Qecma Draft

Ecma/TC39/2013/063

CMAScript Language
Specification

Report Errors and Issues at: https://bugs.ecmascript.org

Product: Draft for 6th Edition
Component: choose an appropriate one
Version: Rev 20, October 28, 2013 Draft

Rue du Rhone 114 CH-1204 Geneva T: +41 22 849 6000 F: +41 22 849 6001

https://bugs.ecmascript.org/

A COPYRIGHT PROTECTED DOCUMENT

© Ecma International 2012

oecmnd

Contents Page

Introduction..

1
2
3

4
4.1
4.2
421
422
4.3
4.4

5

5.1
511
5.1.2
513
5.1.4
5.15

7.19
7.1.10
7111

Scope..

Conformance

NOIMALIVE FEFEIENCES ...t e et ottt et et e st e reen e 1

OV IVIBW ...ttt ettt ettt ettt e na e bt st s be e bt st sbeesesdeae et et e sttt ne e bt et na e n et eest e e ennennes
Web Scripting
ECMAScript Overview.
(0] oJ[=To3 -SRI

The Strict Variant of ECMAScript ..
Terms and definitions.........cccccveee
Organization of This Specification

Notational Conventions
Syntactic and Lexical Grammars
Context-Free Grammars...............
The Lexical and RegExp Grammars.
The Numeric String Grammar
The Syntactic Grammar
Grammar Notation
Algorithm Conventions
Static Semantic Rules

ECMAScript Data Types-and.Values ...
ECMAScript Language Types........
The Undefined Type...........
The Null Type..c........
The Boolean Type
The String Type
The Symbol Type...
The Number Type..
The Object Type
ECMAScript Specification Types
The List and Record Specification Type....
The Completion Record Specification Type.
The Reference Specification Type....
The Property Descriptor Specification Type...
The Lexical Environment and Environment Record Specification Types .
Data Blocks

PN T = Tod @ 1T =1 4 (0] 3 K TSRS
Type Conversion and Testing
ToPrimitive
ToBoolean.
ToNumber..
Tolnteger
Tolnt32: (Signed 32 Bit Integer).....

ToUint32: (Unsigned 32 Bit Integer)....
ToUint16: (Unsigned 16 Bit Integer)....
Tolnt8: (Signed 8 Bit Integer).........
ToUint8: (Unsigned 8 Bit Integer)
ToUint8Clamp: (Unsigned 8 Bit Integer, Clamped)
ToString

© Ecma International 2013 |

»ecmad

7.1.12
7.1.13
7.1.14

721
7.2.2
7.2.3
724
7.25
7.2.6
7.2.7
7.2.8
7.2.9
7.2.10

731
7.3.2
733
734
7.35
7.3.6
7.3.7
7.3.8
7.3.9
7.3.10
7.3.11
7.3.12
7.3.13
7.3.14
7.3.15
7.3.16
7.3.17

ToObject
ToPropertyKey
ToLength
Testing and Comparison Operations .
CheckObjectCoercible....................
IsCallable..................
SameValue(x, y)
SameValueZero(x, y)
IsConstructor
IsPropertyKey
IsExtensible (O)...........

Abstract Relational Comparison
Abstract Equality Comparison ...
Strict Equality Comparison
Operations on Objects
Get (O, P) e
Put (O, P, V, Throw)....
CreateDataProperty (O, P, V).....
CreateDataPropertyOrThrow (O,
DefinePropertyOrThrow (O, P, desc)
DeletePropertyOrThrow (O, P)
HasProperty (O, P)
HasOwnProperty (O, P).
GetMethod (O, P)
Invoke(O,P, [args])...
SetintegrityLevel (O, level) ..
TestIntegrityLevel (O, level)....
CreateArrayFromList (elements)
CreateListFromArrayLike (obj)
OrdinaryHasInstance (C, O)
GetPrototypeFromConstructor (constructor;intrinsicDefaultProto)
OrdinaryCreateFromConstructor (constructor, intrinsicDefaultProto, |nternalDataL|st)
Operations on Iterator Objects
Getlterator (0bj)i
IteratorNext (<dterator, value)
IteratorComplete (iterResult)
IteratorValue (iterResult).......
IteratorStep.(iterator, value)
CreatelterResultObject (value, done)
CreateListlterator (list)
CreateEmptylterator ()

Executable Code and Execution Contexts
Lexical EnvironmentS..........c.cccoovvnieniennnn
Environment Records

Lexical Environment Operations ..
Code Realmsecviveeenennns
Execution Contexts
ResolveBinding(name)
GetThisEnvironment ..
ThisResolution......

GetGlobalObject

Ordinary and Exotic Objects Behaviours
Ordinary Object Internal Methods and Internal Slots
[[GetPrototypeOf]] ()

[[SetPrototypeOf]] (V).
[[IsExtensible]] ()........
[[PreventExtensions]] ()..
[[GetOwnProperty]] (P)

© Ecma International 2013

»eCma

9.1.6
9.1.7
9.1.8
9.1.9
9.1.10
9.1.11
9.1.12
9.1.13
9.1.14
9.2
9.21
9.2.2
9.2.3
9.2.4
9.25
9.2.6
9.2.7

10.1.1
10.1.2
10.2

10.2.1
10.2.2

11

[[DefineOwnProperty]] (P, Desc)
[[HasProperty]](P)
[[Get]] (P, Receiver)..
[[Set]] (P, V, Receiver)......
[[Invoke]] (P, ArgumentsList, Receiver)..
[[Delete]] (P)
[[Enumerate]] ()
[[OwnPropertyKeys]] ()
ObjectCreate(proto, internalDataList) Abstract Operation
ECMASCcript Function ObJECtScccceiiiiiiiices e .76
[[Call]] (thisArgument, argumentsList)..
[[Construct]] (argumentsList)..........
[[Get]] (P, Receiver)...............
[[GetOwnProperty]] (P) .
FunctionAllocate Abstract Operatlon
Functionlinitialise Abstract Operation.
FunctionCreate Abstract Operation
GeneratorFunctionCreate Abstract Operation....
AddRestrictedFunctionProperties Abstract Operation..
MakeConstructor Abstract Operation
SetFunctionName Abstract Operation....
GetSuperBinding(obj) Abstract Operation
RebindSuper(function, newHome) Abstract Operation ..
Function Declaration Instantiation
Built-in Function Objects
[[Call]] (thisArgument, argumentsList)..
CreateBuiltinFunction Abstract Operation
Built-in Exotic Object Internal Methods and Data Fields
Bound Function Exotic Objects
Array Exotic Objects..............
String Exotic Objects ...«
Arguments Exotic Objects
Integer Indexed Exotic Objects
Proxy Object Internal Methods and Internal Slots.
[[GetPrototypeOf]] ()
[[SetPrototypeOf]] (V)
[[IsExtensible]] ()i
[[PreventExtensions]] ()
[[GetOwnProperty]] (P)
[[DefineOwnProperty]] (P, Desc)
[[HasProperty]] (P)
[[Get]] (P, Receiver)..
[[Set]] (P, V, Receiver)....
[[Invoke]] (P, ArgumentsList, Receiver)..
[[Delete]] (P)
[[Enumerate]] ()
[[OwnPropertyKeysl] ()
[[Call]] (thisArgument, argumentsList)
[[Construct]] Internal Method............
ProxyCreate Abstract Operation

ECMAScript Language: Source Code.
SOUrCe TeXt ..o s
Static Semantics: UTF-16 Encoding ..
Static Semantics: UTF16Decode(lead, trail)....
Types of Source Code.....
Strict Mode Code.............
Non-ECMAScript Functions.....

ECMASCript Language: LeXiCal GramMar.........cccuouiiueiieieeiieeesieesieesieesie e ss e sieesieesneesneens 105

© Ecma International 2013 1l

oecnd

11.1 Unicode Format-Control Characters
11.2 White Space

11.3 Line Terminators.

11.4 Comments....

115

11.6 Names and Keywords

11.6.1 Identifiers and Identifier Names.
11.6.2 Reserved Words

11.7 Punctuators.....

11.8 Literals.......

11.8.1 Null Literals ..
11.8.2 Boolean Literals..
11.8.3 Numeric Literals..
11.8.4 String Literals
11.8.5 Regular Expression Literals
11.8.6 Template Literal Lexical Components

11.9

11.9.1 Rules of Automatic Semicolon Insertion .
11.9.2 Examples of Automatic Semicolon Insertion

12
121

12.1.0 Semantics.....
12.1.1 Thethis Keyword.
12.1.2 Identifier Reference
12.1.3 Literals
12.1.4 Array Initialiser
12.1.5 Object Initialiser..
12.1.6 Function Defining Expressions
12.1.7 Generator Comprehensions....
12.1.8 Regular Expression Literals....
12.1.9 Template Literals
12.1.10 The Grouping Operator

12.2

12.2.1 Static Semantics
12.2.2 Property AcCcessors..
12.2.3 The new Operator
12.2.4 Function Calls
12.2.5 Thesuper Keyword .

Automatic Semicolon Insertion..............

ECMAScript Language: Expressions....
Primary Expressions

Left-Hand-Side Expressions....

12.2.6 Argument Lists
12.2.7 <Tagged Templates

123

12.3.1 Static Semantics: Early Errors..............
12.3.2 Static Semantics: IsAnonymousFunctionDefinition....
12.3.3 Static Semantics: IsValidSimpleAssignmentTarget .
12.3.4 Postfix Increment Operator
12.3.5 Postfix Decrement Operator....

124

12.4.1 Static Semantics: Early Errors...............
12.4.2 Static Semantics: IsAnonymousFunctionDefinition....
12.4.3 Static Semantics: IsValidSimpleAssignmentTarget .
12.4.4 The delete Operator
12.4.5 Thevoid Operator
12.4.6 Thetypeof Operator
12.4.7 Prefix Increment Operator ...
12.4.8 Prefix Decrement Operator
12.4.9 Unary + Operator
12.4.10 Unary - Operator
12.4.11 Bitwise NOT Operator (~)...

Postfix Expressions

Unary Operators

© Ecma International 2013

»ecma

12.5 Multiplicative Operators
12.5.1 Static Semantics: IsAnonymousFunctionDefinition .
12.5.2 Static Semantics: IsValidSimpleAssignmentTarget..
12.5.3 Runtime Semantics: Evaluation ..
12.6 Additive Operators
12.6.1 Static Semantics: IsAnonymousFunctionDefinition .
12.6.2 Static Semantics: IsValidSimpleAssignmentTarget..
12.6.3 The Addition operator (+)
12.6.4 The Subtraction Operator (-)
12.6.5 Applying the Additive Operators to Numbers
12.7 Bitwise Shift Operators........ccccoeoveiiiieiieiee e
12.7.1 Static Semantics: IsAnonymousFunctionDefinition
12.7.2 Semantics: IsValidSimpleAssignmentTarget...
12.7.3 The Left Shift Operator (<<)
12.7.4 The Signed Right Shift Operator (>>)
12.7.5 The Unsigned Right Shift Operator (>>>)
12.8 Relational Operators
12.8.1 Static Semantics: IsAnonymousFunctionDefinition .
12.8.2 Static Semantics: IsValidSimpleAssignmentTarget
12.8.3 Runtime Semantics: Evaluation
12.8.4 Runtime Semantics: InstanceofOperator(O, C)
12.9 Equality Operatorscccceoeeeeeeriieeieeserieenieeneens
12.9.1 Static Semantics: IsAnonymousFunctionDefinition
12.9.2 Static Semantics: IsValidSimpleAssignmentTarget..
12.9.3 Runtime Semantics: Evaluation
12.10 Binary Bitwise Operators
12.10.1 Static Semantics: IsAnonymousFunctionDefinition .
12.10.2 Static Semantics: IsValidSimpleAssignmentTarget
12.10.3 Runtime Semantics: Evaluation ..
12.11 Binary Logical Operators
12.11.1 Static Semantics: IsAnonymousFunctionDefinition
12.11.2 Static Semantics: IsValidSimpleAssignmentTarget
12.11.3 Runtime Semantics: Evaluation ..
12.12 Conditional Operator (?:)
12.12.1 Static Semantics: IsAnonymousFunctionDefinition
12.12.2 Static Semantics: IsValidSimpleAssignmentTarget..
12.12.3 Runtime Semantics: Evaluation
12.13 Assignment Operators
12.13.1 Static Semantics: Early Errors
12.13.2.Static Semantics: IsAnonymousFunctionDefinition
12.13:3 Static Semantics: IsValidSimpleAssignmentTarget
12.13.4 Runtime Semantics: = Evaluation ..
12.13.5 Destructuring Assignment
12.14 Comma Operator (,)
12.14.1 Static Semantics: IsAnonymousFunctionDefinition .
12.14.2 Static Semantics: IsValidSimpleAssignmentTarget..
12.14.3 Runtime Semantics: Evaluation

... 155

. 156
. 156
. 156
. 158
. 158
. 158
... 158

.. 159

13 ECMAScript Language: Statements and Declarations
13.0 Statement SEeMaNtiCSccevverieirrieiie e

13.0.1 Static Semantics: VarDeclaredNames

13.0.2 Runtime Semantics: LabelledEvaluation
13.0.3 Runtime Semantics: Evaluation ..
13.1 Block....
13.1.1 Static Semantics: Early Errors ..
13.1.2 Static Semantics: LexicalDeclarations
13.1.3 Static Semantics: LexicallyDeclaredNames..
13.1.4 Static Semantics: TopLevelLexicallyDeclaredNames
13.1.5 Static Semantics: TopLevelLexicallyScopedDeclarations...

© Ecma International 2013 \

oecnd

13.1.6 Static Semantics: TopLevelVarDeclaredNames
13.1.7 Static Semantics: TopLevelVarScopedDeclarations
13.1.8 Static Semantics: VarDeclaredNames..
13.1.9 Runtime Semantics: Evaluation
13.1.10 Runtime Semantics: Block Declaration Instantiation .
13.2 Declarations and the Variable Statement................. ..181
13.2.1 Let and Const Declarations
13.2.2 Variable Statement
13.2.3 Destructuring Binding Patterns .
13.3 Empty Statementccccoeeenns
13.3.1 Runtime Seman tics: Evaluation
13.4 Expression Statement.......
13.4.1 Runtime Semantics: Evaluation
13.5 Theif Statement
13.5.1 Static Semantics: VarDeclaredNames
13.5.2 Runtime Semantics: Evaluation
13.6 lteration Statements
13.6.0 Semantics
13.6.1 The do-while Statement
13.6.2 The while Statement
13.6.3 Thefor Statement
13.6.4 Thefor -in and for -of Statements
13.7 Thecontinue Statement
13.7.1 Static Semantics: Early Er rors ..
13.7.2 Runtime Semantics: Evaluation
13.8 Thebreak Statement
13.8.1 Static Semantics: Early Errors
13.8.2 Runtime Semantics: Evaluation
13.9 Thereturn Statement................
13.9.1 Runtime Semantics:
13.10 The with Statement
13.10.1 Static Semantics: Early Errors
13.10.2 Static Semantics: VarDeclaredNames
13.10.3 Runtime Semantics: Evaluation
13.11 The switch Statement........ ...
13.11.1 Static Semantics: Early Errors
13.11.2 Static Semantics: LexicalDeclarations....
13.11.3 Static Semantics: LexicallyDeclaredNames ..
13.11.4 Static Semantics: VarDeclaredNames
13.11.5Runtime Semantics: CaseBlock Evaluation
13.11.6Runtime Semantics: CaseSelectorEvaluation..
13.11.7 Runtime Semantics: Evaluation
13.12 Labelled Statements
13.12.1 Static Semantics: Early Errors
13.12.2 Static Semantics: VarDeclaredNames
13.12.3Runtime Semantic' s: LabelledEvaluation
13.12.4Runtime Semantics: Evaluation
13.13 Thethrow Statement
13.13.1Runtime Semantics: Evaluation
13.14 Thetry Statement
13.14.1 Static Semantics: Ea rly Errors
13.14.2 Static Semantics: VarDeclaredNames..
13.14.3Runtime Semantics: Bindinglnitialisation
13.14.4 Runtime Semantics: CatchClauseEvaluation
13.14.5 Runtime Semantics: Evaluation
13.15 The debugger statement
13.15.1 Runtime Semantics: Evaluation

14 ECMAScript Language: FUnctions and ClasSesccocviiiiciiii i s 211

VI © Ecma International 2013

»ecma

141

14.1.1
14.1.2
1413
14.1.4
14.1.5
14.1.6
14.1.7
1418
14.1.9

14.2

14.2.1
14.2.2
14.2.3
14.2.4
14.2.5
14.2.6
14.2.7
14.2.8
14.2.9

14.3

14.3.1
14.3.2
14.3.3
14.3.4
14.3.5
14.3.6
14.3.7
14.3.8
14.3.9
14.4

14.4.1
14.4.2
14.4.3
14.44
14.4.5
14.4.6
14.4.7
14.4.8
14.4.9

145

145.1
145.2
1453
145.4
1455
14.5.6

Function Definitions
Static Semantics: Early Errors
Static Semantics:
Static Semantics:
Static Semantics:
Static Semantics:
Static Semantics:
Static Semantics:
Static Semantics:
Static Semantics:
14.1.10 Static Semantics:
14.1.11 Static Semantics:
14.1.12 Runtime Semantics: EvaluateBody
14.1.13Runtime Semantics: IteratorBindinglInitialisation .
14.1.14 Runtime Semantics: InstantiateFunctionObject..
14.1.15 Runtime Semantics: Evaluation ..
Arrow Function Definitions
Static Semantics: Early Errors
Static Semantics:
Static Semantics:
Static Semantics:
Static Semantics:
Static Semantics:
Static Semantics:
Runtime Semantics: Iterator
Runtime Semantics: EvaluateBody-....
14.2.10 Runtime Semantics: Evaluation ..
Method Definitions.......cccoceveennen
Static Semantics:
Static Semantics:
Static Semantics:
Static Semantics:
Static Semantics:
Static Semantics:
Static Semantics:
Runtime Semantics: DefineMethod..
Runtime Semantics: PropertyDefinitionEvaluation
Generator Function Definitions
Static Semantics:
Static Semantics:
Static Semantics:
Static Semantics:
Static Semantics:
Static Semantics:
Static Semantics:
Static Semantics:
Static Semantics:
14.4.10 Static Semantics:
14.4.11 Runtime Semantics: EvaluateBody
14.4.12 Runtime Semantics: InstantiateFunctionObject ..
14.4.13 Runtime Semantics: PropertyDefinitionEvaluation
14.4.14 Runtime Semantics: Evaluation ..
Class Definitions
Static Semantics:
Static Semantics:
Static Semantics:
Static Semantics:
Static Semantics:
Static Semantics:

© Ecma International 2013

BoundNames..
Contains
Expected ArgumentCount.
HaslInitialiser...
IsAnonymousFunctionDefinition .
IsConstantDeclaration......
IsSimpleParameterList ..
ISSEHCE o
LexicallyDeclaredNames..
VarDeclaredNames

BoundNames..
Contains..........
CoveredFormalsList
ExpectedArgumentCount.
IsSimpleParameterList
LexicallyDeclaredNames..
Bindinglnitialisation

Early Errors
ExpectedArgumentCount.
HasComputedPropertyKey .
IsSimpleParameterList
PropName
ReferencesSuper
SpecialMethod....

Early Errors
BoundNames..
Contains
HasComputedPropertyKey .
IsAnonymousFunctionDefinition
IsConstantDeclaration
LexicallyDeclaredNames
PropName
ReferencesSuper ..
VarDeclaredNames

Early Errors
BoundNames
ConstructorMethod..
ContainS ...ccceeveeieeeee

IsAnonymousFunctionDefinition
IsConstantDeclaration

Vil

»ecmad

145.7
145.8
145.9

Static Semantics: IsStatic
Static Semantics: LexicallyDeclaredNames ..
Static Semantics: PrototypeMethodDefinitions

14.5.10 Static Semantics: PrototypePropertyNameList ...

14.5.11 Static Semantics: PropName.........cccccoeevrernnnnne
14.5.12 Static Semantics: StaticPropertyNameList.
14.5.13 Static Semantics: StaticMethodDefinitions ...
14.5.14 Static Semantics: VarDeclaredNames

14.5.15 Runtime Semantics: ClassDefinitionEvaluation .233
14.5.16 Runtime Semantics: Evaluation...........c..........

14.6
14.6.1

15
151
15.1.0
15.1.1
15.1.2
15.2
1521
15.2.2
15.2.3
15.2.4
15.25
15.2.6
15.2.7
15.2.8
15.2.9
15.3

16
17

18
18.1
18.1.1
18.1.2
18.1.3
18.2
18.2.1
18.2.2
18.2.3
18.2.4
18.25
18.3
18.3.1
18.3.2
18.3.3
18.3.4
18.3.5
18.4
18.4.1
18.4.2
18.4.3
18.4.4
18.45
18.4.6
18.4.7
18.4.8
18.4.9

VI

Tail Position Calls.........ccccoveevvveiieninene.
Runtime Semantics: PrepareForTailCa

ECMAScript Language: Modules and Scripts
Modules
Module Semantics
Imports
Exports..
Scripts...
Static Semantics: Early Errors..
Static Semantics: IsStrict
Static Semantics: LeX|caIIyDecIaredNames
Static Semantics: LexicallyScopedDeclarations
Static Semantics: VarDeclaredNames
Static Semantics: VarScopedDeclarations.
Runtime Semantics: Script Evaluation ..
Runtime Semantics: Evaluation
Runtime Semantics: GlobalDeclarationInstantiation
Directive Prologues and the Use Strict Directive

Error Handling and Language EXTENSIONS........ctcueee i aee st i e eee e eee e sieeseee s s seessieesneeneeeneeas
ECMAScript Standard BUIt-IN ODJECTES ... cuiiiiiiii i et e

The Global Object:
Value Properties of the Global Object
Infinity
NaN
undefined
Function-Properties of the Global Object.
eval (x)...
isFinite (number
isNaN (number).....
parseFloat (string) ...
parselnt (string , radix)
URI Handling Function Properties .
URI'Syntax and Semantics249
decodeURI (encodedURI)cccoceveivicincnnnnne .253
decodeURIComponent (encodedURIComponent)
eNCOEURI(UIT) e e
encodeURIComponent (uriComponent)..........
Constructor Properties of the Global Object
Array (.. .
ArrayBuffer (.
Boolean (...)
DataView (..
Date (...)....
Error (...)...
EvalError (. ..
Float32Array (. ..
Float64Array (. . .

