntegerLiteral OctalDigit

Static Semantics

e The MV of LegacyOctallntegerLiteral :: 0 OctalDigit is the MV of OctalDigit.

e The MV of LegacyOctallntegerLiteral LegacyOctallntegerLiteral OctalDigit is (the MV of
LegacyOctallntegerLiteral times 8) plus the MV of OctalDigit.

B.1.2 String Literals

The syntax and semantics of 11.8.4 is extended as follows except that this extension is not allowed for strict
mode code:

Syntax

EscapeSequence ::
CharacterEscapeSequence
OctalEscapeSequence
HexEscapeSequence
UnicodeEscapeSequence

OctalEscapeSequence ::
OctalDigit [lookahead ¢ DecimalDigit]
ZeroToThree OctalDigit [lookahead ¢ DecimalDigit]
FourToSeven OctalDigit
ZeroToThree OctalDigit OctalDigit

ZeroToThree :: one of
01 2 3

© Ecma International 2013 453

Commented [AW197]: Need to add new material that is not
in previous verions of annex B

secmd

FourToSeven :: one of
4 5 6 7

Static Semantics

. The CV of EscapeSequence :: OctalEscapeSequence is the CV of the OctalEscapeSequence.

. The CV of OctalEscapeSequence :: OctalDigit [lookahead ¢ DecimalDigit] is the character whose code unit
value is the MV of the OctalDigit.

. The CV of OctalEscapeSequence :: ZeroToThree OctalDigit [lookahead ¢ DecimalDigit] is the character whose
code unit value is (8 times the MV of the ZeroToThree) plus the MV of the OctalDigit.

. The CV of OctalEscapeSequence :: FourToSeven OctalDigit is the character whose code unit value is (8

times the MV of the FourToSeven) plus the MV of the OctalDigit.

. The CV of OctalEscapeSequence :: ZeroToThree OctalDigit OctalDigit is the character whose code unit
value is (64 (that is, 82) times the MV of the ZeroToThree) plus (8 times the MV of the first OctalDigit)
plus the MV of the second OctalDigit.

. The MV of ZeroToThree :: 0 is 0.
. The MV of ZeroToThree :: 1is 1.
. The MV of ZeroToThree :: 2 is 2.
. The MV of ZeroToThree :: 3is 3.
. The MV of FourToSeven :: 4 is 4.
. The MV of FourToSeven :: 5is 5.
. The MV of FourToSeven :: 6 is 6.
. The MV of FourToSeven :: 7is 7.

B.1.3 HTML-like Comments

TODO See http://javascript.spec.whatwg.org/#comment-syntax

B.2 Additional Properties

When the ECMAScript host is a web browser the following additional properties of the standard built-in
objects are defined.

B.2.1 Additional Properties of the Global Object
B.2.1.1 escape(string)

The escape function is a property of the global object. It computes a new version of a String value in which
certain characters have been replaced by a hexadecimal escape sequence.

For those characters being replaced whose code unit value is 0xFF or less, a two-digit escape sequence of
the form %$xx is.used. For those characters being replaced whose code unit value is greater than 0xFF, a four-
digit escape sequence of the form $uxxxx is used.

When the escape function is called with one argument string, the following steps are taken:

Let string be ToString(string).

ReturnlfAbrupt(string).

Let length be the number of code units in string.

Let R be the empty string.

Let k be 0.

Repeat, while k < length,

a. Let char be the code unit (represented as a 16-bit unsigned integer) at position k within string.

b. If char is the code point of one of the 69 nonblank characters
"ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopgrstuvwxyz0123456789@*_+-./"
then,
i. LetS be a String containing the single character char.

gk wn e

454 © Ecma International 2013

http://javascript.spec.whatwg.org/#comment-syntax

secma

c. Elseif char > 256,
i. LetS be a String containing six characters "$uwxyz " where wxyz are four hexadecimal digits
encoding the value of char.
d. Else, char < 256
i. LetS be a String containing three characters "%xy " where xy are two hexadecimal digits encoding
the value of char.
e. LetR be anew String value computed by concatenating the previous value of R and S.
f. Increase k by 1.
7. ReturnR..

NOTE The encoding is partly based on the encoding described in RFC 1738, but the entire encoding specified in this
standard is described above without regard to the contents of RFC 1738. This encoding does not reflect changes to RFC
1738 made by RFC 3986.

B.2.1.2 unescape (string)

The unescape function is a property of the global object. It computes @ new version of a String value in which
each escape sequence of the sort that might be introduced by the escape function is replaced with the
character that it represents.

When the unescape function is called with one argument string, the following steps are taken:

1. Let string be ToString(string).
2. ReturnIfAbrupt(string).
3. Let length be the number of code units in string.
4. LetR be the empty String.
5. LetkbeO.
6. Repeat, while k # length
a. Letc be the code unit at position k within string.
b. Ifcis%,
i. If k <length—6 and the code unit at position k+1 within string is u and the four code units at
positions k+2, k+3,k+4, and k+5 within string are all hexadecimal digits, then
1. Letc be thecode unit whose value is the integer represented by the four hexadecimal digits at
positions k+2, k+3, k+4, and k+5 within string.
2. Increase k by 5.
ii. Else if k < length—3 and the two code units-at positions k+1 and k+2 within string are both
hexadecimal digits, then
1. Letcbe the code unit whose value is the integer represented by two zeroes plus the two
hexadecimal digits at positions k+1 and k+2 within string.
2. Increase k by 2.
c.© Let R be a new String value computed by concatenating the previous value of R and c.
d. Increase k by 1.
7. Return R.

B.2.2 Additional Properties of the Object.prototype Object
B.2.2.1 Object.prototype._ proto___

Object.prototype.__proto__ is an accessor property with attributes { [[Enumerable]]: false, [[Configurable]]:
true }. The [[Get]] and [[Set]] attributes are defined as follows

B.2.2.1.1 get Object.prototype.__proto__

The value of the [[Get]] attribute is a built-in function that requires no arguments. It performs the following
steps:

1. Let O be the result of calling ToObject passing the this value as the argument.

2. ReturnIfAbrupt(O).
3. Return the result of calling the [[GetPrototypeOf]] internal method of O.

© Ecma International 2013 455

secmd

B.2.2.1.2 set Object.prototype.__proto___

The value of the [[Set]] attribute is a built-in function that takes an argument proto. It performs the following
steps:

1. Let O be CheckObjectCoercible(this value).

2. ReturnlfAbrupt(O).

3. If Type(proto) is neither Object or Null, then return proto.

4. 1f Type(O) is not Object, then return proto.

5. Let status be the result of calling the [[SetPrototypeOf]] internal method of O with argument proto.
6. ReturnlfAbrupt(status).

7. If status is false, then throw a TypeError exception.

8. Return proto.

B.

2.3 Additional Properties of the String.prototype Object
B.2.3.1 String.prototype.substr (start, length)

The substr method takes two arguments, start and length, and returns a substring of the result of converting
the this object to a String, starting from character position start and running for length characters (or through
the end of the String if length is undefined). If start is negative, it is treated as (sourceLength+start) where
sourceLength is the length of the String. The result is a String value, not a String object. The following steps are
taken:

Let O be CheckObjectCoercible(this value).

Let S be ToString(O).

Let intStart be Tolnteger(start).

ReturnlfAbrupt(intStart).

If length is undefined, let end be +oo; otherwise let end be Tolnteger(length).

ReturnlfAbrupt(end).

Let size be the number of characters in S.

If intStart is negative, then et intStart.be max(size + intStart,0).

Let resultLength be min(max(end,0), size — intStart).

0. If resultLength < 0, return the empty String " ".

1. Return a String containing resultLength consecutive characters from S beginning with the character at
position intStart.

HBooNGOAMWNE

The length property of the substr method is 2.

NOTE The substr function is intentionally generic; it does not require that its this value be a String object.
Therefore it can be transferred to other kinds of objects for use as a method.

B.2.3.2 String.prototype.anchor (name)
When the anchor method is called with argument name, the following steps are taken:

1. LetS be the this value:
2. Return the result of performing the abstract operation CreateHTML with arguments S, "a", "name" and
name.

The abstract operation CreateHTML is called with arguments string, tag, attribute, and value. The arguments tag
and attribute must be string values. The following steps are taken:

Let str be CheckObjectCoercible(string).
Let S be ToString(str).
ReturnlfAbrupt(S).
Let p1 be the string value that is the concatenation of "<" and tag.
If attribute is not the empty String, then
a. LetV be the result of performing ToString(value).

arwNE

456 © Ecma International 2013

secma

b. ReturnIfAbrupt(V).
c. LetescapedV be the string value that is the same as V except that each occurrence of the character "
(code unit value 0x0022) in V has been replaced with the six character sequence " "".
d. Let pl be the string value that is the concatenation of the following string values:
° pl
e asingle space code unit 0x0020
e attribute
L]

o 1M1
o escapedV
o M1
Let p2 be the string value that is the concatenation of pl and ">".
Let p3 be the string value that is the concatenation of p2 and S.
Let p4 be the string value that is the concatenation of p2, "</", tag, and ">".
Return p4.

© ® N o

B.2.3.3 String.prototype.big ()
When the big method is called with no arguments, the following steps are taken:

1. LetS be the this value.
2. Return the result of performing the abstract operation CreateHTML with arguments S, "big", "" and "".

B.2.3.4 String.prototype.blink ()
When the blink method is called with no arguments, the following steps are taken:

1. LetS be the this value.
2. Return the result of performing the abstract operation CreateHTML with arguments S, "blink", "" and

nn

B.2.3.5 String.prototype:bold ()
When the bold method is called with no arguments, the following steps are taken:

1. LetS be the this value.
2. Return the result of performing the abstract operation CreateHTML with arguments S, "b", "" and "".

B.2.3.6 ~String.prototype.fixed ()
When the fixed method is called with no arguments, the following steps are taken:

1. Let S be the this value.
2. Return the result of performing the abstract operation CreateHTML with arguments S, "tt", "" and "".

B.2.3.7 String.prototype.fontcolor (color)

When the fontcolor method is called with argument color, the following steps are taken:

1. LetS be the this value.

2. Return the result of performing the abstract operation CreateHTML with arguments S, "font", "color"
and color.

B.2.3.8 String.prototype.fontsize (size)

When the fontsize method is called with argument size, the following steps are taken:

1. LetS be the this value.

© Ecma International 2013 457

secmd

2. Return the result of performing the abstract operation CreateHTML with arguments S, "font", "size"
and size.

B.2.3.9 String.prototype.italics ()
When the italics method is called with no arguments, the following steps are taken:

1. LetS be the this value.
2. Return the result of performing the abstract operation CreateHTML with arguments S, "i", "" and "".

B.2.3.10 String.prototype.link (url)

When the link method is called with argument url, the following steps are taken:

1. LetS be the this value.

2. Return the result of performing the abstract operation CreateHTML with arguments S, "a", "hre£" and
url.

B.2.3.11 String.prototype.small ()

When the small method is called with no arguments, the following steps are taken:

1. LetS be the this value.
2. Return the result of performing the abstract operation CreateHTML with arguments S, "smal1l", "" and

B.2.3.12 String.prototype.strike ()
When the strike method is called with no arguments, the following steps are taken:

1. LetS be the this value.
2. Return the result of performing the abstract operation CreateHTML with arguments S, "strike", "" and

nwn

B.2.3.13 String.prototype.sub ()
When the sub method is called with no arguments, the following steps are taken:

1. LetS be the this value.
2. Return the result of performing the abstract operation CreateHTML with arguments S, "sub", "" and " ".

B.2.3.14 String.prototype.sup ()
When the sup method is called with no arguments, the following steps are taken:

1. LetS be the thisvalue.
2. Return the result of performing the abstract operation CreateHTML with arguments S, "sup", "" and " ".

B.2.4 Additional Properties of the Date.prototype Object

B.2.4.1 Date.prototype.getYear ()

NOTE The getFullYear method is preferred for nearly all purposes, because it avoids the “year 2000 problem.”
When the getYear method is called with no arguments, the following steps are taken:

1. Lett be this time value.

2. ReturnlfAbrupt(t).
3. Iftis NaN, return NaN.

458 © Ecma International 2013

pecma

4. Return YearFromTime(LocalTime(t)) — 1900.

B.2.4.2 Date.prototype.setYear (year)

NOTE The setFullYear method is preferred for nearly all purposes, because it avoids the “year 2000 problem.”
When the setYear method is called with one argument year, the following steps are taken:

Let t be the result of LocalTime(this time value); but if this time value is NaN, let t be +0.

Let y be ToNumber(year).

Ify is NaN, set the [[DateValue]] internal data property of this Date object to NaN and return NaN.

Ify is not NaN and 0 < Tolnteger(y) < 99 then let yyyy be Tolnteger(y) + 1900. Otherwise, let yyyy be y.
Let d be MakeDay(yyyy, MonthFromTime(t), DateFromTime(t)).

Let date be UTC(MakeDate(d, TimeWithinDay(t))).

Set the [[DateValue]] internal data property of this Date object to TimeClip(date).

Return the value of the [[DateValue]] internal data property of this Date object.

XN A WN P

B.2.4.3 Date.prototype.toGMTString ()

NOTE The property toUTCString is preferred. The toGMTString property is provided principally for compatibility
with old code. It is recommended that the toUTCString property be used in new ECMAScript code.

The Function object that is the initial value of Date . prototype. toGMTString is the same Function object
that is the initial value of Date.prototype. toUTCString.

B.2.5 Additional Properties of the RegEXp.prototype Object
B.2.5.1 RegExp.prototype.compile (pattern, flags)
When the compile method is called with arguments pattern and flags, the following steps are taken:

1. Let O be the this value.
2. If Type(O) is not Object or Type(O) is Object and O does not have a [[RegExpMatcher]] internal data
property, then
a. Throw a TypeError exception.
Let extensible be the result of calling the [[IsExtensible]] internal method of O.
4. If extensible is false, then throw a TypeError exception.
5. If Type(pattern) is Object and pattern has a [[RegExpMatcher]] internal data property, then
a. < If the value of partern’s [[RegExpMatcher]] internal data property is undefined, then throw a
TypeError exception.
b. If flags is not undefined, then throw a TypeError exception.
C.. Let P be the value of pattern’s [[OriginalSource]] internal data property.
d. Let F be the value of pattern’s [[OriginalFlags]] internal data property.
6. Else,
a. let P be pattern.
b. let F beflags.
7. Return the result of the abstract operation RegExplnitialise with arguments O, P, and F.

w

NOTE The compile method completely reinitialised the this object RegExp with a new pattern and flags. An
implementaton may interpret use of this method as an assertion that the resulting RegExp object will be used multiple
times and hence is a candidate for extra optimization.

B.3 Other Additional Features
B.3.1 _ proto___ Property Names in Object Initialisers

In 12.1.5 the PropertyDefinitionEvaluation algorithm for the production PropertyDefinition : PropertyName :
AssignmentExpression is replaced with the following:

© Ecma International 2013 459

&

ecma

PropertyDefinition : PropertyName : AssignmentExpression

gk wn e

8.

9.

B.3

Prio

Let propKey be the result of evaluating PropertyName.
ReturnlfAbrupt(propKey).
Let exprValue be the result of evaluating AssignmentExpression.
Let propValue be GetValue(exprValue).
ReturnlfAbrupt(propValue).
If propKey is the string value "__proto__ " and if IsComputedPropertyName(propKey) is false, then
a. If Type(v) is either Object or Null, then
i Return the result of calling the [[SetPrototypeOf]] internal method of object with argument
propValue.
b. Return NormalCompletion(empty).
If the source code corresponding to PropertyDefinition is strict code and if
IsComputedPropertyName(propKey) is true, then
a. LetduplicateKey be the result of HasOwnProperty(object, propKey).
b. ReturnIfAbrupt(duplicateKey).
c. IfduplicateKey is true, then throw a TypeError exception.
Let desc be the Property Descriptor{[[Value]]: propValue, [[Writable]]: true, [[Enumerable]]: true,
[[Configurable]]: true}
Return the result of DefinePropertyOrThrow(object, propKey, desc).

.2 Web Legacy Compatibility for Block-Level'Function Declarations

r to the Sixth Edition, the ECMAScript specification did not define the occurrence of a FunctionDeclaration

as an element of a Block statement’s StatementList. However, support for that form of FunctionDeclaration was
an allowable extension and most browser-hosted ECMAScript implementations permitted them. However, the

sem
exis
impl
impl
sem

1.

2.

antics of such declarations differ among those implementations. Because of these semantic differences,
ting web ECMAScript code that uses Block level function declarations:is only portable among browser
ementation if the usage only depends' upon the semantic intersection of all of the browser
ementations for such declarations. The following are the use cases that fall within that intersection
antics:

A function is declared and only referenced within @ single block
e A function declaration with the name f is declared exactly once within the function code of an
enclosing function g and that declaration is nested within a Block.
e No other declaration of fthat is not a vax declaration occurs within the function code of g
e All references to f occur within the StatementList of the Block containing the declaration of f.

A function is declared and possibly used within a single Block but also referenced by an inner function
definition that is not contained within that same Block.
e A function declaration with the name f is declared exactly once within the function code of an
enclosing function g and that declaration is nested within a Block.
e No other declaration of f that is not a var declaration occurs within the function code of g
e References to f may occur within the StatementList of the Block containing the declaration of f.
* References to f.occur within the function code of g that lexically follows the Block containing the
declaration of f.

3. A function is declared and possibly used within a single block but also referenced within subsequent

460

blocks.

e A function declaration with the name f is declared exactly once within the function code of an
enclosing function g and that declaration is nested within a Block.

e No other declaration of f that is not a var declaration occurs within the function code of g

e References to f may occur within the StatementList of the Block containing the declaration of f.

e References to f occur within another function h that is nested within g and no other declaration of f
shadows the references to f from within h.

e Allinvocations of h occur after the declaration of f has been evaluated.

© Ecma International 2013

secma

The first use case is interoperable with the inclusion of Block level function declarations in the sixth edition.
Any pre-existing ECMAScript code that employees that use case will operate using the Block level function
declarations semantics defined by clauses 10 and 13 of this specification.

Sixth edition interoperability for the second and third use cases requires the following extensions to the
clauses 10 and 14 semantics. These extensions are applied to a non-strict mode functions g if the above pre-
conditions of use cases 2 and 3 above exist at the time of static semantic analysis of g. However, the last pre-
condition of use case 3 is not included in this determination and the determination is not applied to any
function declaration that is nested within syntactic constructs that are specified in the Fifth edition of this
specification.

1. Let B be environment record for the construct within g that introduces a new environment contour and which most
closely encloses the declaration of f, all function code references to f, and the definitions of all nested functions that
contain unshadowed references to f. This syntactic construct may be the definition of g itself, in which case B is the
function environment record for g.

2. As part of the instantiation of B, its CreateMutableBinding concrete method is called with arguments “f” (the string
name of the function) and false. This creates an uninitialised binding for the name f. Any reference that resolves to
that binding prior to step 3 below will throw a ReferenceError exception.

3. When the InitialiseBinding concrete method is used to initialise the binding for the function declaration f also invoke
InitialiseBind on B using the same arguments.

If an ECMAScript implication has a mechanism that produces diagnostic warning messages, a warning should be
produced for each function g for which the above steps are performed:

© Ecma International 2013 461

The strict mode restriction and exceptions]

462

secmd

Annex C
(informative)

The Strict Mode of ECMAScript

C ed [AWB18198]: This entire section needs to be

The identifiers "implements", "interface", "let", "package”, "private”, "protected"’,
"public", "static", and "yield" are classified as FutureReservedWord tokens within strict
mode code. (11.6.2.2).

A conforming implementation, when processing strict mode code, may not extend the syntax
of NumericLiteral (11.8.3) to include LegacyOctallntegerLiteral as described in B.1.1.

A conforming implementation, when processing strict mode code (see 10.2.1), may not
extend the syntax of EscapeSequence to include LegacyOctalEscapeSequence as described in
B.1.2.

