

Ecma International Rue du Rhône 114 CH-1204 Geneva T/F: +41 22 849 6000/01 www.ecma-international.org

PC Document1 05.01.2018 09:18:00

Minutes of the: 49th meeting of Ecma TC39

in: San Jose, CA, USA

on: 17-19 November 2015

1 Opening, welcome and roll call

Ecma/TC39/2015/046 Venue for the 49th meeting of TC39, San Jose, November 2015

1.1 Opening of the meeting (Mr. Neumann)

Mr. Neumann has welcomed the delegates at PayPal in San Jose, CA, USA.

Companies / organizations in attendance:

Apple, Mozilla, Google, Microsoft, Intel, jQuery, Facebook, Netflix, PayPal, Yahoo! , Shape
Security, Airbnb, SalesForce

1.2 Introduction of attendees

1 Michael Saboff Apple Member

2 Caridy Patino SalesForce Guest

3 John Buchanan SalesForce Guest

4 Brian Terlson Microsoft Member

5 Paul Leathers

6 Jeff Morrison Facebook Member

7 Lee Byron Facebook Member

8 Sebastian Markbage Facebook Member

9 Birn Branner

10 John Neumann Multiple Member

11 Mark Miller Google Member

12 Georg Neis

13 Arnoud J Le Hors

14 Istvan Sebestyén Ecma-International PHONE

15 Jafar Husain Netflix Member

16 Jordan Harband Airbnb New Member

17 Eric Ferraiuolo Yahoo Member

18 Daniel Ehrenberg Google Member

19 Michael Ficarra Shape Security Pending Member

20 Chip Morningstar Paypal Member

21 Nagy Mostafa Intel Member

22 Peter Jensen Intel Member

23 Lars Hansen Mozilla Member

Ecma/TC39/2015/051
Ecma/GA/2015/128

http://www.ecma-international.org/

2

24 Jacob Groundwater Google Member

25 Adam Klein Google Member

26 Allen Wirfs-Brock Self Invited expert (phone)

27 Rick Waldron Jquery/Bocoup Member

28 Brendan Eich Self Invited Expert

29 Dave Herman Mozilla Member

30 Yahuda Katz Jquery/Tilde Member

31 Stefan Penner Yahoo Member

32 Shelby Hubick

33 Sebastian McKenzie

34 Kevin Smith

35 Waldemar Horwat Google Member

36 Zibi Braniecki

1.3 Host facilities, local logistics

On behalf of PayPal Chip Morningstar welcomed the delegates and explained the logistics.

2 Adoption of the agenda (2015/048-Rev1)

Ecma/TC39/2015/048 Agenda for the 49th meeting of TC39, San Jose, November 2015 (Rev.
1) was posted in the TC39 documentation.

The final agenda was approved as posted on the github as reprinted below:

Agenda for the: 49th meeting of Ecma TC39

1. Opening, welcome and roll call

i. Opening of the meeting (Mr. Neumann)

ii. Introduction of attendees

iii. Host facilities, local logistics

2. Adoption of the agenda

3. Approval of the minutes from September 2015

4. Report from the Ecma Secretariat

5. Proposals for Future Editions of ECMA-262

i. Promise rejection tracking events (Domenic Denicola - Google)

ii. Advance Array.prototype.includes to stage 4 (Domenic Denicola - Google)

iii. Reconsider .return() feature in generators and iterators (Daniel Ehrenberg -

Google) slides

tc39-2015-048-Rev1.doc
https://github.com/tc39/ecma262/pull/76
https://github.com/tc39/Array.prototype.includes/issues/13
https://github.com/littledan/iterator-generator-return
https://docs.google.com/presentation/d/13KkqTTz9s2ZZWIF57PWsoQELiYa3Zf150cC9VhqAW60/edit

3

iv. Should destructuring declarations without bindings throw (Brian Terlson -

Microsoft)

v. Update on Object.observe proposal (Adam Klein)

vi. Advance Object.values/Object.entries proposal to stage 3 (Jordan Harband)

vii. Advance String#{padLeft,padRight} proposal to stage 2 (3 if possible)

(Jordan Harband)

viii. Advance Observable proposal to stage 2 (Jafar Husain)

ix. Discuss web compatibility considerations for Annex B 3.3 sloppy-mode

block-scoped function hoisting (Daniel Ehrenberg - Google) slides

x. Simplification of ES2015 RegExp Semantics (Brian Terlson - Microsoft,

Daniel Ehrenberg - Google) slides

xi. Stage 0 approval for the RegExp Buffet Menu (Brian Terlson - Microsoft,

Gorkem Yakin - Microsoft, Nozomu Katō):

a. Negative & Positive look-behind

b. Named capture groups

c. Comments

d. Free-spacing

e. Mode specifiers

f. Unicode Properties (eg. WHITE_SPACE, ID_START, etc.)

xii. Stage 3 approval for function.sent metaproperty (Brian Terlson - Microsoft,

Allen Wirfs-Brock)

xiii. Stage 1 approval for private state (Yehuda Katz - jQuery, Allen Wirfs-Brock)

xiv. Stage 2 approval for class and property decorators (Yehuda Katz - jQuery,

Brian Terlson, Microsoft)

xv. GitHub Proposal Process Discussion: When to migrate to official repo?

xvi. Proxy [[Enumerate]] overconstrains implementations and can produce non-

string keys (Brian Terlson - Microsoft, Andreas Rossberg - Google)

xvii. Simplify semantics of TypedArray base constructor to harmonise with proxies

and optimisations (Andreas Rossberg, Adam Klein, Mark Miller - Google)

xviii. Improving consistency of @@species. 1 2 (Kevin Smith)

a. @@Species Design FAQ by Allen Wirfs-Brock

xix. Error.isError (Jordan Harband)

xx. System.global (Jordan Harband)

xxi. Trailing commas w/ functions -> Stage3 (Jeff Morrison)

https://github.com/tc39/ecma262/issues/97
https://github.com/arv/ecmascript-object-observe
https://github.com/tc39/proposal-object-values-entries
https://github.com/tc39/proposal-string-pad-left-right
https://github.com/zenparsing/es-observable
https://github.com/tc39/ecma262/issues/162
https://github.com/tc39/ecma262/issues/162
https://docs.google.com/presentation/d/1tu8L4Askkqz-CojBlaiP7pf0hQRQNXZpS4cmml0obQ8/edit
https://github.com/tc39/ecma262/pull/89
https://docs.google.com/presentation/d/19LyObVMn7jKt9qCPA_bpm5TDLqk1ruDcYCAwAScM-vE/edit
https://github.com/allenwb/ESideas/blob/master/Generator%20metaproperty.md
https://gist.github.com/wycats/714a01ae7ff22bea7888
https://github.com/wycats/javascript-decorators
https://github.com/tc39/ecma262/issues/161
https://github.com/tc39/ecma262/issues/160
https://github.com/tc39/ecma262/issues/160
https://github.com/tc39/ecma262/issues/163
https://esdiscuss.org/topic/resolve-reject-on-promise-subclasses-and-species#content-1
https://github.com/zenparsing/es-observable/issues/69#issuecomment-154456842
https://gist.github.com/allenwb/8c50729c4c1c158fa8eb
https://github.com/ljharb/proposal-is-error
https://github.com/ljharb/proposal-global
http://jeffmo.github.io/es-trailing-function-commas/

4

6. Test262 Updates

7. ECMA-402 3rd Edition, 2016

i. Update on 3rd edition (Caridy Patiño)

ii. Proposal to expose existing abstracts operations (Zibi Braniecki)

iii. Intl.PluralRules (Caridy Patiño & Eric Ferraiuolo)

iv. Intl.RelativeTimeFormat (Caridy Patiño & Eric Ferraiuolo)

8. Date and place of the next meetings

9. Closure

3 Approval of minutes from September 2015 (2015/045)

Ecma/TC39/2015/045 Minutes of the 48th meeting of TC39, Portland, September 2015.

The minutes were approved without modification.

4 Status of “ES6 Suite” submission for fast-track to ISO/IEC
JTC 1

Ecma/TC39/2015/049 Status of ECMAScript fast-track to JTC 1

Mr. Sebestyen reported that regarding the ISO/IEC JTC 1 fast-track of ES6 the current status
of the discussions with the ISO Secretariat is the following:

Ecma Secretariat and ISO/IEC JTC 1 has discussed the situation again at the JTC 1 Plenary
meeting in Beijing at the end of October 2015.

ECMA-404 "JSON" - which has been taken out of the old "ECMA-262 as standalone standard ,
only a few pages, and it has not been changed for many-many years, and no intention to

Dates Location Host

2016-01-26 to 2016-01-28 San Francisco, CA Salesforce

2016-03-29 to 2016-03-31 San Francisco, CA Mozilla

2016-05-24 to 2016-05-26 Munich, DEU Google

2016-07-26 to 2016-07-28 Remond, WA Microsoft

2016-09-27 to 2016-09-29 Los Gatos, CA Netflix

2016-11-29 to 2016-12-01 Menlo Park, CA Facebook

https://github.com/caridy/intl-plural-rules-spec/blob/master/PROPOSAL.md
https://github.com/caridy/intl-relative-time-spec/blob/master/PROPOSAL.md
tc39-2015-045.doc

5

change it ever... So very stable. That one we agreed can be fast tracked to JTC 1 as a normal
fast-track.

The plan is that the new Edition of IS 16262 will be a 2 page standard that normatively
references ECMA-262 and ECMA-402 without a “year reference”. This means that always the
latest version of ECMA-262 and ECMA-402 is being referenced to. In such a manner ECMA-
262 and ECMA-402 will not be fast-tracked anymore to JTC 1.

This solution solves the problem of the yearly updates of ECMA-262 and ECMA-402 which
could not be effectively synchronized with relevant JTC 1 standards.

5 ES7 and Test262 Discussions

Most time was spent to progress ES7 related topics.

For details please see Annex 1 in the Technical Notes.

6 Report from the Secretariat

Ecma/TC39/2015/047 TC39 chairman's report to the CC, October 2015

This was presented to the CC and discussed in details.

7 Date and place of the next meetings

See the table above in the Agenda.

8 Closure

Mr. Neumann thanked the TC39 meeting participants for their hard work. Many thanks for the
technical note taker Mr. Waldron in Annex 1.

Many thanks to the host, PayPal and Chip Morningstar for the organization of the meeting
and the excellent meeting facilities. Many thanks in particular to the hosts for the social event.

6

Annex 1

Technical Notes

November 17th 2015 Meeting
Notes

Jafar Husain (JH), Eric Farriauolo (EF), Caridy Patino (CP), Adam Klein (AK), Michael

Ficarra (MF), Peter Jensen (PJ), Domenic Denicola (DD), Jordan Harband (JHD), Chip

Morningstar (CM), Brian Terlson (BT), John Neumann (JN), Dave Herman (DH), Brendan

Eich (BE), Yehuda Katz (YK), Jeff Morrison (JM), Lee Byron (LB), Daniel Ehrenberg (DE),

Lars Hansen (LH), Nagy Hostafa (NH), Michael Saboff (MS), John Buchanan (JB), Stefan

Penner (SP), Sebastian McKenzie (SMK), Waldemar Horwat (WH), Mark Miller (MM), Paul

Leathers (PL)

Async functions (Stage 4 Process
Discussion) (BT)

YK: can we order the agenda better? Lets make a template and follow it next time

BT: potential ES2016 items first

BT: async function process discussion, they have been stage 3 for 2 months, implemented

in edge (soon FF), implemented in babel

YK: babel version i

DD: does babel pass test262

BT: no test262 yet

YK: thats a blocker

DE: Is babel 100% spec compliant, we should wait until we have 2 100% spec

implementations

YK: does transpiling to generators make the edge cases easier to deal with?

7

SM: I believe so

YK: It seems like edge cases are always going to happen

DE: if we wait for FF, we will get more implementor related input

YK: we need to figure out this rule, babel “loose” mode clearly doesn’t count. Does babel

trying for high fedility count?

