
Text

Dave Herman
September 18, 2013

MODULES: STATUS UPDATE



SPEC STATUS

• Grammar and static semantics draft-complete. 
Allen has begun merging into ES6 drafts.

• Linking semantics written in pseudocode, 
transcribing to Word this week.

• Evaluation and loading semantics implemented in 
polyfill, next on my list to spec.

• @jorendorff hacked us up a tool to convert literate 
Markdown comments to Word.



OUR PLANS

• Won’t wait for November F2F to post updates.

• Will see more progress in Allen’s updates.

• @jorendorff working towards getting polyfill 
functional as self-hosted implementation for 
Firefox Nightly builds.



TRACK OUR PROGRESS

• https://github.com/jorendorff/js-loaders

• https://github.com/jorendorff/js-loaders/raw/
master/specs/modules-deltas.docx

https://github.com/jorendorff/js-loaders
https://github.com/jorendorff/js-loaders
https://github.com/jorendorff/js-loaders/raw/master/specs/modules-deltas.docx
https://github.com/jorendorff/js-loaders/raw/master/specs/modules-deltas.docx
https://github.com/jorendorff/js-loaders/raw/master/specs/modules-deltas.docx
https://github.com/jorendorff/js-loaders/raw/master/specs/modules-deltas.docx


TECHNICAL UPDATES

• Syntax is done. Community actively building tools. 
Absent any surprise ambiguities, further debate is 
unnecessary and unwise.

• Trickiest part of loading semantics involves 
concurrent loading scenarios, which @jorendorff 
did great work on. Now needs implementation 
testing.

• Event-loop semantics would ideally be in ES6 but 
it’s cleanly factored out so we can live without.



TECHNICAL UPDATES

• Almost all of the loader pipeline is async. Allows 
e.g. remote translation/compilation/analysis.

• Separated translation hook from Function/
indirect eval hooks.

• Eliminated the complexity of loader “inheritance.” 
Nested virtualization can easily be implemented 
explicitly via composition.



TECHNICAL UPDATES

• Biggest simplification: eliminate inline modules.

• Does away with controversial and complex 
feature; door still open for lexical modules.

• Bundling belongs at browser layer, and was 
problematic for cross-origin loading anyway.

• Bundling formats still implementable...



USERLAND BUNDLING

• Loader logic with a custom cache

• Custom payload formats (e.g., JSON)



USERLAND BUNDLING

Script injection with dynamic definition:

<script>

System.set("A", ...);

System.set("B", ...);

</script>



GENERIC BUNDLING

Better avenue, current web proposal:

<script src="assets.zip$/lib/main.js">

</script>

<img src="assets.zip$/images/logo.jpg">



BROWSER LOADER

• Not part of ECMA-262.

• Will work with Yehuda, Anne, Alex, and others on a 
Web spec proposal.

• Not blocking ES6 deadline, but needs to start now 
so we can p(r)ol(l)yfill and experiment.



18 SEPT 13 TC39 DISCUSSION

• Need further discussion of sync vs. async entry 
points in HTML. Ecma-262 will simply specify two 
top-level non-terminals, one that allows imports 
and one that doesn’t

• Need for module linking/registration with on-
demand execution

• Discuss integration with other Web standards orgs