© Ecma International 2013

»eCma

18.4.10 FUNCLION (...) eeeieiieiie e e
18.4.11 Int8Array (. ..)
18.4.12 Int16Array (. ..
18.4.13 Int32Array (.. .)
184.14Map (...).....
18.4.15 Number (. .
18.4.16 Object (. ..)....
18.4.17 RangeError (. ..
18.4.18 ReferenceError (
18.4.19 RegExp (...)..
18.4.20 Set (...)
18.4.21 String (. . .
18.4.1 Symbol (...)..
18.4.2 SyntaxError (. .
18.4.3 TypeError (..)
18.4.4 Uint8Array (...)...
18.4.5 Ulnt8CIampedArray(
18.4.6 Uintl6Array (...)..
18.4.7 Uint32Array(... .
18.4.8 URIError (...)
18.4.9 WeakMap (...
18.4.10 WeakSet (. . .
18.5 Other Properties of the Global Object
18.5.1 JSON
18.5.2 Math.
18.5.1 Proxy (
18.5.1 Reflect

19 Fundamental Objects
19.1 Object Objects.............
19.1.1 The Object Constructor
19.1.2 Properties of the Object Constructor..
19.1.3 Properties of the Object Prototype Object
19.1.4 Properties of Object Instances
19.2 Function Objects
19.2.1 The Function Constructor
19.2.2 Properties of the Function Constructor.....

19.2.3 Properties of the Function Prototype Object
19.2.4 Function Instances
19.3 Boolean Objects..........

19.3.1 .The Boolean Constructor
19.3.2 Properties of the Boolean Constructor
19.3.3 Properties of the Boolean Prototype Object
19.3.4 Properties of Boolean Instances
19.4 Symbol Objects
19.4.1 The Symbol Constructor
19.4.2 Properties of the Symbol Constructor....
19.4.3 Properties of the Symbol Prototype Object
19.4.4 Properties of Symbol Instances
19.5 Error Objectscceevvvereennnen.
19.5.1 The Error Constructor
19.5.2 Properties of the Error Constructor
19.5.3 Properties of the Error Prototype Objec
19.5.4 Properties of Error Instances..........c.cccooee.e
19.5.5 Native Error Types Used in This Standard
19.5.6 NativeError Object Structure

20 Numbers and Dates..
20.1 Number Objects...........
20.1.1 The Number Constructor

© Ecma International 2013 IX

>eCma

20.1.2
20.1.3
20.1.4
20.2

20.2.1
20.2.2
20.3

20.3.1
20.3.2
20.3.3
20.3.4
20.3.5

21
21.1
21.1.1
21.1.2
21.1.3
21.1.4
21.1.5

21 2.1
21.2.2

21.2.6

Properties of the Number Constructor
Properties of the Number Prototype Object
Properties of Number Instances287
The Math Object....
Value Properties of the Math Object...
Function Properties of the Math Object.
Date Objects
Overview of Date Objects and Definitions of Abstract Operations
The Date Constructor
Properties of the Date Constructor
Properties of the Date Prototype Object
Properties of Date Instances

Text Processing
String Objects
The String Constructor
Properties of the String Constructor
Properties of the String Prototype Object
Properties of String Instances
String Iterator Objects...
RegExp (Regular Expressmn)
Patterns
Pattern Semantics
The RegExp Constructor
Properties of the RegExp Constructor......
Properties of the RegExp Prototype Object
Properties of RegExp Instances

INdEeXed COIBCHIONS .. .ouiiiiiiiii it et ettt bbb 355
Array Objects
The Array Constructor
Properties of the Array. Constructor
Properties of the Array Prototype Ob]ect \
Properties of Array Instances383
Array lterator Objects...........
TypedArray Objects .
The %TypedArray% Intrinsic Object

Properties of the %TypedArray% Intrinsic Object
Properties.of the %TypedArrayPrototype% Ob]ect
The TypedArray. Constructors
Properties of the TypedArray Constructors
Properties of TypedArray Prototype Objects.
Properties of TypedArray Instances

Keyed Collection
Map Objects
The Map Constructor...............
Properties of the Map Constructor ..
Properties of the Map Prototype Object
Properties of Map Instances
Map Iterator Objects..........
Set Objects
The Set Constructor
Properties of the Set Constructor....
Properties of the Set Prototype Object ..
Properties of Set Instances
Set Iterator Objects
WeakMap Objects............
The WeakMap Constructor
Properties of the WeakMap Constructor......
Properties of the WeakMap Prototype Object

© Ecma International 2013

»ecma

23.3.4 Properties of WeakMap Instances
23.4 WeakSet Objectscccovueeee.
23.4.1 The WeakSet Constructor
23.4.2 Properties of the WeakSet Constructor.....

23.4.3 Properties of the WeakSet Prototype Object
23.4.4 Properties of WeakSet Instances

24 Structured Data
24.1 ArrayBuffer Objects
24.1.1 Abstract Operations For ArrayBuffer Objects
24.1.2 The ArrayBuffer Constructorc..cccoco......
24.1.3 Properties of the ArrayBuffer Constructor...
24.1.4 Properties of the ArrayBuffer Prototype Object .
24.1.5 Properties of the ArrayBuffer Instances.......
24.2 DataView ObjJeCtSccceiveiiiiiiiieniei e
24.2.1 Abstract Operations For DataView Objects
24.2.2 The DataView Constructor
24.2.3 Properties of the DataView Constructor....
24.2.4 Properties of the DataView Prototype Object .
24.2.5 Properties of DataView Instances
243 The JSON Object.....ccccocevvviirennne

24.3.1 JSON.parse (text[, i
24.3.2 JSON.stringify (value [, replacer [, space]])
24.3.3 JSON [@@tosStringTag]

25 Control Abstraction Objects ...
251 Common Iteration Interfaces
25.1.1 The lterable Interface.........
25.1.2 The lterator Interface
25.1.3 The lteratorResult Interface
25.2 GeneratorFunction Objects............
25.2.1 The GeneratorFunction-Constructor...
25.2.2 Properties of the GeneratorFunction Constructor ...
25.2.3 Properties of the GeneratorFunction Prototype Object..
25.2.4 GeneratorFunction Instances
25.3 Generator Objects
25.3.1 Properties of Generator Prototype
25.3.2 Properties of Generator Instances ...
25.3.3 lIteration Related Abstract Operations

26 Reflection
26.1 _The Reflect Object
26.1.1 Reflect.defineProperty(target, propertyKey, attributes)
26.1.2 Reflect.deleteProperty (target, propertyKey) ..
26.1.3 Reflect.enumerate (target)........c.cccoeererreereennes
26.1.4 Reflect.get (target, propertyKey, receiver=target).......
26.1.5 Reflect.getOwnPropertyDescriptor(target, propertyKey)..
26.1.6 Reflect.getPrototypeOf (target)
26.1.7 Reflect.has (target, propertyKey)
26.1.8 Reflect.hasOwn (target, propertyKey)
26.1.9 Reflect.isExtensible (target)
26.1.10 Reflect.invoke (target, propertyKey, argumentsList, receiver= target)
26.1.11 Reflect.ownKeys (target).............
26.1.12 Reflect.preventExtensions (target)...
26.1.13 Reflect.set (target, propertyKey, V, receiver= target)
26.1.14 Reflect.setPrototypeOf (target, proto)
26.2 Proxy Objects
26.2.1 The Proxy Factory Function...........

26.2.2 Properties of the Proxy Factory Function

Annex A (informative) Grammar SUMMATYcc.cccoieiieiieeie e e s 451

© Ecma International 2013 Xl

oecnd

Al Lexical Grammar
A2 Number Conversions .
A3 EXpressions458
A4 Statements
A5 Functions and Scripts.............
A.6 Universal Resource Identifier Ch
A7 Regular Expressions
A.8 JSON
A.8.1 JSON Lexical Grammar.
A.8.2 JSON Syntactic Grammar

Annex B (normative) Additional ECMAScript Features for Web Browsers
B.1 AdAItIONAl SYNTAX ..eoviiiiiiiciiie e s
B.1.1 Numeric Literals
B.1.2 String Literals...........
B.1.3 HTML-like Comments
B.1.4 Regular Expressions Patterns
B.2 Additional Propertiesc.cccceveenene
B.2.1 Additional Properties of the Global Object.....

B.2.2 Additional Properties of the Object.prototype Object
B.2.3 Additional Properties of the String.prototype Object.
B.2.4 Additional Properties of the Date.prototype Object ...
B.2.5 Additional Properties of the RegExp.prototype Object
B.3 Other Additional Features
B.3.1 _ proto___ Property Names in Object Initialisers .
B.3.2 Web Legacy Compatibility for Block-<Level Function DeClarationscccceeveverrerveneivenenienns

Annex C (informative) The Strict Mode 0f ECMASCEIPL.........ccueuiiiiietie e et e

Annex D (informative) Corrections and Clarifications with Possible Compatibility Impact 484

Annex E (informative) Additions and Changes that Introduce Incompatibilities with Prior

Editions
E.l In the 6™ Edition
E.2 In the 5" Edition ...

Annex F (informative) Static Semantic Rule Cross REfErenCe.........ccooveiiiiiiiiiie e 493

X © Ecma International 2013

© Ecma International 2013 X

B INTERNATIONAL —

pecma

Introduction

This Ecma Standard is based on several originating technologies, the most well known being JavaScript
(Netscape) and JScript (Microsoft). The language was invented by Brendan Eich at Netscape and first
appeared in that companyds Navigator 2.0 browser.
and in all browsers from Microsoft starting with Internet Explorer 3.0.

The development of this Standard started in November 1996. The first edition of this Ecma Standard was
adopted by the Ecma General Assembly of June 1997.

That Ecma Standard was submitted to ISO/IEC JTC 1 for adoption under the fast-track procedure, and
approved as international standard ISO/IEC 16262, in April 1998. The Ecma General Assembly of June 1998
approved the second edition of ECMA-262 to keep it fully aligned with ISO/IEC 16262. Changes between the
first and the second edition are editorial in nature.

The third edition of the Standard introduced powerful regular expressions, better string handling, new control
statements, try/catch exception handling, tighter definition-of errors, formatting for numeric output and minor
changes in anticipation of forthcoming internationalisation facilities and future language growth. The third
edition of the ECMAScript standard was adopted by the Ecma General Assembly of December 1999 and
published as ISO/IEC 16262:2002 in June 2002.

Since publication of the third edition, ECMAScript has achieved massive adoption in conjunction with the
World Wide Web where it has become the programming language that is supported by essentially all web
browsers. Significant work was done to develop a fourth edition of ECMAScript. Although that work was not
completed and not published! as the fourth edition of ECMAScript, it informs continuing evolution of the
language. The fifth edition of ECMAScript (published as ECMA-262 5" edition) codifies de facto
interpretations of the language specification that have become common among browser implementations and
adds support for new features that have emerged since the publication of the third edition. Such features
include accessor properties, reflective creation and inspection of objects, program control of property
attributes, additional array manipulation functions, support for the JSON object encoding format, and a strict
mode that provides enhanced error checking and program security.

The edition 5.1 of the ECMAScript Standard has been fully aligned with the third edition of the international
standard ISO/IEC-16262:2011.

Thi s present sixth edition of the Standar dééé

ECMAScript is a vibrant language and the evolution of the language is not complete. Significant technical
enhancement will continue with future editions of this specification.

This Ecma Standard has been adopted by the General Assembly of <month> <year>.

1 Note: Please note that for ECMAScript Edition 4the Ec ma st andar d #26mb &di i EOMA 40 was
used in the Ecma publicati-2h2 pEdicteisen dheaef ane EGEBMEMANt ernati onal

exist.

XV © Ecma International 2013

t

has

appeared

reserved but not

n

al

publication

subseq

does not

»ecma

"DISCLAIMER

This draft document may be copied and furnished to others, and derivative works that comment on or
otherwise explain it or assist in its implementation may be prepared, copied, published, and distributed,
in whole or in part, without restriction of any kind, provided that the above copyright notice and this
section are included on all such copies and derivative works. However, this document itself may not be
modified in any way, including by removing the copyright notice or references to Ecma International,

except as needed for the purpose of developing any document or deliverable produced by Ecma
International.

This disclaimer is valid only prior to final version of this document. After approval all rights on the
standard are reserved by Ecma International.

The limited permissions are granted through the standardization phase and will not be revoked by
Ecma International or its successors or assigns during this time.

This document and the information contained herein is provided on an "AS IS" basis and ECMA
INTERNATIONAL DISCLAIMS ALL WARRANTIES, EXPRESS OR IMPLIED, INCLUDING BUT NOT
LIMITED TO ANY WARRANTY THAT THE USE OF THE INFORMATION HEREIN WILL NOT INFRINGE
ANY OWNERSHIP RIGHTS OR ANY IMPLIED WARRANTIES OF MERCHANTABILITY OR FITNESS FOR
A PARTICULAR PURPOSE."

© Ecma International 2013 XV

secnd
ECMAScript Language Specification

1 Scope

This Standard defines the ECMAScript scripting language.

2 Conformance

A conforming implementation of ECMAScript must provide and support all the types, values, objects,
properties, functions, and program syntax and semantics described in this specification.

A conforming implementation of ECMAScript must interpret characters in conformance with the Unicode
Standard, Version 5.1.0 or later and ISO/IEC 10646. If the adopted ISO/IEC 10646-1 subset is not otherwise
specified, it is presumed to be the Unicode set, collection 10646.

A conforming implementation of ECMAScript that provides an application programming interface that supports
programs that need to adapt to the linguistic and cultural conventions used.by different human languages and
countries must implement the interface defined by the most recent editon ‘of Ecma-402 that is compatable with
this specificaiton.

A conforming implementation of ECMAScript may provide additional types, values, objects, properties, and
functions beyond those described in this ‘specification. In particular, a conforming implementation of
ECMAScript may provide properties not described in this specification, and values for those properties, for
objects that are described in this specification.

A conforming implementation of ECMAScript may support program and regular expression syntax not

described in this specification.In particular, a conforming implementation of ECMAScript may support
program syntax that makes use of the ffuture reserved wordsolisted in subclause 11.6.2.2 of this specification.

3 Normative references

The following referenced documents are indispensable for the application of this document. For dated
references, only the edition cited applies. For undated references, the latest edition of the referenced
document (including any amendments) applies.

ISO/IEC 10646:2003: Information Technology i Universal Multiple-Octet Coded Character Set (UCS) plus
Amendment 1:2005, Amendment 2:2006, Amendment 3:2008, and Amendment 4:2008, plus additional
amendments and corrigenda, or successor

The Unicode Standard, Version 5.0, as amended by Unicode 5.1.0, or successor

Unicode Standard Annex #15, Unicode Normalization Forms, version Unicode 5.1.0, or successor

Unicode Standard Annex #31, Unicode Identifiers and Pattern Syntax, version Unicode 5.1.0, or successor.

ECMA-402, ECMAScript Internationalization API Specification.
http://www.ecma-international.org/publications/standards/Ecma-402.htm

ECMA-404, The JSON Data Interchange Format.
http://www.ecma-international.org/publications/standards/Ecma-404.htm

4 Qverview

This section contains a non-normative overview of the ECMAScript language.

© Ecma International 2013 1

http://www.ecma-international.org/publications/standards/Ecma-402.htm
http://www.ecma-international.org/publications/standards/Ecma-404.htm

c2echa

ECMAScript is an object-oriented programming language for performing computations and manipulating
computational objects within a host environment. ECMAScript as defined here is not intended to be
computationally self-sufficient; indeed, there are no provisions in this specification for input of external data or
output of computed results. Instead, it is expected that the computational environment of an ECMAScript
program will provide not only the objects and other facilities described in this specification but also certain
environment-specific objects, whose description and behaviour are beyond the scope of this specification
except to indicate that they may provide certain properties that can be accessed and certain functions that can
be called from an ECMAScript program.

A scripting language is a programming language that is used to manipulate, customise, and automate the
faciliies of an existing system. In such systems, useful functionality is already available through a user
interface, and the scripting language is a mechanism for exposing that functionality to program control. In this
way, the existing system is said to provide a host environment of objects and facilities, which completes the
capabilities of the scripting language. A scripting language is intended for use by both professional and non-
professional programmers. ECMAScript was originally designed to be used as a scripting language, but has
become widely used as a general purpose programming language.

ECMAScript was originally designed to be a Web scripting language, providing a mechanism to enliven Web
pages in browsers and to perform server computation as part of a Web-based client-server architecture.
ECMAScript is now used both as a general propose programming language and to provide core scripting
capabilities for a variety of host environments. Therefore the core language.is specified in this document apart
from any particular host environment.

Some of the facilities of ECMAScript are similar to those used in other programming languages; in particular C,
Javad , Self, and Scheme as described in:

ISO/IEC 9899:1996, Programming Languages i C.

Gosling, James, Bill Joy and Guy Steele. The Java® Language Specification. Addison Wesley Publishing Co.,
1996.

Ungar, David, and Smith, Randall B. Self: The Power of Simplicity. OOPSLA '87 Conference Proceedings, pp.
227i 241, Orlando, FL, October 1987.

IEEE Standard for the ‘Scheme Programming Language. IEEE Std 1178-1990.
4.1 Web Scripting

A web browser provides an ECMAScript host environment for client-side computation including, for instance,
objects that represent windows, menus, pop-ups, dialog boxes, text areas, anchors, frames, history, cookies,
and input/output. Further, the host environment provides a means to attach scripting code to events such as
change of focus, page and image loading, unloading, error and abort, selection, form submission, and mouse
actions. Scripting code appears within the HTML and the displayed page is a combination of user interface
elements and fixed and computed text and images. The scripting code is reactive to user interaction and there
is no need for a main program.

A web server provides adifferent host environment for server-side computation including objects representing
requests, clients, and files; and mechanisms to lock and share data. By using browser-side and server-side
scripting together, it is possible to distribute computation between the client and server while providing a
customised user interface for a Web-based application.

Each Web browser and server that supports ECMAScript supplies its own host environment, completing the
ECMAScript execution environment.

4.2 ECMAScript Overview

The following is an informal overview of ECMAScriptd not all parts of the language are described. This
overview is not part of the standard proper.

2 © Ecma International 2013

secma

ECMAScript is object-based: basic language and host facilities are provided by objects, and an ECMAScript
program is a cluster of communicating objects. In ECMAScript, an object is a collection of properties each
with zero or more attributes that determine how each property can be usedd for example, when the Writable
attribute for a property is set to false, any attempt by executed ECMAScript code to change the value of the
property fails. Properties are containers that hold other objects, primitive values, or functions. A primitive
value is a member of one of the following built-in types: Undefined, Null, Boolean, Number, Symbol and
String; an object is a member of the remaining built-in type Object; and a function is a callable object. A
function that is associated with an object via a property is a method.

ECMAScript defines a collection of built-in objects that round out the definition of ECMAScript entities. These
built-in objects include the global object, the Object object, the Function object, the Array object, the String
object, the Boolean object, the Number object, the Math object, the Date object, the RegExp object, the
JSON object, and the Error objects Error, EvalError, RangeError, ReferenceError, SyntaxError,
TypeError and URIError.

ECMAScript also defines a set of built-in operators. ECMAScript operators include various unary operations,
multiplicative operators, additive operators, bitwise shift operators; relational operators, equality operators,
binary bitwise operators, binary logical operators, assignment operators, and the comma operator.

ECMAScript syntax intentionally resembles Java syntax. ECMAScript syntax is relaxed to enable it to serve as
an easy-to-use scripting language. For example, a variable is not required to have its type declared nor are
types associated with properties, and defined functions are not required to have their declarations appear
textually before calls to them.

4.2.1 Objects

ECMAScript does not use classes such as those in C++, Smalltalk, or Java. Instead objects may be created in
various ways including via a literal notation or via constructors.which create objects and then execute code
that initialises all or part of them by assigning initial values to their properties. Each constructor is a function
that has a prpotptge t y atidauseetd implement prototype-based inheritance and shared
properties. Objects are created by using constructors in new expressions; for example, new
Date(2009,11) creates a new Date object. Invoking a constructor without using new has consequences that
depend on the constructor. For example, Date() produces a string representation of the current date and
time rather than an object.