DE: browser implementations will likely have different criteria

YK: high fedility simulation should be sufficent

BT: edge is basically desuguring to promises + generators

AK: two implementations that pass the test, should be sufficient. (tests implied as test262)

BT: I believe we as a group should be able to deem that the current landscape is or is not

sufficient.

YK: Are we holding babel to a higher standard then browser?

DD: there is a difference between bugs and missing features

DE: we should wait until 2 implementations pass the tests

DD: test should be approved by reviewers.

BT: mainline tests must pass

SP: In summary, tests approved by reviewers must have 2 implementations that pass.

BT: should we update the process document, the champion comes with a set of tests for

stage 4, the group uses this to +1/-1

YK: source2source should be considered sufficient for “implementations’

AK: stage 3 is somewhat problematic, implementations must put out there neck early.

SK: sounds like a good filter, if no implementation wants to stick out their neck maybe the

feature doesn’t have value

8

DE: if there are tests, that we agree are good, any implementation should be sufficient.

BT: if I come back tomorrow with mainline tests, that reviewers agree on, is babel + chakra

sufficient?

everyone: yup

BT: babel should be considered an implementation.

KS: stages are meant to signal churn risk, the only problem with babel is less likely to give

churn feedback

YK: churn feedback?

KS: 80% implemented, 20% missing, will babel give feedback?

YK: babel does provide this feature.

DD: can we accept 2 user-land transpilers

YK: browsers could also implement as source2source step.

YK: proxies are a good example, likely input from babel isn’t as valuable. As it must make

all . operations slow. Which wouldn’t be acceptable for a runtime. and also why babel

doesn’t offer proxies.

YK: so only cpp compilers qualify?

BT: we can look at it case by case, and deem if it is sufficient or not. Some features are

likely fine as source2source and others are not.

YK: DD you are right to be worried

DD: thanks you, we can move on.

BT: time for a regexp talk ?

Conclusion/Resolution

None yet.

9

Object.values/entries

JHD: OK for stage 3? It got signoff … [general consensus]

Conclusion/Resolution

Object.values/entries approved for stage 3

String.pad{Left,Right}

JHD: Concerns raised on es-discuss: 1) No grapheme handling (response: then other

existing things should be changed, and nothing cares about it. Every language follows

native string support in its padding.)

… [General consensus that that’s OK]

WH: I see the choices as either doing this simple thing (measuring code units) or doing

something really, really complicated that works correctly on graphemes. The simple thing

is useful in practice, while implementing grapheme measurement would be too

complicated and take us a long time. So I support this.

JHD: 2) Naming: we sometimes use left/right, sometimes start/end, this one feels right.

The language already equates left/start/index-0 and right/end/last index. In this context,

RTL doesn’t apply…

DD: How about padStart, padEnd?

DH: Well, it’s very entrenched

JHD: BiDi is really complicated

DD: Eurocentric

DH: How hard will we get trolled? Being willfuly different…

YK: people wouldn’t expect padLeft, if the language has padLeft and it does something

different. That is wrong. If we have other methods do the same thing, we are good.

JHD: Only remaining objection remaining is the name

10

padStart only makes sense if its RTL aware YK: saying padLeft, and meaning visual right

is clearly bad.

YK: any objections start/End ?

CM: Remaining parallel with trimLeft/trimRight, established names?

DD: Add trimStart, trimEnd and rename to padStart, padEnd as part of annex B.

Conclusion/Resolution

Rename to padStart/padEnd, update trimLeft/trimRight proposal to also include

trimStart/trimEnd. padStart/padEnd approved for Stage 3.

Array.prototype.includes

DD: CC + FF in betas

DD: test262 works

DD: Safari doesn’t have TypeArray.prototype.includes

DD: Stage 4?

DD: should it be in unscopables?

BT: if it not in unscopeables it may be ok?

BT: real world with no breaks, should be good.

DD: lets make it unscopable

DD: stage 4?

YK: yup

Conclusion/Resolution

Move to stage 4 (tomorrow when it’s added to @@unscopables)

11

function.sent

BT: We have not gotten any feedback at all, not from implementors, no implementations,

no Babel

YK: That’s scary; we need some feedback

DE: Do we have reviewers?

BT: It’s so tiny! It should be OK to add it. It would be almost impossible to design it wrong.

JM: But, does anybody need it?

https://github.com/allenwb/ESideas/blob/master/Generator%20metaproperty.md

SP: Let’s defer until we have a strong advocate with use cases

BT: There are use cases for it, it’s just that no one’s used it, because it’s not implemented

anywhere

YK: Is stage 2, only about completing the spec language? dave’s tweets say userland

experiment

AK: The thing we’re trying to avoid is adding something to the language that won’t be

useful for anyone

BT: Implementing something at Stage 2 carries quite a bit of risk

Conclusion/Resolution

• Designated reviewers: DE and DD

• Side process conversation: AK, YK, BT

Object.observe update

AK: Object.observe is going to be deprecated in Chrome. I’d like to formally withdraw it

from the stage process.

YK: I already submitted a PR to remove it from tc39/ecma262/README.md!

https://github.com/allenwb/ESideas/blob/master/Generator%20metaproperty.md

12

AK: I haven’t gotten very much negative feedback

YK: Maybe the framework wars will be settled and we can revisit this question

Conclusion/Resolution

Object.observe is withdrawn

Should destructuring declarations without bindings
throw?

let { } = obj;
let { foo: {} } = obj;

BT: who is in favor if this being an error?

BT: this may actually be programmer intent

BT: it may be expecting side-affects, exhausting an iterator etc.

YK: decomposing (commenting out large chunks of a destructing statement)

BT: code-gen may not be as ergonomic

YK: code-gen supporting this is simple enough, that isn’t a good reason

BT: no binding identifers in any pattern or sub-pattern, should error.

YK: it has to be recursively defined.

DH: refactoring transformations breaking down, due to this restriction is is unfortunate

DH: without a good argument, I error on the ergomoics wins composition over the error.

WH: This is like trying to delete the number zero from the number line. It’s cognitively

simpler to keep it than to avoid it. {} and [] are legitimate objects and shouldn’t be a special

case.

DH: it is the base-case of a recursive definition.

YK: As I write code, I often write this, expecting to fill it in after. Only to find a parse/syntax

error.

13

DH: patterns are defined to symmetry of the structure, in JS we can define 0 or more for []

and {}.

BT: is there strong support to make this an error:

YK: what was the exact error

BT: A user used a : instead of = when attempting to set a default during function arg

destructuring.

YK: This seems like a good use-case for a linter.

WH: We get these kinds of errors anyway with users putting object literals into contexts

where ES parses them as blocks.

?: There is a use case for users whose style guides do not allow holes in arrays

BT: current semantic remains?

everyone: agrees

Conclusion/Resolution

Current semantics stand

legacy function hoisting semantics in
sloppy mode (DE)

https://github.com/tc39/ecma262/pull/175

DE: self defining functions, GWT generates this whenever there is a static block

BT: how many sites?

DE: GWT is hundreds of thousands, FB uses etc. Quanitify the impact is hard to do.

YK: BT how many sites did edge break

BT: none

https://github.com/tc39/ecma262/pull/175

14

DE: there are several things together that cause this issue.

DE: try { } catch around all code, function hoisting out of try block

DE: summarize, the problem is: 1. sloppy mode block scope function (in a try block likely)

2. self defining function 3. the self defined function is called multiple times 4. the function is

not idempotent.

DE: Google inbox broke.

DE: several work-arounds, but require changing existing code.

YK: IE 11 has this in prod, how have they not recieved bug reports?

DE: I have a proposal that may work, you may not like it

1. TL;DR making sloppy mode function declaration “host’ to a var outside the block

2. would not change strict mode WH: If the outer block contains a binding with the same name as the

function being defined in the inner block, will this proposal break that code?

DE: Yes.

YK: Intersection semantics, we will only support use-cases that work cross platform

BT: We did aggregate large amount of data, and did not find this case.

DE: Team working on Google inbox doesn’t know which way to fix inbox breakage

because what’s broken by the hoisting semantics is undefined.

WH: The ES2015 spec is well defined. There is nothing undefined here about how to fix

Google inbox to be compatible with it.

YK: we knew this is a composition breaker

DD: 3 browsers support, 1 browser does not. Should we see if people update?

YK: it doesn’t seem like a widespread problem, inbox is an issue but it may not be a bigger

issue.

BT: + 2 years of IE11 and edge (tens of millions of users)

15

DD: the mobile web, isn’t represented here.

PL: We researched the public web, looking for this. We found some issues, solve them,

came to consensus

WH: the issue is, this fix breaks other things

DE: what does it break

BE: we don’t know

WH: the future is bigger then the past, lets not sacrifice the future for the now.

WH: The scary part is that under this proposal the resolution of an identifier in the outer

scope will change depending on whether the code is strict or not. The same code will work

in both strict and non-strict mode but do completely different things. That’s terrifying

because it’s easy to unintentionally move a function into strict mode or, conversely, get the

use strict declaration wrong and not have it be strict even though you intended it to be.

WH: this is a foot canon, not a foot gun.

AK: todays practical semantics are undefined, do to current state of implementations

KS: can you get more data, what is the “true’ impact

YK: FF can do implement it, inbox needs to fix

AK: inbox fixing it is trivial

WH: if we take out block scope from sloppy, we would have to from strict.

WH: lexical semantic differences, now would critically be different:

DE: that is already the case.

WH: This is a completely different order of magnitude. This strict-vs-non-strict scoping

incompatibility would be far more common than some existing obscure differences in eval

hoisting.

16

PL: It’s true, different browsers have different audiences. I wish we made some changes in

the past.

YK: we knew we would break stuff here, we agreed we would only support already cross

platform sites. IE11/edge shipping two years ago, should be evidence enough.

YK: we intentionally changed semantics, at that time there was strong consensus.

DE: I feel I don’t have strong consensus, it seems like I may need more information.

DD: lets make sure we converge on two semantics

BT: lets be clear EDGE/IE11 semantics are standard thing

AK: the group seems to want more data

YK: So a google only optional spec doc?

BT: So far, inbox only broken. Fixing inbox, and implementing the spec will help uncover is

the has a larger impact to the chrome specific users.

BT: Chrome should make an effort to ship the standardized semantics; don’t assume the

standard is broken.

BT: in the past, IE discovered some issues. We took the approach of fixing all affected

sites.

AK: long term this seems ok, trade-offs to make around release schedules etc. Its not a

goal to have a compat mode.

MF: is it possible to isolate this scenario more, targeting this exact semantics

DE: in addition to confusion for implementers, that will likely make it hard for users to infer

the correct behavior. Complexity is future hostile.

BT: it seems like even with more evidence, we would still have other, independent reasons

not to make this change, such as the future is bigger than the past argument.

YK: I am surprised IE + edge this.

17

DE: do we have evidence this is common or not

MM: this is just strange

MM: future is strict, which doesn’t have this problem

WH: That doesn’t follow. Repeats point about script authors often believing they’re in strict

mode when they’re not or vice versa, which is an issue if the two modes silently resolve

function identifiers to different things.

DE: i don’t want sloppy mode to become overly complicated by adding a 3rd case.

BE: once we made our call (assuming we did due deligence) we should risk chasing our

tale by endlessly adjusting the spec…

BT: we should be prescriptive. GWT should fix its emit. Inbox should fix its app. Chrome

should attempt to ship standard semantics.

Conclusion/Resolution

No consensus on changing the existing Annex B semantics.

RegExp simplication semantics (DE)

A few extension points for RegExp subclassing.

• Symbol.{search,replace,match,split}

• get RegExp#unicode/multiline/etc

• RegExp#exec - an easy single override point proposal: fewer extension points.

DE: today, the cost is both for implementators (no one implements correctly), and user

extension

…some talk about, why is this costly for the implementation…

WH: I don’t buy the implementation costs, but I do support this proposal for user

ergonomics. It makes it much clearer to users what they should implement if they want to

subclass RegExp and reduces the opportunities for getting a performance surprise if they

override just one thing.

18

BE: it was added late

YK: it was maybe finalized late, but around for years

DE: it was added with a lack of implementation input

JHD: i tried to implement on the weekend, and I dont see added value for all these

overriding points.