Assignment to an undeclared identifier or otherwise unresolvable reference does not create a
property in the global object. When a simple assignment 'occurs within strict mode code, its
LeftHandSide must not evaluate to an unresolvable Reference. If it does a ReferenceError
exception is thrown (6.2.4.2). The LeftHandSide also may not be a reference to a data property
with the attribute value {[[Writable]]:false}, to an accessor property with the attribute value
{[[Set]]:undefined}, nor to a non-existent property of an object whose [[Extensible]] internal
data property has the value false. In these cases a TypeError exception is thrown (12.13).

The identifier eval or arguments may not appear as the LeftHandSideExpression of an
Assignment operator (12.13) or of a PostfixExpression (12.13) or as the UnaryExpression
operated upon by a Prefix Increment (12.4:6) or a Prefix Decrement (12.4.7) operator.

Arguments objects for strict mode functions define non-configurable accessor properties
named "caller" and "callee” which throw a TypeError exception on access (9.1.16.9).

Arguments objects for strict mode functions do not dynamically share their array indexed
property values with the corresponding formal parameter bindings of their functions. (9.2.4.1).

For strict. mode functions, if an arguments object is created the binding of the local identifier
arguments to the arguments object is immutable and hence may not be the target of an
assignment expression. (9.1.16.11).

It is a SyntaxError if strict mode code contains an ObjectLiteral with more than one definition
of any data property (12.1.5).

It is.a SyntaxError if the Identifier "eval" or the ldentifier "arguments" occurs as the
Identifier in a PropertySetParameterList of a PropertyDefinition that is contained in strict code or
if its FunctionBody is strict code (12.1.5).

Strict mode eval code cannot instantiate variables or functions in the variable environment of
the caller to eval. Instead, a new variable environment is created and that environment is
used for declaration binding instantiation for the eval code (18.2.1).

If this is evaluated within strict mode code, then the this value is not coerced to an object. A
this value of null or undefined is not converted to the global object and primitive values are
not converted to wrapper objects. The this value passed via a function call (including calls
made using Function.prototype.apply and Function.prototype.call) do not
coerce the passed this value to an object (8.3.2, 12.1.1, 19.2.3.3, 19.2.3.1).

When a delete operator occurs within strict mode code, a SyntaxError is thrown if its
UnaryExpression is a direct reference to a variable, function argument, or function
name(12.4.3).

© Ecma International 2013

updated to include strict mode restrictions that apply to new
ES6 features.

pecma

e When a delete operator occurs within strict mode code, a TypeError is thrown if the
property to be deleted has the attribute { [[Configurable]]:false } (12.4.3).

e Itis a SyntaxError if a VariableDeclaration or VariableDeclarationNoln occurs within strict code
and its Identifier is eval or arguments (13.2.2).

e Strict mode code may not include a WithStatement. The occurrence of a WithStatement in such
a context is an SyntaxError (13.10).

e |tis a SyntaxError if a TryStatement with a Catch occurs within strict code and the Identifier of the
Catch production is eval or arguments (13.14)

e Itis a SyntaxError if the identifier eval or arguments appears within.the FormalParameters of a
strict mode FunctionDeclaration or FunctionExpression (0)

e A strict mode function may not have two or more formal parameters that have the same
name. An attempt to create such a function using a FunctionDeclaration, FunctionExpression, or
Function constructor is a SyntaxError (0, 19.2.1).

e An implementation may not extend, beyond that defined in this specification, the meanings
within strict mode functions of properties named caller or arguments of function
instances. ECMAScript code may not create .or modify properties with these names on
function objects that correspond to strict mode functions (9.1.16.3, 9.1.16.4, 9.2.4).

e Itis a SyntaxError to use within strict mode code the identifiers eval or arguments as the
Identifier of a FunctionDeclaration or FunctionExpression or as a formal parameter name (0).
Attempting to dynamically define such a strict mode function using the Function constructor
(19.2.1) will throw a SyntaxError exception.

© Ecma International 2013 463

secmd

Annex D
(informative)
Corrections and Clarifications with Possible Compatibility Impact

In Edition 6

15.9.1.14: Previous editions permitted the TimeClip abstract operation to return either +0 or -0 as the
representation of a O time value. The 6% Edition specifies that +0 always returned. This means that for the 6
Edition the time value of a Date object is never observably —0 and methods that return time values never
return 0.

15.9.1.15: If a time zone offset is not present, the local time zone is used. Edition 5.1.incorrectly stated that a

missing time zone should be interpreted as “z”.

15.9.5.2: Previous editions did not specify the value returned by Date.prototype.toString when this time value
is NaN. The 6 Edition specifies the result to be the String value is "Invalid Date"

In Edition 5.1
Clause references in this list refer to the clause number using in Edition 5.1.

7.8.4: CV definitions added for DoubleStringCharacter :: LineContinuation and SingleStringCharacter ::
LineContinuation.

10.2.1.1.3: The argument S is not ignored. It controls whether an exception is thrown when attempting to set
an immutable binding.

10.2.1.2.2: In algorithm step 5, true is passed as the last argument to [[DefineOwnProperty]].

10.5: Former algorithm step 5.e is now 5.f and a new step 5.e was added to restore compatibility with 3rd
Edition when redefining global functions.

11.5.3: In the final bullet item, use of IEEE 754 round-to-nearest mode is specified.
12.6.3: Missing ToBoolean restored in step 3.a.ii of both algorithms.

12.6.4: Additional final sentences in each of the last two paragraphs clarify certain property enumeration
requirements.

12.7, 12.8, 12.9: BNF modified to clarify that a continue or break statement without an Identifier or a
return statement without an Expression may have a LineTerminator before the semi-colon.

12.14: Step 3 of algorithm 1 and step 2.a of algorithm 3 are corrected such that the value field of B is passed
as a parameter rather than B itself.

15.1.2.2: In step 2 of algorithm, clarify that S may be the empty string.

15.1.2.3: In step 2 of algorithm clarify that trimmedString may be the empty string.

15.1.3: Added notes clarifying that ECMAScript's URI syntax is based upon RFC 2396 and not the newer
RFC 3986. In the algorithm for Decode, a step was removed that immediately preceded the current step

4.d.vii.10.a because it tested for a condition that cannot occur.

15.2.3.7: Corrected use of variable P in steps 5 and 6 of algorithm.

464 © Ecma International 2013

pecma

15.2.4.2: Edition 5 handling of undefined and null as this value caused existing code to fail. Specification
modified to maintain compatibility with such code. New steps 1 and 2 added to the algorithm.

15.3.3.3: Steps 5 and 7 of Edition 5 algorithm have been deleted because they imposed requirements upon
the argArray argument that are inconsistent with other uses of generic array-like objects.

15.4.3.12: In step 9.a, incorrect reference to relativeStart was replaced with a reference to actualStart.
15.4.3.15: Clarified that the default value for fromIndex is the length minus 1 of the array.

15.4.3.18: In step 10 (corresponding to step 8 in 5.1) of the algorithm, undefined is now the specified return
value.

15.4.3.22: In step 11.d.iii (corresponding to 9.c.ii in 5.1) the first argument to the [[Call]] internal method has
been changed to undefined for consistency with the definition of Array.prototype.reduce.

15.4.5.1: In Algorithm steps 3.l.ii and 3.L.iii the variable name was inverted resulting in an incorrectly inverted
test.

15.5.4.9: Normative requirement concerning canonically equivalent strings deleted from paragraph following
algorithm because itis listed as a recommendation in NOTE 2.

15.5.4.14: In split algorithm step 11.a and 13.a, the positional order of the arguments to SplitMatch was
corrected to match the actual parameter signature of SplitMatch. Instep 13.a.iii.7.d, lengthA replaces A.length.

15.5.5.2: In first paragraph, removed the implication that the individual character property access had “array
index” semantics. Modified algorithm steps 3 and 5 such that they do not enforce “array index” requirement.

15.9.1.15: Specified legal value ranges for fields that lacked them. Eliminated “time-only” formats. Specified
default values for all optional fields.

15.10.2.2: The step numbers of the algorithm for the internal closure produced by step 2 were incorrectly
numbered in a manner that implied that they were steps of the outer algorithm.

15.10.2.6: In the abstract operation IsWordChar the first character in the list in step 3 is “a” rather than “a”.
15.10.2.8: In the algorithm for the closure returned by the abstract operation CharacterSetMatcher, the
variable defined by step 3 and passed as an argument in step 4 was renamed to ch in order to avoid a name
conflict with a formal parameter of the closure.

15.10.6.2: Step 9.e was deleted because It performed an extra increment of i.

15.11.1.1: Removed requirement that the message own property is set to the empty String when the message
argument is undefined.

15.11.1.2: Removed requirement that the message own property is set to the empty String when the message
argument is undefined.

15.11.4.4: Steps 6-10 modified/added to correctly deal with missing or empty message property value.

15.11.1.2: Removed requirement that the message own property is set to the empty String when the message
argument is undefined.

15.12.3: In step 10.b.iii of the JA abstract operation, the last element of the concatenation is “1”.
B.2.1: Added to NOTE that the encoding is based upon RFC 1738 rather than the newer RFC 3986.

Annex C: An item was added corresponding to 7.6.12 regarding FutureReservedWords in strict mode.

© Ecma International 2013 465

secmd

In Edition 5
Clause references in this list refer to the clause number using in Edition 5.1.

Throughout: In the Edition 3 specification the meaning of phrases such as “as if by the expression new
Array ()" are subject to misinterpretation. In the Edition 5 specification text for all internal references and
invocations of standard built-in objects and methods has been clarified by making it explicit that the intent is
that the actual built-in object is to be used rather than the current dynamically resolved value of the
correspondingly identifier binding.

11.8.1: ECMAScript generally uses a left to right evaluation order, however the Edition 3 specification
language for the > and <= operators resulted in a partial right to left order. The specification has been
corrected for these operators such that it now specifies a full left to right evaluation order. However, this
change of order is potentially observable if side-effects occur during the evaluation process.

11.1.4: Edition 5 clarifies the fact that a trailing comma at the end of.an Arraylnitialiser does not add to the
length of the array. This is not a semantic change from Edition.3 but some implementations may have
previously misinterpreted this.

11.2.3: Edition 5 reverses the order of steps 2 and 3 of the algorithm. The original order as specified in
Editions 1 through 3 was incorrectly specified such that side-effects of evaluating Arguments could affect the
result of evaluating MemberExpression.

12.4: In Edition 3, an object is created, as if by new Object ()to serve as the scope for resolving the name of
the exception parameter passed to a catch clause of a try statement. If the actual exception object is a
function and it is called from within the catch clause, the scope object will be passed as the this value of the
call. The body of the function can then define new properties on its this value and those property names
become visible identifiers bindings within the scope of the catch clause after the function returns. In Edition 5,
when an exception parameter is called as a function, undefined is passed as the this value.

13: In Edition 3, the algorithm for the production FunctionExpression with an Identifier adds an object created as
if by new Object () to the'scope chain to serve as a scope for looking up the name of the function. The
identifier resolution rules(10.1.4 in Edition 3) when applied to such an object will, if necessary, follow the
object’s prototype chain when attempting to resolve an identifier. This means all the properties of
Object.prototype are visible as identifiers-within that scope. In practice most implementations of Edition 3
have not implemented this semantics. Edition 5 changes the specified semantics by using a Declarative
Environment Record to bind the name of the function.

14: In Edition 3, the algorithm for the production SourceElements : SourceElements SourceElement did not correctly
propagate statement result values in the same manner as Block. This could result in the eval function
producing an incorrect result when evaluating a Program text. In practice most implementations of Edition 3
have implemented the correct propagation rather than what was specified in Edition 5.

15.10.6: RegExp.prototype is now a RegExp object rather than an instance of Object. The value of its [[Class]]

internal data property which is observable using Object.prototype.toString is now “RegExp” rather than
“Object”.

466 © Ecma International 2013

B INTERNATIONAL

© Ecma International 2013 467

secmd

Annex E
(informative)

Additions and Changes that
Introduce Incompatibilities with Prior Editions

E.1 Inthe 6" Edition
12.2.4: In Edition 6, Function calls are not allowed to return a Reference value.
13.6: In Edition 6, a terminating semi-colon is no longer required at the end of a do-while statement.

13.6: Prior to Edition 6, an initialisation expression could appear as part of the VariableDeclaration that
precedes the in keyword. The value of that expression was always discarded. In Edition 6, the ForBind in that
same position does not allow the occurance of such an initialiser.

13.14: In Edition 6, it is an early error for a Catch clause to contained a var declaration for the same Identifier
that appears as the Catch clause parameter. In previous editions, such a variable declaration would be
instantiated in the enclosing variable environment but the declaration’s Initialiser value would be assigned to
the Catch parameter.

14.3 In Edition 6, the function objects that are created as the values of the [[Get]] or [[Set]] attribute of
accessor properties in an ObjectLiteral are not constructor functions. In Edition 5, they were constructors.

19.1.3.2 and 19.1.3.3: In Edition 6, all property additions and changes are processed, even if one of them
throws an exception. If an exception occurs during such processing, the first such exception is thrown after all
propertie are processed. In Edition 5, processing of property additions and changes immediately terminated
when the first exception occurred.

19.1.3.5: In Edition 6, if the argument to Object. freeze is not an object it is treated as if it was a non-
extensible ordinary object with no own properties. In Edition 5, a non-object argument always causes a
TypeError to be thrown.

19.1.3.6: In Edition 6, if the argument to Object.getOwnPropertyDescriptor is not an object an attempt
is make to'coerce the argument using. ToObject. If the coerecion is successful the result is used in place of
the original argument value. In Edition 5, a non-object argument always causes a TypeError to be thrown.

19.1.3.7: In Edition 6, if the argument t0 Object.getOwnPropertyNames is not an object an attempt is
make to coerce the argument using ToObject. If the coerecion is successful the result is used in place of the
original argument value. In Edition 5, a non-object argument always causes a TypeError to be thrown.

19.1.3.10: In Edition 6, if the argument to Object.getPrototypeOf is not an object an attempt is make to
coerce the argument using ToObject. If the coerecion is successful the result is used in place of the original
argument value. In Edition 5, a non-object argument always causes a TypeError to be thrown.

19.1.3.12: In Edition 6, if the argument to Object.isExtensible is not an object it is treated as if it was a
non-extensible ordinary object with no own properties. In Edition 5, a non-object argument always causes a
TypeError to be thrown.

19.1.3.13: In Edition 6, if the argument to Object.isFrozen is not an object it is treated as if it was a non-

extensible ordinary object with no own properties. In Edition 5, a non-object argument always causes a
TypeError to be thrown.

468 © Ecma International 2013

pecma

19.1.3.14: In Edition 6, if the argument to Object.isSealed is not an object it is treated as if it was a non-
extensible ordinary object with no own properties. In Edition 5, a non-object argument always causes a
TypeError to be thrown.

19.1.3.15: In Edition 6, if the argument to Object.keys is not an object an attempt is make to coerce the
argument using ToObject. If the coerecion is successful the result is used in place of the original argument
value. In Edition 5, a non-object argument always causes a TypeError to be thrown.

19.1.3.17: In Edition 6, if the argument to Object.preventExtensions is not an object it is treated as if it
was a non-extensible ordinary object with no own properties. In Edition 5, a non-object argument always
causes a TypeError to be thrown.

19.1.3.19: In Edition 6, if the argument to Object.seal is not an object itiis treated as if it was a non-
extensible ordinary object with no own properties. In Edition 5, a non-object argument always causes a
TypeError to be thrown.

19.2.4.1: In Edition 6, the 1length property of function instances is configurable. ‘In previous editions it was
non-configurable.

19.3.3 In Edition 6, the Boolean prototype object is not a Boolean instance. In previous editions it was a
Boolean instance whose Boolean value was false.

20.1.3 In Edition 6, the Number prototype object is not a Number.instance. In previous editions it was a
Number instance whose number value was +0.

20.3.4 In Edition 6, the Date prototype object is not a Date instance.. In previous editions it was a Date
instance whose TimeValue was NaN.

22.1.3 In Edition 6, the Array prototype object is not an Array instance. In previous editions it was an Array
instance with a length property whose value was +0.

21.1.3 In Edition 6, the String prototype object is not a String instance. In previous editions it was a String
instance whose String value was the empty string.

21.2.5 In Edition 6, the RegExp prototype-object is not a RegExp instance. In previous editions it was a
RegExp instance whose pattern is the empty string.

21.2.5 In Edition 6, source, global, ignoreCase, and multiline are accessor properties defined on the
RegExp prototype object. In previous editions they were data properties defined on RegExp instances.

22.1.3 In Edition 6, the Array prototype object is not an Array instance. In previous editions it was an Array
instance with a length property whose value was +0.

E.2 In the 5" Edition

Clause references in this list refer to the clause number using in Edition 5.1.

7.1: Unicode format control characters are no longer stripped from ECMAScript source text before processing.
In Edition 5, if such a character appears in a StringLiteral or RegularExpressionLiteral the character will be

incorporated into the literal where in Edition 3 the character would not be incorporated into the literal.

7.2: Unicode character <BOM> is now treated as whitespace and its presence in the middle of what appears
to be an identifier could result in a syntax error which would not have occurred in Edition 3

7.3: Line terminator characters that are preceded by an escape sequence are now allowed within a string
literal token. In Edition 3 a syntax error would have been produced.

© Ecma International 2013 469

secma

7.8.5: Regular expression literals now return an unique object each time the literal is evaluated. This change is
detectable by any programs that test the object identity of such literal values or that are sensitive to the shared
side effects.

7.8.5: Edition 5 requires early reporting of any possible RegExp constructor errors that would be produced
when converting a RegularExpressionLiteral to a RegExp object. Prior to Edition 5 implementations were
permitted to defer the reporting of such errors until the actual execution time creation of the object.

7.8.5: In Edition 5 unescaped “/” characters may appear as a CharacterClass in a regular expression literal. In
Edition 3 such a character would have been interpreted as the final character of the literal.

10.4.2: In Edition 5, indirect calls to the eval function use the global environment as both the variable
environment and lexical environment for the eval code. In Edition 3, the variable and lexical environments of
the caller of an indirect eval was used as the environments for the eval code:

15.4.3: In Edition 5 all methods of Array.prototype are intentionally generic. In Edition 3 toString and
toLocaleString were not generic and would throw a TypeError exception if applied to objects that were
not instances of Array.

10.6: In Edition 5 the array indexed properties of argument objects that correspond to actual formal
parameters are enumerable. In Edition 3, such properties‘were not enumerable.

10.6: In Edition 5 the value of the [[Class]] internal data property.of an arguments object is "Arguments". In
Edition 3, it was "Object". This is observable if toString is called as a method of an arguments object.

12.6.4: for-in statements no longer throw a TypeError if the in expression evaluates to null or undefined.
Instead, the statement behaves as if the value of the expression was an object with no enumerable properties.

15: In Edition 5, the following new properties are defined onbuilt-in objects that exist in Edition 3:
Object.getPrototypeOf, Object.getOwnPropertyDescriptor, Object.getOwnPropertyNames,
Object.create, Object.defineProperty, Object.defineProperties, Object.seal,
Object.freeze, Object.preventExtensions, Object.isSealed, Object.isFrozen,
Object.isExtensible, Object.keys, Function.prototype.bind, Array.prototype.indexOf,
Array.prototype. lastIndexOf, Array.prototype.every, Array.prototype. some,
Array.prototype. forEach, Array.prototype.map, Array.prototype.filter,
Array.prototype.reduce, Array.prototype.reduceRight, String.prototype. trim, Date.now,
Date.prototype.toISOString, Date.prototype.toJSON.

15: Implementations are now required to ignore extra arguments to standard built-in methods unless
otherwise explicitly specified. In Edition 3 the handling of extra arguments was unspecified and
implementations were explicitly allowed to throw a TypeError exception.

15.1.1: The value properties NaN, Infinity, and undefined of the Global Object have been changed to be
read-only properties.

