
‹#›

Parallel JavaScript Update

Intel and Mozilla

‹#›

Agenda

Work since January

Overview

 Design goals

 Key insight

 API overview and examples

Differences with sequential methods

Lessons learned

Use cases

‹#›

Summary Since January

Major Focus was on implementation

 Use case driven performance tuning

Harvey Mudd collaboration

 Project implementing OpenCV algorithms

Demos rewritten to use typed object API

 Deform and Blocks

Spec language draft

‹#›

Design Goals

Ease of use
• Deterministic where possible

• Follow current syntax, semantics, and security

Platform independent
• Support all kinds of platforms, parallel or not

• Perform well on different parallel architectures (multi-core,
GPUs, SIMD Vectors…)

Extract reasonable performance out of parallel hardware
• Extracting all performance a secondary goal

You Can’t Break the Web

‹#›

Key Insight: Temporal Immutability

• During concurrent execution

• A computation can read or write its local data

• A computation can read shared state

• Parent waits patiently

• Whitelist thread-safe/temporally immutability primitives

• Violations or best effort failure result in a sequential
schedule

• Otherwise

• Nothing changes

• Current JavaScript programs are unaffected

The sweet spot between Functional and OO

‹#›

Parallel JavaScript API (ES7) 
(Stay within developer’s comfort zone)

• Extend JavaScript’s Array type and Typed Objects API
• High-level parallel methods
– mapPar, reducePar, filterPar, scatterPar, scanPar, buildPar

• Elemental Functions

Simple Yet Powerful

input.mapPar(
 e => { var avg = (e[0] + e[1] + e[2]) / 3;
 return [avg, avg, avg, 255];
 })

‹#›

Sum using reducePar

var i;
var a = [1, 2, 3, 4];
var sum = 0;
for (i=0; i<a.length; i++) {

 sum += a[i];
}

var pa = [1, 2, 3, 4];
var sum = pa.reducePar(
 (a, b) => a+b
); // 10

Sequential Data parallel

PrefixSum

var prefixSum = pa.scanPar(
 (a, b) => a+b
); // [1,3,6,10]

‹#›

buildPar, scatterPar, filterPar

Reverse
var pa = Array.buildPar(4, (i) => i); //[0,1,2,3]
var reversedPa = pa.scatterPar(
 (e, index, c) => c.length – index – 1
); //[3,2,1,0]
!
Positive
var pa = [1, -7, 3, 5]
var positivePa = pa.filterPar(
 (e) => e > 0;
); //[1,3,5]

‹#›

Non-determinism

Inherent in reduction: reducePar, scanPar, scatterPar

“It’s all about the scheduler” Guy Blelloch

Result

‹#›

Non-determinism

Inherent in reduction: reducePar, scanPar, scatterPar

“It’s all about the scheduler” Guy Blelloch

Result Associativity provides determinism
!
Result from a legal schedule:
 No out of thin air results

‹#›

Spec wording

reducePar and scanPar use values from the Original O array and
results pushed onto an A array

Repeat in an arbitrary and implementation dependent order
len-1 times

• Select 2 previously unselected indices, k1 and k2 from O or A

‹#›

Why parallel versions?

Sufficiently sophisticated compiler argument
 New semantics to reduce, scan, and scatter
 Mental Model is temporal immutability and
 developing parallel algorithms instead of
 parallelizing sequential algorithms
 Auto-parallelization is a long time unsolved problem
 Intent improves tooling and feedback
 Formalizing Parallelizable subset definition difficult

12

‹#›

What we have learned

We can see the horizon and there are no show stoppers

 Multiple prototypes: Intel(FF, V8/Crosswalk)

 Production: Mozilla closely tracking spec

Scaling is achievable in parallelizable parts of application

Falling back to sequential schedule better than throw

Out pointers to kernel functions are useful for reducing memory
pressure and avoiding copying

Allocation pressure is crucial to performance in larger kernels

‹#›

Pressure on Memory Management Latency

• During parallel computation global heap is immutable
• Only the return value escapes an elemental function
• Rollback to GC safe point trivial
!

• Simple concurrent approach
• Each elemental function gets a local heap
• Elemental function copies return value to the global heap
• Local heap recycled immediately
• No global synchronization required

Semantics Enable GC Concurrency

‹#›

Lessons from use cases

VideoPhysics-based Gaming

3D AnimationVisual Computing

‹#›

Next steps  

More use cases and use-case driven performance work

Typed Object and PJS are being co-designed
!
Firming up spec language
https://github.com/RLH/ParallelJavaScript/wiki

16

https://github.com/RLH/ParallelJavaScript/wiki
https://github.com/RLH/ParallelJavaScript/wiki
https://github.com/RLH/ParallelJavaScript/wiki

‹#› 17 17
Three dog tug by Nate Bolt, from http://www.flickr.com/photos/boltron/623602756/

18

Q&A

19

Backup