YK: alan has a motivation, and he is not present

DD: I think I know, (related to promises), out of the box it should be very easy to create a

fully functional subclass. There are some inconsistencies, alan said he would tweak these

things. His goal was to make this super easy to make subclasses. Dans argument is, a

library could handle the “super easy part’ putting less weight on the spec.

BE: lets have symbol names for this, alan tried his best. But without implementor

feedback, we it may not have been ideal. Since its not implemented, we have the flexibility

to change.

BT: alan is available right now via skype, lets pull him in

WH: The bigger override kernel is helpful with efficiency. With exec overridable, if a user

overrides exec then searching must necessarily call exec on each position of the string.

With the bigger kernel of overridable methods, searching could use a Boyer-Moore

algorithm instead.

BE: should we defer this [the override features of ES2015] or take it out.

BE: we screwed up, it needed more implementor feedback and further iteration.

MM: lets defer this conversation for tomorrow, when Alan can call it successfully.

Conclusion/Resolution

defer until we can talk to Allen tomorrow

Remove generator .return? (DE)

19

• overview of .return

• pros of .return

o signal to iterators/generators when resource is “dropped on the floor”

o reify abrupt completions, generators as a sink for observables, etc

• ???

• .return in the iteration protocol

• why reconsider .return for resources?

o resource allocation mostly now for async i/o and promises

o try/finally pattern predominates for freeing resources

?, WH, MM: comments that this pushes the burden to the consumer. Consumer would

need to wrap each for-of loop inside a try-finally that explicity releases the resource.

YK: example code in an abstraction?

DE: no, this is imagined direct user code

DE: Generator return is idempotent

[Example of speculative auto-disposal syntax: finally let …

WH: That approach (auto-disposal syntax as a replacement for .return()) either makes

garbage collection visible or fails to work for the iteration use case. If you rely on the

finally-let to clean up inside a generator, then either you get to run code when the

generator is garbage collected or you don’t get notified when the user breaks out of a for-

of loop that invoked the generator.

[discussion about how to do this compatibly in the future if we were to take it out.]

DH: Need to beware of implementations attaching other meanings to .return()

DH: Could work around the conflicts by using a symbol in the future.

MM: That doesn’t work. The problem is that an implementation could reify an iterator, run a

for-of loop on it partway, break out of the loop, and later continue iterating through it. Such

usage would incompatibly break if we were to remove and later re-add a return cleanup

mechanism. That was (and still is) the argument why we couldn’t postpone this in ES2015.

BE: I don’t think we could remove .return().

YK: Why is it bad to auto-clean-up?

20

DE: Cost of try-catch

YK: Expect try-catch to be irreducibly expensive in implementations?

DH: Want sync and async to be as close to each other as is practical.

YK: Want try-finally to always run finally inside a generator if the generator is used in the

common case of using it in a for-of loop. Yes, there are other cases where generators are

used in other ways, but this invariant should hold at least for the for-of loop.

DH: Generators won’t be used for async code (in favor of async functions) and generators

will be used primarily for for-of loop.

DE: Make users explicitly clean up after for-of loops.

DH: for-of is the only construct in the language that implicitly creates one of these iterators

out of the iterable. That’s why it’s different. There is no way to get a hold of one of these to

explicitly dispose it.

DH: We had and resolved those debates before. We shouldn’t be revisiting this and focus

on things we didn’t already discuss when debating ES2015.

DD: we can seperate iterator and retainment.

MM: combining open a file, and iteration causes the conflation. Preventing a handle to the

file from being available.

YK:

DE: if we encourage, generators shouldn’t own the resource instead the resource is

passed to the generator.

DH: having syntax for disposal is then misleading

BE: I don’t think we can walk back from this

BE: We didn’t add .return() without use cases. Don’t discount those. One initial usecase

for implicit return is yielding from the try.

21

DH: Don’t want to relitigate the use of try-finally in the language. Disagree with the claim

that it’s ok that finally wouldn’t work in generators.

MM: Allow redundant .return() calls, which are ignored. This way a user can manually

iterate and wrap the iteration inside a try-finally that unconditionally calls .return() on the

iterable from the finally.

RegExp Buffet

BT: if we have multiple proposals, I would propose we attempt to advance them together. I

am hoping to get an idea from the group, what the initial RegExp proposal should include.

• look behinds

• Named Capture groups

• Comments

• Free-spacing

• mode modifiers

• Unicode Categories, Blocks, and Scripts

BT: look behind, is like look ahead but looks behind… (?<=pattern) or (?<!pattern)

BT: both positive and negative variants

BT: most potent when considering replacements.

BT: do we follow perl style static lookbehinds, or c# style quantifiers.

BT: dynamic quantifiers \w capture groups can yield to some unexpected gotchas

YK: ruby has a pretty big RegExp buffet, and does not support this feature

BT: does ruby support lookahead?

YK: will investigate… yes

YK: lookbehinds run backwards, which makes it somewhat confusing.

BT: my mind is poisoned, as its to comfortable with implementation details

22

WH: Note that the fixed-length and variable-length lookbehind variants are incompatible

with each other. They’ll differ on what gets captured by (?<=(.){3})

BT: this feature has been brought up before, MS is working with Nozomu Katō to make

this a reality. Is there general interest?

… [positive thoughts]

DE: how do you plan to handle backreferences \w look behinds

WH: What’s the problem? This is no harder than in lookaheads.

BT: Numbering of capture groups is the ordering of the opening parentheses, regardless of

whether they are in a lookbehind or not.

WH: Strongly support this, in particular the variable length lookbehinds variant of the

proposal.

WH: backtracking behavior should behave to match forward captures. ECMA ones do, perl

does not.

BT: any other items on look behinds?

BT: stage 0?

… [yup]

BT: FYI: twitter poll indicated, people are upset about this…

BT: Next feature, Named Capture groups (?<name>)…

BT: result.matches { name: value, otherName: value} vs merging with result.

WH: Would prefer that named captures capture only using named properties but not also

duplicate them under both numbers and names.

YK: May be easier to refactor because adding a name doesn’t shift numbers of following

captures.

WH: That’s nothing new. You do this all the time in existig regexps when inserting a new

capture into the middle of the regexp.

23

WH: Easier to refactor with named captures that do not alias to numeric properties and

introduce new numbers. Can insert and delete those without affecting numbering of other

captures. That’s the same simplicity and advantage that ?: provides.

MM: what can appear in the <>

BT: JS identifier

BT: we can discuss tightening

MM: what about numeric identifier?

BT: we must disallow numeric names and length; we should probably put the named

captures on a .matches property of the result

BT: What syntax to use to backreference to named capture groups?

C#: \k<name>, perl: (?P=name)

MF: why \k over \<

WH: \ is an identity escape for punctuation symbols. We had reserved it for letters, but

engines were excessively permissive, so \ followed by letters other than n, w, etc., might

be used in the wild.

YK: we should likely not move away from existing syntax

YK: looks like /\k<>/ currently escapes \k

BT: this would be a compat issue then

WH: It may be surmountable. We had the analogous compat situation when we first

defined \u.

BT: We have significant data on regexp, we can run analysis

SP: it sounds like we should base the choice on your data analysis.

MF: unicode?

DE: unicode regexp might have different performance properties

BT: don’t think thats true for us (MS)

24

M: neither for us (Apple)

DE: oh, ok.

WH: Named backreferences and unicode are orthogonal concepts. Unicode regexps are

not a substitute for traditional regexps; both are useful.

MF: would you be ok with back-reference and named not being combined?

WH: that would be unfriendly to users

BT: Named replacement syntax in the replacement strings? "${name}" or "\\g<name>"

Various: Do it!

BT: tweeted about this, majority of users were sad.

BT: I tweeted an example of destructuring and named capturing groups, its now my most

retweeted tweet.

BT: Next feature, Comments & Free-spacing syntax & related semantics:

BT: The difficulty is how to do this without modifying the /regexp/ literal.

BT: can we do this in a backwards compatible way?

MM: Template string tag is the right approach to handle this. Something we can ship. This

avoids the parsing problems because template string literals’ lexing wouldn’t need to

change.

MM: lots of issues with parsing related to RegExp, this may keep it from growing in

complexity.

DH: we are already in a situation, lexing is already complicated.

WH: Extensions that overcomplicate lexing, which this would do, are dangerous. If the a

web page goes through a white-lister that lexes it one way and then run through an engine

that lexes it in another way, it can sneak things past the while-lister.

BT: can someone more familiar with the lexing speak to this complexity?

25

WH: It’s undecidable in Perl. It guesses what you mean.

YK: can you explain

…

SP: it seems like we can explore this further as a templateString, if it really feels poor we

can explore grammar based variant.

BT: Comments: /(?# this is a comment)a*/

BT: Annoying to use

WH: At least it’s not problematic from a lexing point of view, as long as comments can’t

contain newlines, slashes, closing parentheses, or such.

BT: stage 0?

M: lets pick this up tomorrow

BT: preview for tomorrow: - mode modifiers - unicode categories - blocks & scripts

BT previews us some syntax for tomorrow.

26

November 18th 2015 Meeting
Notes

Jafar Husain (JH), Eric Farriauolo (EF), Caridy Patino (CP), Adam Klein (AK), Michael

Ficarra (MF), Peter Jensen (PJ), Domenic Denicola (DD), Jordan Harband (JHD), Chip

Morningstar (CM), Brian Terlson (BT), John Neumann (JN), Dave Herman (DH), Brendan

Eich (BE), Yehuda Katz (YK), Jeff Morrison (JM), Lee Byron (LB), Daniel Ehrenberg (DE),

Lars Hansen (LH), Nagy Hostafa (NH), Michael Saboff (MS), John Buchanan (JB), Stefan

Penner (SP), Waldemar Horwat (WH), Mark Miller (MM), Paul Leathers (PL), Georg Neis

(GN), Sebastian Markbage (SM)

RegExp Buffet (BT)

something about composed RegExp

YK: composing regexp does not have a algebraic decomposition

DD: composing multiple interpolated strings for RegExp

WH: What?

YK: composing regexp fragments on the fly

WH: That’s only useful for structured composition. Unstructured composition (string

concatenation) is too hard to reason about

YK: not wanting this, seems like we are saying creating RegExp on the fly

DH: this is just abstraction and composition, historically RegExp have been poor at this.

WH: Whats YK’s point, why is that useful?

YK: imagine a complex RegExp where deriving char classes was complex, splitting this

into multiple functions and composing makes sense.

WH: We are talking past each other

27

WH: two questions: 1. Do we want RegExp templates? 2. Do we want to do it structured,

or completely freeform?

WH: I believe the freeform way is not useful or needed

WH: Composition should work via the structured way

YK: I may want to do this via template strings

WH: The structured way already handle this

M: provides example, RegExp for different locale phone numbers. Interpolation would

nicely do the trick.

YK: i don’t understand how Mike Samuals solution

WH: Provides structured example: a${foo}*

• In structured substitution this refers to zero or more foo sub-regexps.

• In unstructured substitution this repeats the last atom inside foo, or possibly the 'a' if foo is empty, or

possibly the * is a literal if foo ends with a backslash. Very nasty. Too difficult to compose or reason

about.

YK: ok, it seems like these are two worlds.

SP: M’s example would be a good example of interpolation

WH: Structured handles this

YK: at what ergomic cost

WH: Example of how to do this is already on the github.

BT: Should we defer free-spacing for further library exploration?

YK: what are people expect from interpolation is not structured.

SP: it seems like we want both, structured and interpolated. It seems like we need to

further explore this, before free spacing is explored

28

WH: We do not want unstructured. If for some bizarre reason you want to do unstructured

regexp concatenation, just use + string concatenation and pass the result to the RegExp

constructor. Done. We don’t need a new and different way of doing that niche case.

BT: yes, we will need to explore

M: what about minifiers

DD: today, minifiers will not touch template strings today

BT: they could become smarter

BT: someone should write this

… istvan’s update …

WH: So ISO would make a tiny “pointer standard” that points to whatever the latest ECMA

ECMAScript standard is?

IS: Yes.

WH: What would the ISO rules be on the references we can make from ECMA 262?

[confusion; no answer after repeated questions] WH: What would happen to ISO 16262?