15.1.2.1. Implementations are no longer permitted to restrict the use of eval in ways that are not a direct call.
In addition, any invocation of eval that is not a direct call uses the global environment as its variable
environment rather than the caller’s variable environment.

15.1.2.2: The specification of the function parseInt no longer allows implementations to treat Strings
beginning with a 0 character as octal values.

15.3.3.3: In Editon 3, a TypeError is thrown if the second argument passed to
Function.prototype.apply is neither an array object nor an arguments object. In Edition 5, the second
argument may be any kind of generic array-like object that has a valid 1ength property.

15.3.3.3,15.3.3.4: In Editon 3 passing undefined or null as the first argument to either
Function.prototype.apply Or Function.prototype.call causes the global object to be passed to

470 © Ecma International 2013

pecma

the indirectly invoked target function as the this value. If the first argument is a primitive value the result of
calling ToObject on the primitive value is passed as the this value. In Edition 5, these transformations are not
performed and the actual first argument value is passed as the this value. This difference will normally be
unobservable to existing ECMAScript Edition 3 code because a corresponding transformation takes place
upon activation of the target function. However, depending upon the implementation, this difference may be
observable by host object functions called using apply or call. In addition, invoking a standard built-in
function in this manner with null or undefined passed as the this value will in many cases cause behaviour in
Edition 5 implementations that differ from Edition 3 behaviour. In particular, in Edition 5 built-in functions that
are specified to actually use the passed this value as an object typically throw a TypeError exception if
passed null or undefined as the this value.

15.3.4.2: In Edition 5, the prototype property of Function instances is not enumerable. In Edition 3, this
property was enumerable.

15.5.5.2: In Edition 5, the individual characters of a String object’s [[StringData]] may be accessed as array
indexed properties of the String object. These properties are non-writable and non-configurable and shadow
any inherited properties with the same names. In Edition 3, these properties did not exist and ECMAScript
code could dynamically add and remove writable properties with such names and could access inherited
properties with such names.

15.9.4.2: Date.parse is now required to first attempt to parse its argument as an I1SO format string.
Programs that use this format but depended upon implementation specific behaviour (including failure) may
behave differently.

15.10.2.12: In Edition 5, \s now additionally matches <BOM>.

15.10.4.1: In Edition 3, the exact form of the String value of the source property of an object created by the
RegExp constructor is implementation defined. In Edition 5, the String must conform to certain specified
requirements and hence may be different from that produced by an Edition 3 implementation.

15.10.6.4: In Edition 3, the result of RegExp . prototype . toString need not be derived from the value of
the RegExp object’s source property. In Edition 5 the result must be derived from the source property in a
specified manner and hence may be different from the result produced by an Edition 3 implementation.

15.11.2.1, 15.11.4.3: 'In Edition 5, if an-initial value for the message property of an Error object is not
specified via the Error constructor the initial value of the property is the empty String. In Edition 3, such an
initial value is implementation defined.

15.11.4.4; In Edition 3, the result of Exrror.prototype. toString is implementation defined. In Edition 5,
the result is fully specified and hence may differ from some Edition 3 implementations.

15.12: In Edition 5, the name JSON is defined in the global environment. In Edition 3, testing for the presence
of that name will show it to be undefined unless it is defined by the program or implementation.

© Ecma International 2013 471

472 © Ecma International 2013

ecmada

Annex F
(informative)

Static Semantic Rule Cross Reference

| TODO: This Table is out of date and incomplete.

‘ Routine Name

Purpose

Definitions

BoundNames Produces a list of the Identifiers bound by a | 12.2.1,
production. Does not include Identifiers that are | 12.2.2,
bound within inner environments associated with | 12.2.4,
the production. 12.6.4,13.1,

13.2,13.5

ConstructorMethod From a ClassBody return the first‘ClassElement 135
whose PropName is "constructor”. Returns
empty if the ClassBody does not contain one:

Contains Determine if a grammar production either directly | 5.3, 13.1,
or indirectly includes a grammar symbol. 13.2,13.5

CoveredFormalsList Reparse a covered Expression. using FormalsList | 13.2
as the goal symbol.

Ccv Determines the “character value” of a component | 7.8.4
of a StringLiteral.

Elision Width Determine the number of commas in an Elision. 11.14.1

ExpectedArgumentCount Determine the “length” of an argument list for the | 13.1, 13.2,
purpose of initialising the “length” property of a | 13.3
function object.

Haslnitialiser Determines whether the production contains an | 12.2.4, 13.1
Initialiser production.

IsConstantDeclaration Determines whether the production introduces an | 12.2, 13.1,
immutable environment record binding 135

IsinvalidAssignmentPattern | Determines if a LeftHandSideExpression is a valid | 11.2
assignment target. Primarily for dealing with
destructuring assignment targets.

LexicalDeclarations Return a List containing the components of a | 12.1,12.11,
production that are processed as lexical | 12.5
declarations

LexicallyDeclaredNames Returns a list of the lexically scoped identifiers | 12.1, 13.1,
declared by a production. 13.2,13.5

PrototypeMethodDefinitions | Return a list of the non-static MethodDefinition | 13.5

productions that are part of a ClassElementList.

© Ecma International 2013

secmd

MV Determines the “mathematical value” of a numeric | 7.8.3
lirteral or component of a numeric literal.
PropName Determines the string value of the property name | 11.1.5.1,
referenced by a production. 13.3,135
PropNameL.ist Returns a List of the string values of the property | 11.5.1, 13.5
names referenced by a production. The list
reflects the order of the references in the source
text. The list may contain duplicate elements.
PrototypeMethodDefinitions | Return a list of the non-static MethodDefinition | 13.5
productions that are part of a ClassElementList.
ReferencesSuper Determine if a MethodDefinition contains any | 13.3
references to the ReservedWord super.
SpecialMethod Determine if a MethodDefinition< defines a | 13.3
generator method or an accessor property.
StaticMethodDefinitions Return a list of the static MethodDefinition | 13.5
productions that are part of a ClassElementList.
sV Determines the “string value” of a StringLiteral or | 7.8.4
component of a StringLiteral.
VarDeclaredNames Returns a list of the local top-level scoped | 12.1, 12.5,
identifiers . declared by a production. These are | 12.6.1,
identifier that are scoped as if by a var statement. | 12.6.2,
12.6.3,
12.6.4,
12.12, 13.1,
13.5

474

© Ecma International 2013

B INTERNATIONAL

© Ecma International 2013 475

)
secnd

(1]

(2]

(3]

(4]
(5]

6]

[7]

8]

476

Bibliography

IEEE Std 754-2008: IEEE Standard for Floating-Point Arithmetic. Institute of Electrical and Electronic
Engineers, New York (2008)

The Unicode Consortium. The Unicode Standard, Version 3.0, defined by: The Unicode Standard,
Version 3.0 (Reading, MA, Addison-Wesley, 2000. ISBN 0-201-61633-5)

ISO 8601:2004(E) Data elements and interchange formats — Information interchange --
Representation of dates and times

RFC 1738 “Uniform Resource Locators (URL)”, available at <http:/tools.ietf.org/html/rfc1738>

RFC 2396 “Uniform Resource Identifiers (URI): Generic Syntax”, available at
<http://tools.ietf.org/html/rfc2396>

RFC 3629 “UTF-8, a transformation format of ISO 10646, available at
<http://tools.ietf.org/html/rfc3629>

RFC 4627 “The application/json Media Type for JavaScript Object Notation (JSON)” , available at
<http://tools.ietf.org/html/rfc4627>

Unicode Inc. (2010), Unicode Technical Report #15: “Unicode Normalization Forms”, available at
<http://www.unicode.org/reports/tr15/tr15-29.htm|>

© Ecma International 2013

http://tools.ietf.org/html/rfc1738
http://tools.ietf.org/html/rfc2396
http://tools.ietf.org/html/rfc3629
http://tools.ietf.org/html/rfc4627
http://www.unicode.org/reports/tr15/tr15-29.html

secma

Scrap Heap

A place to temporarily hand on to stuff that's been deleted

MemberExpression :
MemberExpression <| TriangleLiteral

TriangleLiteral :
SealedArrayLiteral
SealedObjectLiteral
FunctionExpression
ArrowFunction
ValueLiteral

CallExpression :
CallExpression <| TriangleLiteral

26.2.3.1 15.2.3.15 Object.isObject (O)
When the isObject function is called with argument O, the following steps are taken:

1. If Type(O) is Object return true.
2. Return false.

15.5.4.25 String.prototype.toArray()
The following steps are taken:

Let O be CheckObjectCoercible(this value).

Let S be ToString(O).

ReturnlfAbrupt(S).

Let len be the number of charactersiin S.

Let array be the result of the abstract operation ArrayCreate with argument len.
Letn be 0

Repeat, while n < len:

a. Let ¢ be the character at position nin S.

b. Call the [[DefineOwnProperty]] internal method of array with arguments ToString(n), the
PropertyDescriptor {[[Valuel]: c, [[Writable]]: true, [[Enumerable]]: true, [[Configurable]]: true},
and false.

c. Incrementnby 1.

8. Return array.

NouorwNE

The length property of the toArray method is 0.
NOTE 1 Returns an Array object with elements corresponding to the characters of this object (converted to a String).

NOTE 2 The toArray function is intentionally generic; it does not require that its this value be a String object.
Therefore, it can be transferred to other kinds of objects for use as a method.

© Ecma International 2013 477

secmd

Static Semantics: TopLevellLexicallyDeclaredNames

OuterStatementList : OuterStatementList Outerltem

1. Let names be TopLevellLexicallyDeclaredNames of OuterStatementList.

2. Append to names the elements of the TopLevelLexicallyDeclaredNames of Outerltem.
3. Return names.

Outerltem : StatementListltem

1. Return a new empty List.

StatementListitem : Declaration

1. If Declaration is Declaration : FunctionDeclaration, then return a new empty List.
2. Return the BoundNames of Declaration.

26.2.4 Symbol Exotic Objects

A Symbol object is an exotic object that may be used as a property key. Symbol exotic objects are always
immutable and never observably reference any other object.

Exotic Symbol objects provide alternative definitions for all of the essential internal methods.
26.2.4.1 [[GetPrototypeOf]] ()

When the [[GetPrototypeOf]] internal method of an exotic Symbol.object O'is called the following steps are
taken:

1. Return null.
26.2.4.2 [[SetPrototypeOf]] (V)

When the [[SetPrototypeOf]].internal method of an.exotic Symbol object O is called with argument V the
following steps are taken:

1. Assert: Either Type(V).is Object or Type(V) is Null.
2. Return false.

26.2.4.3 . [[IsExtensible]] ()

When the [[IsExtensible]] internal method of an exotic Symbol object O is called the following steps are taken:
1. Return false.

26.2.4.4 [[PreventExtensions]] ()

When the [[PreventExtensions]] internal method of an exotic Symbol object O is called the following steps are
taken:

1. Return true.
26.2.4.5 [[HasOwnProperty]] (P)

When the [[HasOwnProperty]] internal method of an exotic Symbol object O is called with property key P, the
following steps are taken:

478 © Ecma International 2013

secma

1. Return false.
26.2.4.6 [[GetOwnProperty]] (P)

When the [[GetOwnProperty]] internal method of an exotic Symbol object O is called with property key P, the
following steps are taken:

1. Return undefined.
26.2.4.7 [[DefineOwnProperty]] (P, Desc)

When the [[DefineOwnProperty]] internal method of an exotic Symbol object O is-called with property key P
and property descriptor Desc, the following steps are taken:

1. Return false.
26.2.4.8 [[HasProperty]] (P)

When the [[HasProperty]] internal method of an exotic Symbol object O is called with property key P, the
following steps are taken:

1. Return false.
26.2.4.9 [[Get]] (P, Receiver)

When the [[Get]] internal method of an exotic Symbol object O is called with property key P and ECMAScript
language value Receiver the following steps are taken:

1. Assert: IsPropertyKey(P) is true.
2. Return undefined.

26.2.4.10 [[Set]] (P, V, Receiver)

When the [[Set]] internal method of an exotic Symbol object O is called with property key P, value V, and
ECMAScript language value Receiver, the following steps are taken:

1. Return false.
26.2.4.11 [[Invoke]] (P, ArgumentsList, Receiver)

When the [[Invoke]] internal method of an exotic Symbol object O is called with property key P, List
ArgumentsList, and ECMAScript language value Receiver the following steps are taken:

1. Throw a TypeError exception..
26.2.4.12 [[Delete]] (P)

When the [[Delete]] internal method of an exotic Symbol object O is called with property key P the following
steps are taken:

1. Assert: IsPropertyKey(P) is true.
2. Return true.

26.2.4.13 [[Enumerate]] ()
When the [[Enumerate]] internal method of an exotic Symbol object O is called the following steps are taken:

1. Return the result of CreateEmptylterator().

© Ecma International 2013 479

secmd

26.2.4.14 [[OwnPropertyKeys]] ()

When the [[OwnPropertyKeys]] internal method of an exotic Symbol object O is called the following steps are

taken:

1. Return the result of CreateEmptylterator().

26.2.5 Preliminary work on Irrefutable Destructuring Binding Patterns

Syntax

BindingPattern :
Irrefutableop: ObjectBindingPattern
Irrefutableop: ArrayBindingPattern

Irrefutable :
?

ObjectBindingPattern :
{1}
{ BindingPropertyList }
{ BindingPropertyList , }

ArrayBindingPattern :
[Elisiongp BindingRestElementopt 1
[BindingElementList]
[BindingElementList , Elisionos BindingRestElementopt]

BindingPropertyList :
Irrefutableop: BindingProperty
BindingPropertyList , Irrefutableqp: BindingProperty

BindingElementList :
Elisionop: BindingElement
BindingElementList , Elisionop BindingElement

BindingProperty-:
SingleNameBinding
PropertyName |: BindingElement

Ci ed [AWB16199]: Note that this may be a

BindingElement :
SingleNameBinding
BindingPattern Initialiseropt

SingleNameBinding :
Bindingldentifier Initialiseropt

BindingRestElement :
. . . Bindingldentifier

26.2.5.1 Static Semantics
Static Semantics: Early Errors

BindingPattern : Irrefutablesy,: ObjectBindingPattern

e [tis a Syntax Error if the BoundNames of ObjectBindingPattern contains the string “eval” or the string

“arguments’”.

480

computed property name

© Ecma International 2013

secma

BindingPattern : Irrefutablesy ArrayBindingPattern

e Itis a Syntax Error if the BoundNames of ArrayBindingPattern contains the string “eval” or the string
“arguments”.

Static Semantics: BoundNames

BindingPattern : Irrefutables, ObjectBindingPattern

1. Return the BoundNames of ObjectBindingPattern.

BindingPattern : Irrefutablesy ArrayBindingPattern

1. Return the BoundNames of ArrayBindingPattern.
ObjectBindingPattern : { }

1. Return an empty List.

ArrayBindingPattern : [Elisionep]

1. Return an empty List.

ArrayBindingPattern : [Elisionop: BindingRestElement]

1. Return the BoundNames of BindingRestElement.
ArrayBindingPattern : [BindingElementList , Elisionop:]

1. Return the BoundNames of BindingElementList.
ArrayBindingPattern : [BindingElementList , Elisionope BindingRestElement]
1. Let names be BoundNames of BindingElementList.

2. Append to names the elements of BoundNames of BindingRestElement.
3. Return names.

BindingPropertyList : Irrefutableqs; BindingProperty

1. Return the BoundNames of BindingProperty.

BindingPropertyList : BindingPropertyList , Irrefutableq, BindingProperty
1. Let names be BoundNames of BindingPropertyList.

2. Append to names the elements of BoundNames of BindingProperty.
3. Return names.

BindingElementList : Elisionop: BindingElement

1. Return BoundNames of BindingElement.

BindingElementList : BindingElementList , Elisione, BindingElement

1. Let names be BoundNames of BindingElementList.

2. Append to names the elements of BoundNames of BindingElement.

3. Return names.

BindingProperty : PropertyName : BindingElement

© Ecma International 2013 481

secmd

1. Return the BoundNames of BindingElement.

SingleNameBinding : Bindingldentifier Initialiseropt

1. Return the BoundNames of Bindingldentifier.

BindingElement : BindingPattern Initialiseropt

1. Return the BoundNames of BindingPattern.

26.2.6 8.3.10 [[Enumerate]] (includePrototype, onlyEnumerable)

When the [[Enumerate]] internal method of O is called with Boolean arguments includePrototype and
onlyEnumerable, the following steps are taken:

1. Return an Iterator object (reference xxxx) whose next method iterates-over all the keys of enumerable
property keys of O. If includePrototype is false, then only own properties of O are included. If
onlyEnumerable is false, then all properties that do not have private name keys are included. The mechanics
and order of enumerating the properties is not specified but must conform to the rules specified below.

Enumerated properties do not include properties whose' property key is‘a private name. Properties of the
object being enumerated may be deleted during enumeration. If a property that has not yet been visited during
enumeration is deleted, then it will not be visited. If new properties are added to the object being enumerated
during enumeration, the newly added properties are not guaranteed to be visited in the active enumeration. A
property name must not be visited more than once in any enumeration.

Enumerating the properties of an object includes enumerating properties of.its prototype, and the prototype of
the prototype, and so on, recursively; but a property of a prototype is not enumerated if it is “shadowed”
because some previous object in the prototype chain has a property with the same name. The values of
[[Enumerable]] attributes are not considered when determining if a property of a prototype object is shadowed
by a previous object on the prototype chain.

The following is an informative algorithm that conforms to these rules

1. LetobjbeO.
2. Let proto be the value of the [[Prototype]] internal data property of O.
3. If includePrototype is false or‘proto is the value null, then
a. LetpropList be a new empty List.
4. Else
a. Let propList be the result of calling the [[Enumerate]] internal method of proto with arguments true
and onlyEnumerable.
5. For each string name thatis the property key of an own property of O
a. Let desc be the result of calling the [[GetOwnProperty]] internal method of O with argument name.
b. " If name is an element of propList, then remove name as an element of propList.
c. IfonlyEnumerable is false or desc.[[Enumerable]] is true, then add name as an element of propList.
6. Order the elements of propList in an implementation defined order.
7. Return proplList.

This follow version places function body declarations in scope of parameter initialisers

26.2.7 9.1.11 ToPositivelnteger

The abstract operation Tolnteger converts its argument to an integral numeric value. This abstract operation
functions as follows:

482 © Ecma International 2013

Commented [AWB6200]: This is an experiment to see if
we can use this internal method to define Object.key,
Object.getOwnPropertyNames, and perhaps some ofther
things

Commented [AWB6201]: TODO

Commented [AWB6202]: TODO: Finish this up, and turn it
into iterator definition include a next method

secma

Let number be the result of calling ToNumber on the input argument.
ReturnlfAbrupt(number).

If number is NaN, return +0.

If number is +o0, or —oo, return number.

If number <0, return +0.

Return the result of computing floor(numbery).

ISR

26.2.8 10.5.3 Function Declaration Instantiation

NOTE When an execution context is established for evaluating function code a new Declarative Environment Record is
created and bindings for each formal parameter, and each function level variable, constant, or function declarated in the
function are instantiated in the environment record. Formal parameters and functions are initialised as part of this process.
All other bindings are initialised during execution of the function code.

Function Declaration Instantiation is performed as follows using arguments func, argumentsList, and env. func
is the function object that for which the execution context is being established. env is the declarative
environment record in which bindings are to be created.