Every object c¢created by a construct or protaype) ta the vialuepf
itsconstru ¢ t oprofoypen 0 property. Further mor e,-nuhimpliat ceferenceytpits
prototype, and so on; this is called the prototype chain. When a reference is made to a property in an object,
that reference is to the property of that. name in the first object in the prototype chain that contains a property
of that.name. In other words, first the object mentioned directly is examined for such a property; if that object
contains the named property, that is the property to which the reference refers; if that object does not contain
the named property, the prototype for that object is examined next; and so on.

© Ecma International 2013 3

Commented [AWB101]:

This description probably need to)
be tweaked in light of new features such as class declarations
| and explicit exposure of the [[Prototype]] property

cit
may

reference

have

a

non

(called

t

he

c2echa

CF implicit protatypelink
prototype CFP ‘

Pl explicit prototype property
Pz CFP1 P P Peprop

. o, o, of5 o, B of wrvaas
gl gl gl gl ol
a2 gz o2 g2 e

Figure 1 6 Object/Prototype Relationships

In a class-based object-oriented language, in general, state is carried by instances, methods are carried by
classes, and inheritance is only of structure and behaviour. InnECMAScript, the state and methods are carried
by objects, while structure, behaviour, and state are all inherited.

All objects that do not directly contain a particular property that their prototype contains share that property
and its value. Figure 1 illustrates this:

CF is a constructor (and also an object). Five objects have been created by using new expressions: cfi, cfy,
cfs, cfs, and cfs. Each of these objects contains properties named g1 and g2. The dashed lines represent the
implicit prototype relationship; so, for example, cfs36's p r o t GFg. Yhp @onstrustor, CF, has two properties
itself, named P1 and P2, which are not visible to CF,, cfy, cfz, cfs, cfs, or cfs. The property named CFP1in CF,
is shared by cfi, cfz, cfs, cfs, and cfs (but not by CF), as are any properties found in CFpds i mpl i ¢
chain that are not named g1, g2, or CFP1 Notice that there is no implicit prototype link between CF and CFp.

Unlike class-based object languages, properties can be added to objects dynamically by assigning values to
them. That is,-.constructors are not required to name or assign values to all or any of the construc t e d o
properties.<In the above diagram, one could add a new shared property for cfi, cfy, cfs, cfs, and cfs by
assigning a new value to the property in.CFp.

4.2.2° The Strict Variant of ECMAScript

The ECMAScript Language recognises the possibility that some users of the language may wish to restrict
their usage of some features available in the language. They might do so in the interests of security, to avoid
what they consider to be erfror-prone features, to get enhanced error checking, or for other reasons of their
choosing. In support of this possibility, ECMAScript defines a strict variant of the language. The strict variant
of the language excludes some specific syntactic and semantic features of the regular ECMAScript language
and modifies the detailed semantics of some features. The strict variant also specifies additional error
conditions that must be reported by throwing error exceptions in situations that are not specified as errors by
the non-strict form of the language.

The strict variant of ECMAScript is commonly referred to as the strict mode of the language. Strict mode
selection and use of the strict mode syntax and semantics of ECMAScript is explicitly made at the level of
individual ECMAScript code units. Because strict mode is selected at the level of a syntactic code unit, strict
mode only imposes restrictions that have local effect within such a code unit. Strict mode does not restrict or
modify any aspect of the ECMAScript semantics that must operate consistently across multiple code units. A
complete ECMAScript program may be composed for both strict mode and non-strict mode ECMAScript code

4 © Ecma International 2013

it prototype

bjectods

»ecmad

units. In this case, strict mode only applies when actually executing code that is defined within a strict mode
code unit.

In order to conform to this specification, an ECMAScript implementation must implement both the full
unrestricted ECMAScript language and the strict mode variant of the ECMAScript language as defined by this
specification. In addition, an implementation must support the combination of unrestricted and strict mode
code units into a single composite program.

4.3 Terms and definitions

For the purposes of this document, the following terms and definitions apply.

431

type

set of data values as defined in clause 6 of this specification

432

primitive value

member of one of the types Undefined, Null, Boolean, Number; Symbol, or String as defined in clause 6
NOTE A primitive value is a datum that is represented directly at the lowest level of the language implementation.
433

object
member of the type Object

NOTE An object is a collection of properties and has a single prototype object. The prototype may be the null value.
4.3.4
constructor

function object that creates andiinitialises objects

NOTE The val ue of protatypen sOt rpucotpcerrdtsy i s a prototype object that is used to
and shared properties.

435

prototype

object that provides shared properties for other objects

NOTE When aconstructor . cr eates an object, that obj ecprototypep I0i irtolperit gf er ences t he

for the purpose of resol ving prmgogpet YW mefopreen gesc.anT hbee

program expression constructor .prototype ,andproperti es added to an objectds

inheritance, by all objects sharing the prototype. Alternatively, a new object may be created with an explicitly specified
prototype by using the Object.create built-in function.

436
ordinary object
object that has the default behaviour for the essential internal methods that must be supported by all objects.

4.3.7

exotic object

object that has some alternative behaviour for one or more of the essential internal methods that must be
supported by all objects.

NOTE Any object that is not an ordinary object is an exotic object.
4.3.8

standard object
object whose semantics are defined by this specification.

© Ecma International 2013 5

prototype

ar e

i mpl ement i

constructor
cr oerf setrreunccteadr 65y fit he

shared,

thro

»ecmd

4.3.9

built-in object

object supplied by an ECMAScript implementation, independent of the host environment, that is present at the
start of the execution of an ECMAScript program

NOTE Standard built-in objects are defined in this specification, and an ECMAScript implementation may specify and
define others. A built-in constructor is a built-in object that is also a constructor.

4.3.10
undefined value
primitive value used when a variable has not been assigned a value

4311
Undefined type
type whose sole value is the undefined value

4.3.12
null value
primitive value that represents the intentional absence of any object value

4.3.13
Null type
type whose sole value is the null value

4.3.14
Boolean value
member of the Boolean type

NOTE There are only two Boolean values, true and false.

4.3.15
Boolean type
type consisting of the primitive values true and false

4.3.16
Boolean object
member of the Object type thatis an instance of the standard built-in Boolean constructor

NOTE A Boolean object is created by using the Boolean constructor in a new expression, supplying a Boolean
value as an argument. The resulting object has an internal slot whose value is the Boolean value. A Boolean object can be
coerced to a Boolean value.

4.3.17
String value
primitive value that is a finite ordered sequence of zero or more 16-bit unsigned integer

NOTE A String value is.a member of the String type. Each integer value in the sequence usually represents a single
16-bit unit of UTF-16 text. However, ECMAScript does not place any restrictions or requirements on the values except that
they must be 16-bit unsigned integers.

4.3.18
String type
set of all possible String values

4.3.19

String object
member of the Object type that is an instance of the standard built-in String constructor

6 © Ecma International 2013

»ecmad

NOTE A String object is created by using the String constructor in a new expression, supplying a String value as
an argument. The resulting object has an internal slot whose value is the String value. A String object can be coerced to a
String value by calling the String constructor as a function (21.1.1.1).

4.3.20
Number value
primitive value corresponding to a double-precision 64-bit binary format IEEE 754 value

NOTE A Number value is a member of the Number type and is a direct representation of a number.

4321
Number type

set of al |l possi bl e Number vaNuembei@dc(NdNhgvaheesppobalkti iddot nfinity,

negative infinity

4.3.22
Number object
member of the Object type that is an instance of the standard built<in Number constructor

NOTE A Number object is created by using the Number constructor in a new expression, supplying a Number value
as an argument. The resulting object has an internal slot whose value is the Number value. A Number object can be
coerced to a Number value by calling the Number constructor as a function (20.1.1.1).

4.3.23
Infinity
number value that is the positive infinite Number value

4.3.24
NaN
number value thatisan| EEE 7 5aN uinNoegr o <~ val ue

4.3.25
Symbol value
primitive value that is represents a unique, non-String Object property key.

4.3.26
Symbol type
set of all possible String values

4.3.27
Symbol object
member of the Object type that is an instance of the standard built-in Symbol constructor

NOTE A Symbol object is created either implicitly by various ECMAScript language operatators or explicit by using
the Object constructor as a function (21.1.1.1).

4.3.28
function
member of the Object type that may be invoked as a subroutine

NOTE In addition to its properties, a function contains executable code and state that determine how it behaves
when invoked. A functionds code may or may not be written in ECMAScript.
4.3.29

built-in function
built-in object that is a function

NOTE Examples of built-in functions include parselnt and Math.exp . An implementation may provide
implementation-dependent built-in functions that are not described in this specification.

© Ecma International 2013 7

»ecmd

4.3.30

property

association between a key and a value that is a part of an object. The key be either a String value or a
Symbol value.

NOTE Depending upon the form of the property the value may be represented either directly as a data value (a
primitive value, an object, or a function object) or indirectly by a pair of accessor functions.

4.3.31

method

function that is the value of a property

NOTE When a function is called as a method of an object, the object is passed to the function as its this value.
4.3.32

built-in method

method that is a built-in function

NOTE Standard built-in methods are defined in this specification,;and an ECMAScript implementation may specify
and provide other additional built-in methods.

4.3.33

attribute

internal value that defines some characteristic of a property

4.3.34

own property

property that is directly contained by its object

4.3.35

inherited property

property of an object t hat is not an own property but is a property (either 0
prototype

4.4 Organization of This Specification

The remainder of this specificationis organized as follows:

Clause 5 defines the notational conventions used throughout the specification.

Clauses 6-9 define the execution environment within which ECMAScript programs operate.

Clauses 10-16 define the actual ECMAScript programming language includings its syntactic encoding and the
execution semantics of all language features.

Clauses 17-26 define the ECMAScript standard library. It includes the definitions of all of the standard objects
that are available for use by ECMAScript programs as the execute.

5 Notational Conventions

5.1 Syntactic and Lexical Grammars

5.1.1 Context-Free Grammars

A context-free grammar consists of a number of productions. Each production has an abstract symbol called a

nonterminal as its left-hand side, and a sequence of zero or more nonterminal and terminal symbols as its
right-hand side. For each grammar, the terminal symbols are drawn from a specified alphabet.

8 © Ecma International 2013

»ecmnd

A chain production is a production that has exactly one nonterminal symbol on its right-hand side along with
zero or more terminal symbols.

Starting from a sentence consisting of a single distinguished nonterminal, called the goal symbol, a given
context-free grammar specifies a language, namely, the (perhaps infinite) set of possible sequences of
terminal symbols that can result from repeatedly replacing any nonterminal in the sequence with a right-hand
side of a production for which the nonterminal is the left-hand side.

5.1.2 The Lexical and RegExp Grammars

A lexical grammar for ECMAScript is given in clause 11. This grammar has as its terminal symbols characters
(Unicode code units) that conform to the rules for SourceCharactedefined in clause 9.5.16. It defines a set of
productions, starting from the goal symbol InputElementDivor InputElementRegExpthat describe how
sequences of such characters are translated into a sequence of input elements.

Input elements other than white space and comments form the terminal symbols for the syntactic grammar for

ECMAScript and are called ECMAScript tokens. These tokens are the reserved words, identifiers, literals, and

punctuators of the ECMAScript language. Moreover, line terminators, although not considered to be tokens,

also become part of the stream of input elements and guide the process of automatic semicolon insertion

(11.9). Simple white space and single-line comments are discarded and do not appear in the stream of input

elements for the syntactic grammar. A MultiLineCommen{ t hat i s, a confme*hd mdgarhekl d g m 0
of whether it spans more than one line) is likewise simply discarded if it contains no line terminator; but if a
MultiLineCommentontains one or more line terminators, then it is replaced by a single line terminator, which

becomes part of the stream of input elements for the syntactic grammar.

A RegExp grammar for ECMAScript is given in 21:2.1. This grammar also has as its terminal symbols the
characters as defined by SourceCharacteit defines a set of productions, starting from the goal symbol Pattern
that describe how sequences of characters are translated into regular expression patterns.

Productions of the 1| exical and RegExp gr ammarss sa@rper @it $ mnigngui shed by having
punctuation. The lexical and RegExp grammars share some productions.

5.1.3 The Numeric String Grammar

Another grammar is used for translating Strings.into numeric values. This grammar is similar to the part of the
lexical grammar having to do. with numeric literals and has as its terminal symbols SourceCharacterThis
grammar appears in 7.1.3.1.

Productions of the numeric string grammarasarpurmddtsudtnigaui.shed by having three
5.1.4 The Syntactic Grammar

The syntactic. grammar for ECMAScript is given in clauses 11, 12, 13 and 14. This grammar has ECMAScript
tokens defined by the lexical grammar as its terminal symbols (5.1.2). It defines a set of productions, starting
from the goal symbol Script_that describe how sequences of tokens can form syntactically correct independent
components of an ECMAScript programs.

When a stream of characters is to be parsed as an ECMAScript script, it is first converted to a stream of input
elements by repeated application of the lexical grammar; this stream of input elements is then parsed by a
single application of the syntactic grammar. The script is syntactically in error if the tokens in the stream of
input elements cannot be parsed as a single instance of the goal nonterminal Script, with no tokens left over.

Producti ons of the syntactic grammar amne adi ptuuinetdg wiaghe®ad.by having just one col
The syntactic grammar as presented in clauses 12, 13, 14 and 15 is actually not a complete account of which
token sequences are accepted as correct ECMAScript scripts. Certain additional token sequences are also

accepted, namely, those that would be described by the grammar if only semicolons were added to the
sequence in certain places (such as before line terminator characters). Furthermore, certain token sequences

© Ecma International 2013 9

c2echa

that are described by the grammar are not considered acceptable if a terminator character appears in certain
Afawkwar do pl aces.

In certain cases in order to avoid ambiguities the syntactic grammar uses generalised productions that permit
token sequences that are not valid ECMAScript scripts. For example, this technique is used in with object
literals and object destructuring patterns. In such cases a more restrictive supplemental grammar is provided
that further restricts the acceptable token sequences. In certain contexts, when explicitly specific, the input
elements corresponding to such a production are parsed again using a goal symbol of a supplemental
grammar. The script is syntactically in error if the tokens in the stream of input elements cannot be parsed as
a single instance of the supplemental goal symbol, with no tokens left over.

5.1.5 Grammar Notation

Terminal symbols of the lexical, RegExp, and numeric string grammars, andsome of the terminal symbols of
the other grammars, are shown in fixed width font, both in the productions of the grammars and
throughout this specification whenever the text directly refers to such a-terminal symbol. These are to appear
in a script either exactly as written or using equalvant Unicode escape sequences (see clause 9.5.16). All
terminal symbol characters specified in this way are to be understood as the appropriate Unicode code points
from the Basic Latin range, as opposed to any similar-looking characters from other Unicode ranges.

Nonterminal symbols are shown in italic type. The definition of a nonterminal (al so cal | ed isa fiproducti ono)
introduced by the name of the nonterminal being defined followed by one or more colons. (The number of

colons indicates to which grammar the production belongs.) One or more alternative right-hand sides for the

nonterminal then follow on succeeding lines. For example, the syntactic definition:

WhileStatement
while (Expressior) Statement

states that the nonterminal WhileStatementepresents the token while , followed by a left parenthesis token,
followed by an Expression followed by a right parenthesis token, followed by a StatementThe occurrences of
Expressiorand Statemenare themselves nonterminals. As another example, the syntactic definition:

ArgumentList
AssignmentExpression
ArgumentList, AssignmentExpression

states that an ArgumentListmay represent either a single AssignmentExpressiasr an ArgumentListfollowed by
a comma, followed by an AssignmentExpressiofhis definition of ArgumentListis recursive, that is, it is defined
in terms of.itself. The result is that an ArgumentLisimay contain any positive number of arguments, separated
by commas, where each argument expression is an AssignmentExpressiorSuch recursive definitions of
nonterminals are common.

The subscriowt,edwhsiwfhf inkayi appear after a terminal or nonterminal, indicates an
The alternative containing the optional symbol actually specifies two right-hand sides, one that omits the
optional element and one that includes it. This means that:

VariableDeclaration:
Bindinddentifier Initialiserop

is a convenient abbreviation for:
VariableDeclaration:
Bindingdentifier
Bindinddentifier Initialiser

and that:

IterationStatement
for (LexicalDeclaration ; Expressiogy: ; Expressiogy) Statement

10 © Ecma International 2013

secma

is a convenient abbreviation for:
IterationStatement
for (LexicalDeclaration ; ; Expressiog) Statement
for (LexicalDeclaration; Expression; Expressiog:) Statement

which in turn is an abbreviation for:

IterationStatement
for (LexicalDeclaration;;) Statement
for (LexicalDeclaration; ; Expressior) Statenent

for (LexicalDeclaration; Expression;;) Statement
for (LexicalDeclaration; Expression; Expressior) Statement

s0, in this example, the nonterminal IterationStatemenactually has four alternative right-hand sides.

A production may be parameterized by a subscripted annotation of the form fiparametersi0 5. Whi ch rmsy
a suffix to the nonterminal symbol defined by the production. fhaametersO Mmay be either a single name or a
comma separated list of names. A parameterised production.is a short hand for a set of productions defining
all combinations of the parameter names appended to the parameterised nonterminal symbol. This means
that:

StatementLigtewm) :
ReturnStatement
ExpressionStatement

is a convenient abbreviation for:

StatementList
ReturnStatement
ExpressionStatement

StatementListRetum
ReturnStatement
ExpresionStatement

and that:

StatementLigtewm, in) :
ReturnStatement
ExpressionStatement

is an abbreviation for:

StatementList
ReturnStatement
ExpressionStatement

StatementListRetum
ReturnStatement
ExpressionStatement

StatementListin
ReturnStateent
ExpressionStatement

11

© Ecma International 2013

appear

»ecmd

StatementListReturnin
ReturnStatement
ExpressionStatement

References to nonterminals on the right hand side of a production can also be parameterised. For example:

StatementList
ReturnStatement
ExpressionStatemeit

is equivalent to saying:

StatementList
ReturnStatement
ExpressionStatemén

A nonterminal reference may have both a parameter list and an fip® “s u Foff example:

VariableDeclaration:
Bindinddentifier Initialisefnjopt

is an abbreviation for:

VariableDeclaration:
Bindinddentifier
Bindinddentifier Initialiserin

Prefixing a parameter name with fdn a right hand side noenterminal reference makes that parameter value
dependent upon the occurrence of the parameter name on the reference to the current productions symbol.
For example:

VariableDeclaratiofy :
Bindinddentifier Initialisefin

is an abbreviation for:

VariableDeclaration:
Bindinddentifier Initialiser

VariableDeclaratiorin :
Bindinddentifier Initialisedn

If a right hand side alternative is prefixed with fi+parameter]0 that alternative is only available if the named
parameter was used in referencing the production6 s n o nt er milinaaright larydnside diternative is
prefixed with fi~parameter]0that alternative is only available if the named parameter was not used in referencing
the producti onés Thismearsthati nal symbol

StatementLigtetum; :
[+Return] ReturnStatement
ExpressionStatement

is an abbreviation for:

StatementList
ExpressionStatement

StatementListReturn

ReturnStatement
ExpressionStatement

12 © Ecma International 2013

»ecmnd

and that

StatementLigtewm; :
[~Return] ReturnStatement
ExpressionStatement

is an abbreviation for:
StatementList
ReturnStatement

ExpressionStatement

StatementListRetum
ExpressionStatement

When the words fone ofdo f ol | ow the <col on(s) in_a grammar defi

symbols on the following line or lines is an alternative definition. For example, the lexical grammar for
ECMAScript contains the production:

NonZeroDigit:: one of
123456789

which is merely a convenient abbreviation for:

NonZeroDigit::

O©CO~NOUTAWNE

I'f the [eppyi0 aapp éar s -hawd siddaf a praduyetion, it indicates that the production's right-
hand side contains no terminals or'nonterminals.

I f t he [opkhhdacissed0 fia pp e ar s -hamd sitdehoéa produgtibrt, it indicates that the production
may not be used if the immediately following input token is a member of the given set The setcan be written
as a list of terminals enclosed in curly braces. For convenience, the set can also be written as a nonterminal,
in which case it represents the set of all terminals to which that nonterminal could expand. For example, given
the definitions

DecimalDigit:: one of
0 3456789

DecimalDigits::
DecimalDigit
DecimalDigits DecimalDigit
the definition
LookaheadExample
N [lookahead 1 {1, 3,5, 7, 9] DecimalDigits
DecimalDigit [lookahead i DecimalDigit]

matches either the letter n followed by one or more decimal digits the first of which is even, or a decimal digit
not followed by another decimal digit.

© Ecma International 2013 13

niti

on

they

signify

t

h a

c2echa

I f t he hpLmaTeanBaomerfl0 ap p e ar s -hHaml sidelofea produgfibntof the syntactic grammar, it
indicates that the production is a restricted production: it may not be used if a LineTerminatoroccurs in the
input stream at the indicated position. For example, the production:

ThrowStatement
throw [no LineTerminatomhere] Expression

indicates that the production may not be used if a LineTeminator occurs in the script between the throw token
and the Expression

Unless the presence of a LineTerminatoris forbidden by a restricted production, any number of occurrences of
LineTerminatormay appear between any two consecutive tokens in the stream of input elements without
affecting the syntactic acceptability of the script.

The lexical grammar has multiple goal symbols and the appropriate goal symbol to use depends upon the
syntactic grammar cont e Xexcal goalLéxical@alSymbolioa saep p@fa r tsh ebamé-da rhra f i gh't
side of a syntactic production then the next token must be lexically recognised using the indicated goal symbol.