Would the new ISO pointer spec replace it?

IS: The pointer spec would be a new ISO standard. ISO 16262 would then be withdrawn.

WH: What about the internationalization library (ECMA 402)? Would it have its own ISO

pointer spec?

IS: Just one ISO standard would refer to both the latest ECMA 262 and the latest ECMA

402.

WH: How would contributions of ISO members interact with ECMA patent policies?

BT: They’d sign the contributor agreement for any nontrivial contributions.

WH: Are ISO members representing companies? Themselves as individuals? Entire

countries?

29

IS: Countries.

WH: So how does the country of Japan sign an ECMA royalty-free patent agreement?

BT: They’d sign the agreements as individuals or companies per normal process.

JN: It will be hard to get the country representatives to sign anything like an ECMA patent

policy.

BT: It would be the individual or company who owns the intellectual property

...............

BT: mode modifiers - syntax & semantics

BT: related to have local case insensitivity.

YK: multiline may be useful, one can imagine several such scenarios … heredoc

BT: pearl regexp, has (?=m…) which limits what can be put inside.

WH: I’d prefer that this be lexically scoped as well.

WH: I’m ok with it for the i and m flags. I’m definitely not ok with it for the x and u flags.

YK: what about U

BT: likely can’t do, as it changes the lexer.

DE: what does G mean for a range

YK: Some flags don’t work contextually, and because of this should we invent something

new? That would seem unfortunate

BT: interpolation + regexp helpers with …

YK: this clears up my composition/algebra question from earlier

DD: this is compelling to me, it enables further composition

30

WH: Scoping: If mode switches are block scoped, template substitutions work ok. If mode

switches take effect until they’re turned off, then you get trouble with mode switches

leaking out of inner substitutions: abc${foo}*def where foo is /xy(?i)z/ would then turn on

the i flag for the def in the outer pattern, which is bad.

WH: But the block scoped one wouldn’t be an issue.

?: What if foo is /xyz/i ?

WH: That would turn on the i flag for just the xyz and none of the abcdef in the outer

pattern. Works as expected.

SP: it seems like the structured composition of regexp should handle this, Sub RegExp get

there modifiers they need.

YK: ruby has support for this

BT: ruby has good RegExp

Yk: yes oniguruma is itself a substantial project

…

BT: without this feature it becomes difficult to substitute

WH: A more fun question is what if the template is abc${foo}*def (without a g modifier) and

foo is /xyz/g ? Such a flag juxtaposition would be meaningless.

MF: we only want I M X

YK: this is what ruby does

M:..

BT: It sounds like we want this, it may also help us figure out interpolation/composition

WH: Definitely don’t want switchable x flags. Can construct all kinds of lexical trouble with

it.

BT: composing with X is unknown, we may need to defer it.

BT: mode modifier makes it easier to compose

31

WH: so only the M and I flags for now

BT: yes

YK: sounds like an open question if we work on X

Unicode++ - Syntax & Semantics (BT)

BT: unicode spec defines, many things (block scripts…)

BT: an example of a block is latin/arabic etc.

BT: \u allows for more ergonomic RegExp when dealing with unicode chars..

YK: unicode adding stuff, will cause enumerated charsets in RegExp to break

BT: when naming a block, perl allows InArabic and IsArabic, C# does IsGreek, C# seems

better

MF: blocks and scripts can conflict

YK: ruby has is “arabic”

YK: ruby \p === script \P is negated

DE: its possible ruby doesn’t support blocks

YK: its possible

BT: implementation concern, loading block/scripts may cause excess memory pressure.

BT: i dont have a sense for how much.

SP: is the memory pressure fatal, is it impossible to pay it pay as you go?

BT: we would love to implement it that way, but that is work that must be done.

BT: I don’t think this is fatal, but we should consider it

WH: how many?

32

BT: ~20 scripts, ~30 blocks, ~60Catogories

MF: could we use FooScript, instead if IsFoo in InFoo

BT: there is both a arabic script and arabic block

DE: yes

BT: we should avoid was C# does

DE: unicode would in theory prevent a naming collision here (script/arabic)

YK: … ruby only has scripts

SP: can we clarify category

DD: editorial information

BT: category data is in all the unicode data tables

DE: sounds like a quirk of the written spec, likely “Weak language”

BT: should we choose script vs blocks

BT: blocks contain slots of future usage

BT: script has no future slots

DE: its cheaper to check if a char is in a block, then in a script

YK: we should likely investigate

DD: deciding factor is, will implementors carry the burdon

BT: so you would like to have both, assuming implementers accept the burdon

DD: yes

DE: the Intl Object already brings this along. Can we take that into account?

YK: what is the usability with only blocks

33

BT: You can’t write a RegExp in a future proof way

YK: are there strings that contain things in them, and now they cannot be matched against

BT: if my design is to match only arabic characters, without blocks is tricky

BT: e.g. does a user, writing a unicode aware RegExp do we want future characters to be

taken into account

YK: in what case would this be highly important

DE: what doesC# do

BT: it has arabic === script, inArabic == block

DE: this seems most appropriate

DE: expose expert feature of blocks, but encourage scripts

DD: there are things in scripts that aren’t in blocks

DD: seems to be missing symbols

BT: category + script should cover this

AK: it sounds like for stage 0, we should defer to C#, and gain more context over time,

DD: We should consider being a subset of C#

YK: It is not obvious that the C# choice appropriate for us, our startup constraints are

pretty high.

BT: In reality, there should not be startup cost (for chakra), unless such a RegExp is used.

BT: the first time we load Intl, it startup time takes a hit

YK: I am happy with stage 0, i think there are design choices that are not just

implementation

34

WH: Given how few scripts there are and given that a script is mostly a small number of

consecutive ranges, estimate that script tables are a few kilobytes. Doesn’t seem like a lot

to obsess over trying to optimize.

WH: A different issue not raised yet: Some unicode characters have the “inherited” script

setting, which means that they’re chameleons: their script is inherited from the script of

nearby characters in whatever string they’re embedded in. How would regular expressions

deal with those?

DE: from combing marks

YK: seems reasonable

BT: how will that handle the

… missed some stuff

BT: how do other RegExp engines handle this

MF: should this be allowed inside char classes

BT: I would like to, it seems handy

MK: small syntax suggestion \p matches a p according to spec. Implementations agree on

that, we are not aware of usage… \u does not have this, can we change \p to \u.

DD: it does mean literal u in non-unicode RegExp

… music from next door disrupts flow …

BT: precedence wins, unless \p is not compatible with the web.

YK: both are fine, \u is extremely nice. \u flag already means unicode

BT: so you hope for a compat issue

YK: confirm

Wasn’t there another proposal is \uUNICODE_CODE

WH: Are the \p category or block names case-sensitive?

35

BT: Yes.

WH: What about multiword script names? Spaces between words?

BT: No

YK: in general RegExp has lots of divergent, would people expect foriegn RegExp work

BT: C# has a Ecma mode

DD: we should be careful to not be trolled

AK: stage 0 likely doesn’t need this level of detail yet

MF: we should make sure its possible

BT: I would like to write this up, so more context is better

WH: We are talking about the substance.

WH: The place this discussion loses value is when we start debating things in the abstract,

such as should we be doing the same thing as Python/Ruby, etc., without that debate

being informed by what those languages are actually doing, their

advantages/disadvantages/lessons, etc.

BT: ok, i guess in-order to break the deadlock. It would be useful regardless, what the

compat story with escapes is.

BT: im going to proceed with \p, and see how the compat story shakes out

BT: this does not mean we can’t change

BT: we have much data, that can be analized.

BT: we should do the Other RegExp item, because Alan will call in. With slides

… stepped out … ambient music from next door

AWB: Summarizes some OO Concepts

36

BT: we accept the shared vocabulary

AWB: RegExp has an abstract base and a concerete base

AWB: the public interface that it exposes, exec/split etc… essentially all the methods on

the interface. No methods to provide a subclass interface, it is important \w match &

replace that any class that provides those methods be a subclass of a RegExp Object. The

String object was restructed in es6, so it works with any object with that implement.

RegExp has a subclass interface, and it is exec. This is very intentional, 1 kernel method is

required and a subclass works. By implementing this one concrete method, the abstract

algos will work.

AWB: exec shows up in many places, public interface, key kernel method for subclass

interface, and depends on the internal matcher algorithim.

WH: How does an implementation, that does boyer moore searching work in this case.

AWB: Let me rephrase, what if a subclass (or baseclass) wants to change or refine its

search algorithim

WH: or what if the built-in wants to change/mature the algorithim

AWB: Whatever algorithim an implementation wants to use, the algo must confirm to the

observable behavior defined in the spec.

WH: the spec may be over constraining this, which is what we are looking at

AWB: we should then look at the search algorithim and see where that is

AWB: the actual algo defined, are essentially the same algo in ES5 spec

DE: While that true, before ES6 I believe it was not observable to skip indexes.

Unfortunately, now it is observable.

AK: I believe there are some changes we could make, that would loosen this, and likely

improve some performance. There is a bug in the spec that causes multiple lookups of

exec in a loop; those should be factored outside the loop.

YK: Can I ask a question about observability

37

YK: Are your worried that subclass should be able to participate in boyer moor algo

DE: Lets here AWB full summary

AWB: Extension strategy, someone could implement a total replacement of the public

interface using whatever algo they want. As long as the public interface is implemented

correctly, it should work. This is possible, but likely more work then its worth. What is likely

common, is a subclass that provides some minor extensions, and defers the vast

complexity to the ancetors. For example, an exec method that logs. Or a scheme for

memoization Relatively simple things, some construction time modifications. Etc… Which

all should utilize the built-in matcher algo, calling super to exec. All the abstract algorithims

should work correctly, and all the abstract algorithims and concrete interfaces should work.

AWB: Another subclass, a more ambitious one which extends the built in algorithim. LIkely

requiring exec and constructor overriding. You may need to override some of the other

public interface.

AWB: These where extension styles that we took into account when designed, any

questions?

WH: lets go back to the boyer moor algo example, if an implementation wants to use boyer

moor it would be observable

AWB: in earlier additions of ES, the algos where concrete(not abstract) and they called

specific internal algorithims. In ES6, this was exposed as exec. In the past, you have

exploited the knowledge to accomplish an optimization.

AWB: Is that right?

WH: yes, my comment is exec is too small of a kernal

AWB: You can still do that. (explains an possible solution)

WH: You will end up falling off a performance cliff, when following the second extension

strategy on your slides

AWB: Thats fine, i don’t expect such subclasses to have the same performance

characteristics. If they want the performance, they can re-implement

38

DE: that sounds like a big task for a subclass

AWB: that is unfortunate, that subclasses cannot benifit from existing platform

optimizations

DE: to give more context. JHD is working on the ES6 shim and ran into some issues

DD: multi inheritance

YK: decorators etc..

DE: RegExp > RegExpShim > UserLandRegExp subclass

AWB: let me move, on i speak to something related

AWB: I had heard there was misunderstanding of the original design. I want to be sure we

have a common design

AWB: The boyer moor example doesn’t invalidate my current thinking.

AWB: Lets talk about what is an extension point, search/replace/match/split i dont consider

those extension points. They are just methods that may have alt implementatinos, they are

just refinements of the kernel

AWB: I suspect no-one is expecting those.

AWB: @@ infront of the name, is abit distracting to me they are just public interfaces.

DE: should i explain why i wrote the slide that way

AWB: yes

DE: another way the spec could habe been written

AWB: it wasn’t written another way

DE: well, another can currently implement the. String.prototype.replace could have

provided this.

AWB: i intentionally did not follow that design path, to leave open the design to allow

subclasses to extend and optimize (how we spoke about here)

39

AWB: if the entire abstract algorithim is in strings, we have coupled it to the class hierarchy

rather then the interace. Which is just bad design

DE: i see you point

AWB: bug but easy to fix, the internal slots that are used to store the flag are part of the

concrete built-in implementations The actual matcher algo, is only intended to access the

internal slots. Part of what is going on here, in previous spec, these flags where readOnly

nonconfigurable own instance property. Unfortunately, the annex B compile method

specifying them the way it did violated this. As compile could change them…

AWB: we had to add the accessor methods, to RegExp to explain the observable

semantics across compile calls. Another way to look at it, was accessors are part of the

public interface… I believe i classified them as part of the public interface. So those can be

overriden by subclasses for there own purposes. When you get down to matches they

should use the internal slot. So simple bug, we can fix that.