1. Letcode be the value of the [[Code]] internal property of func.
2. Let strict be the value of the [[Strict]] internal property of func.
3. Let formals be the value of the [[FormalParameterList]] internal property of func.
4. Let parameterNames be the BoundNames of formals.
5. LetvarDeclarations be the VarScopedDeclarations of code.
6. Let functionsTolnitialise be an empty List.
7. LetargumentsObjectNotNeeded be false.
8. Foreach d invarDeclarations, in reverse list.order do
a. Ifdisa FunctionDeclaration then
i. NOTE If there are multiple FunctionDeclarations for the same name, the last declaration
is used.
ii. Let fn be the sole element of the BoundNames of d.
iii. If fn is "arguments", then let argumentsObjectNotNeeded be true.
iv. Let alreadyDeclared. be the result of calling env’s HasBinding concrete method passing fn
as the argument.
V. If alreadyDeclared is false, then
1. Let status be the result of calling env’s CreateMutableBinding concrete method
passing fn-as the argument.
2. Assert: status is never an-abrupt completion.
3. "Append d to functionsTolnitialise.
9. For each String paramName in parameterNames, do
a. < Let alreadyDeclared be the result of calling env’s HasBinding concrete method passing paramName
as the argument.
b. NOTE Duplicate parameter names can only occur in non-strict functions. Parameter names that are
the same as function declaration names do not get initialised to undefined.
¢. IfalreadyDeclared is false, then
i. If paramName is "arguments", then let argumentsObjectNotNeeded be true.
il Let status be the result of calling env’s CreateMutableBinding concrete method passing
paramName as the argument.
iii. Assert: status is never an abrupt completion
iv. Call env’s InitialiseBinding concrete method passing paramName, and undefined as the
arguments.
10. NOTE If there is a function declaration or formal parameter with the name "arguments" then an
argument object is not created.
11. If argumentsObjectNotNeeded is false, then|

C ed [AWB7203]: TODO: don't create an

a. If strictis true, then
i. Call env’s CreateImmutableBinding concrete method passing the String "arguments™ as
the argument.
b. Else,
i. Call env’s CreateMutableBinding concrete method passing the String "arguments" as the
argument.
12. Let varNames be the VarDeclaredNames of code.

© Ecma International 2013 483

arguments binding for arrow functions (and perhaps for
concise methods)

secmd

13. For each String varName in varNames, in list order do
a. LetalreadyDeclared be the result of calling env’s HasBinding concrete method passing varName as
the argument.
b. NOTE A VarDeclaredNames is only instantiated and initialied here if it is not also the name of a
formal parameter or a FunctionDeclarations.
c. IfalreadyDeclared is false, then
i Call env’s CreateMutableBinding concrete method passing varName as the argument.
14. Let lexDeclarations be the LexicalDeclarations of code.
15. For each element d in lexDeclarations do
a. NOTE A lexically declared name cannot be the same as a function declaration, formal parameter,
or avar name. Lexically declarated names are only instantiated here but not initialised.
b. Foreach element dn of the BoundNames of d do
i If IsConstantDeclaration of d is true, then
1. Call env’s CreatelmmutableBinding concrete method passing dn as the argument.
ii. Else,
1. Call env’s CreateMutableBinding concrete method passing dn and false as the
arguments.
16. For each FunctionDeclaration f in functionsTolnitialise, do
a. Let fn be the sole element of the BoundNames of f.
b. Let fo be the result of performing InstantiateFunctionObject for f with argument env.
c. Call env’s SetMutableMinding concrete method passing fn, fo, and false as the arguments.

17. NOTE Function declaration are initialised prior to parameter initialisation so that default value expressions
may reference them. it is not extended code. "arguments® is not initialised until after parameter
initialisation.

18. Let ao be the result of Instantiate ArgumentsObject with argument argumentsList.

19. NOTE If argumentsObjectNotNeeded is true then the value of ao is not directly observable to ECMAScript
code and need not actually exist. In that case, its.use in the above steps is strictly as a device for specifying
formal parameter initialisation semantics.

20. |f argumentsObjectNotNeeded is false, then|

Ci ed [AWB7204]: TODO: don't create an

a. |Ifstrictis true, then
i Perform the abstract operation CompleteStrictArgumentsObject with argument a0.
b. Else,
i. Perform the abstract operation CompleteMappedArgumentsObject with arguments a0, func,
formals, and env.
c. Call env’s InitialiseBinding concrete method passing "arguments" and ao as arguments.
21. Let formalStatus be the result of performing Bindinglnitialisation for formals with ao and undefined as
arguments.
22. ReturnlfAbrupt(formalStatus).
23. Return NormalCompletion(empty).

F.1.1 [The _proto__ pseudo property)

arguments binding for arrow functions (and perhaps for
concise methods)

C ed [AWB205]: The section and algorithm

F.1.1.1 Object.prototype.._proto___

The initial value of the __proto _ property of the Object prototype object is a data property whose initial
value is null.. This property initially has the attributes { [[Writable]]: true, [[Enumerable]]: false,
[[Configurable]]: true }.

Manipulations of this property as tracked by the Boolean valued primordial internal variable
UnderscoreProtoEnabled.” The default initial value of UnderscoreProtoEnabled is true only if this property is initially
present on the primordial Object prototype object.

NOTE Any modification of this property or its attributes causes UnderscoreProtoEnabled to be set to false.

F.1.2 Changes To Internal Methods___

The definition of the [[Get]] internal method given in 8.12.3 is replaced with the following:

1. If Pisthe string value "__proto__ " and UnderscoreProtoEnabled is true, then
a. Let desc be the result of calling the [[GetProperty]] internal method of O with property name P.

484 © Ecma International 2013

reference in this draft are based upon the ES5.1 spec. When
the corresponding sections of this document are stable, this
section will need to be updated.

‘[commented [AWB8206]: This materal is going to be made

mandatory and integrated into the main body of the spec.

Commented [AWB207]: This is anticipating new
specification material related to Module loaders and
establishing a primoridial environment. The basic assumption
is that a module loader must be able to disable this feature.
This seems to suggest that the ability to do so must exist in
the module loader APIs even if this feature is not present in an
implementation.

Commented [AWB12208]: This whole thing needs be
rewritten, and in the process we will eliminate using
[[GetProperty]]

oecmad

b. Ifdesc is not undefined and was created by step 1.a to describe the property defined in B.3.1.1 then,
i. Return the value of the [[Prototype]] internal data property of O.
2. Continue by executing the steps of 8.12.3 starting with step 1.

The definition of the [[Put]] internal method given in 8.12.5 is replaced with the following:| ' Commented [AWB12209]: Need to be updated to use
| [[SetP]

1. If Pisthe string value "__proto__ " and UnderscoreProtoEnabled is true and O is not the standard built-
in Object prototype object, then

a. Let desc be the result of calling the [[GetProperty]] linternal method of O with property name P.
b. If desc is not undefined and was created by step 1.a to describe the property defined in B.3.1.1 then,

' commented [AWB12210]: This whole thing needs to be
rewritten, and in the process we will eliminate using

i. Ifthe type of V is neither Object or Null, return | [[GetProperty]]

il Set the value of the [[Prototype]] internal data property of O to V.

il Return.
2. Continue by executing the steps of 8.12.5 starting with step 1.
The definition of the [[Delete]] internal method given in 8.12.7 is replaced with the following:
1. If UnderscoreProtoEnabled is true and P is the string value " proto__ " and O is the standard built-in

Object prototype object, then
a. Set UnderscoreProtoEnabled to false.
2. Continue by executing the steps of 8.12.7 starting with step. 1.
The definition of the [[DefineOwnProperty]] internal method given in 8.12.9 is replaced with the following: Commented [AWB2111]: Note that
Object.defineOwnPropewny(obj,’_proto_’, desp) nor any

1. If UnderscoreProtoEnabled is true and P is the string value "__proto__." and O is the standard built-in ﬁg‘;’tgt?")g]f][[Def'"eo"‘mpmpeny]] Coeshotedy

Object prototype object, then
a. Ifany attribute contained in Desc is not present.or has a different value from the corresponding
attribute in { [[Writable]]: true, [[Enumerable]]: true, [[Configurable]]: true }then,
i. Set UnderscoreProtoEnabled to false.
2. Continue by executing the steps of 8.12.9 starting with step 1.

26.2.9 [[HasOwnProperty]] (P)
When the [[HasOwnProperty]] internal method of O is called with property key P, the following steps are taken:

4. Assert: IsPropertyKey(P) is true.
5. 1f O does not have an own property with key P, return false
6. Return true.

26.2.9.1 [[HasOwnProperty]] (P)

When the [[HasOwnProperty]] internal method of exotic String object O is called with property key P, the
following steps are taken:

14. Assert: IsPropertyKey(P) is true.

15. Let has be the result of calling the ordinary object [[HasOwnProperty]] internal method (9.1.5) on O with
argument P.

16. ReturnlfAbrupt(has).

17. If has is true, then return true.

18. If Type(P) is not String, then return false.

19. Let index be Tolnteger(P).

20. Assert: index is not an abrupt completion.

21. Let absIntindex be ToString(abs(index)).

© Ecma International 2013 485

secmd

22. If SameValue(absIntindex, P) is false return false.

23. Let str be the String value of the [[StringData]] internal property of O, if the value of [[StringData]] is
undefined the empty string is used as its value.

24. Let len be the number of elements in str.

25. If len < index, return false.

26. Return true.

26.2.9.2 [[HasOwnProperty]] (P)

When the [[HasOwnProperty]] internal method of an Integer Indexed exotic object O is called with property key
P, the following steps are taken:

5. Assert: IsPropertyKey(P) is true.
6. Assert: O is an Object that has a [[ViewedArrayBuffer]] internal data.
7. If Type(P) is String, then
a. Letintindex be Tolnteger(P).
b. Assert: intIndex is not an abrupt completion.
c. If SameValue(ToString(intindex), P) is true, then
i. If intIndex < 0, then return false.
ii. Let length be the value of O’s [[ArrayLength]] internal data property.
iii. If length is undefined, then throw a TypeError exception.
iv. If intIndex > length, then return false:
V. Return true.
8. Return the result of calling the ordinary object [[HasOwnProperty]] internal method (9.1.5) on O with
argument P.

26.2.10 [[HasOwnProperty]] (P)

When the [[HasOwnProperty]] internal method of an exotic Proxy object O is called with property key P, the
following steps are taken:

13. Assert: IsPropertyKey(P) is true.
14. Let handler be the value of the [[ProxyHandler]] internal data property of O.
15. Let target be the value of the [[ProxyTarget]] internal data property of O.
16. Let trap be the result of GetMethod(handler, "hasOwn").
17. ReturnlfAbrupt(trap).
18. If trap is undefined, then
a. Return.the result of calling the [[HasOwnProperty]] internal method of target with argument P.
19. Let trapResult be the result of calling the [[Call]] internal method of trap with handler as the this value and
a new List containing target and P.
20. ReturnlfAbrupt(trapResult).
21. Let success be ToBoolean(trapResult).
22. If success is false, then
a. Let targetDesc be the result of calling the [[GetOwnProperty]] internal method of target with
argument P.
b. ReturnifAbrupt(targetDesc).
c. If targetDesc.is not undefined, then
i If targetDesc.[[Configurable]] is false, then throw a TypeError exception.
ii. Let extensibleTarget be the result of calling the [[IsExtensible]] internal method of target.
iii. ReturnlfAbrupt(extensibleTarget).
iv. If ToBoolean(extensibleTarget) is false, then throw a TypeError exception.
23. Else success is true,

a. LetextensibleTarget be the result of IsExtensible(target).

b. ReturnlfAbrupt(extensibleTarget).

c. If ToBoolean(extensibleTarget) is true, then return success.

d. Let targetDesc be the result of calling the [[GetOwnProperty]] internal method of target with
argument P.

e. ReturnIfAbrupt(targetDesc).

f. If targetDesc is undefined, then throw a TypeError exception.

486 © Ecma International 2013

secma

24. Return success.

NOTE [[HasOwnProperty]] for proxy objects enforces the following invariants:
e A property cannot be reported as non-existent, if it exists as a non-configurable own property of the target object.
e A property cannot be reported as non-existent, if it exists as an own property of the target object and the target
object is not extensible.
e A property cannot be reported as existent, if it does not exists as an own property of the target object and the
target object is not extensible.

26.2.11
26.2.11.1 15.18.1.14 Reflect.freeze (target)
When the freeze function is called with argument target the following steps are taken:

1. Letobj be ToObject(target).
2. ReturnIfAbrupt(obj).
3. Return the result of calling the [[Freeze]] internal method of obj.

26.2.11.2 15.18.1.15 Reflect.seal (target)
When the seal function is called with argument target the following steps are taken:

1. Let obj be ToObject(target).
2. ReturnlfAbrupt(obj).
3. Return the result of calling the [[Seal]] internal method of obj.

26.2.11.3 15.18.1.16 Reflect.isFrozen (target)
When the isFrozen function is called with argument target the following steps are taken:

1. Letobj be ToObject(target).
2. ReturnlfAbrupt(obj).
3. Return the result of calling the [[IsFrozen]] internal method of obj.

26.2.11.4 15.18.1.17 Reflect.isSealed (target)
When the isSealed function.is called with-argument target the following steps are taken:

1. Let obj be ToObject(target).
2. ReturnIfAbrupt(obj).
3. Return the result of calling the [[IsSealed]] internal method of obj.

F.1.21 _proto___ Object Initialisers _
Definitions of two algorithms in 11.1.5 are replaced with the following:
The production PropertyDefinitionList : PropertyDefinition is evaluated as follows:

1. Let obj be the result of the abstract operation ObjectCreate with the intrinsic object %ObjectPrototype% as
its argument.
2. Let propld be the result of evaluating PropertyDefinition.
3. If propld.name is the string value "__proto__ " and UnderscoreProtoEnabled is true and
IsDataDescriptor(propld.descriptor) is true, then
a. Letv be propld.descriptor.value.
b. If desc be propld.descriptor
c. If the type of v is either Object or Null,
i. Set the value of the [[Prototype]] internal data property of obj to v.
d. Return obj.
4. Call the [[DefineOwnProperty]] internal method of obj with arguments propld.name, propld.descriptor, and
false.

© Ecma International 2013 487

&

5.

The

ecma

Return obj.

production

PropertyDefinitionList : PropertyDefinitionList , PropertyDefinition
is evaluated as follows:

1
2.
3.

488

Let obj be the result of evaluating PropertyDefinitionList.

Let propld be the result of evaluating PropertyDefinition.

Let previous be the result of calling the [[GetOwnProperty]] internal method of obj with argument
propld.name.

If previous is not undefined then throw a SyntaxError exception if any of the following conditions are true

a. This production is contained in strict code and IsDataDescriptor(previous) is true and
IsDataDescriptor(propld.descriptor) is true.

b. IsDataDescriptor(previous) is true and IsAccessorDescriptor(propld.descriptor) is true.

c. IsAccessorDescriptor(previous) is true and IsDataDescriptor(propld.descriptor) is true.

d. IsAccessorDescriptor(previous) is true and IsAccessorDescriptor(propld.descriptor) is true and
either both previous and propld.descriptor have [[Get]] fields or both previous and propld.descriptor
have [[Set]] fields

If propld.name is the string value "__proto__ " and UnderscoreProtoEnabled is true and
IsDataDescriptor(propld.descriptor) is true, then

a. Letv be propld.descriptor.value.

b. If desc be propld.descriptor

c. If the type of v is either Object or Null,

i Set the value of the [[Prototype]] internal data property of obj to v.

d. Return obj.

Call the [[DefineOwnProperty]] internal method of obj with arguments propld.name, propld.descriptor, and
false.
Return obj.

© Ecma International 2013

B INTERNATIONAL

© Ecma International 2013 489

sechma

Table 40 — Internal Properties Only Defined for Some Objects

Internal Property Value Type Description
Domain

[[BuiltinBrand]] The BuiltinBrand A tag value used by this specification to categorize various

enumeration. kinds of ECMAScript objects defined in this specification.

[[PrimitiveValue]] primitive Internal state information associated with this object. Of the
standard built-in ECMAScript objects, only Boolean, Date,
Number, and String objects implement [[Primitive Value]].

[[Scopel]] Lexical A lexical environment that'is the environment in which a

Environment Function object is executed. Of the standard built-in
ECMAScript objects,” only Function objects implement
[[Scope]l.

[[FormalParameters]] Parse Tree A parse tree< for ECMAScript code parsed with
FormalParameters as the goal symbol. Of the standard built-
in ECMAScript objects, only Function objects implement
[[FormalParameters]].

[[Code]] Parse Tree A parse tree for ECMAScript code parsed with FunctionBody
as the goal symbol: Of the standard built-in ECMAScript
objects, only Function objects implement [[Code]].

[[Strict]] Boolean true if a Function object is a strict mode function. Of the
standard built-in ECMAScript objects, only Function objects
implement [[Strict]].

[[BoundTargetFunction]] | Object The target function of a function object created using the
standard _built-in Function.prototype.bind method. Only
ECMAScript objects created using Function.prototype.bind
have a [[BoundTargetFunction]] internal property.

[[BoundThis]] any The pre-bound this value of a function Object created using
the standard built-in Function.prototype.bind method. Only
ECMAScript objects created using Function.prototype.bind
have a [[BoundThis]] internal property.

[[BoundArguments]] List of any The pre-bound argument values of a function Object created
by the standard built-in Function.prototype.bind method.
Only objects created by Function.prototype.bind have a
[[BoundArguments]] internal property.

[[RegExpMatcher]] SpecOp(String, Tests for a regular expression match and returns a

index) — MatchResult value (see 15.10.2.1). Of the standard built-in
MatchResult ECMAScript objects, only RegExp objects implement
[[RegExpMatch]].
[[ParameterMap]] Object Provides a mapping between the properties of an arguments

object (see 10.6) and the formal parameters of the
associated function. Only objects that are arguments objects
have a [[ParameterMap]] internal property.

490

© Ecma International 2013

B INTERNATIONAL

© Ecma International 2013 491

26.3 Binary Data Objects

26.3.1 The BinaryData Module

26.3.2 The BinaryData.Type Object

26.3.2.1 BinaryData.ScalarType Type Instance Objects

26.3.3 The BinaryData.ArrayType Object

26.3.4 The BinaryData.StructType Object| C ed [AWB10212]: This is a place holder for
material in the Binary Data proposal

http://wiki.ecmascript.org/doku.php?id=harmony:binary_data

26.3.4.1 %TypedArray% (binary data stuff)| [Commented [AWB13213]: TODO: this is a place holder

assuming that we may need to construct TypedArrays from

binary data objects.

TODO: this is a place holder assuming that we may need to construct TypedArrays from binary data
objects.