In the absence of such a phrase the default lexical goal symbol is used.

When an alternative in a production of the lexical grammar-or the numeric string grammar appears to be a
multi-character token, it represents the sequence of characters that would make up such a token.

The right-hand side of a production may specify that certain expansions are not permitted by using the phrase
foutnoto and then indicating the expansions to be excluded. For example, the produ

Identifier::
IdentifierNamebut not ReservedWord

means that the nonterminal Identifier may be replaced by any sequence of characters that could replace
IdentifierNameprovided that the same sequence of characters could not replace ReservedWord

Finally, a few nonterminal symbols are described by a descriptive phrase in sans-serif type in cases where it
would be impractical to listall the alternatives:

SourceCharacter,
any Unicode code point

5.2 Algorithm Conventions

The specification often uses a numbered list to specify steps in an algorithm. These algorithms are used to
precisely specify the required semantics of ECMAScript language constructs. The algorithms are not intended
to imply the use of any specific implementation technique. In practice, there may be more efficient algorithms
available toimplement a given feature.

Algorithms may be explicitly parameterised, in which case the names and usage of the parameters must be
provided as part of the algorithm& definition. In order to facilitate their use in multiple parts of this specification,
some algorithms, called abstract operations, are named and written in parameterised functional form so that
they may be referenced by name from within other algorithms.

Algorithms may be associated with productions of one of the ECMAScript grammars. A production that has
multiple alternative definitions will typically have a distinct algorithm for each alternative. When an algorithm is
associated with a grammar production, it may reference the terminal and nonterminal symbols of the
production alternative as if they were parameters of the algorithm. When used in this manner, nonterminal
symbols refer to the actual alternative definition that is matched when parsing the script souce code.

When an algorithm is assocated with a production alternative, the alternative is typically shown without any

i T ghammar annotiations. Such annotations should only affect the syntactic recognition of the alternative and
have not affect on the associated semantics for the alternative.

14 © Ecma International 2013

»ecmnd

Unless explicitly specified otherwise, all chain productions have an implicit associated definition for every

algorithm thatismi ght be appl i ed t-bandsidarontguminald The impliot nledistion sienplyt

reapplies the same algorithm name with the same parame t er s, if any, to the chain productionds sole r
hand side nonterminal and then result. For example, assume there is a production

Block:
{ StatementList

but there is no evalutionalgorithm that is explicitly specified for that production. If in some algorithm there is a
statement of the form: fReturn the result of evaluatifglockdo i t i ¢hat thenaddorithenihés an evalution
algorithm of the form:

Runtime Semantics: Evaluation

Block : { StatementList

1. Returnthe result of evaluatin§tatementList
For clarity of expression, algorithm steps may be subdivided into sequential substeps. Substeps are indented
and may themselves be further divided into indented substeps. Outline numbering conventions are used to
identify substeps with the first level of substeps labelled with lower case alphabetic characters and the second
level of substeps labelled with lower case roman numerals. If more than three levels are required these rules

repeat with the fourth level using numeric labels. For example:

1. Top-levelstep

a. Substep
b. Substep.
i. Subsubstep.
ii. Subsubstep.
1. Subsubsubstep
a. Subsubsubsubstep
i. Subsubsubsub$step
A step or substep_ may be written as an fAifo predicate that conditions its s
are only applied dif the predicate is true. If a step or substep begins with
the negationofthepr eceding Ai fo predicate step at the same | evel

A step may specify the iterative application of its substeps.

A step<may assert an invariant condition of its algorithm. Such assertions are used to make explicit
algorithmic invariants that would otherwise be implicit. Such assertions add no additional semantic
requirements and hence need not be checked by an implementation. They are used simply to clarify
algorithms.

Mathematical operations such as addition, subtraction, negation, multiplication, division, and the mathematical
functions defined later in this clause should always be understood as computing exact mathematical results
on mathematical real numbers, which do not include infinites and do not include a negative zero that is
distinguished from positive zero. Algorithms in this standard that model floating-point arithmetic include explicit
steps, where necessary, to handle infinities and signed zero and to perform rounding. If a mathematical
operation or function is applied to a floating-point number, it should be understood as being applied to the
exact mathematical value represented by that floating-point number; such a floating-point number must be
finite, and if itis +0 or - O then the corresponding mathematical value is simply 0.

The mathematical function abs§) produces the absolute value of x, which is - x if x is negative (less than zero)
and otherwise is x itself.

The mathematical function sign) produces 1 if x is positive and - 1 if x is negative. The sign function is not
used in this standard for cases when x s zero.

© Ecma International 2013 15

c2echa

The mathematical function min(xa, Xz, ..., Xn) produces the mathematically smallest of xi1 through Xn.

The no txaodulayd y rfiust be finite and nonzero) computes a value k of the same sign as y (or zero)
such that absk) < absy) andx- k=q?3 y for some integer q.

The mathematical function floor(x) produces the largest integer (closest to positive infinity) that is not larger
than x.

NOTE floor(x) =x- (x modulo 1)
5.3 Static Semantic Rules

Context-free grammars are not sufficiently powerful to express all the rules that define whether a stream of
input elements make up a valid ECMAScript script that may be evaluated. In some situations additional rules
are needed that may be expressed using either ECMAScript algorithm conventions or prose requirements.
Such rules are always associated with a production of a grammar and are called the static semantics of the
production.

Static Semantic Rules have names and typically are defined using an algorithm. Named. Static Semantic
Rules are associated with grammar productions and a production that has multiple alternative definitions will
typically have for each alternative a distinct algorithm for each applicable named static semantic rule.

Unless otherwise specified every grammar production alternative in this specification implicitly has a definition
for a static semantic rule named Containswhich takes an argument named symbolwhose value is a terminal or
nonterminal of the grammar that includes the associated production. The default definition of Containsis:

1. For each terminal and nterminal grammar symbosym in the definition of this production do
a. If symis the same grammar symbol snbo] returntrue.
b. If symis a noterminal,then
i Letcontainedbe the result of Contas forsymwith argumentsymbol
ii. If containedis true;, returntrue.
2. Returnfalse.

The above definition is explicitly over-ridden for specific productions.

A special kind of static semantic rule‘is an Early Error Rule. Early error rules define early error conditions (see
clause 16) that are associate with specific grammar productions. Evaluation of most early error rules are not
explicitly invoked within the algorithms of this specification. A comforming implementation must, prior to the
first evaluation of a Script, validate all of the early error rules of the productions used to parse that Script If any
of the early error rules are violated the Scriptis invalid and cannot be evaluated. |

6 ECMAScript Data Types and Values

Algorithms within this specification manipulate values each of which has an associated type. The possible
value types are exactly thosedefined in this clause. Types are further subclassified into ECMAScript language
types and specification types.

Withinthiss peci ficati ofypeklphé snasatdi as thétype okd h & h gpek oriie fiier s

ECMAScript language and specification types defined in this clause.

6.1 ECMAScript Language Types

An ECMAScript language type corresponds to values that are directly manipulated by an ECMAScript
programmer using the ECMAScript language. The ECMAScript language types are Undefined, Null, Boolean,

String, Symbol, Number, and Object. An ECMAScript language value is a value that is characterized by an
ECMAScript language type.

16 © Ecma International 2013

Commented [AW2]: Perhaps this should be somewhere
el se. Currently we donot
the steps in loading and evaluating a program.

h a

he

»ecmnd

6.1.1 The Undefined Type

The Undefined type has exactly one value, called undefined. Any variable that has not been assigned a value
has the value undefined.

6.1.2 The Null Type

The Null type has exactly one value, called null.

6.1.3 The Boolean Type

The Boolean type represents a logical entity having two values, called true and false.
6.1.4 The String Type

The String type is the set of all finite ordered sequences of zero or more 16-bit unsigned integer values
(el ementsd). The St r i nepresenytpxwal dlat in@ eunning ECIMAScripupsogram, in
which case each element in the String is treated as a UTF-16 code unit value. Each element is regarded as
occupying a position within the sequence. These positions are indexed with nonnegative integers. The first
element (if any) is at index 0, the next element (if any) atindex 1, and so on. The length of a String is the
number of elements (i.e., 16-bit values) within it. The empty String has length zero and therefare contains no
elements.

Where ECMAScript operations interpret String values, each element is interpreted as a single UTF-16 code
unit. However, ECMAScript does not place any restrictions or requirements on the sequence of code units in a
String value, so they may be ill-formed when interpreted as UTF-16 code unit sequences. Operations that do
not interpret String contents treat them as sequences of undifferentiated 16-bit unsigned integers. No
operations ensure that Strings are in a normalized form. Only operations that are explicitly specified to be
language or locale sensitive produce language-sensitive results

NOTE The rationale behind this design was to keep the implementation of Strings as simple and high-performing as
possible. If ECMAScript source code is in Normalised Form C, string literals are guaranteed to also be normalised, as long
as they do not contain any Unicode escape sequences.

Some operations interpret. String contents.as UTF-16 encoded Unicode code points. In that case the
interpretation is:

1 A code unit in the range 0 to OxD7FFor in the range OxEO00to OxFFFFis interpreted as a code point
with the same value.

1 Asequence of two code units, where the first code unit clis in the range 0xD800to OXDBFF and the
second code unit c2is in the range 0XDC00to OXDFFF, is a surrogate pair and is interpreted as a code
point with the value (c1- 0xD80Q x.0x400+ (c2i 0xDCOQ + 0x10000

1 Acode unit that is in the range 0xD800to OxDFFF, but is not part of a surrogate pair, is interpreted as
a code point with the same value.

6.1.5 The Symbol Type
The Symbol type is the set of all non-String values that may be used as the key of an Object property (6.1.7).
Each possible Symbol values is unique and immutable.

Symbol values have an associated internal attribute called [[Description]] whose immutable value is either
undefined or a String value.

6.1.5.1 Well-Known Symbols
Well-known symbols are built-in Symbol values that are explicitly referenced by algorithms of this specification.

They are typically used as the keys of properties whose values serve as extension points of a specification
algorithm. Unless otherwise specified, well-known symbols values are shared by all Code Realms (8.2).

© Ecma International 2013 17

c2echa

Within this specification a well-known symbol is referred to by using a notation of the form @@name, where
finamed is one of,the values I|listed in

Table 18 Well-known Symbols

Specification Name [[Description]] Value and Purpose

@ @create " Symbol.create” A method used to allocate an object. Called
from the [[Construct]] internal method.

@@haslnstance "Symbol.hasInstance” A method that determines if a constructor

object recognises an object as one of the

semantics of the instanceof ~ operator.

constructorods i nst athmec

@@isConcatSpreadabl{ "Symbol. isConcatSpreadable " | A Boolean value that if true indicates that an
object should be flatten to its array elements
by Array.prototype.concat.

@@isRegExp "Symbol. isRegExp " A Boolean value that if true indicates that an
object may be used as a regular expression.

@ @iterator "Symbol. iterator A method that returns the default iterator for an
object. Called by the semantics of the for-of

statement.

@ @toPrimitive "Symbol. toPrimitive " A method that converts an object to a
corresponding primitive value. Called by the
ToPrimitive abstract operation.

@@toStringTag "Symbol. toStringTag " A string value that is used in the creation of the
default string description of an object. Called
by the built-in method
Object.prototype.toString.

@@unscopables "Symbol..-unscopables An Array of strings values that are property
names that are excluded from the with
environment bindings of the associated
objects.

6.1.6 The Number Type

The Number type has exactly 1843773687445481062¢hat is, 2°“ 25%+3) values, representing the double-
precision 64-bit format IEEE 754 values as specified in the IEEE Standard for Binary Floating-Point Arithmetic,
except that the 900719925474099(Qthat is, 2°* 2) di st rarNomberd Nw a bf uhe $EEE Standard are
represented in ECMAScript as a single special NaN value. (Note that the NaN value is produced by the
program expression NaN) In some implementations, external code might be able to detect a difference
between various Not-a-Number values, but such behaviour is implementation-dependent; to ECMAScript code,
all NaN values are indistinguishable from each other.

There are two other special values, called positive Infinity and negative Infinity. For brevity, these values
are also referred to for expository purposes by the symbols +a and - &, respectively. (Note that these two
infinite Number values are produced by the program expressions +Infinity (or simply Infinity) and -
Infinity)

The other 1843773687445481062¢hat is, 2°4 2%%) values are called the finite numbers. Half of these are
positive numbers and half are negative numbers; for every finite positive Number value there is a
corresponding negative value having the same magnitude.

Note that there is both a positive zero and a negative zero. For brevity, these values are also referred to for

expository purposes by the symbols +0 and -0, respectively. (Note that these two different zero Number
values are produced by the program expressions +0 (or simply 0) and - 0.)

18 © Ecma International 2013

(Field Code Changed

»ecmnd

The 184377%874454810622that is, 25 2% 2) finite nonzero values are of two kinds:
1842872967520006963that is, 254 25% of them are normalised, having the form

s3 m3 2°

where sis +1 or -1, mis a positive integer less than 2° but not less than 2°%, and e is an integer ranging from
-1074to 971, inclusive.

The remaining 900719925474099@hat is, 2°* 2) values are denormalised, having the form

s3 ms3 2°

where sis +1or - 1, mis a positive integer less than 2% and eis - 1074

Note that all the positive and negative integers whose magnitude is no'greater than 25 are representable in
the Number type (indeed, the integer O has two representations, +0 and - 0).

A finite number has an odd significand if it is nonzero and the_ integer m used to express it (in one of the two
forms shown above) is odd. Otherwise, it has an even significand.

I n this speci fi cteet Number, value hf@xo p W h R Bepresefits an exact nonzero real
mathematical quantity (which might even be an irrational number such'as p) means a Number value chosen in
the following manner. Consider the set of all finite values of the Number type, with - 0 removed and with two
additional values added to it that are not representable in the Number type, namely 2'%%* (which is +13 2533
297 and - 21924 (which is - 13 25%3 2°7) Choose the member of this set that is closest in value to x. If two
values of the set are equally close, then the one with an even significand is chosen; for this purpose, the two
extra values 2% and - 2'% are considered to have even significands. Finally, if 2!°*was chosen, replace it
with +a; if - 219%was chosen, replace it with - & ; if +0 was chosen, replace it with - 0 if and only if x is less than
zero; any other chosen value is_used unchanged. The result is the Number value for x. (This procedure
corresponds exactly to the behaviour of the | EEE 754 fAround to nearesto mode

Some ECMAScript operators deal only with integers in the range - 2°! through 2% 1, inclusive, or in the range
0 through 2°2 1, inclusive. These operators accept any value of the Number type but first convert each such
value to one of 2°2 integer values. See the descriptions of the ToInt32 and ToUint32 operators in 7.1.5 and
7.1.6, respectively.

6.1.7 The Object Type

An Object is logically a collection of properties. Each property is either a data property, or an accessor
property:

1 A data property associates a key value with an ECMAScript language value and a set of Boolean
attributes.

1 An accessor property associates a key value with one or two accessor functions, and a set of Boolean
attributes. The accessor functions are used to store or retrieve an ECMAScript language value that is
associated with the property.

Properties are identified using key values. A key value is either an ECMAScript String value or a Symbol
value. All String and Symbol values, including the empty string, are valid as propery keys.

Property keys are used to access properties and their values. There are two kinds of access for properties:
get and set, corresponding to value retrieval and assignment, respectively. The properties accessible via get
and set access includes both own properties that are a direct part of an object and inherited properties which
are provided by another associated object via a property inheritance relationship. Inherited properties may be
either own or inherited properties of the associated object. Each own properties of an object must each have a
key value that is distinct from the key values of the other own properties of that object.

© Ecma International 2013 19

secma

All objects are logically collections of properties, but there are multiple forms of objects that differ in their
semantics for accessing and manipulating their properties. Ordinary objects are the most common form of
objects and have the default object semantics. An exotic object is any form of object whose property
semantics differ in any way from the default semantics.

6.1.7.1 Property Attributes

Attributes are used in this specification to define and explain the state of Object properties. A data property
associates a key value with the attributes listed in Table 2.

Table 28 Attributes of a Data Property

Attribute Name

Value Domain

Description

([Value]]

Any ECMAScript
language type

The value retrieved by a‘get access of the property.

[[Writable]] Boolean If false, attempts by ECMAScript code to.change the
propertyo6s [[Val $ed] il noesticteed. b

[[Enumerable]] Boolean If true, the property will be enumerated by a for-in
enumeration (see 13.6.4). Otherwise, the property is said
to be non-enumerable.

[[Configurable]] Boolean If false, attempts to delete the property, change the

property to be an accessor property, or change its
attributes (other than [[Value]], or changing [[Writable]] to
false) will fail.

An accessor property associates a key value with the attributes listed in Table 3.

Table 390 Attributes of an Accessor Property

Attribute Name

Value Domain

Description

([Get]]

Object or
Undefined

If the value is an Object it must be a function Object. The
functionds [[CaTdblk §)isicatied with ana
empty arguments list to retrieve the property value each
time a get access of the property is performed.

([Set]]

Object or.
Undefined

If the value is an Object it must be a function Object. The
functi onds [[Ca [Tdblk)isicatled with ana
arguments list containing the assigned value as its sole
argument each time a set access of the property is
performed. The effect of a property's [[Set]] internal method
may, but is not required to, have an effect on the value
returned by subsequent calls to the property's [[Get]]
internal method.

[[Enumerable]]

Boolean

If true, the property is to be enumerated by a for-in
enumeration (see 13.6.4). Otherwise, the property is said to
be non-enumerable.

[[Configurable]]

Boolean

If false, attempts to delete the property, change the
property to be a data property, or change its attributes will
fail.

If the initial values of a p r o p e attitibytés sare not explicitly specified by this specification, the default value
defined in Table 4 is used.

20 © Ecma International 2013

»ecmnd

Table 4 8 Default Attribute Values

Attribute Name Default Value
[[Value]] undefined
[[Get]] undefined
[[Set]] undefined
[[Writable]] false
[[Enumerable]] false
[[Configurable]] false

6.1.7.2 Object Internal Methods and Internal Slots

The actual semantics of objects, in ECMAScript, are specified via algorithms called internal methods. Each
object in an ECMAScript engine is associated with a set of internal methods that defines its runtime behaviour.
These internal methods are not part of the ECMAScript language. They are defined by this specification purely
for expository purposes. However, each object within an implementation of ECMAScript must behave as
specified by the internal methods associated with it. The exact manner in which this is accomplished is
determined by the implementation.

Internal method names are polymorphic. This means that different object values may perform different
algorithms when a common internal method name is invoked upon them. If, at runtime, the implementation of
an algorithm attempts to use an internal method of an object that the object does not support, a TypeError
exception is thrown.

Internal slots correspond to internal state that is associated with objects and used by various ECMAScript
specification algorithms. Internal slots are not object properties and they are not inherited. Depending upon
the specific internal slot specification, such state may consist of values of any ECMAScript language type or of
specific ECMA specification type values. Unless explicitly specified otherwise, internal slots are allocated as
part of the process of creating an.object and may not be dynamically added to an objects. Unless specified
otherwise, the initial value of an‘internal slot is the value undefined. Various algorithms within this specification
create objects that have internal slots. However, the ECMAScript language provides no direct way to
associate internal slots with an object.

Internal methods and internal slots are identified within this specification using names enclosed in double
square brackets [[1].

Table 5 summarises the essential internal methods used by this specification that are applicable to all objects
created or manipulated by ECMAScript code. Every object must have algorithms for all of the essential
internal‘methods. However, all objects do.not necessarily use the same algorithms for those methods.

T h eSigiiatured ¢ o lofurable 5 and other similar tables describes the invocation pattern for each internal
method. The invocation pattern always includes a parenthesised list of descriptive parameter names. If a
parameter name is the same as an ECMAScript type name then the name describes the required type of the
parameter value. If an internal method explicitly returns a value, its parameter list is followed by the symbol
Yo and nameoftheygiuened value. The type names used in signatures refer to the types defined in
clause 6 augmented by the following additional names. fanyd means the value may be any ECMAScript
language type. An internal method implicitly returns a Completion Record as described in 6.2.2. In addition to
its parameters, an internal method always has access to the object upon which it is invoked as a method.

© Ecma International 2013 21

oecmd

Table 58 Essential Internal Methods

Internal Method

Signature

Description

[[GetPrototypeOf]]

()Y Object or Null

Determine the object that provides inherited properties
for this object. A null value indicates that there are no
inherited properties.

[[SetPrototypeOf]]

(Object or Null)Y Boolean

Associate with an object another object that provides
inherited properties. Passing null indicates that there
are no inherited properties. Returns true indicating
that the operation was completed successfully or
false indicating that the operation was not successful.

[[IsExtensible]]

()Y Boolean

Determine whether it is permitted to add additional
properties to an object.

[[PreventExtensions]]

()Y Boolean

Control whether new properties may be added to an
object. Returns true indicating that the operation was
completed successfully or false indicating that the
operation was not successful.

[[GetOwnProperty]]

(propertyKey) Y
Undefined or Property
Descriptor

Returns a Property Descriptor for the own property of
this<object whose key is propertyKey, or undefined if
no such property exists.

[[HasProperty]]

(propertyKey) Y Boolean

Returns a Boolean value indicating whether the object
already has either an own or inherited property whose
key is propertyKey.