DE: if we where to make a tweak with flags, RegExp.prototype[@@split] uses the flags

accessor, instead of looking at individual flags, which is not great…

AWB: we can look at that later

AWB: when I look a the code, i can see the source of the the bug, The ES5 code did a get,

and it wasn’t changed. So faulty refactoring. Not a big deal.

AWB: calling RegExpBuiltinExec directly would require too much work from subclassers

DE: I see your point

AWB: regardless of what you did, your saying that the methodof the regex is not

extensible. You might be able to provide an alternative implementation that is more

extensive, but the object we are used to is not.

WH: I withdraw my concerns because the @@ algorithms are basically thin wrappers over

exec. Modifying exec is sufficient to do Boyer-Moore.

DE: there are additional performance considerations

AWB: I know a better way, we can talk about it.

40

AWB: it is very important, we didn’t intend to make change to the existing algorithims. My

assertion is with some relatively simple guards, you can’t continue to use the existing

implementations. The guards should be similar or the same to existing guards. e.g. is the

prototype a built-in or subclass, these seems reasonable. If there are unintentional spec

changes that prevent this, we should correct.

DE: you could imagine, users mutating the builtin RegExp (Adding props etc), for these

use-cases more detailed guards are required. Cross platform guards may differ, making it

hard for users to get good performance

BE: DE is saying, there “may” be issues, i want to know what concrete is hard for V8 to do.

I would like to hear from other implementors aswell

AWB: exactly my question, it doesn’t sounds dissimilar to other tricks

DE: we have tricks similar to this in Arrays, we could potentially do them here, or

something similar to that.

DE: this wouldn’t be an absolute blocker, it wouldn’t make it extremely bad

BE: what about apple

M: ya

DE: concerns with overall system complexity

M: another engineer has implemented this in JSC, he had to put some checks in to see or

not if these are overriden. 1 guard upfront. The above flag issue would be good. He

couldn’t find any big issues, other then extremely targetted benchmarks (single character

matches etc) where it was demonstratably slower.

BE: any chakra experience

BT: I spoke to [a developer] about it. We were concerned that the exec function may make

us recompile patterns in some cases. It could be addressed by making a new kernel

method exec (maybe symbol) that takes lastIndex and flags as a param. split has to make

a copy of the regexp to work around that.

BT: we haven’t really dug in yet.

41

AWB: when looking at it from kernal method extensiblity. It didn’t really add any additional

flexibilty. It seemed to add more complexity and an additional level of indirection.

AWB: I am still inclined to prefer the latest design.

JHD: doing what you suggested (lastIndex related global), would help the matchAll

proposal.

…

AWB: (couldn’t understand)

DE: I wanted to say something else, although others can v8 will likely have to rely on the

more brittle guard.

AWB: (couldn’t understand)

DE: it would be nice to cleanup.

further changes on slide deck

AWB: my bias is that, this complexity should be absorbed by the runtime. It shouldn’t be

pushed to ES consumers

AWB: I don’t know the details of your framework. This ES6 feature has been described

using OO best practices, the runtimes should be able to reasonably implement.

YK: I wanted to provide some histroical context from ruby. I also believe Smalltalk is

similar, subclassing built-ins. Most people in ruby feel this was a mistake, kernel methods

would have been more handy.

YK: For example Rails re-implements Hash to support string/symbol interopt, this ended

up with 200 loc etc.

YK: it is true, userland can do the work, but system + userland get out of sync, and it is

unfortunate

YK: rubinious even added a hook hash.store to deal with the issue.

42

AWB: the original small talk implementations were the result of people not yet being aware

of these problems. Lots of coupling

AWB: …there is a right way, and a wrong way.

AWB: my conclusion, I don’t think we need a re-design. There are some small fixes and

tweaks.

JHD: Symbol.exec, i would gladly work on it with you AWB

BE: A functionally pure kernel would be great.

AWB: one reason i didn’t go that way, is due to some hesitation do to adding additional

@@ methods.

Conclusion/Resolution

• no major change

• DE/AWB will make minor changes + tweaks

• AWB/JHD to investigate Symbol.exec + a pure functional exec kernel

DE: TypedArray proxy issue (from Andreas Rossberg)

AWB: What if we just made an internal algorithm to do the construction, and call it from

each TypedArray constructor directly, rather than having a super constructor and proto

chain walk?

DE, AK, BT, MM: Perfect!

Resolution: Rephrase spec, a pull request for this is welcome

AK: while we have you, im curious re: typedArrays and stuff that changed during ES6

AK: imagine Reflect.constructor on a built-in like number, passing your own new target.

There is this problem, that some of the built-in constructors have side-affects before they

pull the prototype off the new topic. This yields to some wierdness

AK: Will file a separate issue for this concern

BT: other issues for AWB while we have him?

43

KS:

Conclusion/Resolution

• %TypedArray% constructor is directly called rather than having a super constructor and a proto

chain walk

Improving consistency of @@species (Kevin
Smith)

KS: on map and set, they are not used in the spec themselves, But subclasses should be

able to override

KS: usage patterns, instance methods, that want to return related subclass.

KS: Promise.all and Promise.race are the only ones that use this

YK: race/all are combinators Array.from is a custom constructors:

KS: it would be good to define what the usage patterns are

AWB: ..

DD: I disagree, resolve/all/race is more “casting” and species should not be used.

AWB: I agree the return value should be using species, as the user is specifying.

DD: the argument values can be anything, and they are to be cast to the RacePromise

AWB: but why

DD: an example …Could be… CancellablePromise.race(arrayOfMiscPromises) likely

wants cast its input.

YK: those examples are dubious

SP: lets us InstrumentedPromise as an example

DD: ok lets use that one, InstrumentedPromise.all(mixOfPromises) casts all inputs to

InstrumentPromises

44

DD: auto-casting is the intent.

AWB: that works great for the case, where you want to cast

AWB: but it breaks the case where you don’t.

DD: I believe it was a mistake, likely my own mis-understanding. I don’t believe it makes

sense.

DE: zepto took a literal array that and swaped out its constructor. If that was new’d it

wouldn’t work. Array['@@species']create, has two checks. this.constructor if thats not an

object, it goes back to the default ArrayCreate['@@species'] of fallback. The critical original

issues (based on the notes) was WebCompat

YK: @@species has another precednt

DD: A solution was needed, this pattern appealed to others. I believe it was misused, and

misunderstood.

DD: it expressed a use-case for arrays, that are hypothetically use-full.

AWB: avoid nodelist instead get an array out of it.

KS: I would prefer, i would not want to argue removing it. I would like understand how it

ought to be used.

YK: why is it on map/set

AWB: someone argued it should be for the future, for example adding filter/map

AWB: if we wanted to provide filter to math, a subclass to math. This would allow them to

change species

YK: we should add it on-demand.

DD: we should move away from @@species on the promise constructor

DD: we should discover a future strategy. Function.prototype['@@species'] = this

AWB: not sure why we didn’t think about this sooner

DH: whats the best next step for a change like that

45

YK/DD: PR

DH: should I file a bug if i don’t have time

DD/KS: bug

YK: should we remove it from map

DD: lets remove it from everything, and put it on Function.prototype['@@species'] = this;

AWB: it was added for array instance extensibility.

DD: that would break zepto

DE: Object.__proto__ is Function.prototype, which have a species returning this, which

breaks the web.

KS: it seems like the cascade of missing species will break things.

DE: we could erase species create, is the species of the constructor object, if it is fallback.

Then species does what I wants to do.

YK: I believe Function.prototype behind right about Object.__proto__ is unfortunate.

DD: i see two paths forward,

1. investigate Function.prototype['@@species']

2. Map and Set shouldn’t have it, we should add it on-demand.

DD: we can work out the details offline

AWB: I know from email threads, we should factor in the DOM design.

DD: many scenarios to flesh out.

AWB: API level support would be interesting

everyone: himm?

AWB: for example, filter some collection, give the power to the caller.

DD: shifting the burden on the user seems unfortunate.

46

YK: filter species feels good, map feels back. mapping a nodelist, getting back a nodelist is

funky

DD: ya for this DOM api, it doesn’t seem good

DD: it feels good for like, OrderedCollection from small talk

DE: this pattern works in several scenarios

BT: summarize?

DD: i see two paths forward, 1. investigate Function.prototype['@@species'] 2. Map and

Set shouldn’t have it, we should add it on-demand, and do no carry it forward.

Conclusion/Resolution

• remove @@species handing from Promise.all/Promise.race

• no decisions made on other @@species handling

• investigate Function.prototype[Symbol.species]

BT: discussion on various GH threads, this should be easy.

BT: the problem is that, proxy enumerate trap iterator is allowed to return w/e it wants.

YK: symbols are can be enumerable but not as for in key

BT: currently it can return anything

BT: first proposal 1. error for non string return 2. coerce to string

BT: proposes errata thrown error if non-strings are returned

MM: is there a precedent for this?

BT: Other places where invariants are violated, we throw

DD: can non descriptors be returned from the descriptor

MM: no, we fixed that.

DD: promise rejection handlers

47

…

MM: there is another defactor standard for JS (both node and browser) and sort fits in the

same general area of purpose is console

MM: console is interesting, the writing to console is exposed to JS, but the visibility is

platform specific.

MM: the kind of diagnostics seem to related

DD: this is also meant as a way for programmers to report back to the server (for example)

MM: the console can show the traceback

MM: this feature is used as a programmer to find bugs, it is diagnostic. And should be

gather only by code that has authority.

DD: a good debugging/diagnostics proposal sounds reasonable in the future

BT: improving the layering of HTML + ecma, to improve the boundaries are (internal slots,

and abstract algorithims)

BT: how much scrutiney should this sort of work get?

DD: these sorts of changes already exist

MM: I would prefer such things brought to the group.

YK: it seems like we need some healthy interop between the various groups, so if

webcrypto wants to add some concepts. It should be part of some inter group discussion

MM: should it go through the group before it can advance outside

MM: clearly the web will advance without

MM: being notified early is important

YK: I agree

BT: should likely be an editor discretion. With github, changes are public and watchable.

48

YK: a small process may solve, for example. The editor of a given group tags changes as

potentially relevant.

BT: bi-weekly changelog, with highlights called out. Grouped sections, to draw attention to

various interested parties.

Conclusion/Resolution

• promise rejection hooks are in

• editor may apply own discretion on further “implementation hook” proposals

Proposal Repos, and where they live +
editor update

BT: for people not watching the spec, let me show you what we have.

BT: we have a permanently bleeding edge spec at http://tc39.github.io/ecma262/

BT: more people using it the more bugs we can fix

BT: we have a nice fuzzy searching table of contents

BT: find all references (when clicking on various identifiers)

BT: …

SP: We can tweet every release

DD: who controls @tc39

JHD: I believe i gave that to DH

DH: I believe i have it

MM: what happened to the wiki, we should get it back

YK: finding historical references etc.

DH: I will try to convince mozilla ops to get it back up

http://tc39.github.io/ecma262/

49

BT: I tried once

DH: I will ask them

…

BT: I will provide the bi-weekly callouts, but wont come to each meeting with the delta

YK: It is reasonable for others to keep up to date online, and be prepared for the next

release

BT: it would be nice if everything under the tc39 org is going to be archived in some way

that ecma likes

BT: stage 1 approval (entry critera) that the repo be on the ecma

BT: but stage 0 is lost

SP: we can move the repo

BT: great, but moving the GH pages redirection seems to fail post move

JHD: creating a new repo on the old location allows a manual gh-pages redirect, but

breaks the automatic repo redirect, so please don’t do that

YK: I will ask if there is a good reason for that.

BT: many have stage 1+ that are not on tc39 org yet

BT: it seems like there are several steps, may be labourious.

BT: lets talk to istvan and see if we can give everyone owners

BT: stage 1+ email me, and we will work on the repo transfer.

