|[Ecma/TC39/2014/046 |

Object Instantiation Redo

https://gist.github.com/allenwb

https://gist.github.com/allenwb/291035fbf910eab8e9ab
https://gist.eithub.com/allenwb/53927e46b31564168ald

patrick
Text Box
Ecma/TC39/2014/046

Contributors

Allen
Arv
Mark
Dmitry

+ es-discuss and private feedback

Main Issues

e @@create can expose uninitialized instances
of built-in and host objects

* Necessitates numerous dynamic “is it
initialized” checks in order to guarantee the
invariants of such objects

Original Ideal From Claude Pauche

class C extends B {
constructor(...args) {
/* 1: preliminary code that doesn't contain calls to a super-method */
/* thisin TDZ */
/* 2: call to a super-constructor */ super(...whatever);
/* this defined */
/* 3: the rest of the code */
}
}

 Added “receiver” argument to [[Construct]] that passes the contructor that
new was originally applied to.

Additional Idea Presented at Last Meeting

* new®* token

* Value is the “receiver” parameter from
[[Construct]] or undefined if [[Call]]

e Can be used to discriminate “called as
constructor” and “called as function”

* Provides access to original constructor for
object initialization/initialization
— Object.create(new*.prototype);

‘new* has been replaced by new”

Evolved Design

new super|)

 Use new super() rather than ‘super() to “invoke
superclass’ constructor
— ‘new super(); is always a [[Construct]] invocation

— ‘super(); is always a [[Call]] invocation

e Didn’t want to further confuse “called as a
constructor” and “called as a function”.

— <id>() -- always means “called as function”
— new <id>() — always means “called as constructor”
— Even when <id> is ‘super’

this = new super()

* Original proposal had this in TDZ until explicit
‘super() call. (now new super()’)
— Invisibly assigned to ‘this’

* Update proposal eliminates the implicit
assignment by new super() .

* But allows an explicit assignment to this

— Only in constructors

— Only a single dynamic assignment
e Subsequent assignments throw ReferenceError

this = <expr>

 RHS of this assignment in a constructor isn’t
limited to new super()

 May be any object valued expression:
this = new super();
nis = {x;1, y:2};

t
this = Object.setPrototypeOf([], new”.prototype);
this = new Proxy(new super(), handler);

Works in both class constructors and
function constructors

SubArray. proto =Array;
SubArray.prototype=0bject.create([].prototype);
function SubArray(...args) {

if (!this?) this = new SubArray(...args);

else this = new super(...args);

}

Default object allocation (Base Classes)

* Class constructors without an "extends and basic (function)
constructors...
e ... Assign an new ordinary object to this if body does not
have an explicit ths=".
 These continue to mean the same thing:
» class Base {
constructor(x) {
this.x = x;
}

}
» function Base(x) {

this.x = x;

}

Unqualified super references

Until now ES6 has said that ‘super()’ means the samething
as super.<method name>()

— Implicit property access
— Requires setup using toMethod (implicit or explicit)
‘'super in constructor needs to means “this constructor’s

[[Prototype]]”, not
“[[HomeObject]].prototype.constructor”

It would be confusing if ‘'super()’ means something
completely different in a constructor from what it means
in an non-constructor method

Is this going to be used as a constructor or a method?
function f() {return super()};

Eliminate unqualified ‘super
reference in non-constructor methods

class C {
foo() {
//return super(); // now syntax error
return super.foo(); //must say this instead

}
J

* Unqualified ‘super only allowed in class
constructors and function definitions

* Regular methods must explicitly qualify super
references with a property access

Default Value of "this in derived
constructors that don’t assign to this

 Some alternatives:
— this = new super(); //super new with no arguments
— this = new super(...arguments); //super new all args

— this = Object.create(new”.prototype); // ordinary obj
— No value, 'this in TDZ at constructor start

* Most controversial part of design discussion

The winner: no default this in derived
constructors
e Eliminates issues of what arguments to pass
to implicit ‘new super()

* Must assign to this in derived constructor
before referencing it.