[[Get]]

(propertyKey, Receiver) Y any

Retrei. ve the value of an o
propertyKey parameter. If any ECMAScript code must
be executed to retrieve the property value, Receiver is
used as the this value when evaluating the code.

[

[[Set]]

(propertyKey,value, Receiver)
Y Boolean

Try to set the value of
by propertyKey to value. If any ECMAScript code
must be executed to set the property value, Receiver
is used as the this value when evaluating the code.
Returns true indicating that the property value was set
or false indicating that it could not be set.

é

[[Invoke]]

(propertyKey, a List of any,
Receiver) Y any

Retrieve the value of te
propertyKey parameter. If the retrieved property value
is a function, [[Call]] it using the List as the arguments
list and Receiver as the this value. A TypeError is
thrown if a function is not retrieved.

[[Delete]]

(propertyKey) Y Boolean

Removes the own property indentified by the
propertyKey parameter from the object. Return false if
the property was not deleted and is still present.
Return true if the property was deleted or was not
present.

[[DefineOwnProperty]]

(propertyKey,
PropertyDescriptor) Y
Boolean

Creates or alters the named own property to have the
state described by a Property Descriptor. Returns true
indicating that the property was successfully
created/updated or false indicating that the property
could not be created or updated.

[[Enumerate]]

()Y Object

Returns an iterator object over the string values of the
keys of the enumerable properties of the object.

[[OwnPropertyKeys]]

()Y Object

Returns an lterator object that produces all of the own
property keys for the object.

Table 6 summarises additional essential internal methods that are supported by objects that may be called as

functions.

22

© Ecma International 2013

secma

Table 6 8 Additional Essential Internal Methods of Function Objects

Internal Method Signature Description
[[Call]] (any, aListof any) | Executes code associated with the object. Invoked via a
Y any function call expression. The arguments to the internal

method are a this value and a list containing the arguments
passed to the function by a call expression. Objects that
implement this internal method are callable.

[[Construct]] (aList of any) Y Creates an object. Invoked via the new operator. The
Object arguments to the internal method are the arguments passed
to the new operator. Objects that implement this internal
method are called constructors:" A" Function object is not
necessarily a constructor and_such non-constructor Function
objects do not have a [[Construct]] internal method.

6.1.7.3 Invariants of the Essential Internal Methods

Current this section is just a bunch of material merged together from the ES5
spec. and from the wiki Proxy pages. It need to be completely reworked.

The intent is that it lists all invariants of the Essential Internal Methods. This
includes both invariants that are enforced for Proxy objects and other
invariants that may not be enfored.

Definitions:

The target of an internal method is the object the internal method is called upon.

A sealed property is a non-configurable own property of a target.

A frozen property is a non-configurable non-writable own property of a target.

A new property is a property that does not exist on a non-extensible target.

Two Property Descriptors descland desc2for a property key value are incompatible if:

1. Desclis produced by callinfGetOwnPropertyDescript@irof targetwith key, and

2. .Calling [[DefineOwnProperty]] ofargetwith argument&eyanddesc2would throw aTypeErrorexception.

= =4 =4 - -8

Exotic objects may define additional constraints upon their [[Set]] internal method behaviour.

[[GetPrototypeOf]]

Every [[Prototype]] chain must have finite length (that is, starting from any object, recursively accessing the
[[Prototype]] internal slot must eventually lead to a null value).

getOwnPropertyDescriptor

Non-configurability invariant: cannot return incompatible descriptors for sealed propertiesO
Non-extensibility invariant: must return undefined for new properties
Invariant checks:
if trap returns undefined, check if the property is configurable
QOf property exists on target, check if the returned descriptor is compatible
if returned descriptor is non-configurable, check if the property exists on the target and is also non-
configurable

© Ecma International 2013 23

c2echa

defineProperty

Non-configurability invariant: cannot succeed (return true) for incompatible changes to sealed propertiesO
Non-extensibility invariant: must reject (return false) for new properties
Invariant checks:
on success, if property exists on target, check if existing descriptor is compatible with argument
descriptor
on success, if argument descriptor is non-configurable, check if the property exists on the target and is
also non-configurable

getOwnPropertyNames

Non-configurability invariant: must report all sealed properties
Non-extensibility invariant: must not list new property namesO
Invariant checks:
check whether all sealed target properties are present in the trap result
If the target is non-extensible, check that no new properties are listed in the trap result

deleteProperty
Non-configurability invariant: cannot succeed (return true) for sealed properties
Invariant checks:
on success, check if the target property is configurable
getPrototypeOf

I nvariant check: check whether the targetogtotheemdl ot ype and the trap result are
operator)

freeze | seal | preventExtensions
Invariant checks:
on success, check if isFrozen(target), isSealed(target) or lisExtensible(target)
isFrozen | isSealed | isExtensible

Invariant check: check whether the boolean trap result is equal to isFrozen(target), isSealed(target) or
isExtensible(target)

hasOwn

Non-configurability invariant: cannot return false for sealed properties
Non-extensibility invariant: must return false for new propertiesO
Invariant checks:
if false is returned, check if the target property is configurable
if false is returned, the property does not exist on target, and the target is non-extensible, throw a
TypeError

has
Non-configurability invariant: cannot return false for sealed properties

Invariant checks:
if false is returned, check if the target property is configurable

24 © Ecma International 2013

»ecmnd

get

Non-configurability invariant: cannot return inconsistent values for frozen data properties, and must return
undefined for sealed accessors with an undefined getterO

Invariant checks:

if property exists on target as a data property, check whether the targe
result are identical (according to the egal operator)

if property existsont ar get as an accessor, an dundefined, checkwhstlleor 6s get attri bute is
the trap result is also undefined.

set
Non-configurability invariant: cannot succeed (return true) for frozen data properties or sealed accessors

with an undefined setterO
Invariant checks:

on success, if property exists on target as a data property, check whethe
the update value are identical (according to the egal operator)

on success, if property exists ontargetasan accessor, check whether the accessords set attribute
undefined

keys

Non-configurability invariant: must report all enumerable sealed properties
Non-extensibility invariant: must not list new property names
Invariant checks:

Check whether all enumerable sealed target properties are listed in the trap result

If the target is non-extensible, check that no new properties are listed in the trap result

enumerate

Non-configurability invariant: must report all enumerable sealed properties
Invariant checks:
Check whether all enumerable sealed target properties are listed in the trap result Commented [AWB123]: These are placeholders based

upon the proxy trap invariants. We need to provide new
versions for all the essential internal methods.

Unless otherwise specified, the ECMAScript standard objects are ordinary objects and behave as described in
9.1. Some standard objects are exotic objects and have behaviour defined in 9.3.

Exotic objects may implement internal methods in any manner unless specified otherwise; for example, one
possibility is that [[Get]] and [[Set]] for a particular exotic object indeed fetch and store property values but
[[GetOwnProperty]] always generates undefined. However, if any specified use of an exotic object's internal
methods is not supported by an implementation, that manipulation must throw a TypeError exception when
attempted.

The [[GetOwnProperty]] internal method of all objects must conform to the following invariants for each
property of the object:

1 If a property is described as a data property and it may return different values over time, then either or
both of the [[Writable]] and [[Configurable]] attributes must be true even if no mechanism to change the
value is exposed via the other internal methods.

© Ecma International 2013 25

secma

1 If a property is described as a data property and its [[Writable]] and [[Configurable]] are both false, then
the SameValue (according to 7.2.3) must be returned for the [[Value]] attribute of the property on all calls
to [[GetOwnProperty]].

1 If the attributes other than [[Writable]] may change over time or if the property might disappear, then the
[[Configurable]] attribute must be true.

1 If the [[Writable]] attribute may change from false to true, then the [[Configurable]] attribute must be true.
T If the result of callingan o b j e dsExdessiblg]] internal method has been observed by ECMAScript code
to be false, then if a call to [[GetOwnProperty]] describes a property as non-existent all subsequent calls

must also describe that property as non-existent.

The [[DefineOwnProperty]] internal method of all objects must not permit the addition of a new property to an
object if the [[Extensible]] internal method of that object has been observed by ECMAScript code to be false.

If the result of calling the [[IsExtensible]] internal method of an object has been observed by ECMAScript code
to be false then it must not subsequently become true.

6.1.7.4 Well-Known Intrinsic Objects

Well-known intrinsics are built-in objects that are explicitly referenced by the algorithms of this specification
and which usually have Realm specific identities. Unless otherwise specified each intrinsic object actually
corresponds to a set of similar objects, one per Realm.

Within this specification a reference such as %name% means the intrinsic object, associated with the current

Realm, corresponding to the name. Determination of the current Realm and. its intrinsics is described in 8.2.
The well-known intrinsics are listed in Table 7.

26 © Ecma International 2013

»ecmnd

Table 78 Well-known Intrinsic Objects

Intrinsic Name

ECMAScript Language Association

%0bject% The initial value of the global object property named
"Object"
%0ObjectPrototype% The initial value of the " prototype " data property of

the intrinsic %O0bject%.

%ODbjProto_toString%

The initial value of the "toString " data property of
the intrinsic %0ObjectPrototype%.

%Function%

The initial value of the global object property named
" Function "

%FunctionPrototype%

The initial value of the " prototype " data property of
the intrinsic %Function%:

%Array% The initial value of the global object property named
"Array ".
%ArrayPrototype% The initial value of the " prototype " data property of

the intrinsic %Array%.

%ArraylteratorPrototype%

The prototype object used for
Iterator objects created by the CreateArraylterator
abstract operation.

%String%

The initial value of the global object property named
"String".

%StringPrototype%

Theinitial value of the " prototype " data property of
the intrinsic %String%.

%StringlteratorPrototype%

The prototype object used for
Iterator objects created by the CreateStringlterator
abstract operation

%Boolean%

The initial value of the global object property named
"Boolean ".

%BooleanPrototype%

The initial value of the " prototype " data property of
the intrinsic %Booleardb.

%Number% The initial value of the global object property named
"Number".

%NumberPrototype% The initial value of the " prototype " data property of
the intrinsic %Number%.

%Date% The initial value of the global object property named
"Date ".

%DatePrototype% The initial value of the " prototype " data property of
the intrinsic %Date%.

%RegExp% The initial value of the global object property named

"RegExp".

%RegExpPrototype%

The initial value of the " prototype " data property of
the intrinsic %RegExp%.

%Map% The initial value of the global object property named
" Map'.
%MapPrototype% The initial value of the " prototype " data property of

the intrinsic %Map%.

%MaplteratorPrototype%

The prototype object used for
Iterator objects created by the CreateMaplterator
abstract operation

© Ecma International 2013

27

secmd

28

%W eakMap%

The initial value of the global object property named
"WeakMap' .

%W eakMapPrototype%

The initial value of the " prototype " data property of
the intrinsic %WeakMap%.

%Set% The initial value of the global object property named
"Set".

%SetPrototype% The initial value of the " prototype " data property of
the intrinsic %Set%.

%W eakSet% The initial value of the global object property named

"WeakSet" .

%W eakSetPrototype%

The initial value of the " prototype " data property of
the intrinsic %WeakWe&Set%.

%SetlteratorPrototype%

The prototype object used for
Iterator objects created by the CreateSetlterator
abstract operation

%GeneratorFunction%

The initial value of the name "GeneratorFunction”
exported from.the built-in module "std:iteration".

%Generator%

The initial-value of the name "Generator" exported
from the built-in module "std:iteration”

%GeneratorPrototype%

The initial value of the'prototype property of
the %Generator% intrinsic

%Error%

%EvalError%

%RangeError%

%ReferenceError%

%SyntaxError%

%TypeError%

%URIError%

%ErrorPrototype%

%EvalErrorPrototype%

%RangeErrorPrototype%

%ReferenceErrorPrototype%

%SyntaxErrorPrototype%

%TypeErrorPrototype%

%URIErrorPrototype%

%ArrayBuffer¥%

%ArrayBufferPrototype%

The initial value of the " prototype " data property of
the intrinsic %ArrayBuffer%.

%TypedArray%

%TypedArrayPrototype%

The initial value of the " prototype " data property of
the intrinsic %TypedArray%.

%Int8ArTray%

%Int8ArrayPrototype%

%DataView%

%DataVievPrototype%

%ThrowTypeError%

A function object that unconditionally throws a new
instance of %TypeError%.

© Ecma International 2013

Commented [AWB164]:
TypedArray view intrinsics

TODO add all the other

INTERNATIONAL

[

| Commented [AWB125]: TODO more to comeTODO)

© Ecma International 2013 29

secma

6.2 ECMAScript Specification Types

A specification type corresponds to meta-values that are used within algorithms to describe the semantics of
ECMAScript language constructs and ECMAScript language types. The specification types are Reference,
List, Completion, Property Descriptor, Lexical Environment, Environment Record, and Data Block.
Specification type values are specification artefacts that do not necessarily correspond to any specific entity
within an ECMAScript implementation. Specification type values may be used to describe intermediate results
of ECMAScript expression evaluation but such values cannot be stored as properties of objects or values of
ECMAScript language variables.

6.2.1 The List and Record Specification Type

The List type is used to explain the evaluation of argument lists (see 12.2.6).in new expressions, in function
calls, and in other algorithms where a simple ordered list of values is needed. Values of the List type are
simply ordered sequences of list elements containing the individual values. These sequences may be of any
length. The elements of a list may be randomly accessed using 0-origin indices. For notational convience an
array-like syntax can be used to access List elements. For example, arguments[n] is short-hand for saying the
nt" element of the List arguments.

The Record type is used to describe data aggregations within the algorithms of this specification. A Record
type value consists of one or more named fields. The value of each field is either an ECMAScript value or an
abstract value represented by a name associated with the Record type: Field names are always enclosed in
double brackets, for example [[value]]

For notational convenience within this specification, an object literal-like syntax can be used to express a
Record value. For example, {[[field1]]: 42, [[field2]]: false, [[field3]]: empty} defines a Record value that has
three fields each of which is initialised to a specific value: Field name order is not significant. Any fields that
are not explicitly listed are considered to be absent.

In specification text and algorithms, dot notation may be used to refer to a specific field of a Record value. For
example, if R is the record shown in the previous paragraph then R.[[field2]] is shorthanR
named [[field2]] o .

Schema for commonly used Record field combinations may be named, and that name may be used as a
prefix to a literal Record value to identify the specific kind of aggregations that is being described. For
example: PropertyDescriptor{[[Value]]: 42, [[Writable]]: false, [[Configurable]]: true}.

6.2.2 The Completion Record Specification Type

The Completion type is a Record used to explain the runtime propagation of values and control flow such as
the behaviour of statements (break , continue , return and throw) that perform nonlocal transfers of
control.

Values of the Completion type are Record values whole fields are defined as by Table 8.

Table 89 Completion Record Fields

Field Name | Value Meaning
[ltypel] One of normal, break, continue, return, | The type of completion that occurred.
or throw
[[value]] any ECMAScript language value or empty | The value that was produced.
[[target]] any ECMAScript string or empty The target label for directed control transfers.

The term fiabr up tstoany oompletidniwithr fitype]levdlue other than normal.

30 © Ecma International 2013

for

it he

f

el

d

of

secma

6.2.2.1 NormalCompletion
The abstract operation NormalCompletiorwith a single argumengsuch as:
1. ReturnNormalCompletiondrgumeny.
Is a short hand that is defined as follows:
1. ReturnCompletiod[[type]]: normal, [[value]]: argument [[target]]:empty}.
6.2.2.2 Implicit Completion Values
The algorithms of this specification often implicitly return Completion Records whose [[type]] is normal.
Unless it is otherwise obvious from the context, an algorithm statement that returns a value that is not a
Completion Record, such as:
Return”Infinity"
Generally means the same thing as:
1. ReturnNormalCompletionf{Infinity").
Areiuro st atement without a valwue<in an algorithm step means the same thing as
1. ReturnNormalCompétion(undefined).
Similarly, any reference to a Completion Record value that is in a context that does not explicitly require a
complete Completion Record value is equivalent to an explicit reference to the [[value]] field of the Completion
Record value unless the Completion Record is an abrupt completion.
6.2.2.3 Throw an Exception
Algorithms steps that say.to throw an exception, such as
1. Throw aTypeError exception
Mean the same things as:
1. ReturnCompletion{[type]]: throw, [[value]]: a newly createdypeError object, [[target]lempty}.
6.2.24 ReturnifAbrupt
Algorithms steps that say
1. ReturnlfAbrupt@rgumeny.

mean the same things as:

1. If arguments an abrupt completion, then retuangument
2. Else ifargumentis a Completion Record, then latgumentbe argunment[[value]].

6.2.3 The Reference Specification Type
NOTE The Reference type is used to explain the behaviour of such operators as delete , typeof , the assignment

operators, the super keyword and other language features. For example, the left-hand operand of an assignment is
expected to produce a reference.

© Ecma International 2013 31

c2echa

A Reference is a resolved name or property binding. A Reference consists of three components, the base
value, the referenced namand the Boolean valued strict referencdlag. The basevalue is either undefined, an
Object, a Boolean, a String, a Symbol, a Number, or an environment record (8.1.1). A basevalue of undefined
indicates that the Reference could not be resolved to a binding. The referenced namés a String or Symbol
value.

A Super Reference is a Reference that is used to represents a name binding that was expressed using the
super keyword. A Super Reference has an additional thisValuecomponent and its basevalue will never be an
environment record.

The following abstract operations are used in this specification to access the components of references:

GetBase(V). Returns the basevalue component of the reference V.

GetReferencedName(V). Returns the referenced nameomponent of the reference V.

IsStrictReference(V). Returns the strict referencellag component of the reference V.

HasPrimitiveBase(V). Returns true if Type(basg is a Boolean, String, Symbol, or Number.
IsPropertyReference(V). Returns true if either the basevalue is.an object or HasPrimitiveBase(V) is true;
otherwise returns false.

IsUnresolvableReference(V). Returns true if the basevalue.is undefined and false otherwise.
IsSuperReference(V). Returns true if this reference has-a thisValuecomponent.

= == =a =4 —a —a —a

The following abstract operations are used in this specification to operate on references:
6.2.3.1 GetValue (V)

ReturnIfAbrupt{).

If Type(V) is not Reference, retui.

Let basebe the result of calling GetBad#(

If IsUnresolvableReference], throw aReferenceErrorexception.

If IsPropertyReferenc&), then

If HasPrimitiveBaseY) is true, then

Assert: In this casehasewill never benull or undefined.

Let base be ToObjectpasg.

Return the result of callinthe [[Get]]internal methodf basepassing GetReferencedNarig@nd
GetThisValueY) as the argumea.

Elsebasemust be an environment record,

Return the result of calling the GetBindingValue (8e&.1) concrete method dfasepassing
GetReferencedNam¥) and IsStrictReference] as arguments.

NOTE The object that may be created.in step 5.a.ii is not accessible outside of the above abstract operation and the
ordinary object [[Get]] internal method. An implementation might choose to avoid the actual creation of the object.

6.2.3.2 PutValue (V, W)

ReturnlfAbrupt{).
ReturnifAbrupt{v).
If Type(V) is not Reference, throwReferenceError exception.
Let basebe the result of calling GetBad#(
If IsUnresolvableReferenc¥], then
a. If IsStrictReferencey) is true, then
i Throw ReferenceError exception.
b. LetglobalObjbe the result of the abract operation GetGlobalObject.
c. Return the result of callinButglobalObjGetReferencedNam¥), W, false).
6. Else if IsPropertyReference), then
a. If HasPrimitiveBaseY) istrue, then
i. Assert: In this casehasewill never benull or undefined.
ii. Setbase to ToObjectpase.
b. Letsucceedede the result of callinghe [[Set]]internal methodf basepassing
GetReferencedNam¥), W, andGetThisValue{) as arguments.
c. ReturnlfAbrupt6ucceedeqd

arpwNE

32 © Ecma International 2013

»ecmnd

d. If succeededs false andlsStrictReferencgV) is true, then throw arypeError exception
e. Return.
7. Elsebasemust be a reference whose base is an environment record. So,
a. Return the result of callinthe SetMutableBinding8.1.1) concrete method dfase passing
GetReferencedNam¥j, W, and IsStictReferencey) as arguments.
8. Return.

NOTE The object that may be created in step 6.a.ii is not accessible outside of the above algorithm and the ordinary
object [[Set]] internal method. An implementation might choose to avoid the actual creation of that object.

6.2.3.3 GetThisValue (V)

ReturnIfAbrupt{).
If Type(V) is not Reference, retui.
If IsUnresolvableReferenc¥], throw aReferenceError exception.
If IsSupeReferencey), then
a. Return the value of ththisValuecomponent of the referengé
5. Return GetBas(V).

pPODNPE

6.2.4 The Property Descriptor Specification Type

The Property Descriptor type is used to explain the manipulation and reification of Object property attributes.

Values of the Property Descriptor typeare Rec or ds composed of namednahdidnds where each fieldos
attribute name and its value is a corresponding attribute value as_specified in 6.1.7.1. In addition, any field

may be present or absent. The schema name used within this specification to tag literal descriptions of

Property Descriptor recordsisi Pr opertyDescri ptoro.