SP: editor doing this, acts as a good filter.

DE: Proxy Implementation for in issues

50

Conclusion/Resolution

• any stage 1 or above proposal repos must be transferred to the TC39 org, as a stage 1 entry

requirement

JEFMO: trailing commas

JM: stage 3?

AK: does this cause problems with arrow functions

BT: it may increase the complexity of parsing

BT: i believe the spider monkey folks had thoughts, but I don’t know why

DH: does you spec include handling of sequence expression grammar

JM: no

DH: then it doesn’t seem good

JM: spec doesn’t have trailing commas in arrow function

…

JM: ok I will add arrows (pending stage 3)

DD: stage 3 tomorrow?

JM: yes

Conclusion/Resolution

• hopefully stage 3 tomorrow after arrows are added

Proxy [[Enumerate]] ocerconstrains
implementations (AK)

https://github.com/tc39/ecma262/issues/161

https://github.com/tc39/ecma262/issues/161

51

AK: proxies have an enumerate trap, the worry is (from us implementors) must call next at

specific times. Which causes some concerns, it seems like something is underspecified…

DH:

AK: we want to leave it up to the implementation to eagerly fetch the keys, regardless of

proxy

BT: To summarize: if i am enumerating a proxy, we cannot pre-collect the keys because

the call to the next is observable.

BT: spreading before the loop, may have issues

JHD: proxies with infinite enumeration wouldn’t work then?

JHD: something like an iterator that iterators for 5 minutes and stops. (laziness)

BT: …

YK: Can we move from loosening, to changing to the usage to what the implementations

want.

YK: for example, changing the spec ahead of time

YK: proxies can observe, IE has some behavior, people get used to it. If collect seems like

the right thing, we should move that way.

DE: lots of cross platform differences are already observable here, because for in is under

specified.

BT: YK I believe that will be safe from a compat standpoint

BT: I would be surprised if the enumerate trap is being used

YK: i believe a delegating exotic will want it.

BT: only the for in code

DD: for app code, unlikely

52

YK: agree

YK: its the copying protocol

BT: it seems unlikely that is is an issue, we can safely make the change

BT: If not, maybe we can leave it under specified?

YK: I feel MM should care we shouldn’t under specify

MM: we should have deterministic specs, remember our target audience is many web

programmers for many websites. Reproducible behavior is important for this environment

Conclusion/Resolution

• specify that [[Enumerate]] spreads before entering the

loop https://github.com/tc39/ecma262/issues/161#issuecomment-157910543

• the committee would not agree to underspecified behavior

• there is a compat risk for Chakra but the assumption is that it’s not a problem until there’s data

saying so

Function.sent (BT)

BT: its in babel

DE: did you add internal slots

Conclusion/Resolution

deferred till tomorrow…

Async Await

BT: I did not finish the tests, but noticed some troubling things. IE ships AsyncFunction, I

believe we should actually not do this

SP: im curious why

BT: unsure, MM?

https://github.com/tc39/ecma262/issues/161#issuecomment-157910543

53

MM: these is no reason to give it a global name

DD: TC39 believes the global isn’t a mess already

MM: well, because of this, we should take extra care. We should not contribute to the

problem

MM: we discussed that modules will be a mechanism for us to prevent additional polution.

YK: yes its a risk, modules are a way out of this.

MM: GeneratorFunction is not shipped, SES also wants to splice it out. Lets stay with the

precedent

MM: ES5 added a new global called JSON, this causes grief. Facebook had such a global,

DD: Ok

BT: does the fact that Edge not ship %AsyncFunction.prototype% at all

(that Object.getPrototypeOf(async function () {}) === Function.prototype and should not)

mean we need to wait on stage 4?

(lots of discussion about whether global topology should block stage 4)

…

MM: for in order is different we might revert

AK: is this demonstrating a problem with that staging process

YK: yes

AK: im talking on behave a process

YK: there is a well known process, feature flags. They have a cost, but the benefit

improves the integration process

MM: what is it

YK: isolate chunks of code (markup) that is isolated, interim work can take advantage of

this.

54

AK: the spec is too big

YK: what will happen in practice, if AsyncFunction is present. Related work will be able to

take into account. There is cost associated for sure.

MM: there is an existing cost today, FF has an additional cost.

AK: …

BT: I asked the question, because I want to decide how to allocate my time tonight. I didn’t

want to allocate the time, if the already presented issues blocked anyways.

AK: I’ll take your word the “cost” is trivial

BT: As an implementor, I need to frontload the work that the group feels appropriate

DE: it would be optimal to have high quality tests, if there are issues / failing tests we can

and judge the risk associated.

… deciding core semantics … BT: 95% confidence interval on “core concepts” or tests

related to non-trivial changes. Or issues unrelated to performance/stability.

MM: populate visible primordials must be populated

BT: this is a hard conversion to have

BT: i will report back after tonights

DE: various contextual s keywords in edge cases, may have unforeseen complexity. I

would like to have this considered a core semantics.

SP: risk of shipping, with bugs vs risk of lacking feedback from shipping

BT: its a risk forsure

AK: That is a good reason why multiple implementations are good, as it they will hope to

have overlapping bugs

55

Conclusion/Resolution

• do not add GeneratorFunction or AsyncFunction constructors to the global object

56

November 19th 2015 Meeting
Notes

Jafar Husain (JH), Eric Farriauolo (EF), Caridy Patino (CP), Michael Ficarra (MF), Peter

Jensen (PJ), Domenic Denicola (DD), Jordan Harband (JHD), Chip Morningstar (CM),

Brian Terlson (BT), John Neumann (JN), Dave Herman (DH), Brendan Eich (BE), Yehuda

Katz (YK), Jeff Morrison (JM), Lee Byron (LB), Daniel Ehrenberg (DE), Lars Hansen (LH),

Nagy Hostafa (NH), Michael Saboff (MS), John Buchanan (JB), Stefan Penner (SP),

Sebastian McKenzie (SMK), Waldemar Horwat (WH), Mark Miller (MM), Paul Leathers

(PL), Georg Neis (GN), Sebastian Markbage (SM), Zibi Braniecki (ZB)

YK: i wont be giving my full presentation this time, I will provide a short update.

YK: i plan to work with somepeople like dan, and evolve it

YK: There was some concerns with adding free floating APIs for decorators, what we are

going with (right now) is a mirror that decorators have access to, during the time that they

are run.

YK: this based on input from several different parties, type checkers implementors etc.

DE: KS on private state

YK: KS has been working on, private methods/functions

Observables (JH)

JH: proposals are at a reasonable mature state now, lots of iteration and evolution.

BT hand delivers coffee to JH

JH: current state of the proposal, is largely unchained since last time

JH: we have moved away from the generator interface, partly do to ergonomics

JH: return /complete confusion

57

JH: composing generators + observables leads to some issues, so we took an adaptive

path

JH: a similar APi, with some changes

JH: sync subscribe and sync unsubscribe, to prevent

DD: Symbol.observable that does return this, caught me off

YK: is the start method related to priming, or is unrelated

JH: unrelated, start method drives the subscription

JH: DD

DD: there is no more Symbol.observe

JH: oh, thank you

WH: What are the question marks for after some of the methods in the Observer interface?

JH: Those are optional

WH: But the ones without question marks are optional too.

JH: [Removes question marks from slide]

WH: After an Observer receives an error or complete call, can it receive any other call?

JH: No

WH: What can happen while Observable.subscribe is running? Can the observation run

and complete?

JH: Yes

MF: doesn’t a subscription unsubscribe need to take some…

DD: no it doesn’t atleast not in the readonme

MF: what if it wasn’t successful

58

JH: we will talk about that shortly

JH: …

JH: reviews existing behavior (if anyone caught that, jump in)

…

WH: What is Observable.forEach?

DD: what is forEach, it is an attempt to make it ergonomimc

SP: is forEach being async, a hazard

DD: I think, this is a change we will be seeing more.

DD: an async taxonomy would be unfortunate

DH: same name, doesn’t mean its the same interface.

SP: so this is the start

YK: start with promises, API evolves. This becomes async loops, which is natural.

DD: its not really clear cut

DD: one thing that catches me, where is the second thisArg to forEach.

YK: its bad in async siutations, thisArg entangles the lifetime

DD: other constructs do already

… it returns a promise

JH: yes

WH: Is it possible for a next to be called re-entrantly (i.e. an Observer receive a next call

from within a next callback)?

JH: We don’t want to allow that, but I don’t believe the spec currently guards against this

JH: wk you brought this up yesterday with kevin

59

YK: yes, a loop re-entering during iteration, seems fatal

YK: in the middle of a block, jumping to the top of the block is unexpected

DD: yes in a for loop, run to completeion invariant should not be broken

YK: if the observable has no buffering, this will just happen

YK goes to write out an example.

YK: i’ll assume some async for of syntax.

let { producer, consumer } = …;

async for (let item of consumer) {
 producer.next(value)
}

YK: there is a producer side "call next" on the consumer you subscribe and receive values.

This is a generic statement of async loop constructs.

YK: in the observable model, consumer is an observable. Producer is an observer.

JH provides some quick context for some confused about producer/consumer.

YK: when someone calls next on the producer, without buffering the consumer then

producers, and the loop is re-entered.

MM: is the producer something that calls next? Or something that gets next get called one.

Lets be careful to prevent confusion

YK: there is code that calls next, and code that recieves next.

MM: is the object

YK: lets reframe

async for (let item of observable) {
 observable.next(value)
}

…

JH: this is the classic re-entering problem, buffering is one possible solution

60

YK: the problem now, is the observer has no buffer, next is sync. So calling next in the

loop will either be dropped, or re-entrant

MM: this is exactly synchronous plan interference problems

YK: this is likely worse

JH: if we had syntax, we would need to schedule

WH: What do you mean by the synchronous plan interference problem?

MM: See chapter 13 of http://erights.org/talks/thesis/markm-thesis.pdf for explanation of

plan interference

…

MM: any sync notification will have the plan interference issue

YK: this is more specific issue

MM: it is up to the observable, how it deals with the re-entrancy problem.

YK: unfortunately, it does not realize it is mid for of.

DH: one obvious know case, is making this an error condition.

YK: it could also be buffered

DD: I think making this an AsyncIterable solves the issue

MM: i believe it is up to the observable to make this choice

DH: doesn’t there have to be an API for that then?

YK: you are correct, that is a way the observable can make the differences

YK: …

WH: going too fast to track multiple people, lets slow down.

http://erights.org/talks/thesis/markm-thesis.pdf

61

MM: i don’t believe there is a problem the language needs to solve. It is the responsibility

of the observable to deal with this case.

YK: what happens if the notification does re-enter.

JH: observables should not be re-entrent, we should schedule and the problem goes away

YK: is this better solved by AsyncIterable

DD: no-one has proposed this syntax

WH: DD, what you’re saying is that this should not be used with async for?

DE: there is a larger issue, it seems that this is an interlocking issue. We must consider

these units has part of a single package.

YK: DE, i agree with you

YK: MM, i think you can agree there is design needed here

MM: when you changed the syntax, I realized i had a confusion. When this is async, the

problem goes away

SP: yes, then the run to completion semantics we expect remain

YK: i think DE was write, we likely want to add syntax in the future. If we get these

primitives wrong, we may block that.

DD: sorry, i mistated before. I agree

DE: I agree

DE: lets have JH continue, and we can continue

JH: look, we want to look at how this works with AsyncIterator

JH: i don’t want to propose syntax for this future (now or ever)

JH: there are issues, there is no natural backpressure. Unsubscribe is the only option, but

Unsub and and Sub are no the same as pause.

62

JH: previous iterations of the proposal had some support for this.

JH: we adjusted, because Observable feels like a much better event Target then we have

today.

WH: what happes in this example?

async for (let item of mousemoves) {
 await somePromise;
 mousemoves:next(new MouseMove());
}

JH: It’s bad.

WH: I can see that it’s bad. But which particular bad thing happens if someone does this?

AsyncIterable has a natural way to handle this, as they are more "pull" based. Observable

can’t really do this.

JH: I see Observable as a better event target, no syntax and this problem isn’t an issue.