© Ecma International 2012

http://wiki.ecmascript.org/doku.php?id=harmony:binary_data

	1 Scope
	2 Conformance
	3 Normative references
	4 Overview
	4.1 Web Scripting
	4.2 ECMAScript Overview
	4.2.1 Objects
	4.2.2 The Strict Variant of ECMAScript

	4.3 Terms and definitions
	4.4 Organization of This Specification

	5 Notational Conventions
	5.1 Syntactic and Lexical Grammars
	5.1.1 Context-Free Grammars
	5.1.2 The Lexical and RegExp Grammars
	5.1.3 The Numeric String Grammar
	5.1.4 The Syntactic Grammar
	5.1.5 The JSON Grammar
	5.1.6 Grammar Notation

	5.2 Algorithm Conventions
	5.3 Static Semantic Rules

	6 ECMAScript Data Types and Values
	6.1 ECMAScript Language Types
	6.1.1 The Undefined Type
	6.1.2 The Null Type
	6.1.3 The Boolean Type
	6.1.4 The String Type
	6.1.5 The Symbol Type
	6.1.6 The Number Type
	6.1.7 The Object Type
	6.1.7.1 Property Attributes
	6.1.7.2 Object Internal Methods and Internal Data Properties
	6.1.7.3 Invariants of the Essential Internal Methods
	6.1.7.4 Well-Known Symbols and Intrinsics

	6.2 ECMAScript Specification Types
	6.2.1 Data Blocks
	6.2.2 The List and Record Specification Type
	6.2.3 The Completion Record Specification Type
	6.2.3.1 NormalCompletion
	6.2.3.2 Implicit Completion Values
	6.2.3.3 Throw an Exception
	6.2.3.4 ReturnIfAbrupt

	6.2.4 The Reference Specification Type
	6.2.4.1 GetValue (V)
	6.2.4.2 PutValue (V, W)
	6.2.4.3 GetThisValue (V)

	6.2.5 The Property Descriptor Specification Type
	6.2.5.1 IsAccessorDescriptor (Desc)
	6.2.5.2 IsDataDescriptor (Desc)
	6.2.5.3 IsGenericDescriptor (Desc)
	6.2.5.4 FromPropertyDescriptor (Desc)
	6.2.5.5 ToPropertyDescriptor (Obj)
	6.2.5.6 CompletePropertyDescriptor (Desc, LikeDesc)

	6.2.6 The Lexical Environment and Environment Record Specification Types

	7 Abstract Operations
	7.1 Type Conversion and Testing
	7.1.1 ToPrimitive
	7.1.2 ToBoolean
	7.1.3 ToNumber
	7.1.3.1 ToNumber Applied to the String Type

	7.1.4 ToInteger
	7.1.5 ToInt32: (Signed 32 Bit Integer)
	7.1.6 ToUint32: (Unsigned 32 Bit Integer)
	7.1.7 ToUint16: (Unsigned 16 Bit Integer)
	7.1.8 ToString
	7.1.8.1 ToString Applied to the Number Type

	7.1.9 ToObject
	7.1.10 ToPropertyKey
	7.1.11 ToLength

	7.2 Testing and Comparison Operations
	7.2.1 CheckObjectCoercible
	7.2.2 IsCallable
	7.2.3 SameValue(x, y)
	7.2.4 SameValueZero(x, y)
	7.2.5 IsConstructor
	7.2.6 IsPropertyKey
	7.2.7 IsExtensible (O)
	7.2.8 Abstract Relational Comparison
	7.2.9 Abstract Equality Comparison
	7.2.10 Strict Equality Comparison

	7.3 Operations on Objects
	7.3.1 Get (O, P)
	7.3.2 Put (O, P, V, Throw)
	7.3.3 CreateOwnDataProperty (O, P, V)
	7.3.4 DefinePropertyOrThrow (O, P, desc)
	7.3.5 DeletePropertyOrThrow (O, P)
	7.3.6 HasProperty (O, P)
	7.3.7 HasOwnProperty (O, P)
	7.3.8 GetMethod (O, P)
	7.3.9 Invoke(O,P, [args])
	7.3.10 SetIntegrityLevel (O, level)
	7.3.11 TestIntegrityLevel (O, level)
	7.3.12 CreateArrayFromList (elements)
	7.3.13 CreateListFromArrayLike (obj)
	7.3.14 OrdinaryHasInstance (C, O)
	7.3.15 GetPrototypeFromConstructor (constructor, intrinsicDefaultProto)
	7.3.16 OrdinaryCreateFromConstructor (constructor, intrinsicDefaultProto, internalDataList)

	8 Executable Code and Execution Contexts
	8.1 Lexical Environments
	8.1.1 Environment Records
	8.1.1.1 Declarative Environment Records
	8.1.1.1.1 HasBinding(N)
	8.1.1.1.2 CreateMutableBinding (N, D)
	8.1.1.1.3 CreateImmutableBinding (N)
	8.1.1.1.4 InitialiseBinding (N,V)
	8.1.1.1.5 SetMutableBinding (N,V,S)
	8.1.1.1.6 GetBindingValue(N,S)
	8.1.1.1.7 DeleteBinding (N)
	8.1.1.1.8 HasThisBinding ()
	8.1.1.1.9 HasSuperBinding ()
	8.1.1.1.10 WithBaseObject()

	8.1.1.2 Object Environment Records
	8.1.1.2.1 HasBinding(N)
	8.1.1.2.2 CreateMutableBinding (N, D)
	8.1.1.2.3 CreateImmutableBinding (N)
	8.1.1.2.4 InitialiseBinding (N,V)
	8.1.1.2.5 SetMutableBinding (N,V,S)
	8.1.1.2.6 GetBindingValue(N,S)
	8.1.1.2.7 DeleteBinding (N)
	8.1.1.2.8 HasThisBinding ()
	8.1.1.2.9 HasSuperBinding ()
	8.1.1.2.10 WithBaseObject()

	8.1.1.3 Function Environment Records
	8.1.1.3.1 HasThisBinding ()
	8.1.1.3.2 HasSuperBinding ()
	8.1.1.3.3 GetThisBinding ()
	8.1.1.3.4 GetSuperBase ()
	8.1.1.3.5 GetMethodName ()

	8.1.1.4 Global Environment Records
	8.1.1.4.1 HasBinding(N)
	8.1.1.4.2 CreateMutableBinding (N, D)
	8.1.1.4.3 CreateImmutableBinding (N)
	8.1.1.4.4 InitialiseBinding (N,V)
	8.1.1.4.5 SetMutableBinding (N,V,S)
	8.1.1.4.6 GetBindingValue(N,S)
	8.1.1.4.7 DeleteBinding (N)
	8.1.1.4.8 HasThisBinding ()
	8.1.1.4.9 HasSuperBinding ()
	8.1.1.4.10 WithBaseObject()
	8.1.1.4.11 GetThisBinding ()
	8.1.1.4.12 HasVarDeclaration (N)
	8.1.1.4.13 HasLexicalDeclaration (N)
	8.1.1.4.14 CanDeclareGlobalVar (N)
	8.1.1.4.15 CanDeclareGlobalFunction (N)
	8.1.1.4.16 CreateGlobalVarBinding (N, D)
	8.1.1.4.17 CreateGlobalFunctionBinding (N, V, D)

	8.1.2 Lexical Environment Operations
	8.1.2.1 GetIdentifierReference (lex, name, strict)
	8.1.2.2 NewDeclarativeEnvironment (E)
	8.1.2.3 NewObjectEnvironment (O, E)
	8.1.2.4 NewFunctionEnvironment (F, T)

	8.2 Code Realms
	8.3 Execution Contexts
	8.3.1 Identifier Resolution
	8.3.2 GetThisEnvironment
	8.3.3 ThisResolution
	8.3.4 GetGlobalObject

	9 ECMAScript Ordinary and Exotic Objects Behaviours
	9.1 Ordinary Object Internal Methods and Internal Data Properties
	9.1.1 [[GetPrototypeOf]] ()
	9.1.2 [[SetPrototypeOf]] (V)
	9.1.3 [[IsExtensible]] ()
	9.1.4 [[PreventExtensions]] ()
	9.1.5
	9.1.6 [[GetOwnProperty]] (P)
	9.1.6.1 OrdinaryGetOwnProperty (O, P)

	9.1.7 [[DefineOwnProperty]] (P, Desc)
	9.1.7.1 OrdinaryDefineOwnProperty (O, P, Desc)
	9.1.7.2 IsCompatiblePropertyDescriptor (Extensible, Desc, Current)
	9.1.7.3 ValidateAndApplyPropertyDescriptor (O, P, extensible, Desc, current)

	9.1.8 [[HasProperty]](P)
	9.1.9 [[Get]] (P, Receiver)
	9.1.10 [[Set]] (P, V, Receiver)
	9.1.11 [[Invoke]] (P, ArgumentsList, Receiver)
	9.1.12 [[Delete]] (P)
	9.1.13 [[Enumerate]] ()
	9.1.14 [[OwnPropertyKeys]] ()
	9.1.15 ObjectCreate(proto, internalDataList) Abstract Operation
	9.1.16 Ordinary Function Objects
	9.1.16.1 [[Call]] (thisArgument, argumentsList)
	9.1.16.2 [[Construct]] (argumentsList)
	9.1.16.2.1 OrdinaryConstruct (F, argumentsList)

	9.1.16.3 [[Get]] (P, Receiver)
	9.1.16.4 [[GetOwnProperty]] (P)
	9.1.16.5 FunctionAllocate Abstract Operation
	9.1.16.6 FunctionInitialise Abstract Operation
	9.1.16.7 FunctionCreate Abstract Operation
	9.1.16.8 GeneratorFunctionCreate Abstract Operation
	9.1.16.9 AddRestrictedFunctionProperties Abstract Operation
	9.1.16.10 MakeConstructor Abstract Operation
	9.1.16.11 GetSuperBinding(obj) Abstract Operation
	9.1.16.12 RebindSuper(function, newHome) Abstract Operation
	9.1.16.13 Function Declaration Instantiation

	9.2 Built-in Exotic Object Internal Methods and Data Fields
	9.2.1 Bound Function Exotic Objects
	9.2.1.1 [[Call]]
	9.2.1.2 [[Construct]]
	9.2.1.3 BoundFunctionCreate Abstract Operation

	9.2.2 Array Exotic Objects
	9.2.2.1 [[DefineOwnProperty]] (P, Desc)
	9.2.2.2 ArrayCreate Abstract Operation
	9.2.2.3 ArraySetLength Abstract Operation

	9.2.3 String Exotic Objects
	9.2.3.1
	9.2.3.2 [[GetOwnProperty]] (P)
	9.2.3.3 [[DefineOwnProperty]] (P, Desc)
	9.2.3.4 [[Enumerate]] ()
	9.2.3.5 [[OwnPropertyKeys]] ()
	9.2.3.6 StringCreate Abstract Operation

	1.1.1
	1.1.1
	1.1.1
	1.1.1
	1.1.1
	1.1.1
	1.1.1
	1.1.1
	1.1.1
	1.1.1
	1.1.1
	1.1.1
	1.1.1
	1.1.1
	1.1.1
	1.1.1
	1.1.1
	1.1.1
	1.1.1
	1.1.1
	1.1.1
	1.1.1
	1.1.1
	1.1.1
	1.1.1
	1.1.1
	1.1.1
	1.1.1
	1.1.1
	1.1.1
	1.1.1
	1.1.1
	1.1.1
	1.1.1
	1.1.1
	1.1.1
	1.1.1
	1.1.1
	1.1.1
	1.1.1
	1.1.1
	1.1.1
	1.1.1
	1.1.1
	1.1.1
	1.1.1
	1.1.1
	1.1.1
	1.1.1
	9.2.4 Exotic Arguments Objects
	9.2.4.1 Arguments Object

	9.2.5 Integer Indexed Exotic Objects
	9.2.5.1
	9.2.5.2 [[GetOwnProperty]] (P)
	9.2.5.3 [[DefineOwnProperty]] (P, Desc)
	9.2.5.4 [[Get]] (P, Receiver)
	9.2.5.5 [[Set]] (P, V, Receiver)
	9.2.5.6 [[Enumerate]] ()
	9.2.5.7 [[OwnPropertyKeys]] ()
	9.2.5.8 IntegerIndexedObjectCreate Abstract Operation
	9.2.5.9 IntegerIndexedElementGet (O, index) Abstract Operation
	9.2.5.10 IntegerIndexedElementSet (O, index, value) Abstract Operation

	9.2.6 Built-in Function Objects
	9.2.6.1 CreateBuiltinFunction Abstract Operation

	9.3 Proxy Object Internal Methods and Internal Data Properties
	9.3.1 [[GetPrototypeOf]] ()
	9.3.2 [[SetPrototypeOf]] (V)
	9.3.3 [[IsExtensible]] ()
	9.3.4 [[PreventExtensions]] ()
	9.3.5
	9.3.6 [[GetOwnProperty]] (P)
	9.3.7 [[DefineOwnProperty]] (P, Desc)
	9.3.8 [[HasProperty]] (P)
	9.3.9 [[Get]] (P, Receiver)
	9.3.10 [[Set]] (P, V, Receiver)
	9.3.11 [[Invoke]] (P, ArgumentsList, Receiver)
	9.3.12 [[Delete]] (P)
	9.3.13 [[Enumerate]] ()
	9.3.14 [[OwnPropertyKeys]] ()
	9.3.15 [[Call]] (thisArgument, argumentsList)
	9.3.16 [[Construct]] Internal Method

	10 ECMAScript Language: Source Code
	10.1 Static Semantics: UTF-16 Encoding
	10.2 Types of Executable Code
	10.2.1 Strict Mode Code
	10.2.2 Non-ECMAScript Functions

	11 ECMAScript Language: Lexical Grammar
	11.1 Unicode Format-Control Characters
	11.2 White Space
	11.3 Line Terminators
	11.4 Comments
	11.5 Tokens
	11.6 Names and Keywords
	11.6.1 Identifiers and Identifier Names
	11.6.1.1 Static Semantics: StringValue

	11.6.2 Reserved Words
	11.6.2.1 Keywords
	11.6.2.2 Future Reserved Words

	11.7 Punctuators
	11.8 Literals
	11.8.1 Null Literals
	11.8.2 Boolean Literals
	11.8.3 Numeric Literals
	11.8.3.1 Static Semantics: MV’s

	11.8.4 String Literals
	11.8.4.1 Static Semantics: Early Errors
	11.8.4.2 Static Semantics: SV’s and CV’s

	11.8.5 Regular Expression Literals
	11.8.5.1 Static Semantics: Early Errors
	11.8.5.2 Static Semantics: BodyText
	11.8.5.3 Static Semantics: FlagText

	11.8.6 Template Literal Lexical Components
	11.8.6.1 Static Semantics: TV’s and TRV’s

	11.9 Automatic Semicolon Insertion
	11.9.1 Rules of Automatic Semicolon Insertion
	11.9.2 Examples of Automatic Semicolon Insertion

	12 ECMAScript Language: Expressions
	12.1 Primary Expressions
	12.1.0 Semantics
	12.1.0.1 Static Semantics: CoveredParenthesisedExpression
	12.1.0.2 Static Semantics: IsValidSimpleAssignmentTarget

	12.1.1 The this Keyword
	12.1.1.1 Runtime Semantics: Evaluation

	12.1.2 Identifier Reference
	12.1.2.1 Static Semantics: Early Errors
	12.1.2.2 Runtime Semantics: Evaluation

	12.1.3 Literals
	1.1.1.1
	12.1.3.1 Runtime Semantics: Evaluation

	12.1.4 Array Initialiser
	12.1.4.1 Array Literal
	1.1.1.1.1
	12.1.4.1.1 Static Semantics: Elision Width
	1.1.1.1.1
	12.1.4.1.2 Runtime Semantics: Array Accumulation
	12.1.4.1.3 Runtime Semantics: Evaluation

	12.1.4.2 Array Comprehension
	1.1.1.1.1
	12.1.4.2.1 Static Semantics: Early Errors
	1.1.1.1.1
	12.1.4.2.2 Runtime Semantics: BindingInitialisation
	12.1.4.2.3 Runtime Semantics: ComprehensionEvaluation
	12.1.4.2.4 Runtime Semantics: ComprehensionComponentEvaluation
	12.1.4.2.5 Runtime Semantics: Evaluation

	12.1.5 Object Initialiser
	1.1.1.1
	12.1.5.1 Static Semantics: Early Errors
	12.1.5.2 Static Semantics: Contains
	12.1.5.3 Static Semantics: IsComputedPropertyName
	1.1.1.1
	1.1.1.1
	1.1.1.1
	12.1.5.4 Static Semantics: PropName
	12.1.5.5 Static Semantics: PropertyNameList
	1.1.1.1
	12.1.5.6 Runtime Semantics: Evaluation
	12.1.5.7 Runtime Semantics: PropertyDefinitionEvaluation

	12.1.6 Function Defining Expressions
	12.1.7 Generator Comprehensions
	1.1.1.1
	12.1.7.1 Static Semantics: Early Errors
	1.1.1.1
	12.1.7.2 Runtime Semantics: Evaluation

	12.1.8 Regular Expression Literals
	12.1.8.1 Static Semantics: Early Errors
	1.1.1.1
	12.1.8.2 Runtime Semantics: Evaluation

	12.1.9 Template Literals
	12.1.9.1 Static Semantics
	12.1.9.1.1 Static Semantics: TemplateStrings

	12.1.9.2 Runtime Semantics
	12.1.9.2.1 Runtime Semantics: ArgumentListEvaluation
	12.1.9.2.2 Runtime Semantics: GetTemplateCallSite
	12.1.9.2.3 Runtime Semantics: SubstitutionEvaluation
	12.1.9.2.4 Runtime Semantics: Evaluation

	12.1.10 The Grouping Operator
	12.1.10.1 Static Semantics: Early Errors
	12.1.10.2 Static Semantics: IsValidSimpleAssignmentTarget
	12.1.10.3 Runtime Semantics: Evaluation

	12.2 Left-Hand-Side Expressions
	12.2.1 Static Semantics
	12.2.1.1 Static Semantics: Contains
	12.2.1.2 Static Semantics: IsValidSimpleAssignmentTarget

	12.2.2 Property Accessors
	12.2.2.1 Runtime Semantics: Evaluation

	12.2.3 The new Operator
	12.2.3.1 Runtime Semantics: Evaluation

	12.2.4 Function Calls
	12.2.4.1 Runtime Semantics: Evaluation
	12.2.4.2 Runtime Semantics: EvaluateCall
	12.2.4.3 Runtime Semantics: EvaluateMethodCall

	12.2.5 The super Keyword
	12.2.5.1 Static Semantics: Early Errors
	12.2.5.2 Runtime Semantics: Evaluation
	12.2.5.3 Runtime Semantics: MakeSuperReference(propertyKey, strict)

	12.2.6 Argument Lists
	1.1.1.1
	12.2.6.1 Runtime Semantics: ArgumentListEvaluation

	12.2.7 Tagged Templates
	1.1.1.1
	12.2.7.1 Runtime Semantics: Evaluation

	12.3 Postfix Expressions
	1.1.1
	12.3.1 Static Semantics: Early Errors
	12.3.2 Static Semantics: IsValidSimpleAssignmentTarget
	12.3.3 Postfix Increment Operator
	12.3.3.1 Runtime Semantics: Evaluation

	12.3.4 Postfix Decrement Operator
	12.3.4.1 Runtime Semantics: Evaluation

	12.4 Unary Operators
	1.1.1
	12.4.1 Static Semantics: Early Errors
	12.4.2 Static Semantics: IsValidSimpleAssignmentTarget
	12.4.3 The delete Operator
	12.4.3.1 Static Semantics: Early Errors
	12.4.3.2 Runtime Semantics: Evaluation

	12.4.4 The void Operator
	12.4.5 The typeof Operator
	12.4.5.1 Runtime Semantics: Evaluation

	12.4.6 Prefix Increment Operator
	12.4.6.1 Runtime Semantics: Evaluation

	12.4.7 Prefix Decrement Operator
	12.4.7.1 Runtime Semantics: Evaluation

	12.4.8 Unary + Operator
	12.4.8.1 Runtime Semantics: Evaluation

	12.4.9 Unary - Operator
	12.4.9.1 Runtime Semantics: Evaluation

	12.4.10 Bitwise NOT Operator (~)
	12.4.10.1 Runtime Semantics: Evaluation
	12.4.10.2 Logical NOT Operator (!)

	12.5 Multiplicative Operators
	12.5.1 Static Semantics: IsValidSimpleAssignmentTarget
	12.5.2 Runtime Semantics: Evaluation
	12.5.2.1 Applying the * Operator
	12.5.2.2 Applying the / Operator
	12.5.2.3 Applying the % Operator

	12.6 Additive Operators
	12.6.1 Static Semantics: IsValidSimpleAssignmentTarget
	12.6.2 The Addition operator (+)
	12.6.2.1 Runtime Semantics: Evaluation

	12.6.3 The Subtraction Operator (-)
	12.6.3.1 Runtime Semantics: Evaluation

	12.6.4 Applying the Additive Operators to Numbers

	12.7 Bitwise Shift Operators
	12.7.1 Static Semantics: IsValidSimpleAssignmentTarget
	12.7.2 The Left Shift Operator (<<)
	12.7.2.1 Runtime Semantics: Evaluation

	12.7.3 The Signed Right Shift Operator (>>)
	12.7.3.1 Runtime Semantics: Evaluation

	12.7.4 The Unsigned Right Shift Operator (>>>)
	12.7.4.1 Runtime Semantics: Evaluation

	12.8 Relational Operators
	12.8.1 Static Semantics: IsValidSimpleAssignmentTarget
	1.1.1
	12.8.2 Runtime Semantics: Evaluation
	12.8.3 Runtime Semantics: InstanceofOperator(O, C)