Property Descriptor values may be further classified as data Property Descriptors and accessor Property
Descriptors based upon the existence or use of certain fields. A data Property Descriptor is one that includes
any fields named either [[Value]] or [[Writable]]. An accessor Property. Descriptor is one that includes any
fields named either [[Get]] or [[Set]]..Any Property Descriptor may have fields named [[Enumerable]] and
[[Configurable]]. A Property Descriptor value may not be both a data Property Descriptor and an accessor
Property Descriptor; however, it may be neither. A generic Property Descriptor is a Property Descriptor value
that is neither a data Property Descriptor nor an accessor Property Descriptor. A fully populated Property
Descriptor is one that is either an accessor Property Descriptor or a data Property Descriptor and that has all
of the fields that correspond to the property attributes defined in either 6.1.7.1 Table 2 or Table 3.

A Property Descriptor may be derived from an object that has properties that directly correspond to the fields
of a Property Descriptor. Such a derived Property Descriptor has an additional field named [[Origin]] whose
value is the object from which the Property Descriptor was derived.

The following abstract operations are used in this specification to operate upon Property Descriptor values:

6.2.4.1 IsAccessorDescriptor (Desc)

When the abstract operation IsAccessorDescriptor is called with Property Descriptor Desc the following steps
are taken:

1. If Descis undefined, then returrfalse.
2. If both Desc[[Get]] andDesc.[[Set]] are absent, then retufiese.
3. Returntrue.

6.2.4.2 IsDataDescriptor (Desc)

When the abstract operation IsDataDescriptor is called with Property Descriptor Desc the following steps are
taken:

If Descis undefined, then returrfalse.
If both Desc[[Value]] andDesc[[Writable]] are absent, then retufalse.

© Ecma International 2013 33

secma

Returntrue.
6.2.4.3 IsGenericDescriptor (Desc)

When the abstract operation IsGenericDescriptor is called with Property Descriptor Desg the following steps
are taken:

If Descis undefined, then returrfalse.
If IsAccessorDescriptoffesq and IsDataDescriptdbesg are botlfalse, then returrirue.
Returnfalse.

6.2.4.4 FromPropertyDescriptor (Desc)

When the abstract operation FromPropertyDescriptor is called with Property Descriptor Desc the following
steps are taken:

If Descis undefined, then returrundefined.

If Deschas an [[Origin]] field then returrDesc([[Origin]] .

Let obj be the result ofhe abstract operation ObjectCreate with the intrinsic object %ObjectPrototype% as its
argument.

Assert:objis an extensible ordinamgybject with no own propetties.

If Deschas a [[Value]] field, then

Call OrdinanDefineOwnPropertyith argument®bj, "value ", andPropertyDescriptof{Value]]:
Desc[[Value]], [[Writable]]: true, [[Enumerable]]true, [[Configurable]: true}

If Deschas a [[Writable]] field, then

Call OrdinanDefineOwnPropertyith argument®bj, "writable ~ *, andPropertyDescriptorf{Value]]:
Desc[[Writable]], [[Writable]]: true, [[Enumerable]jtrue, [[Configurable]]:true}.

If Deschas a [[Get]] field, then

Call OrdinanDefineOwnPropertyith argument®bj, “get" ., andPropertyDescriptoiffValue]]: Desc[[Gef]],
[[Writable]]: true, [[Enumerable]]true, [[Configurable]]:true}.

If Deschas a [[Set]] field, then

Call OrdinanDefineOwnPropertyith argument®bj, "set ", andPropertyDescriptoffValue]]: Desc[[Set]],
[[Writable]]: true, [[Enumerable]]true, [[Configurable]]:true}.

If Deschas an [[Enumerable]] field, then

Call OrdinaryDefineOwnPropertyith argument®bj, "enumerable ", andPropertyDescriptof{\Value]]:
Desc[[Enumerable]], [[Writable]]true, [[Enumerable]]true, [[Configurable]]:true}.

If Deschas a [[Configurable]] field, then

Call OrdinanDefineOwnPropertyith argument®bj, "configurable ", andPropertyDescriptorffValue]]:
Desc[[Configurable]], [[Writable]]:true, [[Enumerable]]true, [[Configurable]]:true}.
Returnobj.

6.2.4.5 < ToPropertyDescriptor (Obj)

When the abstract operation ToPropertyDescriptor is called with object Obj, the following steps are taken:

ReturnlfAbrupt©bj).

If Type(Obj).is not Object throw dypeError exception.

Let descbe the result of creating a new Property Descriptor that initially has rasfiel
If the result ofHasPropertyDbj, "enumerable ") istrue, then
Let enumbe the result of GéDbj, "enumerable ").
ReturnIfAbruptenun).

Set the [[Enumerable]] field alescto ToBooleanénun).

If the result ofHasPropertyQbj, "configurable ") istrue, then
Let conf be the result of GéDbj, "configurable ").
ReturnIfAbruptcon).

Set the [[Configurable]] field oflescto ToBoolean€onf).

If the result ofHasPropertyQbj, "value ") istrue, then

Let valuebe the result of GéDbj, "value ").
ReturnIfAbruptgalue).

Set the [[Value]] field ofdescto value

If the result ofHasPropertyQbj, "writable ") is true, then

34 © Ecma International 2013

»ecma

Let writable be the result of GéDbj, "writable).

ReturnlfAbruptfvritable).

Set the [[Writable]] field ofdescto ToBooleanyritable).

If the result of HasPropertyQbj, "get ") is true, then

Let getterbe the result of GéDbj, "get).

ReturnIfAbrupt@etter).

If IsCallable@ette)) is false andgetteris notundefined, then throw alypeError exception.
Set the [[Get]] field ofdescto getter.

If the result ofHasPropertyQbj, "set ") is true, then

Let setterbe the result of GéDbj, "set).

ReturnlfAbrupt&ette).

If IsCallable(sette) is false andsetteris notundefined, then throw arypeError exception.
Set the [[Set]] field oflescto setter

If either desc[[Get]] or desc[[Set]] are present, then

If eitherdesc[[Value]] or desc[[Writable]] are present, then throwTypeError exception.
Set the [[Origin]] field ofdescto Obj.

Returndesc

6.2.4.6 CompletePropertyDescriptor (Desc, LikeDesc)

When the abstract operation CompletePropertyDescriptor.is called with Property Descriptor Desg the following
steps are taken:

1. Assert:LikeDescis either a Property Descriptor andefined.
2. ReturnIfAbruptDesqg.
3. Assert:Descis a Property Descriptor
4. If LikeDescis undefined, then setikeDescto Record{[[Value]]:undefined, [[Writable]]: false, [[Get]]:
undefined, [[Set]]: undefined, [[Enumerable]]:false, [[Configurable]]: false}.
5. |If either IsGenericDescriptddesq or IsDataDescriptdiDesg is true, then
a. If Descdoes not have a [[Value]] field, then sBesc[[Value]] to LikeDesc[[Value]].
b. If Descdoes not havea [[Writable]] field, then deésc[[Writable]] to LikeDesc[[Writable]].
6. Else,
a. If Descdoes not have a [[Get]] field, then deésc[[Get]] to LikeDesc[[Get]].
b. If Descdoesnot have a [[Set]] field, then d&¢sc[[Set]] to LikeDesc[[Set]].
7. If Descdoes not havere[[Enumerable]] field, then sdbesc[[Enumerable]] toLikeDesc[[Enumerable]].
8. If Descdoes not have a [[Configurable]] field, then 8ssc[[Configurable]] toLikeDesc[[Configurable]].
9. ReturnDesc
6

.2.5 The Lexical Environment and Environment Record Specification Types

The Lexical Environment and Environment Record types are used to explain the behaviour of name resolution
in nested functions and blocks. These types and the operations upon them are defined in 8.1.

6.2.6 DataBlocks

The Data Block specification type is used to describe a distinct and mutable sequence of byte-sized (8 bit)
numeric values. A Data Block value is created with a fixed number of bytes that each have the initial value 0.

For notational convenience within this specification, an array-like syntax can be used to express to the
individual bytes of a Data Block value. This notation presents a Data Block value as a 0-origined integer
indexed sequence of bytes. For example, if dbis a 5 byte Data Block value then dif2] can be used to express
access to its 3 byte.

The following abstract operations are used in this specification to operate upon Data Block values:

6.2.6.1 CreateByteDataBlock(size)

When the abstract operation CreateByteDataBlock is called with integer argument size the following steps are
taken:

© Ecma International 2013 35

ecmd

1.
2.

3.
4.

Assert:sizéd 0 .

Let dbbe a new Data Block value consistingsafebytes If it is impossible to create such a Data Block, then throw
aRangeError exception.

Set all of the bytes afbto O

Returndb.

6.2.6.2 CopyDataBlockBytes(toBlock, tolndex, fromBlock, fromIndex, count)

When the abstract operation CopyDataBlockBytes is called the following steps are taken:

NoA~wWNE

7

Assert:fromBlockandtoBlockaredistinctData Block values.
Assert:fromindex tolndex andcountarepositiveinteger values.
Let fromSizebe the number of bytes fromBlock
Assert:fromindex-countOfromSize
Let toSizebe the number of bytes toBlock
Assert:tolndex+countOtoSize
Repeat, whileount-0
a. SettoBlocKtolndey to the value ofromBlocKfromindeX.
b. Incrementolndexandfromindexeach by 1.
c. Decrementountby 1.
ReturnNormalCompléion(empty).

Abstract Operations

These operations are not a part of the ECMAScript language; they are defined here to solely to aid the
specification of the semantics of the ECMASctipt language. Other, more specialized abstract operations are
defined throughout this specification.

7.1 Type Conversion and Testing

The ECMAScript language implicitly performs automatic type conversion as needed. To clarify the semantics
of certain constructs it is useful to define a set of conversion abstract operations. The conversion abstract
operations are polymorphic; they can accept a value of any ECMAScript language type or of a Completion
Record value. But no other specification types are used with these operations.

7.1.1 ToPrimitive

The abstract operation ToPrimitive takes an input argument and an optional argument PreferredType The
abstract operation ToPrimitive converts its input argument to a non-Object type. If an object is capable of
converting to more than one primitive type, it may use the optional hint PreferredTypeto favour that type.
Conversion occurs according to Table 9:

Table 98 ToPrimitive Conversions

Input Type Result

Completion Record [If argument is an abrupt completion, return argument. Otherwise return
ToPrimitive(argument.[[value]]) also passing the optional hint
PreferredType.

Undefined Return argument (no conversion).

Null Return argument (no conversion).

Boolean Return argument (no conversion).

Number Return argument (no conversion).

String Return argument (no conversion).

Symbol Return argument (no conversion).

Object Perform the steps following this table.

When the InputType is Object, the following steps are taken:

36

© Ecma International 2013

»ecmnd

If PreferredTypevas not passed, l&tnt be "default
Else if PreferredTypads hint String, lethint be "string ".
ElsePreferredTypas hint Number, lehint be "number ".
Let exoticToPrim be the result of Géargument @ @toPrimitive).
ReturnIfAbruptéxoticToPrin).
If exoticToPrimis notundefined, then
a. If IsCallableexoticToPrim) is false, thenthrow aTypeError exception.
b. Letresultbe the result of calling the [[Call]] internal methodeofoticToPrim with argumentas
thisArgumentand a list containinghint asargumentsList
c. ReturnifAbruptfesul.
d. If resultis an ECMAScmpt language value and Typeéulf) is not Object, then retumresult
e. Else, throw arypeError exception.
7. If hintis"default " then, lethint be "number".
8. Return the result of OrdinaryToPrimitive(gument,hink.

ok wbhpE

When the OrdinaryToPrimitive is called with arguments O and hint, thefollowing steps are taken:

1. Assert: TypeQ) is Object
2. Assert: Typeliint) is String and its value is eithéstring * or"number".
3. If hintis"string ", then
a. LetmethodNamesbethe List ("toString *; "valueOf ").
4. Else,

a. Let methodNamesie the List ("valueOf ", "toString. ").
5. For eachnamein methodNames# List order, do
a. Letmethodbe the result of GéD, namg.
b. ReturnlfAbruptfnethod.
c. If IsCallablefnethod is true then,
i Let resultbe the result of calling the [[Call]] internal methodroéthod with O as
thisArgumentand an empty.ist asargumentsList
ii. ReturnIfAbruptgesuly).
iii. If Type(resut) is not Object, then retunresult
6. Throw aTypeError exception.

NOTE When ToPrimitive is called with no hint, then it generally behaves as if the hint were Number. However,
objects may over-ride this behaviour by defining a @@toPrimitive method. Of the objects defined in this specification only
Date objects (see 20.3) and Symbol objects (see 19.4.3.4) over-ride the default ToPrimitive behaviour. Date objects treat

no hint as if the hint were String.
7.1.2 ToBoolean
The abstract operation ToBoolean converts its argument to a value of type Boolean according to Table 10:

Table 108 ToBoolean Conversions

Argument Type Result

Completion Record | If argument is an abrupt completion, return the argument. Otherwise return
ToBoolean(argument.[[value]])

Undefined Return false

Null Return false

Boolean Return the input argument (no conversion).

Number Return false if the argument is +0, - 0, or NaN; otherwise return true.

String Return false if the argument is the empty String (its length is zero);
otherwise return true.

Symbol Return true

Object Return true

© Ecma International 2013

37

secma

7.1.3 ToNumber
The abstract operation ToNumber converts its argument to a value of type Number according to Table 11:

Table 11 8 ToNumber Conversions

Argument Type Result

Completion Record | If argument is an abrupt completion, return argument. Otherwise return
ToNumber(argument.[[value]])
Undefined Return NaN
Null Return +0
Boolean Return 1 if argument is true. Return +0 if argument is false.
Number Return argument (no conversion).
String See grammar and note below.
Symbol Return NaN
Object Apply the following steps:
1. LetprimValuebe ToPrimitiveargument hint Number).
2. Return ToNumbegrimValug.

7.1.3.1 ToNumber Applied to the String Type

ToNumber applied to Strings applies the following grammar to the input String. If the grammar cannot interpret
the String as an expansion of StringNumericLiteralthen the result of ToNumber is NaN.

Syntax

StringNumericLiterat::
StrwhiteSpacg:
StrWhiteSpacg: StrNumericLiteral StrWhiteSpage

StrWhiteSpace:
StrwWhiteSpaceChar StrWhiteSpaee

StrWhiteSpaceChar:
WhiteSpace
LineTerminator

StrNumericLiterat::
StrDecimalLiteral
HexlIntegerLiteral

StrDecimalLiteral:::
StrUnsignedDecimalLiteral
+ StrUnsignedDecimalLiteral
- StrUnsignedDecimalLiteral

StrUnsgnedDecimalLiteral::
Infinity
DecimalDigits. DecimalDigits,: ExponentPag:
. DecimalDigits ExponentPag
DecimalDigits ExponentPayj:

DecimalDigits:::
DecimalDigit
DecimalDigits DecimalDigit

38 © Ecma International 2013

M

ecmnd

DecimalDigit::: one of

0123456789

ExponentPart::

Exponentindicator Signedinteger

Exponentindicator:: one of

e E

Signedinteger::

DecimalDigits
+ DecimalDigits
- DecimalDigits

HexIntegerLiteral::

0x HexDigit
0X HexDigit
HexlIntegerLiteral HexDigit

HexDigit::: one of

012345 6789abcdefABCDEF

NOTE Some differences should be noted between the syntax of a StringNumericLiteraland a NumericLiteral (see
11.8.3):

1 A StringNumericLiteramay be preceded and/or followed by white space and/or line terminators.

Al A StringNumericLiterathat is decimal may have any number of leading O digits.

T A StringNumericLiterakhat is decimal may be preceded by + or - to indicate its sign.

1 A StringNumericLiterathat is empty or contains only white space is converted to +0.

1 Infinity and T Infinity are recognised as a StringNumericLiteralbut not as a NumericLiteral

7.1.3.1.1Runtime Semantics: MV 0 s

The conversion of a Stringto a Number value is similar overall to the determination of the Number value for a
numeric literal (see 11.8.3), but some of the details are different, so the process for converting a String
numeric literal to a value of Number type is given here in full. This value is determined in two steps: first, a
mathematical value (MV) is derived from the String numeric literal; second, this mathematical value is rounded
as described below.

1
1
1

=a =4 =4 -4 -8

= = =

The MV of StringNumericLiterat:: [empty] is 0.

The MV of StringNumericLiteral:: StrWhiteSpacés 0.

The MV of StringNumemLiteral ::: StrwhiteSpaag: StrNumericLiteral StrwWhiteSpaceg: is the MV of
StrNumericLiteral no matter whether white space is present or not.

The MV of StrNumericLiteral::: StrDecimalLiteralis the MV of StrDecimalLiteral

The MV of StrNumericLiteral:: HexIntegerLiteralis the MV of HexIntegerLiteral

The MV of StrDecimalLiteral::: StrUnsignedDecimalLiteras the MV of StrUnsignedDecimalLiteral

The MV of StrDecimalLiteral::: + StrUnsignedDecimalLiterak the MV of StrUnsignedDecimalLiteral

The MV of StrDecimalliteral ::: - StrUnsignedDecimalLiteralis the negative of the MV of
StrUnsignedDecimalLiteraNote that if the MV of StrUnsignedDecimalLiterak O, the negative of this MV is
also 0. The rounding rule described below handles the conversion of this signless mathematical zero to a
floating-point +0 or - O as appropriate.)

The MV of StrUnsignedDecimalLiteral: Infinity is 10'%°%(a value so large that it will round to +a).

The MV of StrUnsignedDecimalLiteral: DecimalDigits is the MV of DecimalDigits

The MV of StrUnsignedDecimalLiteral: DecimalDigits. DecimalDigitsis the MV of the first DecimalDigits
plus (the MV of the second DecimalDigitstimes 10"), where n is the number of characters in the second
DecimalDigits

The MV of StrUnsgnedDecimallLiterat: DecimalDigits ExponentParis the MV of DecimalDigitstimes 16,
whereeis the MV of ExponentPart

© Ecma International 2013 39

c2echa

1 The MV of StrUnsignedDecimallLiterat DecimalDigits DecimalDigits ExponentParis (the MV of the first
DecimalDigitsplus (the MVof the secon®ecimalDigitstimes 10")) times 16, wheren is the number of characters
in the secon®ecimalDigisandeis the MV of ExponentPart

1 The MV of StrUnsignedDecimalLiterat . DecimalDigitsis the MV of DecimalDigitstimes 10", wheren is the
number of characters DecimalDigit.

1 The MV of StrUnsignedDecimalLiterat . DecimalDigits ExponentPaiit the MV of DecimalDigitstimes 16",
wheren is the number of charactersrecimalDigis ande is the MV of ExponentPart

1 The MV of StrUnsignedDeimalLiteral:: DecimalDigitsis the MV of DecimalDigits

1 The MV of StrUnsignedDecimallLiterat DecimalDigits ExponentPartis the MV of DecimalDigitstimes 16,
whereeis the MV of ExponentPart

1 The MV of DecimalDigits::: DecimalDigitis the MV of DecinalDigit.

The MV of DecimalDigits::: DecimalDigitsDecimalDigitis (the MV of DecimalDigitstimes 10) plus the MV of

DecimalDigit

The MV of ExponentPart:: Exponentindicator Signedintegisrthe MV of Signedinteger

The MV of Signedinteger:: DecimalDigts is the MV of DecimalDigits

The MV of Signedinteger:: + DecimalDigitsis the MV of DecimalDigits

The MV of Signedinteger:: - DecimalDigitsis the negative of the MV ddecimalDigits

The MV of DecimalDigit::: 0 or of HexDigit::: 0is 0.

The MV of DecimalDigit::: 1 or of HexDigit::: 1 is 1.

The MV of DecimalDigit::: 2 or of HexDigit::: 2 is 2.

The MV of DecimalDigit::: 3 or of HexDigit::: 3is 3.

The MV of DecimalDigit::: 4 or of HexDigit::: 4 is 4.

The MV of DecimalDigit::: 5 or of HexDugit::: 5.is 5.

The MV of DecimalDigit::: 6 or of HexDigit::: 6'is 6.

The MV of DecimalDigit::: 7 or of HexDigit::: 7 is 7.

The MV of DecimalDigit::: 8 or of HexDigit::: 8 is 8.

The MV of DecimalDigit::: 9 orof HexDigit::: 9is 9.

The MV of HexDigt ::: a or of HexDigit::: Ais 10.

The MV of HexDigit:::-b or of HexDigit::: Bis 11.

The MV of HexDigit::: ¢ or of HexDigit::: Cis 12.

The MV of HexDigit::: d.or of HexDigit::: Dis.13.

The MV of HexDigit::: e or of HexDigit::: Eis 14.

The MV of HexDigit::: f or of HexDigit::: Fis 15.

The MV of HexIntegerLiterat:: Ox HexDigitis the MV of HexDigit

The MV of HexIntegerLiteral:: 0X HexDigitis the MV of HexDigit

The MV of HexIntegerLiteral::: HexIntegerLiteralHexDigitis (the MV of HexintegerLiteraltimes 16) plus the
MV of HexDigit

=

=4 =4 =4 4 —a -4 —a —a —a _4a _—a _—a _—a _a -8 _a -8 _a _a _a _a _a_°

Once the exact MV for a String numeric literal has been determined, it is then rounded to a value of the
Number type. If the MV is 0,/then the rounded value is +0 unless the first non white space character in the
String nume+di,c ilni twehriaclh icsasé -0.fOtherwise,uthe toended vahié must be tise
Number value for the MV (in the sense defined in 6.1.5.1), unless the literal includes a
StrUnsignedDecimalLiteradnd the literal has more than 20 significant digits, in which case the Number value
may be either the Number value for the MV of a literal produced by replacing each significant digit after the
20th with a 0 digit or the Number value for the MV of a literal produced by replacing each significant digit after
the 20th with a O digit and then incrementing the literal at the 20th digit position. A digit is significant if it is not
part of an ExponentParand

 itisnotO; or

1 there is a nonzero digit to its left and there is a nonzero digit, not in the ExponentPartto its right.