YK: should this be a DOM proposal

DD: it is unclear, it isn’t unclear

DH: a test, does it make sense in node?

DD: promises are needed for modules

YK: promises for modules tiped it this way.

DD: it is ok if this is the venue.

WH: So Observable should not be usable in an async for loop?

JH: Should use this instead:

 async function() {
 await observable.forEach(x => {console.log(x);});
 }

SP: forEach has the same issue as syntax for of, it is re-entrant.

JH: there are solutions, buffers.

63

WH: What happens if someone ignores our advice and uses Obserable in an async for

loop?

JH: It wouldn’t work.

WH: What about it wouldn’t work? What would be different about the interfaces that would

make them not fit?

JH: example code:

interface AsyncIterator {
 next(): Promise<IterationResult>
 throw(): Promise<IterationResult>
 return(): Promise<IterationResult>
}

The Promises prevent reentrancy.

WH: Good. That explains it.

…

DH: You’re saying, Observable needs to be synchronous to meet most general needs, but

then that causes the re-entrancy issue, inherment to synchrnous callback mechanisms. So

it won’t be connected to for await. However, it’d be possible for individual Observables to

be connected to async iterators which are connected to syntax.

… [Discussion of many generic combinators to convert Observables to async iterators]

YK: Stef raised an issue with forEach EIC protocal, blessed the behaviors.

YK: there is code in the wild that does the

DE: it would be great to capture this in the spec

DH: we have traditionally avoided rationale

JH: other methods aswell? map/filter/etc

YK: no, EIC is focused on forEach (i believe)

YK: I am also disappointed in the abstract, but we actually did this.

DD: this means we cant used forEach on iterables

64

YK: give me a compelling reason

DD: this wont break

YK: this will break

SP: This could retain object graphs, cause different DOM code to be executed

DD: Some npm packages do use foreach in an async way already. You’re only robust

against types that conform to the protocol that you’re implementing

YK: Using a library together with something could cause it to break

DD: Making types into observables could be a bad interaction

YK: Let’s think more carefully about it

YK: we may want to consider abondoning the EIC protocal

YK: Every collection has a forEach method, which has the same signature that it gets, so

that you can write code which is generic over multiple forEach implementors

WH: Define EIC.

DD: forEach((element, index, collection) => {})

DD: Why should asynchronicity be considered part of this? The index and collection can

be passed in too.

CM, JM: Why not just use a different name?

DD: It would be bad for generic code if we had to use a different name.

JH: Generic code should use the iteration protocol, not .forEach, when feature-testing and

doing synchronous iteration

DD: We’re making a gradual transition towards iteration, so we should be OK breaking the

uniformity of forEach. There’s a small window for code to use generic forEach and expect

it to be synchronous.

65

YK: How could we help figure this out?

DD: We could market it somehow and get people to switch to the iteration protocol

YK: I think Domenic’s transitional story is good

JH: So, should we advance to stage 2?

YK: Dan had an objection that I agree to. We are nervous about advancing before the

syntax is worked out

DD: We want to have a full story with async iterators and have a single story to present to

the web before pushing this forward

YK: And maybe things won’t fit together if we do it piecewise

WH: I share that concern

JH: I think this is well-thought and we do have this all figured out. Kevin has some good

drafts

DD: two seperate proposal is ok, but it seems like they should be combined, advancing

together as an async plural proposal

YK: async loops

DD: async plural includes the broader idea.

YK: we should be sure the picture looks cohesive

BT: what about promises + async Function

YK: they were presented much earlier

DE: the process has changed

YK: expressions are simpler

BT: likely true, im not saying we shouldn’t advance them as a group

66

YK: DD JH and I have been working on this for some time, and it is complex. We feel

without maping it out, there may be problems

YK: Several champion groups, should coalesce into 1

JH: who is working on these people

DE: KS is working on it, and it is making progress

JH: I am concered coupling this proposal

JH: so we are looking at 6 to 8 months?

YK: we haven’t..

BT: We don’t need async Iterable to be at stage 2, to advance observables…

DD: we are saying, they should be one proposal

WH: I want to be able to convince myself that the two will play nice together. I don’t care

as much how we go about doing that.

JH: i can provide an adaptation

YK: the devil is in the defaults

MF: prior art to refer to

JH: .net etc. has these two separate protocols that work well together

YK: devil is in the details, JS !== C#

DD: I believe they feel as a package, and should be presented together.

YK: coalesce into 1 champion group, members must be convinced.

DE: i don’t believe they need to be 1 champion group, they concepts must be cohesive.

YK: In practice, it sounds like a similar

M: not advancing, is blocking implementation investigation.

67

M: we should likely advance, and block at a later time.

YK: I think you are misreading the politeness. I believe some feel the observable may

need dramatic changes.

DE: I don’t see why we cant move to stage 1.

M: its a draft

YK: we do not have consensus on stage 2 entrance

M: i think it will langish.

…

JH: i believe observation as a pattern is a thing, and has a space in the spec.

MF: you care only that they overlap

YK: i believe we should avoid overlap

MF: so one should not entirely overlap

YK: I lean in the direction that it is useful

DD: i also lean in that direction, but have consumes

JH: I agree with that conclusion

Resolution

No stage 2 for now; let’s see how async iterables turn out

JHD Error.isError

JHD: … brand checking, regardless of toStrings output. Error (and associated subclasses)

lacks any internal way. Current done via Object.prototype.toString.

JHD: Chrome/V8 may have shipped toStringTag

JHD: Cross realm errors are not currently brand checkable

68

DD: This is not useful. We shouldn’t be encouraging brand-check programming

WH: What about proxies? Is there any way for a proxy to proxy an Error and make it look

like an Error?

YK: internal slots are cannot be trapped by a proxy so this ok.

MM: This breaks the parallelism with Array.isArray, which recursively looks underneath

proxies

JHD: I’m fine with adding support for the paralleism with Array.isArray

JHD: motivating reason, determining if a given value should be wrapped or not (to promise

rejection)

YK: ES5 error subclasses wont pass this.

YK: Array.isArray has motivating code

DD: We should use instanceof Error

JHD: But that doesn’t work cross-realm

DD: A cross-realm Error won’t work. Why do you want to check whether it’s a real error?

JHD: what motivated Array.isArray

DD: it shouldn’t have

YK: Cross realm is not the only issue, node ecosystem (duping in npm) has the same

issue

DE: What does error give you?

JHD: Stack traces, message property, name property, and people tend to stick other

properties for additional payloads

JHD: seems like there are two objections: 1. proxy support (I will make it work) 2. “I don’t

believe that programming model should be encouraged”

69

DH: really really critical use-case for Arrays.isArray, overloading function arguments and

array vs non array type requires a very clear case. I don’t believe that use-case comes up

for errors.

YK: JHD did provide this

JHD: User uses an Error sentinel value, which is similar to the function overloading use

case.

DD: Rejections should be for same realm errors

DH: i suspect this may be hazardous, because of “security” and you can throw anything.

YK: strings are also errors in JS…

DH: Error is not a hard predicate for cleanly divide the universe. Because plenty of

usecases where non errors are used as errors

JHD: The same is with array, objects can mimic arrays often.

DD: those in favour of brand checking where, those not did not

DD: brand checking was not intentional

MM: In ES5 brand checking was very intentional, maybe not in ES6. SES depends on on

this.

YK: what about error

MM: SES does not use this

DD: it is a bad precedent to make every new type exotic, to allow brand checking. Error

should not be exotic.

MM: general issue is, is there some guarantee that something is given a following brand

DD: Spec has a note, saying this was a mistake.

YK: why does this exist

DD: toString fallback

70

DD: We should remove it

DH: i think i have not articulated the invariants from this usecass. Array.isArray was not

intended for this, but it fit an important usecase. Specifically the overloading scenarios

want a strong invariant here.

DH: two array types in JS, branded arrays, and objects the obey the array interface.

JHD: and methods that rely on that interface

DH: I don’t believe there is a reasonable programming model that uses overloading with

error. Particularly the error wrapping case for promise rejection. I feel this is going down a

poor bad.

DH: Possibly an alternative approach could exist

YK: The problem is forgibility, but if someone forges an error is doesn’t seem important.

JHD: why do we have the internal slot

DD: we should not have the internal slots. Errors should not be exotic

DD: map + set make use of internal slots for unobservable

BT: slots don’t make an object exotic

DD: You are correct, exotic is the wrong word.

DH: With a well motivated programming model, i could be convinced.

SB: An example would be a debugging tool. I want to be sure I do not loose this

information because currently we cannot detect.

SB: it is interesting for what this means in general. Observable land may not care, but

does the entity may carry information for the system. Without brand checking that may be

lost

JM: …

DD: you cannot…

71

JHD: passing additional information between realms may not be good, but it is done.

JHD: if i find further examples, would that be sufficient?

DH: no, but it would help advance the conversation

DH: I believe a programming model could be extracted from this. We should likely not

bless emergent programming models, merely because they exist.

DH: we should excercise our critical thinking, is this programming model worth

standardizing.

JHD: I want to gauge if this is worth engaging further

DD: We should assume, error internal slot was a mistake.

YK: we should avoid encouraging brand checking as a pattern.

MM: SES uses instanceof Error, but not used in any security critical areas. Basically,

inservice of implementing a getStack API. Case splitting between browsers, if it is an error

fetch its getStack. On FF, if it is an error apply the dot stack getter property. When

accessed it is wrapped in an try/catch

DD: we should standardize what exists cross platform

MM: it does not, a stack property exists, but the content of the stack is widly different, and

could not be standardize without breaking

MM: Some api should exist, which extracts a spec’d stack from an error object. non errros

wont carry stacks. Which implies that an error is unique.

DD: Ember.isError does not seem like the right tool

MM: Maybe System.getStack could use it.

YK: …

JHD: Regexp is the only one?

…

72

SM: can you explain more

SM: isn’t stack an anti pattern as it is branding

DD: If it does not have internal structure (private data) branding should not be encouraged

YK: public interfaces should be truthful

SM: what about strings

DD: strings, arrays, math have internal (private state)

YK: Private state should not be taken in account when and outsider inspects.

SM: …

YK: this is daves point about overloading

SM: There appears to be missing mechanism to detect tag/branding. instanceof doesn’t

work across realm

DH: value types should be branded, userland data-types that have unambigious testable

distinctions, and pattern matching those attributes is correct. I don’t believe DD is saying

that, but we need to think about how to distinguish the two.

SM: ad-hoc tagging seems like a common problem

DD: stringTag sounds like the feature here.

DH: does flow have ad-hoc union types.

SM: yes

DH: so similar to typed Racket

JM: yes

DH: that seems like a very natural fit for JS for this programming model. Deferring this

problem to the type system.

DH: What is the flaw in that way

73

SM: ad-hoc and security issue. There was an issue in react. If there was internal branding

this could have been avoided

SM: this is more general yes

DH: should there be a more general tagging/branding mechanism.

SP: WeakMap and proposed private state can do this.

YK: !@#$!@#$!@#%$%^& (discussing actual JS syntax)

SM: toStringTag doesn’t pass between JSON,

…

JHD: I want to make sure doing more research isn’t a waste of time

MM: there must be a motivating use-case, if there is no such use-case it is a waste of time.

YK: we should be sure the motivating cases are good

JHD: the risk grows the longer we wait.

DD: it sounds like more information is needed.

Conclusion/Resolution

- More research

DE: can i propose I18n?

… [everyone yes]

INTL

CP: todays meeting update: 1. html version of ECMA 402 2. just sent to istvan CP: same

workflow for 262

CP: same tools, same flow. getting the HTML version similar (hopefully same) as 262

CP: asside from that, we fixed the tutorials, and ? syntax in the spec instead of

returnIfAbropt

74

CP: new features

EF: first thing usage experience: 402 1.0 afew years ago, and has made its way into

browsers. It is being used in many ways. Node is getting it Gecko’s UI is using itself

Chromes UI is using itself Library level: jQuery globalize, formatjs (suite of libs) l20n from

mozilla l10ns an int.js polyfil and more We have experience at libs, and all the new web

stuff at Yahoo is using this under the hood. (For safari which doesn’t support it yet)

?: Firefox OS is using intl js for all the platform level stuff.