	12.9 Equality Operators
	12.9.1 Static Semantics: IsValidSimpleAssignmentTarget
	1.1.1
	12.9.2 Runtime Semantics: Evaluation

	12.10 Binary Bitwise Operators
	12.10.1 Static Semantics: IsValidSimpleAssignmentTarget
	12.10.2 Runtime Semantics: Evaluation

	12.11 Binary Logical Operators
	12.11.1 Static Semantics: IsValidSimpleAssignmentTarget
	12.11.2 Runtime Semantics: Evaluation

	12.12 Conditional Operator (? :)
	12.12.1 Static Semantics: IsValidSimpleAssignmentTarget
	12.12.2 Runtime Semantics: Evaluation

	12.13 Assignment Operators
	1.1.1
	12.13.1 Static Semantics: Early Errors
	12.13.2 Static Semantics: IsValidSimpleAssignmentTarget
	1.1.1
	12.13.3 Runtime Semantics: Evaluation
	12.13.4 Destructuring Assignment
	1.1.1.1
	12.13.4.1 Static Semantics: Early Errors
	1.1.1.1
	12.13.4.2 Runtime Semantics: DestructuringAssignmentEvaluation
	12.13.4.3 Runtime Semantics: IndexedDestructuringAssignmentEvaluation
	12.13.4.4 Runtime Semantics: KeyedDestructuringAssignmentEvaluation

	12.14 Comma Operator (,)
	12.14.1 Static Semantics: IsValidSimpleAssignmentTarget
	12.14.2 Runtime Semantics: Evaluation

	13 ECMAScript Language: Statements and Declarations
	13.0 Statement Semantics
	13.0.1 Static Semantics: VarDeclaredNames
	1.1.1
	13.0.2 Runtime Semantics: LabelledEvaluation
	13.0.3 Runtime Semantics: Evaluation

	13.1 Block
	1.1.1
	13.1.1 Static Semantics: Early Errors
	13.1.2 Static Semantics: LexicalDeclarations
	13.1.3 Static Semantics: LexicallyDeclaredNames
	13.1.4 Static Semantics: TopLevelLexicallyDeclaredNames
	13.1.5 Static Semantics: TopLevelLexicallyScopedDeclarations
	13.1.6 Static Semantics: TopLevelVarDeclaredNames
	13.1.7 Static Semantics: TopLevelVarScopedDeclarations
	13.1.8 Static Semantics: VarDeclaredNames
	1.1.1
	13.1.9 Runtime Semantics: Evaluation
	13.1.10 Runtime Semantics: Block Declaration Instantiation

	13.2 Declarations and the Variable Statement
	13.2.1 Let and Const Declarations
	1.1.1.1
	13.2.1.1 Static Semantics: Early Errors
	13.2.1.2 Static Semantics: BoundNames
	13.2.1.3 Static Semantics: IsConstantDeclaration
	1.1.1.1
	13.2.1.4 Runtime Semantics: BindingInitialisation
	13.2.1.5 Runtime Semantics: Evaluation

	13.2.2 Variable Statement
	1.1.1.1
	13.2.2.1 Static Semantics: BoundNames
	1.1.1.1
	13.2.2.2 Runtime Semantics: BindingInitialisation
	13.2.2.3 Runtime Semantics: Evaluation

	13.2.3 Destructuring Binding Patterns
	1.1.1.1
	13.2.3.1 Static Semantics: Early Errors
	13.2.3.2 Static Semantics: BoundNames
	13.2.3.3 Static Semantics: HasInitialiser
	1.1.1.1
	13.2.3.4 Runtime Semantics: BindingInitialisation
	13.2.3.5 Runtime Semantics: IndexedBindingInitialisation
	13.2.3.6 Runtime Semantics: KeyedBindingInitialisation

	13.3 Empty Statement
	1.1.1
	13.3.1 Runtime Semantics: Evaluation

	13.4 Expression Statement
	1.1.1
	13.4.1 Runtime Semantics: Evaluation

	13.5 The if Statement
	13.5.1 Static Semantics: VarDeclaredNames
	1.1.1
	13.5.2 Runtime Semantics: Evaluation

	13.6 Iteration Statements
	13.6.0 Semantics
	13.6.0.1 Runtime Semantics: LoopContinues

	13.6.1 The do-while Statement
	13.6.1.1 Static Semantics: VarDeclaredNames
	1.1.1.1
	13.6.1.2 Runtime Semantics: LabelledEvaluation

	13.6.2 The while Statement
	13.6.2.1 Static Semantics: VarDeclaredNames
	1.1.1.1
	13.6.2.2 Runtime Semantics: LabelledEvaluation

	13.6.3 The for Statement
	1.1.1.1
	13.6.3.1 Static Semantics: VarDeclaredNames
	1.1.1.1
	13.6.3.2 Runtime Semantics: LabelledEvaluation
	13.6.3.3 Runtime Semantics: ForBodyEvaluation

	13.6.4 The for-in and for-of Statements
	1.1.1.1
	13.6.4.1 Static Semantics: Early Errors
	13.6.4.2 Static Semantics: BoundNames
	13.6.4.3 Static Semantics: VarDeclaredNames
	1.1.1.1
	13.6.4.4 Runtime Semantics: BindingInstantiation
	13.6.4.5 Runtime Semantics: LabelledEvaluation
	13.6.4.6 Runtime Semantics: ForIn/OfExpressionEvaluation Abstract Operation
	13.6.4.7 Runtime Semantics: ForIn/OfBodyEvaluation

	13.7 The continue Statement
	1.1.1
	13.7.1 Static Semantics: Early Errors
	1.1.1
	13.7.2 Runtime Semantics: Evaluation

	13.8 The break Statement
	1.1.1
	13.8.1 Static Semantics: Early Errors
	1.1.1
	13.8.2 Runtime Semantics: Evaluation

	13.9 The return Statement
	1.1.1
	13.9.1 Static Semantics: Early Errors
	1.1.1
	13.9.2 Runtime Semantics: Evaluation

	13.10 The with Statement
	1.1.1
	13.10.1 Static Semantics: Early Errors
	13.10.2 Static Semantics: VarDeclaredNames
	1.1.1
	13.10.3 Runtime Semantics: Evaluation

	13.11 The switch Statement
	1.1.1
	13.11.1 Static Semantics: Early Errors
	13.11.2 Static Semantics: LexicalDeclarations
	13.11.3 Static Semantics: LexicallyDeclaredNames
	13.11.4 Static Semantics: VarDeclaredNames
	1.1.1
	13.11.5 Runtime Semantics: CaseBlockEvaluation
	13.11.6 Runtime Semantics: CaseSelectorEvaluation
	13.11.7 Runtime Semantics: Evaluation

	13.12 Labelled Statements
	1.1.1
	13.12.1 Static Semantics: Early Errors
	13.12.2 Static Semantics: VarDeclaredNames
	1.1.1
	13.12.3 Runtime Semantics: LabelledEvaluation
	13.12.4 Runtime Semantics: Evaluation

	13.13 The throw Statement
	13.13.1 Runtime Semantics: Evaluation

	13.14 The try Statement
	1.1.1
	13.14.1 Static Semantics: Early Errors
	13.14.2 Static Semantics: VarDeclaredNames
	1.1.1
	13.14.3 Runtime Semantics: BindingInitialisation
	13.14.4 Runtime Semantics: CatchClauseEvaluation
	13.14.5 Runtime Semantics: Evaluation

	13.15 The debugger statement
	13.15.1 Runtime Semantics: Evaluation

	14 ECMAScript Language: Functions and Classes
	14.1 Function Definitions
	1.1.1
	14.1.1 Static Semantics: Early Errors
	14.1.2 Static Semantics: BoundNames
	14.1.3 Static Semantics: Contains
	14.1.4 Static Semantics: ExpectedArgumentCount
	14.1.5 Static Semantics: HasInitialiser
	14.1.6 Static Semantics: IsConstantDeclaration
	14.1.7 Static Semantics: IsSimpleParameterList
	14.1.8 Static Semantics: IsStrict
	14.1.9 Static Semantics: LexicallyDeclaredNames
	14.1.10 Static Semantics: VarDeclaredNames
	1.1.1
	14.1.11 Runtime Semantics: BindingInitialisation
	14.1.12 Runtime Semantics: EvaluateBody
	14.1.13 Runtime Semantics: IndexedBindingInitialisation
	14.1.14 Runtime Semantics: InstantiateFunctionObject
	14.1.15 Runtime Semantics: Evaluation

	14.2 Arrow Function Definitions
	1.1.1
	14.2.1 Static Semantics: Early Errors
	14.2.2 Static Semantics: BoundNames
	14.2.3 Static Semantics: Contains
	14.2.4 Static Semantics: CoveredFormalsList
	14.2.5 Static Semantics: ExpectedArgumentCount
	14.2.6 Static Semantics: IsSimpleParameterList
	14.2.7 Static Semantics: LexicallyDeclaredNames
	1.1.1
	14.2.8 Runtime Semantics: BindingInitialisation
	14.2.9 Runtime Semantics: EvaluateBody
	14.2.10 Runtime Semantics: Evaluation

	14.3 Method Definitions
	1.1.1
	14.3.1 Static Semantics: Early Errors
	14.3.2 Static Semantics: ExpectedArgumentCount
	14.3.3 Static Semantics: IsSimpleParameterList
	14.3.4 Static Semantics: PropName
	14.3.5 Static Semantics: ReferencesSuper
	14.3.6 Static Semantics: SpecialMethod
	1.1.1
	14.3.7 Runtime Semantics: PropertyDefinitionEvaluation

	14.4 Generator Function Definitions
	1.1.1
	14.4.1 Static Semantics: Early Errors
	14.4.2 Static Semantics: BoundNames
	14.4.3 Static Semantics: Contains
	14.4.4 Static Semantics: IsConstantDeclaration
	14.4.5 Static Semantics: LexicallyDeclaredNames
	14.4.6 Static Semantics: PropName
	14.4.7 Static Semantics: ReferencesSuper
	14.4.8 Static Semantics: VarDeclaredNames
	1.1.1
	1.1.1
	14.4.9 Runtime Semantics: EvaluateBody
	14.4.10 Runtime Semantics: InstantiateFunctionObject
	14.4.11 Runtime Semantics: PropertyDefinitionEvaluation
	14.4.12 Runtime Semantics: Evaluation

	14.5 Class Definitions
	1.1.1
	14.5.1 Static Semantics: Early Errors
	14.5.2 Static Semantics: BoundNames
	14.5.3 Static Semantics: ConstructorMethod
	14.5.4 Static Semantics: Contains
	14.5.5 Static Semantics: IsConstantDeclaration
	14.5.6 Static Semantics: IsStatic
	14.5.7 Static Semantics: LexicallyDeclaredNames
	14.5.8 Static Semantics: PrototypeMethodDefinitions
	14.5.9 Static Semantics: PrototypePropertyNameList
	14.5.10 Static Semantics: PropName
	14.5.11 Static Semantics: StaticPropertyNameList
	14.5.12 Static Semantics: StaticMethodDefinitions
	14.5.13 Static Semantics: VarDeclaredNames
	1.1.1
	14.5.14 Runtime Semantics: ClassDefinitionEvaluation
	14.5.15 Runtime Semantics: Evaluation

	14.6 Tail Position Calls
	1.1.1
	14.6.1 Runtime Semantics: PrepareForTailCall

	15 ECMAScript Language: Modules and Scripts
	15.1 Modules
	15.1.0 Module Semantics
	15.1.0.1 Static Semantics: Early Errors
	15.1.0.2 Static Semantics: IsStrict
	15.1.0.3 Static Semantics: LexicallyDeclaredNames
	15.1.0.4 Static Semantics: LexicallyScopedDeclarations
	15.1.0.5 Static Semantics: VarDeclaredNames
	15.1.0.6 Static Semantics: VarScopedDeclarations
	15.1.0.7 Runtime Semantics: Module Declaration Instantiation

	15.1.1 Imports
	15.1.1.1 Static Semantics: Early Errors
	15.1.1.2 Static Semantics: BoundNames
	15.1.1.3 Static Semantics: ImportedNames

	15.1.2 Exports
	15.1.2.1 Static Semantics: BoundNames

	15.2 Scripts
	1.1.1
	1.1.1
	1.1.1
	15.2.1 Static Semantics: Early Errors
	15.2.2 Static Semantics: IsStrict
	15.2.3 Static Semantics: LexicallyDeclaredNames
	15.2.4 Static Semantics: LexicallyScopedDeclarations
	1.1.1
	1.1.1
	1.1.1
	1.1.1
	1.1.1
	1.1.1
	15.2.5 Static Semantics: VarDeclaredNames
	1.1.1
	1.1.1
	1.1.1
	1.1.1
	1.1.1
	1.1.1
	15.2.6 Static Semantics: VarScopedDeclarations
	1.1.1
	1.1.1
	1.1.1
	1.1.1
	1.1.1
	1.1.1
	1.1.1
	15.2.7 Runtime Semantics: Script Evaluation
	15.2.8 Runtime Semantics: Evaluation
	15.2.9 Runtime Semantics: GlobalDeclarationInstantiation

	15.3 Directive Prologues and the Use Strict Directive

	1
	1
	1
	16 Error Handling and Language Extensions
	17 Standard Built-in ECMAScript Objects
	18 The Global Object
	18.1 Value Properties of the Global Object
	18.1.1 Infinity
	18.1.2 NaN
	18.1.3 undefined

	18.2 Function Properties of the Global Object
	18.2.1 eval (x)
	18.2.1.1 Direct Call to Eval
	18.2.1.2 Eval Declaration Instantiation

	18.2.2 isFinite (number)
	18.2.3 isNaN (number)
	18.2.4 parseFloat (string)
	18.2.5 parseInt (string , radix)

	18.3 URI Handling Function Properties
	18.3.1 decodeURI (encodedURI)
	18.3.2 decodeURIComponent (encodedURIComponent)
	18.3.3 encodeURI (uri)
	18.3.4 encodeURIComponent (uriComponent)

	18.4 Constructor Properties of the Global Object
	18.4.1 Array (. . .)
	18.4.2 ArrayBuffer (. . .)
	18.4.3 Boolean (. . .)
	18.4.4 DataView (. . .)
	18.4.5 Date (. . .)
	18.4.6 Error (. . .)
	18.4.7 EvalError (. . .)
	18.4.8 Float32Array (. . .)
	18.4.9 Float64Array (. . .)
	18.4.10 Function (. . .)
	18.4.11 Int8Array (. . .)
	18.4.12 Int16Array (. . .)
	18.4.13 Int32Array (. . .)
	18.4.14 Map (. . .)
	18.4.15 Number (. . .)
	18.4.16 Object (. . .)
	18.4.17 RangeError (. . .)
	18.4.18 ReferenceError (. . .)
	18.4.19 RegExp (. . .)
	18.4.20 Set (. . .)
	18.4.21 String (. . .)
	18.4.22 SyntaxError (. . .)
	18.4.23 TypeError (. . .)
	18.4.24 Uint8Array (. . .)
	18.4.25 Uint8ClampedArray (. . .)
	18.4.26 Uint16Array (. . .)
	18.4.27 Uint32Array (. . .)
	18.4.28 URIError (. . .)
	18.4.29 WeakMap (. . .)
	18.4.30 WeakSet (. . .)

	18.5 Other Properties of the Global Object
	18.5.1 JSON
	18.5.2 Math

	19 Fundamental Objects
	19.1 Object Objects
	19.1.1 The Object Constructor Called as a Function
	19.1.1.1 Object ([value])

	19.1.2 The Object Constructor
	19.1.2.1 new Object ([value])

	19.1.3 Properties of the Object Constructor
	19.1.3.1 Object.assign (target, source)
	19.1.3.2 Object.create (O [, Properties])
	19.1.3.3 Object.defineProperties (O, Properties)
	19.1.3.4 Object.defineProperty (O, P, Attributes)
	19.1.3.5 Object.freeze (O)
	19.1.3.6 Object.getOwnPropertyDescriptor (O, P)
	19.1.3.7 Object.getOwnPropertyNames (O)
	19.1.3.8 Object.getOwnPropertySymbols (O)
	1.1.1.1
	1.1.1.1
	19.1.3.9
	19.1.3.9.1 GetOwnPropertyKey (O, Type) Abstract Operation

	19.1.3.10 Object.getPrototypeOf (O)
	19.1.3.11 Object.is (value1, value2)
	19.1.3.12 Object.isExtensible (O)
	19.1.3.13 Object.isFrozen (O)
	19.1.3.14 Object.isSealed (O)
	19.1.3.15 Object.keys (O)
	19.1.3.16 Object.mixin (target, source)
	19.1.3.16.1 MixinProperties(target, source)

	19.1.3.17 Object.preventExtensions (O)
	19.1.3.18 Object.prototype
	19.1.3.19 Object.seal (O)
	19.1.3.20 Object.setPrototypeOf (O, proto)

	19.1.4 Properties of the Object Prototype Object
	19.1.4.1 Object.prototype.constructor
	19.1.4.2 Object.prototype.hasOwnProperty (V)
	19.1.4.3 Object.prototype.isPrototypeOf (V)
	19.1.4.4 Object.prototype.propertyIsEnumerable (V)
	19.1.4.5 Object.prototype.toLocaleString ()
	19.1.4.6 Object.prototype.toString ()
	19.1.4.7 Object.prototype.valueOf ()

	19.1.5 Properties of Object Instances

	19.2 Function Objects
	19.2.1 The Function Constructor
	19.2.1.1 Function (p1, p2, … , pn, body)
	19.2.1.2 new Function (... argumentsList)

	19.2.2 Properties of the Function Constructor
	19.2.2.1 Function.length
	19.2.2.2 Function.prototype
	19.2.2.3 Function[@@create] ()

	19.2.3 Properties of the Function Prototype Object
	19.2.3.1 Function.prototype.apply (thisArg, argArray)
	19.2.3.2 Function.prototype.bind (thisArg [, arg1 [, arg2, …]])
	19.2.3.3 Function.prototype.call (thisArg [, arg1 [, arg2, …]])
	19.2.3.4 Function.prototype.constructor
	19.2.3.5 Function.prototype.toString ()
	19.2.3.6 Function.prototype[@@create] ()
	19.2.3.7 Function.prototype[@@hasInstance] (V)

	19.2.4 Function Instances
	19.2.4.1 length
	19.2.4.2 prototype

	19.3 Boolean Objects
	19.3.1 The Boolean Constructor
	19.3.1.1 Boolean (value)
	19.3.1.2 new Boolean (... argumentsList)

	19.3.2 Properties of the Boolean Constructor
	19.3.2.1 Boolean.prototype
	19.3.2.2 Boolean[@@create] ()

	19.3.3 Properties of the Boolean Prototype Object
	19.3.3.1 Boolean.prototype.constructor
	19.3.3.2 Boolean.prototype.toString ()
	19.3.3.3 Boolean.prototype.valueOf ()

	19.3.4 Properties of Boolean Instances

	19.4 Symbol Objects
	19.4.1 The Symbol Constructor
	19.4.1.1 Symbol (description=undefined)
	19.4.1.2 new Symbol (... argumentsList)

	19.4.2 Properties of the Symbol Constructor
	19.4.2.1 Symbol.create
	19.4.2.2 Symbol.hasInstance
	19.4.2.3 Symbol.isRegExp
	19.4.2.4 Symbol.iterator
	19.4.2.5 Symbol.prototype
	19.4.2.6 Symbol.toPrimitive
	19.4.2.7 Symbol.toStringTag
	19.4.2.8 Symbol.unscopables
	19.4.2.9 Symbol[@@create] ()

	19.4.3 Properties of the Symbol Prototype Object
	19.4.3.1 Symbol.prototype.constructor
	19.4.3.2 Symbol.prototype.toString ()
	19.4.3.3 Symbol.prototype.valueOf ()
	19.4.3.4 Symbol.prototype [@@toStringTag]