7.1.4 Tolnteger

The abstract operation Tolnteger converts its argument to an integral numeric value. This abstract operation
functions as follows:

40 © Ecma International 2013

»ecmad

Let numberbe the result of calling ToNumber on the input argument.
ReturnlfAbruptfiumbej.

If numberis NaN, return+0.

If numberis +0, - 0, +8, or - &, returnnumber

Return the result of computing sign(mbej 3 floor(absfiumbey}).

7.1.5 TolInt32: (Signed 32 Bit Integer)

The abstract operation Tolnt32 converts its argument to one of 2°2 integer values in the range - 2°! through
2% 1, inclusive. This abstract operation functions as follows:

Let numberbe the result of calling ToNumber on the input argument.
ReturnifAbrupt(numbej.

If numberis NaN, +0, -0, +&, or-&, return+0.

Letint be signfumbej 3 floor(abs@umbey}).

Let int32bit beint modulo 22,

If int32bit 0 2%, returnint32bit- 2%, otherwise returint32bit

ourwnhE

NOTE Given the above definition of ToInt32:

1 The ToInt32 abstract operation is idempotent: if applied to a result that it produced, the second application leaves that
value unchanged.

1 ToInt32(ToUint3Zx)) is equal to ToInt32() for all values of x. (It is to preserve this latter property that +o and -o are
mapped to +0.)

1 ToInt32 maps - 0 to +0.

7.1.6 ToUint32: (Unsigned 32 Bit Integer)

The abstract operation ToUint32 converts its argument to one.of 2*2 integer values in the range 0 through
2%2 1, inclusive. This abstract operation functions as follows:

Let numberbe the result of calling ToNumber on the input argument.
ReturnIfAbruptumbej:

If numberisNaN, +0,- 0, +, or-&a, return+0.

Letint be signfumler) 3 floor(abs@umbey).

Letint32bitbeint modulo 22

Returnint32bit.

NOTE Given the above definition of ToUint32:

1 Step.6is the only difference between ToUint32 and ToInt32.

1 The ToUint32 abstract operation is idempotent: if applied to a result that it produced, the second application leaves
that value unchanged.

1 ToUint32(ToInt32K)) is equal to ToUint32() for all values of x. (It is to preserve this latter property that +8 and -&a are
mapped to +0.)

1 ToUint32 maps - 0 to +0.

7.1.7 ToUint16: (Unsigned 16 Bit Integer)

The abstract operation ToUint16 converts its argument to one of 2!° integer values in the range 0 through
2% 1, inclusive. This abstract operation functions as follows:

Let numberbe the result of calling ToNumber on the input argument.
ReturnIfAbrupt(numbej.

If numberis NaN, +0,- 0, +a, or- &, return+0.

Letint be signfumbej 3 floor(abs@umbey}).

Let int16bit beint modulo 2¢.

Returnint16bit.

NOTE Given the above definition of ToUint16:

© Ecma International 2013 41

secma

1 The substitution of 26 for 232in step 4 is the only difference between ToUint32 and ToUint16.
1 ToUintl6 maps - 0 to +0.

7.1.8 TolInt8: (Signed 8 Bit Integer)

The abstract operation ToInt8 converts its argument to one of 28 integer values in the range - 128through 127,
inclusive. This abstract operation functions as follows:

Let numberbe the result of calling ToNumber on the input argument.
ReturnIfAbruptumbej.

If numberis NaN, +0, - 0, +8, or- &, return+0.

Letint be signumbej 3 floor(absiumbe}).

Let int8bit beint modulo 2.

If int8bit O 7, returnint8bit - 28, otherwise returint8bit.

ouMwnNnE

7.1.9 ToUint8: (Unsigned 8 Bit Integer)

The abstract operation ToUint8 converts its argument to one of 22 integer values in the range O through 255
inclusive. This abstract operation functions as follows:

Let numberbe the result of calling ToNumber on the‘input argument.
ReturnIfAbrupthumbej.

If numberis NaN, +0,- 0, +a, or-a, return+0.

Letint be signfumbe) 3 floor(absqiumbe}).

Let int8bit beint modulo 2.

Returnint8bit.

oM wNE

7.1.10 ToUint8Clamp: (Unsigned 8 Bit Integer, Clamped)

The abstract operation ToUint8Clamp converts its argument to one of 28integer values in the range 0 through
255 inclusive. This abstract operation functions as follows:

Let numberbe the result of calling ToNumber on the input argumen
ReturniIfAbruptiumbey.

If numberis NaN, return+0.

If numberd0, return+0.

If number> 255, return255,

Let f be floar(numbej.

If f+0.5 Onumber then returrf+1.

Returnf.

PN AWNE

NOTE Note that unlike the other integer conversion abstract operation, ToUnit8Clamp rounds rather than truncates
non-integer values.

7.1.11 ToString

The abstract operation ToString converts its argument to a value of type String according to Table 12:

42 © Ecma International 2013

secma

Table 128 ToString Conversions

Argument Type Result

Completion Record | If argument is an abrupt completion, return argument. Otherwise return
ToString(argument.[[value]])

Undefined "undefined”

Null "null”

Boolean If argument is true, then return "true"
If argument is false, then return "false"

Number See 7.1.11.1.

String Return argument (no conversion)

Symbol Throw a TypeError exception.

Object Apply the following steps:
1. LetprimValuebe ToPrimitiveargument hint String).
2. Return ToString{rimValug.

7.1.11.1 ToString Applied to the Number Type
The abstract operation ToString converts a Number mtoString format as follows:

If mis NaN, return the StringNaN" .

If mis+0or- 0, return the String0" .

If mis less than zero, return the String.coneatéon of the String - " and ToString{ m).

If mis + B return the StringInfinity"

Otherwise, len, k, ands be integers such that2 1, 1052 ¢:s < 10¢, the Number value fos3 10" ism, and

kis as small as possible. Note thas the number of igits in the decimal representation gfthatsis not

divisible by 10, and that the least significant digitsa§ not necessarily uniquely determined by these

criteria.

6. If k¢ n¢ 21, return the String consisting of thaligits of the decimal represtation ofs (in order, with no
leading zeroes), followed hy-koccurrences ®b6.the character 0

7. 1f0<n¢ 21, return the String consisting of the most significawtigits of the decimal representation Hf
foll owed by a6 dect oinihé rempaining-n digits of the decimal representation of

8. If-6<n¢O0, return’ the Str ing0o6c onfsoilsltoiwegd obfyotah €d @dchi amaa cdtpdory nét 6
-noccurrences db, t hel t bldigitofthe decitha represtation ofs.

9. Otherwise, ifk = 1, return the String consisting of the single digisof f ol | owed by I|ebwercase character
foll owed bydaopl mbs+nds sagcsciogrnd i 6nrg 1 i$ pwsitiwehoe riedatve, followed by
the decimal represeation of the integer abs{ 1) (with no leading zeroes).

10. Return the String consisting of the most significant digit of the decimal representaspfobddwed by a

deci mal point 6. 06, K bdigitscofiteedlectmyl reprhsentaticngyfallowed oy ghe

| ower.caseeochafroacltoewe do+d yoma mi 408 sascscigpgrndd 6nng 1 is positweh et h e r

or negative, followed by the decimal representation of the integen-abs(with no leading zeroes).

apONPE

NOTE 1 The following observations may be useful as guidelines for implementations, but are not part of the normative
requirements of this Standard:

1 If xis any Number value other than - 0, then ToNumber(ToString(x)) is exactly the same Number value as x.
1 The least significant digit of s is not always uniquely determined by the requirements listed in step 5.

NOTE 2 For implementations that provide more accurate conversions than required by the rules above, it is
recommended that the following alternative version of step 5 be used as a guideline:
Otherwise, len, k, ands be integers such tha 1, 161 ¢ s< 10, the Number value fas3 10%is m, andk is as small as
possible. If there are multiple possibilities frchoose the value sffor whichs? 10vk is closest in valueotm. If there are
two such possible values sfchoose the one that is even. Note Kiatthe number of digits in the decimal representation of
sand thasis not divisible by 10.

© Ecma International 2013 43

(0]

secma

NOTE 3 Implementers of ECMAScript may find useful the paper and code written by David M. Gay for binary-to-decimal
conversion of floating-point numbers:
Gay, David M. Correctly Rounded Binary-Decimal and Decimal-Binary Conversions. Numerical Analysis,
Manuscript 90-10. AT&T Bell Laboratories (Murray Hill, New Jersey). November 30, 1990. Available as
http://cm.bell-labs.com/cm/cs/doc/90/4-10.ps.gz. Associated code available as
http://netlib.sandia.gov/fp/dtoa.c and as
http://netlib.sandia.gov/fp/g_fmt.c and may also be found at the various netlib mirror sites.

7.1.12 ToObject

The abstract operation ToObject converts its argument to a value of type Object according to Table 13:
Table 138 ToObject Conversions

Argument Type Result

Completion Record | If argument is an abrupt completion, return argument. Otherwise return
ToObject(argument.[[value]])

Undefined Throw a TypeError exception.

Null Throw a TypeError exception.

Boolean Return a new Boolean object whose [[BooleanData]] internal slot is set to
the value of argument. See 19.3 for a description of Boolean objects.

Number Return a new Number object whose [[NumberData]] internal slot is set to
the value of argument. See 20.1 for a description of Number objects.

String Return a new String object whose [[StringData]] internal slot is set to the
value of argument. See 21.1 for a description of String objects.

Symbol Return a new Symbol object whose [[SymbolData]] internal slot is set to
the value of argument. See 19.4 for a description of Symbol objects.

Object Return argument (no conversion).

7.1.13 ToPropertyKey

The abstract operation ToPropertyKey converts its argumentto a value that can be used as a property key by
performing the following steps:

1. ReturnIfAbrupt@rgumeny.

2. If Type(rgumeny is Symbol.then
a. Returnargument

3. ReturnToString@rgumeny.

7.1.14 ToLength

The abstract operation ToLength converts its argumentto an integer suitable for use as the length of an array-
like object. It performs the following steps:

Letlen be Tolntegerrgumeny.
ReturnifAbrupt(en).

If len O+0, then return 0.
Returnmin(len, 2°°-1).

PwnpE

7.2 Testing and Comparison Operations
7.2.1 CheckObjectCoercible

The abstract operation CheckObjectCoercible throws an error if its argument is a value that cannot be
converted to an Object using ToObject. It is defined by Table 14:

44 © Ecma International 2013

»ecmnd

Table 14 6 CheckObjectCoercible Results

Argument Type Result
Completion Record | If argument is an abrupt completion, return argument. Otherwise return
CheckObjectCoercible(argument.[[value]])
Undefined Throw a TypeError exception.
Null Throw a TypeError exception.
Boolean Return argument
Number Return argument
String Return argument
Symbol Return argument
Object Return argument
7.2.2 IsCallable

The abstract operation IsCallable determines if its argument which must be an ECMAScript language value or
a Completion Record, is a callable function Object according to Table 15:

Table 158 IsCallable Results

Argument Type Result

Completion Record | If argumentis an abrupt completion; return argument Otherwise return
IsCallable(argumeni[value]])

Undefined Return false.

Null Return false.

Boolean Return false.

Number Return false.

String Return false.

Symbol Return false.

Object If argumenthas a [[Call]] internal method, then return true, otherwise return
false.

7.2.3 SameValue(x,y)

The internal comparison abstract operation SameValue(x, y), where x and y are ECMAScript language values,
produces true or false. Such a comparison is performed as follows:

ReturnIfAbrupt).

ReturnifAbruptg).

If Type(x).is different from Typey), returnfalse.

If Type(x) is Undefined, returitrue.

If Type(x) is Null, returntrue.

If Type(x) is Number, then

If xis NaN andyis NaN, returrtrue.

If xis +0 andy is -0, returnfalse.

If xis -0 andy is +0, returnfalse.

If x is the same Number value gsreturntrue.

Returnfalse.

If Type(x) is String, then

If x andy are exactly the same sequencecofle unitsame length and sane®de unitsn corresponding
positions)returntrue; otherwise, returfalse.

If Type(x) is Booleanthen

If x andy are bothtrue or bothfalse, thenreturntrue; otherwise, returtialse.

If Type(x) is Symbol then

If x andy are boththe same Symbol valuéhenreturntrue; otherwise, returralse.

© Ecma International 2013 45

secma

Returntrue if x andy arethe sameObjectvalue Otherwise, returmalse.
7.2.4 SameValueZero(x,y)

The internal comparison abstract operation SameValueZero(x, y), where x and y are ECMAScript language
values, produces true or false. Such a comparison is performed as follows:

ReturnIfAbrupt).
ReturnlfAbrupt(y).
If Type(x) is different from Typey), returnfalse.
If Type(x) is Undefined, returtrue.
If Type(x) is Null, returntrue.
If Type(x) is Number, then
a. If xis NaN andy is NaN, returrtrue.
b. If xis +0 andy is -0, returntrue.
c. If xis -0 andy is +0, returntrue.
d. If xis the same Number value gsreturntrue.
e. Returnfalse.
7. If Type(X) is String, then
a. If x andy are exactly the same sequencecofle unit§same length and sant@de unitsn
corresponding positionsgturntrue; otherwise, returiialse.
8. If Type(x) is Booleanthen
a. If xandy are bothtrue or bothfalse, thenreturntrue; otherwise, returiialse.
9. If Type(x) is Symbol then
a. If xandy are boththe same Symbol valu¢henreturntrue; otherwise, returtialse.
10. Returntrue if x andy are the sameDbjectvalue Otherwise, returifialse.

onpwnE

NOTE SameValueZero differs from SameValue only in its treatment of +0 and -0.
7.2.5 IsConstructor

The abstract operation IsConstructor-determines if its argument which must be an ECMAScript language value
or a Completion Record, is a function object with a [[Construct]] internal method.

ReturnIfAbrupt@rgumeny.

If Type(argumen}s not Object, returmalse.

If argumenthas a [[Construct]] internal method, returne.
Returnfalse.

Pl i

7.2.6 IsPropertyKey

The abstract operation IsPropertyKey determines if its argument which must be an ECMAScript language
value or a Completion Record, is a value that may be used as a property key.

ReturnlfAbrupt@rgumeny.

If Type(argumeny is String, returrtrue.
If Type(argumeny is Symbol returntrue.
Returnfalse.

Eal ol N

7.2.7 IsExtensible (O)

The abstract operation IsExtensibleis used to determine whether additional properties can be added to the
object that is O. A Boolean value is returned. This abstract operation performs the following steps:

1. Assert: TypeQ) is Object.
2. Return the result of calling tHgIsExtensiblg] internal methodof O.

46 © Ecma International 2013

»ecmad

7.2.8 Abstract Relational Comparison

The comparison x <y, where x and y are values, produces true, false, or undefined (which indicates that at
least one operand is NaN). In addition to x and y the algorithm takes a Boolean flag named LeftFirst as a
parameter. The flag is used to control the order in which operations with potentially visible side-effects are
performed upon x and y. It is necessary because ECMAScript specifies left to right evaluation of expressions.
The default value of LeftFirst is true and indicates that the x parameter corresponds to an expression that
occurs to the left of the yp ar ame t e r énslingexpressiens IpLeftFirstis false, the reverse is the case
and operations must be performed upon y before x. Such a comparison is performed as follows:

ReturnIfAbrupt).

ReturnIfAbruptg).

If the LeftFirstflag istrue, then

Let px be the result otalling ToPrimitive§, hint Number).

ReturnIfAbruptpx).

Let py be the result of calling ToPrimitivg(hint Number).

ReturnlfAbrupty).

Else the order of evaluation needs to be reversed to preserve left to right evaluation

Let py be the result of callig ToPrimitivefy, hint Number):

ReturnIfAbrupty).

Let px be the result of calling ToPrimitive(hint Number).

ReturnlfAbruptpx).

If bothpx andpy are Stringsthen

If pyis a prefix ofpx, returnfalse. (A String valuep is a prefix of String value if g can be the result of
concatenating and some other String Note that any String is a prefix of itself, becanseay be the empty
String.)

If pxis a prefix ofpy, returntrue.

Letk be the smallest nonnegative integer such that the characteri@bpdswithin pxis different from the
character at positiok within py. (There must be suchka for -neither String is a prefix of the other.)

Let m be the integer that is the code unit value for.the character at pokitiithin px.

Let n be the integr that is_the code unit value for the character at poskiwithin py.

If m< n, returntrue. Otherwise, returialse.

Else,

Let nx be the result of calling ToNumbgx{). Becausex andpy are primitive values evaluation order is not

important.

Let ny be the result of calling ToNumbgxy).

If nxis NaN, returnundefined.

If nyis NaN, returnundefined.

If nx andnyare the same Number value, retfiafse.

If nXis +0 andny is - 0, returnfalse:

If nxis -0 andny is +0, returnfalse.

If nxis +a, returnfalse.

If nyis +a, returntrue.

If nyis-®, returnfalse.

If nxis-#a, returntrue.

If the mathematical value afxis less than the mathematical valuengfd note that these mathematical
values are both finite and not both zéreeturntrue. Otherwise returnfalse.

NOTE 1 Step 5 differs from step 11 in the algorithm for the addition operator + (12.6.3) in using fandoinstead of fora

NOTE 2 The comparison of Strings uses a simple lexicographic ordering on sequences of code unit values. There is no
attempt to use the more complex, semantically oriented definitions of character or string equality and collating order
defined in the Unicode specification. Therefore String values that are canonically equal according to the Unicode standard
could test as unequal. In effect this algorithm assumes that both Strings are already in normalised form. Also, note that for
strings containing supplementary characters, lexicographic ordering on sequences of UTF-16 code unit values differs from
that on sequences of code point values.

© Ecma International 2013 47

c2echa

7.2.9 Abstract Equality Comparison

The comparison x ==y, where x and y are values, produces true or false. Such a comparison is performed as
follows:

If Type(x) is the same as Typg(then
Returnthe result of pgorming Strict Equality Comparisonx ===y.
If xis null andy is undefined, returntrue.
If x is undefined andy is null, returntrue.
If Type(x) is Number and Typef{ is String,
return the result of the comparisg= ToNumbery).
If Type(x) is Stringand Typey) is Number,
return the result of the comparison ToONumbgK=y.
If Type(x) is Boolean, return the result of the comparison ToNumerfy.
If Type(y) is Boolean, return the result of the comparigor= ToNumbery).
If Type(x) is either Stmg or Number and Typg) is Object,
return the result of the comparisgrr= ToPrimitivefy).
If Type(x) is Object and Typsf is either String or Number,
return the result of the comparison ToPrimitixet=y.
Returnfalse.

7.2.10 Strict Equality Comparison

The comparison x ===y, where x and y are values, produces true or false. Such a comparison is performed
as follows:

If Type(x) is different from Typey), returnfalse.

If Type(x) is Undefined, returtrue.

If Type(x) is Null, returntrue.

If Type(x) is Numbe, then

If x is NaN, returnfalse.

If yis NaN, returnfalse.

If x is the same Number value wnsreturntrue.

If xis +0 andy is - O, returntrue.

If xis - 0 andy is +0, returntrue.

Returnfalse.

If Type(x) is String, then

If x andy are exactly the saensequence of characters (same length and same characters in corresponding
positions) returntrue.

Elsg returnfalse.

If Type(x) is Booleanthen

If x andy are bothtrue or bothfalse, returntrue.

Elsg returnfalse.

If x andy arethe sameSymbol vale, returntrue.

If x andy arethe sameDbject value, returrtrue.

Returnfalse.

NOTE This algorithm differs from the SameValue Algorithm (7.2.3) in its treatment of signed zeroes and NaNs.

7.3 Operations on Objects

731 Get(O,P)

The abstract operation Getis used to retrieve the value of a specific property of an object. The operation is
called with arguments O and P where O is the object and P is the property key. This abstract operation
performs the following steps:

1. Assert: TypeQ) is Object.

2. Assert: IsPropertyKe¥) is true.
3. Return the result of calling theG@lef] internal method o passingP andO asthe arguments

48 © Ecma International 2013

secma

7.3.2 Put (O, P,V, Throw)

The abstract operation Putis used to set the value of a specific property of an object. The operation is called
with arguments O, P, V, and Throw where O is the object, P is the property key, V is the new value for the
property and Throwis a Boolean flag. This abstract operation performs the following steps:

1. Assert: TypeQ) is Object.

2. Assat: IsPropertyKeyP) istrue.

3. Assert: TypeThrow) is Boolean.

4. Let succesde the result of calling the [[Set]] internal method@passingP, V, and O asthe arguments.
5. ReturnIfAbruptéuccesks

6. |If successs falseandThrowis true, then throw alrypeError exception.

7. Returnsuccess

7.