EF: any users of the intl library all have similar requests 1. plurals 2. relative Time 3.

duration 4. unit 5. list 6. …

We support in polyfills, but we need more.

EF: cross implementation lack of specification for data, is tricky.

CP: we are not using es discuss for this, we are using the github repo for issues.

YK: seems good to me

BT: we are still reading ESdiscuss, but issues seem good

CP: when we want to take one of these features into consideration, we can go through

esdiscuss

EF: v3 clearly wants more, but we lack information. More experimenation is good. We

would like to allow userland to explore further.

EF: our abstract algorithims are commonly required for users to experiment. This also

includes the corresponding data.

EF: to encouratge experimentation (to acquire more info) we want to expose some more

primitives

EF: formatToParts just strings is unsufficient, order/context is hard to encode.

…: Some formats are meanlingless, but important to take into account. The construction of

the datetime string is very cultural

75

EF: essentially it is lossy

EF: formatToParts aims to explain how format even works. It aims to provide an array of

objects, with the relevant context. Allowing userland code to do its thing

YK: changing formatToParts should change format

…

EF: unfortunately .format doesn’t need to be bound.

ZB: lets open issues and see if we can improve this thing.

YK: regardless it seems like it should still work.

DD: it is unclear

YK: it would be nice

DD: but we understand if the previous choice may prevent this

ZB: implementing the gecko patch, the formatToParts is much slower.

YK: sounds like the same shape as the RegExp Problem. If its overriden, take a slow path.

BT: why an array of objects

EF: order would be lost.

BT: it seems when I care about the subset, it is more complex

CP: I actually believe, it would likely be more complicated.

ZB: LTR RTL languages alsopresented some issues, this pattern worked well

EF: unless it is too expensive, having abstract operations available.

BT: in essense the abstract operations are likely just spec refactorings.

BT: in Windows this would not be straightforward, but is probably doable, using a Windows

10 API… I’ll follow up to make sure.

76

ZB: Windows 10 certainly does things similar to this.

CP: Edge does not use the algorithm we have, just delegates to Windows for best effort?

BT: yes

BT: I agree this should be doable, and in general I’m not concerned. I don’t think it

constraints implementations too much. Edge might need to ask Windows for a better API.

EF: (next slide) "How: Adding to ECMA 402"

DD: is it possible to move away from the bound method pattern?

BT: no; not web compatible

EF: (next slide) "Current Status"

(Discussion of IE not using CLDR vs. everyone else using it.)

EF: we would like to advance to stage 1, we dont have spec test. But we have draft impl +

gecko imp.

BT: I have to get the windows guys to sign-off to on the new API, so something concrete

(spec text) would be best.

Resolution: (for exposing abstract operations)

Stage 1

PluralRules

EF: apps must solves this, if they want to use I18n in the UI. This is heavily requested, we

have implemented it.

ZB: it is hard to implement correctly, CLDR gives the required information

(some visual examples)

ZB: Without this, the shear amount of complexity required blocks good localized sites.

77

ZB: two plural forms in the same sentance explodes the complexity.

ZB: this nicely supports the simple case, and the complex case.

EF: also good for relative times "1 hour ago" "2 hours ago"

BT: is there precedent for something like this

ZB: gettext for 30 years

EF: Java’s plural format is built on a lower level class that is uses for plural rules and

categories (I believe)

EF: we would prefer this to be non optional

ZB: if you cannot afford to store all the data, keep one language

YK: 402 should be take it or leave it, partially support would be unfortunate

YK: all features should be implemented, languages should be based on available data.

M: What about an implementation that supports currency but not plural, since message

formatting handles it

EF: It seems like it would be cheap to then provide the real thing.

M: paying for the data would be unfortunate

EF: loading it for all of english, is 800bytes or so. All languages …

SP: wouldn’t this be better solved by partial locale data. Implementating a subset of

features seems fatal.

BT: would like you all intl or none (or partial subset)

YK: it is possible to imagine scenarios where it is an extreme trade-off, but that isn’t how

the web works

BT: the thing that is concerning me is. We need to support JS on IoT devices.

YK: and your guessing what so support?

78

BT: we need to make a choice, based on budget avilable

ZB: I would like to point out, you cant support everything. There is always an edgecase, so

we designed 402 APIs, by using fallbacks. By the end of the day, you will get currency. It

may not be in chinese, but it will be A currency.

SP: does that deal with the concer?

BT: Yes it should, there is a concern though. If a platform wants to implement parts of i18n

in a seperate namespace.

YK: is seems like portable code has been thought about. By allowing all data

M: but what if a given platform provides an alternative

YK: what about eval/toString. It seems like they can provide the alternative and carry on.

BT: if intl is all or nothing, some may take nothing.

ZB: like SIMD, intl should always be there.

DD: either 402 or not

YK: i don’t believe 402 should allow piecemill.

MM: what about partial data sets

EF: the APIs are built for this, as they are built to fallback.

WH: CLDR’s cross product of locales refering to other locales’ names, time zones, their

currencies (including various plural inflections), etc. is enormous

ZB: we don’t ship those, in-fact we designed the API for support this.

EF: CP has written up spec text

EF: we need to deal with decimals, the spec test needs to be updated

CP: we need to figure it out yet

79

resolutions stage 1

Abstract Locale Operations

EF: aspects of each of the components currently go through some abstract operations, we

would like to expose them

ZB: Intl.getCanonicalLocales(locales)

ZB: naming suggestions are open.

ZB: This is useful any time we do language negotiation, this allows us to verify.

Implementing this in userland is like 4000 loc, exposing it instead has a clear advantage.

DD: what are the input types

EF: same as the numberFormat

DD: eh. i guess consistency over design

EF: We should about it yesterday, but we felt that it would be simpler this way.

DD: consistency wins it for me

EF: next is a Intl.getParentLocales(locale), the naive implementation would fall short as

many exceptions exist. Userland implementation would likely be non-obvious

ZB: for example serbian cyrillic and serbian latin don’t have obvious fallbacks

ZB: We don’t just provide the final solution, the proposed the higharchy of locale

inheritance

ZB: We wanted to implement some userland custom code at mozilla, unfortunately we

where forced to important several thousand lines of code from the internals.

BT: does this require a giant table

ZB: No, just as the rest of the model, additional data improves the results.

YK: is there any part of the spec that requires explicit data to be loaded

80

ZB: no

ZB: the goal is, to allow (if data available) the best possible information.

EF: you are allowed to do better

EF: Intl.resolveLocaleInfo

EF: this is an API that has a very similar signature. It will provide the best possible (based

on data) resolved language.

EF: the results provides a summary of available information, this will grow.

MF: why not have in seperate functions

EF: the number of data points grows, adding 1 method per data is unfortunate.

DD: what about "current system preferences"

(discussion about user settings/preferences)

DD: This same API, could be used to get the users preferences

EF: maybe, leave out the locale argument, so the default provides this.

CP: user fingerprinting is a potential concern

ZB: this will be happening

EF: We propose stage 1

… [consensus]

ZB: our next step spec proposals and get feedback

BT: outline is good, full spec text isn’t needed right away

DD: spec text for 2

BT: i would love to give feedback before to much investment in spec test.

CP: it shouldn’t be to bad, largely this is extract existing abstract algs

81

trailing , in functions arguments

JM: fixes from yesterday (cover grammar support), MF BT looked at them.

shows spec text

DH: looks good!

resolution: advance to stage 3

Test 262 updated

BT: not many new tests recently, except for SIMD.

BT: many open issues, but nothing worth mentioning.

BT: we dont have tests for some things, like tail calls.

YK: is it possible

BT: open question

BT: destructing needs to be done

DD: some work to share tests between destructing binding and assignment

BT: Async functions have some more tests, and we’ll discuss it more in two months. Async

functions will remain stage 3 in January.

System.global (JHD)

JHD: no reliable way to get the global cross platform.

JHD: shims need it, but required using many tricks.

DD: rationale is good, more bikeshedding on the details.

SP: node-webkit is gnarly here, it belives its both node and web… many existing feature

detections failed.

DH: MM has many ideas here, we should be careful to involve him

82

JHD: I spoke with MM, and tried to get his input

JHD: Were can we put it. MM felt on System as along it was configurable.

JHD: arguments against reifing self, may break existing code

DD: the ideal way is to reuse something exist, whoever feature detection is the tricky one.

DD: global.self maybe ww, global.global maybe node?

JM: whats wrong with with System.global

DD: its long

DD: existing names are accessors, configurable with no setters ony getters, changing that

sounds dubious

JM: self is a common idiom.

YK: self is an existing trap

DD: global is my preference

JM: what about System.global

DD: I would not use it

JHD: let me continue, we can bikeshed more

JHD: it can be a windows proxy, it should be the thing new Function("this") would return.

(discussion about windows observability)

JHD: The goal is to use the existing spec to frame what is returned.

DH: CSP concerns, for example eval is prevented.

YK: sloppy CSP already gives access to the gobal

DH: are they guarding from access to the global.

MF: not really https://github.com/w3c/webappsec-csp/issues/2

https://github.com/w3c/webappsec-csp/issues/2

83

JHD: in all reasonable platforms, the global is accessible. This merely provides a

consistent solution.

YK: SES is ok with this, even though they provide no global access.

Conclusion/Resolution

• stage 1

Wrap-up

JN: thanks to paypal, for hosting the meeting lunches and breakfasts. Excellent thank you

JN: Thank you to paypal and ecma for dinner

JN: next meeting is January 25, 26, 27 in SF at salesforce

JN: In january meeting, we must wrap up the june 2016 release.

	Minutes of the: 49th meeting of Ecma TC39
	in: San Jose, CA, USA
	on: 17-19 November 2015
	1 Opening, welcome and roll call
	1.1 Opening of the meeting (Mr. Neumann)
	1.2 Introduction of attendees
	1.3 Host facilities, local logistics

	2 Adoption of the agenda (2015/048-Rev1)
	Agenda for the: 49th meeting of Ecma TC39

	3 Approval of minutes from September 2015 (2015/045)
	4 Status of “ES6 Suite” submission for fast-track to ISO/IEC JTC 1
	5 ES7 and Test262 Discussions
	6 Report from the Secretariat
	7 Date and place of the next meetings
	8 Closure
	Annex 1
	Technical Notes
	November 17th 2015 Meeting Notes
	Async functions (Stage 4 Process Discussion) (BT)
	Conclusion/Resolution

	Object.values/entries
	Conclusion/Resolution

	String.pad{Left,Right}
	Conclusion/Resolution

	Array.prototype.includes
	Conclusion/Resolution

	function.sent
	Conclusion/Resolution

	Object.observe update
	Conclusion/Resolution
	Should destructuring declarations without bindings throw?
	Conclusion/Resolution

	legacy function hoisting semantics in sloppy mode (DE)
	Conclusion/Resolution

	RegExp simplication semantics (DE)
	Conclusion/Resolution

	Remove generator .return? (DE)
	RegExp Buffet

	November 18th 2015 Meeting Notes
	RegExp Buffet (BT)
	Unicode++ - Syntax & Semantics (BT)
	AWB: Summarizes some OO Concepts
	Conclusion/Resolution
	Conclusion/Resolution
	Improving consistency of @@species (Kevin Smith)
	Conclusion/Resolution
	Conclusion/Resolution

	Proposal Repos, and where they live + editor update
	Conclusion/Resolution

	JEFMO: trailing commas
	Conclusion/Resolution

	Proxy [[Enumerate]] ocerconstrains implementations (AK)
	Conclusion/Resolution

	Function.sent (BT)
	Conclusion/Resolution
	Async Await
	Conclusion/Resolution

	November 19th 2015 Meeting Notes
	Observables (JH)
	Resolution
	JHD Error.isError
	Conclusion/Resolution

	INTL
	Resolution: (for exposing abstract operations)

	Stage 1
	PluralRules
	resolutions stage 1

	Abstract Locale Operations
	trailing , in functions arguments
	resolution: advance to stage 3
	Test 262 updated
	System.global (JHD)
	Conclusion/Resolution

	Wrap-up