	19.4.4 Properties of Symbol Instances

	19.5 Error Objects
	19.5.1 The Error Constructor
	19.5.1.1 Error (message)
	19.5.1.2 new Error(... argumentsList)

	19.5.2 Properties of the Error Constructor
	19.5.2.1 Error.prototype
	19.5.2.2 Error[@@create] ()

	19.5.3 Properties of the Error Prototype Object
	19.5.3.1 Error.prototype.constructor
	19.5.3.2 Error.prototype.message
	19.5.3.3 Error.prototype.name
	19.5.3.4 Error.prototype.toString ()

	19.5.4 Properties of Error Instances
	19.5.5 Native Error Types Used in This Standard
	19.5.5.1 EvalError
	19.5.5.2 RangeError
	19.5.5.3 ReferenceError
	19.5.5.4 SyntaxError
	19.5.5.5 TypeError
	19.5.5.6 URIError

	19.5.6 NativeError Object Structure
	19.5.6.1 NativeError Constructors
	19.5.6.1.1 NativeError (message)
	19.5.6.1.2 new NativeError (... argumentsList)

	19.5.6.2 Properties of the NativeError Constructors
	19.5.6.2.1 NativeError.prototype
	19.5.6.2.2 NativeError [@@create] ()

	19.5.6.3 Properties of the NativeError Prototype Objects
	19.5.6.3.1 NativeError.prototype.constructor
	19.5.6.3.2 NativeError.prototype.message
	19.5.6.3.3 NativeError.prototype.name

	19.5.6.4 Properties of NativeError Instances

	20 Numbers and Dates
	20.1 Number Objects
	20.1.1 The Number Constructor
	20.1.1.1 Number ([value])
	20.1.1.2 new Number (...argumentsList)

	20.1.2 Properties of the Number Constructor
	20.1.2.1 Number.EPSILON
	20.1.2.2 Number.isFinite (number)
	20.1.2.3 Number.isInteger (number)
	20.1.2.4 Number.isNaN (number)
	20.1.2.5 Number.isSafeInteger (number)
	20.1.2.6 Number.MAX_SAFE_INTEGER
	20.1.2.7 Number.MAX_VALUE
	20.1.2.8 Number.NaN
	20.1.2.9 Number.NEGATIVE_INFINITY
	20.1.2.10 Number.MIN_SAFE_INTEGER
	20.1.2.11 Number.MIN_VALUE
	20.1.2.12 Number.parseFloat (string)
	20.1.2.13 Number.parseInt (string, radix)
	20.1.2.14 Number.POSITIVE_INFINITY
	20.1.2.15 Number.prototype
	20.1.2.16 Number[@@create] ()

	20.1.3 Properties of the Number Prototype Object
	20.1.3.1 Number.prototype.clz ()
	20.1.3.2 Number.prototype.constructor
	20.1.3.3 Number.prototype.toExponential (fractionDigits)
	20.1.3.4 Number.prototype.toFixed (fractionDigits)
	20.1.3.5 Number.prototype.toLocaleString()
	20.1.3.6 Number.prototype.toPrecision (precision)
	20.1.3.7 Number.prototype.toString ([radix])
	20.1.3.8 Number.prototype.valueOf ()

	20.1.4 Properties of Number Instances

	20.2 The Math Object
	20.2.1 Value Properties of the Math Object
	20.2.1.1 Math.E
	20.2.1.2 Math.LN10
	20.2.1.3 Math.LOG10E
	20.2.1.4 Math.LN2
	20.2.1.5 Math.LOG2E
	20.2.1.6 Math.PI
	20.2.1.7 Math.SQRT1_2
	20.2.1.8 Math.SQRT2
	20.2.1.9 Math [@@toStringTag]

	20.2.2 Function Properties of the Math Object
	20.2.2.1 Math.abs (x)
	20.2.2.2 Math.acos (x)
	20.2.2.3 Math.acosh(x)
	20.2.2.4 Math.asin (x)
	20.2.2.5 Math.asinh(x)
	20.2.2.6 Math.atan (x)
	20.2.2.7 Math.atanh(x)
	20.2.2.8 Math.atan2 (y, x)
	20.2.2.9 Math.cbrt(x)
	20.2.2.10 Math.ceil (x)
	20.2.2.11 Math.cos (x)
	20.2.2.12 Math.cosh(x)
	20.2.2.13 Math.exp (x)
	20.2.2.14 Math.expm1 (x)
	20.2.2.15 Math.floor (x)
	20.2.2.16 Math.fround (x)
	20.2.2.17 Math.hypot([value1 [, value2 [, …]]])
	20.2.2.18 Math.imul(x, y)
	20.2.2.19 Math.log (x)
	20.2.2.20 Math.log1p (x)
	20.2.2.21 Math.log10 (x)
	20.2.2.22 Math.log2 (x)
	20.2.2.23 Math.max ([value1 [, value2 [, …]]])
	20.2.2.24 Math.min ([value1 [, value2 [, …]]])
	20.2.2.25 Math.pow (x, y)
	20.2.2.26 Math.random ()
	20.2.2.27 Math.round (x)
	1.1.1.1
	1.1.1.1
	1.1.1.1
	1.1.1.1
	1.1.1.1
	1.1.1.1
	1.1.1.1
	20.2.2.28 Math.sign(x)
	20.2.2.29 Math.sin (x)
	20.2.2.30 Math.sinh(x)
	20.2.2.31 Math.sqrt (x)
	20.2.2.32 Math.tan (x)
	20.2.2.33 Math.tanh(x)
	20.2.2.34 Math.trunc(x)

	20.3 Date Objects
	20.3.1 Overview of Date Objects and Definitions of Abstract Operations
	20.3.1.1 Time Values and Time Range
	20.3.1.2 Day Number and Time within Day
	20.3.1.3 Year Number
	20.3.1.4 Month Number
	20.3.1.5 Date Number
	20.3.1.6 Week Day
	20.3.1.7 Local Time Zone Adjustment
	20.3.1.8 Daylight Saving Time Adjustment
	20.3.1.9 Local Time
	20.3.1.10 Hours, Minutes, Second, and Milliseconds
	20.3.1.11 MakeTime (hour, min, sec, ms)
	20.3.1.12 MakeDay (year, month, date)
	20.3.1.13 MakeDate (day, time)
	20.3.1.14 TimeClip (time)
	20.3.1.15 Date Time String Format
	20.3.1.15.1 Extended years

	20.3.2 The Date Constructor
	20.3.2.1 Date (year, month [, date [, hours [, minutes [, seconds [, ms]]]]])
	20.3.2.2 Date (value)
	20.3.2.3 Date ()
	20.3.2.4 new Date (... argumentsList)

	20.3.3 Properties of the Date Constructor
	20.3.3.1 Date.now ()
	20.3.3.2 Date.parse (string)
	20.3.3.3 Date.prototype
	20.3.3.4 Date.UTC (year, month [, date [, hours [, minutes [, seconds [, ms]]]]])
	20.3.3.5 Date[@@create] ()

	20.3.4 Properties of the Date Prototype Object
	20.3.4.1 Date.prototype.constructor
	20.3.4.2 Date.prototype.getDate ()
	20.3.4.3 Date.prototype.getDay ()
	20.3.4.4 Date.prototype.getFullYear ()
	20.3.4.5 Date.prototype.getHours ()
	20.3.4.6 Date.prototype.getMilliseconds ()
	20.3.4.7 Date.prototype.getMinutes ()
	20.3.4.8 Date.prototype.getMonth ()
	20.3.4.9 Date.prototype.getSeconds ()
	20.3.4.10 Date.prototype.getTime ()
	20.3.4.11 Date.prototype.getTimezoneOffset ()
	20.3.4.12 Date.prototype.getUTCDate ()
	20.3.4.13 Date.prototype.getUTCDay ()
	20.3.4.14 Date.prototype.getUTCFullYear ()
	20.3.4.15 Date.prototype.getUTCHours ()
	20.3.4.16 Date.prototype.getUTCMilliseconds ()
	20.3.4.17 Date.prototype.getUTCMinutes ()
	20.3.4.18 Date.prototype.getUTCMonth ()
	20.3.4.19 Date.prototype.getUTCSeconds ()
	20.3.4.20 Date.prototype.setDate (date)
	20.3.4.21 Date.prototype.setFullYear (year [, month [, date]])
	20.3.4.22 Date.prototype.setHours (hour [, min [, sec [, ms]]])
	20.3.4.23 Date.prototype.setMilliseconds (ms)
	20.3.4.24 Date.prototype.setMinutes (min [, sec [, ms]])
	20.3.4.25 Date.prototype.setMonth (month [, date])
	20.3.4.26 Date.prototype.setSeconds (sec [, ms])
	20.3.4.27 Date.prototype.setTime (time)
	20.3.4.28 Date.prototype.setUTCDate (date)
	20.3.4.29 Date.prototype.setUTCFullYear (year [, month [, date]])
	20.3.4.30 Date.prototype.setUTCHours (hour [, min [, sec [, ms]]])
	20.3.4.31 Date.prototype.setUTCMilliseconds (ms)
	20.3.4.32 Date.prototype.setUTCMinutes (min [, sec [, ms]])
	20.3.4.33 Date.prototype.setUTCMonth (month [, date])
	20.3.4.34 Date.prototype.setUTCSeconds (sec [, ms])
	20.3.4.35 Date.prototype.toDateString ()
	20.3.4.36 Date.prototype.toISOString ()
	20.3.4.37 Date.prototype.toJSON (key)
	20.3.4.38 Date.prototype.toLocaleDateString ()
	20.3.4.39 Date.prototype.toLocaleString ()
	20.3.4.40 Date.prototype.toLocaleTimeString ()
	20.3.4.41 Date.prototype.toString ()
	20.3.4.42 Date.prototype.toTimeString ()
	20.3.4.43 Date.prototype.toUTCString ()
	20.3.4.44 Date.prototype.valueOf ()
	20.3.4.45 Date.prototype [@@ToPrimitive] (hint)

	20.3.5 Properties of Date Instances

	21 Text Processing
	21.1 String Objects
	21.1.1 The String Constructor
	21.1.1.1 String (value = "")
	21.1.1.2 new String (... argumentsList)

	21.1.2 Properties of the String Constructor
	21.1.2.1 String.fromCharCode (...codeUnits)
	21.1.2.2 String.fromCodePoint (...codePoints)
	21.1.2.3 String.prototype
	21.1.2.4 String.raw (callSite, ...substitutions)
	21.1.2.5 String[@@create] ()

	21.1.3 Properties of the String Prototype Object
	21.1.3.1 String.prototype.charAt (pos)
	21.1.3.2 String.prototype.charCodeAt (pos)
	21.1.3.3 String.prototype.codePointAt (pos)
	21.1.3.4 String.prototype.concat (...args)
	21.1.3.5 String.prototype.constructor
	21.1.3.6 String.prototype.contains (searchString, position = 0)
	21.1.3.7 String.prototype.endsWith (searchString [, endPosition])
	21.1.3.8 String.prototype.indexOf (searchString, position)
	21.1.3.9 String.prototype.lastIndexOf (searchString, position)
	21.1.3.10 String.prototype.localeCompare (that)
	21.1.3.11 String.prototype.match (regexp)
	21.1.3.12 String.prototype.normalize (form = "NFC")
	21.1.3.13 String.prototype.repeat (count)
	21.1.3.14 String.prototype.replace (searchValue, replaceValue)
	21.1.3.15 String.prototype.search (regexp)
	21.1.3.16 String.prototype.slice (start, end)
	21.1.3.17 String.prototype.split (separator, limit)
	21.1.3.18 String.prototype.startsWith (searchString [, position])
	21.1.3.19 String.prototype.substring (start, end)
	21.1.3.20 String.prototype.toLocaleLowerCase ()
	21.1.3.21 String.prototype.toLocaleUpperCase ()
	21.1.3.22 String.prototype.toLowerCase ()
	21.1.3.23 String.prototype.toString ()
	21.1.3.24 String.prototype.toUpperCase ()
	21.1.3.25 String.prototype.trim ()
	21.1.3.26 String.prototype.valueOf ()
	21.1.3.27 String.prototype [@@iterator]()

	21.1.4 Properties of String Instances
	21.1.4.1 length

	21.2 RegExp (Regular Expression) Objects
	21.2.1 Patterns
	21.2.2 Pattern Semantics
	21.2.2.1 Notation
	21.2.2.2 Pattern
	21.2.2.3 Disjunction
	21.2.2.4 Alternative
	21.2.2.5 Term
	21.2.2.6 Assertion
	21.2.2.7 Quantifier
	21.2.2.8 Atom
	21.2.2.9 AtomEscape
	21.2.2.10 CharacterEscape
	21.2.2.11 DecimalEscape
	21.2.2.12 CharacterClassEscape
	21.2.2.13 CharacterClass
	21.2.2.14 ClassRanges
	21.2.2.15 NonemptyClassRanges
	21.2.2.16 NonemptyClassRangesNoDash
	21.2.2.17 ClassAtom
	21.2.2.18 ClassAtomNoDash
	21.2.2.19 ClassEscape

	21.2.3 The RegExp Constructor
	21.2.3.1 RegExp(pattern, flags)
	21.2.3.2 new RegExp(...argumentsList)
	21.2.3.3 Abstract Operations for the RegExp Constructor
	21.2.3.3.1 Runtime Semantics: RegExpAlloc Abstract Operation
	21.2.3.3.2 Runtime Semantics: RegExpInitialise Abstract Operation
	21.2.3.3.3 Runtime Semantics: RegExpCreate Abstract Operation
	21.2.3.3.4 Runtime Semantics: EscapeRegExpPattern Abstract Operation

	21.2.4 Properties of the RegExp Constructor
	21.2.4.1 RegExp.prototype
	21.2.4.2 RegExp[@@create] ()

	21.2.5 Properties of the RegExp Prototype Object
	21.2.5.1 RegExp.prototype.constructor
	21.2.5.2 RegExp.prototype.exec(string)
	21.2.5.3 get RegExp.prototype.global
	21.2.5.4 get RegExp.prototype.ignoreCase
	21.2.5.5 RegExp.prototype.match (string)
	21.2.5.6 get RegExp.prototype.multiline
	21.2.5.7 RegExp.prototype.replace (S, replaceValue)
	21.2.5.8 RegExp.prototype.search (S)
	21.2.5.9 get RegExp.prototype.source
	21.2.5.10 RegExp.prototype.split (string, limit)
	21.2.5.11 get RegExp.prototype.sticky
	21.2.5.12 RegExp.prototype.test(string)
	21.2.5.13 RegExp.prototype.toString()
	21.2.5.14 get RegExp.prototype.unicode
	21.2.5.15 RegExp.prototype [@@isRegExp]

	21.2.6 Properties of RegExp Instances
	21.2.6.1 lastIndex

	22 Indexed Collections
	22.1 Array Objects
	22.1.1 The Array Constructor
	22.1.1.1 Array ([item1 [, item2 [, …]]])
	22.1.1.2 Array (len)
	22.1.1.3 new Array (... argumentsList)

	22.1.2 Properties of the Array Constructor
	22.1.2.1 Array.from (arrayLike , mapfn=undefined, thisArg=undefined)
	22.1.2.2 Array.isArray (arg)
	22.1.2.3 Array.of (...items)
	22.1.2.4 Array.prototype
	22.1.2.5 Array[@@create] ()

	22.1.3 Properties of the Array Prototype Object
	22.1.3.1 Array.prototype.concat ([item1 [, item2 [, …]]])
	22.1.3.1.1 IsConcatSpreadable (O) Abstract Operation

	22.1.3.2 Array.prototype.constructor
	22.1.3.3 Array.prototype.copyWithin (target, start, end = this.length)
	22.1.3.4 Array.prototype.entries ()
	22.1.3.5 Array.prototype.every (callbackfn [, thisArg])
	22.1.3.6 Array.prototype.fill (value, start = 0, end = this.length)
	22.1.3.7 Array.prototype.filter (callbackfn [, thisArg])
	22.1.3.8 Array.prototype.find (predicate , thisArg = undefined)
	22.1.3.9 Array.prototype.findIndex (predicate , thisArg = undefined)
	22.1.3.10 Array.prototype.forEach (callbackfn [, thisArg])
	22.1.3.11 Array.prototype.indexOf (searchElement [, fromIndex])
	22.1.3.12 Array.prototype.join (separator)
	22.1.3.13 Array.prototype.keys ()
	22.1.3.14 Array.prototype.lastIndexOf (searchElement [, fromIndex])
	22.1.3.15 Array.prototype.map (callbackfn [, thisArg])
	22.1.3.16 Array.prototype.pop ()
	22.1.3.17 Array.prototype.push ([item1 [, item2 [, …]]])
	22.1.3.18 Array.prototype.reduce (callbackfn [, initialValue])
	22.1.3.19 Array.prototype.reduceRight (callbackfn [, initialValue])
	22.1.3.20 Array.prototype.reverse ()
	22.1.3.21 Array.prototype.shift ()
	22.1.3.22 Array.prototype.slice (start, end)
	22.1.3.23 Array.prototype.some (callbackfn [, thisArg])
	22.1.3.24 Array.prototype.sort (comparefn)
	22.1.3.25 Array.prototype.splice (start, deleteCount [, item1 [, item2 [, …]]])
	22.1.3.26 Array.prototype.toLocaleString ()
	22.1.3.27 Array.prototype.toString ()
	22.1.3.28 Array.prototype.unshift ([item1 [, item2 [, …]]])
	22.1.3.29 Array.prototype.values ()
	22.1.3.30 Array.prototype [@@iterator] ()
	22.1.3.31 Array.prototype [@@unscopables]

	22.1.4 Properties of Array Instances
	22.1.4.1 length

	22.1.5 Array Iterator Object Structure
	22.1.5.1 CreateArrayIterator Abstract Operation
	22.1.5.2 The Array Iterator Prototype
	22.1.5.2.1 ArrayIterator.prototype.constructor
	22.1.5.2.2 ArrayIterator.prototype.next()
	22.1.5.2.3 ArrayIterator.prototype.@@iterator ()
	22.1.5.2.4 ArrayIterator.prototype.@@toStringTag

	22.1.5.3 Properties of Array Iterator Instances

	22.2 TypedArray Objects
	22.2.1 The %TypedArray% Intrinsic Object
	22.2.1.1 %TypedArray% (length)
	22.2.1.2 %TypedArray% (typedArray)
	22.2.1.3 %TypedArray% (array)
	22.2.1.4 %TypedArray% (buffer, byteOffset=0, length=undefined)
	22.2.1.5 %TypedArray% (all other argument combinations)

	22.2.2 Properties of the %TypedArray% Intrinsic Object
	22.2.2.1 %TypedArray%.from (source , mapfn=undefined, thisArg=undefined)
	22.2.2.2 %TypedArray%.of (...items)
	22.2.2.3 %TypedArray%.prototype
	22.2.2.4 %TypedArray% [@@create] ()