3.3 CreateDataProperty (O, P, V)

The abstract operation Creat®ataPropertys used to create a new own property of an object. The operation is
called with arguments O, P, and V where O is the object, P is the property key, and V.is the value for the
property. This abstract operation performs the following steps:

1. Assert: TypeQ) is Object.

2. Assert: IsPropertyKe¥) istrue.

3. LetnewDesde thePropetyDescriptor{[Value]]: V, [[Writable]]: true, [[Enumerable]]true,
[[Configurable]]:true}.

4. Return the result of callinthe [[DefineOwnProperty]] internal method 6f passing® andnewDescas
arguments.

NOTE This abstract operation creates a property whose attributes are set to the same defaults used for properties
created by the ECMAScript language assignment operator. Normally, the property will not already exist. If it does exist and
is not configurable or O is not extensible [[DefineOwnProperty]] will return false.

7.3.4 CreateDataPropertyOrThrow (O, P, V)

The abstract operation CreateDataPropei®rThrowis used to create a new own property of an object. It throws
a TypeError exception if the requested property update cannot be performed. The operation is called with
arguments O, P, and V' where O is the object; P.is the property key, and V is the value for the property. This
abstract operation performs the following steps:

Assert: TypeQ) is Object.

Assert: IsPropertyKey) is true.

Let succesde the result of CreateDataPropert@, P, newDesg.
ReturnifAbruptsuccesk

If successs false, then throw arypeError exception.
Returnsuccess

ounkwnNnE

NOTE This abstract operation creates a property whose attributes are set to the same defaults used for properties
created by the ECMAScript language assignment operator. Normally, the property will not already exist. If it does exist and
is not configurable or O.is not extensible [[DefineOwnProperty]] will return false causing this operation to throw a
TypeError exception..

7.3.5 DefinePropertyOrThrow (O, P, desc)

The abstract operation DefinePropertyOrThrovis used to call the [[DefineOwnProperlty]] internal method of an
object in a manner that will throw a TypeError exception if the requested property update cannot be
performed. The operation is called with arguments O, P, and descwhere O is the object, P is the property key,
and descis the Property Descriptor for the property. This abstract operation perform, the following steps:

1. Assert: TypeQ) is Object.
2. Assert: IsPrpertyKey) istrue.

© Ecma International 2013 49

c2echa

3. Let succesde the result of calling thgDefineOwnProperty]] internal method @ passingP anddescas
arguments

4. ReturnlfAbruptEuccesy

5. If successs false, then throw arypeError exception.

6. Returnsuccess

7.3.6 DeletePropertyOrThrow (O, P)

The abstract operation DeletePropertyOrThrow is used to remove a specific own property of an object. It
throws an exception if the property is not configurable. The operation is called with arguments O and P where
O s the object and P is the property key. This abstract operation performs the following steps:

1. Assert: TypeQ) is Object.

2. Assert: IsPropertyKeW) istrue.

3. Let succesde the result of calling the [[Delete]] internal methodpassingP asthe argument.
4. ReturnlfAbrupt6uccesy

5. If successs false then throw arypeError exception.

6. Returnsuccess

7.

3.7 HasProperty (O, P)

The abstract operation HasProperty is used to determine‘'whether an object has a property with the specified
property key. The property may be either an own or inherited. A Boolean value is returned. The operation is
called with arguments O and P where O is the object and P is the property key. This abstract operation
performs the following steps:

1. Assert: TypeQ) is Object.
2. Assert: IsPropertyKeW) istrue.
3. Returnthe result of calling the [HasProperty]] internal method dd with argumentP.

7.3.8 HasOwnProperty (O, P)

The abstract operation HasOwnProperty is used to determine whether an object has an own property with the
specified property key. ABoolean value is returned. The operation is called with arguments O and P where O
is the object and P is the property key. This abstract operation performs the following steps:

Assert: TypeQ) is Object.

Assert: IsPropertyKe) is true.

Let descbe the result of calling the etOwnPropertyj internal method o passingP asthe argument
ReturnlfAbrupt@esg.

If descis undefined, returnfalse.

Returntrue.

ouhwnE

7.3.9 GetMethod (O, P)

The abstract operation GetMethodis used to get the value of a specific property of an object when the value of
the property is expected to be a function. The operation is called with arguments O and P where O is the
object, P is the property key. This abstract operation performs the following steps:

Assert: TypeQ) is Object.

Assert: IsPropertyKeW) is true.

Let funcbe the result of calling the [[Get]] internal method@fassing® andO asthe arguments.
ReturnIfAbruptfunc).

If funcis undefined, then returrundefined.

If IsCallablefunc) is false, then throw arypeError exception.

Returnfunc.

NogopwhE

50 © Ecma International 2013

»ecmnd

7.3.10 Invoke(O,P, [args])

The abstract operation Invoke is used to call a method property of an object. The operation is called with
arguments O, P, and optionally args where O serves as both the lookup point for the property and the this
value of the call, P is the property key, and argsis the list of arguments values passed to the method. If argsis
not present, an empty List is used as its value. This abstract operation performs the following steps:

1. Assert:Pis a valid property key.
2. If argswas not passed, ¢ letargsbe a new empty List.
3. If Type(O) is Object then,
a. LetbasebeO.
4. Else,
a. Letbasebe ToObjectO).
5. ReturnlfAbruptpase.
6. Return the result of calling thelf{voke]] internal method obasepassingarguments, args, andO.

7.3.11 SetintegrityLevel (O, level)

The abstract operation SetIntegrityLevelis used to fix the set of own properties of an object. This abstract
operation performs the following steps:

Assert: TypeQ) is Object.
Assert:levelis either"sealed " or "frozen
Let keysbe the result of caig the[[OwnPropertKeys] internal method of.
ReturnIfAbruptkeys.
Let pendingExceptiote undefined.
If levelis "sealed ", then
a. Repeatfor each elemerit of keys
i. Let statusbe the result oDefinePropert@rThrow(O, k, PropertyDescriptor{
[[Configurable]]: false}) .
ii. If statusis an-abrupt completion, then
1. If pendingExceptioms undefined, then setpendingExceptiorno status
7. Elselevelis "frozen "
a. Repeaffor each elemerit of keys
i.* Let statusbe the result of calling the [[GetOwnProperty]] internathmod ofO with k.
ii. If statusis an abrupt completion, then
1. If‘pendingExceptioms undefined, then setpendingExceptiomo status
ii. Else,
1. LetcurrentDescbe status[[value]].
2. If currentDesds notundefined, then
a. IfIsAccessobescriptor€urrentDesg istrue, then
i. Letdescbethe PropertyDescriptor{[[Configurable]]false}.
b. Else,
i. Letdescbhethe PropertyDescriptor { [[Configurable]false,
[[Writable]]: false}.
c. Letstatusbe the result obefinePropert®rThrow(O, k, desqg.
d. If statusis an abrupt completigrthen
i. If pendingExceptioms undefined, then setpendingException
to status
8. If pendingExceptioiis notundefined, then returrpendingException
9. Return the result of calling tHgPreventExtensiofjkinternal methodof O.

7.3.12 TestIntegrityLevel (O, level)

ol wWNE

The abstract operation TestlIntegrityLevels used to determine if the set of own properties of an object are fixed.
This abstract operation performs the following steps:

1. Assert: TypeQ) is Object.
2. Assert:levelis either"sealed " or "frozen

© Ecma International 2013 51

c2echa

Let statusbe the result of I€xtensibl¢O).
ReturnIfAbruptétatug.
If statusis true, then returrfalse
NOTE If the object is extensible, none of its properties are examined.
Let keysbe the result of calling thEOwnProperty)eysd]] internal method oD.
ReturnIfAbript(keys.
Let pendingExceptioe undefined.
10. Let configurablebefalse.
11. Let writable be false.
12. Repeaffor each elemerk of keys
a. Let statusbe the result of calling the [[GetOwnProperty]] internal metho@®afith k.
b. If statusis an abrupt completion, the
i. If pendingExceptioms undefined, then setpendingExceptiorno status
ii. Letconfigurablebetrue.
c. Else,
i. LetcurrentDescbe status[[value]].
ii. If currentDesds notundefined, then
1. Setconfigurableto configurablelogically ored with
currentDesc[[Configurable]].
2. If IsDataDescriptor€urrentDesg is true, then
a. Setwritable to writable logically ored withcurrentDesc[[W ritable]].
13. If pendingExceptioms notundefined, then returrppendingException
14. If levelis "frozen " andwritable is true, then returrfalse.
15. If configurableis true, then returrfalse.
16. Returntrue.

©CONoO U AW

7.3.13 CreateArrayFromList (elements)

The abstract operation CreateArrayFromLists used to create an Array object whose elements are provided by
a List. This abstract operation performs the following steps:

Assert:elementds a List whose elements are all ECMAScript language values.
Let array be the result of the abstract operation ArrayCreate with argument 0
Letn be 0.
Foreachelemente of elements

a. Letstatusbe the result o€reatdataRoperty@rray, ToStringf), €).

b. Assert: statusis true.

c. Incrementn by 1,
5. Returnarray.

7.3.14 CreateListFromArrayLike (obj)

Eal ol N

Theabstract operation CreateListFromArrayLikés used to create a List value whose elements are provided by
the indexed properties of an array-like object. This abstract operation performs the following steps:

If Type(obj).is not Object, then throw BypeError exception.

Let len be the result of Gébbj, "length").
Let n be ToLengthlen).
ReturnIfAbruptf).

Letlist be an empty List.

Letindexbe 0.

Repeat whiléndex<n

LetindexNamebe ToStringindex).

Let nextbe the result of Gébbj, indexNamg.

ReturnIfAbruptfex).

Appendnextas the last element obist.

Setindexto index+ 1.

Returnlist.

52 © Ecma International 2013

»ecmnd

7.3.15 OrdinaryHaslInstance (C, O)

The abstract operation OrdinaryHaslnstancémplements the default algorithm for determining if an object O
inherits from the instance object inheritance path provided by constructor C. This abstract operation performs
the following steps:

If IsCallable(C) is false, returnfalse.

If C has a [[BoundTargetFunctionifternal slot then

Let BC be the value o€ 6 [[BoundTargetFunction]]nternal slot
Return the result dfnstanceofOperat¢®,BC) (seel2.8.9.

If Type(O) is notObject, returrfalse.

Let P be the result of GéE, "prototype”).
ReturnIfAbrupt).

If Type(P) is not Object, throw dypeError exception.

Repeat

Set O to the resultof calling the [[GetPrototyped] internal methodof O with no arguments
ReturnIfAbruptQ©).

If Oisnull , returnfalse.

If SameValueR, O) is true, returntrue.

7.3.16 GetPrototypeFromConstructor (constructor, intrinsicDefaultProto)

The abstract operation GetPrototypeFomConstructodetermines the [[Prototype]] value that should be used to

create an object corresponding to a specific constructor.

prototype property, if it exists. Otherwise-the supplied default is used for [[Prototype]]. This abstract
operation performs the following steps:

1. Assert: intrinsicDefaultProto i s a string value that is t his speci ficationds

corresponding object must be an intrinsic that is intended to be used @rthetjfpe]] value of an object.
If IsConstructor ¢onstructoy is false, then throw a@ypeError exception.
Let proto be theresultof Ge{constructor “prototype" ©).
ReturnlfAbruptfroto).
If Type(proto) is not Object then
a. If constructorhas a [[Realm]internal slot letrealmbec o n s t r[Reatmy.r 6 s
b. Else,
i Let ctx be the running execution context.
i. Letrealmbec t Réabn.
c. Letprotober e a linmidsE object namedthtrinsicDefaultProto
6. Returnproto.

arwN

NOTE If constructordoes not supply a [[Prototype]] value, the default value that is used is obtained from the Code
Realm of the constructorfunction rather than from the running execution context. This accounts for the possibility that a
built-in @@create method from a different Code Realm might be installed on constructor

7.3.17 OrdinaryCreateFromConstructor (constructor, intrinsicDefaultProto, internalDataList)

The abstract operation OrdinaryCreateFromConstructoreates an ordinary object whose [[Prototype]] value is
retrieved from a c on st r prototype O property, if it exists. Otherwise the supplied default is used for
[[Prototype]]. The optional internalDataListis a List of the names of internal slot names that should be defined
as part of the object. If the list is not provided, an empty List is used. This abstract operation performs the
following steps:

1. Assert: intrinsicDefaultProtoi s a string value that is this specification6s

corresponding object must be an intrinsiattis intended to be used as the [[Prototype]] value of an object.
2. Letprotobe the result of GetPrototypeFromConstruaon(structor intrinsicDefaultProtq.
3. ReturnlfAbruptproto).
4. Returnthe result of the abstract operation ObjectCigatdo, internalDatalList).

© Ecma International 2013 53

val ue

name

name

of

of

c2echa

7.4 Operations on lterator Objects

See Commmon lterationInterfaces(25.1).

7.4.1 Getlterator (obj)

The abstract operation Getlterator with argument obj performs the following steps:

Letiterator be the result of performing Inke with argumentsbj, @ @iterator and an empty List.
ReturnIfAbrupt(terator).

If Type(iterator) is notObject then throw aypeError exception.
Returniterator.

Ea Sl N o

7.4.2 lteratorNext (iterator, value)

The abstract operation IteratorNext with argument iterator and optional-argument value performs the following
steps:

If valuewas not passed, lgaluebe undefined.

Let resultbe the result of Invokéérator, " next ", (valug).
ReturnlfAbrupt¢esulf).

If Type(resul)) is not Object, then throw BypeError exception
Returnresult

agrwNPE

7.4.3 lteratorComplete (iterResult)
The abstract operation IteratorComplete with argument iterResultperforms the following steps:

1. Assert: TypeiterResul} is Object.
2. Letdonebe the result of GetérResult" done™").
3. Return ToBoolearmong.

7.4.4 lteratorValue (iterResult)
The abstract operation lteratorValue with argument iterResultperforms the following steps:

1. Assert: TypeiterResul) is Object.
2. Return the result of GetérResult" value).

7.4.5 _teratorStep (iterator, value)

The abstract operation IteratorStep with argument iterator and optional argument valuerequests the next value
from iterator and returns either false indicating that the iterator has reached its end or the IteratorResult object
if a next value is available. IteratorStep performs the following steps:

If valuewas not passed, lgaluebe undefined.

Let resultbe the result ofteratorNextiterator, valug.
ReturnlfAbrupt¢esulf).

Let donebe the result dfteratorComplet@esul.
ReturnIfAbrupt@iong.

If doneis true, then retirnfalse.

Returnresult

Noor~wNE

7.4.6 CreatelterResultObject (value, done)

The abstract operation CreatelterResultObject with arguments valueand donecreates an object that supports
the IteratorResult interface by performing the following steps:

1. Assert: Typedong is Boolean.

54 © Ecma International 2013

»ecmnd

Let obj be the result of performing ObjectCre@ebjectPrototype%).
Perform CreateDataPropernby(, " value ", valué.

Perform CreateDataProperby(, " done ", dong.

Returnobj.

ared

7.4.7 CreateListlterator (list)

The abstract operation CreateLisstlterator with argument list creates an lterator (25.1.2) object whose next
method returns the successive elements of list. It performs the following steps:

Letiterator be the result of ObjectCreat#ObjectPrototype% ([[Iterated.ist]], [[ListlteratoMNextindex]])).
Seti t e r {d[ltemtedrist]] internal slot tolist.

Seti t e r d[ArmayltératorNextindex]] internal slot to 0.

Define Listlteratomext (7.4.7.) as an own property aferator.

Returniterator.

agpwbE

7.4.7.1 Listlterator next()
The Listlterator next method is a built-in function object (clause 17) that performs the following steps:

Let O be thethis value.
Assert:O an object created by the CreatelListlterator abstractatiwer.
Let list be theList that isvalue of the [[terated.ist] internal slot.ofO.
Letindexbe the value of the [fistlteratorNextIndex]] internal slot oD.
LetlenValue be thenumber of elements difst.
If indexOlen, then

a. ReturnCreatelterResultObjeaifdefined, true):
Set the value of the [[jstiteratorNextIndex]] internal slot o® to index+1.
Return CreatelterResultObjekist[indeX, false).

o rwWNE

©~

7.4.8 CreateEmptylterator ()

The abstract operation CreateEmptylterator with no arguments creates an lterator object whose next method
always reports that the'iterator is done. It performs the following steps:

1. Letemptybea List with no elements
2. Returnthe result of CreateListlteratenrpty.

8 Executable Code and Execution Contexts
8.1 Lexical Environments

A Lexical Environment is a specification type used to define the association of Identifiersto specific variables
and functions based upon the lexical nesting structure of ECMAScript code. A Lexical Environment consists of
an Environment Record and a possibly null reference to an outer Lexical Environment. Usually a Lexical
Environment is associated with some specific syntactic structure of ECMAScript code such as a
FunctionDeclaration a BlockStatementor a Catchclause of a TryStatemenand a new Lexical Environment is
created each time such code is evaluated.

An Environment Record records the identifier bindings that are created within the scope of its associated
Lexical Environment.

The outer environment reference is used to model the logical nesting of Lexical Environment values. The
outer reference of a (inner) Lexical Environment is a reference to the Lexical Environment that logically
surrounds the inner Lexical Environment. An outer Lexical Environment may, of course, have its own outer
Lexical Environment. A Lexical Environment may serve as the outer environment for multiple inner Lexical
Environments. For example, if a FunctionDeclarationcontains two nested FunctionDeclarationghen the Lexical

© Ecma International 2013 55

c2echa

Environments of each of the nested functions will have as their outer Lexical Environment the Lexical
Environment of the current evaluation of the surrounding function.

A global environment is a Lexical Environment which does not have an outer environment. The global
envi r osn ooemeandronment reference is null. A gl obal environmentds e
prepopulated with identifier bindings and includes an associated global object whose properties provide some
of the global envir onThiegdbd s oibd erctti fiisert hbei nvdail nugeshio f
binding. As ECMAScript code is executed, additional properties may be added to the global object and the
initial properties may be modified.

A method environment is a Lexical Environment that corresponds to the invocation of an ECMAScript function
object that establishes a new this binding. A method environment also captures the state necessary to

support super method invocations.

Lexical Environments and Environment Record values are purely specification mechanisms and need not
correspond to any specific artefact of an ECMAScript implementation. It is impossible for an ECMAScript
program to directly access or manipulate such values.

8.1.1 Environment Records

There are two primary kinds of Environment Record values used in this specification: declarative environment
records and object environment records. Declarative environment records are used to define the effect of
ECMAScript language syntactic elements such as FunctionDeclarations VariableDeclarations and Catch
clauses that directly associate identifier bindings with ECMAScript language values. Object environment
records are used to define the effect of ECMAScript elements such as WithStatementhat associate identifier
bindings with the properties of some object. Global.Environment Records and Function Environment Records
are specializations that are used for specifically for Script global declarations and for top-level declarations
within functions.

For specification purposes Environment Record values-can be thought of as existing in a simple object-
oriented hierarchy where Environment Record is an abstract class with three concrete subclasses, declarative
environment record, object environment record, and global environment record. Function environment records
are a subclass of declarative environment record. The abstract class includes the abstract specification
methods defined in Table 16. These abstract methods have distinct concrete algorithms for each of the
concrete subclasses.

56 © Ecma International 2013

nvi

a

ronment

gl obal

record may be

envi

ronment 0s

»ecmnd

Table 16 6 Abstract Methods of Environment Records

Method Purpose

HasBinding(N) Determine if an environment record has a binding for an
identifier. Return true if it does and false if it does not. The
String value N is the text of the identifier.

CreateMutableBinding(N, D) Create a new but uninitialised mutable binding in an
environment record. The String value N is the text of the bound
name. If the optional Boolean argument D is true the binding is
may be subsequently deleted.

CreatelmmutableBinding(N) Create a new but uninitialised <immutable binding in an
environment record. The String value N is the text of the bound
name.

InitialiseBinding(N,V) Set the value of an already existing but uninitialised binding in

an environment record. The String value N is the text of the
bound name. V is the value for the binding and is a value of any
ECMAScript language type.

SetMutableBinding(N,V, S) Set the value of an already existing mutable binding in an
environment record. The String value N is the text of the bound
name. V is the value for the binding and may be a value of any
ECMAScript language type. Sis a Boolean flag. If Sis true and
the binding cannot be set throw a TypeError exception. S is
used to identify strict mode references.

GetBindingValue(N,S) Returns the value of an already existing binding from an
environment record. The String value N is the text of the bound
name. Sis used to identify strict mode references. If Sis true
and the binding does not exist or is uninitialised throw a
ReferenceError exception.

DeleteBinding(N) Delete a binding from an environment record. The String value
N is the text of the bound name If a binding for N exists, remove
the binding and return true. If the binding exists but cannot be
removed return false. If the binding does not exist return true.

HasThisBinding() Determine if an environment record establishes a this binding.
Return'true if it does and false if it does not.

HasSuperBinding() Determine if an environment record establishes a super
method binding. Return true if it does and false if it does not.

WithBaseObject () If this environment record is associated with a with statement,

return the with object. Otherwise, return undefined.

8.1.1.1 Declarative Environment Records

Each declarative environment record is associated with an ECMAScript program scope containing variable,
constant, let, class, module, import, and/or function declarations. A declarative environment record binds the
set of identifiers defined by the declarations contained within its scope.

The behaviour of the concrete specification methods for Declarative Environment Records is defined by the
following algorithms.

8.1.1.1.1HasBinding(N)

The concrete environment record method HasBinding for declarative environment records simply determines
if the argument identifier is one of the identifiers bound by the record:

Let envRede the declarative environment record for which the method was invoked.

© Ecma International 2013 57