	22.2.3 Properties of the %TypedArrayPrototype% Object
	22.2.3.1 get %TypedArray%.prototype.buffer
	22.2.3.2 get %TypedArray%.prototype.byteLength
	22.2.3.3 get %TypedArray%.prototype.byteOffset
	22.2.3.4 %TypedArray%.prototype.constructor
	22.2.3.5 %TypedArray%.prototype.copyWithin (target, start, end = this.length)
	22.2.3.6 %TypedArray%.prototype.entries ()
	22.2.3.7 %TypedArray%.prototype.every (callbackfn, thisArg = undefined)
	22.2.3.8 %TypedArray%.prototype.fill (value, start = 0, end = this.length)
	22.2.3.9 %TypedArray%.prototype.filter (callbackfn, thisArg = undefined)
	22.2.3.10 %TypedArray%.prototype.find (predicate, thisArg = undefined)
	22.2.3.11 %TypedArray%.prototype.findIndex (predicate, thisArg = undefined)
	22.2.3.12 %TypedArray%.prototype.forEach (callbackfn, thisArg = undefined)
	22.2.3.13 %TypedArray%.prototype.indexOf (searchElement, fromIndex = 0)
	22.2.3.14 %TypedArray%.prototype.join (separator)
	22.2.3.15 %TypedArray%.prototype.keys ()
	22.2.3.16 %TypedArray%.prototype.lastIndexOf (searchElement, fromIndex = this.length-1)
	22.2.3.17 get %TypedArray%.prototype.length
	22.2.3.18 %TypedArray%.prototype.map (callbackfn, thisArg = undefined)
	22.2.3.19 %TypedArray%.prototype.reduce (callbackfn [, initialValue])
	22.2.3.20 %TypedArray%.prototype.reduceRight (callbackfn [, initialValue])
	22.2.3.21 %TypedArray%.prototype.reverse ()
	22.2.3.22 %TypedArray%.prototype.set(array, offset = 0)
	22.2.3.23 %TypedArray%.prototype.set(typedArray, offset = 0)
	22.2.3.24 %TypedArray%.prototype.slice (start, end)
	22.2.3.25 %TypedArray%.prototype.some (callbackfn, thisArg = undefined)
	22.2.3.26 %TypedArray%.prototype.sort (comparefn)
	22.2.3.27 %TypedArray%.prototype.subarray(begin = 0, end = this.length)
	22.2.3.28 %TypedArray%.prototype.toLocaleString ()
	22.2.3.29 %TypedArray%.prototype.toString ()
	22.2.3.30 %TypedArray%.prototype.values ()
	22.2.3.31 %TypedArray%.prototype [@@iterator] ()
	22.2.3.32 get %TypedArray%.prototype [@@toStringTag]

	22.2.4 The TypedArray Constructors
	22.2.4.1 TypedArray(... argumentsList)
	22.2.4.2 new TypedArray(... argumentsList)

	22.2.5 Properties of the TypedArray Constructors
	22.2.5.1 TypedArray.BYTES_PER_ELEMENT
	22.2.5.2 TypedArray.prototype

	22.2.6 Properties of TypedArray Prototype Objects
	22.2.6.1 TypedArray.prototype.BYTES_PER_ELEMENT
	22.2.6.2 TypedArray.prototype.constructor

	22.2.7 Properties of TypedArray Instances

	23 Keyed Collection
	23.1 Map Objects
	23.1.1 The Map Constructor
	23.1.1.1 Map (iterable = undefined , comparator = undefined)
	23.1.1.2 new Map (... argumentsList)

	23.1.2 Properties of the Map Constructor
	23.1.2.1 Map.prototype
	23.1.2.2 Map[@@create] ()

	23.1.3 Properties of the Map Prototype Object
	23.1.3.1 Map.prototype.clear ()
	23.1.3.2 Map.prototype.constructor
	23.1.3.3 Map.prototype.delete (key)
	23.1.3.4 Map.prototype.entries ()
	23.1.3.5 Map.prototype.forEach (callbackfn , thisArg = undefined)
	23.1.3.6 Map.prototype.get (key)
	23.1.3.7 Map.prototype.has (key)
	23.1.3.8 Map.prototype.keys ()
	23.1.3.9 Map.prototype.set (key , value)
	23.1.3.10 get Map.prototype.size
	23.1.3.11 Map.prototype.values ()
	23.1.3.12 Map.prototype [@@iterator]()
	23.1.3.13 Map.prototype [@@toStringTag]

	23.1.4 Properties of Map Instances
	23.1.5 Map Iterator Object Structure
	23.1.5.1 CreateMapIterator Abstract Operation
	23.1.5.2 The Map Iterator Prototype
	23.1.5.2.1 MapIterator.prototype.constructor
	23.1.5.2.2 MapIterator.prototype.next()
	23.1.5.2.3 MapIterator.prototype [@@iterator] ()
	23.1.5.2.4 MapIterator.prototype [@@toStringTag]

	23.1.5.3 Properties of Map Iterator Instances

	23.2 Set Objects
	23.2.1 The Set Constructor
	23.2.1.1 Set (iterable = undefined, comparator = undefined)
	23.2.1.2 new Set (... argumentsList)

	23.2.2 Properties of the Set Constructor
	23.2.2.1 Set.prototype
	23.2.2.2 Set[@@create] ()

	23.2.3 Properties of the Set Prototype Object
	23.2.3.1 Set.prototype.add (value)
	23.2.3.2 Set.prototype.clear ()
	23.2.3.3 Set.prototype.constructor
	23.2.3.4 Set.prototype.delete (value)
	23.2.3.5 Set.prototype.entries ()
	23.2.3.6 Set.prototype.forEach (callbackfn , thisArg = undefined)
	23.2.3.7 Set.prototype.has (value)
	23.2.3.8 Set.prototype.keys ()
	23.2.3.9 get Set.prototype.size
	23.2.3.10 Set.prototype.values ()
	23.2.3.11 Set.prototype [@@iterator] ()
	23.2.3.12 Set.prototype [@@toStringTag]

	23.2.4 Properties of Set Instances
	23.2.5 Set Iterator Object Structure
	23.2.5.1 CreateSetIterator Abstract Operation
	23.2.5.2 The Set Iterator Prototype
	23.2.5.2.1 SetIterator.prototype.constructor
	23.2.5.2.2 SetIterator.prototype.next()
	23.2.5.2.3 SetIterator.prototype.@@iterator ()
	23.2.5.2.4 SetIterator.prototype.@@toStringTag

	23.2.5.3 Properties of Set Iterator Instances

	23.3 WeakMap Objects
	23.3.1 The WeakMap Constructor
	23.3.1.1 WeakMap (iterable = undefined)
	23.3.1.2 new WeakMap (... argumentsList)

	23.3.2 Properties of the WeakMap Constructor
	23.3.2.1 WeakMap.prototype
	23.3.2.2 WeakMap[@@create] ()

	23.3.3 Properties of the WeakMap Prototype Object
	23.3.3.1 WeakMap.prototype.clear ()
	23.3.3.2 WeakMap.prototype.constructor
	23.3.3.3 WeakMap.prototype.delete (key)
	23.3.3.4 WeakMap.prototype.get (key)
	23.3.3.5 WeakMap.prototype.has (key)
	23.3.3.6 WeakMap.prototype.set (key , value)
	23.3.3.7 WeakMap.prototype [@@toStringTag]

	23.3.4 Properties of WeakMap Instances

	23.4 WeakSet Objects
	23.4.1 The WeakSet Constructor
	23.4.1.1 WeakSet (iterable = undefined)
	23.4.1.2 new WeakSet (... argumentsList)

	23.4.2 Properties of the WeakSet Constructor
	23.4.2.1 WeakSet.prototype
	23.4.2.2 WeakSet [@@create] ()

	23.4.3 Properties of the WeakSet Prototype Object
	23.4.3.1 WeakSet.prototype.add (value)
	23.4.3.2 WeakSet.prototype.clear ()
	23.4.3.3 WeakSet.prototype.constructor
	23.4.3.4 WeakSet.prototype.delete (value)
	23.4.3.5 WeakSet.prototype.has (value)
	23.4.3.6 WeakSet.prototype [@@toStringTag]

	23.4.4 Properties of WeakSet Instances

	24 Structured Data
	24.1 ArrayBuffer Objects
	24.1.1 Abstract Operations For ArrayBuffer Objects
	24.1.1.1 AllocateArrayBuffer(constructor)
	24.1.1.2 SetArrayBufferData(arrayBuffer, bytes)
	24.1.1.3 CloneArrayBuffer(srcBuffer, srcByteOffset, srcType,cloneElementType, srcLength).
	24.1.1.4 GetValueFromBuffer (arrayBuffer, byteIndex, type, isLittleEndian)
	24.1.1.5 SetValueInBuffer (arrayBuffer, byteIndex, type, value, isLittleEndian)

	24.1.2 The ArrayBuffer Constructor
	24.1.2.1 ArrayBuffer(length)
	24.1.2.2 new ArrayBuffer(... argumentsList)

	24.1.3 Properties of the ArrayBuffer Constructor
	24.1.3.1 ArrayBuffer.isView (arg)
	24.1.3.2 ArrayBuffer.prototype
	24.1.3.3 ArrayBuffer[@@create] ()

	24.1.4 Properties of the ArrayBuffer Prototype Object
	24.1.4.1 get ArrayBuffer.prototype.byteLength
	24.1.4.2 ArrayBuffer.prototype.constructor
	24.1.4.3 ArrayBuffer.prototype.slice (start , end)
	24.1.4.4 ArrayBuffer.prototype [@@toStringTag]

	24.1.5 Properties of the ArrayBuffer Instances

	24.2 DataView Objects
	24.2.1 Abstract Operations For DataView Objects
	24.2.1.1 GetViewValue(view, requestIndex, isLittleEndian, type)
	24.2.1.2 SetViewValue(view, requestIndex, isLittleEndian, type, value)

	24.2.2 The DataView Constructor
	24.2.2.1 DataView(buffer, byteOffset=0, byteLength=undefined)
	24.2.2.2 new DataView(... argumentsList)

	24.2.3 Properties of the DataView Constructor
	24.2.3.1 DataView.prototype
	24.2.3.2 DataView [@@create] ()

	24.2.4 Properties of the DataView Prototype Object
	24.2.4.1 get DataView.prototype.buffer
	24.2.4.2 get DataView.prototype.byteLength
	24.2.4.3 get DataView.prototype.byteOffset
	24.2.4.4 DataView.prototype.constructor
	24.2.4.5 DataView.prototype.getFloat32(byteOffset, littleEndian=false)
	24.2.4.6 DataView.prototype.getFloat64(byteOffset, littleEndian=false)
	24.2.4.7 DataView.prototype.getInt8(byteOffset)
	24.2.4.8 DataView.prototype.getInt16(byteOffset, littleEndian=false)
	24.2.4.9 DataView.prototype.getInt32(byteOffset, littleEndian=false)
	24.2.4.10 DataView.prototype.getUint8(byteOffset)
	24.2.4.11 DataView.prototype.getUint16(byteOffset, littleEndian=false)
	24.2.4.12 DataView.prototype.getUint32(byteOffset, littleEndian=false)
	24.2.4.13 DataView.prototype.setFloat32(byteOffset, value, littleEndian=false)
	24.2.4.14 DataView.prototype.setFloat64(byteOffset, value, littleEndian=false)
	24.2.4.15 DataView.prototype.setInt8(byteOffset, value)
	24.2.4.16 DataView.prototype.setInt16(byteOffset, value, littleEndian=false)
	24.2.4.17 DataView.prototype.setInt32(byteOffset, value, littleEndian=false)
	24.2.4.18 DataView.prototype.setUint8(byteOffset, value)
	24.2.4.19 DataView.prototype.setUint16(byteOffset, value, littleEndian=false)
	24.2.4.20 DataView.prototype.setUint32(byteOffset, value, littleEndian=false)
	24.2.4.21 DataView.prototype[@@toStringTag]

	24.2.5 Properties of DataView Instances

	24.3 The JSON Object
	24.3.1 The JSON Grammar
	24.3.1.1 The JSON Lexical Grammar
	24.3.1.2 The JSON Syntactic Grammar

	24.3.2 JSON.parse (text [, reviver])
	24.3.3 JSON.stringify (value [, replacer [, space]])
	24.3.4 JSON [@@toStringTag]

	25 Control Abstraction Objects
	1.1
	25.1 Common Iteration Interfaces
	25.1.1 The Iterable Iterface
	25.1.2 The Iterator Iterface
	25.1.3 The IteratorResult Iterface

	25.2 "std:iteration" Exports
	25.3 GeneratorFunction Objects
	25.3.1 The GeneratorFunction Constructor
	25.3.1.1 GeneratorFunction (p1, p2, … , pn, body)
	25.3.1.2 new GeneratorFunction (... argumentsList)

	25.3.2 Properties of the GeneratorFunction Constructor
	25.3.2.1 GeneratorFunction.length
	25.3.2.2 GeneratorFunction.prototype
	25.3.2.3 GeneratorFunction[@@create] ()

	25.3.3 Properties of the GeneratorFunction Prototype Object
	25.3.3.1 GeneratorFunction.prototype.constructor
	25.3.3.2 GeneratorFunction.prototype.prototype
	25.3.3.3 GeneratorFunction.prototype [@@toStringTag]
	25.3.3.4 GeneratorFunction.prototype [@@create] ()

	25.3.4 GeneratorFunction Instances
	25.3.4.1 length
	25.3.4.2 prototype

	25.4 Generator Objects
	25.4.1 Properties of Generator Prototype
	25.4.1.1 Generator.prototype.constructor
	25.4.1.2 Generator.prototype.next (value)
	25.4.1.3 Generator.prototype.throw (exception)
	25.4.1.4 Generator.prototype [@@iterator] ()
	25.4.1.5 Generator.prototype [@@toStringTag]

	25.4.2 Properties of Generator Instances
	25.4.3 Iteration Related Abstract Operations
	25.4.3.1 GeneratorStart (generator, generatorBody)
	25.4.3.2 GeneratorResume (generator, value)
	25.4.3.3 GeneratorYield (iterNextObj)
	25.4.3.4 CreateIterResultObject (value, done)
	25.4.3.5 GetIterator (obj)
	25.4.3.6 IteratorNext (iterator, value)
	25.4.3.7 IteratorComplete (iterResult)
	25.4.3.8 IteratorValue (iterResult)
	25.4.3.9 IteratorStep (iterator, value)
	25.4.3.10 CreateEmptyIterator ()

	26 Reflection.
	26.1 The Reflect Object
	1.1.1
	26.1.1 Reflect.defineProperty(target, propertyKey, attributes)
	26.1.2 Reflect.deleteProperty (target, propertyKey)
	26.1.3 Reflect.enumerate (target)
	26.1.4 Reflect.get (target, propertyKey, receiver=target)
	26.1.5 Reflect.getOwnPropertyDescriptor(target, propertyKey)
	26.1.6 Reflect.getPrototypeOf (target)
	26.1.7 Reflect.has (target, propertyKey)
	26.1.8 Reflect.hasOwn (target, propertyKey)
	26.1.9 Reflect.isExtensible (target)
	26.1.10 Reflect.invoke (target, propertyKey, argumentsList, receiver=target)
	26.1.11 Reflect.ownKeys (target)
	26.1.12 Reflect.preventExtensions (target)
	26.1.13 Reflect.set (target, propertyKey, V, receiver=target)
	26.1.14 Reflect.setPrototypeOf (target, proto)

	26.2 Proxy Objects
	26.2.1 The Proxy Factory Function
	26.2.1.1 Proxy (target, handler)

	26.2.2 Properties of the Proxy Factory Function
	26.2.2.1 Proxy.revocable (target, handler)

	26.2.3 Property of Proxy Instances

	Annex A
	Annex A (informative) Grammar Summary
	A.1 Lexical Grammar
	A.2 Number Conversions
	A.3 Expressions
	A.4 Statements
	A.5 Functions and Scripts
	A.6 Universal Resource Identifier Character Classes
	A.7 Regular Expressions
	A.8 JSON
	A.8.1 JSON Lexical Grammar
	A.8.2 JSON Syntactic Grammar

	Annex B (normative) Additional ECMAScript Features for Web Browsers
	B.1 Additional Syntax
	B.1.1 Numeric Literals
	B.1.2 String Literals
	B.1.3 HTML-like Comments

	B.2 Additional Properties
	B.2.1 Additional Properties of the Global Object
	B.2.1.1 escape (string)
	B.2.1.2 unescape (string)

	B.2.2 Additional Properties of the Object.prototype Object
	B.2.2.1 Object.prototype.__proto__
	B.2.2.1.1 get Object.prototype.__proto__
	B.2.2.1.2 set Object.prototype.__proto__

	B.2.3 Additional Properties of the String.prototype Object
	B.2.3.1 String.prototype.substr (start, length)
	B.2.3.2 String.prototype.anchor (name)
	B.2.3.3 String.prototype.big ()
	B.2.3.4 String.prototype.blink ()
	B.2.3.5 String.prototype.bold ()
	B.2.3.6 String.prototype.fixed ()
	B.2.3.7 String.prototype.fontcolor (color)
	B.2.3.8 String.prototype.fontsize (size)
	B.2.3.9 String.prototype.italics ()
	B.2.3.10 String.prototype.link (url)
	B.2.3.11 String.prototype.small ()
	B.2.3.12 String.prototype.strike ()
	B.2.3.13 String.prototype.sub ()
	B.2.3.14 String.prototype.sup ()

	B.2.4 Additional Properties of the Date.prototype Object
	B.2.4.1 Date.prototype.getYear ()
	B.2.4.2 Date.prototype.setYear (year)
	B.2.4.3 Date.prototype.toGMTString ()

	B.2.5 Additional Properties of the RegExp.prototype Object
	B.2.5.1 RegExp.prototype.compile (pattern, flags)

	B.3 Other Additional Features
	B.3.1 __proto___ Property Names in Object Initialisers
	B.3.2 Web Legacy Compatibility for Block-Level Function Declarations

	Annex C (informative) The Strict Mode of ECMAScript
	Annex D (informative) Corrections and Clarifications with Possible Compatibility Impact
	Annex E (informative) Additions and Changes that Introduce Incompatibilities with Prior Editions
	E.1 In the 6th Edition
	E.2 In the 5th Edition

	Annex F (informative) Static Semantic Rule Cross Reference
	Scrap Heap
	26.2.3.1 15.2.3.15 Object.isObject (O)
	15.5.4.25 String.prototype.toArray()
	26.2.4 Symbol Exotic Objects
	26.2.4.1 [[GetPrototypeOf]] ()
	26.2.4.2 [[SetPrototypeOf]] (V)
	26.2.4.3 [[IsExtensible]] ()
	26.2.4.4 [[PreventExtensions]] ()
	26.2.4.5 [[HasOwnProperty]] (P)
	26.2.4.6 [[GetOwnProperty]] (P)
	26.2.4.7 [[DefineOwnProperty]] (P, Desc)
	26.2.4.8 [[HasProperty]] (P)
	26.2.4.9 [[Get]] (P, Receiver)
	26.2.4.10 [[Set]] (P, V, Receiver)
	26.2.4.11 [[Invoke]] (P, ArgumentsList, Receiver)
	26.2.4.12 [[Delete]] (P)
	26.2.4.13 [[Enumerate]] ()
	26.2.4.14 [[OwnPropertyKeys]] ()

	26.2.5 Preliminary work on Irrefutable Destructuring Binding Patterns
	26.2.5.1 Static Semantics

	26.2.6 8.3.10 [[Enumerate]] (includePrototype, onlyEnumerable)
	26.2.7 9.1.11 ToPositiveInteger
	26.2.8 10.5.3 Function Declaration Instantiation
	F.1.1 The __proto__ pseudo property.
	F.1.1.1 Object.prototype.__proto__

	F.1.2 Changes To Internal Methods__
	26.2.9 [[HasOwnProperty]] (P)
	26.2.9.1 [[HasOwnProperty]] (P)
	26.2.9.2 [[HasOwnProperty]] (P)

	26.2.10 [[HasOwnProperty]] (P)
	26.2.11 _
	26.2.11.1 15.18.1.14 Reflect.freeze (target)
	26.2.11.2 15.18.1.15 Reflect.seal (target)
	26.2.11.3 15.18.1.16 Reflect.isFrozen (target)
	26.2.11.4 15.18.1.17 Reflect.isSealed (target)
	F.1.2.1 _proto___ Object Initialisers _

	26.3 Binary Data Objects
	26.3.1 The BinaryData Module
	26.3.2 The BinaryData.Type Object
	26.3.2.1 BinaryData.ScalarType Type Instance Objects

	26.3.3 The BinaryData.ArrayType Object
	26.3.4 The BinaryData.StructType Object
	26.3.4.1 %TypedArray% (binary data stuff)

